WO2021079759A1 - Method for producing dna-edited plant cell, and kit to be used therein - Google Patents

Method for producing dna-edited plant cell, and kit to be used therein Download PDF

Info

Publication number
WO2021079759A1
WO2021079759A1 PCT/JP2020/038323 JP2020038323W WO2021079759A1 WO 2021079759 A1 WO2021079759 A1 WO 2021079759A1 JP 2020038323 W JP2020038323 W JP 2020038323W WO 2021079759 A1 WO2021079759 A1 WO 2021079759A1
Authority
WO
WIPO (PCT)
Prior art keywords
base sequence
sequence
guide rna
protein
base
Prior art date
Application number
PCT/JP2020/038323
Other languages
French (fr)
Japanese (ja)
Inventor
啓明 雑賀
精一 土岐
秀隆 賀屋
Original Assignee
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立研究開発法人農業・食品産業技術総合研究機構
Priority to JP2021554273A priority Critical patent/JP7452884B2/en
Publication of WO2021079759A1 publication Critical patent/WO2021079759A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a method for producing a plant cell in which DNA has been edited, and a kit for using the method.
  • Target recombination gene targeting
  • Target recombination is a technique capable of various modifications such as deletion, insertion, and substitution from the base level to the gene level with respect to the target DNA.
  • it is possible to modify the enzyme activity by introducing an amino acid substitution into a region that controls the enzyme activity.
  • the positive / negative selection method using two types of selection markers is general-purpose, and theoretically, the target base sequence is not limited.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2015-). No. 177788, Patent Document 2: Japanese Unexamined Patent Publication No. 2015-171358).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2015-.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2015-171358.
  • the efficiency of target recombination generally tends to be low.
  • Target mutation techniques include modified MNs in which the recognition sequence of meganucleases (MNs) that specifically recognize sequences around 20 bases is improved by techniques such as protein engineering, and a combination of existing DNA binding motifs and DNA cleavage motifs.
  • MNs meganucleases
  • the enzymes ZFNs and TALENs, and the CRISPR-Cas9 system applying the prokaryotic acquisition immune system have been developed (Non-Patent Document 1: Kim and Kim (2014) Nature Rev. Genet.).
  • the CRISPR-Cas9 system functions in a variety of species, including plants, and researchers around the world. It is a general-purpose gene modification tool used by.
  • mutations that can be generated by this method are mainly deletions or insertions of a few bases, and many of them result in gene disruption due to frameshifting. Therefore, it is not suitable for high-precision DNA editing that requires base substitution, for example, functional modification of enzyme protein by amino acid substitution or addition of new function.
  • the target base of the target DNA can be replaced by combining the Cas9 protein and the base deamination enzyme, and so far, C to T (G to A) can be used by using cytidine deaminase. ), It has been reported that the substitution from A to G (T to C) can be induced by using adenosine deaminase (Non-Patent Document 2: Kim (2016) Nat. Plants).
  • base substitution introduction techniques other than C to T (G to A) or A to G (T to C) have not yet been established, and the positions of bases that can be substituted are also limited.
  • the base on which the deamination enzyme acts cannot be determined exactly, the Cas9 protein cannot always recognize an arbitrary sequence, etc., so that the base substitution location and the type of substitution that can be introduced, etc. Is limited.
  • Non-Patent Document 3 Halperin et al. (2016) Catalyst.
  • Non-Patent Document 4 Nishizawa-Yokoi et al. (Non-Patent Document 4: Nishizawa-Yokoi et al.). 2016) Plant Physiol.).
  • one of the intracellular genomic loci or Methods of modifying (eg, introducing mutations) multiple allelic genes include methods involving the generation of chimeric splicing RNA molecules, including transcribed exons spliced into a nuclease-interacting RNA segment.
  • chimeric splicing RNA guides a DNA modifying enzyme (eg, a nuclease) to a genomic locus in a cell, resulting in modification of that locus, as said to be CRISPR-related (eg, nuclease).
  • Cas nuclease is mentioned.
  • Patent Document 4 describes the composition and method for modifying the genome at the target site in the genome of filamentous fungal cells in order to modify or modify the target site.
  • a guide polynucleotide / Cas endonuclease system for the purpose is described
  • Patent Document 5 describes a gene modification in a fungal host cell (for example, a filamentous fungal host cell).
  • a fungal host cell for example, a filamentous fungal host cell.
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2017-537647 (Patent Document 6) and Japanese Patent Application Laid-Open No. 2018-504895 (Patent Document 7) are used for genome modification at a target site in the genome of a fungal cell or filamentous fungal cell.
  • Patent Document 7 a guide polynucleotide / Cas endonuclease system for facilitating the insertion of donor DNA at a target site in a fungal host cell or filamentous fungal cell genome has been described.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and is a method for producing a DNA-edited plant cell capable of inserting one base with high frequency and capable of high-precision DNA editing. , And the kits used for it.
  • Cas9 Cert protein of CRISPR-Cas9
  • Cas9 CAstered regularly interspaced short palindromic repeats / CRISPR assisted protein 9
  • NmCas9 protein 1-base insertion can occur more frequently than the conventionally used target mutation using the SpCas9 protein, and T or A tends to be inserted more easily. I found that. No such report has ever been made with other Cas9 proteins.
  • the present inventors insert a plurality of desired bases (for example, 3 bases) into the target DNA region by utilizing the target mutation by the NmCas9 protein that enables high-frequency insertion of 1 base.
  • desired bases for example, 3 bases
  • a method for producing a DNA-edited plant cell which comprises the step of introducing a CRISPR-Cas9 system having a Cas9 protein and its guide RNA as a component into the plant cell, and the Cas9 protein is derived from Neisseria meningitidis. There is a way.
  • a method of inserting n consecutive bases into the DNA of a plant cell which comprises the step of introducing a CRISPR-Cas9 system having a Cas9 protein and its guide RNA as components into the plant cell.
  • the Cas9 protein is derived from Neisseria meningitidis and
  • the guide RNA is a combination of n guide RNAs.
  • n is a natural number of 2 or more
  • the first guide RNA contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the nth guide RNA has n-1 in the target base sequence 1. It contains a targeting base sequence n that is homologous to the target base sequence n into which the base is inserted.
  • Method. It is a method of substituting a base in the DNA of a plant cell, and in the plant cell, a Cas9 protein derived from Neisseria meningitidis and a CRISPR-Cas9 system having a guide RNA thereof as a constituent, and a Cas9 protein other than the Cas9 protein derived from Neisseria meningitidis are added.
  • the guide RNA of the Cas9 protein derived from Neisseria meningitidis contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the guide RNA of the other Cas9 protein is the target base. It contains a targeting base sequence 2 that is homologous to the target base sequence 2 in which one base is inserted into the sequence 1.
  • the guide RNA is a combination of n guide RNAs. n is a natural number of 2 or more,
  • the first guide RNA contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the nth guide RNA has n-1 in the target base sequence 1.
  • the kit contains a targeting base sequence n that is homologous to the target base sequence n into which the base is inserted.
  • the kit according to [5]. [7] The following (C) and (D): (C) Cas9 protein other than Cas9 protein derived from Neisseria meningitidis, a polynucleotide encoding the protein, or a vector expressing the polynucleotide, (D) A guide RNA of the other Cas9 protein, a polynucleotide encoding the guide RNA, or a vector expressing the polynucleotide.
  • the guide RNA of the Cas9 protein derived from Neisseria meningitidis contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the guide RNA of the other Cas9 protein is the target base. It contains a targeting base sequence 2 that is homologous to the target base sequence 2 in which one base is inserted into the sequence 1.
  • a CRISPR-Cas9 system which is particularly prone to single base deletion, is used in combination to delete one base existing in the target base sequence after inserting one base into the target base sequence. , It is also possible to replace the base efficiently.
  • the present invention comprises the step of introducing a CRISPR-Cas9 system having a Cas9 protein and its guide RNA as a component into a plant cell, and a DNA-edited plant cell in which the Cas9 protein is derived from Neisseria meningitidis.
  • a method for producing hereinafter, in some cases, referred to as "DNA-edited plant cell manufacturing method").
  • Plant cells examples of “plant cells” that edit DNA in the present invention, that is, introduce the CRISPR-Cas9 system, include cells of cereals, oil crops, forage crops, fruits, and vegetables.
  • the "plant cell” includes, for example, cells constituting an individual plant, cells constituting an organ or tissue separated from a plant, and cultured cells derived from a plant tissue.
  • plant organs and tissues include leaves, stems, shoot apex (growth point), roots, tubers, tubers, seeds and callus.
  • Examples of plants include rice, barley, wheat, rye, barnyard millet, sorghum, corn, banana, peanut, sunflower, tomato, abrana, tobacco, potato, soybean, cotton and carnation.
  • grasses such as rice, barley, wheat, rye, barnyard grass, sorghum, and corn are preferable, and rice is particularly preferable.
  • the DNA (target DNA) edited by the present invention is not particularly limited as long as it contains the PAM sequence of the following NmCas9 protein. As will be described later, it is also possible to modify the recognition specificity of PAM according to the base sequence of the target DNA by modifying the Cas9 protein (for example, introducing a mutation).
  • the CRISPR-Cas9 system contains at least Cas9 protein and its guide RNA as components.
  • the guide RNA is added to a complementary sequence (a sequence on the antisense strand of the sense strand) of the target base sequence (for example, a sequence on the gene to be deleted and on the strand (sense strand) containing the PAM sequence). It consists of crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) having a complementary base sequence (that is, a sequence homologous to the target base sequence).
  • Cas9 protein and its guide RNA are introduced into cells so that the guide RNA binds to the complementary sequence of the target base sequence of genomic DNA and forms a complex with the guide RNA. Induces cleavage of the target DNA by the protein. In the cleaved target DNA, deletion / insertion of a base in the base sequence is caused in the repair process, and as a result, the gene can be edited.
  • NmCas9 protein In the present invention, as the CRISPR-Cas9 system, at least a Cas9 protein derived from Neisseria meningitidis is used.
  • the Cas9 protein derived from Neisseria meningitidis is referred to as "NmCas9 protein”.
  • the typical amino acid sequence of the "NmCas9 protein" used in the present invention is shown in SEQ ID NO: 1, and the base sequence of the DNA encoding the protein is shown in SEQ ID NO: 2.
  • Table 1 shows the size (number of amino acids) of the wild-type NmCas9 protein (NmCas9), the PAM (proto-spacer adaptive motif) sequence, and the DNA cleavage end (DNA end).
  • the PAM sequence of a typical NmCas9 protein is "5'-NNNNGATT".
  • Cas9 protein (SpCas9) derived from Streptococcus pyogenes, Cpf1 protein (FnCpf1) derived from Francisella novicida, Cas9 protein derived from Staphylococcus aureus (Staphylococcus aureus)
  • CjCas9 protein For the derived Cas9 protein (CjCas9), typical size (number of amino acids), PAM sequence, DNA cleavage end (DNA end), and reference reference name in some cases are also shown.
  • the "NmCas9 protein” according to the present invention is a homologue, a mutant, or a variant of the above-mentioned typical NmCas9 protein as long as it has an activity (nuclease activity) of forming a complex with a guide RNA and cleaving the target DNA. It may be a partial peptide.
  • the homologs include, for example, the typical amino acid sequence of the NmCas9 protein (eg, the amino acid sequence of SEQ ID NO: 1) and 85% or more, preferably 90% or more, more preferably 95% or more (eg, 96% or more).
  • a protein consisting of an amino acid sequence having 97% or more, 98% or more, 99% or more) identity is included. Sequence identity can be evaluated numerically as calculated using BLAST or the like (eg, default or default parameters).
  • NmCas9 protein As a variant, from an amino acid sequence in which one or more amino acids are substituted, deleted, added, or inserted into a typical amino acid sequence of NmCas9 protein (for example, the amino acid sequence of SEQ ID NO: 1). It contains proteins that have the activity of forming a complex with the guide RNA and cleaving the target DNA.
  • “plurality” means, for example, 2 to 150 pieces, preferably 2 to 100 pieces, more preferably 2 to 50 pieces (for example, 2 to 30 pieces, 2 to 10 pieces, 2 to 5 pieces, 2). ⁇ 3 pieces, 2 pieces).
  • variants include the NmCas9 protein, which has modified the recognition specificity of PAM by introducing a mutation into a specific amino acid residue.
  • the NmCas9 protein according to the present invention is preferably one to which a nuclear localization signal is added. This promotes localization to the nucleus in the cell, resulting in efficient DNA editing.
  • the "guide RNA” is a combination of crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA).
  • the guide RNA of the NmCas9 protein according to the present invention has a base sequence complementary to the base sequence of the target DNA region (complementary sequence of the target base sequence) (hereinafter, sometimes referred to as “targeted base sequence”) in crRNA. Including. That is, the guide RNA of the NmCas9 protein according to the present invention contains a targeting base sequence that is homologous to the target base sequence.
