WO2021079814A1 - Liquid pump system - Google Patents

Liquid pump system Download PDF

Info

Publication number
WO2021079814A1
WO2021079814A1 PCT/JP2020/038849 JP2020038849W WO2021079814A1 WO 2021079814 A1 WO2021079814 A1 WO 2021079814A1 JP 2020038849 W JP2020038849 W JP 2020038849W WO 2021079814 A1 WO2021079814 A1 WO 2021079814A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
internal space
liquid
pressurizing bag
pressure
Prior art date
Application number
PCT/JP2020/038849
Other languages
French (fr)
Japanese (ja)
Inventor
啓一 中島
Original Assignee
ネイチャーダイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ネイチャーダイン株式会社 filed Critical ネイチャーダイン株式会社
Publication of WO2021079814A1 publication Critical patent/WO2021079814A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/08Machines, pumps, or pumping installations having flexible working members having tubular flexible members
    • F04B43/10Pumps having fluid drive

Definitions

  • This disclosure relates to a pressure-driven pump system.
  • Patent Document 1 In recent years, as an important application of a pump system, a large amount of water is stored in a high position, and as disclosed in Patent Document 1, it is utilized for converting kinetic energy into potential energy. ..
  • the present disclosure realizes a pump system that can obtain a large potential energy with a small kinetic energy.
  • the pump system is A first chamber in which the internal space forms at least a part of the airtight space and the gas is housed in the internal space.
  • a first pressurizing bag that is arranged in the internal space of the first chamber and deforms with a change in air pressure in the internal space of the first chamber to suck or discharge a liquid.
  • An atmospheric pressure changing part that changes the atmospheric pressure in the internal space of the first chamber, With When the pressure in the internal space of the first chamber is changed so that the first pressurizing bag sucks the liquid or discharges the liquid from the first pressurizing bag, the deformation of the first pressurizing bag causes the liquid. , A lift is generated in the liquid inside the first pressurizing bag.
  • the air pressure in the internal space of the first chamber is changed, and the side wall portion of the first pressurizing bag is horizontally deformed to deform the liquid inside the first pressurizing bag. Is preferably moved in the horizontal direction to cause a flow in the liquid inside the first pressurizing bag to generate lift in the liquid.
  • the liquid inside the first pressurizing bag is generated by further moving the liquid moved in the horizontal direction in the first pressurizing bag downward to generate a swirl flow. It is preferable to generate a flow in the liquid to generate lift in the liquid.
  • the lower portion of the first pressurizing bag is provided with a first tapering portion that tapers downward of the first pressurizing bag.
  • the upper portion of the first pressurizing bag includes a second taper portion that tapers upward of the first pressurizing bag.
  • the first pressurizing bag has a diamond shape, and it is preferable that the liquid is sucked from the lower part of the first pressurizing bag and the liquid is discharged from the upper part of the first pressurizing bag.
  • the first pressurizing bag preferably includes a tension portion for applying tension in the vertical direction of the first pressurizing bag.
  • the atmospheric pressure change part is An expansion bag that is placed in the internal space of the first chamber and can be deformed, A first pump that supplies gas to the expansion bag and sucks gas from the expansion bag, With When the expansion bag expands, it is preferable that the expansion bag comes into contact with the side wall portion of the first pressure bag.
  • the atmospheric pressure changing unit includes a second pump that sucks gas in the internal space of the first chamber when expanding the expansion bag.
  • the expansion bag and the side wall portion of the first pressurizing bag are adhered to each other.
  • the pump system described above A plurality of the first pressurizing bags arranged in the internal space of the first chamber, and In the internal space of the first chamber, the liquid discharged from the lower first pressurizing bag adjacent in the vertical direction can be accommodated, and the upper first pressurizing bag adjacent in the vertical direction can be accommodated.
  • a relay unit arranged outside the first chamber so that the liquid can be discharged into the chamber,
  • a first check valve arranged between the lower first pressurizing bag and the relay portion,
  • a second check valve arranged between the upper first pressurizing bag and the relay portion, It is preferable to provide.
  • the first check valve When the air pressure in the internal space of the first chamber rises, the first check valve is opened to discharge the liquid from the lower first pressurizing bag to the relay portion, and the second check valve is discharged. With the check valve closed, the liquid is discharged from the first pressurizing back on the upper side.
  • the lower first pressurizing bag sucks the liquid and the second check valve is closed while the first check valve is closed. It is preferable that the valve is opened and the first pressurizing back on the upper side sucks the liquid from the relay portion.
  • the pump system described above A second chamber connected to the first chamber and having an internal space forming at least a part of the airtight space together with the internal space of the first chamber.
  • a second pressurizing bag arranged in the internal space of the second chamber, connected in series with the first pressurizing bag, and alternately arranged with the first pressurizing bag.
  • a check valve arranged between the first pressurizing bag and the second pressurizing bag, With The atmospheric pressure change part is As the air pressure in the internal space of the second chamber is lowered, the second pressurizing bag is expanded and the air pressure in the internal space of the first chamber is increased to increase the pressure in the first chamber. Shrink the pressure chamber, As the air pressure in the internal space of the first chamber is lowered, the first pressurizing bag is expanded and the air pressure in the internal space of the second chamber is increased to increase the pressure in the second chamber. It is preferable to shrink the compression chamber.
  • the lower portion of the second pressurizing bag is provided with a first tapering portion that tapers downward of the second pressurizing bag.
  • the upper portion of the second pressurizing bag includes a second taper portion that tapers upward of the second pressurizing bag.
  • the second pressurizing bag has a diamond shape, and it is preferable that the liquid is sucked from the lower part of the second pressurizing bag and the liquid is discharged from the upper part of the second pressurizing bag.
  • the second pressurizing bag preferably includes a tension portion for applying tension in the vertical direction of the second pressurizing bag.
  • a part of the first pressurizing bag and the second pressurizing bag is arranged so as to overlap in the vertical direction.
  • the discharge port of the check valve is arranged directly below or diagonally downward.
  • the above-mentioned pump system includes the second chamber for each of the second pressurizing bags.
  • the second chamber is preferably fixed to the outer peripheral portion of the first chamber.
  • the atmospheric pressure change part is A first pump that moves the gas in the internal space of the first chamber to the internal space of the second chamber, and A second pump that moves the gas in the internal space of the second chamber to the internal space of the first chamber, and It is preferable to provide.
  • the atmospheric pressure change part is The first flow path through which the gas in the internal space of the first chamber flows toward the internal space of the second chamber, and A second flow path through which the gas in the internal space of the second chamber flows toward the internal space of the first chamber, and The first flow path so that the gas in the internal space of one of the first chamber or the second chamber can be sucked and discharged to the other internal space of the first chamber or the second chamber.
  • a switching unit that switches between the connection between the first chamber and the second chamber by the first flow path and the connection between the first chamber and the second chamber by the second flow path.
  • the switching unit when the discharge pressure of the pump becomes equal to or higher than a preset first threshold value, the switching unit is the one of the first flow path or the second flow path.
  • the first chamber and the second chamber are connected and the suction pressure of the pump becomes equal to or higher than a preset second threshold value, the other of the first flow path or the second flow path. It is preferable to connect the first chamber and the second chamber with.
  • the pump includes a third chamber connected to the switching portion, and receives sunlight to warm the gas in the internal space of the third chamber, thereby warming the internal space. It is preferable that the pressure in the internal space rises and the gas in the internal space cools due to the decrease in sunlight, so that the pressure in the internal space decreases.
  • the pump covers the sea surface and includes a covering portion through which seawater can enter and exit through an opening.
  • the covering portion is connected to the switching portion and is connected to the switching portion. It is preferable that the air pressure in the internal space of the covering portion changes according to the change in the height of the sea surface inside the covering portion.
  • the pump A third chamber connected to the switching portion and A volume change part that is arranged in the internal space of the third chamber and vaporizes or atomizes the liquid.
  • a dew condensation propulsion unit which is arranged in the internal space of the third chamber and promotes dew condensation, With It is preferable to change the gas in the internal space of the third chamber by switching between the operation and the stop of the volume changing portion.
  • the above-mentioned pump system reduces the air pressure to at least the third threshold when the air pressure in the internal space of the first chamber becomes higher than a preset third threshold value, and the above-mentioned pump system reduces the air pressure to at least the third threshold value.
  • the air pressure in the internal space becomes lower than the preset fourth threshold value, it is preferable to include an air pressure adjusting unit that raises the air pressure to at least the fourth threshold value.
  • the air pressure adjusting unit is A fourth chamber connected to the first chamber and containing a liquid, A discharge path that is passed from the internal space of the fourth chamber to the outside of the fourth chamber and provided with a third check valve, and A liquid tank arranged outside the fourth chamber and containing a liquid, and a liquid tank.
  • the fourth check valve is closed and the third check valve is blocked.
  • the pressure in the internal space of the first chamber becomes lower than the fourth threshold value
  • the liquid contained in the liquid tank is sucked up the supply path into the internal space of the fourth chamber, and the liquid is sucked into the internal space of the fourth chamber.
  • the gas outside the fourth chamber is sucked into the internal space of the first chamber through the supply path, and the gas inside the first chamber is sucked.
  • the fourth check valve is preferably closed.
  • the first chamber is provided in a suction path for sucking the liquid, allowing the flow of the liquid in the suction direction and blocking the flow of the liquid in the opposite direction.
  • the check valve and the first chamber are provided in the discharge path for discharging the liquid, and a second reverse reverse valve that allows the flow of the liquid in the discharge direction and blocks the flow of the liquid in the reverse direction. It is preferable to provide a check valve.
  • first check valve and the second check valve are respectively.
  • a valve arranged so that the liquid flows in the vertical direction when in the open state A vortex generating frame having a vortex generating portion that holds the valve and guides the flow of air rising from the lower surface downward in the vicinity of the region where the liquid flows is provided around the region where the liquid flows from the valve. Good.
  • the first pressurizing bag has a reverse water droplet shape having a substantially circular shape on the upper side and a tapered shape on the lower side in a front view, and is formed during pressurization and depressurization of the first pressurization bag. It is preferable to generate a swirl flow due to the liquid inside.
  • the first pressurizing bag has a tubular member having a large number of holes in connecting the suction path for sucking the liquid and the discharge path for discharging the liquid.
  • first pressurizing bag may have a frame built in the outermost peripheral edge portion for holding the front shape of the first pressurizing bag.
  • a first chamber in which the internal space forms at least a part of an airtight space and gas is housed in the internal space, and A first pressurizing bag that is arranged in the internal space of the first chamber and deforms with a change in air pressure in the internal space of the first chamber to suck or discharge a liquid.
  • a second chamber in which the interior space forms at least a part of the airtight space and the gas is housed in the interior space.
  • a second pressurizing bag arranged in the internal space of the second chamber, connected in series with the first pressurizing bag, and alternately arranged with the first pressurizing bag.
  • a third chamber in which the interior space forms at least a part of the airtight space and the gas is housed in the interior space.
  • a third pressurizing back which is arranged in the internal space of the third chamber and deforms with a change in the air pressure in the internal space of the third chamber to suck or discharge the liquid.
  • a fourth chamber in which the interior space forms at least a part of the airtight space and the gas is housed in the interior space.
  • a fourth pressurizing bag arranged in the internal space of the fourth chamber, connected in series with the third pressurizing bag, and alternately arranged with the third pressurizing bag.
  • a plurality of check valves arranged between the first pressurizing bag and the second pressurizing bag, and between the third pressurizing bag and the fourth pressurizing bag.
  • the first chamber, the second chamber, the third chamber, and the fourth chamber are each provided with a pressure changing portion that changes the pressure in the internal space of each of the first chamber, the second chamber, and the fourth chamber.
  • the atmospheric pressure change part is As the air pressure in the internal space of the second chamber is lowered, the second pressurizing bag is expanded and the air pressure in the internal space of the first chamber is increased to increase the pressure in the first chamber. Shrink the pressure chamber, As the air pressure in the internal space of the first chamber is lowered, the first pressurizing bag is expanded and the air pressure in the internal space of the second chamber is increased to increase the pressure in the second chamber.
  • Shrink the pressure chamber As the air pressure in the internal space of the third chamber is lowered, the fourth pressurizing bag is expanded and the air pressure in the internal space of the third chamber is increased to increase the pressure in the third chamber. Shrink the pressure chamber, Along with lowering the air pressure in the internal space of the third chamber, the third pressurizing bag is expanded and the air pressure in the internal space of the fourth chamber is increased to increase the pressure in the fourth chamber. Shrink the compression chamber.
  • the atmospheric pressure change part is A first blower connected to the first chamber and a first connecting tube connected to the fourth chamber, It has a second chamber and a second blower connected to a second connecting tube connected to the third chamber.
  • pressurizing with the first blower it is preferable to reduce the pressure with the second blower, and when depressurizing with the first blower, it is preferable to pressurize with the second blower.
  • FIG. It is a perspective view which shows typically the pumping pump system of Embodiment 1.
  • FIG. It is sectional drawing which shows typically the pumping pump system of Embodiment 1.
  • FIG. It is a figure which shows the static pressure vector which acts on a pressure bag when the air pressure of the internal space of a chamber is lowered.
  • FIG. It is a figure which shows the fluid pressurization vector which acts on a pressurization bag when the air pressure of the internal space of a chamber is lowered.
  • FIG. It is a figure for demonstrating the state of discharging the liquid from a pressurizing bag in the pumping system of Embodiment 4.
  • FIG. It is a figure for demonstrating the state of sucking a liquid into a pressurizing bag in the pumping system of Embodiment 4.
  • FIG. It is a perspective view which shows typically the different pumping pump systems of Embodiment 4.
  • FIG. 5 is a partially enlarged view of the pumping system of the eighth embodiment. It is a perspective view which shows the 2nd chamber of the pumping pump system of Embodiment 8. It is a perspective view which shows the 2nd pressurizing bag of the pumping pump system of Embodiment 8.
  • FIG. 1 is a perspective view schematically showing a pumping system of the present embodiment.
  • FIG. 2 is a cross-sectional view schematically showing the pumping system of the present embodiment.
  • the pump system 1 of the present embodiment includes a chamber 2, a pressurizing bag 3, and a pressure changing unit 4.
  • the chamber 2 is provided with an internal space 2a in which a gas is housed, and has a rigidity that does not substantially deform even if the air pressure in the internal space 2a changes.
  • the gas contained in the internal space 2a of the chamber 2 will be described in detail later, but can be appropriately selected according to the change in atmospheric pressure required for expanding and contracting the pressurizing bag 3.
  • the shape of the internal space 2a of the chamber 2 is preferably a cylindrical shape so that the repulsive force is directed toward the center when the air pressure in the internal space 2a is changed.
  • the pressurizing bag 3 is a deformable resin bag (for example, a vinyl bag), and a liquid such as water is stored inside the pressurizing bag 3.
  • the liquid contained in the pressurizing bag 3 is not limited to water, and may be, for example, one that is stable against temperature changes.
  • the pressurizing bag 3 basically has a substantially square shape when the pressurizing bag 3 is viewed from the front, and the upper and lower ends of the pressurizing bag 3 are closed.
  • the pressurizing bag 3 has a shape that is narrowed toward the upper end or the lower end of the pressurizing bag 3 when the pressurizing bag 3 is viewed from the side. That is, the pressure bag 3 is shaped like a so-called blood transfusion bag, for example.
  • the shape of the pressurizing bag 3 is not particularly limited, and may be a tubular shape as long as it can be deformed with a change in the atmospheric pressure in the internal space 2a of the chamber 2 as described later.
  • the pressurizing bag 3 is supported in a state of being housed in the internal space 2a of the chamber 2.
  • the pressurizing bag 3 may be suspended and supported in, for example, the internal space 2a of the chamber 2.
  • the pressurizing bag 3 may be arranged so as to suppress a decrease in the contact area between the outer surface of the pressurizing bag 3 and the gas in the internal space 2a of the first chamber 2.
  • the discharge path 6 and the suction path 7 are connected to the pressurizing bag 3.
  • the discharge path 6 is a flow path for discharging the liquid from the pressurizing bag 3.
  • the discharge path 6 is, for example, a pipe body made of a material having a higher rigidity than the pressure bag 3. Then, one end of the discharge path 6 is passed from the upper part of the pressurizing bag 3 to the inside of the pressurizing bag 3, and the other end of the discharge path 6 is passed from the chamber 2 to the outside, and the chamber 2 is passed.
  • the liquid is arranged so that the liquid can be discharged to the liquid tank 8 arranged outside the above. At this time, the gap between the discharge path 6 and the chamber 2 and the pressurizing bag 3 is closed.
  • a check valve 9 is provided in the discharge path 6.
  • the check valve 9 allows the flow of liquid from one end of the discharge path 6 toward the other end and blocks the flow of liquid in the opposite direction.
  • a general check valve can be used, and for example, a duck bill valve may be used.
  • the suction path 7 is a flow path for sucking the liquid into the pressurizing bag 3.
  • the suction passage 7 is, for example, a pipe body made of a material having a higher rigidity than the pressure bag 3. Then, one end of the suction path 7 is passed from the lower part of the pressurizing bag 3 to the inside of the pressurizing bag 3, and the other end of the suction path 7 is passed from the chamber 2 to the outside, and the chamber 2 is passed.
  • the liquid is arranged so that the liquid can be sucked from the liquid tank 10 arranged outside the above. At this time, the gap between the suction path 7 and the chamber 2 and the pressurizing bag 3 is closed.
  • a check valve 11 is provided in the suction passage 7.
  • the check valve 11 allows the flow of liquid from the other end of the suction path 7 toward one end and blocks the flow of liquid in the opposite direction.
  • a general check valve can be used, and for example, a duck bill valve may be used.
  • the position where the discharge path 6 and the suction path 7 are passed through the pressurizing bag 3 is not limited.
  • the atmospheric pressure changing unit 4 changes the atmospheric pressure in the internal space 2a of the chamber 2.
  • the air pressure changing unit 4 of the present embodiment includes a pump 12 connected to the chamber 2, and by operating the pump 12, the air pressure in the internal space 2a of the chamber 2 is changed. Therefore, the chamber 2 and the atmospheric pressure changing portion 4 form a substantially sealed space.
  • FIG. 3 is a diagram showing a static pressurization vector acting on the pressurization bag when the air pressure in the internal space of the chamber is lowered.
  • FIG. 4 is a diagram showing a fluid pressurization vector acting on the pressurization bag when the air pressure in the internal space of the chamber is lowered.
  • FIG. 5 is a diagram for explaining the lift generated when the air pressure in the internal space of the chamber is lowered.
  • the pressurizing bag 3 is in a state where it can expand and suck the liquid inside.
  • the pump 12 operates from such a state and the gas in the internal space 2a of the chamber 2 is sucked from the internal space 2a of the chamber 2, the air pressure in the internal space 2a of the chamber 2 decreases.
  • an expansion pressure uniformly acts on the outer surface of the pressurizing bag 3, and the liquid is sucked from the liquid tank 10 into the pressurizing bag 3 via the suction path 7.
  • the lower part of the pressurizing bag 3 balances the gravity due to the liquid and the repulsive force of the pressurizing bag 3, and the upper part of the pressurizing bag 3 is the liquid level of the liquid. Due to the tension, the liquid and the inner surface of the pressurizing bag 3 are in close contact with each other, and the upper and lower portions of the pressurizing bag 3 are in a state of being hard to be deformed. Therefore, the expansion pressure is concentrated in the substantially central portion of the side wall portion of the pressurizing bag 3, which is most easily deformed.
  • the substantially central portion of the side wall portion of the pressure back 3 is pulled in the substantially horizontal direction, and the liquid moves in the horizontal direction in which gravity does not substantially act. Then, as the liquid moves in the horizontal direction and the liquid is sucked, the liquid flows inside the pressurizing bag 3 and lift is generated. By moving the liquid in a substantially horizontal direction in which gravity does not act in this way, lift can be generated without being affected by gravity, and the liquid can be sucked. Moreover, the lift force allows the center of gravity of the liquid inside the pressurizing bag 3 to be placed at a high position. That is, potential energy can be earned.
  • FIG. 6 is a diagram showing a static pressurization vector acting on the pressurization bag when the air pressure in the internal space of the chamber is increased.
  • FIG. 7 is a diagram showing a fluid pressurization vector acting on the pressurization bag when the air pressure in the internal space of the chamber is increased.
  • FIG. 8 is a diagram for explaining the lift generated when the air pressure in the internal space of the chamber is increased.
  • the lower part of the pressurizing bag 3 balances the gravity due to the liquid and the repulsive force of the pressurizing bag 3, and the upper part of the pressurizing bag 3 is the liquid level of the liquid. Due to the tension, the liquid and the inner surface of the pressurizing bag 3 are in close contact with each other, and the upper and lower portions of the pressurizing bag 3 are in a state of being hard to be deformed. Therefore, the contraction pressure is concentrated in the substantially central portion of the side wall portion of the pressurizing bag 3, which is most easily deformed.
  • the substantially central portion of the side wall portion of the pressure back 3 is pushed in the substantially horizontal direction, and the liquid moves in the horizontal direction in which gravity does not substantially act. Then, as the liquid moves in the horizontal direction and is discharged, the liquid flows inside the pressurizing bag 3 and lift is generated.
  • the lift force allows the center of gravity of the liquid inside the pressurizing bag 3 to be placed at a high position. That is, potential energy can be earned.
  • the lift pump system 1 of the present embodiment moves the liquid in a substantially horizontal direction in which gravity does not act to generate lift without being affected by gravity, and sucks and discharges the liquid. Can be done. Therefore, there is almost no idling loss and a large potential energy can be obtained with a small kinetic energy as compared with a configuration in which the liquid is directly pumped by the kinetic energy of a pump such as a general pump system. That is, in a typical pump system, the higher the position where the liquid is sucked and discharged, the heavier the weight of the liquid due to gravity increases, and as a result, the dead energy, which is the idling loss, increases. In the pump system 1 of the embodiment, there is almost no ineffective energy, and the liquid can be discharged and sucked. Therefore, the pump system 1 of the present embodiment has dramatically improved efficiency as compared with a general pump system, and can pump liquid using an extremely small pump 12.
  • the expansion pressure and the contraction pressure can be concentrated in the substantially central portion of the side wall portion of the pressure back 3, the expansion pressure and the contraction pressure are dispersed in the side wall portion of the pressure back 3 and act as compared with the case where the expansion pressure and the contraction pressure act. , Can generate a large lift.
  • the portion where the side wall portion of the pressurizing bag 3 is deformed can be appropriately set depending on the shape and material of the pressurizing bag 3.
  • the center of gravity of the liquid inside the pressurizing bag 3 can be arranged at a high position by lift, the liquid can be discharged with a smaller power. Furthermore, since the liquid is moved through a gas that is extremely lighter than the liquid, the liquid can be pumped with extremely small power.
  • FIG. 9 is a perspective view schematically showing the pumping system of the present embodiment.
  • FIG. 10 is a cross-sectional view schematically showing the pumping system of the present embodiment.
  • FIG. 11 is a diagram showing a state in which the expansion bag is expanded and the substantially central portion of the side wall portion of the pressure bag is pushed in.
  • the pumping system 21 of the present embodiment has substantially the same configuration as the pumping system 1 of the first embodiment, but the configuration of the atmospheric pressure changing unit 22 is different. Therefore, the description overlapping with the first embodiment will be omitted, and the description of the atmospheric pressure changing unit 22 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
  • the atmospheric pressure changing unit 22 includes an expansion back 23 and a first pump 24.
  • the expansion back 23 is arranged in the internal space 2a of the chamber 2.
  • the expansion bag 23 has a configuration substantially equal to, for example, the pressurization bag 3.
  • the expansion bag 23 has a configuration and arrangement capable of pushing in a substantially central portion (that is, a preset portion) of the side wall portion of the pressure back 3 when the expansion bag 23 expands. It suffices if it is done.
  • the first pump 24 supplies gas to the expansion bag 23 and discharges the gas from the expansion bag 23.
  • the expansion bag 23 expands, as shown in FIG. As described above, the pressure in the internal space 2a of the chamber 2 rises, the substantially central portion of the side wall portion of the pressure back 3 is deformed in a substantially horizontal direction, and the expansion back 23 is an abbreviation for the side wall portion of the pressure back 3. Contact the central part and push it in almost horizontal direction.
  • the pump system 21 of the present embodiment can discharge the liquid with a smaller power than the pump system 1 of the first embodiment.
  • the atmospheric pressure changing unit 22 is provided with a second pump 25 that sucks the gas in the internal space 2a of the chamber 2 when the expansion bag 23 expands.
  • the cushion pressure loss when the expansion bag 23 comes into contact with the side wall portion of the pressure bag 3 can be reduced.
  • the substantially central portion of the side wall portion of the pressure back 3 and the side wall portion of the expansion bag 23 may be adhered to each other.
  • the first pump 24 when operated to suck the gas from the expansion bag 23, the substantially central portion of the side wall portion of the pressurizing bag 3 can be locally pulled in in the substantially horizontal direction. As a result, the liquid can be sucked with a smaller power than that of the pump system 1 of the first embodiment.
  • the pressurizing bag 3 of the first and second embodiments has a substantially right-angled square shape when viewed from the front, but as shown in FIG. 14, the first tapered portion 3a in which the lower portion of the pressurizing bag 3 tapers downward. It is preferable that the upper portion of the pressurizing bag 3 is provided with a second tapered portion 3b that tapers upward, and the front view is formed in a substantially right-angled shape.
  • the center of gravity of the liquid can be arranged at a higher position than the pressurizing bag 3 of the first and second embodiments, and the water level can be increased. Therefore, the liquid can be discharged with less power. Moreover, as shown in FIG. 14, lift can be generated toward the discharge path 6 side, and a rational pressurizing bag 3 can be realized.
  • the pressurizing bag 3 may include a tension portion 3c that applies tension in the vertical direction of the pressurizing bag 3.
  • the tension portion 3c shown in FIG. 15 is an elastically deformable wire rod and is fixed to the side wall portion of the pressure bag 3.
  • the tension portion 3c shown in FIG. 16 is a convex portion formed on the surface of the side wall portion of the pressure bag 3. These tension portions 3c are arranged so as to extend in the vertical direction.
  • the pressurizing bag 3 of the present embodiment includes a first tapered portion 3a and a second tapered portion 3b, but if at least the first tapered portion 3a is provided, the center of gravity of the liquid is set to a high position. Can be placed. Further, the tension portion 3c may be provided on at least one of the outer surface or the inner surface of the pressurizing bag 3.
  • FIG. 18 is a perspective view schematically showing the pumping system of the present embodiment.
  • FIG. 19 is a diagram for explaining how the liquid is discharged from the pressure bag.
  • FIG. 20 is a diagram for explaining how the liquid is sucked into the pressure bag. Note that FIGS. 19 and 20 simplify the arrangement of the first flow path 44 and the second flow path 45.
  • the pumping system 41 of the present embodiment has substantially the same configuration as the pumping system 1 of the first embodiment, but is configured to include a plurality of pressurizing bags 42 and a relay unit 43. different. It should be noted that the description overlapping with other embodiments will be omitted, and the same members as those of the pump system 1 of the pump system 1 of the first embodiment will be described by using the same reference numerals.
  • the pressurizing bag 42 has, for example, the same configuration as the pressurizing bag 3 shown in FIG. 15, and a plurality of pressurizing bags 42 are arranged in the internal space 2a of the chamber 2 in a state of being arranged in the vertical direction. .. Then, one end of the suction path 7 is passed through the inside of the lowermost pressurizing bag 42, and one end of the discharge path 6 is passed through the inside of the uppermost pressurizing bag 42. There is.
  • the relay unit 43 is, for example, a liquid tank, capable of accommodating the liquid discharged from the lower pressurizing bag 42 adjacent in the vertical direction via the first flow path 44, and adjacent in the vertical direction.
  • the upper pressurizing bag 42 is arranged outside the chamber 2 so that the liquid can be discharged through the second flow path 45.
  • the first flow path 44 is, for example, a pipe body made of a material having a higher rigidity than the pressure bag 42.
  • One end of the first flow path 44 is passed from the upper part of the lower pressurizing bag 42 to the inside of the lower pressurizing bag 42, and the other end of the first flow path 44 is the chamber 2.
  • the liquid is passed to the outside and is arranged in the relay unit 43 so that the liquid can be discharged. At this time, the gap between the first flow path 44 and the chamber 2 and the lower pressurizing bag 42 is closed.
  • the second flow path 45 is also, for example, a pipe body made of a material having a higher rigidity than the pressure bag 42.
  • One end of the second flow path 45 is passed from the lower part of the upper pressurizing bag 42 to the inside of the upper pressurizing bag 42, and the other end of the second flow path 45 is the chamber 2.
  • the liquid is passed to the outside from the relay unit 43 and is arranged so that the liquid can be sucked from the relay unit 43. At this time, the gap between the second flow path 45 and the chamber 2 and the upper pressurizing bag 42 is closed.
  • a check valve 46 is provided in such a first flow path 44.
  • the check valve 46 allows the flow of liquid from one end of the first flow path 44 toward the other end and blocks the flow of liquid in the opposite direction.
  • a check valve 47 is provided in the second flow path 45. The check valve 47 allows the flow of liquid from the other end of the second flow path 45 toward one end and blocks the flow of liquid in the opposite direction.
  • check valves 46 and 47 general check valves can be used, and for example, a duck bill valve may be used.
  • the first flow path 44 may be arranged so that the liquid can be discharged from the lower pressurizing bag 42 to the relay portion 43.
  • the second flow path 45 may be arranged so that the liquid can be discharged from the relay portion 43 to the upper pressurizing bag 42.
  • the other pressurizing bag 42 also contracts, whereby the check valve 46 opens, and the other pressurizing bag 42 discharges the liquid to the relay unit 43 via the first flow path 44.
  • the relay unit 43 since the relay unit 43 is arranged outside the chamber 2, it expands to accommodate the liquid and hardly pushes the liquid into the pressurizing bag 42. Therefore, the check valve 47 is in a closed state. Since the pressure bags 42 have the same shape, pressure acts on each pressure bag 42 substantially equally, and all the pressure bags 42 contract substantially equally.
  • the other pressurizing bag 42 also expands, whereby the check valve 47 opens, and the other pressurizing bag 42 sucks the liquid from the relay portion 43 via the second flow path 45.
  • the relay unit 43 since the relay unit 43 is arranged outside the chamber 2, it contracts as the liquid is sucked out, and the liquid is hardly sucked from the pressurizing bag 42. Therefore, the check valve 46 is in a closed state. Since the pressure bags 42 have the same shape, pressure acts on each pressure bag 42 substantially equally, and all the pressure bags 42 expand substantially equally.
  • each of the pressure backs 42 is shut off by the check valve 46 or the check valve 47 when the liquid is discharged and sucked, and each pressure back is stopped.
  • the 42 can be operated independently. Therefore, the pressurizing bag 42 arranged at a high position can also discharge and suck the liquid with an idling loss substantially equal to that of the pressurizing bag 42 arranged at a low position. Therefore, the pumping system 41 of the present embodiment can realize a pumping system with almost no idling loss.
  • At least one of the first flow path 44 and the second flow path 45 is arranged substantially horizontally. As a result, the idling loss when the lower pressurizing bag 42 discharges the liquid to the relay portion 43 and when the upper pressurizing bag 42 sucks the liquid from the relay portion 43 can be further reduced.
  • the pressurizing bag 3 shown in FIG. 15 is used as the pressurizing bag 42, the water level can be maintained at a high position inside the pressurizing bag 42, and the liquid is discharged with a small change in atmospheric pressure. And can be sucked.
  • the relay unit 43 of the present embodiment is composed of a liquid tank, it may be composed of a deformable bag body back as shown in FIG. 21. That is, the relay unit 43 may have a configuration that can temporarily accommodate the liquid discharged from the pressurizing bag 42.
  • FIG. 22 is a perspective view schematically showing the pumping system of the present embodiment.
  • the pumping system 51 of the present embodiment has substantially the same configuration as the pumping system 41 of the fourth embodiment, but includes a second chamber 52 and a second pressurizing bag 53, and further has an atmospheric pressure.
  • the configuration of the changing unit 54 is different. Therefore, the description overlapping with other embodiments will be omitted, and the configurations of the second chamber 52, the second pressurizing bag 53, and the atmospheric pressure changing unit 54 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
  • the second chamber 52 is provided with an internal space 52a in which a gas is housed, and has a rigidity that does not substantially deform even if the air pressure in the internal space 52a changes. Then, in the second chamber 52, the gas in the internal space 2a of the chamber (first chamber) 2 and the gas in the internal space 52a of the second chamber 52 can come and go between the first chamber 2 and the first chamber 52. It is connected via a connecting pipe 55 and a second connecting pipe 56. At this time, the first chamber 2 and the second chamber 52 form a part of a substantially enclosed space.
  • the second pressurizing bag 53 is a bag body that can be deformed in the same manner as the pressurizing bag (first pressurizing bag) 3, and is arranged in the internal space 52a of the second chamber 52.
  • the second pressurizing bag 53 is connected in series with the first pressurizing bag 42 via a communication passage 57 passed through the first chamber 2 and the second chamber 52. At this time, the first pressurizing bag 42 and the second pressurizing bag 53 are arranged alternately.
  • the communication passage 57 allows the flow of liquid in the direction from the suction path 7 to the discharge path 6 along the first pressurizing bag 42 and the second pressurizing bag 53 connected in series, and in the opposite direction.
  • a check valve 58 that shuts off the flow of liquid is provided.
  • one end of the suction path 7 is passed through the inside of the first pressurizing bag 42 at the bottom.
  • one end of the discharge path 6 is passed through the inside of the second pressurizing bag 53 on the uppermost stage.
  • the atmospheric pressure changing unit 54 includes a first pump 59 and a second pump 60.
  • the first pump 59 is provided in the first connecting pipe 55, and moves the gas in the internal space 2a of the first chamber 2 to the internal space 52a of the second chamber 52.
  • the second pump 60 is provided in the second connecting pipe 56, and moves the gas in the internal space 52a of the second chamber 52 to the internal space 2a of the first chamber 2.
  • the air pressure in the internal space 2a of the first chamber 2 drops, and the first pressurizing bag 42 at the bottom expands to suck the liquid from the liquid tank 10.
  • the other first pressurizing bag 42 expands and positively sucks the liquid from the other second pressurizing bag 53 described above.
  • the check valve 58 of the communication passage 57 connecting the first pressurizing bag 42 and the second pressurizing bag 53 arranged on the side in the flow direction of the liquid is the second pressurizing. Since the back 53 contracts, it is in a closed state, and the check valve 58 of the communication passage 57 connecting the second pressure back 53 and the first pressure back 42 arranged on the side in the direction in which the liquid flows. Is in an open state because the first pressurizing bag 42 expands.
  • the gas in the internal space 52a of the second chamber 52 is moved to the internal space 2a of the first chamber 2 by the second pump 60.
  • the air pressure in the internal space 2a of the first chamber 2 rises, the first pressurizing bag 42 contracts, and the liquid is applied to the second pressurizing bag 53 arranged on the side in the direction in which the liquid flows. Discharge.
  • the air pressure in the internal space 52a of the second chamber 52 drops, and the second pressurizing bag 53 expands to actively suck the liquid.
  • the check valve 58 of the communication passage 57 connecting the second pressurizing bag 53 and the first pressurizing bag 42 arranged on the side in the flow direction of the liquid is the first pressurizing. Since the back 42 contracts, it is in a closed state, and the check valve 58 of the communication passage 57 connecting the first pressure back 42 and the second pressure back 53 arranged on the side in the direction in which the liquid flows. Is in an open state because the second pressurizing bag 53 expands.
  • the first chamber 2 and the second chamber 52 are connected to expand one of the pressurizing bags and contract the other pressurizing bag. Therefore, the pumping efficiency can be synergistically improved.
  • the pumping system 51 of the present embodiment like the pumping system 41 of the fourth embodiment, shuts off each of the pressurizing bags 42 and 53 by the check valve 58, and each pressurizing bag 42 and 53 can be operated independently. Therefore, the pressure bags 42 and 53 arranged at the high position can also discharge and suck the liquid with an idling loss substantially equal to that of the pressure bags 42 and 53 arranged at the low position.
  • the second pressurizing bag 53 has the same configuration as the pressurizing bag 3 shown in FIG. 15, like the first pressurizing bag 42, for example. Then, it is preferable that the end of the communication passage 57 on the suction side is passed through the upper part of one of the pressure bags, and the end of the communication passage 57 on the discharge side is passed through the lower part of the other pressure back. As a result, the liquid can be discharged and sucked with a small change in atmospheric pressure.
  • the pump system 51 when the pump system 51 is viewed from the side, the upper part of one pressurizing bag and the lower part of the other pressurizing bag arranged on the side in the direction in which the liquid flows with respect to the one pressurizing bag. , Should be arranged so as to overlap in the vertical direction. As a result, the liquid can spontaneously flow toward the other pressurizing bag, and the liquid can be poured into the other pressurizing bag without pressure loss. At this time, it is preferable that the discharge port of the check valve 58 faces diagonally downward or directly downward. This makes it possible to reduce the resistance of the liquid due to gravity when the check valve 58 is opened.
  • FIG. 23 is a perspective view showing a pressure changing portion of the pump system of the present embodiment.
  • the pumping system 61 of the present embodiment has substantially the same configuration as the pumping system 51 of the fifth embodiment, but the configuration of the atmospheric pressure changing unit 62 is different. Therefore, the description overlapping with other embodiments will be omitted, and the configuration of the atmospheric pressure changing unit 62 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
  • the atmospheric pressure changing unit 62 of the present embodiment includes a pump 63 and a switching unit 64.
  • the pump 63 is configured to be capable of sucking and discharging gas, and is, for example, a piston pump.
  • the switching portion 64 includes, for example, a communication passage 64a, a reaction force portion 64b, a pushing portion 64c, a first spring 64d, a second spring 64e, and a slide portion 64f.
  • the communication passage 64a is based on, for example, an inverted U-shaped pipe body, and an opening 64g is formed in the upper part of a horizontal portion below the communication passage 64a.
  • the communication passage 64a is connected to the pump 63 via the first connecting pipe 65. Further, the lower horizontal portion of the communication passage 64a is connected to the first chamber 2 via the second connecting pipe 66. Further, the lower horizontal portion of the communication passage 64a is connected to the second chamber 52 via the third connecting pipe 67. At this time, the connecting portion between the second connecting pipe 66 and the connecting passage 64a and the connecting portion between the third connecting pipe 67 and the connecting passage 64a are arranged so as to be adjacent to each other.
  • the reaction force portion 64b is arranged at a horizontal distance from the tip portion of the horizontal portion on the upper side of the communication passage 64a.
  • the pushing portion 64c includes, for example, a main body portion 64h and a supporting portion 64i.
  • the main body portion 64h is formed in an inverted T shape, and includes a first portion 64j extending in a substantially vertical direction and a second portion 64k extending in a substantially horizontal direction.
  • the support portion 64i has a rod shape extending in a substantially horizontal direction, and is provided in the first portion 64j so as to penetrate the first portion 64j of the main body portion 64h. Then, one end of the support portion 64i is inserted into the tip of the upper horizontal portion of the communication passage 64a so as to be movable in a substantially horizontal direction, and the other end of the support portion 64i is substantially inserted into the reaction force portion 64b. It is inserted so that it can be moved horizontally.
  • the first spring 64d is arranged between the reaction force portion 64b and the pushing portion 64c, and the supporting portion 64i of the pushing portion 64c is passed through the inside of the first spring 64d.
  • the second spring 64e is arranged between the tip of the horizontal portion on the upper side of the communication passage 64a and the pushing portion 64c, and the supporting portion 64i of the pushing portion 64c is passed through the inside of the second spring 64e.
  • the slide portion 64f includes a main body portion 64l, a first protruding portion 64m, and a second protruding portion 64n.
  • the main body 64l has a pillar shape having an outer shape corresponding to the inner shape of the communication passage 64a, and the first passage 64o, the second passage 64p, and the common passage 64q are formed.
  • the first flow path 64o and the second flow path 64p when one of the flow paths connects the first chamber 2 and the second chamber 52, the other flow path is the first chamber 2. They are arranged adjacent to each other so as not to be connected to the second chamber 52.