  • the term "homologous" with respect to the first base sequence means that the second base sequence is complementary to the complementary sequence of the first base sequence.
  • the base sequences are in the same relationship with each other, and either the first base sequence or the second base sequence
  • one is DNA and the other is RNA it means that their base sequences are in the same relationship with each other except that the base which is timine (T) in DNA is uracil (U) in RNA.
  • the "target DNA region” means a region on the target DNA of a plant cell that includes a target base sequence and a site that causes a target gene modification (insertion / substitution of a base).
  • the target DNA region is adjacent to the PAM sequence on its 3'side.
  • the targeting base sequence in crRNA is usually a base sequence consisting of 12 to 50 bases, preferably 17 to 30 bases, and more preferably 17 to 25 bases.
  • the crRNA further contains a base sequence capable of interacting (hybridizing) with tracrRNA on the 3'side.
  • tracrRNA contains a base sequence capable of interacting (hybridizing) with a part of the base sequence of crRNA on the 5'side
  • the guide RNA interacts with the NmCas9 protein by the interaction of these base sequences. Form double-stranded RNA. Therefore, the guide RNA of the NmCas9 protein according to the present invention binds to the complementary sequence of the target base sequence of the target DNA region and forms a complex with the NmCas9 protein to induce the NmCas9 protein into the target DNA region.
  • the induced NmCas9 protein cleaves the target DNA by its endonuclease activity.
  • the site that causes the target gene modification does not have to be contained in the target base sequence, but may be contained in the target base sequence. preferable.
  • cleavage of the target DNA is due to both the complementarity of base pairing between the guide RNA and the complementary sequence of the target base sequence and the PAM sequence present on the 3'side of the target base sequence. Occurs at the determined position.
  • the NmCas9 protein generally cleaves between the 3rd and 4th bases upstream of the PAM sequence in the target DNA region.
  • the guide RNA of the CRISPR-Cas9 system of the present invention may be a single-molecule guide RNA (sgRNA) containing crRNA and tracrRNA, or a two-molecule guideRNA composed of a crRNA fragment and a tracrRNA fragment.
  • sgRNA single-molecule guide RNA
  • the Cas9 protein is edited by DNA editing of plant cells.
  • NmCas9 protein as a syrup, one base insertion occurs at a surprisingly higher frequency than before.
  • the frequency of mutations other than single nucleotide insertion is about 1.1 to 25%, which is the same as the SpCas9 protein conventionally used as the Cas9 protein of the CRISPR-Cas9 system.
  • the frequency of single base insertion could be significantly increased.
  • the frequency of mutations other than single-base insertion of T or A decreased to 1 / 3.4 to 1 / 2.3, and the frequency of single-base insertion of T or A could be particularly high. (Examples 1 and 2, Comparative Examples 1 and 2).
  • the Cas9 protein (NmCas9 protein and, if necessary, other Cas9 proteins) encodes the protein even in the form of the protein. It may be in the form of RNA or DNA (polynucleotide) or in the form of a vector (expression vector) expressing the polynucleotide. Independently of this, whether the guide RNA is in the form of RNA or the form of DNA (polynucleotide) encoding the RNA, the form of the vector (expression vector) expressing the polynucleotide is used. It may be.
  • a vector expressing Cas9 protein and a vector expressing its guide RNA may be introduced into cells, respectively, or both Cas9 protein and its guide RNA may be introduced.
  • the vector to be expressed may be introduced into cells.
  • these guide RNAs may be loaded on the same expression vector or on different expression vectors.
  • the NmCas9 protein is combined with another Cas9 protein, the NmCas9 protein and the other Cas9 protein may be loaded on the same expression vector or on different expression vectors.
  • the polynucleotide encoding the Cas9 protein may be, for example, an appropriately codon-optimized one for plant cells.
  • the expression vector when adopting the form of an expression vector, preferably contains one or more regulatory elements that are operably linked to the polynucleotide to be expressed.
  • operably bound means that the polynucleotide is expressively bound to the regulatory element.
  • regulatory elements include promoters, enhancers, internal ribosome entry sites (IRES), and other expression control elements (eg, transcription termination signals (polyadenylation signals, polyU sequences, etc.)).
  • the expression vector is one that can stably express the encoding protein without being integrated into the host genome.
  • the CRISPR-Cas9 system is introduced into plant cells by appropriately selecting a known method such as an Agrobacterium method, a particle gun method, an electroporation method, a method using a cell membrane penetrating peptide, or a plasma method. be able to.
  • the method for producing DNA-edited plant cells of the present invention by introducing the CRISPR-Cas9 system containing the NmCas9 protein as a component into plant cells, insertion of one base occurs with high frequency, and therefore, one base is frequently inserted into the above-mentioned target DNA region. Edited plant cells into which one base is inserted can be obtained. Further, in the method for producing a DNA-edited plant cell of the present invention, a plant in which DNA has been edited can be produced by regenerating a plant from a plant cell into which the CRISPR-Cas9 system has been introduced.
  • a method for obtaining an individual by redifferentiating a plant tissue by tissue culture a method established in the present technical field can be used (for example, transformation protocol [plant edition] Yutaka Tabei, ed. Kagaku-Dojin pp. 340-347 (2012)). Once a plant is obtained in this way, it is possible to obtain offspring from the plant by sexual reproduction or asexual reproduction. It is also possible to obtain breeding materials (for example, seeds, fruits, cut ears, strains, curls, protoplasts) from the plants and their progeny or clones, and mass-produce the plants based on them.
  • breeding materials for example, seeds, fruits, cut ears, strains, curls, protoplasts
  • one base can be inserted into the target base sequence of a plant cell more frequently than before by the CRISPR-Cas9 system using NmCas9 protein. Therefore, in the CRISPR-Cas9 system according to the present invention, it is possible to insert a plurality of consecutive bases into the target base sequence of a plant cell by using a combination of a plurality of guide RNAs.
  • the present invention includes a step of introducing a CRISPR-Cas9 system having a Cas9 protein and its guide RNA as a constituent element into a plant cell as a method utilizing a DNA-edited plant cell production method.
  • the Cas9 protein is derived from Neisseria meningitidis and
  • the guide RNA is a combination of n guide RNAs. n is a natural number of 2 or more,
  • the first guide RNA contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the nth guide RNA has n-1 in the target base sequence 1. It contains a targeting base sequence n that is homologous to the target base sequence n into which the base is inserted.
  • a method of inserting n consecutive bases into the DNA of a plant cell hereinafter, in some cases, referred to as a "continuous base insertion method").
  • the introduction of the CRISPR-Cas9 system into plant cells, the NmCas9 protein, its guide RNA, and the CRISPR-Cas9 system, and the CRISPR-Cas9 system into the plant cells each independently includes preferred embodiments thereof. As described in the method for producing DNA-edited plant cells.
  • n guide RNAs is used as a guide RNA for the NmCas9 protein.
  • n is a natural number of 2 or more, and is a multiple of 3 when base insertion is performed in codon units corresponding to amino acids.
  • FIG. 1 shows a schematic view of an example of the aspect of the continuous base insertion method of the present invention.
  • guide RNAs sgRNA1, sgRNA2, sgRNA3 of three NmCas9 proteins are introduced into plant cells by the same expression vector ((a) in FIG. 1) as the NmCas9 protein (NmCas9). To do.
  • the first guide RNA is homologous to the target base sequence 1 (target sequence) into which the base is inserted (that is, complementary to the complementary sequence of the target base sequence 1).
  • targets base sequence 1 that is, in the continuous base insertion method of the present invention, the targeted base sequence 1 of the first guide RNA is a base sequence (target base sequence 1) containing a target site for inserting a base (that is, a cleavage site of the target DNA). It is a base sequence homologous to.
  • the cleavage site of the target base sequence 1 by the NmCas9 protein Since one base is inserted at a high frequency, the target base sequence 2 in which one base is inserted into the target base sequence 1 can be obtained.
  • the gap between the 3rd and 4th bases upstream of the PAM sequence on the target DNA (SEQ ID NO: 7, 1st stage of FIG. 1 (b)) is cleaved, and the cleavage site is cleaved.
  • T is inserted between the 3rd to 4th bases of the target base sequence 1 (SEQ ID NO:: SEQ ID NO:: 8) can be obtained (second stage of (b) in FIG. 1).
  • the second guide RNA contains a target base sequence 2 homologous to the target base sequence 2 in which one base is inserted into the target base sequence 1. Therefore, when the above target base sequence 2 is obtained by the first guide RNA, the second guide RNA (sgRNA2) binds to the complementary sequence of the target base sequence 2 and forms a complex with the NmCas9 protein. By doing so, the NmCas9 protein is induced to the target base sequence 2, and the induced NmCas9 protein cleaves the target base sequence 2 by its endonuclease activity, and one base is frequently inserted into the cleavage site.
  • sgRNA2 binds to the complementary sequence of the target base sequence 2 and forms a complex with the NmCas9 protein.
  • the target base sequence 3 in which one base is inserted in the target base sequence 2 (that is, the target base sequence 3 in which two bases are inserted in the target base sequence 1) can be obtained.
  • the gap between the 3rd and 4th bases upstream of the PAM sequence is cleaved, and 1 base, particularly T or A, is frequently inserted into the cleaved portion.
  • the target base sequence 3 (SEQ ID NO: 9) in which A is inserted between the 3rd and 4th bases from the end can be obtained (the third stage of (b) in FIG. 1).
  • the third guide RNA contains a target base sequence 3 homologous to the target base sequence 3 in which one base is inserted into the target base sequence 2. Therefore, when the above target base sequence 3 is obtained by the second guide RNA, the third guide RNA (sgRNA3) binds to the complementary sequence of the target base sequence 3 and forms a complex with the NmCas9 protein. By doing so, the NmCas9 protein is induced to the target base sequence 3, and the induced NmCas9 protein cleaves the target base sequence 3 by its endonuclease activity, and one base is frequently inserted into the cleavage site.
  • sgRNA3 binds to the complementary sequence of the target base sequence 3 and forms a complex with the NmCas9 protein.
  • a base sequence in which one base is inserted in the target base sequence 3 (that is, a base sequence in which three bases are inserted in the target base sequence 1) can be obtained.
  • the gap between the 3rd and 4th bases upstream of the PAM sequence is cleaved, and 1 base, particularly T or A, is frequently inserted into the cleaved portion, so that 3 of the target base sequence 3 'It is possible to obtain a base sequence (SEQ ID NO: 10) in which A is inserted between the 3rd and 4th bases from the end, and as a result, TAA, which is a stop codon, is efficiently inserted into the target DNA. Can be done (fourth row in (b) of FIG. 1).
  • n guide RNAs is used as the guide RNA of the NmCas9 protein, and the nth guide RNA has n-1 bases in the target base sequence 1.
  • the targeting base sequence n that is homologous to the inserted target base sequence n (that is, complementary to the complementary sequence of the target base sequence n)
  • the above-mentioned one-base insertion can be continued n times. , It becomes possible to insert n consecutive bases into the target DNA region of a plant cell.
  • the frequency of inserting one base of T or A is high, so that TAA, which is a stop codon, can be easily inserted from beginning to end. It becomes.
  • n 3 and all three guide RNAs are introduced into plant cells as sgRNA by the same expression vector as NmCas9 protein ((a) in FIG. 1).
  • the mode of the continuous base insertion method is not limited to this, and for example, n guide RNAs may be sequentially introduced into plant cells separately, and cloning is performed between the introductions at this time. It may include steps and the like.
  • the target base sequence n in which one base is frequently inserted into the target base sequence 1 and n-1 bases (particularly T or A) are inserted frequently is used. Therefore, by simultaneously introducing n guide RNAs designed in accordance with this into plant cells, it is possible to easily insert n consecutive bases with a single introduction operation. ..
  • the DNA-edited plant cell production method of the present invention may be combined with other CRISPR-Cas9 systems.
  • the CRISPR-Cas9 system using the NmCas9 protein according to the present invention may be used in combination with the CRISPR-Cas9 system using other Cas9 proteins (for example, Cas9 proteins derived from other bacteria). Good.
  • the present invention replaces the base of the DNA of a plant cell by using another CRISPR-Cas9 system in combination with the CRISPR-Cas9 system using the NmCas9 protein as a method utilizing the DNA-edited plant cell production method.
  • Method for example Including a step of introducing a CRISPR-Cas9 system having NmCas9 protein and its guide RNA as a component and a CRISPR-Cas9 system having another Cas9 protein other than NmCas9 protein and its guide RNA as a component into plant cells.
  • the guide RNA of the NmCas9 protein contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and one guide RNA of the other Cas9 protein is included in the target base sequence 1.
  • a method for substituting a base in DNA of a plant cell (hereinafter, in some cases, referred to as a “base replacement method”) is also provided.
  • the CRISPR-Cas9 system whose constituents are Cas9 proteins other than the NmCas9 protein and its guide RNA, it is preferable that the CRISPR-Cas9 system is prone to single-base deletion, and the configuration of such a CRISPR-Cas9 system is preferable.
  • Examples of other Cas9 proteins as elements include, for example, SpCas9 protein and SaCas9 protein shown in Table 1 above, and SpCas9 protein is preferable, but the present invention is not limited thereto.
  • the CRISPR-Cas9 system having plant cells, NmCas9 protein and its guide RNA as components, and its introduction into plant cells are independently, including their preferred embodiments. As described in the method for producing DNA-edited plant cells.
  • the CRISPR-Cas9 system containing the other Cas9 protein and its guide RNA as components, and the CRISPR using the NmCas9 protein according to the present invention as its introduction into plant cells.
  • the above-mentioned typical NmCas9 protein is replaced with the above-mentioned other Cas9 protein, for example, a Cas9 protein derived from Streptococcus pyogenes whose typical amino acid sequence is shown by UniProtKB / Swiss-Prot accession number: Q99ZW2.1.
  • FIG. 2 shows a schematic view of an example of the aspect of the base substitution method of the present invention.
  • NmCas9 protein NmCas9 protein and its guide RNA
  • SpCas9 protein SpCas9 protein
  • sgRNA for SpCas9 are expressed in each expression vector (FIG. 2).
  • Each is introduced into a plant cell according to (a)).
  • the guide RNA of the NmCas9 protein is a target homologous to the target base sequence 1 (target sequence) into which the base is inserted (that is, complementary to the complementary sequence of the target base sequence 1).
  • the frequency of cleavage by the NmCas9 protein in the target base sequence 1 is high. Since one base is inserted in, the target base sequence 2 in which one base is inserted into the target base sequence 1 can be obtained.
  • the gap between the 3rd and 4th bases upstream of the PAM sequence of the NmCas9 protein on the target DNA (SEQ ID NO: 11, the first stage of FIG. 2B) is cleaved.
  • the guide RNA of another Cas9 protein (SpCas9 protein in FIG. 2) is homologous to the target base sequence 2 in which one base is inserted into the target base sequence 1 (that is, that is). It contains a targeted base sequence 2 that is complementary to the complementary sequence of the target base sequence 2. Therefore, when the above-mentioned target base sequence 2 is obtained by the NmCas9 protein and its guide RNA, the guide RNA of the SpCas9 protein binds to the complementary sequence of the target base sequence 2 and forms a complex with the SpCas9 protein.
  • the SpCas9 protein is induced into the target base sequence 2, and the induced SpCas9 protein cleaves the target base sequence 2 by its endonuclease activity, and one base is deleted at the cleavage site with a relatively high frequency.
  • a base sequence in which one base is deleted from the target base sequence 2 (that is, a base sequence in which one base of the target base sequence 1 is substituted) can be obtained.
  • the upstream 3rd and 4th bases of the PAM sequence of the SpCas9 protein are cleaved, and 1 base is frequently deleted at the cleavage site, so that 3'of the target base sequence 2'.
  • a base sequence (SEQ ID NO: 13) in which C at the third base from the end is deleted can be obtained, and as a result, the base at the third base from the 3'end of the target base sequence 1 is replaced with C from A. (Third stage of (b) in FIG. 2).
  • the base substitution method of the present invention by combining the CRISPR-Cas9 system using the NmCas9 protein with the CRISPR-Cas9 system, which is particularly prone to single nucleotide deletion, after insertion of one base into the target base sequence. , One base existing in the same target base sequence can be deleted, and the base can be replaced efficiently.
  • the CRISPR-Cas9 system using the NmCas9 protein according to the present invention is introduced into a plant cell, the frequency of inserting one base of T or A is high, and therefore, after inserting one base of T or A into the target base sequence.
  • By deleting one base existing in the same target base sequence it is possible to efficiently replace the base from A / C / G to T or from C / G / T to A.
  • each guide RNA is introduced into a plant cell as an sgRNA by the same expression vector as each Cas9 protein ((a) in FIG. 2), but the embodiment of the base substitution method of the present invention. Is not limited to this, for example, even if they are all introduced into a plant cell by the same expression vector, the NmCas9 protein and its guide RNA are introduced into the plant cell, and then the SpCas9 protein and its guide RNA are introduced. It may be introduced into a plant cell, and a cloning step or the like may be included between the introduction at this time.
  • the target base sequence 2 in which one base (particularly T or A) is inserted with high frequency with respect to the target base sequence 1 can be obtained, these are simultaneously introduced into plant cells. As a result, it is possible to easily replace the base with a single introduction operation.
  • the present invention also provides a kit for use in the method of the present invention.
  • the kit of the present invention comprises (A) NmCas9 protein, a polynucleotide encoding the protein, or a vector expressing the polynucleotide, and (B) a guide RNA of the NmCas9 protein, a polynucleotide encoding the guide RNA, or the said.
  • the vectors (A) and (B) may be different vectors from each other or may be the same vector.
  • n guide RNAs For the purpose of inserting n consecutive bases into the DNA of plant cells, a combination of n guide RNAs is used as a guide RNA for the NmCas9 protein.
  • n is a natural number of 2 or more
  • the first guide RNA contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and is the nth guide RNA.
  • kits of the present invention express Cas9 proteins other than (C) NmCas9 proteins (eg, SpCas9 proteins), polynucleotides encoding the proteins, or the polynucleotides. It is preferable to further include (D) a guide RNA of the other Cas9 protein (for example, SpCas9 protein), a polynucleotide encoding the guide RNA, or a vector expressing the polynucleotide.
  • C NmCas9 proteins
  • D a guide RNA of the other Cas9 protein
  • a polynucleotide encoding the guide RNA for example, SpCas9 protein
  • a vector expressing the polynucleotide for example, a vector expressing the polynucleotide.
  • the guide RNA of the NmCas9 protein contains a targeting base sequence 1 that is homologous to the target base sequence 1 into which the base is inserted, and the guide RNA of the other Cas9 protein is in the target base sequence 1. It contains a targeting base sequence 2 that is homologous to the target base sequence 2 in which one base is inserted.
  • the vectors (C) and (D) may be different vectors from each other or may be the same vector. Further, the vectors (C) and / or (D) may be the same vectors as the vectors (A) and / or (B).
  • the kit of the present invention may further include one or more additional reagents.
  • additional reagents include, but are limited to, for example, dilution buffers, reconstruction solutions, wash buffers, nucleic acid transfer reagents, protein transfer reagents, control reagents (eg, control guide RNAs). It's not a thing.
  • the kit may further include an instruction manual for carrying out the method of the present invention.
  • Example 1 [Plasid construction] First, the DNA (SEQ ID NO:) of the NmCas9 protein gene optimized for the codon of Shiroinu clawa by GeneArt Gene Synthesis (manufactured by Thermo Fisher Scientific) and added with a FLAG tag and a nuclear localization signal derived from Simian Virus40 (SV40) on the N-terminal side. : The base sequence shown in SEQ ID NO: 4, which encodes the amino acid sequence shown in 3, was synthesized. Next, an expression vector for the NmCas9 protein (NmCas9) was constructed using the binary vector pRI-SpCas9 (Kaya et al. (2016) Sci. Rep. 6: 26871) as the backbone.
  • the canamycin resistance gene expression cassette (promoter of NOS gene of agrobacterium and neomycin phosphotransferase gene) in pRI-SpCas9 is used as a hyglomycin resistance gene expression cassette (35S promoter of cauliflower mosaic virus and hyglomycin phosphotransferase gene).
  • the pRI-PcUBI-pro :: SpCas9 vector was cleaved with SmaI and SacI, and the DNA of the SpCas9 protein gene in the vector was replaced with the DNA of the NmCas9 protein gene synthesized above to construct an NmCas9 expression vector.
  • a rice endogenous gene sequence (SEQ ID NO:) containing both a PAM sequence of NmCas9 protein (5'-NNNGATT) and a PAM sequence of SpCas9 protein (5'-NGG) by GeneArt Gene Synthesis (manufactured by Thermo Fisher Scientific Co., Ltd.) : PAM sequence of NmCas9 protein in the sequence containing the nucleotide sequence according to 5 and the gene ID (“RAP-DB”, https: //rapdb.dna.affrc.go.jp/): Os01g0899200 (rice target DNA_A)).
  • a guide RNA (sgRNA) containing a base sequence (targeted base sequence) homologous to the target base sequence A (target sequence A corresponding to sgRNA of NmCas9) of 22 nucleotides upstream of the above is synthesized, and pOsU6-sgRNA_SaCas9 (Kaya et al.) (2016) Sci. Rep. 6: 26871) was replaced with the guide RNA of the SaCas9 protein to construct a guide RNA expression cassette.
  • the guide RNA expression cassette was then cleaved with BbsI and cloned. Using PacI and AscI, the cloned guide RNA expression cassette was incorporated into the above NmCas9 expression vector to construct an sgRNA-NmCas9 expression vector.
  • the callus was washed with a 25 mg / L meropenem (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) solution, and a medium containing 50 mg / L hygromycin B and 25 mg / L meropenem. Incubated for 4-5 weeks.
  • a 25 mg / L meropenem manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • a medium containing 50 mg / L hygromycin B and 25 mg / L meropenem Incubated for 4-5 weeks.
  • Genomic DNA was extracted from 24 samples of rice cults cultured for 4 to 5 weeks after transformation by a simple DNA extraction method (Kasazima et al. (2004) Plant Mol. Biol. Rep. 22: 49-52).
  • KOD-FX neo DNA polymerase manufactured by Toyobo Co., Ltd.
  • the target nucleotide sequence was amplified by the PCR method.
  • the obtained PCR product was cleaved overnight by restriction enzyme treatment with SacI, and using the MCE-202 MultiNA with a DNA-500 kit (manufactured by Shimadzu Corporation), the CAPS (Cleared Applied Polymorphic Sequences) method was used. It was investigated whether a mutation was introduced into the target base sequence.
  • sgRNA-SpCas9 expression vector was constructed according to the method of Kaya et al. (Kaya et al. (2016) Sci. Rep. 6: 26871).
  • the targeting base sequence was a sequence containing a base sequence homologous to the target base sequence A (target sequenceA correspending to sgRNA of SpCas9) of 20 nucleotides upstream of the PAM sequence of the SpCas9 protein in the rice target DNA_A. ..
  • transformation to rice carrus was performed in the same manner as in Example 1 except that the sgRNA-SpCas9 expression vector was used, and CAPS analysis and sequence analysis were performed on 24 samples.
  • the target base sequence of guide RNA is a rice endogenous gene sequence containing the PAM sequence of NmCas9 protein and the PAM sequence of SpCas9 protein (sequence including the base sequence shown in SEQ ID NO: 6), gene ID ("RAP-DB").
  • Https //rapdb.dna.affrc.go.jp/
  • Target base sequence B target sequenceB correspring
  • An sgRNA-NmCas9 expression vector was constructed in the same manner as in Example 1 except that the nucleotide sequence was homologous to sgRNA of NmCas9).
  • transformation to rice carrus was performed in the same manner as in Example 1 except that the sgRNA-NmCas9 expression vector was used, and CAPS analysis and sequence analysis were performed on 24 samples.
  • CAPS analysis XhoI was used instead of SacI to cleave the rice target DNA_B.
  • the target base sequence of the guide RNA was set to be a base sequence homologous to the target base sequence B (target sequenceB correspending to sgRNA of SpCas9) of 20 nucleotides upstream of the PAM sequence of the SpCas9 protein in the rice target DNA_B.
  • An sgRNA-SpCas9 expression vector was constructed in the same manner as in Comparative Example 1 except for the above.
  • transformation to rice carrus was performed in the same manner as in Example 2 except that the sgRNA-SpCas9 expression vector was used, and CAPS analysis and sequence analysis were performed on 24 samples.
  • FIGS. 3 to 4 show a part of the sequence of the rice target DNA_A (WT of FIG. 3, SEQ ID NO: 5) or a part of the rice target DNA_B (WT of FIG. 4, SEQ ID NO: 6), respectively.
  • the sequence in which the base is inserted / deleted (indel) is shown in the sequence of the WT, and the frequency of the insertion / deletion of the base (number of samples in which the mutation occurred * 100 / total number of samples). (%)) are shown respectively.
  • FIGS. 3 to 4 show a part of the sequence of the rice target DNA_A (WT of FIG. 3, SEQ ID NO: 5) or a part of the rice target DNA_B (WT of FIG. 4, SEQ ID NO: 6), respectively.