  • the gas in the internal space 2a of the first chamber 2 flows toward the internal space 52a of the second chamber 52.
  • Two check valves 64r are provided in the first flow path 64o at intervals. The check valve 64r allows the flow of gas from the internal space 2a of the first chamber 2 toward the internal space 52a of the second chamber 52, and blocks the flow of gas in the reverse direction.
  • the gas in the internal space 52a of the second chamber 52 flows toward the internal space 2a of the first chamber 2.
  • Two check valves 64s are provided in the second flow path 64p at intervals. The check valve 64s allows the flow of gas from the internal space 52a of the second chamber 52 toward the internal space 2a of the first chamber 2 and blocks the flow of gas in the opposite direction.
  • One end of the common road 64q communicates with the communication passage 64a, and the other end of the common road 64q is branched. Then, one branch path of the common path 64q is connected between the two check valves 64r of the first flow path 64o, and the other branch path of the common path 64q is two of the second flow paths 64p. It is connected between the check valves 64s.
  • the first protruding portion 64m and the second protruding portion 64n project from the upper part of the main body portion 64l at intervals and are passed through the opening 64g of the communication passage 64a.
  • the second portion 64k of the push-in portion 64c is arranged between the first protrusion 64m and the second protrusion 64n.
  • FIG. 24 is a diagram for explaining how the liquid is discharged from the second pressurizing bag in the pump system of the present embodiment.
  • the switching portion is omitted in order to clarify the operation of the pressurizing bags 42 and 53.
  • the first flow path 64o connects the first chamber 2 and the second chamber 52
  • the second protruding portion 64n of the slide portion 64f is the opening of the communication passage 64a. It is in contact with the right edge of 64 g. Then, it is assumed that the air pressure in the internal space 2a of the first chamber 2 is higher than the air pressure in the internal space 52a of the second chamber 52.
  • the gas in the internal space 2a of the first chamber 2 is inside the second chamber 52. It flows into the space 52a. Then, when the gas is drawn by the pump 63, the gas is drawn from the internal space 2a of the first chamber 2, and when the gas is pushed out by the pump 63, the gas is sent out to the internal space 52a of the second chamber 52.
  • the air pressure in the internal space 2a of the first chamber 2 drops, and the first pressurizing bag 42 at the bottom expands to suck the liquid from the liquid tank 10.
  • the other first pressurizing bag 42 expands and positively sucks the liquid from the other second pressurizing bag 53 described above.
  • FIG. 25 is a diagram for explaining how the pump system of the present embodiment switches from the first flow path to the second flow path.
  • FIG. 26 is a diagram for explaining how the liquid is discharged from the first pressurizing bag in the pump system of the present embodiment. In FIG. 26, the switching portion is omitted in order to clarify the operation of the pressurizing bags 42 and 53.
  • the pushing portion 64c is temporarily moved.
  • the slide portion 64f moves to a substantially neutral position between the first protruding portion 64m and the second protruding portion 64n and the pump 63 continues to operate
  • the air pressure in the internal space 52a of the second chamber 52 drops.
  • the pushing portion 64c pushes the second spring 64e while moving to the right side.
  • the second protruding portion 64n of the slide portion 64f is still in contact with the right edge portion of the opening 64g of the communication passage 64a. Then, the first flow path 64o is in a state where the first chamber 2 and the second chamber 52 are connected.
  • the pump 63 pushes the gas, the air pressure in the internal space 2a of the first chamber 2 rises, and the air pressure inside the communication passage 64a rises, so that the pushing pressure (that is, the discharge pressure) of the pump 63 is preset.
  • the pressure exceeds the first threshold value, as shown by the broken line in FIG. 25, the pushing portion 64c moves to the left side, and the pushing portion 64c comes into contact with the first protruding portion 64m of the slide portion 64f to move the slide portion 64f. Push it to the left.
  • the first threshold value can be appropriately changed by changing the repulsive force of the first spring 64d or the like.
  • the first protruding portion 64m of the slide portion 64f comes into contact with the left edge portion of the opening 64g of the communication passage 64a, and the second flow path 64p becomes the first chamber 2 and the first chamber 2. It switches to the state where it is connected to the chamber 52 of 2.
  • the gas in the internal space 52a of the second chamber 52 becomes the internal space 2a of the first chamber 2. It flows in. Then, when the gas is drawn by the pump 63, the gas is sucked from the internal space 52a of the second chamber 52, and when the gas is pushed out by the pump 63, the gas is sent out to the internal space 2a of the first chamber 2.
  • the air pressure in the internal space 2a of the first chamber 2 rises, and as shown in FIG. 26, the first pressurizing bag 42 contracts and the second pressure bag 42 is arranged on the side in the direction in which the liquid flows.
  • the liquid is discharged to the pressurizing chamber 53.
  • the air pressure in the internal space 52a of the second chamber 52 drops, and the second pressurizing bag 53 expands to actively suck the liquid.
  • the pushing portion 64c is temporarily moved.
  • the slide portion 64f moves to a substantially neutral position between the first protruding portion 64m and the second protruding portion 64n and the pump 63 continues to operate, the air pressure in the internal space 2a of the first chamber 2 rises.
  • the air pressure inside the communication passage 64a rises, and as shown by the broken line in FIG. 25, the pushing portion 64c pushes the first spring 64d while moving to the left side.
  • the first protruding portion 64m of the slide portion 64f is still in contact with the left edge portion of the opening 64g of the communication passage 64a. Then, the second flow path 64p is in a state where the first chamber 2 and the second chamber 52 are connected.
  • the pump 63 draws in gas, the air pressure in the internal space 52a of the second chamber 52 decreases, and the air pressure inside the communication passage 64a decreases, and the drawing pressure (that is, suction pressure) of the pump 63 is preset.
  • the pressure exceeds the second threshold value, as shown by the broken line in FIG. 23, the pushing portion 64c moves to the right side, and the pushing portion 64c comes into contact with the second protruding portion 64n of the slide portion 64f to move the slide portion 64f. Push it to the right.
  • the second threshold value can be appropriately changed by changing the repulsive force of the second spring 64e or the like.
  • the second protruding portion 64n of the slide portion 64f comes into contact with the right edge portion of the opening 64g of the communication passage 64a, and the first flow path 64o becomes the first chamber 2 and the first chamber 2. It switches to the state where it is connected to the chamber 52 of 2.
  • the first chamber 2 and the second chamber 52 are connected to expand one pressurizing bag and contract the other pressurizing bag. Therefore, the pumping efficiency can be synergistically improved.
  • the pumping system 61 of the present embodiment also shuts off each pressurizing bag by the check valve 58 like the pumping system 41 of the fourth embodiment, and each pressurizing bag becomes independent. Can be operated. Therefore, the pressurizing bag arranged at the high position can discharge and suck the liquid with an idling loss substantially equal to that of the pressurizing bag arranged at the low position.
  • the switching unit 64 can switch the connection of the flow path without relying on electronic control or artificial switching, and can realize a lean pump system. Moreover, the air pressure in the internal space 2a of the first chamber 2 and the internal space 52a of the second chamber 52 can always be optimized, reducing the risk of damage to the first pressure back 42 and the second pressure back 53. be able to.
  • the configuration of the switching unit of the atmospheric pressure changing unit is not limited to the configuration of the switching unit 64 of the sixth embodiment, and may be, for example, the configuration of the switching unit described below.
  • FIG. 27 is a diagram showing a configuration of a switching portion in the atmospheric pressure changing portion of the present embodiment. The description that overlaps with the switching unit 64 of the sixth embodiment will be omitted, and the same members will be described by using the same reference numerals.
  • the switching unit 71 has a configuration substantially equal to that of the switching unit 64 of the sixth embodiment, but the first rotor 71a, the second rotor 71b, and the switching gear 71c are used. I have.
  • the first rotor 71a and the second rotor 71b have substantially the same configuration, and include a main body portion 71d and a transmission portion 71e.
  • the main body 71d is, for example, a spur gear.
  • the transmission portion 71e is an oblique tooth gear fixed to the side surface of the main body portion 71d.
  • the first rotor 71a and the second rotor 71b are rotatably provided on the support portion 71f.
  • the support portion 71f has, for example, a tubular body as a basic form, and a second portion 64k of the push portion 64c is housed inside the support portion 71f.
  • the support portion 71f is configured to allow the push-in portion 64c to move in the horizontal direction.
  • the transmission portions 71e of the first rotor 71a and the second rotor 71b arranged inward of the support portion 71f are engaged with each other.
  • a possible tooth portion 71 g is formed.
  • the switching gear 71c has, for example, a cylindrical member having teeth formed on its outer peripheral surface as a basic form, and is meshed with the main body 71d of the first rotor 71a and the second rotor 71b.
  • the switching gear 71c is formed with a first flow path 71h, a second flow path 71i, a first communication path (not shown), and a second communication passage 71j.
  • the first flow path 71h and the second flow path 71i are formed so as to penetrate, for example, the switching gear 71c in the axial direction of the switching gear 71c, and are spaced by about 180 ° in the circumferential direction of the switching gear 71c. Is placed open.
  • the gas in the internal space 2a of the first chamber 2 flows toward the internal space 52a of the second chamber 52.
  • Two check valves 71k are provided in the first flow path 71h at intervals. The check valve 71k allows the flow of gas from the internal space 2a of the first chamber 2 toward the internal space 52a of the second chamber 52, and blocks the flow of gas in the reverse direction.
  • the gas in the internal space 52a of the second chamber 52 flows toward the internal space 2a of the first chamber 2.
  • Two check valves 71l are provided in the second flow path 71i at intervals. The check valve 71l allows the flow of gas from the internal space 52a of the second chamber 52 toward the internal space 2a of the first chamber 2 and blocks the flow of gas in the reverse direction.
  • One end of the first communication passage is arranged so as to communicate with the tip of the lower horizontal portion of the communication passage 64a, and the other end of the first communication passage is of the first communication passage 71h. It is connected between two check valves 71k.
  • One end of the second communication passage 71j is arranged so as to communicate with the tip of the lower horizontal portion of the communication passage 64a, and the other end of the second communication passage 71j is the second passage. It is connected between the two check valves 71l of the 71i.
  • one end of the first communication passage and one end of the second communication passage 71j are arranged at intervals of about 180 ° in the circumferential direction of the switching gear 71c.
  • the first communication passage 71h connects the second connection pipe 66 and the third connection pipe 67
  • the second communication passage 71j In the state of communicating with the communication passage 64a, the second flow path 71i connects the second connection pipe 66 and the third connection pipe 67.
  • the switching gear 71c rotates by about 180 ° and the second communication passage 71j of the switching gear 71c communicates with the communication passage 64a. It becomes a state. As a result, the first flow path 71h can be switched to the second flow path 71i.
  • the pushing portion 64c moves to the right and the tooth portion 71g of the second portion 64k meshes with the transmission portion 71e of the second rotor 71b. Then, the second rotor 71b rotates.
  • the switching gear 71c rotates by about 180 ° and the first communication passage of the switching gear 71c communicates with the communication passage 64a. It becomes. As a result, the second flow path 71i can be switched to the first flow path 71h.
  • the configuration of the switching unit 64 of the sixth embodiment and the switching unit 71 of the seventh embodiment is an example, and the switching unit is a connection between the first chamber 2 and the second chamber 52 by the first flow path. And the connection between the first chamber 2 and the second chamber 52 by the second flow path may be switched.
  • the intake pipe and the exhaust pipe are connected to the first chamber 2
  • the intake pipe and the exhaust pipe are connected to the second chamber 52
  • the switching portion is the exhaust pipe of the first chamber 2 and the second chamber 52.
  • the connection with the intake pipe of the first chamber 2 and the connection between the intake pipe of the first chamber 2 and the exhaust pipe of the second chamber 52 may be switched based on the detection value of the pressure sensor.
  • a common path provided with two check valves is formed in the switching portion, and the exhaust pipe of the first chamber 2 and the intake pipe of the second chamber 52 and the common path of the switching portion are formed.
  • the first flow path is formed, and the second flow path is formed by the intake pipe of the first chamber 2, the exhaust pipe of the second chamber 52, and the common path of the switching portion.
  • FIG. 28 is a perspective view schematically showing the pumping system of the present embodiment.
  • FIG. 29 is a partially enlarged view of the pumping system of the present embodiment.
  • FIG. 30 is a perspective view showing a second chamber of the pump system of the present embodiment.
  • FIG. 31 is a perspective view showing a second pressurizing bag of the pump system of the present embodiment. Note that FIGS. 28 and 29 are simplified by omitting the check valve 58 and the like.
  • the pumping system 81 of the present embodiment has a configuration substantially equal to that of the pumping system 41 of the fourth embodiment and the pumping system 51 of the fifth embodiment.
  • the configurations of the second chamber 82 and the second pressurizing bag 83 are different. Therefore, the description overlapping with other embodiments will be omitted, and the configurations of the second chamber 82 and the second pressurizing bag 83 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
  • one end of the discharge path 6 is connected to the first pressurizing back 42 on the uppermost stage, but when the liquid is discharged and sucked.
  • the movement of the liquid is equivalent to the pump system 41 of the fourth embodiment.
  • the second chamber 82 of the present embodiment is arranged for each second pressurizing bag 83.
  • the second chamber 82 has a ring shape, and the inner peripheral surface of the second chamber 82 is fixed to the outer peripheral surface of the first chamber 2.
  • a second through hole 82b through which the communication passage 57 for sucking the liquid from the first through hole 82a and the first pressurizing bag 3 is passed is formed. There is.
  • a third through hole 82c is formed through which a communication passage 57 for discharging the liquid from the second pressurizing bag 83 to the first pressurizing bag 42 is passed. .. At this time, the gap between the second through hole 82b of the second chamber 82 and the communication passage 57 and the gap between the third through hole 82c of the second chamber 82 and the communication passage 57 are closed. ..
  • the second pressurizing bag 83 is housed inside the second chamber 82. As shown in FIG. 31, for example, the second pressurizing bag 83 has a ring shape, and the communication passage 57 for sucking the liquid from the first pressurizing bag 42 is the second pressurizing bag 83. A communication passage 57 connected to the upper surface and for discharging the liquid to the first pressurizing bag 42 is connected to the lower surface of the second pressurizing bag 83.
  • the second pressurizing bag 83 can be easily arranged at a predetermined height.
  • the pump system 81 of the eighth embodiment uses the atmospheric pressure changing unit 4 of the first embodiment, but the atmospheric pressure changing unit of each of the above-described embodiments can be appropriately used to change the atmospheric pressure.
  • the composition of the part is not limited.
  • the atmospheric pressure changing unit 91 shown in FIG. 32 includes a pump 92 that changes the atmospheric pressure in the internal space 2a of the first chamber 2 and the internal space 82d of the second chamber 82 by utilizing the change in the sea level due to the waves. ing.
  • the pump 92 includes a covering portion 93.
  • the cover portion 93 is formed, for example, in a box shape in which the bottom surface of the cover portion 93 is open, covers the sea surface, and is arranged so that seawater can enter and exit through the opening 93a.
  • the covering portion 93 is connected to the switching portion 64 via, for example, the first connecting pipe 65.
  • the arrangement of the opening 93a is not limited as long as the covering portion 93 has a configuration in which seawater can enter and exit at a portion lower than the sea level.
  • Such a pump 92 operates as a piston pump that pushes out the gas inside the covering portion 93 due to the rise in the sea level due to the waves and sucks the gas into the inside of the covering portion 93 due to the decrease in the sea level due to the waves. Therefore, the pump 92 can be used in place of the pump 63 of the sixth embodiment.
  • the third connecting pipe 67 is connected to the first through hole 82a of the second chamber 82.
  • the pump 92 utilizes the change in sea level between high tide and low tide, not the change in sea level due to waves, and the internal space 2a of the first chamber 2 and the second chamber 82.
  • the air pressure of the internal space 82d of the above may be changed.
  • FIG. 34 is a perspective view schematically showing the pumping system of the present embodiment. Note that FIG. 34 is simplified by omitting the check valve 58 and the like.
  • the pumping system 101 of the present embodiment has substantially the same configuration as the pumping system of the ninth embodiment, but the configuration of the atmospheric pressure changing unit 102 is different. Therefore, the description overlapping with other embodiments will be omitted, and the description of the configuration of the atmospheric pressure changing unit 102 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
  • the atmospheric pressure changing unit 102 of the present embodiment uses the sun as a heat source to change the atmospheric pressure in the internal space 2a of the first chamber 2 and the internal space 82d of the second chamber 82. It has.
  • the pump 103 includes, for example, a chamber 104 and a heat collector 105.
  • the chamber 104 has a rigidity that does not substantially deform even if the atmospheric pressure in the internal space 104a of the chamber 104 changes, and is connected to the switching portion 64 via the first connecting pipe 65.
  • the heat collector 105 absorbs the irradiation heat of the sun and releases the absorbed irradiation heat to heat the gas in the internal space 104a of the chamber 104.
  • the heat collector 105 is, for example, a black sponge, and is arranged in the internal space 104a of the chamber 104 when the chamber 104 is capable of transmitting sunlight. On the other hand, when the chamber 104 cannot transmit sunlight, it is arranged so as to cover at least a part of the chamber 104.
  • the heat collector 105 may be arranged either inside or outside the chamber 104 as long as it can heat the gas in the internal space 104a of the chamber 104. Further, the heat collector 105 is not limited to the black sponge, and may be any member as long as it can absorb and release the irradiation heat.
  • the heat collector 105 is composed of a black sponge, the contact area of the internal space 104a of the chamber 104 with the gas can be increased, and the gas in the internal space 104a of the chamber 104 can be efficiently used. Can be warmed.
  • the chamber 104 is made of a material that can absorb sunlight and dissipate heat, the chamber 104 may function as a heat collector 105.
  • the pump system 101 of the present embodiment includes the atmospheric pressure adjusting unit 106.
  • the air pressure adjusting unit 106 includes a chamber 107, a discharge passage 108, a liquid tank 109, and a supply passage 110.
  • the chamber 107 has a rigidity that does not substantially deform even if the atmospheric pressure in the internal space 107a of the chamber 107 changes, and is connected to the first chamber 2 via a connecting pipe 111.
  • the internal space 2a of the first chamber 2, the internal space 82d of the second chamber 82, the internal space 104a of the chamber 104, and the internal space 107a of the chamber 107 form a substantially sealed space. There is.
  • the bottom of such a chamber 107 functions as a water storage unit for storing liquid.
  • the discharge passage 108 is, for example, a pipe body having an inner diameter extremely smaller than the inner diameter of the communication passage 57.
  • One end of the discharge passage 108 is arranged near the bottom of the internal space 107a of the chamber 107, and the other end of the discharge passage 108 is passed to the outside of the chamber 107 so that the liquid can be discharged to the liquid tank 109. It is placed in a position.
  • a check valve 112 is provided in the discharge path 108.
  • the check valve 112 allows the flow of liquid from one end of the discharge path 108 toward the other end and blocks the flow of liquid in the opposite direction.
  • a general check valve can be used, and for example, a piston type check valve is preferable.
  • the liquid stored in the bottom of the chamber 107 reaches when the air pressure in the internal space 2a of the first chamber 2 reaches a preset third threshold value. It is said to be high.
  • the liquid tank 109 is arranged outside the chamber 107.
  • the supply path 110 is also, for example, a pipe body having an inner diameter extremely smaller than the inner diameter of the communication passage 57.
  • One end of the supply path 110 is arranged near the bottom of the liquid tank 109, and the other end of the supply path 110 is passed through the internal space 107a of the chamber 107.
  • a check valve 113 is provided in the supply path 110.
  • the check valve 113 allows the flow of liquid from one end of the supply path 110 toward the other end and blocks the flow of liquid in the opposite direction.
  • a general check valve can be used, and for example, a piston type check valve is preferable.
  • the highest height H2 of such a supply path 110 is the height reached by the liquid stored in the liquid tank 109 when the air pressure in the internal space 2a of the first chamber 2 reaches a preset fourth threshold value. It is said to be.
  • the liquid stored in the liquid tank 109 climbs the supply path 110 and is sucked into the internal space 107a of the chamber 107. Then, when the liquid stored in the liquid tank 109 is sucked, the gas outside the chamber 107 is sucked into the internal space 2a of the first chamber 2 through the supply path 110, and the internal space of the first chamber 2 is sucked.
  • the check valve 113 closes due to the weight of the piston of the check valve 113.
  • the air pressure adjusting unit 106 By operating the air pressure adjusting unit 106 in this way, the air pressure in the internal space 2a of the first chamber 2 and the internal space 82d of the second chamber 82 can be adjusted. Therefore, for example, even if the change in air pressure in the internal space 2a of the first chamber 2 and the internal space 82d of the second chamber 82 is unstable, the air pressure adjusting unit 106 allows the internal space 2a and the first chamber 2 to change.
  • the air pressure in the internal space 82d of the second chamber 82 can always be optimized, and the risk of damage to the first pressurizing bag 42 and the second pressurizing bag 83 can be reduced.
  • the atmospheric pressure adjusting unit 106 can easily set the third threshold value and the fourth threshold value by utilizing the idling loss corresponding to the height of the discharge path 108 and the supply path 110.
  • FIG. 35 is a perspective view schematically showing the pumping system of the present embodiment. Note that FIG. 35 is simplified by omitting the check valve 58 and the like.
  • the pumping system 121 of the present embodiment has substantially the same configuration as the pumping system of the tenth embodiment, but the configuration of the atmospheric pressure changing unit 122 is different. Therefore, the description overlapping with other embodiments will be omitted, and the description of the configuration of the atmospheric pressure changing unit 122 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
  • the atmospheric pressure changing unit 122 also includes a pump 123 that changes the atmospheric pressure in the internal space 2a of the first chamber 2 and the internal space 82d of the second chamber 82 using the sun as a heat source.
  • the pump 123 includes, for example, a chamber 124 and a heat collector 125.
  • the chamber 124 has a rigidity that does not substantially deform even if the atmospheric pressure in the internal space 124a of the chamber 124 changes, and is connected to the switching portion 64 via the first connecting pipe 65.
  • the bottom of the chamber 124 functions as a water storage unit for storing the liquid.
  • the heat collector 125 includes, for example, a plurality of stainless steel plates. Then, the heat collector 125 is arranged in the internal space 124a of the chamber 124 in a state where the lower end portion of the heat collector 125 is immersed in the liquid at the bottom of the chamber 124.
  • the heat collector 125 may be an aluminum plate, a copper plate, a silver plate, or the like, or may be a plate body plated with silver or copper, and may be made of a material having high thermal conductivity.
  • the internal space 124a of the chamber 124 is warmed by the heat of irradiation of the sun, and the heat collector 125 is warmed to promote the vaporization of the liquid, thereby increasing the air pressure in the internal space 124a of the chamber 124. Can be done. As a result, the gas in the internal space 124a of the chamber 124 can be pushed out. At this time, when the state changes from the liquid state to the vapor state, the volume becomes 1000 times or more, so that a pressure far larger than the thermal expansion of the gas can be generated depending on the intensity of sunlight.
  • the portion of the internal space 124a of the chamber 124 which is filled with steam and has high humidity, is immersed in the liquid of the heat collector 125 having high thermal conductivity and the liquid of the heat collector 125.
  • a temperature difference is generated between the portion not immersed in the mixture, and the heat of vaporization is absorbed to promote dew condensation, so that the pressure in the internal space 124a of the chamber 124 can be lowered.
  • gas can be sucked into the internal space 124a of the chamber 124. Therefore, the pump 123 can be used in place of the pump 92 of the ninth embodiment.
  • FIG. 36 is a perspective view schematically showing the pumping system of the present embodiment. Note that FIG. 36 is simplified by omitting the check valve 58 and the like.
  • the pumping system 131 of the present embodiment has substantially the same configuration as the pumping system of the tenth embodiment, but the configuration of the atmospheric pressure changing unit 132 is different. Therefore, the description overlapping with other embodiments will be omitted, and the description of the configuration of the atmospheric pressure changing unit 132 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
  • the air pressure changing unit 132 changes the air pressure in the internal space 2a of the first chamber 2 and the internal space 82d of the second chamber 82 by using steam or fine water droplets (that is, fog). It is equipped with a pump 133.
  • the pump 133 includes, for example, a chamber 134, a volume change section 135, and a dew condensation propulsion section 136, as shown in FIG. 36.
  • the chamber 134 has a rigidity that does not substantially deform even if the atmospheric pressure in the internal space 134a of the chamber 134 changes, and is connected to the switching portion 64 via the first connecting pipe 65.
  • the volume changing portion 135 is arranged in the internal space 134a of the chamber 134, and for example, the liquid in the liquid tank 135a is heated by the heat source 135b to generate steam.
  • the volume changing unit 135 may generate mist by vibrating the liquid, and the means for expanding the volume of the liquid is not limited.
  • the structure of the heat source 135b is not limited as long as the liquid can be vaporized.
  • the dew condensation promotion unit 136 is arranged in the internal space 134a of the chamber 134 to promote dew condensation.
  • the dew condensation propulsion unit 136 includes, for example, a plurality of stainless steel plates. The lower end of such a dew condensation propulsion portion 136 is immersed in the liquid stored in the bottom portion of the chamber 134.
  • the dew condensation propulsion unit 136 may be able to turn the vapor or mist in the internal space 134a of the chamber 134 into a liquid by dew condensation, and the material, shape, arrangement, etc. of the dew condensation propulsion unit 136 are not limited.
  • the present embodiment is characterized by the shape of the pressure bag and its functional structure.
  • the shape of the pressurized bag changes due to the change in air pressure in the enclosed space, so that the water in the pressurized bag moves, that is, a flow is generated.
  • the flow was able to pump water while significantly reducing the water pressure loss due to gravity (that is, the idling loss as a pump function).
  • a logical design that creates a flow that further enhances the pumping power is proposed, and the system efficiency can be synergistically enhanced.
  • the present embodiment is characterized by a check valve.
  • check valves are an essential element in pumping systems that function by controlling the flow of air and liquids.
  • a check valve such as a duck bill valve, which has a relatively low resistance and pressure loss in performing an opening / closing operation, is desired.
  • the duck bill valve is a check valve with a low pressure loss, it still causes a pressure loss like a bottleneck in the opening / closing operation, and the pressure loss increases as the number increases. Therefore, in the present embodiment, we propose a system in which the pressure increasing effect can be obtained by devising the shell shape and the piping structure for accommodating the valve.
  • FIG. 37 is a front view (a) of the pressurizing bag used in the pump system according to the present embodiment, a side view (b) of the pressurizing bag in a contracted state, and a side view of the pressurizing bag in an expanded state.
  • the pressure bag 3 is a deformable resin bag (for example, a vinyl bag).
  • the pressurizing bag 3 houses a liquid such as water inside.
  • the pressurizing bag 3 can be connected and used instead of the pressurizing bag 3 shown in each of the above-described embodiments.
  • the pressurizing bag 3 has a substantially circular shape on the upper side, which is wide and close to a circle, and has a shape that tapers downward when viewed from the front.
  • the pressurizing bag 3 has a shape in which the pressure bags 3 are smoothly connected along the arcs of a part of each of the four perfect circles C. As shown in FIG. 39, this shape can also be said to be a shape in which the shape of the water droplet is opposite to the direction of gravity (hereinafter, also referred to as a reverse water droplet shape).
  • the pressurizing bag 3 when viewed from the front, has a reverse water droplet shape, that is, a reverse water droplet on the outermost peripheral edge portion of the pressurizing bag 3 in order to maintain the front shape. It has a built-in frame 3d with a shape.
  • the frame 3d is arranged along the inside of the joint portion of the sheets.
  • the frame 3d is an integrated ring-shaped member, which may be solid or hollow.
  • the frame 3d is made of, for example, a resin material that is harder than the sheet portion and has a high elastic force.
  • the material of the frame 3d is not limited to resin, and may be another material such as metal.
  • the discharge path 6 and the suction path 7 are connected to the pressurizing bag 3.
  • One end of each of the discharge path 6 and the suction path 7 is passed from the outside to the inside of the pressurizing bag 3.
  • the discharge passage 6 and the suction passage 7 are arranged so that one end projects from the opposite surface of the pressurizing bag 3 when viewed from the front.
  • the other ends of the discharge path 6 and the suction path 7 inside the external pressure bag 3 are connected to both ends of the tubular member 167. That is, the discharge passage 6 and the suction passage 7 are connected by a tubular member 167.
  • the tubular member 167 is a hollow tube with a large number of holes.
  • the liquid sucked into the suction passage 7 flows inside the tubular member 167 and flows out into the pressurizing bag 3 from its many holes. Further, the liquid in the pressurizing bag 3 flows into the tubular member 167 through a large number of holes, and then flows out from the tubular member 167 into the discharge path 6.
  • the tubular member 167 is made of, for example, a flexible resin material.
  • the discharge passage 6, the suction passage 7, and the tubular member 167 are made of separate members, they may be integrally made of the same member.
  • the pressurizing bag 3 Since the pressurizing bag 3 is urged from the inside by the frame 3d in the direction outside the plane as shown in FIG. 37 (a), when the liquid flows in from the suction path 7, the pressurizing bag 3 is shown in FIG. 37 (c). As shown, it extends primarily in the anterior-posterior direction.
  • the pressurizing bag 3 has a large amount of expansion in the front-rear direction in a wide portion slightly above the central portion, and a relatively small amount of expansion in the front-rear direction in the tapered portion on the lower side.
  • the pressure bag 3 has a larger change in the accommodating amount in the wide portion than in the lower tapered portion.
  • the atmospheric pressure generated by the decompression is easy to work in the pressurizing bag 3, and the force is synergistically applied to the surface where there is a large room for displacement.
  • more barometric pressure acts on the wide portion above the central portion of the pressurizing bag 3 to cause displacement. Therefore, as shown in FIG. 41, the liquid sucked from the suction passage 7 through the check valve 11 flows upward along the inside of the tubular member 167 and the outside in the vicinity, and together with the pressurizing back. In the upper part of No. 3, it flows in the left-right direction to generate a swirl flow. Further, as the pressure bag 3 expands, the liquid is sucked up from the suction path 7 while increasing the swirl flow.
  • FIGS. 42 and 43 a case where the pressurizing bag 3 changes from an expanded state to a contracted state by pressurizing the internal space of the chamber 2 will be described with reference to FIGS. 42 and 43.
  • the arrows shown in the figure indicate the static pressurization vector.
  • the atmospheric pressure generated by the pressurization is easy to work in the pressurizing bag 3, and the force is synergistically applied to the surface where there is a large room for displacement.
  • more barometric pressure acts on the wide portion above the central portion of the pressurizing bag 3 to cause displacement. Therefore, as shown in FIG. 43, the liquid flows upward along the inside of the tubular member 167 and the outside in the vicinity of the tubular member 167 while reducing the swirl flow generated in the left-right direction of the upper portion of the pressure bag 3. It is discharged from the road 6 through the check valve 9.
  • a spiral flow can be smoothly formed by the change in atmospheric pressure, thereby accelerating the fluid composed of ultrafine particles such as water and synergistically improving the pumping efficiency. Can be enhanced to.
  • FIGS. 44 (a) and 44 (b) show a fluid rotation vector at the time of suction and a fluid rotation vector at the time of discharge, respectively.
  • the rotation speed changes by a square of a factor according to the amount of displacement of the center of gravity due to the movement of the center of gravity in the direction of the radius of gyration from the center of rotation of the rotating body. More specifically, when the center of gravity moves toward the center of rotation, the rotation speed increases, and when the center of gravity moves toward the outside of the radius of gyration, the rotation speed decreases.
  • the rotation speed is increased by moving the hand from the state where the ice skating player spreads his hand to the chest.
  • the fact that the rotation speed increases by a factor of 2 as the center of gravity moves toward the center of rotation means that the kinetic energy at the particle level of water or air is also amplified by a factor of 2.
  • the fact that the rotation speed is attenuated to 1 / square by moving the center of gravity to the outside of the radius of gyration means that the kinetic energy is also attenuated to 1 / square.
  • the volume and weight of the liquid increase or decrease as the liquid flows in or out, and the radius of gyration narrows when sucking up. It is deformed and the center of gravity is displaced toward the center, and at the time of discharge, it is deformed in the direction in which the radius of gyration expands and the center of gravity is displaced in the direction outside the radius of gyration. Therefore, it can be said that it is a system function that makes sense from the viewpoint of physical calculation.
  • FIG. 45 is a perspective view schematically showing a pumping pump system according to the present embodiment.
  • the pump system includes two chambers 2, 52.
  • Chamber 2 houses five pressurizing bags 42.
  • the chamber 52 houses five pressurizing bags 53.
  • Each of the pressurizing bags 42 and 53 has the same configuration as the pressurizing bag 3 described above.
  • the chambers 2 and 52 are provided with internal spaces 2a and 52a in which gas is housed, respectively, and have rigidity that does not substantially deform even if the atmospheric pressure of the internal spaces 2 and 52a changes.
  • the suction passage 7 of the lowermost pressurizing bag 42 provided in the chamber 2 is provided with a check valve 58 and a communication passage 57, and one end of the suction passage 7 is arranged at a position where the liquid in the liquid tank 10 can be sucked up. Has been done.
  • the discharge path 6 of the pressurizing bag 42 is connected to one end of the communication passage 57.
  • the communication passage 57 is arranged so as to be substantially horizontal.
  • the other end of the communication passage 57 is provided in the vicinity of the chamber 52 and is connected to a check valve 58 flowing downward.
  • the check valve 58 according to this example, which will be described in detail later, allows the flow of liquid in the downward direction (that is, in the vertical downward direction) and blocks the flow of liquid in the upward direction.
  • the check valve 58 at the bottom of the chamber 52 is connected to the discharge path 6 of the pressurizing bag 42 at the bottom of the chamber 52.
  • the suction passage 7 extends downward from the check valve 58 and is connected to the lower portion of the pressurizing bag 53.
  • One end of the discharge path 6 of the lowermost pressurizing bag 53 in the chamber 52 is connected to the communication passage 57.
  • the communication passage 57 is connected to the check valve 58 in the vicinity of the chamber 2 at the other end.
  • the communication passage 57 is arranged so as to be substantially horizontal.
  • the check valve 58 is connected to one end of the suction path 7 of the pressurizing bag 42, which is the second stage from the bottom.
  • the lowermost pressurizing bag 42 built in the chamber 2 and the lowermost pressurizing bag 53 built in the chamber 52 are connected, and the lowermost pressurizing bag 53 and the chamber 2 built in the chamber 52 are further connected.
  • the pressurizing bag 42 and the pressurizing bag 53 are alternately connected so that the pressurizing bag 42 of the second stage from the bottom built in is connected, and finally the pressurizing of the uppermost stage of the chamber 52 is performed. It is connected in series to the back 53.
  • the pumped liquid is discharged from the discharge path 6 connected to the uppermost pressurizing bag 53.
  • pressurization and depressurization are alternately performed on the chambers 2 and 52, respectively.
  • the pressurizing bags 42 and 53 are considered to be connected in series, the first, third, fifth, and seventh pressurizing bags 42 are housed in the same chamber 2, so that pressurization or depressurization is performed at the same timing. Will be done.
  • the second, fourth, sixth, and eighth pressurizing bags 53 are housed in the same chamber 2, pressurization or depressurization is performed at the same timing.
  • the first, third, fifth, and seventh pressurizing bags 42 are decompressed to expand and suck the liquid discharged from the liquid tank 10 or the pressurizing bag in the previous stage. Further, at this time, the second, fourth, sixth, and eighth pressurizing bags 53 are pressurized and contracted, and the liquid is discharged to the next-stage pressurizing bag, or the liquid is discharged from the final discharge path 6. Discharge to the outside.
  • the check valve 58 of the communication passage 57 connecting the pressurizing bag 42 and the pressurizing bag 53 arranged on the side in the flow direction of the liquid is closed because the pressurizing bag 53 contracts.
  • the check valve 58 of the communication passage 57 connecting the pressurizing bag 53 and the pressurizing bag 42 arranged on the side in the flow direction of the liquid is opened because the pressurizing bag 42 expands. ..
  • the check valve 58 of the communication passage 57 connecting the pressurizing bag 53 and the pressurizing bag 42 arranged on the side in the flow direction of the liquid is closed because the pressurizing bag 42 contracts.
  • the check valve 58 of the communication passage 57 connecting the pressurizing bag 42 and the pressurizing bag 53 arranged on the side in the flow direction of the liquid is opened because the pressurizing bag 53 expands.
  • one pressurizing bag can be expanded and the other pressurizing bag can be contracted, so that the pumping efficiency can be synergistically improved. ..
  • the check valve 58 shuts off each of the pressurizing bags 42 and 53, and the respective pressurizing bags 42 and 53 can be operated independently. Therefore, the pressure bags 42 and 53 arranged at the high position can also discharge and suck the liquid with an idling loss substantially equal to that of the pressure bags 42 and 53 arranged at the low position.
  • the check valve 58 has a pressure boosting check valve function, and is composed of an in-shell vortex generation frame 58a and a duck bill valve 58b.
  • the vortex generation frame 58a in the shell is made of, for example, a resin material.
  • FIG. 49 shows a partial configuration of the vortex generation frame 58a in the shell.
  • FIG. 49 shows a state facing substantially the opposite side from the state at the time of use.
  • two vortex generation portions 581a and 581b having a semi-cylindrical shape convex upward in the used state are provided inside the vortex generation frame 58a in the shell.
  • the duck bill valve 58b (duck bill type check valve) is fixed above the vortex generation frame 58a in the shell so that the openable tip portion faces downward.
  • the tip of the duck bill valve 58b is located between the two eddy current generating portions 581a and b.
  • the air flows upward along the inner surface of the vortex generation frame 58a in the shell, and flows along the lower surfaces of the vortex generation portions 581a and b.
  • the air flow is guided downward along the arc and merges with the air flow generated by the liquid flow.
  • a swirl of air is generated by the flow of water flowing downward through the duckbill valve 58b. Since the region where the swirl flow of air is generated becomes a relatively low pressure space, it leads to widening the opening degree of the duck building valve 58b. As a result, it contributes to increasing the flow rate, and as a result, the loss of passing through the valve can be suppressed and the pressure increase can be achieved.
  • the pumping system shown in FIG. 51 includes two sets of pumping pump systems 100 and 200 described in FIG. 45.
  • the pump system 100 has a chamber 100a containing the first, third, fifth, and seventh pressurizing bags connected in series, and a chamber 100b containing the second, fourth, sixth, and eighth.
  • the pump system 200 has a chamber 200a containing the first, third, fifth, and seventh pressurizing bags connected in series, and a chamber 200b containing the second, fourth, sixth, and eighth.
  • Pressurization and depressurization are performed by twin blowers 300a and 300b that generate reciprocal atmospheric pressure. That is, the blowers 300a and 300b function as a pressure changing unit.
  • the chamber 100a and the chamber 200b are connected to the blower 300a, and the chamber 100b and the chamber 200a are connected to the blower 300b.
  • the blower 300a discharges air and pressurizes it
  • the blower 300b sucks up air and depressurizes it.
  • the blower 300a is in an operating state of sucking up air and depressurizing it
  • the blower 300b is in an operating state of discharging air and pressurizing it.
  • the atmospheric pressure changing portion of the above-described embodiment is an example, and the pressurizing bag arranged in the internal space of the chamber can be deformed according to the change of the atmospheric pressure in the internal space of the chamber. Just do it.
  • the switching unit may switch between the first flow path and the second flow path based on the detected value of the pressure sensor or the like.
  • the pressure bag may have a structure in which at least a part thereof can be deformed in the horizontal direction.
  • the air pressure adjusting unit of the above-described embodiment is an example, and if the air pressure in the internal space of the chamber can be adjusted, it may be adjusted by using a control device.
  • connection form of the pressurizing bag and the discharge path, the suction path or the communication path is not limited to the above, and the pressurization is performed so that the liquid is discharged from the pressurization bag or the pressurization bag can suck the liquid. It suffices if the bag and the discharge passage, the suction passage or the communication passage communicate with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

The present invention realizes a liquid pump system that can obtain large potential energy with small kinetic energy. The liquid pump system (1) is provided with: a first chamber (2) that accommodates a gas in an internal space (2a), the internal space (2a) forming at least a portion of an airtight space; a first pressurizing bag (3) that is arranged in the internal space (2a) of the first chamber (2), deforms in association with a change in air pressure in the internal space (2a) of the first chamber (2), and suctions or discharges a liquid; and an air pressure changing unit (4) that changes the air pressure of the internal space (2a) of the first chamber (2). When the air pressure of the internal space (2a) of the first chamber (2) is to be changed, and the first pressurizing bag (3) is to suction a liquid or a liquid is to be discharged from the first pressurizing bag (3), a lifting force is generated on the liquid inside the first pressurizing bag (3) by deformation of the first pressurizing bag (3).