  • the sequence in which the base is inserted / deleted (indel) is shown in the sequence of the WT, and the frequency of the insertion / deletion of the base (number of samples in which the mutation occurred * 100 / total number of samples). (%))
  • the base sequences shown in bold are the respective target base sequences (target searchA corresponding to sgRNA of NmCas9, targetsequenceA corresponding to sgRNA of SpCasceptNest To sgRNA of SpCas9 (target sequence)) is shown, the base sequence shown by the underline shows the PAM sequence of each Cas9 protein (NmCas9 protein or SpCas9 protein), and the base shown in lower case indicates the inserted base. ..
  • the target base sequence of the guide RNA is the rice endogenous gene sequence containing the PAM sequence of the NmCas9 protein (sequence containing the base sequence set forth in SEQ ID NO: 7, gene ID (“RAP-DB”, https: // rapdb.dna.affrc.go.jp/): Intron (rice target DNA_C) of Os12g0224000), 22 nucleotides upstream of the PAM sequence of the NmCas9 protein target base sequence 1 (target sequence1 corresponding to sgRNA1 ofN A guide RNA1 (sgRNA1) expression cassette was constructed in the same manner as in Example 1 except that the nucleotide sequences were homologous.
  • the target base sequence of the guide RNA is the target base sequence 2 (SEQ ID NO:) in which T is inserted between the 3'end to the 3rd base and the 4th base of the 2 to 22 nucleotide sequence of the target base sequence 1.
  • a guide RNA2 (sgRNA2) expression cassette was constructed in the same manner as in Example 1 except that the base sequence was homologous to the base sequence described in: 8.
  • the target base sequence of the guide RNA is the target base sequence 3 (SEQ ID NO:) in which A is inserted between the 3'end to the 3rd base and the 4th base of the 2 to 22 nucleotide sequence of the target base sequence 2.
  • a guide RNA3 (sgRNA3) expression cassette was constructed in the same manner as in Example 1 except that the base sequence was homologous to the base sequence described in: 9.
  • an sgRNA1-sgRNA2-sgRNA3-NmCas9 expression vector was constructed in the same manner as in Example 1 except that all of these were used.
  • transformation to rice carrus was performed in the same manner as in Example 1 except that the above-mentioned sgRNA1-sgRNA2-sgRNA3-NmCas9 expression vector was used, and CAPS analysis and sequence analysis were performed on 344 samples.
  • CAPS analysis HpaI was used instead of SacI to cleave the rice target DNA_C.
  • Table 2 shows the frequency of base insertion / deletion (indel) in the sequence of rice target DNA_C (WT, no mutation) (number of samples with the mutation * 100 / total number of samples (%)). Shown. As shown in Table 2, the frequency of introduction of 3 bases was 26.2% in total, and the frequency of introduction of the target 3 bases (TAA or TAT) was 88.9%. It was expensive. Therefore, by using the NmCas9 protein in combination with three types of guide RNAs in which the target base sequence is shifted by one base, three bases can be introduced with high accuracy by the system shown in FIG. 1, and a stop codon can be introduced. Was confirmed.
  • NmCas9 expression vector sgRNA-NmCas9 expression vector constructed in Example 1 [sgRNA for NmCas9 (targeted base sequence: target base sequence A in rice target DNA_A (target base sequence 1 in FIG. 2)) homologous base sequence ) + NmCas9] was used.
  • -SpCas9 expression vector First, using pZH_MMCas9 (Mikami et al. (2015) Plant Mol. Biol. 88-561) as a backbone, SpCas9 is expressed by the promoter of the corn ubiquitin gene, and canamycin is used as an antibiotic marker for plant selection. A binary vector having a resistance gene expression cassette (cauliflower mosaic virus 35S promoter and neomycin phosphotransferase gene) was constructed.
  • the target base sequence of the guide RNA is 20 nucleotides in which A is inserted between the 3'end to the 4th base of 19 nucleotides upstream of the PAM sequence of SpCas9 protein in the rice target DNA_A.
  • a guide RNA (sgRNA for SpCas9) expression cassette was constructed in the same manner as in Example 1 except that the base sequence was homologous to the target base sequence 2 (base sequence shown in SEQ ID NO: 12).
  • the guide RNA expression cassette was amplified by PCR using an F-primer (base sequence shown in SEQ ID NO: 14) and an R-primer (base sequence shown in SEQ ID NO: 15). After cleaving the binary vector constructed above with AscI, the PCR product of the guide RNA expression cassette was cloned using In-Fusion HD Cloning Kit (Clontech) to construct a SpCas9 expression vector.
  • Table 3 below shows the results of sequence analysis for strains in which base substitution was confirmed by direct sequence analysis.
  • the frequency of insertion of A or C base into the sequence of rice target DNA_A WT, no mutation
  • the total was 44.2%.
  • the target frequency of base substitution from C to A was 37.2%. From this, it was confirmed that the desired base substitution can be introduced with high accuracy by combining the single base insertion by NmCas9 and the single base deletion by SpCas9.
  • a method for producing a plant cell in which DNA has been edited, which can insert one base with high frequency and can edit DNA with high accuracy, and a kit used for the method are provided. It will be possible to provide.
  • a CRISPR-Cas9 system which is particularly prone to single base deletion, is used in combination to delete one base existing in the target base sequence after inserting one base into the target base sequence. , It is also possible to replace the base efficiently.
  • the present invention can be used in various studies from basics to applications.
  • base substitution technology that can control the introduction of three bases can modify not only gene disruption but also gene function as compared to conventional target mutations that disrupt genes, and it is considered that there is an extremely high need for it. Be done. Therefore, it can be widely used as a new method in the research and development field in which DNA editing technology is currently actively used, such as development of agriculture, forestry and fishery products with new traits, and gene therapy.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A method for producing a DNA-edited plant cell, the method comprising a step for introducing a CRISPR-Cas9 system, which contains Cas9 protein and a guide RNA thereof as constituting elements, into a plant cell, wherein the Cas9 protein is derived from Neisseria meningitidis.

Description

DNAが編集された植物細胞を製造する方法、及びそれに用いるためのキットMethods for producing DNA-edited plant cells and kits for use in them
 本発明は、DNAが編集された植物細胞を製造する方法、及びそれに用いるためのキットに関する。 The present invention relates to a method for producing a plant cell in which DNA has been edited, and a kit for using the method.
 DNAの編集技術としては、放射線やDNA損傷薬剤を利用し、遺伝子に変異を導入する突然変異育種技術の開発が100年近く前から進められてきている。しかしながら、この方法によって標的とする遺伝子に特異的に変異を導入することは、現在の技術では困難である。したがって、例えば、作物育種の場合、突然変異処理を施した大量のサンプルを準備し、それらを個別に調査していくことで、目的の形質を示す系統を選抜する必要がある。 As a DNA editing technology, the development of mutation breeding technology that introduces mutations into genes using radiation and DNA damaging agents has been underway for nearly 100 years. However, it is difficult to introduce a mutation specifically into a target gene by this method with the current technique. Therefore, for example, in the case of crop breeding, it is necessary to select a strain showing the desired trait by preparing a large number of mutated samples and investigating them individually.
 また、DNAの編集技術としては、他に、鋳型となる外来DNAを用いて標的DNAの配列を書き換える標的組換え(ジーンターゲッティング)がある。標的組換えは、標的DNAに対して、塩基レベルから遺伝子レベルまでの欠失・挿入・置換等の様々な改変が可能な技術である。例えば、酵素活性を制御する領域にアミノ酸置換を導入し、酵素活性を改変することも可能である。特に、2種類の選抜マーカーを利用したポジティブ・ネガティブ選抜法は汎用的であり、理論上は、標的塩基配列に制限はない。また、ポジティブ・ネガティブ選抜法と足跡を残さないマーカー除去法とを組み合わせることにより、標的DNAの配列にどのような種類の塩基置換でも導入することが可能である(特許文献1:特開2015-177788号公報、特許文献2:特開2015-171358号公報)。しかしながら、植物においては、一般に、標的組換えの効率が低い傾向にある。 In addition, as a DNA editing technique, there is target recombination (gene targeting) in which the sequence of the target DNA is rewritten using a foreign DNA as a template. Target recombination is a technique capable of various modifications such as deletion, insertion, and substitution from the base level to the gene level with respect to the target DNA. For example, it is possible to modify the enzyme activity by introducing an amino acid substitution into a region that controls the enzyme activity. In particular, the positive / negative selection method using two types of selection markers is general-purpose, and theoretically, the target base sequence is not limited. Further, by combining the positive / negative selection method and the marker removal method that does not leave a footprint, it is possible to introduce any kind of base substitution into the sequence of the target DNA (Patent Document 1: Japanese Patent Application Laid-Open No. 2015-). No. 177788, Patent Document 2: Japanese Unexamined Patent Publication No. 2015-171358). However, in plants, the efficiency of target recombination generally tends to be low.
 また、DNAの編集技術としては、さらに、制限酵素によって標的DNAを切断し、それが修復される際の修復機構を利用する標的変異技術がある。標的変異技術としては、20塩基前後の配列を特異的に認識するメガヌクレアーゼ(MNs)の認識配列をタンパク質工学等の手法によって改良した改変型MNs、既存のDNA結合モチーフとDNA切断モチーフとを組み合わせた酵素ZFNsやTALENs、原核生物の獲得免疫システムを応用したCRISPR-Cas9システム等が開発されている(非特許文献1:Kim and Kim(2014)Nature Rev.Genet.)。 Further, as a DNA editing technique, there is a target mutation technique in which a target DNA is cleaved by a restriction enzyme and a repair mechanism is used when the target DNA is repaired. Target mutation techniques include modified MNs in which the recognition sequence of meganucleases (MNs) that specifically recognize sequences around 20 bases is improved by techniques such as protein engineering, and a combination of existing DNA binding motifs and DNA cleavage motifs. The enzymes ZFNs and TALENs, and the CRISPR-Cas9 system applying the prokaryotic acquisition immune system have been developed (Non-Patent Document 1: Kim and Kim (2014) Nature Rev. Genet.).
 特に、2012年にCRISPR-Cas9システムが制限酵素として利用可能であることが報告されて以来、CRISPR-Cas9システムは、植物を含む様々な生物種において機能することが明らかとなり、世界中の研究者が利用する汎用的な遺伝子改変ツールとなっている。しかしながら、現在の技術では、この方法によって生じさせることができる変異は主に数塩基程度の欠失や挿入であるため、その多くがフレームシフトによる遺伝子破壊をもたらす。そのため、例えば、アミノ酸置換による酵素タンパク質の機能改変や新機能付与など、塩基の置換を要する高精度なDNA編集には不向きである。 In particular, since it was reported in 2012 that the CRISPR-Cas9 system is available as a restriction enzyme, it has become clear that the CRISPR-Cas9 system functions in a variety of species, including plants, and researchers around the world. It is a general-purpose gene modification tool used by. However, in current technology, mutations that can be generated by this method are mainly deletions or insertions of a few bases, and many of them result in gene disruption due to frameshifting. Therefore, it is not suitable for high-precision DNA editing that requires base substitution, for example, functional modification of enzyme protein by amino acid substitution or addition of new function.
 また、Cas9タンパク質と塩基の脱アミノ化酵素とを組み合わせることにより、標的DNAの目的の塩基を置換できることが知られており、これまでに、cytidine deaminaseを利用することでCからT(GからA)への置換を、adenosine deaminaseを利用することでAからG(TからC)への置換を、それぞれ誘導できることが報告されている(非特許文献2:Kim(2018)Nat.Plants)。しかしながら、CからT(GからA)、又はAからG(TからC)以外の塩基置換導入技術は未だ確立されておらず、また、置換できる塩基の位置も限られている。さらに、現在の技術では、脱アミノ化酵素が作用する塩基を厳密に決定することができないこと、Cas9タンパク質が必ずしも任意の配列を認識できないこと、等により、導入できる塩基置換の場所や置換の種類が限られている。 Further, it is known that the target base of the target DNA can be replaced by combining the Cas9 protein and the base deamination enzyme, and so far, C to T (G to A) can be used by using cytidine deaminase. ), It has been reported that the substitution from A to G (T to C) can be induced by using adenosine deaminase (Non-Patent Document 2: Kim (2018) Nat. Plants). However, base substitution introduction techniques other than C to T (G to A) or A to G (T to C) have not yet been established, and the positions of bases that can be substituted are also limited. Furthermore, with the current technology, the base on which the deamination enzyme acts cannot be determined exactly, the Cas9 protein cannot always recognize an arbitrary sequence, etc., so that the base substitution location and the type of substitution that can be introduced, etc. Is limited.