Description

揚液ポンプシステムPumping pump system
 本開示は、気圧駆動の揚液ポンプシステムに関する。 This disclosure relates to a pressure-driven pump system.
 近年、揚液ポンプシステムの重要な用途として、大量の水を高い位置に貯めて置くことで、特許文献1に開示されているように、運動エネルギーを位置エネルギーに変換することに活用されている。 In recent years, as an important application of a pump system, a large amount of water is stored in a high position, and as disclosed in Patent Document 1, it is utilized for converting kinetic energy into potential energy. ..
特許第5737681号公報Japanese Patent No. 5737681
 このような揚液ポンプシステムにおいては、運動エネルギーと位置エネルギーとの変換効率の向上が求められる。
 そこで、本開示は、小さい運動エネルギーで大きな位置エネルギーを得ることができる揚液ポンプシステムを実現する。
In such a pump system, it is required to improve the conversion efficiency between kinetic energy and potential energy.
Therefore, the present disclosure realizes a pump system that can obtain a large potential energy with a small kinetic energy.
 本開示の一形態に係る揚液ポンプシステムは、
 内部空間が気密空間の少なくとも一部を成し、前記内部空間に気体が収容される第1のチャンバーと、
 前記第1のチャンバーの内部空間に配置され、前記第1のチャンバーの内部空間の気圧の変化に伴って変形して、液体を吸引又は排出する第1の加圧バックと、
 前記第1のチャンバーの内部空間の気圧を変化させる気圧変化部と、
を備え、
 前記第1のチャンバーの内部空間の気圧を変化させて前記第1の加圧バックが液体を吸引又は前記第1の加圧バックから液体を排出する場合、前記第1の加圧バックの変形によって、前記第1の加圧バックの内部の液体に揚力を発生させる。
The pump system according to one form of the present disclosure is
A first chamber in which the internal space forms at least a part of the airtight space and the gas is housed in the internal space.
A first pressurizing bag that is arranged in the internal space of the first chamber and deforms with a change in air pressure in the internal space of the first chamber to suck or discharge a liquid.
An atmospheric pressure changing part that changes the atmospheric pressure in the internal space of the first chamber,
With
When the pressure in the internal space of the first chamber is changed so that the first pressurizing bag sucks the liquid or discharges the liquid from the first pressurizing bag, the deformation of the first pressurizing bag causes the liquid. , A lift is generated in the liquid inside the first pressurizing bag.
 上述の揚液ポンプシステムにおいて、前記第1のチャンバーの内部空間の気圧を変化させ、前記第1の加圧バックの側壁部を水平方向に変形させて当該第1の加圧バックの内部の液体を水平方向に移動させることによって、前記第1の加圧バックの内部の液体に流れを生じさせて当該液体に揚力を発生させることが好ましい。 In the above-mentioned lift pump system, the air pressure in the internal space of the first chamber is changed, and the side wall portion of the first pressurizing bag is horizontally deformed to deform the liquid inside the first pressurizing bag. Is preferably moved in the horizontal direction to cause a flow in the liquid inside the first pressurizing bag to generate lift in the liquid.
 上述の揚液ポンプシステムにおいて、前記第1の加圧バックにおいて水平方向に移動させた液体をさらに下方向に移動させて渦巻流を生成することによって、前記第1の加圧バックの内部の液体に流れを生じさせて当該液体に揚力を発生させることが好ましい。 In the above-mentioned lift pump system, the liquid inside the first pressurizing bag is generated by further moving the liquid moved in the horizontal direction in the first pressurizing bag downward to generate a swirl flow. It is preferable to generate a flow in the liquid to generate lift in the liquid.
 上述の揚液ポンプシステムにおいて、前記第1の加圧バックの下部は、当該第1の加圧バックの下方に向かって先細りする第1の先細り部を備えることが好ましい。 In the above-mentioned pumping system, it is preferable that the lower portion of the first pressurizing bag is provided with a first tapering portion that tapers downward of the first pressurizing bag.
 上述の揚液ポンプシステムにおいて、前記第1の加圧バックの上部は、当該第1の加圧バックの上方に向かって先細りする第2の先細り部を備え、
 前記第1の加圧バックは、菱形状であり、前記第1の加圧バックの下部から液体を吸引し、前記第1の加圧バックの上部から液体を排出することが好ましい。
In the above-mentioned pump system, the upper portion of the first pressurizing bag includes a second taper portion that tapers upward of the first pressurizing bag.
The first pressurizing bag has a diamond shape, and it is preferable that the liquid is sucked from the lower part of the first pressurizing bag and the liquid is discharged from the upper part of the first pressurizing bag.
 上述の揚液ポンプシステムにおいて、前記第1の加圧バックは、当該第1の加圧バックの上下方向にテンションを作用させるテンション部を備えることが好ましい。 In the above-mentioned pump system, the first pressurizing bag preferably includes a tension portion for applying tension in the vertical direction of the first pressurizing bag.
 上述の揚液ポンプシステムにおいて、前記気圧変化部は、
 前記第1のチャンバーの内部空間に配置され、変形可能な拡張バックと、
 前記拡張バックに気体を供給及び当該拡張バックから気体を吸引する第1のポンプと、
を備え、
 前記拡張バックが膨張した場合、前記拡張バックが前記第1の加圧バックの側壁部に接触することが好ましい。
In the above-mentioned pump system, the atmospheric pressure change part is
An expansion bag that is placed in the internal space of the first chamber and can be deformed,
A first pump that supplies gas to the expansion bag and sucks gas from the expansion bag,
With
When the expansion bag expands, it is preferable that the expansion bag comes into contact with the side wall portion of the first pressure bag.
 上述の揚液ポンプシステムにおいて、前記気圧変化部は、前記拡張バックを膨張させる場合、前記第1のチャンバーの内部空間の気体を吸引する第2のポンプを備えることが好ましい。 In the above-mentioned pump system, it is preferable that the atmospheric pressure changing unit includes a second pump that sucks gas in the internal space of the first chamber when expanding the expansion bag.
 上述の揚液ポンプシステムにおいて、前記拡張バックと前記第1の加圧バックの側壁部とは接着されていることが好ましい。 In the above-mentioned pumping system, it is preferable that the expansion bag and the side wall portion of the first pressurizing bag are adhered to each other.
 上述の揚液ポンプシステムは、
 前記第1のチャンバーの内部空間に配置される複数の前記第1の加圧バックと、
 前記第1のチャンバーの内部空間で上下方向に隣接する下側の第1の加圧バックから排出される液体を収容可能であって、且つ前記上下方向に隣接する上側の第1の加圧バックに液体を排出可能に、前記第1のチャンバーの外部に配置される中継部と、
 前記下側の第1の加圧バックと前記中継部との間に配置される第1の逆止弁と、
 前記上側の第1の加圧バックと前記中継部との間に配置される第2の逆止弁と、
を備えることが好ましい。
The pump system described above
A plurality of the first pressurizing bags arranged in the internal space of the first chamber, and
In the internal space of the first chamber, the liquid discharged from the lower first pressurizing bag adjacent in the vertical direction can be accommodated, and the upper first pressurizing bag adjacent in the vertical direction can be accommodated. A relay unit arranged outside the first chamber so that the liquid can be discharged into the chamber,
A first check valve arranged between the lower first pressurizing bag and the relay portion,
A second check valve arranged between the upper first pressurizing bag and the relay portion,
It is preferable to provide.
 上述の揚液ポンプシステムにおいて、
 前記第1のチャンバーの内部空間の気圧が上昇した場合、前記第1の逆止弁が開放して前記下側の第1の加圧バックから前記中継部に液体を排出すると共に、前記第2の逆止弁が閉塞した状態で前記上側の第1の加圧バックから液体を排出し、
 前記第1のチャンバーの内部空間の気圧が低下した場合、前記第1の逆止弁が閉塞した状態で前記下側の第1の加圧バックが液体を吸引すると共に、前記第2の逆止弁が開放して前記上側の第1の加圧バックが前記中継部から液体を吸引することが好ましい。
In the above-mentioned pump system,
When the air pressure in the internal space of the first chamber rises, the first check valve is opened to discharge the liquid from the lower first pressurizing bag to the relay portion, and the second check valve is discharged. With the check valve closed, the liquid is discharged from the first pressurizing back on the upper side.
When the air pressure in the internal space of the first chamber drops, the lower first pressurizing bag sucks the liquid and the second check valve is closed while the first check valve is closed. It is preferable that the valve is opened and the first pressurizing back on the upper side sucks the liquid from the relay portion.
 上述の揚液ポンプシステムは、
 前記第1のチャンバーと接続され、前記第1のチャンバーの内部空間と共に気密空間の少なくとも一部を形成する内部空間を有する第2のチャンバーと、
 前記第2のチャンバーの内部空間に配置され、前記第1の加圧バックと直列に接続されて前記第1の加圧バックと交互に配置される第2の加圧バックと、
 前記第1の加圧バックと前記第2の加圧バックとの間に配置される逆止弁と、
を備え、
 前記気圧変化部は、
 前記第2のチャンバーの内部空間の気圧を低下させることに伴って、前記第2の加圧バックを膨張させると共に、前記第1のチャンバーの内部空間の気圧を上昇させて、前記第1の加圧バックを収縮させ、
 前記第1のチャンバーの内部空間の気圧を低下させることに伴って、前記第1の加圧バックを膨張させると共に、前記第2のチャンバーの内部空間の気圧を上昇させて、前記第2の加圧バックを収縮させることが好ましい。
The pump system described above
A second chamber connected to the first chamber and having an internal space forming at least a part of the airtight space together with the internal space of the first chamber.
A second pressurizing bag arranged in the internal space of the second chamber, connected in series with the first pressurizing bag, and alternately arranged with the first pressurizing bag.
A check valve arranged between the first pressurizing bag and the second pressurizing bag,
With
The atmospheric pressure change part is
As the air pressure in the internal space of the second chamber is lowered, the second pressurizing bag is expanded and the air pressure in the internal space of the first chamber is increased to increase the pressure in the first chamber. Shrink the pressure chamber,
As the air pressure in the internal space of the first chamber is lowered, the first pressurizing bag is expanded and the air pressure in the internal space of the second chamber is increased to increase the pressure in the second chamber. It is preferable to shrink the compression chamber.
 上述の揚液ポンプシステムにおいて、前記第2の加圧バックの下部は、当該第2の加圧バックの下方に向かって先細りする第1の先細り部を備えることが好ましい。 In the above-mentioned pumping system, it is preferable that the lower portion of the second pressurizing bag is provided with a first tapering portion that tapers downward of the second pressurizing bag.
 上述の揚液ポンプシステムにおいて、前記第2の加圧バックの上部は、当該第2の加圧バックの上方に向かって先細りする第2の先細り部を備え、
 前記第2の加圧バックは、菱形状であり、前記第2の加圧バックの下部から液体を吸引し、前記第2の加圧バックの上部から液体を排出することが好ましい。
In the above-mentioned pump system, the upper portion of the second pressurizing bag includes a second taper portion that tapers upward of the second pressurizing bag.
The second pressurizing bag has a diamond shape, and it is preferable that the liquid is sucked from the lower part of the second pressurizing bag and the liquid is discharged from the upper part of the second pressurizing bag.
 上述の揚液ポンプシステムにおいて、前記第2の加圧バックは、当該第2の加圧バックの上下方向にテンションを作用させるテンション部を備えることが好ましい。 In the above-mentioned pump system, the second pressurizing bag preferably includes a tension portion for applying tension in the vertical direction of the second pressurizing bag.
 上述の揚液ポンプシステムにおいて、前記第1の加圧バックと前記第2の加圧バックとの一部は、上下方向で重なるように配置されていることが好ましい。 In the above-mentioned pump system, it is preferable that a part of the first pressurizing bag and the second pressurizing bag is arranged so as to overlap in the vertical direction.
 上述の揚液ポンプシステムにおいて、前記逆止弁の排出口は、真下又斜め下方に向かって配置されていることが好ましい。 In the above-mentioned pump system, it is preferable that the discharge port of the check valve is arranged directly below or diagonally downward.
 上述の揚液ポンプシステムは、前記第2の加圧バック毎に前記第2のチャンバーを備え、
 前記第2のチャンバーは、前記第1のチャンバーの外周部に固定されていることが好ましい。
The above-mentioned pump system includes the second chamber for each of the second pressurizing bags.
The second chamber is preferably fixed to the outer peripheral portion of the first chamber.
 上述の揚液ポンプシステムにおいて、前記気圧変化部は、
 前記第1のチャンバーの内部空間の気体を前記第2のチャンバーの内部空間に移動させる第1のポンプと、
 前記第2のチャンバーの内部空間の気体を前記第1のチャンバーの内部空間に移動させる第2のポンプと、
を備えることが好ましい。
In the above-mentioned pump system, the atmospheric pressure change part is
A first pump that moves the gas in the internal space of the first chamber to the internal space of the second chamber, and
A second pump that moves the gas in the internal space of the second chamber to the internal space of the first chamber, and
It is preferable to provide.
 上述の揚液ポンプシステムにおいて、前記気圧変化部は、
 前記第1のチャンバーの内部空間の気体が前記第2のチャンバーの内部空間に向かって流れる第1の流路と、
 前記第2のチャンバーの内部空間の気体が前記第1のチャンバーの内部空間に向かって流れる第2の流路と、
 前記第1のチャンバー又は前記第2のチャンバーの一方の内部空間の気体を吸引し、前記第1のチャンバー又は前記第2のチャンバーの他方の内部空間に排出できるように、前記第1の流路又は前記第2の流路に接続されるポンプと、
 前記第1の流路による前記第1のチャンバーと前記第2のチャンバーとの接続と、前記第2の流路による前記第1のチャンバーと前記第2のチャンバーとの接続と、を切り替える切り替え部と、
を備えることが好ましい。
In the above-mentioned pump system, the atmospheric pressure change part is
The first flow path through which the gas in the internal space of the first chamber flows toward the internal space of the second chamber, and
A second flow path through which the gas in the internal space of the second chamber flows toward the internal space of the first chamber, and
The first flow path so that the gas in the internal space of one of the first chamber or the second chamber can be sucked and discharged to the other internal space of the first chamber or the second chamber. Or with the pump connected to the second flow path,
A switching unit that switches between the connection between the first chamber and the second chamber by the first flow path and the connection between the first chamber and the second chamber by the second flow path. When,
It is preferable to provide.
 上述の揚液ポンプシステムにおいて、前記切り替え部は、前記ポンプの排出圧力が予め設定された第1の閾値以上になった場合、前記第1の流路又は前記第2の流路の一方で前記第1のチャンバーと前記第2のチャンバーとを接続し、前記ポンプの吸引圧力が予め設定された第2の閾値以上になった場合、前記第1の流路又は前記第2の流路の他方で前記第1のチャンバーと前記第2のチャンバーとを接続することが好ましい。 In the above-mentioned pump system, when the discharge pressure of the pump becomes equal to or higher than a preset first threshold value, the switching unit is the one of the first flow path or the second flow path. When the first chamber and the second chamber are connected and the suction pressure of the pump becomes equal to or higher than a preset second threshold value, the other of the first flow path or the second flow path. It is preferable to connect the first chamber and the second chamber with.
 上述の揚液ポンプシステムにおいて、前記ポンプは、前記切り替え部に接続される第3のチャンバーを備えており、太陽光を受けて前記第3のチャンバーの内部空間の気体を暖めることで当該内部空間の気圧が上昇し、太陽光の減少により前記内部空間の気体を冷やすことで当該内部空間の気圧が低下することが好ましい。 In the above-mentioned pump system, the pump includes a third chamber connected to the switching portion, and receives sunlight to warm the gas in the internal space of the third chamber, thereby warming the internal space. It is preferable that the pressure in the internal space rises and the gas in the internal space cools due to the decrease in sunlight, so that the pressure in the internal space decreases.
 上述の揚液ポンプシステムにおいて、前記ポンプは、海面を覆い、且つ、開口部を介して海水の出入りが可能な覆い部を備え、
 前記覆い部は、前記切り替え部に接続されており、
 前記覆い部の内部の前記海面の高さの変化に応じて、前記覆い部の内部空間の気圧が変化することが好ましい。
In the above-mentioned pump system, the pump covers the sea surface and includes a covering portion through which seawater can enter and exit through an opening.
The covering portion is connected to the switching portion and is connected to the switching portion.
It is preferable that the air pressure in the internal space of the covering portion changes according to the change in the height of the sea surface inside the covering portion.
 上述の揚液ポンプシステムにおいて、
 前記ポンプは、
 前記切り替え部に接続される第3のチャンバーと、
 前記第3のチャンバーの内部空間に配置され、液体を気化又は霧化させる体積変化部と、
 前記第3のチャンバーの内部空間に配置され、結露を推進させる結露推進部と、
を備え、
 前記体積変化部の稼働と停止とを切り替えることで、前記第3のチャンバーの内部空間の気体を変化させることが好ましい。
In the above-mentioned pump system,
The pump
A third chamber connected to the switching portion and
A volume change part that is arranged in the internal space of the third chamber and vaporizes or atomizes the liquid.
A dew condensation propulsion unit, which is arranged in the internal space of the third chamber and promotes dew condensation,
With
It is preferable to change the gas in the internal space of the third chamber by switching between the operation and the stop of the volume changing portion.
 上述の揚液ポンプシステムは、前記第1のチャンバーの内部空間の気圧が予め設定された第3の閾値より高くなると、前記気圧を少なくとも前記第3の閾値まで低下させ、前記第1のチャンバーの内部空間の気圧が予め設定された第4の閾値より低くなると、前記気圧を少なくとも前記第4の閾値まで上昇させる気圧調整部を備えることが好ましい。 The above-mentioned pump system reduces the air pressure to at least the third threshold when the air pressure in the internal space of the first chamber becomes higher than a preset third threshold value, and the above-mentioned pump system reduces the air pressure to at least the third threshold value. When the air pressure in the internal space becomes lower than the preset fourth threshold value, it is preferable to include an air pressure adjusting unit that raises the air pressure to at least the fourth threshold value.
 上述の揚液ポンプシステムにおいて、前記気圧調整部は、
 前記第1のチャンバーと接続され、液体が収容される第4のチャンバーと、
 前記第4のチャンバーの内部空間から当該第4のチャンバーの外部に通され、第3の逆止弁が設けられた排出路と、
 前記第4のチャンバーの外部に配置され、液体が収容される液槽と、
 前記液槽から前記第4のチャンバーの内部空間に通され、第4の逆止弁が設けられた供給路と、
を備え、
 前記第1のチャンバーの内部空間の気圧が前記第3の閾値より高くなった場合、前記第4のチャンバーに収容された液体が前記排出路を登って前記液槽に排出され、前記第4のチャンバーに収容された液体が排出されると、前記第1のチャンバーの内部空間の気体が前記排出路を介して排出され、前記第1のチャンバーの内部空間の気圧が少なくとも前記第3の閾値まで低下すると、前記第3の逆止弁が閉塞し、
 前記第1のチャンバーの内部空間の気圧が前記第4の閾値より低くなった場合、前記液槽に収容された液体が前記供給路を登って前記第4のチャンバーの内部空間に吸引され、前記液槽に収容された液体が吸引されると、前記第4のチャンバーの外部の気体が前記供給路を介して前記第1のチャンバーの内部空間に吸引され、前記第1のチャンバーの内部空間の気圧が少なくとも前記第4の閾値まで上昇すると、前記第4の逆止弁が閉塞することが好ましい。
In the above-mentioned pump system, the air pressure adjusting unit is
A fourth chamber connected to the first chamber and containing a liquid,
A discharge path that is passed from the internal space of the fourth chamber to the outside of the fourth chamber and provided with a third check valve, and
A liquid tank arranged outside the fourth chamber and containing a liquid, and a liquid tank.
A supply path that is passed from the liquid tank to the internal space of the fourth chamber and provided with a fourth check valve, and
With
When the pressure in the internal space of the first chamber becomes higher than the third threshold value, the liquid contained in the fourth chamber is discharged up the discharge path to the liquid tank, and the liquid contained in the fourth chamber is discharged to the liquid tank. When the liquid contained in the chamber is discharged, the gas in the internal space of the first chamber is discharged through the discharge path, and the pressure in the internal space of the first chamber reaches at least the third threshold value. When lowered, the third check valve is closed and the third check valve is blocked.
When the pressure in the internal space of the first chamber becomes lower than the fourth threshold value, the liquid contained in the liquid tank is sucked up the supply path into the internal space of the fourth chamber, and the liquid is sucked into the internal space of the fourth chamber. When the liquid contained in the liquid tank is sucked, the gas outside the fourth chamber is sucked into the internal space of the first chamber through the supply path, and the gas inside the first chamber is sucked. When the air pressure rises to at least the fourth threshold value, the fourth check valve is preferably closed.
 上述の揚液ポンプシステムにおいて、前記第1のチャンバーが前記液体を吸入する吸入路に設けられ、吸入方向への前記液体の流れを許容し、逆方向への前記液体の流れを遮断する第1の逆止弁と、前記第1のチャンバーが前記液体を排出する排出路に設けられ、排出方向への前記液体の流れを許容し、逆方向への前記液体の流れを遮断する第2の逆止弁を設けることが好ましい。 In the above-mentioned pump system, the first chamber is provided in a suction path for sucking the liquid, allowing the flow of the liquid in the suction direction and blocking the flow of the liquid in the opposite direction. The check valve and the first chamber are provided in the discharge path for discharging the liquid, and a second reverse reverse valve that allows the flow of the liquid in the discharge direction and blocks the flow of the liquid in the reverse direction. It is preferable to provide a check valve.
 また、前記第1の逆止弁及び前記第2の逆止弁は、それぞれ、
 開状態のときに前記液体が鉛直方向に流れるよう配置されたバルブと、
 前記バルブを保持し、前記バルブからの前記液体が流れる領域の周囲に、下面から上昇する空気の流れを前記液体が流れる領域の近傍で下方に導く渦流生成部を有する渦流生成フレームとを備えるとよい。
Further, the first check valve and the second check valve are respectively.
A valve arranged so that the liquid flows in the vertical direction when in the open state,
A vortex generating frame having a vortex generating portion that holds the valve and guides the flow of air rising from the lower surface downward in the vicinity of the region where the liquid flows is provided around the region where the liquid flows from the valve. Good.
 ここで、前記第1の加圧バックは、正面視で、上側を略円形状とし、下側を先細り形状とした逆水滴形状であり、当該第1の加圧バックの加圧時及び減圧時に内部の液体による渦巻流を発生させることが好ましい。 Here, the first pressurizing bag has a reverse water droplet shape having a substantially circular shape on the upper side and a tapered shape on the lower side in a front view, and is formed during pressurization and depressurization of the first pressurization bag. It is preferable to generate a swirl flow due to the liquid inside.
 さらに、前記第1の加圧バックは、前記液体を吸入する吸入路と前記液体を排出する排出路とを連結し、多数の孔が開いた管状部材を有することが望ましい。 Further, it is desirable that the first pressurizing bag has a tubular member having a large number of holes in connecting the suction path for sucking the liquid and the discharge path for discharging the liquid.
 また、前記第1の加圧バックは、最外周の縁部分に当該第1の加圧バックの正面形状を保持するためのフレームを内蔵するとよい。 Further, the first pressurizing bag may have a frame built in the outermost peripheral edge portion for holding the front shape of the first pressurizing bag.
 本開示の一形態に係る揚液ポンプシステムは、内部空間が気密空間の少なくとも一部を成し、内部空間に気体が収容される第1のチャンバーと、
 前記第1のチャンバーの内部空間に配置され、前記第1のチャンバーの内部空間の気圧の変化に伴って変形して、液体を吸引又は排出する第1の加圧バックと、
 内部空間が気密空間の少なくとも一部を成し、内部空間に気体が収容される第2のチャンバーと、
 前記第2のチャンバーの内部空間に配置され、前記第1の加圧バックと直列に接続されて前記第1の加圧バックと交互に配置される第2の加圧バックと、
 内部空間が気密空間の少なくとも一部を成し、内部空間に気体が収容される第3のチャンバーと、
 前記第3のチャンバーの内部空間に配置され、前記第3のチャンバーの内部空間の気圧の変化に伴って変形して、液体を吸引又は排出する第3の加圧バックと、
 内部空間が気密空間の少なくとも一部を成し、内部空間に気体が収容される第4のチャンバーと、
 前記第4のチャンバーの内部空間に配置され、前記第3の加圧バックと直列に接続されて前記第3の加圧バックと交互に配置される第4の加圧バックと、
 前記第1の加圧バックと前記第2の加圧バックとの間、及び前記第3の加圧バックと前記第4の加圧バックとの間に配置される複数の逆止弁と、
 前記第1のチャンバー、第2のチャンバー、第3のチャンバー及び第4のチャンバーのそれぞれの内部空間の気圧を変化させる気圧変化部とを備え、
 前記気圧変化部は、
 前記第2のチャンバーの内部空間の気圧を低下させることに伴って、前記第2の加圧バックを膨張させると共に、前記第1のチャンバーの内部空間の気圧を上昇させて、前記第1の加圧バックを収縮させ、
 前記第1のチャンバーの内部空間の気圧を低下させることに伴って、前記第1の加圧バックを膨張させると共に、前記第2のチャンバーの内部空間の気圧を上昇させて、前記第2の加圧バックを収縮させる、
 前記第3のチャンバーの内部空間の気圧を低下させることに伴って、前記第4の加圧バックを膨張させると共に、前記第3のチャンバーの内部空間の気圧を上昇させて、前記第3の加圧バックを収縮させ、
 前記第3のチャンバーの内部空間の気圧を低下させることに伴って、前記第3の加圧バックを膨張させると共に、前記第4のチャンバーの内部空間の気圧を上昇させて、前記第4の加圧バックを収縮させる。
In the pump system according to one embodiment of the present disclosure, a first chamber in which the internal space forms at least a part of an airtight space and gas is housed in the internal space, and
A first pressurizing bag that is arranged in the internal space of the first chamber and deforms with a change in air pressure in the internal space of the first chamber to suck or discharge a liquid.
A second chamber in which the interior space forms at least a part of the airtight space and the gas is housed in the interior space.
A second pressurizing bag arranged in the internal space of the second chamber, connected in series with the first pressurizing bag, and alternately arranged with the first pressurizing bag.
A third chamber in which the interior space forms at least a part of the airtight space and the gas is housed in the interior space.
A third pressurizing back, which is arranged in the internal space of the third chamber and deforms with a change in the air pressure in the internal space of the third chamber to suck or discharge the liquid.
A fourth chamber in which the interior space forms at least a part of the airtight space and the gas is housed in the interior space.
A fourth pressurizing bag arranged in the internal space of the fourth chamber, connected in series with the third pressurizing bag, and alternately arranged with the third pressurizing bag.
A plurality of check valves arranged between the first pressurizing bag and the second pressurizing bag, and between the third pressurizing bag and the fourth pressurizing bag.
The first chamber, the second chamber, the third chamber, and the fourth chamber are each provided with a pressure changing portion that changes the pressure in the internal space of each of the first chamber, the second chamber, and the fourth chamber.
The atmospheric pressure change part is
As the air pressure in the internal space of the second chamber is lowered, the second pressurizing bag is expanded and the air pressure in the internal space of the first chamber is increased to increase the pressure in the first chamber. Shrink the pressure chamber,
As the air pressure in the internal space of the first chamber is lowered, the first pressurizing bag is expanded and the air pressure in the internal space of the second chamber is increased to increase the pressure in the second chamber. Shrink the pressure chamber,
As the air pressure in the internal space of the third chamber is lowered, the fourth pressurizing bag is expanded and the air pressure in the internal space of the third chamber is increased to increase the pressure in the third chamber. Shrink the pressure chamber,
Along with lowering the air pressure in the internal space of the third chamber, the third pressurizing bag is expanded and the air pressure in the internal space of the fourth chamber is increased to increase the pressure in the fourth chamber. Shrink the compression chamber.
 ここで、前記気圧変化部は、
 前記第1のチャンバ及び前記第4のチャンバに接続された第1の接続菅に接続された第1の吹子と、
 前記第2のチャンバと前記3のチャンバに接続された第2の接続菅に対して接続された第2の吹子とを有し、
 前記第1の吹子により加圧するときは前記第2の吹子により減圧し、前記第1の吹子により減圧するときは前記第2の吹子により加圧することが好ましい。
Here, the atmospheric pressure change part is
A first blower connected to the first chamber and a first connecting tube connected to the fourth chamber,
It has a second chamber and a second blower connected to a second connecting tube connected to the third chamber.
When pressurizing with the first blower, it is preferable to reduce the pressure with the second blower, and when depressurizing with the first blower, it is preferable to pressurize with the second blower.
 上述の形態によれば、小さい運動エネルギーで大きな位置エネルギーを得ることができる揚液ポンプシステムを実現できる。 According to the above-described form, it is possible to realize a pump system that can obtain a large potential energy with a small kinetic energy.
実施の形態1の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 1. FIG. 実施の形態1の揚液ポンプシステムを模式的に示す断面図である。It is sectional drawing which shows typically the pumping pump system of Embodiment 1. FIG. チャンバーの内部空間の気圧を低下させた際に加圧バックに作用する静的加圧ベクトルを示す図である。It is a figure which shows the static pressure vector which acts on a pressure bag when the air pressure of the internal space of a chamber is lowered. チャンバーの内部空間の気圧を低下させた際に加圧バックに作用する流体加圧ベクトルを示す図である。It is a figure which shows the fluid pressurization vector which acts on a pressurization bag when the air pressure of the internal space of a chamber is lowered. チャンバーの内部空間の気圧を低下させた際に発生する揚力を説明するための図である。It is a figure for demonstrating the lift generated when the air pressure of the internal space of a chamber is lowered. チャンバーの内部空間の気圧を上昇させた際に加圧バックに作用する静的加圧ベクトルを示す図である。It is a figure which shows the static pressure vector which acts on a pressure bag when the air pressure of the internal space of a chamber is raised. チャンバーの内部空間の気圧を上昇させた際に加圧バックに作用する流体加圧ベクトルを示す図である。It is a figure which shows the fluid pressurization vector which acts on a pressurization bag when the air pressure of the internal space of a chamber is raised. チャンバーの内部空間の気圧を上昇させた際に発生する揚力を説明するための図である。It is a figure for demonstrating the lift generated when the air pressure of the internal space of a chamber is raised. 実施の形態2の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 2. 実施の形態2の揚液ポンプシステムを模式的に示す断面図である。It is sectional drawing which shows typically the pumping pump system of Embodiment 2. 拡張バックを膨張させて加圧バックの側壁部の略中央部を押し込む様子を示す図である。It is a figure which shows the state which expands the expansion bag and pushes the substantially central part of the side wall part of a pressure bag. 実施の形態2の異なる揚液ポンプシステムを模式的に示す断面図である。It is sectional drawing which shows typically the different pumping pump system of Embodiment 2. 拡張バックの側壁部と加圧バックの側壁部の略中央部とが接着された形態において、加圧バックの側壁部の略中央部を局所的に引き込む様子を示す図である。It is a figure which shows the state which locally pulls in the substantially central portion of the side wall portion of the pressure back in the form in which the side wall portion of the expansion bag and the substantially central portion of the side wall portion of the pressure back are adhered. 実施の形態3の加圧バックを模式的に示す正面図である。It is a front view which shows typically the pressurizing bag of Embodiment 3. 実施の形態3の異なる加圧バックを模式的に示す正面図である。It is a front view which shows typically the different pressurizing bag of Embodiment 3. 実施の形態3のさらに異なる加圧バックを模式的に示す正面図である。It is a front view which shows typically the further different pressure bag of Embodiment 3. テンション部の反発力によって加圧バックの側壁部を外側に押し広げる様子を説明するための図である。It is a figure for demonstrating how the side wall part of a pressurizing bag is pushed outward by the repulsive force of a tension part. 実施の形態4の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 4. 実施の形態4の揚液ポンプシステムにおいて加圧バックから液体を排出する様子を説明するための図である。It is a figure for demonstrating the state of discharging the liquid from a pressurizing bag in the pumping system of Embodiment 4. FIG. 実施の形態4の揚液ポンプシステムにおいて加圧バックに液体を吸引する様子を説明するための図である。It is a figure for demonstrating the state of sucking a liquid into a pressurizing bag in the pumping system of Embodiment 4. FIG. 実施の形態4の異なる揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the different pumping pump systems of Embodiment 4. 実施の形態5の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 5. 実施の形態6の揚液ポンプシステムの気圧変化部を示す斜視図である。It is a perspective view which shows the atmospheric pressure change part of the pump system of Embodiment 6. 実施の形態6の揚液ポンプシステムにおいて第2の加圧バックから液体を排出する様子を説明するための図である。It is a figure for demonstrating the state of discharging the liquid from the 2nd pressurizing bag in the pumping system of Embodiment 6. 実施の形態6の揚液ポンプシステムにおいて第1の流路から第2の流路に切り替わる様子を説明するための図である。It is a figure for demonstrating the mode of switching from the 1st flow path to the 2nd flow path in the pump system of Embodiment 6. 実施の形態6の揚液ポンプシステムにおいて第1の加圧バックから液体を排出する様子を説明するための図である。It is a figure for demonstrating the state of discharging the liquid from the 1st pressurizing bag in the pumping system of Embodiment 6. 実施の形態7の気圧変化部における切り替え部の構成を示す図である。It is a figure which shows the structure of the switching part in the atmospheric pressure change part of Embodiment 7. 実施の形態8の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 8. 実施の形態8の揚液ポンプシステムを部分的に拡大した図である。FIG. 5 is a partially enlarged view of the pumping system of the eighth embodiment. 実施の形態8の揚液ポンプシステムの第2のチャンバーを示す斜視図である。It is a perspective view which shows the 2nd chamber of the pumping pump system of Embodiment 8. 実施の形態8の揚液ポンプシステムの第2の加圧バックを示す斜視図である。It is a perspective view which shows the 2nd pressurizing bag of the pumping pump system of Embodiment 8. 実施の形態9の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 9. 実施の形態9の異なる揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the different pumping pump systems of Embodiment 9. 実施の形態10の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 10. 実施の形態11の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 11. 実施の形態12の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 12. 実施の形態13の揚液ポンプシステムの加圧バックを示す図である。It is a figure which shows the pressurizing bag of the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムの加圧バックの形状を示す図である。It is a figure which shows the shape of the pressurizing bag of the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムの加圧バックを説明するための図である。It is a figure for demonstrating the pressurizing bag of the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムの加圧バックの機能動作を説明するための図である。It is a figure for demonstrating the functional operation of the pressurizing bag of the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムの加圧バックの機能動作を説明するための図である。It is a figure for demonstrating the functional operation of the pressurizing bag of the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムの加圧バックの機能動作を説明するための図である。It is a figure for demonstrating the functional operation of the pressurizing bag of the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムの加圧バックの機能動作を説明するための図である。It is a figure for demonstrating the functional operation of the pressurizing bag of the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムの加圧バックの特性を説明するための図である。It is a figure for demonstrating the characteristic of the pressurizing bag of the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムの逆止弁を示す断面図である。It is sectional drawing which shows the check valve of the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムの逆止弁の一部を示す斜視図である。It is a perspective view which shows a part of the check valve of the pumping system of Embodiment 13. 実施の形態13の揚液ポンプシステムの逆止弁の動作を説明する図である。It is a figure explaining the operation of the check valve of the pumping pump system of Embodiment 13. 実施の形態13の揚液ポンプシステムを模式的に示す斜視図である。It is a perspective view which shows typically the pumping pump system of Embodiment 13.
 以下、本開示を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。但し、本開示が以下の実施の形態に限定される訳ではない。また、説明を明確にするため、以下の記載及び図面は、適宜、簡略化及び透視化されている。さらに、ハッチングによって液体を示しているが、構成を明確にするために一部省略している場合がある。 Hereinafter, specific embodiments to which the present disclosure is applied will be described in detail with reference to the drawings. However, the present disclosure is not limited to the following embodiments. Further, in order to clarify the explanation, the following description and drawings are simplified and made transparent as appropriate. Furthermore, although the liquid is shown by hatching, it may be partially omitted to clarify the composition.
 <実施の形態1>
 先ず、本実施の形態の揚液ポンプシステムの構成を説明する。図1は、本実施の形態の揚液ポンプシステムを模式的に示す斜視図である。図2は、本実施の形態の揚液ポンプシステムを模式的に示す断面図である。本実施の形態の揚液ポンプシステム1は、図1及び図2に示すように、チャンバー2、加圧バック3及び気圧変化部4を備えている。
<Embodiment 1>
First, the configuration of the pumping system of the present embodiment will be described. FIG. 1 is a perspective view schematically showing a pumping system of the present embodiment. FIG. 2 is a cross-sectional view schematically showing the pumping system of the present embodiment. As shown in FIGS. 1 and 2, the pump system 1 of the present embodiment includes a chamber 2, a pressurizing bag 3, and a pressure changing unit 4.
 チャンバー2は、気体が収容される内部空間2aを備えており、当該内部空間2aの気圧が変化しても略変形しない剛性を有する。チャンバー2の内部空間2aに収容されている気体は、詳細は後述するが、加圧バック3を膨張及び収縮させるために必要な気圧変化に応じて、適宜、選択することができる。ここで、チャンバー2の内部空間2aの形状は、当該内部空間2aの気圧を変化させた際に反発力が中心に向かうように円柱形状であるとよい。 The chamber 2 is provided with an internal space 2a in which a gas is housed, and has a rigidity that does not substantially deform even if the air pressure in the internal space 2a changes. The gas contained in the internal space 2a of the chamber 2 will be described in detail later, but can be appropriately selected according to the change in atmospheric pressure required for expanding and contracting the pressurizing bag 3. Here, the shape of the internal space 2a of the chamber 2 is preferably a cylindrical shape so that the repulsive force is directed toward the center when the air pressure in the internal space 2a is changed.
 加圧バック3は、変形可能な樹脂製の袋体(例えば、ビニールバック)であり、当該加圧バック3の内部に水などの液体が収容される。加圧バック3に収容される液体は、水に限定されず、例えば、温度変化に対して安定しているものがよい。 The pressurizing bag 3 is a deformable resin bag (for example, a vinyl bag), and a liquid such as water is stored inside the pressurizing bag 3. The liquid contained in the pressurizing bag 3 is not limited to water, and may be, for example, one that is stable against temperature changes.
 加圧バック3は、例えば、加圧バック3を正面から見て略四角形状を基本形態としており、加圧バック3の上下端部が塞がれている。そして、加圧バック3は、加圧バック3を側方から見て当該加圧バック3の上端部又は下端部に向かうに従って絞られた形状とされている。つまり、加圧バック3は、例えば、所謂輸血バックのような形状とされている。但し、加圧バック3の形状は、特に限定されず、後述するようにチャンバー2の内部空間2aの気圧の変化に伴って変形可能な構成であればよく、例えば、筒形状でもよい。 The pressurizing bag 3 basically has a substantially square shape when the pressurizing bag 3 is viewed from the front, and the upper and lower ends of the pressurizing bag 3 are closed. The pressurizing bag 3 has a shape that is narrowed toward the upper end or the lower end of the pressurizing bag 3 when the pressurizing bag 3 is viewed from the side. That is, the pressure bag 3 is shaped like a so-called blood transfusion bag, for example. However, the shape of the pressurizing bag 3 is not particularly limited, and may be a tubular shape as long as it can be deformed with a change in the atmospheric pressure in the internal space 2a of the chamber 2 as described later.
 加圧バック3は、チャンバー2の内部空間2aに収容された状態で支持されている。加圧バック3は、例えば、チャンバー2の内部空間2aで吊り下げ支持されているとよい。但し、加圧バック3は、加圧バック3の外面と第1のチャンバー2の内部空間2aの気体との接触面積の減少を抑制できるように配置されていればよい。 The pressurizing bag 3 is supported in a state of being housed in the internal space 2a of the chamber 2. The pressurizing bag 3 may be suspended and supported in, for example, the internal space 2a of the chamber 2. However, the pressurizing bag 3 may be arranged so as to suppress a decrease in the contact area between the outer surface of the pressurizing bag 3 and the gas in the internal space 2a of the first chamber 2.
 加圧バック3には、排出路6及吸入路7が接続されている。排出路6は、加圧バック3から液体を排出するための流路である。排出路6は、例えば、加圧バック3に比べて剛性の高い材料で形成された管体である。そして、排出路6の一方の端部は、加圧バック3の上部から当該加圧バック3の内部に通され、排出路6の他方の端部は、チャンバー2から外部に通され、チャンバー2の外部に配置された液槽8に液体を排出可能に配置されている。このとき、排出路6とチャンバー2及び加圧バック3との隙間は塞がれている。 The discharge path 6 and the suction path 7 are connected to the pressurizing bag 3. The discharge path 6 is a flow path for discharging the liquid from the pressurizing bag 3. The discharge path 6 is, for example, a pipe body made of a material having a higher rigidity than the pressure bag 3. Then, one end of the discharge path 6 is passed from the upper part of the pressurizing bag 3 to the inside of the pressurizing bag 3, and the other end of the discharge path 6 is passed from the chamber 2 to the outside, and the chamber 2 is passed. The liquid is arranged so that the liquid can be discharged to the liquid tank 8 arranged outside the above. At this time, the gap between the discharge path 6 and the chamber 2 and the pressurizing bag 3 is closed.
 排出路6には、逆止弁9が設けられている。逆止弁9は、排出路6の一方の端部から他方の端部に向かう方向への液体の流れを許容し、逆方向への液体の流れを遮断する。逆止弁9としては、一般的な逆止弁を用いることができ、例えば、ダックビルバルブを用いるとよい。 A check valve 9 is provided in the discharge path 6. The check valve 9 allows the flow of liquid from one end of the discharge path 6 toward the other end and blocks the flow of liquid in the opposite direction. As the check valve 9, a general check valve can be used, and for example, a duck bill valve may be used.
 吸入路7は、加圧バック3に液体を吸入するための流路である。吸入路7は、例えば、加圧バック3に比べて剛性の高い材料で形成された管体である。そして、吸入路7の一方の端部は、加圧バック3の下部から当該加圧バック3の内部に通され、吸入路7の他方の端部は、チャンバー2から外部に通され、チャンバー2の外部に配置された液槽10から液体を吸入可能に配置されている。このとき、吸入路7とチャンバー2及び加圧バック3との隙間は塞がれている。 The suction path 7 is a flow path for sucking the liquid into the pressurizing bag 3. The suction passage 7 is, for example, a pipe body made of a material having a higher rigidity than the pressure bag 3. Then, one end of the suction path 7 is passed from the lower part of the pressurizing bag 3 to the inside of the pressurizing bag 3, and the other end of the suction path 7 is passed from the chamber 2 to the outside, and the chamber 2 is passed. The liquid is arranged so that the liquid can be sucked from the liquid tank 10 arranged outside the above. At this time, the gap between the suction path 7 and the chamber 2 and the pressurizing bag 3 is closed.
 吸入路7には、逆止弁11が設けられている。逆止弁11は、吸入路7の他方の端部から一方の端部に向かう方向への液体の流れを許容し、逆方向への液体の流れを遮断する。逆止弁11としては、一般的な逆止弁を用いることができ、例えば、ダックビルバルブを用いるとよい。なお、排出路6及び吸入路7が加圧バック3に通される位置は限定されない。 A check valve 11 is provided in the suction passage 7. The check valve 11 allows the flow of liquid from the other end of the suction path 7 toward one end and blocks the flow of liquid in the opposite direction. As the check valve 11, a general check valve can be used, and for example, a duck bill valve may be used. The position where the discharge path 6 and the suction path 7 are passed through the pressurizing bag 3 is not limited.
 気圧変化部4は、チャンバー2の内部空間2aの気圧を変化させる。本実施の形態の気圧変化部4は、チャンバー2に接続されたポンプ12を備えており、ポンプ12を稼働させることで、チャンバー2の内部空間2aの気圧を変化させる。そのため、チャンバー2と気圧変化部4とで、略密閉された空間を形成している。 The atmospheric pressure changing unit 4 changes the atmospheric pressure in the internal space 2a of the chamber 2. The air pressure changing unit 4 of the present embodiment includes a pump 12 connected to the chamber 2, and by operating the pump 12, the air pressure in the internal space 2a of the chamber 2 is changed. Therefore, the chamber 2 and the atmospheric pressure changing portion 4 form a substantially sealed space.
 次に、本実施の形態の揚液ポンプシステム1を用いて揚液する際の当該揚液ポンプシステム1の動作を説明する。先ず、揚液ポンプシステム1で液体を吸引する際の当該揚液ポンプシステム1の動作を説明する。図3は、チャンバーの内部空間の気圧を低下させた際に加圧バックに作用する静的加圧ベクトルを示す図である。図4は、チャンバーの内部空間の気圧を低下させた際に加圧バックに作用する流体加圧ベクトルを示す図である。図5は、チャンバーの内部空間の気圧を低下させた際に発生する揚力を説明するための図である。 Next, the operation of the pump system 1 when pumping the liquid using the pump system 1 of the present embodiment will be described. First, the operation of the pump system 1 when sucking the liquid by the pump system 1 will be described. FIG. 3 is a diagram showing a static pressurization vector acting on the pressurization bag when the air pressure in the internal space of the chamber is lowered. FIG. 4 is a diagram showing a fluid pressurization vector acting on the pressurization bag when the air pressure in the internal space of the chamber is lowered. FIG. 5 is a diagram for explaining the lift generated when the air pressure in the internal space of the chamber is lowered.
 ここで、吸入路7及び加圧バック3の内部は、予め液体で満たされているものとする。但し、加圧バック3は、膨張して内部に液体を吸引できる状態である。このような状態からポンプ12が稼働してチャンバー2の内部空間2aの気体が当該チャンバー2の内部空間2aから吸引されると、チャンバー2の内部空間2aの気圧が低下する。その結果、図3に示すように、加圧バック3の外面には、均一に膨張圧力が作用し、液槽10から吸入路7を介して液体が加圧バック3に吸引される。 Here, it is assumed that the inside of the suction path 7 and the pressurizing bag 3 is filled with the liquid in advance. However, the pressurizing bag 3 is in a state where it can expand and suck the liquid inside. When the pump 12 operates from such a state and the gas in the internal space 2a of the chamber 2 is sucked from the internal space 2a of the chamber 2, the air pressure in the internal space 2a of the chamber 2 decreases. As a result, as shown in FIG. 3, an expansion pressure uniformly acts on the outer surface of the pressurizing bag 3, and the liquid is sucked from the liquid tank 10 into the pressurizing bag 3 via the suction path 7.
 このとき、図4及び図5に示すように、加圧バック3の下部は、液体による重力と加圧バック3の反発力とが釣り合い、また、加圧バック3の上部は、液体の液面張力によって当該液体と加圧バック3の内面とが密着し、加圧バック3の上部及び下部は、変形し難い状態となっている。そのため、膨張圧力は、加圧バック3の最も変形し易い当該加圧バック3の側壁部の略中央部に集中する。 At this time, as shown in FIGS. 4 and 5, the lower part of the pressurizing bag 3 balances the gravity due to the liquid and the repulsive force of the pressurizing bag 3, and the upper part of the pressurizing bag 3 is the liquid level of the liquid. Due to the tension, the liquid and the inner surface of the pressurizing bag 3 are in close contact with each other, and the upper and lower portions of the pressurizing bag 3 are in a state of being hard to be deformed. Therefore, the expansion pressure is concentrated in the substantially central portion of the side wall portion of the pressurizing bag 3, which is most easily deformed.
 これにより、加圧バック3の側壁部の略中央部が略水平方向に引っ張られ、液体は、重力が略作用しない水平方向に移動する。そして、液体の水平方向への移動及び液体の吸引に伴い、加圧バック3の内部で液体の流れが生じて揚力が発生する。このように液体を重力が作用しない略水平方向に移動させることで、重力に影響を受けずに揚力を発生させて、液体を吸引することができる。しかも、揚力によって加圧バック3の内部での液体の重心を高い位置に配置することができる。つまり、位置エネルギーを稼ぐことができる。 As a result, the substantially central portion of the side wall portion of the pressure back 3 is pulled in the substantially horizontal direction, and the liquid moves in the horizontal direction in which gravity does not substantially act. Then, as the liquid moves in the horizontal direction and the liquid is sucked, the liquid flows inside the pressurizing bag 3 and lift is generated. By moving the liquid in a substantially horizontal direction in which gravity does not act in this way, lift can be generated without being affected by gravity, and the liquid can be sucked. Moreover, the lift force allows the center of gravity of the liquid inside the pressurizing bag 3 to be placed at a high position. That is, potential energy can be earned.
 次に、揚液ポンプシステム1から液体を排出する際の当該揚液ポンプシステム1の動作を説明する。図6は、チャンバーの内部空間の気圧を上昇させた際に加圧バックに作用する静的加圧ベクトルを示す図である。図7は、チャンバーの内部空間の気圧を上昇させた際に加圧バックに作用する流体加圧ベクトルを示す図である。図8は、チャンバーの内部空間の気圧を上昇させた際に発生する揚力を説明するための図である。 Next, the operation of the pump system 1 when discharging the liquid from the pump system 1 will be described. FIG. 6 is a diagram showing a static pressurization vector acting on the pressurization bag when the air pressure in the internal space of the chamber is increased. FIG. 7 is a diagram showing a fluid pressurization vector acting on the pressurization bag when the air pressure in the internal space of the chamber is increased. FIG. 8 is a diagram for explaining the lift generated when the air pressure in the internal space of the chamber is increased.
 ここで、吸入路7及び加圧バック3の内部は、予め液体で満たされているものとする。このような状態からポンプ12が稼働してチャンバー2の内部空間2aに気体が供給されると、チャンバー2の内部空間2aの気圧が上昇する。その結果、図6に示すように、加圧バック3の外面には、均一に収縮圧力が作用し、排出路6を介して液体が加圧バック3から排出される。 Here, it is assumed that the inside of the suction path 7 and the pressurizing bag 3 is filled with the liquid in advance. When the pump 12 operates from such a state and gas is supplied to the internal space 2a of the chamber 2, the air pressure in the internal space 2a of the chamber 2 rises. As a result, as shown in FIG. 6, a contraction pressure is uniformly applied to the outer surface of the pressurizing bag 3, and the liquid is discharged from the pressurizing bag 3 through the discharge path 6.
 このとき、図7及び図8に示すように、加圧バック3の下部は、液体による重力と加圧バック3の反発力とが釣り合い、また、加圧バック3の上部は、液体の液面張力によって当該液体と加圧バック3の内面とが密着し、加圧バック3の上部及び下部は、変形し難い状態となっている。そのため、収縮圧力は、加圧バック3の最も変形し易い当該加圧バック3の側壁部の略中央部に集中する。 At this time, as shown in FIGS. 7 and 8, the lower part of the pressurizing bag 3 balances the gravity due to the liquid and the repulsive force of the pressurizing bag 3, and the upper part of the pressurizing bag 3 is the liquid level of the liquid. Due to the tension, the liquid and the inner surface of the pressurizing bag 3 are in close contact with each other, and the upper and lower portions of the pressurizing bag 3 are in a state of being hard to be deformed. Therefore, the contraction pressure is concentrated in the substantially central portion of the side wall portion of the pressurizing bag 3, which is most easily deformed.
 これにより、加圧バック3の側壁部の略中央部が略水平方向に押し込まれ、液体は、重力が略作用しない水平方向に移動する。そして、液体の水平方向への移動及び液体の排出に伴い、加圧バック3の内部で液体の流れが生じて揚力が発生する。このように液体を重力が作用しない略水平方向に移動させることで、重力に影響を受けずに揚力を発生させて、液体を排出することができる。しかも、揚力によって加圧バック3の内部での液体の重心を高い位置に配置することができる。つまり、位置エネルギーを稼ぐことができる。 As a result, the substantially central portion of the side wall portion of the pressure back 3 is pushed in the substantially horizontal direction, and the liquid moves in the horizontal direction in which gravity does not substantially act. Then, as the liquid moves in the horizontal direction and is discharged, the liquid flows inside the pressurizing bag 3 and lift is generated. By moving the liquid in a substantially horizontal direction in which gravity does not act in this way, lift can be generated without being affected by gravity, and the liquid can be discharged. Moreover, the lift force allows the center of gravity of the liquid inside the pressurizing bag 3 to be placed at a high position. That is, potential energy can be earned.
 このように本実施の形態の揚液ポンプシステム1は、液体を重力が作用しない略水平方向に移動させることで、重力に影響を受けずに揚力を発生させて、液体を吸引及び排出することができる。そのため、一般的な揚液ポンプシステムのようなポンプの運動エネルギーによって直接に揚液する構成に比べて、アイドリング損失が殆どなく、小さい運動エネルギーで大きな位置エネルギーを得ることができる。つまり、一般的な揚液ポンプシステムにおいては、液体を吸引及び排出する位置が高ければ高い程、液体の重力による重さが増大し、その結果、アイドリング損失である無効エネルギーが増大するが、本実施の形態の揚液ポンプシステム1においては、無効エネルギーが殆どなく、液体を排出及び吸引することができる。よって、本実施の形態の揚液ポンプシステム1は、一般的な揚液ポンプシステムに比べて、飛躍的に効率が向上し、極めて小さいポンプ12を用いて揚液することができる。 As described above, the lift pump system 1 of the present embodiment moves the liquid in a substantially horizontal direction in which gravity does not act to generate lift without being affected by gravity, and sucks and discharges the liquid. Can be done. Therefore, there is almost no idling loss and a large potential energy can be obtained with a small kinetic energy as compared with a configuration in which the liquid is directly pumped by the kinetic energy of a pump such as a general pump system. That is, in a typical pump system, the higher the position where the liquid is sucked and discharged, the heavier the weight of the liquid due to gravity increases, and as a result, the dead energy, which is the idling loss, increases. In the pump system 1 of the embodiment, there is almost no ineffective energy, and the liquid can be discharged and sucked. Therefore, the pump system 1 of the present embodiment has dramatically improved efficiency as compared with a general pump system, and can pump liquid using an extremely small pump 12.
 しかも、膨張圧力及び収縮圧力を加圧バック3の側壁部の略中央部に集中させることができるので、膨張圧力及び収縮圧力が加圧バック3の側壁部に分散して作用する場合に比べて、大きな揚力を発生させることができる。なお、加圧バック3の側壁部を変形させる箇所は、加圧バック3の形状や材質などによって、適宜、設定することができる。 Moreover, since the expansion pressure and the contraction pressure can be concentrated in the substantially central portion of the side wall portion of the pressure back 3, the expansion pressure and the contraction pressure are dispersed in the side wall portion of the pressure back 3 and act as compared with the case where the expansion pressure and the contraction pressure act. , Can generate a large lift. The portion where the side wall portion of the pressurizing bag 3 is deformed can be appropriately set depending on the shape and material of the pressurizing bag 3.
 また、揚力によって加圧バック3の内部での液体の重心を高い位置に配置することができるので、より小さい動力で液体を排出することができる。さらに、液体に比べて極めて軽い気体を介して当該液体を動かすので、極めて小さい動力で揚液することができる。 Further, since the center of gravity of the liquid inside the pressurizing bag 3 can be arranged at a high position by lift, the liquid can be discharged with a smaller power. Furthermore, since the liquid is moved through a gas that is extremely lighter than the liquid, the liquid can be pumped with extremely small power.
 <実施の形態2>
 図9は、本実施の形態の揚液ポンプシステムを模式的に示す斜視図である。図10は、本実施の形態の揚液ポンプシステムを模式的に示す断面図である。図11は、拡張バックを膨張させて加圧バックの側壁部の略中央部を押し込む様子を示す図である。
<Embodiment 2>
FIG. 9 is a perspective view schematically showing the pumping system of the present embodiment. FIG. 10 is a cross-sectional view schematically showing the pumping system of the present embodiment. FIG. 11 is a diagram showing a state in which the expansion bag is expanded and the substantially central portion of the side wall portion of the pressure bag is pushed in.
 本実施の形態の揚液ポンプシステム21は、実施の形態1の揚液ポンプシステム1と略等しい構成とされているが、気圧変化部22の構成が異なる。そのため、実施の形態1と重複する説明は省略し、気圧変化部22の説明を中心に行う。なお、以下の説明では、実施の形態1の揚液ポンプシステム1と等しい部材には等しい符号を用いて説明する。 The pumping system 21 of the present embodiment has substantially the same configuration as the pumping system 1 of the first embodiment, but the configuration of the atmospheric pressure changing unit 22 is different. Therefore, the description overlapping with the first embodiment will be omitted, and the description of the atmospheric pressure changing unit 22 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
 気圧変化部22は、図9及び図10に示すように、拡張バック23及び第1のポンプ24を備えている。拡張バック23は、チャンバー2の内部空間2aに配置されている。拡張バック23は、例えば、加圧バック3と略等しい構成とされている。 As shown in FIGS. 9 and 10, the atmospheric pressure changing unit 22 includes an expansion back 23 and a first pump 24. The expansion back 23 is arranged in the internal space 2a of the chamber 2. The expansion bag 23 has a configuration substantially equal to, for example, the pressurization bag 3.
 但し、拡張バック23は、詳細は後述するが、拡張バック23が膨張した際に加圧バック3の側壁部の略中央部(即ち、予め設定された箇所)を押し込むことができる構成及び配置とされていればよい。第1のポンプ24は、拡張バック23に気体を供給及び当該拡張バック23から気体を排出する。 However, although the details of the expansion bag 23 will be described later, the expansion bag 23 has a configuration and arrangement capable of pushing in a substantially central portion (that is, a preset portion) of the side wall portion of the pressure back 3 when the expansion bag 23 expands. It suffices if it is done. The first pump 24 supplies gas to the expansion bag 23 and discharges the gas from the expansion bag 23.
 このような揚液ポンプシステム21を用いて液体を排出する場合、第1のポンプ24を稼働させて拡張バック23に気体を供給すると、拡張バック23が膨張することによって、図11に示すように、チャンバー2の内部空間2aの気圧が上昇して上述のように加圧バック3の側壁部の略中央部が略水平方向に変形すると共に、拡張バック23が加圧バック3の側壁部の略中央部に接触して略水平方向に押し込む。 When the liquid is discharged using such a pump system 21, when the first pump 24 is operated to supply gas to the expansion bag 23, the expansion bag 23 expands, as shown in FIG. As described above, the pressure in the internal space 2a of the chamber 2 rises, the substantially central portion of the side wall portion of the pressure back 3 is deformed in a substantially horizontal direction, and the expansion back 23 is an abbreviation for the side wall portion of the pressure back 3. Contact the central part and push it in almost horizontal direction.
 このとき、拡張バック23は、加圧バック3の側壁部の略中央部を局所的に略水平方向に押し込むので、実施の形態1の揚液ポンプシステム1に比べて、大きな揚力を発生させることができる。そのため、本実施の形態の揚液ポンプシステム21は、実施の形態1の揚液ポンプシステム1に比べて、小さい動力で液体を排出することができる。 At this time, since the expansion bag 23 locally pushes the substantially central portion of the side wall portion of the pressurizing bag 3 in the substantially horizontal direction, a large lift force is generated as compared with the lift pump system 1 of the first embodiment. Can be done. Therefore, the pump system 21 of the present embodiment can discharge the liquid with a smaller power than the pump system 1 of the first embodiment.
 ここで、図12に示すように、気圧変化部22は、拡張バック23が膨張した際にチャンバー2の内部空間2aの気体を吸引する第2のポンプ25を備えているとよい。これにより、拡張バック23が加圧バック3の側壁部に接触する際のクッション圧力損失を減少させることができる。 Here, as shown in FIG. 12, it is preferable that the atmospheric pressure changing unit 22 is provided with a second pump 25 that sucks the gas in the internal space 2a of the chamber 2 when the expansion bag 23 expands. As a result, the cushion pressure loss when the expansion bag 23 comes into contact with the side wall portion of the pressure bag 3 can be reduced.
 また、図13に示すように、加圧バック3の側壁部の略中央部と拡張バック23の側壁部とが接着されていてもよい。この場合、第1のポンプ24を稼働させて拡張バック23から気体を吸引すると、加圧バック3の側壁部の略中央部を局所的に略水平方向に引き込むことができる。これにより、実施の形態1の揚液ポンプシステム1に比べて、小さい動力で液体を吸引することができる。 Further, as shown in FIG. 13, the substantially central portion of the side wall portion of the pressure back 3 and the side wall portion of the expansion bag 23 may be adhered to each other. In this case, when the first pump 24 is operated to suck the gas from the expansion bag 23, the substantially central portion of the side wall portion of the pressurizing bag 3 can be locally pulled in in the substantially horizontal direction. As a result, the liquid can be sucked with a smaller power than that of the pump system 1 of the first embodiment.
 <実施の形態3>
 実施の形態1及び2の加圧バック3は、正面視が略直角四角形状であるが、図14に示すように、加圧バック3の下部が下方に向かうに従って先細りする第1の先細り部3aを備えると共に、加圧バック3の上部が上方に向かうに従って先細りする第2の先細り部3bを備え、正面視が略菱形状に形成されているとよい。
<Embodiment 3>
The pressurizing bag 3 of the first and second embodiments has a substantially right-angled square shape when viewed from the front, but as shown in FIG. 14, the first tapered portion 3a in which the lower portion of the pressurizing bag 3 tapers downward. It is preferable that the upper portion of the pressurizing bag 3 is provided with a second tapered portion 3b that tapers upward, and the front view is formed in a substantially right-angled shape.
 これにより、実施の形態1及び2の加圧バック3に比べて、液体の重心を高い位置に配置でき、ひいては水位を稼ぐことができる。そのため、より小さい動力で液体を排出することができる。しかも、図14に示すように、排出路6の側に向かって揚力を発生させることができ、合理的な加圧バック3を実現することができる。 As a result, the center of gravity of the liquid can be arranged at a higher position than the pressurizing bag 3 of the first and second embodiments, and the water level can be increased. Therefore, the liquid can be discharged with less power. Moreover, as shown in FIG. 14, lift can be generated toward the discharge path 6 side, and a rational pressurizing bag 3 can be realized.
 また、加圧バック3は、図15及び図16に示すように、加圧バック3の上下方向にテンション(張力)を作用させるテンション部3cを備えているとよい。例えば、図15に示すテンション部3cは、弾性変形可能な線材であり、加圧バック3の側壁部に固定されている。また、例えば、図16に示すテンション部3cは、加圧バック3の側壁部の表面に形成された凸部である。これらのテンション部3cは、上下方向に延在するように配置されている。 Further, as shown in FIGS. 15 and 16, the pressurizing bag 3 may include a tension portion 3c that applies tension in the vertical direction of the pressurizing bag 3. For example, the tension portion 3c shown in FIG. 15 is an elastically deformable wire rod and is fixed to the side wall portion of the pressure bag 3. Further, for example, the tension portion 3c shown in FIG. 16 is a convex portion formed on the surface of the side wall portion of the pressure bag 3. These tension portions 3c are arranged so as to extend in the vertical direction.
 これにより、図17に示すように、加圧バック3に液体が吸引された際にテンション部3cに反発力が発生し、加圧バック3の側壁部を外側に押し広げようとする。これにより、大きな揚力を発生させることができる。なお、図17では、太い破線によって、テンション部3cの変形前の状態を示し、テンション部3cによって加圧バック3の側壁部を外側に押し広げる動作を明確に示している。 As a result, as shown in FIG. 17, when the liquid is sucked into the pressurizing bag 3, a repulsive force is generated in the tension portion 3c, and the side wall portion of the pressurizing bag 3 is pushed outward. This makes it possible to generate a large lift. In FIG. 17, the thick broken line shows the state of the tension portion 3c before deformation, and the tension portion 3c clearly shows the operation of pushing the side wall portion of the pressure back 3 outward.
 本実施の形態の加圧バック3は、第1の先細り部3a及び第2の先細り部3bを備えているが、少なくとも第1の先細り部3aを備えていれば、液体の重心を高い位置に配置することができる。また、テンション部3cは、加圧バック3の外側面又は内側面の少なくとも一方に設けられていればよい。 The pressurizing bag 3 of the present embodiment includes a first tapered portion 3a and a second tapered portion 3b, but if at least the first tapered portion 3a is provided, the center of gravity of the liquid is set to a high position. Can be placed. Further, the tension portion 3c may be provided on at least one of the outer surface or the inner surface of the pressurizing bag 3.
 <実施の形態4>
 図18は、本実施の形態の揚液ポンプシステムを模式的に示す斜視図である。図19は、加圧バックから液体を排出する様子を説明するための図である。図20は、加圧バックに液体を吸引する様子を説明するための図である。なお、図19及び図20は、第1の流路44及び第2の流路45の配置を簡略化して示している。
<Embodiment 4>
FIG. 18 is a perspective view schematically showing the pumping system of the present embodiment. FIG. 19 is a diagram for explaining how the liquid is discharged from the pressure bag. FIG. 20 is a diagram for explaining how the liquid is sucked into the pressure bag. Note that FIGS. 19 and 20 simplify the arrangement of the first flow path 44 and the second flow path 45.
 本実施の形態の揚液ポンプシステム41は、実施の形態1の揚液ポンプシステム1と略等しい構成とされているが、複数の加圧バック42及び中継部43を備えている点で構成が異なる。なお、他の実施の形態と重複する説明は省略し、実施の形態1の揚液ポンプシステム1などと等しい部材には等しい符号を用いて説明する。 The pumping system 41 of the present embodiment has substantially the same configuration as the pumping system 1 of the first embodiment, but is configured to include a plurality of pressurizing bags 42 and a relay unit 43. different. It should be noted that the description overlapping with other embodiments will be omitted, and the same members as those of the pump system 1 of the pump system 1 of the first embodiment will be described by using the same reference numerals.
 加圧バック42は、例えば、図15に示す加圧バック3と等しい構成とされており、複数の加圧バック42が上下方向に並べられた状態でチャンバー2の内部空間2aに配置されている。そして、最下段の加圧バック42の内部には、吸入路7の一方の端部が通され、最上段の加圧バック42の内部には、排出路6の一方の端部が通されている。 The pressurizing bag 42 has, for example, the same configuration as the pressurizing bag 3 shown in FIG. 15, and a plurality of pressurizing bags 42 are arranged in the internal space 2a of the chamber 2 in a state of being arranged in the vertical direction. .. Then, one end of the suction path 7 is passed through the inside of the lowermost pressurizing bag 42, and one end of the discharge path 6 is passed through the inside of the uppermost pressurizing bag 42. There is.
 中継部43は、例えば、液槽であり、上下方向で隣接する下段の加圧バック42から排出される液体を第1の流路44を介して収容可能であって、且つ当該上下方向で隣接する上段の加圧バック42に第2の流路45を介して液体を排出可能に、チャンバー2の外部に配置されている。 The relay unit 43 is, for example, a liquid tank, capable of accommodating the liquid discharged from the lower pressurizing bag 42 adjacent in the vertical direction via the first flow path 44, and adjacent in the vertical direction. The upper pressurizing bag 42 is arranged outside the chamber 2 so that the liquid can be discharged through the second flow path 45.
 詳細には、第1の流路44は、例えば、加圧バック42に比べて剛性の高い材料で形成された管体である。第1の流路44の一方の端部は、下段の加圧バック42の上部から当該下段の加圧バック42の内部に通され、第1の流路44の他方の端部は、チャンバー2から外部に通され、中継部43に液体を排出可能に配置されている。このとき、第1の流路44とチャンバー2及び下段の加圧バック42との隙間は塞がれている。 Specifically, the first flow path 44 is, for example, a pipe body made of a material having a higher rigidity than the pressure bag 42. One end of the first flow path 44 is passed from the upper part of the lower pressurizing bag 42 to the inside of the lower pressurizing bag 42, and the other end of the first flow path 44 is the chamber 2. The liquid is passed to the outside and is arranged in the relay unit 43 so that the liquid can be discharged. At this time, the gap between the first flow path 44 and the chamber 2 and the lower pressurizing bag 42 is closed.
 第2の流路45も、例えば、加圧バック42に比べて剛性の高い材料で形成された管体である。第2の流路45の一方の端部は、上段の加圧バック42の下部から当該上段の加圧バック42の内部に通され、第2の流路45の他方の端部は、チャンバー2から外部に通され、中継部43から液体を吸引可能に配置されている。このとき、第2の流路45とチャンバー2及び上段の加圧バック42との隙間は塞がれている。 The second flow path 45 is also, for example, a pipe body made of a material having a higher rigidity than the pressure bag 42. One end of the second flow path 45 is passed from the lower part of the upper pressurizing bag 42 to the inside of the upper pressurizing bag 42, and the other end of the second flow path 45 is the chamber 2. The liquid is passed to the outside from the relay unit 43 and is arranged so that the liquid can be sucked from the relay unit 43. At this time, the gap between the second flow path 45 and the chamber 2 and the upper pressurizing bag 42 is closed.
 このような第1の流路44には、逆止弁46が設けられている。逆止弁46は、第1の流路44の一方の端部から他方の端部に向かう方向への液体の流れを許容し、逆方向への液体の流れを遮断する。また、第2の流路45には、逆止弁47が設けられている。逆止弁47は、第2の流路45の他方の端部から一方の端部に向かう方向への液体の流れを許容し、逆方向への液体の流れを遮断する。 A check valve 46 is provided in such a first flow path 44. The check valve 46 allows the flow of liquid from one end of the first flow path 44 toward the other end and blocks the flow of liquid in the opposite direction. A check valve 47 is provided in the second flow path 45. The check valve 47 allows the flow of liquid from the other end of the second flow path 45 toward one end and blocks the flow of liquid in the opposite direction.
 逆止弁46、47としては、一般的な逆止弁を用いることができ、例えば、ダックビルバルブを用いるとよい。なお、第1の流路44は、下段の加圧バック42から中継部43に液体を排出可能に配置されていればよい。また、第2の流路45は、中継部43から上段の加圧バック42に液体を排出可能に配置されていればよい。 As the check valves 46 and 47, general check valves can be used, and for example, a duck bill valve may be used. The first flow path 44 may be arranged so that the liquid can be discharged from the lower pressurizing bag 42 to the relay portion 43. Further, the second flow path 45 may be arranged so that the liquid can be discharged from the relay portion 43 to the upper pressurizing bag 42.
 このような揚液ポンプシステム41において、加圧バック42の内部の液体を排出する場合、ポンプ12によってチャンバー2の内部空間2aの気圧を上昇させると、図19に示すように、最上段の加圧バック42が収縮し、これにより、逆止弁9が開放し、排出路6を介して最上段の加圧バック42が液体を液槽8に排出する。 In such a pump system 41, when the liquid inside the pressurizing bag 42 is discharged, when the air pressure in the internal space 2a of the chamber 2 is raised by the pump 12, as shown in FIG. 19, the uppermost stage is added. The pressure back 42 contracts, whereby the check valve 9 opens, and the uppermost pressure back 42 discharges the liquid to the liquid tank 8 via the discharge passage 6.
 それと共に、他の加圧バック42も収縮し、これにより、逆止弁46が開放し、第1の流路44を介して他の加圧バック42が液体を中継部43に排出する。このとき、中継部43は、チャンバー2の外部に配置されているため、膨張して液体を収容し、加圧バック42に液体を押し出すことが殆どない。そのため、逆止弁47は、閉塞した状態となる。そして、加圧バック42は等しい形状であるので、各々の加圧バック42に略等しく圧力が作用し、全ての加圧バック42は略等しく収縮する。 At the same time, the other pressurizing bag 42 also contracts, whereby the check valve 46 opens, and the other pressurizing bag 42 discharges the liquid to the relay unit 43 via the first flow path 44. At this time, since the relay unit 43 is arranged outside the chamber 2, it expands to accommodate the liquid and hardly pushes the liquid into the pressurizing bag 42. Therefore, the check valve 47 is in a closed state. Since the pressure bags 42 have the same shape, pressure acts on each pressure bag 42 substantially equally, and all the pressure bags 42 contract substantially equally.
 一方、加圧バック42が液体を吸引する場合、ポンプ12によってチャンバー2の内部空間2aの気圧を低下させると、図20に示すように、最下段の加圧バック42が膨張し、これにより、逆止弁11が開放し、吸入路7を介して最下段の加圧バック42が液槽10から液体を吸引する。 On the other hand, when the pressurizing bag 42 sucks the liquid, when the air pressure in the internal space 2a of the chamber 2 is lowered by the pump 12, the lowermost pressurizing bag 42 expands as shown in FIG. The check valve 11 opens, and the lowermost pressurizing bag 42 sucks the liquid from the liquid tank 10 through the suction path 7.
 それと共に、他の加圧バック42も膨張し、これにより、逆止弁47が開放し、第2の流路45を介して他の加圧バック42が中継部43から液体を吸引する。このとき、中継部43は、チャンバー2の外部に配置されているため、液体が吸い出されることに伴って収縮し、加圧バック42から液体を吸引することが殆どない。そのため、逆止弁46は、閉塞した状態となる。そして、加圧バック42は等しい形状であるので、各々の加圧バック42に略等しく圧力が作用し、全ての加圧バック42は略等しく膨張する。 At the same time, the other pressurizing bag 42 also expands, whereby the check valve 47 opens, and the other pressurizing bag 42 sucks the liquid from the relay portion 43 via the second flow path 45. At this time, since the relay unit 43 is arranged outside the chamber 2, it contracts as the liquid is sucked out, and the liquid is hardly sucked from the pressurizing bag 42. Therefore, the check valve 46 is in a closed state. Since the pressure bags 42 have the same shape, pressure acts on each pressure bag 42 substantially equally, and all the pressure bags 42 expand substantially equally.
 このように本実施の形態の揚液ポンプシステム41においては、液体を排出及び吸引する際の何れも逆止弁46又は逆止弁47によって加圧バック42毎に遮断され、各々の加圧バック42を独立して動作させることができる。そのため、高い位置に配置される加圧バック42も低い位置に配置される加圧バック42と略等しいアイドリング損失で液体を排出及び吸引することができる。したがって、本実施の形態の揚液ポンプシステム41は、アイドリング損失の殆どない揚液ポンプシステムを実現することができる。 As described above, in the pump system 41 of the present embodiment, each of the pressure backs 42 is shut off by the check valve 46 or the check valve 47 when the liquid is discharged and sucked, and each pressure back is stopped. The 42 can be operated independently. Therefore, the pressurizing bag 42 arranged at a high position can also discharge and suck the liquid with an idling loss substantially equal to that of the pressurizing bag 42 arranged at a low position. Therefore, the pumping system 41 of the present embodiment can realize a pumping system with almost no idling loss.
 ここで、第1の流路44又は第2の流路45の少なくとも一方は、略水平に配置されているとよい。これにより、下段の加圧バック42が中継部43に液体を排出する際や上段の加圧バック42が中継部43から液体を吸引する際のアイドリング損失をより少なくすることができる。 Here, it is preferable that at least one of the first flow path 44 and the second flow path 45 is arranged substantially horizontally. As a result, the idling loss when the lower pressurizing bag 42 discharges the liquid to the relay portion 43 and when the upper pressurizing bag 42 sucks the liquid from the relay portion 43 can be further reduced.
 しかも、本実施の形態では、加圧バック42として図15に示す加圧バック3を用いるので、加圧バック42の内部で水位を高い位置に維持することができ、小さな気圧変化で液体を排出及び吸引することができる。 Moreover, in the present embodiment, since the pressurizing bag 3 shown in FIG. 15 is used as the pressurizing bag 42, the water level can be maintained at a high position inside the pressurizing bag 42, and the liquid is discharged with a small change in atmospheric pressure. And can be sucked.
 なお、本実施の形態の中継部43は、液槽で構成したが、図21に示すように、変形可能な袋体のバックで構成してもよい。つまり、中継部43は、加圧バック42から排出される液体を一時的に収容できる構成であればよい。 Although the relay unit 43 of the present embodiment is composed of a liquid tank, it may be composed of a deformable bag body back as shown in FIG. 21. That is, the relay unit 43 may have a configuration that can temporarily accommodate the liquid discharged from the pressurizing bag 42.
 <実施の形態5>
 図22は、本実施の形態の揚液ポンプシステムを模式的に示す斜視図である。本実施の形態の揚液ポンプシステム51は、実施の形態4の揚液ポンプシステム41と略等しい構成とされているが、第2のチャンバー52及び第2の加圧バック53を備え、さらに気圧変化部54の構成が異なる。そのため、他の実施の形態と重複する説明は省略し、第2のチャンバー52、第2の加圧バック53及び気圧変化部54の構成を中心に説明する。なお、以下の説明では、実施の形態1の揚液ポンプシステム1などと等しい部材には等しい符号を用いて説明する。
<Embodiment 5>
FIG. 22 is a perspective view schematically showing the pumping system of the present embodiment. The pumping system 51 of the present embodiment has substantially the same configuration as the pumping system 41 of the fourth embodiment, but includes a second chamber 52 and a second pressurizing bag 53, and further has an atmospheric pressure. The configuration of the changing unit 54 is different. Therefore, the description overlapping with other embodiments will be omitted, and the configurations of the second chamber 52, the second pressurizing bag 53, and the atmospheric pressure changing unit 54 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
 第2のチャンバー52は、気体が収容される内部空間52aを備えており、当該内部空間52aの気圧が変化しても略変形しない剛性を有する。そして、第2のチャンバー52は、チャンバー(第1のチャンバー)2の内部空間2aの気体と第2のチャンバー52の内部空間52aの気体とが往来可能に、第1のチャンバー2と第1の接続管55及び第2の接続管56を介して接続されている。このとき、第1のチャンバー2と第2のチャンバー52とは、略密閉された空間の一部を形成する。 The second chamber 52 is provided with an internal space 52a in which a gas is housed, and has a rigidity that does not substantially deform even if the air pressure in the internal space 52a changes. Then, in the second chamber 52, the gas in the internal space 2a of the chamber (first chamber) 2 and the gas in the internal space 52a of the second chamber 52 can come and go between the first chamber 2 and the first chamber 52. It is connected via a connecting pipe 55 and a second connecting pipe 56. At this time, the first chamber 2 and the second chamber 52 form a part of a substantially enclosed space.
 第2の加圧バック53は、加圧バック(第1の加圧バック)3と同様に変形可能な袋体であり、第2のチャンバー52の内部空間52aに配置されている。そして、第2の加圧バック53は、第1のチャンバー2及び第2のチャンバー52に通された連通路57を介して第1の加圧バック42と直列に接続されている。このとき、第1の加圧バック42と第2の加圧バック53とは、交互に配置されている。 The second pressurizing bag 53 is a bag body that can be deformed in the same manner as the pressurizing bag (first pressurizing bag) 3, and is arranged in the internal space 52a of the second chamber 52. The second pressurizing bag 53 is connected in series with the first pressurizing bag 42 via a communication passage 57 passed through the first chamber 2 and the second chamber 52. At this time, the first pressurizing bag 42 and the second pressurizing bag 53 are arranged alternately.
 連通路57には、直列に接続された第1の加圧バック42及び第2の加圧バック53に沿って吸入路7から排出路6に向かう方向の液体の流れを許容し、逆方向の液体の流れを遮断する逆止弁58が設けられている。ここで、最下段の第1の加圧バック42の内部には、吸入路7の一方の端部が通されている。そして、最上段の第2の加圧バック53の内部には、排出路6の一方の端部が通されている。 The communication passage 57 allows the flow of liquid in the direction from the suction path 7 to the discharge path 6 along the first pressurizing bag 42 and the second pressurizing bag 53 connected in series, and in the opposite direction. A check valve 58 that shuts off the flow of liquid is provided. Here, one end of the suction path 7 is passed through the inside of the first pressurizing bag 42 at the bottom. Then, one end of the discharge path 6 is passed through the inside of the second pressurizing bag 53 on the uppermost stage.
 気圧変化部54は、第1のポンプ59及び第2のポンプ60を備えている。第1のポンプ59は、第1の接続管55に設けられており、第1のチャンバー2の内部空間2aの気体を第2のチャンバー52の内部空間52aに移動させる。第2のポンプ60は、第2の接続管56に設けられており、第2のチャンバー52の内部空間52aの気体を第1のチャンバー2の内部空間2aに移動させる。 The atmospheric pressure changing unit 54 includes a first pump 59 and a second pump 60. The first pump 59 is provided in the first connecting pipe 55, and moves the gas in the internal space 2a of the first chamber 2 to the internal space 52a of the second chamber 52. The second pump 60 is provided in the second connecting pipe 56, and moves the gas in the internal space 52a of the second chamber 52 to the internal space 2a of the first chamber 2.
 このような揚液ポンプシステム51において、第2の加圧バック53から液体を排出する場合、第1のポンプ59によって第1のチャンバー2の内部空間2aの気体を第2のチャンバー52の内部空間52aに移動させる。これにより、第2のチャンバー52の内部空間52aの気圧が上昇し、最上段の第2の加圧バック53が収縮して当該第2の加圧バック53から液体を排出する。それと共に、他の第2の加圧バック53が収縮して、液体が流れる方向の側に配置された第1の加圧バック42に液体を排出する。 In such a pump system 51, when the liquid is discharged from the second pressurizing bag 53, the gas in the internal space 2a of the first chamber 2 is transferred to the internal space of the second chamber 52 by the first pump 59. Move to 52a. As a result, the air pressure in the internal space 52a of the second chamber 52 rises, the second pressurizing bag 53 on the uppermost stage contracts, and the liquid is discharged from the second pressurizing bag 53. At the same time, the other second pressurizing bag 53 contracts, and the liquid is discharged to the first pressurizing bag 42 arranged on the side in the direction in which the liquid flows.
 このとき、第1のチャンバー2の内部空間2aの気圧は低下し、最下段の第1の加圧バック42が膨張して液槽10から液体を吸引する。それと共に、他の第1の加圧バック42が膨張して、上述の他の第2の加圧バック53から積極的に液体を吸引する。 At this time, the air pressure in the internal space 2a of the first chamber 2 drops, and the first pressurizing bag 42 at the bottom expands to suck the liquid from the liquid tank 10. At the same time, the other first pressurizing bag 42 expands and positively sucks the liquid from the other second pressurizing bag 53 described above.
 ここで、第1の加圧バック42と、液体の流れる方向の側に配置された第2の加圧バック53と、を接続する連通路57の逆止弁58は、当該第2の加圧バック53が収縮するので閉塞した状態となり、第2の加圧バック53と、液体の流れる方向の側に配置された第1の加圧バック42と、を接続する連通路57の逆止弁58は、当該第1の加圧バック42が膨張するので開放した状態となる。 Here, the check valve 58 of the communication passage 57 connecting the first pressurizing bag 42 and the second pressurizing bag 53 arranged on the side in the flow direction of the liquid is the second pressurizing. Since the back 53 contracts, it is in a closed state, and the check valve 58 of the communication passage 57 connecting the second pressure back 53 and the first pressure back 42 arranged on the side in the direction in which the liquid flows. Is in an open state because the first pressurizing bag 42 expands.
 一方、第1の加圧バック42から液体を排出する場合、第2のポンプ60によって第2のチャンバー52の内部空間52aの気体を第1のチャンバー2の内部空間2aに移動させる。これにより、第1のチャンバー2の内部空間2aの気圧が上昇し、第1の加圧バック42が収縮して、液体が流れる方向の側に配置された第2の加圧バック53に液体を排出する。このとき、第2のチャンバー52の内部空間52aの気圧は低下し、第2の加圧バック53が膨張して液体を積極的に吸引する。 On the other hand, when the liquid is discharged from the first pressurizing bag 42, the gas in the internal space 52a of the second chamber 52 is moved to the internal space 2a of the first chamber 2 by the second pump 60. As a result, the air pressure in the internal space 2a of the first chamber 2 rises, the first pressurizing bag 42 contracts, and the liquid is applied to the second pressurizing bag 53 arranged on the side in the direction in which the liquid flows. Discharge. At this time, the air pressure in the internal space 52a of the second chamber 52 drops, and the second pressurizing bag 53 expands to actively suck the liquid.
 ここで、第2の加圧バック53と、液体の流れる方向の側に配置された第1の加圧バック42と、を接続する連通路57の逆止弁58は、当該第1の加圧バック42が収縮するので閉塞した状態となり、第1の加圧バック42と、液体の流れる方向の側に配置された第2の加圧バック53と、を接続する連通路57の逆止弁58は、当第2の該加圧バック53が膨張するので開放した状態となる。 Here, the check valve 58 of the communication passage 57 connecting the second pressurizing bag 53 and the first pressurizing bag 42 arranged on the side in the flow direction of the liquid is the first pressurizing. Since the back 42 contracts, it is in a closed state, and the check valve 58 of the communication passage 57 connecting the first pressure back 42 and the second pressure back 53 arranged on the side in the direction in which the liquid flows. Is in an open state because the second pressurizing bag 53 expands.
 このように本実施の形態の揚液ポンプシステム51においては、第1のチャンバー2と第2のチャンバー52とを接続し、一方の加圧バックを膨張させつつ、他方の加圧バックを収縮させることができるので、揚液効率を相乗的に向上させることができる。 As described above, in the pump system 51 of the present embodiment, the first chamber 2 and the second chamber 52 are connected to expand one of the pressurizing bags and contract the other pressurizing bag. Therefore, the pumping efficiency can be synergistically improved.
 しかも、本実施の形態の揚液ポンプシステム51は、実施の形態4の揚液ポンプシステム41と同様に、逆止弁58によって加圧バック42、53毎に遮断して、各々の加圧バック42、53を独立して動作させることができる。そのため、高い位置に配置される加圧バック42、53も低い位置に配置される加圧バック42、53と略等しいアイドリング損失で液体を排出及び吸引することができる。 Moreover, the pumping system 51 of the present embodiment, like the pumping system 41 of the fourth embodiment, shuts off each of the pressurizing bags 42 and 53 by the check valve 58, and each pressurizing bag 42 and 53 can be operated independently. Therefore, the pressure bags 42 and 53 arranged at the high position can also discharge and suck the liquid with an idling loss substantially equal to that of the pressure bags 42 and 53 arranged at the low position.
 ここで、第2の加圧バック53は、例えば、第1の加圧バック42と同様に、図15に示す加圧バック3と等しい構成とされているとよい。そして、連通路57の吸入側の端部が一方の加圧バックの上部に通され、連通路57の排出側の端部が他方の加圧バックの下部に通されているとよい。これにより、小さな気圧変化で液体を排出及び吸引することができる。 Here, it is preferable that the second pressurizing bag 53 has the same configuration as the pressurizing bag 3 shown in FIG. 15, like the first pressurizing bag 42, for example. Then, it is preferable that the end of the communication passage 57 on the suction side is passed through the upper part of one of the pressure bags, and the end of the communication passage 57 on the discharge side is passed through the lower part of the other pressure back. As a result, the liquid can be discharged and sucked with a small change in atmospheric pressure.
 また、揚液ポンプシステム51を側方から見て、一方の加圧バックの上部と、当該一方の加圧バックに対して液体が流れる方向の側に配置された他方の加圧バックの下部と、が上下方向で重なるように配置されているとよい。これにより、液体が自発的に他方の加圧バックに向かって流れ込み、圧力損失なしに他方の加圧バックに液体を流し込むことができる。このとき、逆止弁58の排出口を斜め下方又は真下に向いているとよい。これにより、逆止弁58が開放する際に液体の重力による抵抗を低減することができる。 Further, when the pump system 51 is viewed from the side, the upper part of one pressurizing bag and the lower part of the other pressurizing bag arranged on the side in the direction in which the liquid flows with respect to the one pressurizing bag. , Should be arranged so as to overlap in the vertical direction. As a result, the liquid can spontaneously flow toward the other pressurizing bag, and the liquid can be poured into the other pressurizing bag without pressure loss. At this time, it is preferable that the discharge port of the check valve 58 faces diagonally downward or directly downward. This makes it possible to reduce the resistance of the liquid due to gravity when the check valve 58 is opened.
 <実施の形態6>
 図23は、本実施の形態の揚液ポンプシステムの気圧変化部を示す斜視図である。本実施の形態の揚液ポンプシステム61は、実施の形態5の揚液ポンプシステム51と略等しい構成とされているが、気圧変化部62の構成が異なる。そのため、他の実施の形態と重複する説明は省略し、気圧変化部62の構成を中心に説明する。なお、以下の説明では、実施の形態1の揚液ポンプシステム1などと等しい部材には等しい符号を用いて説明する。
<Embodiment 6>
FIG. 23 is a perspective view showing a pressure changing portion of the pump system of the present embodiment. The pumping system 61 of the present embodiment has substantially the same configuration as the pumping system 51 of the fifth embodiment, but the configuration of the atmospheric pressure changing unit 62 is different. Therefore, the description overlapping with other embodiments will be omitted, and the configuration of the atmospheric pressure changing unit 62 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
 本実施の形態の気圧変化部62は、図23に示すように、ポンプ63及び切り替え部64を備えている。ポンプ63は、気体を吸引及び排出可能な構成とされており、例えば、ピストンポンプである。切り替え部64は、例えば、連通路64a、反力部64b、押し込み部64c、第1のバネ64d、第2のバネ64e及びスライド部64fを備えている。連通路64aは、例えば、倒U字形状の管体を基本形態としており、連通路64aの下側の水平部分の上部に開口部64gが形成されている。 As shown in FIG. 23, the atmospheric pressure changing unit 62 of the present embodiment includes a pump 63 and a switching unit 64. The pump 63 is configured to be capable of sucking and discharging gas, and is, for example, a piston pump. The switching portion 64 includes, for example, a communication passage 64a, a reaction force portion 64b, a pushing portion 64c, a first spring 64d, a second spring 64e, and a slide portion 64f. The communication passage 64a is based on, for example, an inverted U-shaped pipe body, and an opening 64g is formed in the upper part of a horizontal portion below the communication passage 64a.
 連通路64aは、ポンプ63と第1の接続管65を介して接続されている。また、連通路64aの下側の水平部分は、第2の接続管66を介して第1のチャンバー2と接続されている。さらに、連通路64aの下側の水平部分は、第3の接続管67を介して第2のチャンバー52と接続されている。このとき、第2の接続管66と連通路64aとの接続部分と、第3の接続管67と連通路64aとの接続部分と、は隣接するように配置されている。 The communication passage 64a is connected to the pump 63 via the first connecting pipe 65. Further, the lower horizontal portion of the communication passage 64a is connected to the first chamber 2 via the second connecting pipe 66. Further, the lower horizontal portion of the communication passage 64a is connected to the second chamber 52 via the third connecting pipe 67. At this time, the connecting portion between the second connecting pipe 66 and the connecting passage 64a and the connecting portion between the third connecting pipe 67 and the connecting passage 64a are arranged so as to be adjacent to each other.
 反力部64bは、連通路64aの上側の水平部分の先端部と水平方向に間隔を開けて配置されている。押し込み部64cは、例えば、本体部64h及び支持部64iを備えている。本体部64hは、逆T字形状に形成されており、略鉛直方向に延在する第1の部分64j、及び略水平方向に延在する第2の部分64kを備えている。 The reaction force portion 64b is arranged at a horizontal distance from the tip portion of the horizontal portion on the upper side of the communication passage 64a. The pushing portion 64c includes, for example, a main body portion 64h and a supporting portion 64i. The main body portion 64h is formed in an inverted T shape, and includes a first portion 64j extending in a substantially vertical direction and a second portion 64k extending in a substantially horizontal direction.
 支持部64iは、略水平方向に延在する棒形状であり、本体部64hの第1の部分64jを貫通するように当該第1の部分64jに設けられている。そして、支持部64iの一方の端部は、連通路64aの上側の水平部分の先端部に略水平方向に移動可能に挿入され、支持部64iの他方の端部は、反力部64bに略水平方向に移動可能に挿入されている。 The support portion 64i has a rod shape extending in a substantially horizontal direction, and is provided in the first portion 64j so as to penetrate the first portion 64j of the main body portion 64h. Then, one end of the support portion 64i is inserted into the tip of the upper horizontal portion of the communication passage 64a so as to be movable in a substantially horizontal direction, and the other end of the support portion 64i is substantially inserted into the reaction force portion 64b. It is inserted so that it can be moved horizontally.
 第1のバネ64dは、反力部64bと押し込み部64cとの間に配置され、押し込み部64cの支持部64iが第1のバネ64dの内部に通されている。第2のバネ64eは、連通路64aの上側の水平部分の先端部と押し込み部64cとの間に配置され、押し込み部64cの支持部64iが第2のバネ64eの内部に通されている。 The first spring 64d is arranged between the reaction force portion 64b and the pushing portion 64c, and the supporting portion 64i of the pushing portion 64c is passed through the inside of the first spring 64d. The second spring 64e is arranged between the tip of the horizontal portion on the upper side of the communication passage 64a and the pushing portion 64c, and the supporting portion 64i of the pushing portion 64c is passed through the inside of the second spring 64e.
 スライド部64fは、本体部64l、第1の突出部64m及び第2の突出部64nを備えている。本体部64lは、連通路64aの内形と対応する外形を有する柱形状を基本形態としており、第1の流路64o、第2の流路64p及び共通路64qが形成されている。第1の流路64o及び第2の流路64pは、何れか一方の流路が第1のチャンバー2と第2のチャンバー52とを接続する場合、他方の流路が第1のチャンバー2と第2のチャンバー52とを接続しない状態になるように、隣接して配置されている。 The slide portion 64f includes a main body portion 64l, a first protruding portion 64m, and a second protruding portion 64n. The main body 64l has a pillar shape having an outer shape corresponding to the inner shape of the communication passage 64a, and the first passage 64o, the second passage 64p, and the common passage 64q are formed. In the first flow path 64o and the second flow path 64p, when one of the flow paths connects the first chamber 2 and the second chamber 52, the other flow path is the first chamber 2. They are arranged adjacent to each other so as not to be connected to the second chamber 52.
 第1の流路64oでは、第1のチャンバー2の内部空間2aの気体が第2のチャンバー52の内部空間52aに向かって流れる。第1の流路64oには、2つの逆止弁64rが間隔を開けて設けられている。逆止弁64rは、第1のチャンバー2の内部空間2aから第2のチャンバー52の内部空間52aに向かう方向への気体の流れを許容し、逆方向への気体の流れを遮断する。 In the first flow path 64o, the gas in the internal space 2a of the first chamber 2 flows toward the internal space 52a of the second chamber 52. Two check valves 64r are provided in the first flow path 64o at intervals. The check valve 64r allows the flow of gas from the internal space 2a of the first chamber 2 toward the internal space 52a of the second chamber 52, and blocks the flow of gas in the reverse direction.
 第2の流路64pでは、第2のチャンバー52の内部空間52aの気体が第1のチャンバー2の内部空間2aに向かって流れる。第2の流路64pには、2つの逆止弁64sが間隔を開けて設けられている。逆止弁64sは、第2のチャンバー52の内部空間52aから第1のチャンバー2の内部空間2aに向かう方向への気体の流れを許容し、逆方向への気体の流れを遮断する。 In the second flow path 64p, the gas in the internal space 52a of the second chamber 52 flows toward the internal space 2a of the first chamber 2. Two check valves 64s are provided in the second flow path 64p at intervals. The check valve 64s allows the flow of gas from the internal space 52a of the second chamber 52 toward the internal space 2a of the first chamber 2 and blocks the flow of gas in the opposite direction.