 また、標的変異技術としては、塩基の脱塩基反応を触媒する脱塩基酵素や校正機能が低下したDNA polymeraseを利用することにより、ランダムな位置に様々な塩基置換を導入する技術も開発されている(非特許文献3:Halperin et al.(2018)Nature)。しかしながら、この方法によって置換を導入する塩基の位置や導入できる塩基置換の種類を制御することは、現在の技術では困難である。 In addition, as a target mutation technology, a technology for introducing various base substitutions at random positions has been developed by using a debase enzyme that catalyzes a base debase reaction and DNA polymerase having a reduced proofreading function. (Non-Patent Document 3: Halperin et al. (2018) Catalyst). However, it is difficult to control the position of the base into which the substitution is introduced and the type of base substitution that can be introduced by this method with the current technique.
 また、制限酵素を利用し、DNA修復機構の一部を改変することによって変異導入効率を向上させ、導入される変異の種類を改変できる(欠失長を長くできる等)ことが報告されている。例えば、DNA修復経路の一つである非相同末端結合(NHEJ)を抑制することにより、TALENsによる標的変異効率を高められることが報告されている(非特許文献4:Nishizawa-Yokoi et al.(2016)Plant Physiol.)。しかしながら、SpCas9タンパク質を利用した場合、切断部位には1~数塩基程度の欠失や挿入が導入されるが、切断部位でどのような修復機構が働くか、また、その結果としてどのような変異が導入されるかは、標的DNAの配列や細胞の状態にも依存するため、高頻度で1塩基を挿入するといった、高精度なDNA編集が可能な技術は未だ開発されていない。 In addition, it has been reported that the mutation introduction efficiency can be improved and the type of mutation introduced can be modified (deletion length can be lengthened, etc.) by modifying a part of the DNA repair mechanism using a restriction enzyme. .. For example, it has been reported that the efficiency of target mutation by TALENs can be enhanced by suppressing non-homologous end binding (NHEJ), which is one of the DNA repair pathways (Non-Patent Document 4: Nishizawa-Yokoi et al. (Non-Patent Document 4: Nishizawa-Yokoi et al.). 2016) Plant Physiol.). However, when the SpCas9 protein is used, deletions and insertions of about 1 to several bases are introduced at the cleavage site, but what kind of repair mechanism works at the cleavage site and what kind of mutation as a result. Since it depends on the sequence of the target DNA and the state of the cell, a technique capable of highly accurate DNA editing, such as inserting one base with high frequency, has not yet been developed.
 また、CRISPR-Cas9システムは、これまでに様々な目的での利用が検討されており、例えば、特表2017-502683号公報(特許文献3)には、細胞内のゲノム遺伝子座の1つ又は複数の対立遺伝子を修飾する(例えば、変異導入する)方法として、ヌクレアーゼ相互作用RNAセグメントにスプライシングされた、転写されたエクソンを含む、キメラスプライシングRNA分子を生成することを伴う方法が記載されており、同文献には、キメラスプライシングRNAが、DNA修飾酵素(例えば、ヌクレアーゼ)を細胞におけるゲノム遺伝子座にガイドし、その結果、該遺伝子座の修飾をもたらすことが記載され、前記ヌクレアーゼとしてCRISPR関連(Cas)ヌクレアーゼが挙げられている。 In addition, the CRISPR-Cas9 system has been studied for various purposes so far. For example, in Japanese Patent Application Laid-Open No. 2017-502683 (Patent Document 3), one of the intracellular genomic loci or Methods of modifying (eg, introducing mutations) multiple allelic genes include methods involving the generation of chimeric splicing RNA molecules, including transcribed exons spliced into a nuclease-interacting RNA segment. , The same document describes that chimeric splicing RNA guides a DNA modifying enzyme (eg, a nuclease) to a genomic locus in a cell, resulting in modification of that locus, as said to be CRISPR-related (eg, nuclease). Cas) nuclease is mentioned.
 さらに、例えば、特表2017-538425号公報(特許文献4)には、糸状真菌細胞のゲノム中における標的部位でのゲノム改変用の組成物及び方法において、標的部位を改変するための又は変更するためのガイドポリヌクレオチド/Casエンドヌクレアーゼシステムが記載されており、特表2017-538424号公報(特許文献5)には、真菌宿主細胞(例えば糸状真菌宿主細胞)中での遺伝子変更を促進するためにヘルパー株システムを用いる組成物及び方法において、Cas/ガイドRNA複合体を異核共存体に導入することが記載されている。 Further, for example, Japanese Patent Application Laid-Open No. 2017-538425 (Patent Document 4) describes the composition and method for modifying the genome at the target site in the genome of filamentous fungal cells in order to modify or modify the target site. A guide polynucleotide / Cas endonuclease system for the purpose is described, and Japanese Patent Application Laid-Open No. 2017-538424 (Patent Document 5) describes a gene modification in a fungal host cell (for example, a filamentous fungal host cell). In compositions and methods using the helper strain system, it is described that the Cas / guide RNA complex is introduced into a heterokaryon.
 さらに、例えば、特表2017-537647号公報(特許文献6)及び特表2018-504895号公報(特許文献7)には、真菌細胞や糸状真菌細胞のゲノム中の標的部位でのゲノム改変用の組成物及び方法において、真菌宿主細胞や糸状真菌細胞ゲノム中の標的部位でのドナーDNAの挿入を促進するためのガイドポリヌクレオチド/Casエンドヌクレアーゼシステムが記載されている。 Further, for example, Japanese Patent Application Laid-Open No. 2017-537647 (Patent Document 6) and Japanese Patent Application Laid-Open No. 2018-504895 (Patent Document 7) are used for genome modification at a target site in the genome of a fungal cell or filamentous fungal cell. In compositions and methods, a guide polynucleotide / Cas endonuclease system for facilitating the insertion of donor DNA at a target site in a fungal host cell or filamentous fungal cell genome has been described.
特開2015-177788号公報Japanese Unexamined Patent Publication No. 2015-177788 特開2015-171358号公報Japanese Unexamined Patent Publication No. 2015-171358 特表2017-502683号公報Special Table 2017-502683 特表2017-538425号公報Special Table 2017-538425 特表2017-538424号公報Special Table 2017-538424 特表2017-537647号公報Special Table 2017-537647 特表2018-504895号公報Special Table 2018-504895
 本発明は上記従来技術の有する課題に鑑みてなされたものであり、高頻度で1塩基を挿入することができ、高精度のDNA編集が可能な、DNAが編集された植物細胞を製造する方法、及びそれに用いるキットを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and is a method for producing a DNA-edited plant cell capable of inserting one base with high frequency and capable of high-precision DNA editing. , And the kits used for it.
 本発明者らは上記目的を達成すべく鋭意研究を重ねた結果、植物細胞の標的変異において、CRISPR-Cas9(clustered regularly interspaced short palindromic repeats/CRISPR associated proteins 9)システムのCas9タンパク質としてNeisseria meningitidis由来のNmCas9タンパク質を用いることにより、従来から利用されていたSpCas9タンパク質を用いた標的変異と比較して、1塩基挿入を高頻度に生じさせることができ、特に、T又はAを挿入しやすい傾向にあることを見出した。このような報告は他のCas9タンパク質ではこれまでになされていない。さらに、本発明者らは、このように高頻度で1塩基挿入を可能とするNmCas9タンパク質による標的変異を利用することで、標的DNA領域に目的どおりの複数個の塩基(例えば3塩基)を挿入したり、目的どおりの塩基を置換したりすることが可能であることも見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have conducted Cas9 (Casserid protein of CRISPR-Cas9) system as Cas9 (crustered regularly interspaced short palindromic repeats / CRISPR assisted protein 9) system in the target mutation of plant cells. By using the NmCas9 protein, 1-base insertion can occur more frequently than the conventionally used target mutation using the SpCas9 protein, and T or A tends to be inserted more easily. I found that. No such report has ever been made with other Cas9 proteins. Furthermore, the present inventors insert a plurality of desired bases (for example, 3 bases) into the target DNA region by utilizing the target mutation by the NmCas9 protein that enables high-frequency insertion of 1 base. We have also found that it is possible to substitute a base as intended, and have completed the present invention.
 かかる知見により得られた本発明の態様は次のとおりである。
[1]
 DNAが編集された植物細胞を製造する方法であり、植物細胞に、Cas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムを導入する工程を含み、かつ、前記Cas9タンパク質がNeisseria meningitidis由来である、方法。
[2]
 植物細胞のDNAに連続するn個の塩基を挿入する方法であり、植物細胞に、Cas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムを導入する工程を含み、
 前記Cas9タンパク質がNeisseria meningitidis由来であり、
 前記ガイドRNAがn個のガイドRNAの組み合わせであり、
 nが2以上の自然数であり、
 1番目のガイドRNAが、塩基を挿入する標的塩基配列1に対して相同な標的化塩基配列1を含むものであり、かつ、n番目のガイドRNAが、標的塩基配列1にn-1個の塩基が挿入された標的塩基配列nに対して相同な標的化塩基配列nを含むものである、
方法。
[3]
 植物細胞のDNAの塩基を置換する方法であり、植物細胞に、Neisseria meningitidis由来のCas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムと、Neisseria meningitidis由来のCas9タンパク質以外の他のCas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムと、を導入する工程を含み、
 前記Neisseria meningitidis由来のCas9タンパク質のガイドRNAが、塩基を挿入する標的塩基配列1に対して相同な標的化塩基配列1を含むものであり、かつ、前記他のCas9タンパク質のガイドRNAが、標的塩基配列1に1個の塩基が挿入された標的塩基配列2に対して相同な標的化塩基配列2を含むものである、
方法。
[4]
 前記植物細胞がイネ細胞である、[1]~[3]のうちのいずれか一項に記載の方法。
[5]
 DNAが編集された植物細胞の製造に用いるためのキットであり、
 以下の(A)及び(B):
 (A)Neisseria meningitidis由来のCas9タンパク質、該タンパク質をコードするポリヌクレオチド、又は該ポリヌクレオチドを発現するベクター、
 (B)前記Cas9タンパク質のガイドRNA、該ガイドRNAをコードするポリヌクレオチド、又は該ポリヌクレオチドを発現するベクター、
を含む、キット。
[6]
 前記ガイドRNAがn個のガイドRNAの組み合わせであり、
 nが2以上の自然数であり、
 1番目のガイドRNAが、塩基を挿入する標的塩基配列1に対して相同な標的化塩基配列1を含むものであり、かつ、n番目のガイドRNAが、標的塩基配列1にn-1個の塩基が挿入された標的塩基配列nに対して相同な標的化塩基配列nを含むものである、
[5]に記載のキット。
[7]
 以下の(C)及び(D):
 (C)Neisseria meningitidis由来のCas9タンパク質以外の他のCas9タンパク質、該タンパク質をコードするポリヌクレオチド、又は該ポリヌクレオチドを発現するベクター、
 (D)前記他のCas9タンパク質のガイドRNA、該ガイドRNAをコードするポリヌクレオチド、又は該ポリヌクレオチドを発現するベクター、
をさらに含み、
 前記Neisseria meningitidis由来のCas9タンパク質のガイドRNAが、塩基を挿入する標的塩基配列1に対して相同な標的化塩基配列1を含むものであり、かつ、前記他のCas9タンパク質のガイドRNAが、標的塩基配列1に1個の塩基が挿入された標的塩基配列2に対して相同な標的化塩基配列2を含むものである、
[5]に記載のキット。
[8]
 前記植物細胞がイネ細胞である、[5]~[7]のうちのいずれか一項に記載のキット。
The aspects of the present invention obtained from such findings are as follows.
[1]
A method for producing a DNA-edited plant cell, which comprises the step of introducing a CRISPR-Cas9 system having a Cas9 protein and its guide RNA as a component into the plant cell, and the Cas9 protein is derived from Neisseria meningitidis. There is a way.
[2]
A method of inserting n consecutive bases into the DNA of a plant cell, which comprises the step of introducing a CRISPR-Cas9 system having a Cas9 protein and its guide RNA as components into the plant cell.
The Cas9 protein is derived from Neisseria meningitidis and
The guide RNA is a combination of n guide RNAs.
n is a natural number of 2 or more,
The first guide RNA contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the nth guide RNA has n-1 in the target base sequence 1. It contains a targeting base sequence n that is homologous to the target base sequence n into which the base is inserted.
Method.
[3]
It is a method of substituting a base in the DNA of a plant cell, and in the plant cell, a Cas9 protein derived from Neisseria meningitidis and a CRISPR-Cas9 system having a guide RNA thereof as a constituent, and a Cas9 protein other than the Cas9 protein derived from Neisseria meningitidis are added. Including the step of introducing the CRISPR-Cas9 system having the guide RNA as a component and the guide RNA thereof.
The guide RNA of the Cas9 protein derived from Neisseria meningitidis contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the guide RNA of the other Cas9 protein is the target base. It contains a targeting base sequence 2 that is homologous to the target base sequence 2 in which one base is inserted into the sequence 1.