 共通路64qの一方の端部は連通路64aと連通し、共通路64qの他方の端部は分岐している。そして、共通路64qの一方の分岐路は、第1の流路64oの2つの逆止弁64rの間に接続され、共通路64qの他方の分岐路は、第2の流路64pの2つの逆止弁64sの間に接続されている。 One end of the common road 64q communicates with the communication passage 64a, and the other end of the common road 64q is branched. Then, one branch path of the common path 64q is connected between the two check valves 64r of the first flow path 64o, and the other branch path of the common path 64q is two of the second flow paths 64p. It is connected between the check valves 64s.
 第1の突出部64m及び第2の突出部64nは、本体部64lの上部から間隔を開けて突出し、連通路64aの開口部64gに通されている。押し込み部64cの第2の部分64kは、第1の突出部64mと第2の突出部64nとの間に配置されている。 The first protruding portion 64m and the second protruding portion 64n project from the upper part of the main body portion 64l at intervals and are passed through the opening 64g of the communication passage 64a. The second portion 64k of the push-in portion 64c is arranged between the first protrusion 64m and the second protrusion 64n.
 次に、本実施の形態の揚液ポンプシステム61における第2の加圧バック53から液体を排出する際の動作を説明する。図24は、本実施の形態の揚液ポンプシステムにおいて第2の加圧バックから液体を排出する様子を説明するための図である。なお、図24は、各加圧バック42、53の動作を明確にするために、切り替え部を省略している。ここで、図23に示すように、第1の流路64oが第1のチャンバー2と第2のチャンバー52とを接続し、スライド部64fの第2の突出部64nが連通路64aの開口部64gの右縁部に接触した状態である。そして、第1のチャンバー2の内部空間2aの気圧が第2のチャンバー52の内部空間52aの気圧に対して高いものとする。 Next, the operation when the liquid is discharged from the second pressurizing bag 53 in the pump system 61 of the present embodiment will be described. FIG. 24 is a diagram for explaining how the liquid is discharged from the second pressurizing bag in the pump system of the present embodiment. In FIG. 24, the switching portion is omitted in order to clarify the operation of the pressurizing bags 42 and 53. Here, as shown in FIG. 23, the first flow path 64o connects the first chamber 2 and the second chamber 52, and the second protruding portion 64n of the slide portion 64f is the opening of the communication passage 64a. It is in contact with the right edge of 64 g. Then, it is assumed that the air pressure in the internal space 2a of the first chamber 2 is higher than the air pressure in the internal space 52a of the second chamber 52.
 このような状態では、第1のチャンバー2の内部空間2aと第2のチャンバー52の内部空間52aとの気圧差によって、第1のチャンバー2の内部空間2aの気体が第2のチャンバー52の内部空間52aに流れ込む。そして、ポンプ63によって気体が引き込まれると、第1のチャンバー2の内部空間2aから気体が引き込まれ、ポンプ63によって気体が押し出されると、第2のチャンバー52の内部空間52aに気体が送り出される。 In such a state, due to the pressure difference between the internal space 2a of the first chamber 2 and the internal space 52a of the second chamber 52, the gas in the internal space 2a of the first chamber 2 is inside the second chamber 52. It flows into the space 52a. Then, when the gas is drawn by the pump 63, the gas is drawn from the internal space 2a of the first chamber 2, and when the gas is pushed out by the pump 63, the gas is sent out to the internal space 52a of the second chamber 52.
 これにより、第2のチャンバー52の内部空間52aの気圧が上昇し、図24に示すように、最上段の第2の加圧バック53が収縮して当該第2の加圧バック53から液体が排出される。それと共に、他の第2の加圧バック53が収縮して、液体が流れる方向の側に配置された第1の加圧バック42に液体を排出する。 As a result, the air pressure in the internal space 52a of the second chamber 52 rises, and as shown in FIG. 24, the second pressurizing bag 53 on the uppermost stage contracts and the liquid flows from the second pressurizing bag 53. It is discharged. At the same time, the other second pressurizing bag 53 contracts, and the liquid is discharged to the first pressurizing bag 42 arranged on the side in the direction in which the liquid flows.
 このとき、第1のチャンバー2の内部空間2aの気圧は低下し、最下段の第1の加圧バック42が膨張して液槽10から液体を吸引する。それと共に、他の第1の加圧バック42が膨張して、上述の他の第2の加圧バック53から積極的に液体を吸引する。 At this time, the air pressure in the internal space 2a of the first chamber 2 drops, and the first pressurizing bag 42 at the bottom expands to suck the liquid from the liquid tank 10. At the same time, the other first pressurizing bag 42 expands and positively sucks the liquid from the other second pressurizing bag 53 described above.
 次に、本実施の形態の揚液ポンプシステム61における第1の加圧バック42から液体を排出する際の動作を説明する。図25は、本実施の形態の揚液ポンプシステムにおいて第1の流路から第2の流路に切り替わる様子を説明するための図である。図26は、本実施の形態の揚液ポンプシステムにおいて第1の加圧バックから液体を排出する様子を説明するための図である。なお、図26は、各加圧バック42、53の動作を明確にするために、切り替え部を省略している。 Next, the operation when the liquid is discharged from the first pressurizing bag 42 in the pump system 61 of the present embodiment will be described. FIG. 25 is a diagram for explaining how the pump system of the present embodiment switches from the first flow path to the second flow path. FIG. 26 is a diagram for explaining how the liquid is discharged from the first pressurizing bag in the pump system of the present embodiment. In FIG. 26, the switching portion is omitted in order to clarify the operation of the pressurizing bags 42 and 53.
 上述のように、第1の流路64oが第1のチャンバー2と第2のチャンバー52とを接続した状態でポンプ63が稼働し続けると、図23に示すように、一旦、押し込み部64cがスライド部64fの第1の突出部64mと第2の突出部64nとの間の略中立位置に移動し、さらにポンプ63が稼働し続けると、第2のチャンバー52の内部空間52aの気圧の低下に伴って連通路64aの内部の気圧が低下し、図23の破線で示すように、押し込み部64cが右側に移動しつつ第2のバネ64eを押し込む。 As described above, when the pump 63 continues to operate in a state where the first flow path 64o connects the first chamber 2 and the second chamber 52, as shown in FIG. 23, the pushing portion 64c is temporarily moved. When the slide portion 64f moves to a substantially neutral position between the first protruding portion 64m and the second protruding portion 64n and the pump 63 continues to operate, the air pressure in the internal space 52a of the second chamber 52 drops. As a result, the air pressure inside the communication passage 64a decreases, and as shown by the broken line in FIG. 23, the pushing portion 64c pushes the second spring 64e while moving to the right side.
 このとき、依然として、スライド部64fの第2の突出部64nが連通路64aの開口部64gの右縁部に接触した状態である。そして、第1の流路64oが第1のチャンバー2と第2のチャンバー52とを接続した状態である。 At this time, the second protruding portion 64n of the slide portion 64f is still in contact with the right edge portion of the opening 64g of the communication passage 64a. Then, the first flow path 64o is in a state where the first chamber 2 and the second chamber 52 are connected.
 そして、ポンプ63が気体を押し込んで第1のチャンバー2の内部空間2aの気圧が上昇すると共に連通路64aの内部の気圧が上昇し、ポンプ63の押し込み圧力(即ち、排出圧力)が予め設定された第1の閾値以上になると、図25の破線で示すように、押し込み部64cが左側に移動し、押し込み部64cがスライド部64fの第1の突出部64mに接触して当該スライド部64fを左側に押し込む。なお、第1の閾値は、第1のバネ64dの反発力などを変更することで、適宜、変更することができる。 Then, the pump 63 pushes the gas, the air pressure in the internal space 2a of the first chamber 2 rises, and the air pressure inside the communication passage 64a rises, so that the pushing pressure (that is, the discharge pressure) of the pump 63 is preset. When the pressure exceeds the first threshold value, as shown by the broken line in FIG. 25, the pushing portion 64c moves to the left side, and the pushing portion 64c comes into contact with the first protruding portion 64m of the slide portion 64f to move the slide portion 64f. Push it to the left. The first threshold value can be appropriately changed by changing the repulsive force of the first spring 64d or the like.
 これにより、図25に示すように、スライド部64fの第1の突出部64mが連通路64aの開口部64gの左縁部に接触し、第2の流路64pが第1のチャンバー2と第2のチャンバー52とを接続した状態に切り替わる。 As a result, as shown in FIG. 25, the first protruding portion 64m of the slide portion 64f comes into contact with the left edge portion of the opening 64g of the communication passage 64a, and the second flow path 64p becomes the first chamber 2 and the first chamber 2. It switches to the state where it is connected to the chamber 52 of 2.
 その結果、第2のチャンバー52の内部空間52aと第1のチャンバー2の内部空間2aとの気圧差によって、第2のチャンバー52の内部空間52aの気体が第1のチャンバー2の内部空間2aに流れ込む。そして、ポンプ63によって気体が引き込まれると、第2のチャンバー52の内部空間52aから気体が吸い込まれ、ポンプ63によって気体が押し出されると、第1のチャンバー2の内部空間2aに気体が送り出される。 As a result, due to the pressure difference between the internal space 52a of the second chamber 52 and the internal space 2a of the first chamber 2, the gas in the internal space 52a of the second chamber 52 becomes the internal space 2a of the first chamber 2. It flows in. Then, when the gas is drawn by the pump 63, the gas is sucked from the internal space 52a of the second chamber 52, and when the gas is pushed out by the pump 63, the gas is sent out to the internal space 2a of the first chamber 2.
 これにより、第1のチャンバー2の内部空間2aの気圧が上昇し、図26に示すように、第1の加圧バック42が収縮して、液体が流れる方向の側に配置された第2の加圧バック53に液体を排出する。このとき、第2のチャンバー52の内部空間52aの気圧は低下し、第2の加圧バック53が膨張して液体を積極的に吸引する。 As a result, the air pressure in the internal space 2a of the first chamber 2 rises, and as shown in FIG. 26, the first pressurizing bag 42 contracts and the second pressure bag 42 is arranged on the side in the direction in which the liquid flows. The liquid is discharged to the pressurizing chamber 53. At this time, the air pressure in the internal space 52a of the second chamber 52 drops, and the second pressurizing bag 53 expands to actively suck the liquid.
 上述のように、第2の流路64pが第1のチャンバー2と第2のチャンバー52とを接続した状態でポンプ63が稼働し続けると、図25に示すように、一旦、押し込み部64cがスライド部64fの第1の突出部64mと第2の突出部64nとの間の略中立位置に移動し、さらにポンプ63が稼働し続けると、第1のチャンバー2の内部空間2aの気圧の上昇に伴って連通路64aの内部の気圧が上昇し、図25の破線で示すように、押し込み部64cが左側に移動しつつ第1のバネ64dを押し込む。 As described above, when the pump 63 continues to operate in a state where the second flow path 64p connects the first chamber 2 and the second chamber 52, as shown in FIG. 25, the pushing portion 64c is temporarily moved. When the slide portion 64f moves to a substantially neutral position between the first protruding portion 64m and the second protruding portion 64n and the pump 63 continues to operate, the air pressure in the internal space 2a of the first chamber 2 rises. As a result, the air pressure inside the communication passage 64a rises, and as shown by the broken line in FIG. 25, the pushing portion 64c pushes the first spring 64d while moving to the left side.
 このとき、依然として、スライド部64fの第1の突出部64mが連通路64aの開口部64gの左縁部に接触した状態である。そして、第2の流路64pが第1のチャンバー2と第2のチャンバー52とを接続した状態である。 At this time, the first protruding portion 64m of the slide portion 64f is still in contact with the left edge portion of the opening 64g of the communication passage 64a. Then, the second flow path 64p is in a state where the first chamber 2 and the second chamber 52 are connected.
 そして、ポンプ63が気体を引き込んで第2のチャンバー52の内部空間52aの気圧が低下すると共に連通路64aの内部の気圧が低下し、ポンプ63の引き込み圧力(即ち、吸引圧力)が予め設定された第2の閾値以上になると、図23の破線で示すように、押し込み部64cが右側に移動し、押し込み部64cがスライド部64fの第2の突出部64nに接触して当該スライド部64fを右側に押し込む。なお、第2の閾値は、第2のバネ64eの反発力などを変更することで、適宜、変更することができる。 Then, the pump 63 draws in gas, the air pressure in the internal space 52a of the second chamber 52 decreases, and the air pressure inside the communication passage 64a decreases, and the drawing pressure (that is, suction pressure) of the pump 63 is preset. When the pressure exceeds the second threshold value, as shown by the broken line in FIG. 23, the pushing portion 64c moves to the right side, and the pushing portion 64c comes into contact with the second protruding portion 64n of the slide portion 64f to move the slide portion 64f. Push it to the right. The second threshold value can be appropriately changed by changing the repulsive force of the second spring 64e or the like.
 これにより、図23に示すように、スライド部64fの第2の突出部64nが連通路64aの開口部64gの右縁部に接触し、第1の流路64oが第1のチャンバー2と第2のチャンバー52とを接続した状態に切り替わる。 As a result, as shown in FIG. 23, the second protruding portion 64n of the slide portion 64f comes into contact with the right edge portion of the opening 64g of the communication passage 64a, and the first flow path 64o becomes the first chamber 2 and the first chamber 2. It switches to the state where it is connected to the chamber 52 of 2.
 このような本実施の形態の揚液ポンプシステム61においても、第1のチャンバー2と第2のチャンバー52とを接続し、一方の加圧バックを膨張させつつ、他方の加圧バックを収縮させることができるので、揚液効率を相乗的に向上させることができる。 Also in the pump system 61 of the present embodiment as described above, the first chamber 2 and the second chamber 52 are connected to expand one pressurizing bag and contract the other pressurizing bag. Therefore, the pumping efficiency can be synergistically improved.
 しかも、本実施の形態の揚液ポンプシステム61も、実施の形態4の揚液ポンプシステム41と同様に、逆止弁58によって加圧バック毎に遮断して、各々の加圧バックを独立して動作させることができる。そのため、高い位置に配置される加圧バックも低い位置に配置される加圧バックと略等しいアイドリング損失で液体を排出及び吸引することができる。 Moreover, the pumping system 61 of the present embodiment also shuts off each pressurizing bag by the check valve 58 like the pumping system 41 of the fourth embodiment, and each pressurizing bag becomes independent. Can be operated. Therefore, the pressurizing bag arranged at the high position can discharge and suck the liquid with an idling loss substantially equal to that of the pressurizing bag arranged at the low position.
 また、切り替え部64は、電子制御や人為的な切り替えに依らずに流路の接続を切り替えることができ、無駄のない揚液ポンプシステムを実現することができる。しかも、第1のチャンバー2の内部空間2a及び第2のチャンバー52の内部空間52aの気圧を常に最適化でき、第1の加圧バック42及び第2の加圧バック53の破損リスクを軽減することができる。 Further, the switching unit 64 can switch the connection of the flow path without relying on electronic control or artificial switching, and can realize a lean pump system. Moreover, the air pressure in the internal space 2a of the first chamber 2 and the internal space 52a of the second chamber 52 can always be optimized, reducing the risk of damage to the first pressure back 42 and the second pressure back 53. be able to.
 <実施の形態7>
 なお、気圧変化部の切り替え部の構成は、実施の形態6の切り替え部64の構成に限らず、例えば、以下に説明する切り替え部の構成でもよい。図27は、本実施の形態の気圧変化部における切り替え部の構成を示す図である。なお、実施の形態6の切り替え部64と重複する説明は省略し、等しい部材には等しい符号を用いて説明する。
<Embodiment 7>
The configuration of the switching unit of the atmospheric pressure changing unit is not limited to the configuration of the switching unit 64 of the sixth embodiment, and may be, for example, the configuration of the switching unit described below. FIG. 27 is a diagram showing a configuration of a switching portion in the atmospheric pressure changing portion of the present embodiment. The description that overlaps with the switching unit 64 of the sixth embodiment will be omitted, and the same members will be described by using the same reference numerals.
 切り替え部71は、例えば、図27に示すように、実施の形態6の切り替え部64と略等しい構成とされているが、第1の回転子71a、第2の回転子71b及び切り替えギヤ71cを備えている。第1の回転子71a及び第2の回転子71bは、略等しい構成とされており、本体部71d及び伝達部71eを備えている。 As shown in FIG. 27, for example, the switching unit 71 has a configuration substantially equal to that of the switching unit 64 of the sixth embodiment, but the first rotor 71a, the second rotor 71b, and the switching gear 71c are used. I have. The first rotor 71a and the second rotor 71b have substantially the same configuration, and include a main body portion 71d and a transmission portion 71e.
 本体部71dは、例えば、平歯車である。伝達部71eは、本体部71dの側面に固定された斜歯歯車である。これらの第1の回転子71a及び第2の回転子71bは、支持部71fに回転可能に設けられている。詳細には、支持部71fは、例えば、筒状体を基本形態としており、支持部71fの内部に押し込み部64cの第2の部分64kが収容されている。 The main body 71d is, for example, a spur gear. The transmission portion 71e is an oblique tooth gear fixed to the side surface of the main body portion 71d. The first rotor 71a and the second rotor 71b are rotatably provided on the support portion 71f. Specifically, the support portion 71f has, for example, a tubular body as a basic form, and a second portion 64k of the push portion 64c is housed inside the support portion 71f.
 支持部71fは、押し込み部64cの水平方向の移動を許容する構成とされている。ここで、押し込み部64cの第2の部分64kの両端部には、支持部71fの内方に向かって配置された第1の回転子71a及び第2の回転子71bの伝達部71eと噛み合わせ可能な歯部71gが形成されている。 The support portion 71f is configured to allow the push-in portion 64c to move in the horizontal direction. Here, at both ends of the second portion 64k of the pushing portion 64c, the transmission portions 71e of the first rotor 71a and the second rotor 71b arranged inward of the support portion 71f are engaged with each other. A possible tooth portion 71 g is formed.
 切り替えギヤ71cは、例えば、外周面に歯部が形成された円柱部材を基本形態としており、第1の回転子71a及び第2の回転子71bの本体部71dと噛み合わされている。そして、切り替えギヤ71cには、第1の流路71h、第2の流路71i、図示を省略した第1の連通路及び第2の連通路71jが形成されている。 The switching gear 71c has, for example, a cylindrical member having teeth formed on its outer peripheral surface as a basic form, and is meshed with the main body 71d of the first rotor 71a and the second rotor 71b. The switching gear 71c is formed with a first flow path 71h, a second flow path 71i, a first communication path (not shown), and a second communication passage 71j.
 第1の流路71h及び第2の流路71iは、例えば、切り替えギヤ71cを当該切り替えギヤ71cの軸方向に貫通するように形成されており、切り替えギヤ71cの周方向で約180°の間隔を開けて配置されている。 The first flow path 71h and the second flow path 71i are formed so as to penetrate, for example, the switching gear 71c in the axial direction of the switching gear 71c, and are spaced by about 180 ° in the circumferential direction of the switching gear 71c. Is placed open.
 第1の流路71hでは、第1のチャンバー2の内部空間2aの気体が第2のチャンバー52の内部空間52aに向かって流れる。第1の流路71hには、2つの逆止弁71kが間隔を開けて設けられている。逆止弁71kは、第1のチャンバー2の内部空間2aから第2のチャンバー52の内部空間52aに向かう方向への気体の流れを許容し、逆方向への気体の流れを遮断する。 In the first flow path 71h, the gas in the internal space 2a of the first chamber 2 flows toward the internal space 52a of the second chamber 52. Two check valves 71k are provided in the first flow path 71h at intervals. The check valve 71k allows the flow of gas from the internal space 2a of the first chamber 2 toward the internal space 52a of the second chamber 52, and blocks the flow of gas in the reverse direction.
 第2の流路71iでは、第2のチャンバー52の内部空間52aの気体が第1のチャンバー2の内部空間2aに向かって流れる。第2の流路71iには、2つの逆止弁71lが間隔を開けて設けられている。逆止弁71lは、第2のチャンバー52の内部空間52aから第1のチャンバー2の内部空間2aに向かう方向への気体の流れを許容し、逆方向への気体の流れを遮断する。 In the second flow path 71i, the gas in the internal space 52a of the second chamber 52 flows toward the internal space 2a of the first chamber 2. Two check valves 71l are provided in the second flow path 71i at intervals. The check valve 71l allows the flow of gas from the internal space 52a of the second chamber 52 toward the internal space 2a of the first chamber 2 and blocks the flow of gas in the reverse direction.
 第1の連通路の一方の端部は、連通路64aの下側の水平部分の先端部と連通可能に配置され、第1の連通路の他方の端部は、第1の流路71hの2つの逆止弁71kの間に接続されている。第2の連通路71jの一方の端部は、連通路64aの下側の水平部分の先端部と連通可能に配置され、第2の連通路71jの他方の端部は、第2の流路71iの2つの逆止弁71lの間に接続されている。 One end of the first communication passage is arranged so as to communicate with the tip of the lower horizontal portion of the communication passage 64a, and the other end of the first communication passage is of the first communication passage 71h. It is connected between two check valves 71k. One end of the second communication passage 71j is arranged so as to communicate with the tip of the lower horizontal portion of the communication passage 64a, and the other end of the second communication passage 71j is the second passage. It is connected between the two check valves 71l of the 71i.
 このとき、第1の連通路の一方の端部と第2の連通路71jの一方の端部とは、切り替えギヤ71cの周方向で約180°の間隔を開けて配置されている。そして、第1の連通路が連通路64aと連通した状態の場合、第1の流路71hが第2の接続管66と第3の接続管67とを接続し、第2の連通路71jが連通路64aと連通した状態の場合、第2の流路71iが第2の接続管66と第3の接続管67とを接続する。 At this time, one end of the first communication passage and one end of the second communication passage 71j are arranged at intervals of about 180 ° in the circumferential direction of the switching gear 71c. When the first communication passage communicates with the communication passage 64a, the first communication passage 71h connects the second connection pipe 66 and the third connection pipe 67, and the second communication passage 71j In the state of communicating with the communication passage 64a, the second flow path 71i connects the second connection pipe 66 and the third connection pipe 67.
 このような切り替え部71において、第1の流路71hから第2の流路71iに切り替える場合、押し込み部64cが左側に移動して第2の部分64kの歯部71gが第1の回転子71aの伝達部71eに噛み合うと、第1の回転子71aが回転する。 In such a switching portion 71, when switching from the first flow path 71h to the second flow path 71i, the pushing portion 64c moves to the left side and the tooth portion 71g of the second portion 64k becomes the first rotor 71a. The first rotor 71a rotates when it meshes with the transmission portion 71e of the above.
 そして、第1の回転子71aの回転駆動力が切り替えギヤ71cに伝達されると、切り替えギヤ71cが約180°回転して当該切り替えギヤ71cの第2の連通路71jが連通路64aと連通した状態となる。これにより、第1の流路71hから第2の流路71iに切り替えることができる。 Then, when the rotational driving force of the first rotor 71a is transmitted to the switching gear 71c, the switching gear 71c rotates by about 180 ° and the second communication passage 71j of the switching gear 71c communicates with the communication passage 64a. It becomes a state. As a result, the first flow path 71h can be switched to the second flow path 71i.
 一方、第2の流路71iから第1の流路71hに切り替える場合、押し込み部64cが右側に移動して第2の部分64kの歯部71gが第2の回転子71bの伝達部71eに噛み合うと、第2の回転子71bが回転する。 On the other hand, when switching from the second flow path 71i to the first flow path 71h, the pushing portion 64c moves to the right and the tooth portion 71g of the second portion 64k meshes with the transmission portion 71e of the second rotor 71b. Then, the second rotor 71b rotates.
 そして、第2の回転子71bの回転駆動力が切り替えギヤ71cに伝達されると、切り替えギヤ71cが約180°回転して当該切り替えギヤ71cの第1の連通路が連通路64aと連通した状態となる。これにより、第2の流路71iから第1の流路71hに切り替えることができる。 Then, when the rotational driving force of the second rotor 71b is transmitted to the switching gear 71c, the switching gear 71c rotates by about 180 ° and the first communication passage of the switching gear 71c communicates with the communication passage 64a. It becomes. As a result, the second flow path 71i can be switched to the first flow path 71h.
 なお、実施の形態6の切り替え部64及び実施の形態7の切り替え部71の構成は一例であり、切り替え部は、第1の流路による第1のチャンバー2と第2のチャンバー52との接続と、第2の流路による第1のチャンバー2と第2のチャンバー52との接続と、を切り替えることができる構成であればよい。 The configuration of the switching unit 64 of the sixth embodiment and the switching unit 71 of the seventh embodiment is an example, and the switching unit is a connection between the first chamber 2 and the second chamber 52 by the first flow path. And the connection between the first chamber 2 and the second chamber 52 by the second flow path may be switched.
 例えば、第1のチャンバー2に吸気管及び排気管が接続され、第2のチャンバー52に吸気管及び排気管が接続され、切り替え部が、第1のチャンバー2の排気管と第2のチャンバー52の吸気管との接続と、第1のチャンバー2の吸気管と第2のチャンバー52の排気管との接続と、を圧力センサーの検出値に基づいて切り替える構成でもよい。 For example, the intake pipe and the exhaust pipe are connected to the first chamber 2, the intake pipe and the exhaust pipe are connected to the second chamber 52, and the switching portion is the exhaust pipe of the first chamber 2 and the second chamber 52. The connection with the intake pipe of the first chamber 2 and the connection between the intake pipe of the first chamber 2 and the exhaust pipe of the second chamber 52 may be switched based on the detection value of the pressure sensor.
 このとき、切り替え部には、2つの逆止弁が設けられた共通路が形成されており、第1のチャンバー2の排気管と第2のチャンバー52の吸気管と切り替え部の共通路とで第1の流路を形成し、第1のチャンバー2の吸気管と第2のチャンバー52の排気管と切り替え部の共通路とで第2の流路を形成することになる。 At this time, a common path provided with two check valves is formed in the switching portion, and the exhaust pipe of the first chamber 2 and the intake pipe of the second chamber 52 and the common path of the switching portion are formed. The first flow path is formed, and the second flow path is formed by the intake pipe of the first chamber 2, the exhaust pipe of the second chamber 52, and the common path of the switching portion.
 <実施の形態8>
 図28は、本実施の形態の揚液ポンプシステムを模式的に示す斜視図である。図29は、本実施の形態の揚液ポンプシステムを部分的に拡大した図である。図30は、本実施の形態の揚液ポンプシステムの第2のチャンバーを示す斜視図である。図31は、本実施の形態の揚液ポンプシステムの第2の加圧バックを示す斜視図である。なお、図28及び図29は、逆止弁58などを省略して簡略化している。
<Embodiment 8>
FIG. 28 is a perspective view schematically showing the pumping system of the present embodiment. FIG. 29 is a partially enlarged view of the pumping system of the present embodiment. FIG. 30 is a perspective view showing a second chamber of the pump system of the present embodiment. FIG. 31 is a perspective view showing a second pressurizing bag of the pump system of the present embodiment. Note that FIGS. 28 and 29 are simplified by omitting the check valve 58 and the like.
 本実施の形態の揚液ポンプシステム81は、図28に示すように、実施の形態4の揚液ポンプシステム41や実施の形態5の揚液ポンプシステム51と略等しい構成とされているが、第2のチャンバー82及び第2の加圧バック83の構成が異なる。そのため、他の実施の形態と重複する説明は省略し、第2のチャンバー82及び第2の加圧バック83の構成を中心に説明する。なお、以下の説明では、実施の形態1の揚液ポンプシステム1などと等しい部材には等しい符号を用いて説明する。 As shown in FIG. 28, the pumping system 81 of the present embodiment has a configuration substantially equal to that of the pumping system 41 of the fourth embodiment and the pumping system 51 of the fifth embodiment. The configurations of the second chamber 82 and the second pressurizing bag 83 are different. Therefore, the description overlapping with other embodiments will be omitted, and the configurations of the second chamber 82 and the second pressurizing bag 83 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
 ここで、本実施の形態の揚液ポンプシステム81においては、最上段の第1の加圧バック42に排出路6の一方の端部が接続されているが、液体を排出及び吸引する際の液体の移動は、実施の形態4の揚液ポンプシステム41と等しい。 Here, in the pump system 81 of the present embodiment, one end of the discharge path 6 is connected to the first pressurizing back 42 on the uppermost stage, but when the liquid is discharged and sucked. The movement of the liquid is equivalent to the pump system 41 of the fourth embodiment.
 本実施の形態の第2のチャンバー82は、図28及び図29に示すように、第2の加圧バック83毎に配置されている。詳細には、第2のチャンバー82は、図30に示すように、環形状であって、第2のチャンバー82の内周面が第1のチャンバー2の外周面に固定されている。そして、第2のチャンバー82の上面には、第1の貫通孔82a及び第1の加圧バック3から液体を吸引するための連通路57が通される第2の貫通孔82bが形成されている。 As shown in FIGS. 28 and 29, the second chamber 82 of the present embodiment is arranged for each second pressurizing bag 83. Specifically, as shown in FIG. 30, the second chamber 82 has a ring shape, and the inner peripheral surface of the second chamber 82 is fixed to the outer peripheral surface of the first chamber 2. Then, on the upper surface of the second chamber 82, a second through hole 82b through which the communication passage 57 for sucking the liquid from the first through hole 82a and the first pressurizing bag 3 is passed is formed. There is.
 第2のチャンバー82の下面には、第2の加圧バック83から第1の加圧バック42に液体を排出するための連通路57が通される第3の貫通孔82cが形成されている。このとき、第2のチャンバー82の第2の貫通孔82bと連通路57との隙間、及び第2のチャンバー82の第3の貫通孔82cと連通路57との隙間は、塞がれている。 On the lower surface of the second chamber 82, a third through hole 82c is formed through which a communication passage 57 for discharging the liquid from the second pressurizing bag 83 to the first pressurizing bag 42 is passed. .. At this time, the gap between the second through hole 82b of the second chamber 82 and the communication passage 57 and the gap between the third through hole 82c of the second chamber 82 and the communication passage 57 are closed. ..
 第2の加圧バック83は、第2のチャンバー82の内部に収容されている。第2の加圧バック83は、例えば、図31に示すように、環形状であって、第1の加圧バック42から液体を吸引するための連通路57が第2の加圧バック83の上面に接続され、第1の加圧バック42に液体を排出するための連通路57が第2の加圧バック83の下面に接続されている。 The second pressurizing bag 83 is housed inside the second chamber 82. As shown in FIG. 31, for example, the second pressurizing bag 83 has a ring shape, and the communication passage 57 for sucking the liquid from the first pressurizing bag 42 is the second pressurizing bag 83. A communication passage 57 connected to the upper surface and for discharging the liquid to the first pressurizing bag 42 is connected to the lower surface of the second pressurizing bag 83.
 このように第2のチャンバー82を第2の加圧バック83毎に設けることで、第2の加圧バック83を所定の高さに簡単に配置することができる。 By providing the second chamber 82 for each of the second pressurizing bags 83 in this way, the second pressurizing bag 83 can be easily arranged at a predetermined height.
 <実施の形態9>
 なお、実施の形態8の揚液ポンプシステム81は、実施の形態1の気圧変化部4を用いているが、上述の各実施の形態の気圧変化部を、適宜、用いることができ、気圧変化部の構成は限定されない。
<Embodiment 9>
The pump system 81 of the eighth embodiment uses the atmospheric pressure changing unit 4 of the first embodiment, but the atmospheric pressure changing unit of each of the above-described embodiments can be appropriately used to change the atmospheric pressure. The composition of the part is not limited.
 例えば、図32に示す気圧変化部91においては、波による海面の変化を利用して第1のチャンバー2の内部空間2a及び第2のチャンバー82の内部空間82dの気圧を変化させるポンプ92を備えている。 For example, the atmospheric pressure changing unit 91 shown in FIG. 32 includes a pump 92 that changes the atmospheric pressure in the internal space 2a of the first chamber 2 and the internal space 82d of the second chamber 82 by utilizing the change in the sea level due to the waves. ing.
 詳細には、ポンプ92は、覆い部93を備えている。覆い部93は、例えば、覆い部93の底面が開放された箱形状に形成されており、海面を覆い、開口部93aを介して海水が出入り可能に配置されている。そして、覆い部93は、例えば、第1の接続管65を介して切り替え部64と接続されている。但し、覆い部93は、海面よりも低い部分で海水の出入りが可能な構成であれば、開口部93aの配置は限定されない。 Specifically, the pump 92 includes a covering portion 93. The cover portion 93 is formed, for example, in a box shape in which the bottom surface of the cover portion 93 is open, covers the sea surface, and is arranged so that seawater can enter and exit through the opening 93a. Then, the covering portion 93 is connected to the switching portion 64 via, for example, the first connecting pipe 65. However, the arrangement of the opening 93a is not limited as long as the covering portion 93 has a configuration in which seawater can enter and exit at a portion lower than the sea level.
 このようなポンプ92は、波による海面の上昇で覆い部93の内部の気体を押し出し、波による海面の低下で覆い部93の内部に気体を吸い込むピストンポンプとして動作する。そのため、ポンプ92を実施の形態6のポンプ63に代えて用いることができる。ここで、本実施の形態では、第3の接続管67が第2のチャンバー82の第1の貫通孔82aに接続される。 Such a pump 92 operates as a piston pump that pushes out the gas inside the covering portion 93 due to the rise in the sea level due to the waves and sucks the gas into the inside of the covering portion 93 due to the decrease in the sea level due to the waves. Therefore, the pump 92 can be used in place of the pump 63 of the sixth embodiment. Here, in the present embodiment, the third connecting pipe 67 is connected to the first through hole 82a of the second chamber 82.
 但し、ポンプ92は、図33に示すように、波による海面の変化ではなく、満潮時と干潮時との海面の変化を利用して第1のチャンバー2の内部空間2a及び第2のチャンバー82の内部空間82dの気圧を変化させてもよい。 However, as shown in FIG. 33, the pump 92 utilizes the change in sea level between high tide and low tide, not the change in sea level due to waves, and the internal space 2a of the first chamber 2 and the second chamber 82. The air pressure of the internal space 82d of the above may be changed.
 <実施の形態10>
 図34は、本実施の形態の揚液ポンプシステムを模式的に示す斜視図である。なお、図34は、逆止弁58などを省略して簡略化している。本実施の形態の揚液ポンプシステム101は、実施の形態9の揚液ポンプシステムと略等しい構成とされているが、気圧変化部102の構成が異なる。そのため、他の実施の形態と重複する説明は省略し、気圧変化部102の構成の説明を中心に行う。なお、以下の説明では、実施の形態1の揚液ポンプシステム1などと等しい部材には等しい符号を用いて説明する。
<Embodiment 10>
FIG. 34 is a perspective view schematically showing the pumping system of the present embodiment. Note that FIG. 34 is simplified by omitting the check valve 58 and the like. The pumping system 101 of the present embodiment has substantially the same configuration as the pumping system of the ninth embodiment, but the configuration of the atmospheric pressure changing unit 102 is different. Therefore, the description overlapping with other embodiments will be omitted, and the description of the configuration of the atmospheric pressure changing unit 102 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
 本実施の形態の気圧変化部102は、図34に示すように、太陽を熱源として用いて第1のチャンバー2の内部空間2a及び第2のチャンバー82の内部空間82dの気圧を変化させるポンプ103を備えている。ポンプ103は、例えば、チャンバー104及び集熱体105を備えている。 As shown in FIG. 34, the atmospheric pressure changing unit 102 of the present embodiment uses the sun as a heat source to change the atmospheric pressure in the internal space 2a of the first chamber 2 and the internal space 82d of the second chamber 82. It has. The pump 103 includes, for example, a chamber 104 and a heat collector 105.
 チャンバー104は、チャンバー104の内部空間104aの気圧が変化しても略変形しない剛性を有し、第1の接続管65を介して切り替え部64と接続されている。集熱体105は、太陽の照射熱を吸収し、吸収した照射熱を放出することでチャンバー104の内部空間104aの気体を加熱する。 The chamber 104 has a rigidity that does not substantially deform even if the atmospheric pressure in the internal space 104a of the chamber 104 changes, and is connected to the switching portion 64 via the first connecting pipe 65. The heat collector 105 absorbs the irradiation heat of the sun and releases the absorbed irradiation heat to heat the gas in the internal space 104a of the chamber 104.
 集熱体105は、例えば、黒色のスポンジであり、チャンバー104が太陽光を透過可能な場合、チャンバー104の内部空間104aに配置される。一方、チャンバー104が太陽光を透過不可能な場合、チャンバー104の少なくとも一部を覆うように配置される。 The heat collector 105 is, for example, a black sponge, and is arranged in the internal space 104a of the chamber 104 when the chamber 104 is capable of transmitting sunlight. On the other hand, when the chamber 104 cannot transmit sunlight, it is arranged so as to cover at least a part of the chamber 104.
 なお、集熱体105は、チャンバー104の内部空間104aの気体を加熱することができれば、チャンバー104の内部又は外部のいずれかに配置されていればよい。また、集熱体105は、黒色のスポンジに限られず、照射熱を吸収して放出することができる部材であればよい。 The heat collector 105 may be arranged either inside or outside the chamber 104 as long as it can heat the gas in the internal space 104a of the chamber 104. Further, the heat collector 105 is not limited to the black sponge, and may be any member as long as it can absorb and release the irradiation heat.
 このようなポンプ103においては、太陽光が集熱体105に照射されると、集熱体105は照射熱を吸収して放出する。これにより、チャンバー104の内部空間104aの気体が暖められて膨張し、チャンバー104の内部空間104aの気体を押し出す。一方、太陽光における集熱体105への照射量が減少すると、集熱体105による放熱量が減少する。これにより、チャンバー104の内部空間104aの気体が冷やされて収縮し、チャンバー104の内部空間104aに気体を吸い込む。そのため、ポンプ103を実施の形態9のポンプ92に代えて用いることができる。 In such a pump 103, when sunlight is applied to the heat collector 105, the heat collector 105 absorbs and releases the irradiation heat. As a result, the gas in the internal space 104a of the chamber 104 is warmed and expanded, and the gas in the internal space 104a of the chamber 104 is pushed out. On the other hand, when the amount of irradiation of the heat collector 105 with sunlight decreases, the amount of heat radiated by the heat collector 105 decreases. As a result, the gas in the internal space 104a of the chamber 104 is cooled and contracted, and the gas is sucked into the internal space 104a of the chamber 104. Therefore, the pump 103 can be used in place of the pump 92 of the ninth embodiment.
 本実施の形態では、集熱体105として黒色のスポンジで構成されているため、チャンバー104の内部空間104aの気体との接触面積を稼ぐことができ、チャンバー104の内部空間104aの気体を効率良く暖めることができる。なお、チャンバー104が太陽光を吸収して放熱可能な材質で形成されている場合、チャンバー104を集熱体105として機能させてもよい。 In the present embodiment, since the heat collector 105 is composed of a black sponge, the contact area of the internal space 104a of the chamber 104 with the gas can be increased, and the gas in the internal space 104a of the chamber 104 can be efficiently used. Can be warmed. When the chamber 104 is made of a material that can absorb sunlight and dissipate heat, the chamber 104 may function as a heat collector 105.
 ここで、本実施の形態の揚液ポンプシステム101は、気圧調整部106を備えているとよい。気圧調整部106は、チャンバー107、排出路108、液槽109及び供給路110を備えている。チャンバー107は、チャンバー107の内部空間107aの気圧が変化しても略変形しない剛性を有し、第1のチャンバー2と接続管111を介して接続されている。 Here, it is preferable that the pump system 101 of the present embodiment includes the atmospheric pressure adjusting unit 106. The air pressure adjusting unit 106 includes a chamber 107, a discharge passage 108, a liquid tank 109, and a supply passage 110. The chamber 107 has a rigidity that does not substantially deform even if the atmospheric pressure in the internal space 107a of the chamber 107 changes, and is connected to the first chamber 2 via a connecting pipe 111.
 これらの第1のチャンバー2の内部空間2aと、第2のチャンバー82の内部空間82dと、チャンバー104の内部空間104aと、チャンバー107の内部空間107aと、は略密閉された空間を形成している。このようなチャンバー107の底部は、液体が貯められる貯水部として機能する。 The internal space 2a of the first chamber 2, the internal space 82d of the second chamber 82, the internal space 104a of the chamber 104, and the internal space 107a of the chamber 107 form a substantially sealed space. There is. The bottom of such a chamber 107 functions as a water storage unit for storing liquid.
 排出路108は、例えば、連通路57の内径に比べて極めて小さい内径を有する管体である。排出路108の一方の端部は、チャンバー107の内部空間107aの底部近傍に配置され、排出路108の他方の端部は、チャンバー107の外部に通され、液槽109に液体を排出可能な位置に配置されている。 The discharge passage 108 is, for example, a pipe body having an inner diameter extremely smaller than the inner diameter of the communication passage 57. One end of the discharge passage 108 is arranged near the bottom of the internal space 107a of the chamber 107, and the other end of the discharge passage 108 is passed to the outside of the chamber 107 so that the liquid can be discharged to the liquid tank 109. It is placed in a position.
 排出路108には、逆止弁112が設けられている。逆止弁112は、排出路108の一方の端部から他方の端部に向かう方向への液体の流れを許容し、逆方向への液体の流れを遮断する。逆止弁112としては、一般的な逆止弁を用いることができるが、例えば、ピストン式の逆止弁であるとよい。このような排出路108の最高位の高さH1は、第1のチャンバー2の内部空間2aの気圧が予め設定された第3の閾値になると、チャンバー107の底部に貯められた液体が到達する高さとされている。 A check valve 112 is provided in the discharge path 108. The check valve 112 allows the flow of liquid from one end of the discharge path 108 toward the other end and blocks the flow of liquid in the opposite direction. As the check valve 112, a general check valve can be used, and for example, a piston type check valve is preferable. At the highest height H1 of such a discharge path 108, the liquid stored in the bottom of the chamber 107 reaches when the air pressure in the internal space 2a of the first chamber 2 reaches a preset third threshold value. It is said to be high.
 液槽109は、チャンバー107の外部に配置されている。供給路110も、例えば、連通路57の内径に比べて極めて小さい内径を有する管体である。供給路110の一方の端部は、液槽109の底部近傍に配置され、供給路110の他方の端部は、チャンバー107の内部空間107aに通されている。 The liquid tank 109 is arranged outside the chamber 107. The supply path 110 is also, for example, a pipe body having an inner diameter extremely smaller than the inner diameter of the communication passage 57. One end of the supply path 110 is arranged near the bottom of the liquid tank 109, and the other end of the supply path 110 is passed through the internal space 107a of the chamber 107.
 供給路110には、逆止弁113が設けられている。逆止弁113は、供給路110の一方の端部から他方の端部に向かう方向への液体の流れを許容し、逆方向への液体の流れを遮断する。逆止弁113としては、一般的な逆止弁を用いることができるが、例えば、ピストン式の逆止弁であるとよい。このような供給路110の最高位の高さH2は、第1のチャンバー2の内部空間2aの気圧が予め設定された第4の閾値になると、液槽109に貯められた液体が到達する高さとされている。 A check valve 113 is provided in the supply path 110. The check valve 113 allows the flow of liquid from one end of the supply path 110 toward the other end and blocks the flow of liquid in the opposite direction. As the check valve 113, a general check valve can be used, and for example, a piston type check valve is preferable. The highest height H2 of such a supply path 110 is the height reached by the liquid stored in the liquid tank 109 when the air pressure in the internal space 2a of the first chamber 2 reaches a preset fourth threshold value. It is said to be.
 このような気圧調整部106において、第1のチャンバー2の内部空間2aの気圧が第3の閾値より高くなった場合、チャンバー107に貯められた液体が排出路108を登って液槽109に排出される。そして、チャンバー107に貯められた液体が排出されると、第1のチャンバー2の内部空間2aの気体が排出路108を介して排出され、第1のチャンバー2の内部空間2aの気圧が第3の閾値まで低下すると、逆止弁112のピストンの重さによって当該逆止弁112が閉じる。 In such a pressure adjusting unit 106, when the air pressure in the internal space 2a of the first chamber 2 becomes higher than the third threshold value, the liquid stored in the chamber 107 climbs the discharge path 108 and is discharged to the liquid tank 109. Will be done. Then, when the liquid stored in the chamber 107 is discharged, the gas in the internal space 2a of the first chamber 2 is discharged through the discharge path 108, and the pressure in the internal space 2a of the first chamber 2 becomes the third. When the value drops to the threshold value of, the check valve 112 closes due to the weight of the piston of the check valve 112.
 一方、第1のチャンバー2の内部空間2aの気圧が第4の閾値より低くなった場合、液槽109に貯められた液体が供給路110を登ってチャンバー107の内部空間107aに吸引される。そして、液槽109に貯められた液体が吸引されると、チャンバー107の外部の気体が供給路110を介して第1のチャンバー2の内部空間2aに吸引され、第1のチャンバー2の内部空間2aの気圧が第4の閾値まで上昇すると、逆止弁113のピストンの重さによって当該逆止弁113が閉じる。 On the other hand, when the air pressure in the internal space 2a of the first chamber 2 becomes lower than the fourth threshold value, the liquid stored in the liquid tank 109 climbs the supply path 110 and is sucked into the internal space 107a of the chamber 107. Then, when the liquid stored in the liquid tank 109 is sucked, the gas outside the chamber 107 is sucked into the internal space 2a of the first chamber 2 through the supply path 110, and the internal space of the first chamber 2 is sucked. When the pressure of 2a rises to the fourth threshold value, the check valve 113 closes due to the weight of the piston of the check valve 113.
 このように気圧調整部106が動作することで、第1のチャンバー2の内部空間2a及び第2のチャンバー82の内部空間82dの気圧を調整することができる。そのため、例えば、第1のチャンバー2の内部空間2a及び第2のチャンバー82の内部空間82dの気圧の変化が不安定であっても、気圧調整部106によって第1のチャンバー2の内部空間2a及び第2のチャンバー82の内部空間82dの気圧を常に最適化でき、第1の加圧バック42及び第2の加圧バック83の破損リスクを軽減することができる。このとき、気圧調整部106は、排出路108及び供給路110の高さの分のアイドリング損失を利用して、第3の閾値及び第4の閾値を簡単に設定することができる。 By operating the air pressure adjusting unit 106 in this way, the air pressure in the internal space 2a of the first chamber 2 and the internal space 82d of the second chamber 82 can be adjusted. Therefore, for example, even if the change in air pressure in the internal space 2a of the first chamber 2 and the internal space 82d of the second chamber 82 is unstable, the air pressure adjusting unit 106 allows the internal space 2a and the first chamber 2 to change. The air pressure in the internal space 82d of the second chamber 82 can always be optimized, and the risk of damage to the first pressurizing bag 42 and the second pressurizing bag 83 can be reduced. At this time, the atmospheric pressure adjusting unit 106 can easily set the third threshold value and the fourth threshold value by utilizing the idling loss corresponding to the height of the discharge path 108 and the supply path 110.
 <実施の形態11>
 図35は、本実施の形態の揚液ポンプシステムを模式的に示す斜視図である。なお、図35は、逆止弁58などを省略して簡略化している。本実施の形態の揚液ポンプシステム121は、実施の形態10の揚液ポンプシステムと略等しい構成とされているが、気圧変化部122の構成が異なる。そのため、他の実施の形態と重複する説明は省略し、気圧変化部122の構成の説明を中心に行う。なお、以下の説明では、実施の形態1の揚液ポンプシステム1などと等しい部材には等しい符号を用いて説明する。
<Embodiment 11>
FIG. 35 is a perspective view schematically showing the pumping system of the present embodiment. Note that FIG. 35 is simplified by omitting the check valve 58 and the like. The pumping system 121 of the present embodiment has substantially the same configuration as the pumping system of the tenth embodiment, but the configuration of the atmospheric pressure changing unit 122 is different. Therefore, the description overlapping with other embodiments will be omitted, and the description of the configuration of the atmospheric pressure changing unit 122 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