Method.
[4]
The method according to any one of [1] to [3], wherein the plant cell is a rice cell.
[5]
A kit for use in the production of DNA-edited plant cells.
The following (A) and (B):
(A) Cas9 protein derived from Neisseria meningitidis, a polynucleotide encoding the protein, or a vector expressing the polynucleotide,
(B) A guide RNA of the Cas9 protein, a polynucleotide encoding the guide RNA, or a vector expressing the polynucleotide.
Including, kit.
[6]
The guide RNA is a combination of n guide RNAs.
n is a natural number of 2 or more,
The first guide RNA contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the nth guide RNA has n-1 in the target base sequence 1. It contains a targeting base sequence n that is homologous to the target base sequence n into which the base is inserted.
The kit according to [5].
[7]
The following (C) and (D):
(C) Cas9 protein other than Cas9 protein derived from Neisseria meningitidis, a polynucleotide encoding the protein, or a vector expressing the polynucleotide,
(D) A guide RNA of the other Cas9 protein, a polynucleotide encoding the guide RNA, or a vector expressing the polynucleotide.
Including
The guide RNA of the Cas9 protein derived from Neisseria meningitidis contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the guide RNA of the other Cas9 protein is the target base. It contains a targeting base sequence 2 that is homologous to the target base sequence 2 in which one base is inserted into the sequence 1.
The kit according to [5].
[8]
The kit according to any one of [5] to [7], wherein the plant cell is a rice cell.
 本発明によれば、高頻度で1塩基を挿入することができ、高精度のDNA編集が可能な、DNAが編集された植物細胞を製造する方法、及びそれに用いるキットを提供することが可能となる。 According to the present invention, it is possible to provide a method for producing a plant cell in which DNA has been edited, which can insert one base with high frequency and can edit DNA with high accuracy, and a kit used for the method. Become.
 また、本発明によれば、特に1塩基欠失を起こしやすいCRISPR-Cas9システムを併用して、標的塩基配列への1塩基挿入後に、同標的塩基配列に存在した1塩基を欠失させることにより、効率よく塩基を置換することも可能となる。 Further, according to the present invention, a CRISPR-Cas9 system, which is particularly prone to single base deletion, is used in combination to delete one base existing in the target base sequence after inserting one base into the target base sequence. , It is also possible to replace the base efficiently.
本発明の連続塩基挿入方法の態様の一例を示す概略図である。It is the schematic which shows an example of the aspect of the continuous base insertion method of this invention. 本発明の塩基置換方法の態様の一例を示す概略図である。It is the schematic which shows an example of the aspect of the base substitution method of this invention. 実施例1(NmCas9)及び比較例1(SpCas9)においてシークエンス解析を行って得られた配列及び塩基の挿入/欠失が起きた頻度を示す図である。It is a figure which shows the frequency which the insertion / deletion of the sequence and the base obtained by the sequence analysis in Example 1 (NmCas9) and Comparative Example 1 (SpCas9) occurred. 実施例2(NmCas9)及び比較例2(SpCas9)においてシークエンス解析を行って得られた配列及び塩基の挿入/欠失が起きた頻度を示す図である。It is a figure which shows the frequency which the insertion / deletion of the sequence and the base obtained by the sequence analysis in Example 2 (NmCas9) and Comparative Example 2 (SpCas9) occurred.
 以下、本発明をその好適な実施形態に即して詳細に説明する。 Hereinafter, the present invention will be described in detail according to its preferred embodiment.
 <DNAが編集された植物細胞を製造する方法>
 本発明は、植物細胞に、Cas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムを導入する工程を含み、かつ、前記Cas9タンパク質がNeisseria meningitidis由来である、DNAが編集された植物細胞を製造する方法(以下、場合により、「DNA編集植物細胞製造方法」という)を提供する。
<Method of producing DNA-edited plant cells>
The present invention comprises the step of introducing a CRISPR-Cas9 system having a Cas9 protein and its guide RNA as a component into a plant cell, and a DNA-edited plant cell in which the Cas9 protein is derived from Neisseria meningitidis. Provided is a method for producing (hereinafter, in some cases, referred to as "DNA-edited plant cell manufacturing method").
 (植物細胞)
 本発明においてDNAを編集する、すなわち、CRISPR-Cas9システムを導入する「植物細胞」としては、例えば、穀物類、油料作物、飼料作物、果物、野菜類の細胞が挙げられる。「植物細胞」には、例えば、植物の個体を構成している細胞、植物から分離した器官や組織を構成する細胞、植物の組織に由来する培養細胞が含まれる。植物の器官や組織としては、例えば、葉、茎、茎頂(生長点)、根、塊茎、塊根、種子、カルスが挙げられる。植物の例としては、イネ、オオムギ、コムギ、ライムギ、ヒエ、モロコシ、トウモロコシ、バナナ、ピーナツ、ヒマワリ、トマト、アブラナ、タバコ、ジャガイモ、ダイズ、ワタ、カーネーションが挙げられる。これらの中でも、好ましくは、イネ、オオムギ、コムギ、ライムギ、ヒエ、モロコシ、トウモロコシ等のイネ科植物であり、特に好ましくは、イネである。
(Plant cells)
Examples of "plant cells" that edit DNA in the present invention, that is, introduce the CRISPR-Cas9 system, include cells of cereals, oil crops, forage crops, fruits, and vegetables. The "plant cell" includes, for example, cells constituting an individual plant, cells constituting an organ or tissue separated from a plant, and cultured cells derived from a plant tissue. Examples of plant organs and tissues include leaves, stems, shoot apex (growth point), roots, tubers, tubers, seeds and callus. Examples of plants include rice, barley, wheat, rye, barnyard millet, sorghum, corn, banana, peanut, sunflower, tomato, abrana, tobacco, potato, soybean, cotton and carnation. Among these, grasses such as rice, barley, wheat, rye, barnyard grass, sorghum, and corn are preferable, and rice is particularly preferable.
 本発明によって編集されるDNA(標的DNA)としては、特に制限されず、下記のNmCas9タンパク質のPAM配列を含むものであればよい。なお、後述するように、Cas9タンパク質を改変すること(例えば、変異の導入)により、標的DNAの塩基配列に応じて、PAMの認識特異性を改変することも可能である。 The DNA (target DNA) edited by the present invention is not particularly limited as long as it contains the PAM sequence of the following NmCas9 protein. As will be described later, it is also possible to modify the recognition specificity of PAM according to the base sequence of the target DNA by modifying the Cas9 protein (for example, introducing a mutation).
 (CRISPR-Cas9システム)
 本発明に係るCRISPR-Cas9システムは、構成要素として、少なくともCas9タンパク質及びそのガイドRNAを含む。ガイドRNAは、標的塩基配列(例えば、欠損させる遺伝子上の配列であり、PAM配列を含む鎖(センス鎖)上にある配列)の相補配列(前記センス鎖のアンチセンス鎖上にある配列)に相補的な塩基配列(すなわち、前記標的塩基配列に対して相同な配列)を有するcrRNA(CRISPR RNA)とtracrRNA(trans-activating crRNA)とからなる。一般に、CRISPR-Cas9システムでは、Cas9タンパク質及びそのガイドRNAを細胞内に導入することによって、ガイドRNAが、ゲノムDNAの標的塩基配列の相補配列に結合し、当該ガイドRNAと複合体を形成するCas9タンパク質による標的DNAの切断を誘導する。切断された標的DNAでは、その修復過程で当該塩基配列における塩基の欠失・挿入が引き起こされ、その結果、遺伝子を編集することが可能となる。
(CRISPR-Cas9 system)
The CRISPR-Cas9 system according to the present invention contains at least Cas9 protein and its guide RNA as components. The guide RNA is added to a complementary sequence (a sequence on the antisense strand of the sense strand) of the target base sequence (for example, a sequence on the gene to be deleted and on the strand (sense strand) containing the PAM sequence). It consists of crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) having a complementary base sequence (that is, a sequence homologous to the target base sequence). Generally, in the CRISPR-Cas9 system, Cas9 protein and its guide RNA are introduced into cells so that the guide RNA binds to the complementary sequence of the target base sequence of genomic DNA and forms a complex with the guide RNA. Induces cleavage of the target DNA by the protein. In the cleaved target DNA, deletion / insertion of a base in the base sequence is caused in the repair process, and as a result, the gene can be edited.
 〔NmCas9タンパク質〕
 本発明においては、CRISPR-Cas9システムとして、少なくともCas9タンパク質がNeisseria meningitidis由来であるものを用いる。以下、Neisseria meningitidis由来のCas9タンパク質を「NmCas9タンパク質」という。
[NmCas9 protein]
In the present invention, as the CRISPR-Cas9 system, at least a Cas9 protein derived from Neisseria meningitidis is used. Hereinafter, the Cas9 protein derived from Neisseria meningitidis is referred to as "NmCas9 protein".
 本発明に用いられる「NmCas9タンパク質」の典型的なアミノ酸配列(野生型NmCas9タンパク質のアミノ酸配列)を配列番号:1に、当該タンパク質をコードするDNAの塩基配列を配列番号:2に、それぞれ示す。また、下記の表1に、野生型NmCas9タンパク質(NmCas9)のサイズ(アミノ酸数)、PAM(proto-spacer adjacent motif)配列、及びDNAの切断末端(DNA末端)を示す。典型的なNmCas9タンパク質のPAM配列は、「5′-NNNNGATT」である。ただし、後述するように、Cas9タンパク質を改変すること(例えば、変異の導入)によって、PAMの認識特異性を改変することも可能である。 The typical amino acid sequence of the "NmCas9 protein" used in the present invention (amino acid sequence of the wild-type NmCas9 protein) is shown in SEQ ID NO: 1, and the base sequence of the DNA encoding the protein is shown in SEQ ID NO: 2. In addition, Table 1 below shows the size (number of amino acids) of the wild-type NmCas9 protein (NmCas9), the PAM (proto-spacer adaptive motif) sequence, and the DNA cleavage end (DNA end). The PAM sequence of a typical NmCas9 protein is "5'-NNNNGATT". However, as will be described later, it is also possible to modify the recognition specificity of PAM by modifying the Cas9 protein (for example, introducing a mutation).
 表1には、参照として、従来から制限酵素としてよく利用されているStreptococcus pyogenes由来のCas9タンパク質(SpCas9)、Francisella novicida由来のCpf1タンパク質(FnCpf1)、Staphylococcus aureus由来のCas9タンパク質(SaCas9)、Campylobacter jejuni由来のCas9タンパク質(CjCas9)についても、典型的な、サイズ(アミノ酸数)、PAM配列、DNAの切断末端(DNA末端)、及びある場合には参照文献名を併せて示す。 In Table 1, for reference, Cas9 protein (SpCas9) derived from Streptococcus pyogenes, Cpf1 protein (FnCpf1) derived from Francisella novicida, Cas9 protein derived from Staphylococcus aureus (Staphylococcus aureus) For the derived Cas9 protein (CjCas9), typical size (number of amino acids), PAM sequence, DNA cleavage end (DNA end), and reference reference name in some cases are also shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明に係る「NmCas9タンパク質」としては、ガイドRNAと複合体を形成して標的DNAを切断する活性(ヌクレアーゼ活性)を有している限り、上記の典型的NmCas9タンパク質のホモログ、変異体、又は部分ペプチドであってもよい。 The "NmCas9 protein" according to the present invention is a homologue, a mutant, or a variant of the above-mentioned typical NmCas9 protein as long as it has an activity (nuclease activity) of forming a complex with a guide RNA and cleaving the target DNA. It may be a partial peptide.
 ホモログとしては、例えば、NmCas9タンパク質の典型的なアミノ酸配列(例えば、配列番号:1のアミノ酸配列)と、85%以上、好ましくは90%以上、より好ましくは95%以上(例えば、96%以上、97%以上、98%以上、99%以上)の同一性を有するアミノ酸配列からなるタンパク質が含まれる。配列の同一性は、BLAST等(例えば、デフォルトすなわち初期設定のパラメータ)を用いて計算したときの数値で評価することができる。 The homologs include, for example, the typical amino acid sequence of the NmCas9 protein (eg, the amino acid sequence of SEQ ID NO: 1) and 85% or more, preferably 90% or more, more preferably 95% or more (eg, 96% or more). A protein consisting of an amino acid sequence having 97% or more, 98% or more, 99% or more) identity is included. Sequence identity can be evaluated numerically as calculated using BLAST or the like (eg, default or default parameters).
 また、変異体としては、NmCas9タンパク質の典型的なアミノ酸配列(例えば、配列番号:1のアミノ酸配列)に対して1若しくは複数個のアミノ酸が置換、欠失、付加、又は挿入されたアミノ酸配列からなり、ガイドRNAと複合体を形成して標的DNAを切断する活性を有するタンパク質が含まれる。ここで、「複数個」とは、例えば、2~150個、好ましくは2~100個、より好ましくは2~50個(例えば、2~30個、2~10個、2~5個、2~3個、2個)である。変異体の例としては、例えば、特定のアミノ酸残基に変異を導入することによりPAMの認識特異性を改変したNmCas9タンパク質が挙げられる。Cas9タンパク質におけるPAMの認識特異性を改変する技術は公知である(例えば、Benjamin,P.ら、Nature 523,481-485(2015)、Hirano,S.ら、Molecular Cell 61, 886-894(2016)等)。PAMの認識特異性を改変したNmCas9タンパク質を利用することにより、植物のゲノムDNA上に、より多くの標的DNA領域を設定することが可能となる。 As a variant, from an amino acid sequence in which one or more amino acids are substituted, deleted, added, or inserted into a typical amino acid sequence of NmCas9 protein (for example, the amino acid sequence of SEQ ID NO: 1). It contains proteins that have the activity of forming a complex with the guide RNA and cleaving the target DNA. Here, "plurality" means, for example, 2 to 150 pieces, preferably 2 to 100 pieces, more preferably 2 to 50 pieces (for example, 2 to 30 pieces, 2 to 10 pieces, 2 to 5 pieces, 2). ~ 3 pieces, 2 pieces). Examples of variants include the NmCas9 protein, which has modified the recognition specificity of PAM by introducing a mutation into a specific amino acid residue. Techniques for modifying the recognition specificity of PAM in Cas9 proteins are known (eg, Benjamin, P. et al., Nature 523, 481-485 (2015), Hirano, S. et al., Molecular Cell 61, 886-894 (2016). )etc). By utilizing the NmCas9 protein modified in the recognition specificity of PAM, it becomes possible to set more target DNA regions on the genomic DNA of plants.
 本発明に係るNmCas9タンパク質としては、核移行シグナルを付加したものであることが好ましい。これにより、細胞内で核への局在が促進され、その結果、DNAの編集が効率的に行われる。 The NmCas9 protein according to the present invention is preferably one to which a nuclear localization signal is added. This promotes localization to the nucleus in the cell, resulting in efficient DNA editing.
 〔ガイドRNA〕
 本発明に係るCRISPR-Cas9システムにおいて、「ガイドRNA」は、crRNA(CRISPR RNA)とtracrRNA(trans-activating crRNA)との組み合わせである。本発明に係るNmCas9タンパク質のガイドRNAは、crRNAに、標的DNA領域の塩基配列(標的塩基配列の相補配列)に対して相補的な塩基配列(以下、場合により「標的化塩基配列」という)を含む。すなわち、本発明に係るNmCas9タンパク質のガイドRNAは、標的塩基配列に対して相同な標的化塩基配列を含む。
[Guide RNA]
In the CRISPR-Cas9 system according to the present invention, the "guide RNA" is a combination of crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA). The guide RNA of the NmCas9 protein according to the present invention has a base sequence complementary to the base sequence of the target DNA region (complementary sequence of the target base sequence) (hereinafter, sometimes referred to as “targeted base sequence”) in crRNA. Including. That is, the guide RNA of the NmCas9 protein according to the present invention contains a targeting base sequence that is homologous to the target base sequence.
 なお、本発明において、第1の塩基配列に対して第2の塩基配列が「相同」とは、第1の塩基配列の相補配列に対して、第2の塩基配列が相補的であることをいい、第1の塩基配列及び第2の塩基配列がいずれもDNA又はRNAである場合には、それらの塩基配列は互いに同一の関係にあり、第1の塩基配列及び第2の塩基配列のいずれかがDNAであって他方がRNAである場合には、DNAにおいてチミン(T)である塩基がRNAにおいてウラシル(U)である以外、それらの塩基配列が互いに同一の関係にあることをいう。 In the present invention, the term "homologous" with respect to the first base sequence means that the second base sequence is complementary to the complementary sequence of the first base sequence. When the first base sequence and the second base sequence are both DNA or RNA, the base sequences are in the same relationship with each other, and either the first base sequence or the second base sequence When one is DNA and the other is RNA, it means that their base sequences are in the same relationship with each other except that the base which is timine (T) in DNA is uracil (U) in RNA.
 ここで、「標的DNA領域」とは、植物細胞の標的DNA上、標的塩基配列及び目的の遺伝子改変(塩基の挿入・置換)を生じさせる部位を含む領域を意味する。標的DNA領域は、その3’側にてPAM配列と隣接する。crRNA中の標的化塩基配列は、通常、12~50塩基、好ましくは、17~30塩基、より好ましくは17~25塩基からなる塩基配列である。 Here, the "target DNA region" means a region on the target DNA of a plant cell that includes a target base sequence and a site that causes a target gene modification (insertion / substitution of a base). The target DNA region is adjacent to the PAM sequence on its 3'side. The targeting base sequence in crRNA is usually a base sequence consisting of 12 to 50 bases, preferably 17 to 30 bases, and more preferably 17 to 25 bases.
 前記crRNAは、さらに、tracrRNAと相互作用(ハイブリダイズ)が可能な塩基配列を3’側に含む。一方、tracrRNAは、crRNAの一部の塩基配列と相互作用(ハイブリダイズ)が可能な塩基配列を5’側に含むため、前記ガイドRNAは、これら塩基配列の相互作用により、NmCas9タンパク質と相互作用する二重鎖RNAを形成する。このため、本発明に係るNmCas9タンパク質のガイドRNAは、標的DNA領域の標的塩基配列の相補配列に結合し、NmCas9タンパク質と複合体を形成することで、NmCas9タンパク質を当該標的DNA領域に誘導し、誘導されたNmCas9タンパク質が、そのエンドヌクレアーゼ活性によって標的DNAを切断する。 The crRNA further contains a base sequence capable of interacting (hybridizing) with tracrRNA on the 3'side. On the other hand, since tracrRNA contains a base sequence capable of interacting (hybridizing) with a part of the base sequence of crRNA on the 5'side, the guide RNA interacts with the NmCas9 protein by the interaction of these base sequences. Form double-stranded RNA. Therefore, the guide RNA of the NmCas9 protein according to the present invention binds to the complementary sequence of the target base sequence of the target DNA region and forms a complex with the NmCas9 protein to induce the NmCas9 protein into the target DNA region. The induced NmCas9 protein cleaves the target DNA by its endonuclease activity.
 標的DNA領域において、目的の遺伝子改変を生じさせる部位(すなわち、標的DNAの切断部位)は、前記標的塩基配列中に含まれていなくともよいが、当該標的塩基配列中に含まれていることが好ましい。典型的には、標的DNAの切断は、前記ガイドRNAと標的塩基配列の相補配列との間の塩基対形成の相補性と、その標的塩基配列の3’側に存在するPAM配列との両方によって決定される位置で生じる。NmCas9タンパク質は、一般に、標的DNA領域において、PAM配列の上流3塩基目と4塩基目との間を切断する。 In the target DNA region, the site that causes the target gene modification (that is, the site where the target DNA is cleaved) does not have to be contained in the target base sequence, but may be contained in the target base sequence. preferable. Typically, cleavage of the target DNA is due to both the complementarity of base pairing between the guide RNA and the complementary sequence of the target base sequence and the PAM sequence present on the 3'side of the target base sequence. Occurs at the determined position. The NmCas9 protein generally cleaves between the 3rd and 4th bases upstream of the PAM sequence in the target DNA region.
 本発明のCRISPR-Cas9システムのガイドRNAとしては、crRNA及びtracrRNAを含む一分子ガイドRNA(sgRNA)であっても、crRNA断片とtracrRNA断片とからなる二分子ガイドRNAであってもよい。 The guide RNA of the CRISPR-Cas9 system of the present invention may be a single-molecule guide RNA (sgRNA) containing crRNA and tracrRNA, or a two-molecule guideRNA composed of a crRNA fragment and a tracrRNA fragment.
 一般に、CRISPR-Cas9システムにおいては、Cas9タンパク質による標的DNAの切断が細胞内で修復されると、塩基の挿入や欠失が主に生じるが、本発明においては、植物細胞のDNA編集でCas9タンパク質としてNmCas9タンパク質を用いることにより、従来よりも驚くべき高頻度で1塩基挿入が生じる。例えば、本発明のDNA編集植物細胞製造方法によれば、イネの内在遺伝子の配列を標的DNAとした場合、一例として、1塩基挿入以外の変異が起こった頻度(全変異(塩基の挿入・欠失)の起こったサンプル数に対する1塩基挿入以外の変異が起こったサンプル数の割合)はおよそ1.1~25%と、CRISPR-Cas9システムのCas9タンパク質として従来から利用されているSpCas9タンパク質を同じ標的DNAに用いた場合と比べて、1/8.7~1/2.3にまで減少し、1塩基挿入頻度を著しく高くすることができた。特に、T又はAの1塩基挿入以外の変異が起こった頻度は、1/3.4~1/2.3にまで減少し、T又はAの1塩基挿入頻度を特に高くすることができた(実施例1~2、比較例1~2)。 Generally, in the CRISPR-Cas9 system, when the cleavage of the target DNA by the Cas9 protein is repaired intracellularly, the insertion or deletion of the base mainly occurs, but in the present invention, the Cas9 protein is edited by DNA editing of plant cells. By using the NmCas9 protein as a syrup, one base insertion occurs at a surprisingly higher frequency than before. For example, according to the DNA-edited plant cell production method of the present invention, when a sequence of an endogenous gene of rice is used as a target DNA, as an example, the frequency of mutations other than single nucleotide insertion (total mutation (insertion / absence of base) The ratio of the number of samples with mutations other than single nucleotide insertion to the number of samples with loss) is about 1.1 to 25%, which is the same as the SpCas9 protein conventionally used as the Cas9 protein of the CRISPR-Cas9 system. Compared with the case of using it for the target DNA, it was reduced to 1 / 8.7 to 1 / 2.3, and the frequency of single base insertion could be significantly increased. In particular, the frequency of mutations other than single-base insertion of T or A decreased to 1 / 3.4 to 1 / 2.3, and the frequency of single-base insertion of T or A could be particularly high. (Examples 1 and 2, Comparative Examples 1 and 2).
 (CRISPR-Cas9システムの植物細胞への導入)
 本発明において、植物細胞に導入されるCRISPR-Cas9システムとしては、Cas9タンパク質(NmCas9タンパク質及び必要に応じてそれ以外の他のCas9タンパク質)が、タンパク質の形態であっても、当該タンパク質をコードするRNAやDNA(ポリヌクレオチド)の形態であっても、当該ポリヌクレオチドを発現するベクター(発現ベクター)の形態であってもよい。また、これと独立して、ガイドRNAが、RNAの形態であっても、当該RNAをコードするDNA(ポリヌクレオチド)の形態であっても、当該ポリヌクレオチドを発現するベクター(発現ベクター)の形態であってもよい。
(Introduction of CRISPR-Cas9 system into plant cells)
In the present invention, as the CRISPR-Cas9 system introduced into plant cells, the Cas9 protein (NmCas9 protein and, if necessary, other Cas9 proteins) encodes the protein even in the form of the protein. It may be in the form of RNA or DNA (polynucleotide) or in the form of a vector (expression vector) expressing the polynucleotide. Independently of this, whether the guide RNA is in the form of RNA or the form of DNA (polynucleotide) encoding the RNA, the form of the vector (expression vector) expressing the polynucleotide is used. It may be.
 発現ベクターの形態を採用する場合には、例えば、Cas9タンパク質を発現するベクターとそのガイドRNAを発現するベクターとをそれぞれ細胞内に導入してもよく、また、Cas9タンパク質及びそのガイドRNAの双方を発現するベクターを細胞内に導入してもよい。また、複数のガイドRNAを利用する場合には、これらガイドRNAは、同一の発現ベクターに搭載されていても、別々の発現ベクターに搭載されていてもよい。さらに、NmCas9タンパク質に他のCas9タンパク質を組み合わせる場合には、NmCas9タンパク質と他のCas9タンパク質とは、同一の発現ベクターに搭載されていても、別々の発現ベクターに搭載されていてもよい。 When the form of the expression vector is adopted, for example, a vector expressing Cas9 protein and a vector expressing its guide RNA may be introduced into cells, respectively, or both Cas9 protein and its guide RNA may be introduced. The vector to be expressed may be introduced into cells. When a plurality of guide RNAs are used, these guide RNAs may be loaded on the same expression vector or on different expression vectors. Furthermore, when the NmCas9 protein is combined with another Cas9 protein, the NmCas9 protein and the other Cas9 protein may be loaded on the same expression vector or on different expression vectors.