 気圧変化部122も、図35に示すように、太陽を熱源として用いて第1のチャンバー2の内部空間2a及び第2のチャンバー82の内部空間82dの気圧を変化させるポンプ123を備えている。ポンプ123は、例えば、チャンバー124及び集熱体125を備えている。 As shown in FIG. 35, the atmospheric pressure changing unit 122 also includes a pump 123 that changes the atmospheric pressure in the internal space 2a of the first chamber 2 and the internal space 82d of the second chamber 82 using the sun as a heat source. The pump 123 includes, for example, a chamber 124 and a heat collector 125.
 チャンバー124は、チャンバー124の内部空間124aの気圧が変化しても略変形しない剛性を有し、第1の接続管65を介して切り替え部64と接続されている。そして、チャンバー124の底部は、液体が貯められる貯水部として機能する。 The chamber 124 has a rigidity that does not substantially deform even if the atmospheric pressure in the internal space 124a of the chamber 124 changes, and is connected to the switching portion 64 via the first connecting pipe 65. The bottom of the chamber 124 functions as a water storage unit for storing the liquid.
 集熱体125は、例えば、複数枚のステンレス板を備えている。そして、集熱体125の下端部がチャンバー124の底部で液体に浸かった状態で、集熱体125がチャンバー124の内部空間124aに配置されている。なお、集熱体125としては、アルミニウム板、銅板又は銀板などでもよく、板体に銀メッキや銅メッキを施したものでもよく、熱伝導率が高い材料で形成されていればよい。 The heat collector 125 includes, for example, a plurality of stainless steel plates. Then, the heat collector 125 is arranged in the internal space 124a of the chamber 124 in a state where the lower end portion of the heat collector 125 is immersed in the liquid at the bottom of the chamber 124. The heat collector 125 may be an aluminum plate, a copper plate, a silver plate, or the like, or may be a plate body plated with silver or copper, and may be made of a material having high thermal conductivity.
 このようなポンプ123において、太陽の照射熱によってチャンバー124の内部空間124aが暖められると共に、集熱体125が暖められて液体の気化が促進され、チャンバー124の内部空間124aの気圧を上昇させることができる。これにより、チャンバー124の内部空間124aの気体を押し出すことができる。このとき、液体の状態から蒸気の状態に変化した場合、体積は1000倍以上になるので、太陽光の強さによっては気体の熱膨張よりも遙かに大きな圧力を生み出すことができる。 In such a pump 123, the internal space 124a of the chamber 124 is warmed by the heat of irradiation of the sun, and the heat collector 125 is warmed to promote the vaporization of the liquid, thereby increasing the air pressure in the internal space 124a of the chamber 124. Can be done. As a result, the gas in the internal space 124a of the chamber 124 can be pushed out. At this time, when the state changes from the liquid state to the vapor state, the volume becomes 1000 times or more, so that a pressure far larger than the thermal expansion of the gas can be generated depending on the intensity of sunlight.
 一方、太陽が沈んで夜間になると、蒸気が充満した湿度の高い、チャンバー124の内部空間124aにおいて、熱伝導率の高い集熱体125の液体に浸された部分と、集熱体125の液体に浸されていない部分と、で温度差が生じ、気化熱の吸収作用が起こって結露化が促進され、チャンバー124の内部空間124aの気圧を低下させることができる。これにより、チャンバー124の内部空間124aに気体を吸い込むことができる。そのため、ポンプ123を実施の形態9のポンプ92に代えて用いることができる。 On the other hand, when the sun sets and the night falls, the portion of the internal space 124a of the chamber 124, which is filled with steam and has high humidity, is immersed in the liquid of the heat collector 125 having high thermal conductivity and the liquid of the heat collector 125. A temperature difference is generated between the portion not immersed in the mixture, and the heat of vaporization is absorbed to promote dew condensation, so that the pressure in the internal space 124a of the chamber 124 can be lowered. As a result, gas can be sucked into the internal space 124a of the chamber 124. Therefore, the pump 123 can be used in place of the pump 92 of the ninth embodiment.
 <実施の形態12>
 図36は、本実施の形態の揚液ポンプシステムを模式的に示す斜視図である。なお、図36は、逆止弁58などを省略して簡略化している。本実施の形態の揚液ポンプシステム131は、実施の形態10の揚液ポンプシステムと略等しい構成とされているが、気圧変化部132の構成が異なる。そのため、他の実施の形態と重複する説明は省略し、気圧変化部132の構成の説明を中心に行う。なお、以下の説明では、実施の形態1の揚液ポンプシステム1などと等しい部材には等しい符号を用いて説明する。
<Embodiment 12>
FIG. 36 is a perspective view schematically showing the pumping system of the present embodiment. Note that FIG. 36 is simplified by omitting the check valve 58 and the like. The pumping system 131 of the present embodiment has substantially the same configuration as the pumping system of the tenth embodiment, but the configuration of the atmospheric pressure changing unit 132 is different. Therefore, the description overlapping with other embodiments will be omitted, and the description of the configuration of the atmospheric pressure changing unit 132 will be mainly described. In the following description, the same members as those of the pump system 1 of the first embodiment will be described by using the same reference numerals.
 気圧変化部132は、図36に示すように、蒸気又は微細な水滴(即ち、霧)を用いて第1のチャンバー2の内部空間2a及び第2のチャンバー82の内部空間82dの気圧を変化させるポンプ133を備えている。ポンプ133は、例えば、図36に示すように、チャンバー134、体積変化部135及び結露推進部136を備えている。 As shown in FIG. 36, the air pressure changing unit 132 changes the air pressure in the internal space 2a of the first chamber 2 and the internal space 82d of the second chamber 82 by using steam or fine water droplets (that is, fog). It is equipped with a pump 133. The pump 133 includes, for example, a chamber 134, a volume change section 135, and a dew condensation propulsion section 136, as shown in FIG. 36.
 チャンバー134は、チャンバー134の内部空間134aの気圧が変化しても略変形しない剛性を有し、第1の接続管65を介して切り替え部64と接続されている。体積変化部135は、チャンバー134の内部空間134aに配置されており、例えば、液槽135aの液体を熱源135bによって加熱して蒸気を発生させる。但し、体積変化部135は、液体を振動させることで霧を発生させてもよく、液体の体積を膨張させる手段は限定されない。また、熱源135bは、液体を気化させることができれば構成は限定されない。 The chamber 134 has a rigidity that does not substantially deform even if the atmospheric pressure in the internal space 134a of the chamber 134 changes, and is connected to the switching portion 64 via the first connecting pipe 65. The volume changing portion 135 is arranged in the internal space 134a of the chamber 134, and for example, the liquid in the liquid tank 135a is heated by the heat source 135b to generate steam. However, the volume changing unit 135 may generate mist by vibrating the liquid, and the means for expanding the volume of the liquid is not limited. Further, the structure of the heat source 135b is not limited as long as the liquid can be vaporized.
 結露推進部136は、チャンバー134の内部空間134aに配置され、結露を推進させる。結露推進部136は、例えば、複数枚のステンレス板を備えている。このような結露推進部136の下端部は、チャンバー134の底部に貯められた液体に浸されている。なお、結露推進部136は、チャンバー134の内部空間134aの蒸気や霧を結露化によって液体にできればよく、結露推進部136の材質、形状及び配置などは限定されない。 The dew condensation promotion unit 136 is arranged in the internal space 134a of the chamber 134 to promote dew condensation. The dew condensation propulsion unit 136 includes, for example, a plurality of stainless steel plates. The lower end of such a dew condensation propulsion portion 136 is immersed in the liquid stored in the bottom portion of the chamber 134. The dew condensation propulsion unit 136 may be able to turn the vapor or mist in the internal space 134a of the chamber 134 into a liquid by dew condensation, and the material, shape, arrangement, etc. of the dew condensation propulsion unit 136 are not limited.
 このようなポンプ133においては、体積変化部135によって蒸気を発生させ、チャンバー134の内部空間134aの気圧を上昇させると、チャンバー134の内部空間134aの気体を押し出す。一方、体積変化部135による蒸気の発生を止め、チャンバー134の内部空間134aの気圧を低下させると、チャンバー134の内部空間134aに気体を吸い込む。そのため、ポンプ103を実施の形態9のポンプ92に代えて用いることができる。 In such a pump 133, when steam is generated by the volume changing portion 135 and the air pressure in the internal space 134a of the chamber 134 is raised, the gas in the internal space 134a of the chamber 134 is pushed out. On the other hand, when the generation of steam by the volume changing portion 135 is stopped and the air pressure in the internal space 134a of the chamber 134 is lowered, the gas is sucked into the internal space 134a of the chamber 134. Therefore, the pump 103 can be used in place of the pump 92 of the ninth embodiment.
 <実施の形態13>
 本実施の形態にかかる揚液ポンプシステムの特徴について最初に説明する。
 第1に、本実施の形態では、加圧バッグの形状及びその機能構造に特徴を有する。実施の形態1~12にかかる揚液ポンプシステムは、密閉された空間内の気圧の変化によって加圧バッグの形状が変化することで、加圧バッグ内の水が移動、すなわち流れが発生し、その流れが重力による水圧損(すなわち、ポンプ機能としてのアイドリング損)を大幅に軽減しながら、揚水ができるものであった。本実施の形態にかかる加圧バックによれば、揚水力を更に高める流れを作り出す論理設計を提案するものであり、さらにシステム効率を相乗的に高めることができる。
<Embodiment 13>
The features of the pump system according to the present embodiment will be described first.
First, the present embodiment is characterized by the shape of the pressure bag and its functional structure. In the pumping pump system according to the first to twelfth embodiments, the shape of the pressurized bag changes due to the change in air pressure in the enclosed space, so that the water in the pressurized bag moves, that is, a flow is generated. The flow was able to pump water while significantly reducing the water pressure loss due to gravity (that is, the idling loss as a pump function). According to the pressurizing bag according to the present embodiment, a logical design that creates a flow that further enhances the pumping power is proposed, and the system efficiency can be synergistically enhanced.
 第2に、本実施の形態では、逆止弁に特徴を有する。上述のように、空気や液体の流れを制御することにより機能する揚液ポンプシステムでは、逆止弁は必要不可欠な要素である。ここで、電気的な動力を使わない揚液ポンプシステムでは、ダックビルバルブのような、開閉動作を行う上で比較的抵抗や圧力損が低い逆止弁が望まれる。ダックビルバルブは、圧力損が低い逆止弁とはいえ、それでも開閉動作においてボトルネックのように圧力損が生じ、その数が増えれば増える程に圧力損失が増大する。そこで、本実施の形態では、バルブを収納するシェル形状や配管構造を工夫することによって、増圧効果を得られるシステムを提案している。 Second, the present embodiment is characterized by a check valve. As mentioned above, check valves are an essential element in pumping systems that function by controlling the flow of air and liquids. Here, in a pump system that does not use electrical power, a check valve such as a duck bill valve, which has a relatively low resistance and pressure loss in performing an opening / closing operation, is desired. Although the duck bill valve is a check valve with a low pressure loss, it still causes a pressure loss like a bottleneck in the opening / closing operation, and the pressure loss increases as the number increases. Therefore, in the present embodiment, we propose a system in which the pressure increasing effect can be obtained by devising the shell shape and the piping structure for accommodating the valve.
 第3に、連鎖を実現するための構造に特徴を有する。前述した実施の形態では、一度パイプ状のポンプ内に水を揚水しながら溜め込む工程と、吐き出す工程を実行していた。本実施の形態では、一つの空気圧発生装置(空気ポンプ)によって連鎖を実現する構造を提案している。 Thirdly, it has a feature in the structure for realizing the chain. In the above-described embodiment, a step of collecting water while pumping it into a pipe-shaped pump and a step of discharging it are executed. In this embodiment, a structure that realizes a chain by one air pressure generator (air pump) is proposed.
 図37は、本実施の形態にかかる揚液ポンプシステムにおいて用いられる加圧バックの正面図(a)、加圧バックが収縮した状態の側面図(b)、加圧バックが拡張した状態の側面図(c)である。
 加圧バック3は、変形可能な樹脂製の袋体(例えばビニールバック)である。この加圧バック3は、内部に水などの液体を収容する。加圧バック3は、前述した各実施の形態にて示された加圧バック3の代わりに接続して用いることができる。加圧バック3は、図37(a)に示すように、正面から見て、上側は幅広で円形に近い略円形状を有し、下方に向かって先細りする形状を有している。より具体的には、図38に示すように、加圧バック3は、4つの正円Cのそれぞれの一部の円弧に沿って滑らかに繋がっている形状を有している。この形は、図39に示されるように、水滴の形状を重力方向に反対側にした形状(以下、逆水滴形状ともいう)ともいえる。
FIG. 37 is a front view (a) of the pressurizing bag used in the pump system according to the present embodiment, a side view (b) of the pressurizing bag in a contracted state, and a side view of the pressurizing bag in an expanded state. FIG. 3C.
The pressure bag 3 is a deformable resin bag (for example, a vinyl bag). The pressurizing bag 3 houses a liquid such as water inside. The pressurizing bag 3 can be connected and used instead of the pressurizing bag 3 shown in each of the above-described embodiments. As shown in FIG. 37A, the pressurizing bag 3 has a substantially circular shape on the upper side, which is wide and close to a circle, and has a shape that tapers downward when viewed from the front. More specifically, as shown in FIG. 38, the pressurizing bag 3 has a shape in which the pressure bags 3 are smoothly connected along the arcs of a part of each of the four perfect circles C. As shown in FIG. 39, this shape can also be said to be a shape in which the shape of the water droplet is opposite to the direction of gravity (hereinafter, also referred to as a reverse water droplet shape).
 図37(a)に示されるように、正面から見たときに、加圧バック3は、逆水滴形状、すなわちその正面形状を保持するために加圧バック3の最外周の縁部分に逆水滴形状のフレーム3dを内蔵している。加圧バック3を2枚のシートにより構成した場合に、フレーム3dは、それらシートの接合部分の内側に沿って配置される。フレーム3dは、一体化されたリング形状の部材であり、中実でも中空でもよい。フレーム3dは、例えば、シート部分よりも固く、弾性力も高い樹脂素材で構成されている。但し、当該フレーム3dの素材は、樹脂に限らず、例えば、金属等の他の素材であってもよい。 As shown in FIG. 37 (a), when viewed from the front, the pressurizing bag 3 has a reverse water droplet shape, that is, a reverse water droplet on the outermost peripheral edge portion of the pressurizing bag 3 in order to maintain the front shape. It has a built-in frame 3d with a shape. When the pressure bag 3 is composed of two sheets, the frame 3d is arranged along the inside of the joint portion of the sheets. The frame 3d is an integrated ring-shaped member, which may be solid or hollow. The frame 3d is made of, for example, a resin material that is harder than the sheet portion and has a high elastic force. However, the material of the frame 3d is not limited to resin, and may be another material such as metal.
 加圧バック3には、排出路6及び吸入路7が接続されている。排出路6及び吸入路7はそれぞれの一端が加圧バック3の外部から内部に通されている。排出路6と吸入路7は、それぞれ加圧バック3の正面視で反対側の面から一端が突出するように配置されている。そして、排出路6及び吸入路7の、外圧バック3内部の他端のそれぞれは、管状部材167の両端に接続されている。すなわち、排出路6と吸入路7とは、管状部材167によって接続されている。管状部材167は、多数の孔が開いた、中空のチューブである。したがって、吸入路7に吸入された液体は、管状部材167の内部を流れるとともにその多数の孔から加圧バック3内に流出する。また、加圧バック3内の液体は、多数の孔から管状部材167内に流入し、そして、管状部材167から排出路6へ流出する。ここで、当該管状部材167は、例えば、可撓性のある樹脂素材により構成されている。なお、排出路6、吸入路7及び管状部材167は別部材で構成されているが、同じ部材により一体的に構成してもよい。 The discharge path 6 and the suction path 7 are connected to the pressurizing bag 3. One end of each of the discharge path 6 and the suction path 7 is passed from the outside to the inside of the pressurizing bag 3. The discharge passage 6 and the suction passage 7 are arranged so that one end projects from the opposite surface of the pressurizing bag 3 when viewed from the front. The other ends of the discharge path 6 and the suction path 7 inside the external pressure bag 3 are connected to both ends of the tubular member 167. That is, the discharge passage 6 and the suction passage 7 are connected by a tubular member 167. The tubular member 167 is a hollow tube with a large number of holes. Therefore, the liquid sucked into the suction passage 7 flows inside the tubular member 167 and flows out into the pressurizing bag 3 from its many holes. Further, the liquid in the pressurizing bag 3 flows into the tubular member 167 through a large number of holes, and then flows out from the tubular member 167 into the discharge path 6. Here, the tubular member 167 is made of, for example, a flexible resin material. Although the discharge passage 6, the suction passage 7, and the tubular member 167 are made of separate members, they may be integrally made of the same member.
 加圧バック3は、図37(a)に示されるようにフレーム3dにより平面外側の方向に内部から付勢されているため、吸入路7から液体が流入した場合に、図37(c)に示されるように、主に前後方向に拡張する。特に、加圧バック3は、中央部からやや上側の幅広部分において前後方向の拡張量が大きく、下側の先細り部分は前後方向の拡張量が相対的に少ない。それに伴い、加圧バック3は、幅広部分において収容量の変化量が下側の先細り部分よりも大きい。 Since the pressurizing bag 3 is urged from the inside by the frame 3d in the direction outside the plane as shown in FIG. 37 (a), when the liquid flows in from the suction path 7, the pressurizing bag 3 is shown in FIG. 37 (c). As shown, it extends primarily in the anterior-posterior direction. In particular, the pressurizing bag 3 has a large amount of expansion in the front-rear direction in a wide portion slightly above the central portion, and a relatively small amount of expansion in the front-rear direction in the tapered portion on the lower side. Along with this, the pressure bag 3 has a larger change in the accommodating amount in the wide portion than in the lower tapered portion.
 続いて、加圧バック3の拡張及び収縮動作について説明する。
 最初に、図40及び図41を用いて、チャンバー2の内部空間を減圧することによって、加圧バック3が収縮した状態から拡張した状態に変化する場合について説明する。図に示す矢印は、静的加圧ベクトルを示す。
 チャンバー2の内部空間が減圧されると、図40に示されるように、瞬間的には、加圧バック3の全体表面に対して均一に拡張圧力が発生し、加圧バック3を膨らませる力が働く。
Subsequently, the expansion and contraction operations of the pressurizing bag 3 will be described.
First, a case where the pressurizing bag 3 changes from a contracted state to an expanded state by depressurizing the internal space of the chamber 2 will be described with reference to FIGS. 40 and 41. The arrows shown in the figure indicate the static pressurization vector.
When the internal space of the chamber 2 is depressurized, as shown in FIG. 40, an expansion pressure is instantaneously generated uniformly on the entire surface of the pressurizing bag 3, and a force for expanding the pressurizing bag 3. Works.
 さらに、減圧状態が続くと、減圧によって発生する気圧圧力は、加圧バック3において働きやすく、変位余地が大きい面に集中して力が相乗的に加わる。この例では、加圧バック3の中央部上側の幅広部分に対してより多くの気圧圧力が作用し、変位することになる。従って、図41に示されるように、吸入路7から逆止弁11を通過して吸入された液体は、管状部材167の内部及び近傍の外部に沿って上方に流れ、それとともに、加圧バック3の上方部分において左右方向に流れて渦巻流を発生させる。さらに、加圧バック3が膨張するにしたがって、渦巻流を大きくしながら吸入路7から液体を吸い上げていく。 Further, when the depressurized state continues, the atmospheric pressure generated by the decompression is easy to work in the pressurizing bag 3, and the force is synergistically applied to the surface where there is a large room for displacement. In this example, more barometric pressure acts on the wide portion above the central portion of the pressurizing bag 3 to cause displacement. Therefore, as shown in FIG. 41, the liquid sucked from the suction passage 7 through the check valve 11 flows upward along the inside of the tubular member 167 and the outside in the vicinity, and together with the pressurizing back. In the upper part of No. 3, it flows in the left-right direction to generate a swirl flow. Further, as the pressure bag 3 expands, the liquid is sucked up from the suction path 7 while increasing the swirl flow.
 次に、図42及び図43を用いて、チャンバー2の内部空間を加圧することによって、加圧バック3が拡張した状態から収縮した状態に変化する場合について説明する。図に示す矢印は、静的加圧ベクトルを示す。
 チャンバー2の内部空間が加圧されると、図42に示されるように、瞬間的には、加圧バック3の全体表面に対して均一に圧縮圧力が発生し、加圧バック3を収縮させる力が働く。
Next, a case where the pressurizing bag 3 changes from an expanded state to a contracted state by pressurizing the internal space of the chamber 2 will be described with reference to FIGS. 42 and 43. The arrows shown in the figure indicate the static pressurization vector.
When the internal space of the chamber 2 is pressurized, as shown in FIG. 42, a compressive pressure is instantaneously generated uniformly on the entire surface of the pressurizing bag 3 to contract the pressurizing bag 3. Power works.
 さらに、加圧状態が続くと、加圧によって発生する気圧圧力は、加圧バック3において働きやすく、変位余地が大きい面に集中して力が相乗的に加わる。この例では、加圧バック3の中央部上側の幅広部分により多くの気圧圧力が作用し、変位することになる。従って、図43に示されるように、液体は、加圧バック3の上方部分の左右方向において発生する渦巻流を小さくしながら、管状部材167の内部及び近傍の外部に沿って上方に流れて排出路6から逆止弁9を通過して排出される。 Further, when the pressurized state continues, the atmospheric pressure generated by the pressurization is easy to work in the pressurizing bag 3, and the force is synergistically applied to the surface where there is a large room for displacement. In this example, more barometric pressure acts on the wide portion above the central portion of the pressurizing bag 3 to cause displacement. Therefore, as shown in FIG. 43, the liquid flows upward along the inside of the tubular member 167 and the outside in the vicinity of the tubular member 167 while reducing the swirl flow generated in the left-right direction of the upper portion of the pressure bag 3. It is discharged from the road 6 through the check valve 9.
 このように本実施の形態にかかる加圧バック3では、気圧変化により渦巻状の流れをスムーズに形成することができ、これにより水などの超微粒子からなる流体を加速させ、揚水効率を相乗的に高めることができる。 As described above, in the pressurizing bag 3 according to the present embodiment, a spiral flow can be smoothly formed by the change in atmospheric pressure, thereby accelerating the fluid composed of ultrafine particles such as water and synergistically improving the pumping efficiency. Can be enhanced to.
 この点について図を用いてさらに詳述する。
 図44(a)(b)は、それぞれ吸い上げ時の流体回転ベクトルと、吐出時の流体回転ベクトルを示している。一般に、物体が円運動する場合、回転体における回転中心から回転半径方向の重心の移動により、回転速度はその重心の変位量に応じて2乗倍だけ変化する。より具体的には、重心が回転中心方向に移動した場合には、回転速度は増加し、重心が回転半径の外側方向に移動した場合には、回転速度は減少する。このことは、アイススケートの選手が手を広げてスピンした状態から手を胸元に移動させることによって回転速度が上昇していることと同じ原理である。このように、重心が回転中心方向に移動することによって回転速度が2乗倍に増加するということは、水や空気の粒子レベルの運動エネルギーも2乗倍に増幅されることを意味する。また、重心が回転半径の外側方向に移動することによって回転速度が2乗分の1に減衰するということは当該運動エネルギーも2乗分の1に減衰することを意味する。
This point will be described in more detail with reference to figures.
FIGS. 44 (a) and 44 (b) show a fluid rotation vector at the time of suction and a fluid rotation vector at the time of discharge, respectively. Generally, when an object makes a circular motion, the rotation speed changes by a square of a factor according to the amount of displacement of the center of gravity due to the movement of the center of gravity in the direction of the radius of gyration from the center of rotation of the rotating body. More specifically, when the center of gravity moves toward the center of rotation, the rotation speed increases, and when the center of gravity moves toward the outside of the radius of gyration, the rotation speed decreases. This is the same principle that the rotation speed is increased by moving the hand from the state where the ice skating player spreads his hand to the chest. As described above, the fact that the rotation speed increases by a factor of 2 as the center of gravity moves toward the center of rotation means that the kinetic energy at the particle level of water or air is also amplified by a factor of 2. Further, the fact that the rotation speed is attenuated to 1 / square by moving the center of gravity to the outside of the radius of gyration means that the kinetic energy is also attenuated to 1 / square.
 ここで、回転体の質量が増加しなければ、エネルギー保存の法則上、エネルギー増幅はあり得ない。従って、回転体または流体の体積や重心質量の差がない限り、エネルギーそのものの増幅はなく、総じて増圧することはない。しかしながら、本実施の形態における加圧バックを用いた揚液ポンプシステムでは、液体が流入したり、吐出したりすることで、液体の体積と重量は増減し、かつ吸い上げ時には回転半径が狭まる方向へ変形して重心は中心方向に変位し、吐出時は回転半径が広がる方向に変形して重心が回転半径の外側方向に変位することにより、いずれの場合も増圧作用が働く。したがって、物理計算上からも理にかなったシステム機能であると言える。 Here, if the mass of the rotating body does not increase, energy amplification is not possible due to the law of conservation of energy. Therefore, unless there is a difference in the volume of the rotating body or the fluid or the mass of the center of gravity, the energy itself is not amplified and the pressure is not increased as a whole. However, in the pump system using the pressurized bag in the present embodiment, the volume and weight of the liquid increase or decrease as the liquid flows in or out, and the radius of gyration narrows when sucking up. It is deformed and the center of gravity is displaced toward the center, and at the time of discharge, it is deformed in the direction in which the radius of gyration expands and the center of gravity is displaced in the direction outside the radius of gyration. Therefore, it can be said that it is a system function that makes sense from the viewpoint of physical calculation.
 続いて、本実施の形態にかかる揚液ポンプシステムの全体構成について説明する。図45は、本実施の形態にかかる揚液ポンプシステムを模式的に示す斜視図である。
 図に示されるように、当該揚液ポンプシステムは、二つのチャンバー2,52を備えている。チャンバー2は、5つの加圧バック42を収容している。チャンバー52は、5つの加圧バック53を収容している。加圧バック42,53はそれぞれ、上述した加圧バック3と同様の構成を有する。チャンバー2,52は、それぞれ気体が収容される内部空間2a,52aを備えており、当該内部空間2,52aの気圧が変化しても略変形しない剛性を有する。
Subsequently, the overall configuration of the pump system according to the present embodiment will be described. FIG. 45 is a perspective view schematically showing a pumping pump system according to the present embodiment.
As shown in the figure, the pump system includes two chambers 2, 52. Chamber 2 houses five pressurizing bags 42. The chamber 52 houses five pressurizing bags 53. Each of the pressurizing bags 42 and 53 has the same configuration as the pressurizing bag 3 described above. The chambers 2 and 52 are provided with internal spaces 2a and 52a in which gas is housed, respectively, and have rigidity that does not substantially deform even if the atmospheric pressure of the internal spaces 2 and 52a changes.
 チャンバー2に設けられた最下段の加圧バック42の吸入路7は、逆止弁58及び連通路57が設けられ、吸入路7の一端が液槽10内の液体を吸い上げ可能な位置に配されている。加圧バック42の排出路6は連通路57の一端に接続されている。連通路57は、ほぼ水平になるように配置されている。連通路57の他端は、チャンバー52の近傍に設けられ、下方向に流れる逆止弁58に連結されている。本例にかかる逆止弁58は、後に詳述するが、下方向(即ち、鉛直下方向)への液体の流れを許容し、上方向への液体の流れを遮断する。 The suction passage 7 of the lowermost pressurizing bag 42 provided in the chamber 2 is provided with a check valve 58 and a communication passage 57, and one end of the suction passage 7 is arranged at a position where the liquid in the liquid tank 10 can be sucked up. Has been done. The discharge path 6 of the pressurizing bag 42 is connected to one end of the communication passage 57. The communication passage 57 is arranged so as to be substantially horizontal. The other end of the communication passage 57 is provided in the vicinity of the chamber 52 and is connected to a check valve 58 flowing downward. The check valve 58 according to this example, which will be described in detail later, allows the flow of liquid in the downward direction (that is, in the vertical downward direction) and blocks the flow of liquid in the upward direction.
 チャンバー52において最下段の加圧バック42の排出路6に、チャンバー52における最下段の逆止弁58が連結されている。吸入路7は、逆止弁58から下方に延在して、加圧バック53の下方部に連結している。
 チャンバー52において最下段の加圧バック53の排出路6の一端は、連通路57に接続されている。連通路57は、他端においてチャンバー2の近傍の逆止弁58と連結している。連通路57は、ほぼ水平になるように配置されている。この逆止弁58は、下から2段目の加圧バック42の吸入路7の一端と連結している。
The check valve 58 at the bottom of the chamber 52 is connected to the discharge path 6 of the pressurizing bag 42 at the bottom of the chamber 52. The suction passage 7 extends downward from the check valve 58 and is connected to the lower portion of the pressurizing bag 53.
One end of the discharge path 6 of the lowermost pressurizing bag 53 in the chamber 52 is connected to the communication passage 57. The communication passage 57 is connected to the check valve 58 in the vicinity of the chamber 2 at the other end. The communication passage 57 is arranged so as to be substantially horizontal. The check valve 58 is connected to one end of the suction path 7 of the pressurizing bag 42, which is the second stage from the bottom.
 このように、チャンバー2が内蔵する最下段の加圧バック42とチャンバー52が内蔵する最下段の加圧バック53とが連結され、さらにチャンバー52が内蔵する最下段の加圧バック53、チャンバー2が内蔵する下から2段目の加圧バック42とが連結されるようにして、加圧バック42と加圧バック53とが交互に連結されて、最終的にチャンバー52の最上段の加圧バック53へと直列に連結されている。最上段の加圧バック53と連結された排出路6から揚液された液体が排出される。 In this way, the lowermost pressurizing bag 42 built in the chamber 2 and the lowermost pressurizing bag 53 built in the chamber 52 are connected, and the lowermost pressurizing bag 53 and the chamber 2 built in the chamber 52 are further connected. The pressurizing bag 42 and the pressurizing bag 53 are alternately connected so that the pressurizing bag 42 of the second stage from the bottom built in is connected, and finally the pressurizing of the uppermost stage of the chamber 52 is performed. It is connected in series to the back 53. The pumped liquid is discharged from the discharge path 6 connected to the uppermost pressurizing bag 53.
 このような揚液ポンプシステムにおいて、図46、図47に示すように、それぞれのチャンバー2,52に対して加圧、減圧が交互に行われる。加圧バック42,53が直列に連結されているとみたときに、1、3、5、7番目の加圧バック42が同じチャンバ2に収容されているので、同じタイミングで加圧若しくは減圧が行われる。同様に、2、4、6、8番目の加圧バック53が同じチャンバー2に収容されているので、同じタイミングで加圧若しくは減圧が行われる。 In such a pump system, as shown in FIGS. 46 and 47, pressurization and depressurization are alternately performed on the chambers 2 and 52, respectively. When the pressurizing bags 42 and 53 are considered to be connected in series, the first, third, fifth, and seventh pressurizing bags 42 are housed in the same chamber 2, so that pressurization or depressurization is performed at the same timing. Will be done. Similarly, since the second, fourth, sixth, and eighth pressurizing bags 53 are housed in the same chamber 2, pressurization or depressurization is performed at the same timing.
 図46に示す状態では、1、3、5、7番目の加圧バック42が減圧されて、膨張して液槽10若しくは前段の加圧バックから排出された液体を吸引する。また、このとき、2、4、6、8番目の加圧バック53は加圧されて収縮し、液体を次段の加圧バックに対して排出するか、もしくは液体を最終の排出路6から外へ排出する。 In the state shown in FIG. 46, the first, third, fifth, and seventh pressurizing bags 42 are decompressed to expand and suck the liquid discharged from the liquid tank 10 or the pressurizing bag in the previous stage. Further, at this time, the second, fourth, sixth, and eighth pressurizing bags 53 are pressurized and contracted, and the liquid is discharged to the next-stage pressurizing bag, or the liquid is discharged from the final discharge path 6. Discharge to the outside.
 ここで、加圧バック42と、液体の流れる方向の側に配置された加圧バック53とを接続する連通路57の逆止弁58は、当該加圧バック53が収縮するので閉塞した状態となり、加圧バック53と、液体の流れる方向の側に配置された加圧バック42と、を接続する連通路57の逆止弁58は、当該加圧バック42が膨張するので開放した状態となる。 Here, the check valve 58 of the communication passage 57 connecting the pressurizing bag 42 and the pressurizing bag 53 arranged on the side in the flow direction of the liquid is closed because the pressurizing bag 53 contracts. The check valve 58 of the communication passage 57 connecting the pressurizing bag 53 and the pressurizing bag 42 arranged on the side in the flow direction of the liquid is opened because the pressurizing bag 42 expands. ..
 同様に、加圧バック53と、液体の流れる方向の側に配置された加圧バック42と、を接続する連通路57の逆止弁58は、当該加圧バック42が収縮するので閉塞した状態となり、加圧バック42と、液体の流れる方向の側に配置された加圧バック53とを接続する連通路57の逆止弁58は、加圧バック53が膨張するので開放した状態となる。 Similarly, the check valve 58 of the communication passage 57 connecting the pressurizing bag 53 and the pressurizing bag 42 arranged on the side in the flow direction of the liquid is closed because the pressurizing bag 42 contracts. The check valve 58 of the communication passage 57 connecting the pressurizing bag 42 and the pressurizing bag 53 arranged on the side in the flow direction of the liquid is opened because the pressurizing bag 53 expands.
 このように本実施の形態の揚液ポンプシステムにおいては、一方の加圧バックを膨張させつつ、他方の加圧バックを収縮させることができるので、揚液効率を相乗的に向上させることができる。 As described above, in the pumping system of the present embodiment, one pressurizing bag can be expanded and the other pressurizing bag can be contracted, so that the pumping efficiency can be synergistically improved. ..
 しかも、本実施の形態の揚液ポンプシステムは、逆止弁58によって加圧バック42、53毎に遮断して、各々の加圧バック42、53を独立して動作させることができる。そのため、高い位置に配置される加圧バック42、53も低い位置に配置される加圧バック42、53と略等しいアイドリング損失で液体を排出及び吸引することができる。 Moreover, in the pump system of the present embodiment, the check valve 58 shuts off each of the pressurizing bags 42 and 53, and the respective pressurizing bags 42 and 53 can be operated independently. Therefore, the pressure bags 42 and 53 arranged at the high position can also discharge and suck the liquid with an idling loss substantially equal to that of the pressure bags 42 and 53 arranged at the low position.
 続いて、図48~50を用いて、逆止弁58の構造について説明する。
 図48に示されるように、逆止弁58は、増圧逆止弁機能を有し、シェル内渦流生成フレーム58aと、ダックビルバルブ58bより構成されている。
Subsequently, the structure of the check valve 58 will be described with reference to FIGS. 48 to 50.
As shown in FIG. 48, the check valve 58 has a pressure boosting check valve function, and is composed of an in-shell vortex generation frame 58a and a duck bill valve 58b.
 シェル内渦流生成フレーム58aは、例えば、樹脂素材により構成されている。図49に、シェル内渦流生成フレーム58aの一部の構成を示す。図49は、使用時の状態からほぼ反対側を向いた状態である。図48、49に示されるように、シェル内渦流生成フレーム58aの内側には、使用状態において上方向に凸の半円筒形状を有する二つの渦流生成部581a,bが設けられている。 The vortex generation frame 58a in the shell is made of, for example, a resin material. FIG. 49 shows a partial configuration of the vortex generation frame 58a in the shell. FIG. 49 shows a state facing substantially the opposite side from the state at the time of use. As shown in FIGS. 48 and 49, two vortex generation portions 581a and 581b having a semi-cylindrical shape convex upward in the used state are provided inside the vortex generation frame 58a in the shell.
 ダックビルバルブ58b(ダックビル型逆止弁)は、開閉可能な先端部が下方向になるように、シェル内渦流生成フレーム58aの上方に固定される。ダックビルバルブ58bの先端部は、2つの渦流生成部581a,bの間に位置する。 The duck bill valve 58b (duck bill type check valve) is fixed above the vortex generation frame 58a in the shell so that the openable tip portion faces downward. The tip of the duck bill valve 58b is located between the two eddy current generating portions 581a and b.
 図50に示されるように、上方から水等の液体が逆止弁58に流入すると、その液体の重力によって生じる圧力により、ダックビルバルブ58bが開状態になる。そして、液体は、さらに開状態のダックビルバルブ58bを通過して、下方に流れ込む。逆止弁58の下部では、図50において矢印で示すように、液体の流れによって空気の流れが引き起こされる。特に、このシェル内渦流生成フレーム58aでは、下方への水の流れにより引き込まれるようにして空気が下方に流れ、その外側の空気が引き込まれることから低圧空間が生じる。さらに下方に流れる空気がシェル内渦流生成フレーム58aの下面に衝突して、外側上方への流れが生じる。その空気は、シェル内渦流生成フレーム58aの内側面に沿って上方に流れ、渦流生成部581a,bの下面に沿って流れる。このとき、渦流生成部581a,bの下面は、円筒形状であるため、その円弧に沿って、下方に空気の流れが導かれ、液体の流れによって生じる空気の流れと合流することになる。このようにして、ダックビルバルブ58bを通過して下方に流れる水の流れによって空気の渦巻流が発生する。空気の渦巻流が発生した領域は、相対的に低圧空間となるため、ダックビルバルブ58bの開度を広げることに繋がる。結果として、流量を大きくすることに寄与することになるため、結果として、バルブ通過の損失を抑制することができ、増圧を達成することができる。 As shown in FIG. 50, when a liquid such as water flows into the check valve 58 from above, the duck bill valve 58b is opened due to the pressure generated by the gravity of the liquid. Then, the liquid further passes through the open duck bill valve 58b and flows downward. At the bottom of the check valve 58, the flow of liquid causes the flow of air, as indicated by the arrows in FIG. In particular, in the vortex generation frame 58a in the shell, air flows downward so as to be drawn by the downward flow of water, and the air outside the air is drawn in, so that a low-pressure space is created. Further downward air collides with the lower surface of the vortex generation frame 58a in the shell, and an upward flow is generated. The air flows upward along the inner surface of the vortex generation frame 58a in the shell, and flows along the lower surfaces of the vortex generation portions 581a and b. At this time, since the lower surfaces of the vortex generation portions 581a and 581b have a cylindrical shape, the air flow is guided downward along the arc and merges with the air flow generated by the liquid flow. In this way, a swirl of air is generated by the flow of water flowing downward through the duckbill valve 58b. Since the region where the swirl flow of air is generated becomes a relatively low pressure space, it leads to widening the opening degree of the duck building valve 58b. As a result, it contributes to increasing the flow rate, and as a result, the loss of passing through the valve can be suppressed and the pressure increase can be achieved.
 図51に示す揚液ポンプシステムでは、図45において説明した揚液ポンプシステム100,200を2セット備えている。揚液ポンプシステム100は、直列に連結された加圧バックの1、3、5、7番目を内蔵するチャンバー100aと、同じく2、4、6、8番目を内蔵するチャンバー100bを有する。揚液ポンプシステム200は、直列に連結された加圧バックの1、3、5、7番目を内蔵するチャンバー200aと、同じく2、4、6、8番目を内蔵するチャンバー200bを有する。 The pumping system shown in FIG. 51 includes two sets of pumping pump systems 100 and 200 described in FIG. 45. The pump system 100 has a chamber 100a containing the first, third, fifth, and seventh pressurizing bags connected in series, and a chamber 100b containing the second, fourth, sixth, and eighth. The pump system 200 has a chamber 200a containing the first, third, fifth, and seventh pressurizing bags connected in series, and a chamber 200b containing the second, fourth, sixth, and eighth.
 相反気圧を発生させる双子の吹子300a,bによって、加圧と減圧を行っている。すなわち、吹子300a,bは、気圧変化部として機能する。チャンバー100aと、チャンバー200bとを、吹子300aに連結し、チャンバー100bと、チャンバー200aとを、吹子300bに連結している。吹子300aが空気を吐出し、加圧する動作状態のときには、吹子300bは、空気を吸い上げ、減圧する動作状態となる。また、吹子300aが空気を吸い上げ、減圧する動作状態のときには、吹子300bは、空気を吐出し、加圧する動作状態となる。 Pressurization and depressurization are performed by twin blowers 300a and 300b that generate reciprocal atmospheric pressure. That is, the blowers 300a and 300b function as a pressure changing unit. The chamber 100a and the chamber 200b are connected to the blower 300a, and the chamber 100b and the chamber 200a are connected to the blower 300b. When the blower 300a discharges air and pressurizes it, the blower 300b sucks up air and depressurizes it. Further, when the blower 300a is in an operating state of sucking up air and depressurizing it, the blower 300b is in an operating state of discharging air and pressurizing it.
 このように、相反気圧を発生させる双子の吹子300a,bと揚液ポンプシステム100a,bと連動させることによって、双子吹子の単純な反復動作を起こすだけで、吸い上げと吐出の相反作用が同期して、全ての動作が相乗的に揚水に繋がり、間欠なく、無限駆動式に吸い上げと吐出動作を実現できる。 In this way, by interlocking the twin blowers 300a and b that generate the reciprocal air pressure with the pumping pump systems 100a and b, the reciprocal action of suction and discharge can be achieved by simply causing the twin blowers to repeatedly operate. Synchronously, all the operations are synergistically connected to the pumping, and the suction and discharge operations can be realized infinitely driven without interruption.
 なお、本開示は上述した実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。また、本開示は、それぞれの実施の形態を適宜組み合わせて実施されてもよい。 Note that this disclosure is not limited to the above-described embodiment, and can be appropriately modified without departing from the spirit. Further, the present disclosure may be carried out by appropriately combining the respective embodiments.
 例えば、上述した実施の形態の気圧変化部は、一例であり、チャンバーの内部空間の気圧の変化に応じて、当該チャンバーの内部空間に配置された加圧バックを変形させることができる構成であればよい。 For example, the atmospheric pressure changing portion of the above-described embodiment is an example, and the pressurizing bag arranged in the internal space of the chamber can be deformed according to the change of the atmospheric pressure in the internal space of the chamber. Just do it.
 例えば、切り替え部は、圧力センサーなどの検出値に基づいて、第1の流路と第2の流路とを切り替えてもよい。また、加圧バックは、少なくとも一部が水平方向に変形可能な構成であればよい。 For example, the switching unit may switch between the first flow path and the second flow path based on the detected value of the pressure sensor or the like. Further, the pressure bag may have a structure in which at least a part thereof can be deformed in the horizontal direction.
 例えば、上述した実施の形態の気圧調整部は、一例であり、チャンバーの内部空間の気圧を調整することができれば、制御装置を用いて調整する構成でもよい。 For example, the air pressure adjusting unit of the above-described embodiment is an example, and if the air pressure in the internal space of the chamber can be adjusted, it may be adjusted by using a control device.
 また、加圧バックと、排出路、吸入路又は連通路と、の接続形態は、上述の限りでなく、加圧バックから液体を排出又は当該加圧バックが液体を吸引できるように、加圧バックと、排出路、吸入路又は連通路と、が連通していればよい。 Further, the connection form of the pressurizing bag and the discharge path, the suction path or the communication path is not limited to the above, and the pressurization is performed so that the liquid is discharged from the pressurization bag or the pressurization bag can suck the liquid. It suffices if the bag and the discharge passage, the suction passage or the communication passage communicate with each other.
 この出願は、2019年10月21日に出願された国際出願番号PCT/JP2019/041345を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on the international application number PCT / JP2019 / 0413545 filed on October 21, 2019, and incorporates all of its disclosures herein.
1 揚液ポンプシステム
2 チャンバー(第1のチャンバー)、2a 内部空間
3 加圧バック(第1の加圧バック)、3a 第1の先細り部、3b 第2の先細り部、3c テンション部、3d フレーム
4 気圧変化部
6 排出路、9 逆止弁
7 吸入路、11 逆止弁
8 液槽
12 ポンプ
21 揚液ポンプシステム
22 気圧変化部
23 拡張バック
24 第1のポンプ
25 第2のポンプ
41 揚液ポンプシステム
42 加圧バック
43 中継部
44 第1の流路、46 逆止弁
45 第2の流路、47 逆止弁
51 揚液ポンプシステム
52 第2のチャンバー、52a 内部空間
53 第2の加圧バック
54 気圧変化部
55 第1の接続管
56 第2の接続管
57 連通路
58 逆止弁、58a シェル内渦流発生フレーム、58b ダックビルバルブ
59 第1のポンプ
60 第2のポンプ
61 揚液ポンプシステム
62 気圧変化部
63 ポンプ
64 切り替え部
64a 連通路、64g 開口部
64b 反力部
64c 押し込み部、64h 本体部、64i 支持部、64j 第1の部分、64k 第2の部分
64d 第1のバネ
64e 第2のバネ
64f スライド部、64l 本体部、64m 第1の突出部、64n 第2の突出部
64o 第1の流路、64r 逆止弁
64p 第2の流路、64s 逆止弁
64q 共通路
65 第1の接続管
66 第2の接続管
67 第3の接続管
71 切り替え部
71a 第1の回転子
71b 第2の回転子
71d 本体部
71e 伝達部
71f 支持部
71c 切り替えギヤ
71g 歯部
71h 第1の流路、71k 逆止弁
71i 第2の流路、71l 逆止弁
71j 第2の連通路
81 揚液ポンプシステム
82 第2のチャンバー、82a 第1の貫通孔、82b 第2の貫通孔、82c 第3の貫通孔、82d 内部空間
83 第2の加圧バック
91 気圧変化部
92 ポンプ
93 覆い部、93a 開口部
100 揚液ポンプシステム
101 揚液ポンプシステム
102 気圧変化部
103 ポンプ
104 チャンバー、104a 内部空間
105 集熱体
106 気圧調整部
107 チャンバー、107a 内部空間
108 排出路、112 逆止弁
109 液槽
110 供給路、113 逆止弁
111 接続管
121 揚液ポンプシステム
122 気圧変化部
123 ポンプ
124 チャンバー、124a 内部空間
125 集熱体
131 揚液ポンプシステム
132 気圧変化部
133 ポンプ
134 チャンバー、134a 内部空間
135 体積変化部、135a 液槽、135b 熱源
136 結露推進部
167 管状部材
200 揚液ポンプシステム
300 吹子
1 Pumping pump system 2 Chamber (1st chamber), 2a Internal space 3 Pressurized back (1st pressurized back), 3a 1st tapered part, 3b 2nd tapered part, 3c tension part, 3d frame 4 Pressure change part 6 Discharge passage, 9 Check valve 7 Suction passage, 11 Check valve 8 Liquid tank 12 Pump 21 Pumping pump system 22 Pressure changing part 23 Expansion back 24 First pump 25 Second pump 41 Pumping Pump system 42 Pressurizing back 43 Relay part 44 First flow path, 46 Check valve 45 Second flow path, 47 Check valve 51 Lifting pump system 52 Second chamber, 52a Internal space 53 Second addition Pressure back 54 Pressure change part 55 First connection pipe 56 Second connection pipe 57 Communication passage 58 Check valve, 58a In-shell vortex generation frame, 58b Duck bill valve 59 First pump 60 Second pump 61 Lifting pump System 62 Pressure change part 63 Pump 64 Switching part 64a Communication passage, 64g Opening part 64b Reaction force part 64c Pushing part, 64h Main body part, 64i Support part, 64j First part, 64k Second part 64d First spring 64e 2nd spring 64f slide part, 64l main body part, 64m 1st protruding part, 64n 2nd protruding part 64o 1st flow path, 64r check valve 64p 2nd flow path, 64s check valve 64q common path 65 First connecting pipe 66 Second connecting pipe 67 Third connecting pipe 71 Switching part 71a First rotor 71b Second rotor 71d Main body 71e Transmission part 71f Supporting part 71c Switching gear 71g Tooth part 71h 1 flow path, 71k check valve 71i 2nd flow path, 71l check valve 71j 2nd communication passage 81 Lifting pump system 82 2nd chamber, 82a 1st through hole, 82b 2nd through hole , 82c 3rd through hole, 82d Internal space 83 2nd pressurizing back 91 Pressure change part 92 Pump 93 Cover part, 93a Opening 100 Pumping pump system 101 Pumping pump system 102 Pressure changing part 103 Pump 104 Chamber, 104a Internal space 105 Heat collector 106 Pressure regulator 107 Chamber, 107a Internal space 108 Discharge passage, 112 Check valve 109 Liquid tank 110 Supply passage, 113 Check valve 111 Connection pipe 121 Pumping pump system 122 Pressure change unit 123 Pump 124 Chamber, 124a Internal space 125 Heat collector 131 Pump system 132 Pressure change part 133 Pump 134 Chamber, 134a Internal space 135 Volume change part, 135a Liquid tank, 135b Heat source 136 Condensation propulsion part 167 Tubular member 200 Pump pump system 300 Blower

Claims (33)

  1.  内部空間が気密空間の少なくとも一部を成し、前記内部空間に気体が収容される第1のチャンバーと、
     前記第1のチャンバーの内部空間に配置され、前記第1のチャンバーの内部空間の気圧の変化に伴って変形して、液体を吸引又は排出する第1の加圧バックと、
     前記第1のチャンバーの内部空間の気圧を変化させる気圧変化部と、
    を備え、
     前記第1のチャンバーの内部空間の気圧を変化させて前記第1の加圧バックが液体を吸引又は前記第1の加圧バックから液体を排出する場合、前記第1の加圧バックの変形によって、前記第1の加圧バックの内部の液体に揚力を発生させる、揚液ポンプシステム。
    A first chamber in which the internal space forms at least a part of the airtight space and the gas is housed in the internal space.
    A first pressurizing bag that is arranged in the internal space of the first chamber and deforms with a change in air pressure in the internal space of the first chamber to suck or discharge a liquid.
    An atmospheric pressure changing part that changes the atmospheric pressure in the internal space of the first chamber,
    With
    When the pressure in the internal space of the first chamber is changed so that the first pressurizing bag sucks the liquid or discharges the liquid from the first pressurizing bag, the deformation of the first pressurizing bag causes the liquid. , A lift pump system that generates lift in the liquid inside the first pressurizing bag.
  2.  前記第1のチャンバーの内部空間の気圧を変化させ、前記第1の加圧バックの側壁部を水平方向に変形させて当該第1の加圧バックの内部の液体を水平方向に移動させることによって、前記第1の加圧バックの内部の液体に流れを生じさせて当該液体に揚力を発生させる、請求項1に記載の揚液ポンプシステム。 By changing the air pressure in the internal space of the first chamber and horizontally deforming the side wall portion of the first pressurizing bag to move the liquid inside the first pressurizing bag in the horizontal direction. The lift pump system according to claim 1, wherein a flow is generated in the liquid inside the first pressurizing bag to generate lift in the liquid.
  3.  前記第1の加圧バックにおいて水平方向に移動させた液体をさらに下方向に移動させて渦巻流を生成することによって、前記第1の加圧バックの内部の液体に流れを生じさせて当該液体に揚力を発生させる、請求項2に記載の揚液ポンプシステム。 By further moving the liquid moved in the horizontal direction in the first pressurizing bag downward to generate a spiral flow, the liquid inside the first pressurizing bag is caused to flow and the liquid is generated. The lift pump system according to claim 2, wherein the lift is generated.
  4.  前記第1の加圧バックの下部は、当該第1の加圧バックの下方に向かって先細りする第1の先細り部を備える、請求項1乃至3のいずれか1項に記載の揚液ポンプシステム。 The pumping pump system according to any one of claims 1 to 3, wherein the lower portion of the first pressurizing bag includes a first tapering portion that tapers downward of the first pressurizing bag. ..
  5.  前記第1の加圧バックの上部は、当該第1の加圧バックの上方に向かって先細りする第2の先細り部を備え、
     前記第1の加圧バックは、菱形状であり、前記第1の加圧バックの下部から液体を吸引し、前記第1の加圧バックの上部から液体を排出する、請求項4に記載の揚液ポンプシステム。
    The upper portion of the first pressurizing bag includes a second tapered portion that tapers upward of the first pressurizing bag.
    The fourth aspect of the present invention, wherein the first pressurizing bag has a diamond shape, sucks a liquid from the lower part of the first pressurizing bag, and discharges the liquid from the upper part of the first pressurizing bag. Pumping pump system.
  6.  前記第1の加圧バックは、当該第1の加圧バックの上下方向にテンションを作用させるテンション部を備える、請求項1乃至5のいずれか1項に記載の揚液ポンプシステム。 The pump system according to any one of claims 1 to 5, wherein the first pressurizing bag includes a tension portion for applying tension in the vertical direction of the first pressurizing bag.
  7.  前記気圧変化部は、
     前記第1のチャンバーの内部空間に配置され、変形可能な拡張バックと、
     前記拡張バックに気体を供給及び当該拡張バックから気体を吸引する第1のポンプと、
    を備え、
     前記拡張バックが膨張した場合、前記拡張バックが前記第1の加圧バックの側壁部に接触する、請求項1乃至6のいずれか1項に記載の揚液ポンプシステム。
    The atmospheric pressure change part is
    An expansion bag that is placed in the internal space of the first chamber and can be deformed,
    A first pump that supplies gas to the expansion bag and sucks gas from the expansion bag,
    With
    The pumping pump system according to any one of claims 1 to 6, wherein when the expansion bag expands, the expansion bag contacts the side wall portion of the first pressurizing bag.
  8.  前記気圧変化部は、前記拡張バックを膨張させる場合、前記第1のチャンバーの内部空間の気体を吸引する第2のポンプを備える、請求項7に記載の揚液ポンプシステム。 The pump system according to claim 7, wherein the air pressure changing unit includes a second pump that sucks gas in the internal space of the first chamber when the expansion bag is expanded.
  9.  前記拡張バックと前記第1の加圧バックの側壁部とは接着されている、請求項7又は8に記載の揚液ポンプシステム。 The pumping pump system according to claim 7 or 8, wherein the expansion bag and the side wall portion of the first pressure bag are adhered to each other.
  10.  前記第1のチャンバーの内部空間に配置される複数の前記第1の加圧バックと、
     前記第1のチャンバーの内部空間で上下方向に隣接する下側の第1の加圧バックから排出される液体を収容可能であって、且つ前記上下方向に隣接する上側の第1の加圧バックに液体を排出可能に、前記第1のチャンバーの外部に配置される中継部と、
     前記下側の第1の加圧バックと前記中継部との間に配置される第1の逆止弁と、
     前記上側の第1の加圧バックと前記中継部との間に配置される第2の逆止弁と、
    を備える、請求項1乃至6のいずれか1項に記載の揚液ポンプシステム。
    A plurality of the first pressurizing bags arranged in the internal space of the first chamber, and
    In the internal space of the first chamber, the liquid discharged from the lower first pressurizing bag adjacent in the vertical direction can be accommodated, and the upper first pressurizing bag adjacent in the vertical direction can be accommodated. A relay unit arranged outside the first chamber so that the liquid can be discharged into the chamber,
    A first check valve arranged between the lower first pressurizing bag and the relay portion,
    A second check valve arranged between the upper first pressurizing bag and the relay portion,
    The pumping pump system according to any one of claims 1 to 6, wherein the pump system comprises.
  11.  前記第1のチャンバーの内部空間の気圧が上昇した場合、前記第1の逆止弁が開放して前記下側の第1の加圧バックから前記中継部に液体を排出すると共に、前記第2の逆止弁が閉塞した状態で前記上側の第1の加圧バックから液体を排出し、
     前記第1のチャンバーの内部空間の気圧が低下した場合、前記第1の逆止弁が閉塞した状態で前記下側の第1の加圧バックが液体を吸引すると共に、前記第2の逆止弁が開放して前記上側の第1の加圧バックが前記中継部から液体を吸引する、請求項10に記載の揚液ポンプシステム。
    When the air pressure in the internal space of the first chamber rises, the first check valve is opened to discharge the liquid from the lower first pressurizing bag to the relay portion, and the second check valve is discharged. With the check valve closed, the liquid is discharged from the first pressurizing back on the upper side.
    When the air pressure in the internal space of the first chamber drops, the lower first pressurizing bag sucks the liquid and the second check valve is closed while the first check valve is closed. The pump system according to claim 10, wherein the valve is opened and the upper first pressurizing bag sucks the liquid from the relay portion.
  12.  前記第1のチャンバーと接続され、前記第1のチャンバーの内部空間と共に気密空間の少なくとも一部を形成する内部空間を有する第2のチャンバーと、
     前記第2のチャンバーの内部空間に配置され、前記第1の加圧バックと直列に接続されて前記第1の加圧バックと交互に配置される第2の加圧バックと、
     前記第1の加圧バックと前記第2の加圧バックとの間に配置される逆止弁と、
    を備え、
     前記気圧変化部は、
     前記第2のチャンバーの内部空間の気圧を低下させることに伴って、前記第2の加圧バックを膨張させると共に、前記第1のチャンバーの内部空間の気圧を上昇させて、前記第1の加圧バックを収縮させ、
     前記第1のチャンバーの内部空間の気圧を低下させることに伴って、前記第1の加圧バックを膨張させると共に、前記第2のチャンバーの内部空間の気圧を上昇させて、前記第2の加圧バックを収縮させる、請求項1乃至6のいずれか1項に記載の揚液ポンプシステム。
    A second chamber connected to the first chamber and having an internal space forming at least a part of the airtight space together with the internal space of the first chamber.
    A second pressurizing bag arranged in the internal space of the second chamber, connected in series with the first pressurizing bag, and alternately arranged with the first pressurizing bag.
    A check valve arranged between the first pressurizing bag and the second pressurizing bag,
    With
    The atmospheric pressure change part is
    As the air pressure in the internal space of the second chamber is lowered, the second pressurizing bag is expanded and the air pressure in the internal space of the first chamber is increased to increase the pressure in the first chamber. Shrink the pressure chamber,
    As the air pressure in the internal space of the first chamber is lowered, the first pressurizing bag is expanded and the air pressure in the internal space of the second chamber is increased to increase the pressure in the second chamber. The pump system according to any one of claims 1 to 6, wherein the pressure back is contracted.
  13.  前記第2の加圧バックの下部は、当該第2の加圧バックの下方に向かって先細りする第1の先細り部を備える、請求項12に記載の揚液ポンプシステム。 The pumping pump system according to claim 12, wherein the lower portion of the second pressurizing bag includes a first tapering portion that tapers downward of the second pressurizing bag.
  14.  前記第2の加圧バックの上部は、当該第2の加圧バックの上方に向かって先細りする第2の先細り部を備え、
     前記第2の加圧バックは、菱形状であり、前記第2の加圧バックの下部から液体を吸引し、前記第2の加圧バックの上部から液体を排出する、請求項13に記載の揚液ポンプシステム。
    The upper portion of the second pressurizing bag includes a second tapered portion that tapers upward of the second pressurizing bag.
    13. The thirteenth aspect of the present invention, wherein the second pressurizing bag has a diamond shape, sucks liquid from the lower part of the second pressurizing bag, and discharges the liquid from the upper part of the second pressurizing bag. Pumping pump system.
  15.  前記第2の加圧バックは、当該第2の加圧バックの上下方向にテンションを作用させるテンション部を備える、請求項12乃至14のいずれか1項に記載の揚液ポンプシステム。 The pump system according to any one of claims 12 to 14, wherein the second pressurizing bag includes a tension portion for applying tension in the vertical direction of the second pressurizing bag.
  16.  前記第1の加圧バックと前記第2の加圧バックとの一部は、上下方向で重なるように配置されている、請求項12乃至15のいずれか1項に記載の揚液ポンプシステム。 The pump system according to any one of claims 12 to 15, wherein a part of the first pressurizing bag and the second pressurizing bag is arranged so as to overlap in the vertical direction.
  17.  前記逆止弁の排出口は、真下又斜め下方に向かって配置されている、請求項12乃至16のいずれか1項に記載の揚液ポンプシステム。 The pump system according to any one of claims 12 to 16, wherein the outlet of the check valve is arranged directly below or diagonally downward.
  18.  前記第2の加圧バック毎に前記第2のチャンバーを備え、
     前記第2のチャンバーは、前記第1のチャンバーの外周部に固定されている、請求項12乃至17のいずれか1項に記載の揚液ポンプシステム。
    Each of the second pressurizing bags is provided with the second chamber.
    The pump system according to any one of claims 12 to 17, wherein the second chamber is fixed to an outer peripheral portion of the first chamber.
  19.  前記気圧変化部は、
     前記第1のチャンバーの内部空間の気体を前記第2のチャンバーの内部空間に移動させる第1のポンプと、
     前記第2のチャンバーの内部空間の気体を前記第1のチャンバーの内部空間に移動させる第2のポンプと、
    を備える、請求項12乃至18のいずれか1項に記載の揚液ポンプシステム。
    The atmospheric pressure change part is
    A first pump that moves the gas in the internal space of the first chamber to the internal space of the second chamber, and
    A second pump that moves the gas in the internal space of the second chamber to the internal space of the first chamber, and
    The pumping pump system according to any one of claims 12 to 18.
  20.  前記気圧変化部は、
     前記第1のチャンバーの内部空間の気体が前記第2のチャンバーの内部空間に向かって流れる第1の流路と、
     前記第2のチャンバーの内部空間の気体が前記第1のチャンバーの内部空間に向かって流れる第2の流路と、
     前記第1のチャンバー又は前記第2のチャンバーの一方の内部空間の気体を吸引し、前記第1のチャンバー又は前記第2のチャンバーの他方の内部空間に排出できるように、前記第1の流路又は前記第2の流路に接続されるポンプと、
     前記第1の流路による前記第1のチャンバーと前記第2のチャンバーとの接続と、前記第2の流路による前記第1のチャンバーと前記第2のチャンバーとの接続と、を切り替える切り替え部と、
    を備える、請求項12乃至18のいずれか1項に記載の揚液ポンプシステム。
    The atmospheric pressure change part is
    The first flow path through which the gas in the internal space of the first chamber flows toward the internal space of the second chamber, and
    A second flow path through which the gas in the internal space of the second chamber flows toward the internal space of the first chamber, and
    The first flow path so that the gas in the internal space of one of the first chamber or the second chamber can be sucked and discharged to the other internal space of the first chamber or the second chamber. Or with the pump connected to the second flow path,
    A switching unit that switches between the connection between the first chamber and the second chamber by the first flow path and the connection between the first chamber and the second chamber by the second flow path. When,
    The pumping pump system according to any one of claims 12 to 18.
  21.  前記切り替え部は、前記ポンプの排出圧力が予め設定された第1の閾値以上になった場合、前記第1の流路又は前記第2の流路の一方で前記第1のチャンバーと前記第2のチャンバーとを接続し、前記ポンプの吸引圧力が予め設定された第2の閾値以上になった場合、前記第1の流路又は前記第2の流路の他方で前記第1のチャンバーと前記第2のチャンバーとを接続する、請求項20に記載の揚液ポンプシステム。 When the discharge pressure of the pump becomes equal to or higher than a preset first threshold value, the switching unit has the first chamber and the second chamber on either side of the first flow path or the second flow path. When the suction pressure of the pump becomes equal to or higher than a preset second threshold value, the first chamber and the first chamber and the other of the first flow path or the second flow path are connected. The pump system according to claim 20, which connects to a second chamber.
  22.  前記ポンプは、前記切り替え部に接続される第3のチャンバーを備えており、太陽光を受けて前記第3のチャンバーの内部空間の気体を暖めることで当該内部空間の気圧が上昇し、太陽光の減少により前記内部空間の気体を冷やすことで当該内部空間の気圧が低下する、請求項20又は21に記載の揚液ポンプシステム。 The pump includes a third chamber connected to the switching portion, and by receiving sunlight and warming the gas in the internal space of the third chamber, the pressure in the internal space rises, and sunlight The pump system according to claim 20 or 21, wherein the pressure in the internal space is lowered by cooling the gas in the internal space due to the decrease in the amount of the gas.
  23.  前記ポンプは、海面を覆い、且つ、開口部を介して海水の出入りが可能な覆い部を備え、
     前記覆い部は、前記切り替え部に接続されており、
     前記覆い部の内部の前記海面の高さの変化に応じて、前記覆い部の内部空間の気圧が変化する、請求項20又は21に記載の揚液ポンプシステム。
    The pump covers the surface of the sea and includes a cover that allows seawater to enter and exit through an opening.
    The covering portion is connected to the switching portion and is connected to the switching portion.
    The pump system according to claim 20 or 21, wherein the air pressure in the internal space of the covering portion changes according to a change in the height of the sea surface inside the covering portion.
  24.  前記ポンプは、
     前記切り替え部に接続される第3のチャンバーと、
     前記第3のチャンバーの内部空間に配置され、液体を気化又は霧化させる体積変化部と、
     前記第3のチャンバーの内部空間に配置され、結露を推進させる結露推進部と、
    を備え、
     前記体積変化部の稼働と停止とを切り替えることで、前記第3のチャンバーの内部空間の気体を変化させる、請求項20又は21に記載の揚液ポンプシステム。
    The pump
    A third chamber connected to the switching portion and
    A volume change part that is arranged in the internal space of the third chamber and vaporizes or atomizes the liquid.
    A dew condensation propulsion unit, which is arranged in the internal space of the third chamber and promotes dew condensation,
    With
    The pump system according to claim 20 or 21, wherein the gas in the internal space of the third chamber is changed by switching between the operation and the stop of the volume changing portion.
  25.  前記第1のチャンバーの内部空間の気圧が予め設定された第3の閾値より高くなると、前記気圧を少なくとも前記第3の閾値まで低下させ、前記第1のチャンバーの内部空間の気圧が予め設定された第4の閾値より低くなると、前記気圧を少なくとも前記第4の閾値まで上昇させる気圧調整部を備える、請求項1乃至24のいずれか1項に記載の揚液ポンプシステム。 When the air pressure in the internal space of the first chamber becomes higher than the preset third threshold value, the air pressure is lowered to at least the third threshold value, and the air pressure in the internal space of the first chamber is preset. The pumping pump system according to any one of claims 1 to 24, comprising a pressure adjusting unit that raises the air pressure to at least the fourth threshold when the pressure becomes lower than the fourth threshold value.
  26.  前記気圧調整部は、
     前記第1のチャンバーと接続され、液体が収容される第4のチャンバーと、
     前記第4のチャンバーの内部空間から当該第4のチャンバーの外部に通され、第3の逆止弁が設けられた排出路と、
     前記第4のチャンバーの外部に配置され、液体が収容される液槽と、
     前記液槽から前記第4のチャンバーの内部空間に通され、第4の逆止弁が設けられた供給路と、
    を備え、
     前記第1のチャンバーの内部空間の気圧が前記第3の閾値より高くなった場合、前記第4のチャンバーに収容された液体が前記排出路を登って前記液槽に排出され、前記第4のチャンバーに収容された液体が排出されると、前記第1のチャンバーの内部空間の気体が前記排出路を介して排出され、前記第1のチャンバーの内部空間の気圧が少なくとも前記第3の閾値まで低下すると、前記第3の逆止弁が閉塞し、
     前記第1のチャンバーの内部空間の気圧が前記第4の閾値より低くなった場合、前記液槽に収容された液体が前記供給路を登って前記第4のチャンバーの内部空間に吸引され、前記液槽に収容された液体が吸引されると、前記第4のチャンバーの外部の気体が前記供給路を介して前記第1のチャンバーの内部空間に吸引され、前記第1のチャンバーの内部空間の気圧が少なくとも前記第4の閾値まで上昇すると、前記第4の逆止弁が閉塞する、請求項25に記載の揚液ポンプシステム。
    The atmospheric pressure adjusting unit
    A fourth chamber connected to the first chamber and containing a liquid,
    A discharge path that is passed from the internal space of the fourth chamber to the outside of the fourth chamber and provided with a third check valve, and
    A liquid tank arranged outside the fourth chamber and containing a liquid, and a liquid tank.
    A supply path that is passed from the liquid tank to the internal space of the fourth chamber and provided with a fourth check valve, and
    With
    When the pressure in the internal space of the first chamber becomes higher than the third threshold value, the liquid contained in the fourth chamber is discharged up the discharge path to the liquid tank, and the liquid contained in the fourth chamber is discharged to the liquid tank. When the liquid contained in the chamber is discharged, the gas in the internal space of the first chamber is discharged through the discharge path, and the pressure in the internal space of the first chamber reaches at least the third threshold value. When lowered, the third check valve is closed and the third check valve is blocked.
    When the pressure in the internal space of the first chamber becomes lower than the fourth threshold value, the liquid contained in the liquid tank is sucked up the supply path into the internal space of the fourth chamber, and the liquid is sucked into the internal space of the fourth chamber. When the liquid contained in the liquid tank is sucked, the gas outside the fourth chamber is sucked into the internal space of the first chamber through the supply path, and the gas inside the first chamber is sucked. 25. The pumping system according to claim 25, wherein the fourth check valve is closed when the pressure rises to at least the fourth threshold.
  27.  前記第1のチャンバーが前記液体を吸入する吸入路に設けられ、吸入方向への前記液体の流れを許容し、逆方向への前記液体の流れを遮断する第1の逆止弁と、
     前記第1のチャンバーが前記液体を排出する排出路に設けられ、排出方向への前記液体の流れを許容し、逆方向への前記液体の流れを遮断する第2の逆止弁を設けた、請求項1乃至9いずれか1項に記載の揚液ポンプシステム。
    A first check valve provided with the first chamber in a suction path for sucking the liquid, allowing the flow of the liquid in the suction direction and blocking the flow of the liquid in the opposite direction.
    The first chamber is provided in a discharge path for discharging the liquid, and a second check valve is provided to allow the flow of the liquid in the discharge direction and block the flow of the liquid in the opposite direction. The pumping system according to any one of claims 1 to 9.
  28.  前記第1の逆止弁及び前記第2の逆止弁は、それぞれ、
     開状態のときに前記液体が鉛直方向に流れるよう配置されたバルブと、
     前記バルブを保持し、前記バルブからの前記液体が流れる領域の周囲に、下面から上昇する空気の流れを前記液体が流れる領域の近傍で下方に導く渦流生成部を有する渦流生成フレームとを備えた請求項27に記載の揚液ポンプシステム。
    The first check valve and the second check valve are respectively.
    A valve arranged so that the liquid flows in the vertical direction when in the open state,
    A vortex generation frame having a vortex generating portion that holds the valve and guides the flow of air rising from the lower surface downward in the vicinity of the region where the liquid flows is provided around the region where the liquid flows from the valve. The pump system according to claim 27.
  29.  前記第1の加圧バックは、正面視で、上側を略円形状とし、下側を先細り形状とした逆水滴形状であり、当該第1の加圧バックの加圧時及び減圧時に内部の液体による渦巻流を発生させる、請求項1乃至28いずれか1項に記載の揚液ポンプシステム。 The first pressurizing bag has a reverse water droplet shape with a substantially circular shape on the upper side and a tapered shape on the lower side in front view, and the liquid inside during pressurization and decompression of the first pressurizing bag. The pumping system according to any one of claims 1 to 28, which generates a swirling flow according to the above.
  30.  前記第1の加圧バックは、前記液体を吸入する吸入路と前記液体を排出する排出路とを連結し、多数の孔が開いた管状部材を有する、請求項1乃至29いずれか1項に記載の揚液ポンプシステム。 The first pressurizing bag connects the suction path for sucking the liquid and the discharge path for discharging the liquid, and has a tubular member having a large number of holes, according to any one of claims 1 to 29. The pump system described.
  31.  前記第1の加圧バックは、最外周の縁部分に当該第1の加圧バックの正面形状を保持するためのフレームを内蔵する、請求項1乃至30いずれか1項に記載の揚液ポンプシステム。 The pump according to any one of claims 1 to 30, wherein the first pressurizing bag includes a frame for holding the front shape of the first pressurizing bag at the outermost peripheral edge portion. system.
  32.  内部空間が気密空間の少なくとも一部を成し、内部空間に気体が収容される第1のチャンバーと、
     前記第1のチャンバーの内部空間に配置され、前記第1のチャンバーの内部空間の気圧の変化に伴って変形して、液体を吸引又は排出する第1の加圧バックと、
     内部空間が気密空間の少なくとも一部を成し、内部空間に気体が収容される第2のチャンバーと、
     前記第2のチャンバーの内部空間に配置され、前記第1の加圧バックと直列に接続されて前記第1の加圧バックと交互に配置される第2の加圧バックと、
     内部空間が気密空間の少なくとも一部を成し、内部空間に気体が収容される第3のチャンバーと、
     前記第3のチャンバーの内部空間に配置され、前記第3のチャンバーの内部空間の気圧の変化に伴って変形して、液体を吸引又は排出する第3の加圧バックと、
     内部空間が気密空間の少なくとも一部を成し、内部空間に気体が収容される第4のチャンバーと、
     前記第4のチャンバーの内部空間に配置され、前記第3の加圧バックと直列に接続されて前記第3の加圧バックと交互に配置される第4の加圧バックと、
     前記第1の加圧バックと前記第2の加圧バックとの間、及び前記第3の加圧バックと前記第4の加圧バックとの間に配置される複数の逆止弁と、
     前記第1のチャンバー、第2のチャンバー、第3のチャンバー及び第4のチャンバーのそれぞれの内部空間の気圧を変化させる気圧変化部とを備え、
     前記気圧変化部は、
     前記第2のチャンバーの内部空間の気圧を低下させることに伴って、前記第2の加圧バックを膨張させると共に、前記第1のチャンバーの内部空間の気圧を上昇させて、前記第1の加圧バックを収縮させ、
     前記第1のチャンバーの内部空間の気圧を低下させることに伴って、前記第1の加圧バックを膨張させると共に、前記第2のチャンバーの内部空間の気圧を上昇させて、前記第2の加圧バックを収縮させる、
     前記第3のチャンバーの内部空間の気圧を低下させることに伴って、前記第4の加圧バックを膨張させると共に、前記第3のチャンバーの内部空間の気圧を上昇させて、前記第3の加圧バックを収縮させ、
     前記第3のチャンバーの内部空間の気圧を低下させることに伴って、前記第3の加圧バックを膨張させると共に、前記第4のチャンバーの内部空間の気圧を上昇させて、前記第4の加圧バックを収縮させる、
    揚液ポンプシステム。
    A first chamber in which the interior space forms at least a part of the airtight space and the gas is housed in the interior space.
    A first pressurizing bag that is arranged in the internal space of the first chamber and deforms with a change in air pressure in the internal space of the first chamber to suck or discharge a liquid.
    A second chamber in which the interior space forms at least a part of the airtight space and the gas is housed in the interior space.
    A second pressurizing bag arranged in the internal space of the second chamber, connected in series with the first pressurizing bag, and alternately arranged with the first pressurizing bag.
    A third chamber in which the interior space forms at least a part of the airtight space and the gas is housed in the interior space.
    A third pressurizing back, which is arranged in the internal space of the third chamber and deforms with a change in the air pressure in the internal space of the third chamber to suck or discharge the liquid.
    A fourth chamber in which the interior space forms at least a part of the airtight space and the gas is housed in the interior space.
    A fourth pressurizing bag arranged in the internal space of the fourth chamber, connected in series with the third pressurizing bag, and alternately arranged with the third pressurizing bag.
    A plurality of check valves arranged between the first pressurizing bag and the second pressurizing bag, and between the third pressurizing bag and the fourth pressurizing bag.
    The first chamber, the second chamber, the third chamber, and the fourth chamber are each provided with a pressure changing portion that changes the pressure in the internal space of each of the first chamber, the second chamber, and the fourth chamber.
    The atmospheric pressure change part is
    As the air pressure in the internal space of the second chamber is lowered, the second pressurizing bag is expanded and the air pressure in the internal space of the first chamber is increased to increase the pressure in the first chamber. Shrink the pressure chamber,
    As the air pressure in the internal space of the first chamber is lowered, the first pressurizing bag is expanded and the air pressure in the internal space of the second chamber is increased to increase the pressure in the second chamber. Shrink the pressure chamber,
    As the air pressure in the internal space of the third chamber is lowered, the fourth pressurizing bag is expanded and the air pressure in the internal space of the third chamber is increased to increase the pressure in the third chamber. Shrink the pressure chamber,
    Along with lowering the air pressure in the internal space of the third chamber, the third pressurizing bag is expanded and the air pressure in the internal space of the fourth chamber is increased to increase the pressure in the fourth chamber. Shrink the pressure chamber,
    Pumping pump system.
  33.  前記気圧変化部は、
     前記第1のチャンバー及び前記第4のチャンバーに接続された第1の接続菅に接続された第1の吹子と、
     前記第2のチャンバーと前記3のチャンバーに接続された第2の接続菅に対して接続された第2の吹子とを有し、
     前記第1の吹子により加圧するときは前記第2の吹子により減圧し、前記第1の吹子により減圧するときは前記第2の吹子により加圧する、
    請求項32記載の揚液ポンプシステム。
    The atmospheric pressure change part is
    A first blower connected to the first chamber and a first connecting tube connected to the fourth chamber,
    It has a second chamber and a second blower connected to a second connecting tube connected to the third chamber.
    When the pressure is reduced by the first blower, the pressure is reduced by the second blower, and when the pressure is reduced by the first blower, the pressure is reduced by the second blower.
    The pump system according to claim 32.
PCT/JP2020/038849 2019-10-21 2020-10-15 Liquid pump system WO2021079814A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/041345 WO2021079409A1 (en) 2019-10-21 2019-10-21 Liquid pump system
JPPCT/JP2019/041345 2019-10-21