 また、発現ベクターの形態を採用する場合、前記Cas9タンパク質をコードするポリヌクレオチドとしては、例えば、植物細胞用に、適宜コドン最適化されたものであってもよい。 Further, when the form of the expression vector is adopted, the polynucleotide encoding the Cas9 protein may be, for example, an appropriately codon-optimized one for plant cells.
 さらに、発現ベクターの形態を採用する場合、当該発現ベクターとしては、発現させるべきポリヌクレオチドに作動可能に結合している1つ以上の調節エレメントを含むことが好ましい。ここで、「作動可能に結合している」とは、調節エレメントに上記ポリヌクレオチドが発現可能に結合していることを意味する。「調節エレメント」としては、プロモーター、エンハンサー、内部リボソーム進入部位(IRES)、及び他の発現制御エレメント(例えば、転写終結シグナル(ポリアデニル化シグナル、ポリU配列等))が挙げられる。また、当該発現ベクターとしては、宿主ゲノムに組み込まれることなく、コードするタンパク質を安定して発現することができるものであることが好ましい。 Furthermore, when adopting the form of an expression vector, the expression vector preferably contains one or more regulatory elements that are operably linked to the polynucleotide to be expressed. Here, "operably bound" means that the polynucleotide is expressively bound to the regulatory element. "Regulatory elements" include promoters, enhancers, internal ribosome entry sites (IRES), and other expression control elements (eg, transcription termination signals (polyadenylation signals, polyU sequences, etc.)). Moreover, it is preferable that the expression vector is one that can stably express the encoding protein without being integrated into the host genome.
 CRISPR-Cas9システムの植物細胞への導入は、例えば、アグロバクテリウム法、パーティクルガン法、エレクトロポレーション法、細胞膜透過性ペプチドを利用する方法、プラズマ法等の公知の方法を適宜選択して行うことができる。 The CRISPR-Cas9 system is introduced into plant cells by appropriately selecting a known method such as an Agrobacterium method, a particle gun method, an electroporation method, a method using a cell membrane penetrating peptide, or a plasma method. be able to.
 本発明のDNA編集植物細胞製造方法においては、植物細胞に、NmCas9タンパク質を構成要素とするCRISPR-Cas9システムを導入することにより、高頻度で1塩基の挿入が起こるため、上記の標的DNA領域に1塩基が挿入される編集がなされた植物細胞を得ることができる。また、本発明のDNA編集植物細胞製造方法においては、前記CRISPR-Cas9システムが導入された植物細胞から植物体を再生させることにより、DNAが編集された植物を生産することができる。組織培養により植物の組織を再分化させて個体を得る方法としては、本技術分野において確立された方法を利用することができる(例えば、形質転換プロトコール[植物編] 田部井豊・編 化学同人 pp.340-347(2012))。こうして一旦、植物体が得られれば、該植物体から有性生殖又は無性生殖により子孫を得ることが可能である。また、該植物体やその子孫又はクローンから繁殖材料(例えば、種子、果実、切穂、株、カルス、プロトプラスト)を得て、それらを基に該植物体を量産することも可能である。 In the method for producing DNA-edited plant cells of the present invention, by introducing the CRISPR-Cas9 system containing the NmCas9 protein as a component into plant cells, insertion of one base occurs with high frequency, and therefore, one base is frequently inserted into the above-mentioned target DNA region. Edited plant cells into which one base is inserted can be obtained. Further, in the method for producing a DNA-edited plant cell of the present invention, a plant in which DNA has been edited can be produced by regenerating a plant from a plant cell into which the CRISPR-Cas9 system has been introduced. As a method for obtaining an individual by redifferentiating a plant tissue by tissue culture, a method established in the present technical field can be used (for example, transformation protocol [plant edition] Yutaka Tabei, ed. Kagaku-Dojin pp. 340-347 (2012)). Once a plant is obtained in this way, it is possible to obtain offspring from the plant by sexual reproduction or asexual reproduction. It is also possible to obtain breeding materials (for example, seeds, fruits, cut ears, strains, curls, protoplasts) from the plants and their progeny or clones, and mass-produce the plants based on them.
 <植物細胞のDNAに連続するn個の塩基を挿入する方法>
 本発明のDNA編集植物細胞製造方法によれば、NmCas9タンパク質を利用するCRISPR-Cas9システムにより、従来よりも高頻度で、植物細胞の標的塩基配列に1塩基を挿入することができる。そのため、本発明に係るCRISPR-Cas9システムにおいて、複数のガイドRNAの組み合わせを用いることにより、植物細胞の標的塩基配列に連続する複数の塩基を挿入することも可能である。
<Method of inserting n consecutive bases into the DNA of plant cells>
According to the DNA-edited plant cell production method of the present invention, one base can be inserted into the target base sequence of a plant cell more frequently than before by the CRISPR-Cas9 system using NmCas9 protein. Therefore, in the CRISPR-Cas9 system according to the present invention, it is possible to insert a plurality of consecutive bases into the target base sequence of a plant cell by using a combination of a plurality of guide RNAs.
 したがって、本発明は、DNA編集植物細胞製造方法を利用した方法として、植物細胞に、Cas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムを導入する工程を含み、
 前記Cas9タンパク質がNeisseria meningitidis由来であり、
 前記ガイドRNAがn個のガイドRNAの組み合わせであり、
 nが2以上の自然数であり、
 1番目のガイドRNAが、塩基を挿入する標的塩基配列1に対して相同な標的化塩基配列1を含むものであり、かつ、n番目のガイドRNAが、標的塩基配列1にn-1個の塩基が挿入された標的塩基配列nに対して相同な標的化塩基配列nを含むものである、
植物細胞のDNAに連続するn個の塩基を挿入する方法(以下、場合により、「連続塩基挿入方法」という)も提供する。
Therefore, the present invention includes a step of introducing a CRISPR-Cas9 system having a Cas9 protein and its guide RNA as a constituent element into a plant cell as a method utilizing a DNA-edited plant cell production method.
The Cas9 protein is derived from Neisseria meningitidis and
The guide RNA is a combination of n guide RNAs.
n is a natural number of 2 or more,
The first guide RNA contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the nth guide RNA has n-1 in the target base sequence 1. It contains a targeting base sequence n that is homologous to the target base sequence n into which the base is inserted.
Also provided is a method of inserting n consecutive bases into the DNA of a plant cell (hereinafter, in some cases, referred to as a "continuous base insertion method").
 本発明の連続塩基挿入方法において、植物細胞、NmCas9タンパク質、そのガイドRNA、及びCRISPR-Cas9システム、並びに、植物細胞へのCRISPR-Cas9システムの導入としては、それぞれ独立に、それらの好ましい態様も含めて、DNA編集植物細胞製造方法において述べたとおりである。 In the continuous base insertion method of the present invention, the introduction of the CRISPR-Cas9 system into plant cells, the NmCas9 protein, its guide RNA, and the CRISPR-Cas9 system, and the CRISPR-Cas9 system into the plant cells, each independently includes preferred embodiments thereof. As described in the method for producing DNA-edited plant cells.
 本発明の連続塩基挿入方法においては、NmCas9タンパク質のガイドRNAとして、n個のガイドRNAの組み合わせを用いる。nは、2以上の自然数であり、アミノ酸に対応するコドン単位での塩基挿入を行う場合には、3の倍数である。 In the continuous base insertion method of the present invention, a combination of n guide RNAs is used as a guide RNA for the NmCas9 protein. n is a natural number of 2 or more, and is a multiple of 3 when base insertion is performed in codon units corresponding to amino acids.
 図1に、本発明の連続塩基挿入方法の態様の一例の概略図を示す。例えば、図1に示す態様においては、3個のNmCas9タンパク質のガイドRNA(sgRNA1、sgRNA2、sgRNA3)を、NmCas9タンパク質(NmCas9)と同一の発現ベクター(図1の(a))によって植物細胞に導入する。 FIG. 1 shows a schematic view of an example of the aspect of the continuous base insertion method of the present invention. For example, in the embodiment shown in FIG. 1, guide RNAs (sgRNA1, sgRNA2, sgRNA3) of three NmCas9 proteins are introduced into plant cells by the same expression vector ((a) in FIG. 1) as the NmCas9 protein (NmCas9). To do.
 本発明の連続塩基挿入方法においては、1番目のガイドRNA(sgRNA1)が、塩基を挿入する標的塩基配列1(target sequence)に対して相同(すなわち、標的塩基配列1の相補配列に対して相補的)な標的化塩基配列1を含む。つまり、本発明の連続塩基挿入方法において、1番目のガイドRNAの標的化塩基配列1は、塩基を挿入する目的の部位(すなわち、標的DNAの切断部位)を含む塩基配列(標的塩基配列1)に対して相同な塩基配列である。1番目のガイドRNAとNmCas9タンパク質とを構成要素とするCRISPR-Cas9システムを植物細胞に導入することにより、DNA編集植物細胞製造方法において述べたように、標的塩基配列1のNmCas9タンパク質による切断箇所に高頻度で1塩基が挿入されるため、標的塩基配列1に1塩基が挿入された標的塩基配列2を得ることができる。例えば、図1の(b)では、標的DNA(配列番号:7、図1の(b)の一段目)上のPAM配列の上流3塩基目と4塩基目の間が切断され、当該切断箇所に1塩基、特にT又はAが高頻度で挿入されるため、標的塩基配列1の3’末から3塩基目と4塩基目との間にTが挿入された標的塩基配列2(配列番号:8)を得ることができる(図1の(b)の二段目)。 In the continuous base insertion method of the present invention, the first guide RNA (sgRNA1) is homologous to the target base sequence 1 (target sequence) into which the base is inserted (that is, complementary to the complementary sequence of the target base sequence 1). Includes targeting base sequence 1. That is, in the continuous base insertion method of the present invention, the targeted base sequence 1 of the first guide RNA is a base sequence (target base sequence 1) containing a target site for inserting a base (that is, a cleavage site of the target DNA). It is a base sequence homologous to. By introducing the CRISPR-Cas9 system, which comprises the first guide RNA and the NmCas9 protein, into the plant cells, as described in the method for producing DNA-edited plant cells, the cleavage site of the target base sequence 1 by the NmCas9 protein Since one base is inserted at a high frequency, the target base sequence 2 in which one base is inserted into the target base sequence 1 can be obtained. For example, in FIG. 1 (b), the gap between the 3rd and 4th bases upstream of the PAM sequence on the target DNA (SEQ ID NO: 7, 1st stage of FIG. 1 (b)) is cleaved, and the cleavage site is cleaved. Since 1 base, particularly T or A, is frequently inserted into the target base sequence 2, T is inserted between the 3rd to 4th bases of the target base sequence 1 (SEQ ID NO:: SEQ ID NO:: 8) can be obtained (second stage of (b) in FIG. 1).
 さらに、本発明の連続塩基挿入方法において、2番目のガイドRNAは、標的塩基配列1に1塩基が挿入された標的塩基配列2に対して相同な標的化塩基配列2を含む。そのため、1番目のガイドRNAによって上記の標的塩基配列2が得られた場合、2番目のガイドRNA(sgRNA2)は、標的塩基配列2の相補配列に結合し、かつ、NmCas9タンパク質と複合体を形成することで、NmCas9タンパク質を標的塩基配列2に誘導し、誘導されたNmCas9タンパク質が、そのエンドヌクレアーゼ活性によって標的塩基配列2を切断し、当該切断箇所に高頻度で1塩基が挿入される。その結果、標的塩基配列2に1塩基が挿入された標的塩基配列3(すなわち、標的塩基配列1に2塩基が挿入された標的塩基配列3)を得ることができる。例えば、図1では、PAM配列の上流3塩基目と4塩基目との間が切断され、当該切断箇所に1塩基、特にT又はAが高頻度で挿入されるため、標的塩基配列2の3’末から3塩基目と4塩基目との間にAが挿入された標的塩基配列3(配列番号:9)を得ることができる(図1の(b)の三段目)。 Further, in the continuous base insertion method of the present invention, the second guide RNA contains a target base sequence 2 homologous to the target base sequence 2 in which one base is inserted into the target base sequence 1. Therefore, when the above target base sequence 2 is obtained by the first guide RNA, the second guide RNA (sgRNA2) binds to the complementary sequence of the target base sequence 2 and forms a complex with the NmCas9 protein. By doing so, the NmCas9 protein is induced to the target base sequence 2, and the induced NmCas9 protein cleaves the target base sequence 2 by its endonuclease activity, and one base is frequently inserted into the cleavage site. As a result, the target base sequence 3 in which one base is inserted in the target base sequence 2 (that is, the target base sequence 3 in which two bases are inserted in the target base sequence 1) can be obtained. For example, in FIG. 1, the gap between the 3rd and 4th bases upstream of the PAM sequence is cleaved, and