Publications (1)

Publication Number Publication Date
WO2021079814A1 true WO2021079814A1 (en) 2021-04-29

Family

ID=75619441

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/041345 WO2021079409A1 (en) 2019-10-21 2019-10-21 Liquid pump system
PCT/JP2020/038849 WO2021079814A1 (en) 2019-10-21 2020-10-15 Liquid pump system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041345 WO2021079409A1 (en) 2019-10-21 2019-10-21 Liquid pump system

Country Status (1)

Country Link
WO (2) WO2021079409A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139354A (en) * 1981-02-23 1982-08-28 Kogyo Gijutsuin Blood pump
JPS5968575A (en) * 1982-10-13 1984-04-18 Jgc Corp Temperature difference pump for pumping-up liquid
JPS6135866A (en) * 1984-07-27 1986-02-20 Nippon Soken Inc Self-oscillation type fluid scattering element
JPS61201889A (en) * 1985-03-04 1986-09-06 インステイテユト・セラツク・エス・エイ Fluid pump
US5145338A (en) * 1990-12-12 1992-09-08 Murray Robert H Low pressure fluid pump
JP2004116367A (en) * 2002-09-25 2004-04-15 Matsushita Electric Works Ltd Fluid discharging device
US20160030954A1 (en) * 2012-12-12 2016-02-04 Bowles Fluidics Corporation Owl, Double-bowl and slot-bump fluidic oscillator circuits, improved fluidic nozzle assemblies and methods for generating sprays with enhanced cold performance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532799U (en) * 1991-09-30 1993-04-30 株式会社鶴見製作所 Vacuum suction device suction line
JP2007154767A (en) * 2005-12-06 2007-06-21 Iwaki Co Ltd Tube pump
WO2016185502A1 (en) * 2015-05-15 2016-11-24 啓一 中島 Plant cultivation device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139354A (en) * 1981-02-23 1982-08-28 Kogyo Gijutsuin Blood pump
JPS5968575A (en) * 1982-10-13 1984-04-18 Jgc Corp Temperature difference pump for pumping-up liquid
JPS6135866A (en) * 1984-07-27 1986-02-20 Nippon Soken Inc Self-oscillation type fluid scattering element
JPS61201889A (en) * 1985-03-04 1986-09-06 インステイテユト・セラツク・エス・エイ Fluid pump
US5145338A (en) * 1990-12-12 1992-09-08 Murray Robert H Low pressure fluid pump
JP2004116367A (en) * 2002-09-25 2004-04-15 Matsushita Electric Works Ltd Fluid discharging device
US20160030954A1 (en) * 2012-12-12 2016-02-04 Bowles Fluidics Corporation Owl, Double-bowl and slot-bump fluidic oscillator circuits, improved fluidic nozzle assemblies and methods for generating sprays with enhanced cold performance

Also Published As

Publication number Publication date
WO2021079409A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
US8581432B2 (en) Ocean wave energy converter capturing heave, surge and pitch motion
GB2589750A (en) Inertial pneumatic wave energy device
US7795748B2 (en) System and process for generating hydroelectric power
JP6486868B2 (en) Energy conversion unit that converts reciprocating external force into rotary shaft motion
US8446030B2 (en) Offshore floating ocean energy system
NL1015196C2 (en) Device for storing potential energy.
US20100308589A1 (en) Heaving ocean wave energy converter
JP2008534839A5 (en)
JP6306505B2 (en) Floating wave energy converter with control device
JP2001516416A (en) A device that converts energy from vertical movements of seawater
WO2013033667A1 (en) Ocean wave energy converter with multple capture modes
ES2755781T3 (en) Apparatus using buoyancy forces and method of using the same
AU2011242392B2 (en) Hydrodynamic cycle generation technology
WO2009083965A2 (en) System and method for producing electrical power from waves
CN106827989B (en) A kind of amphibious Multipurpose caravan compartment
JP2009537719A (en) Wave energy generator
TW201447105A (en) Systems, methods and apparatuses for harvesting power generated in a footwear
WO2006025936A1 (en) System for generating fluid movement
US6831373B1 (en) Hydropower generation apparatus and method
WO2021079814A1 (en) Liquid pump system
PT2171263T (en) Wave energy converter
DK166969B1 (en) HUMAN POWER PLANT
US20150183500A1 (en) Method for Air-Driven Propulsion of a Vessel and Air-Driven Vessel
JP4364427B2 (en) Energy converter from wave motion
US10711760B2 (en) Wave energy converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP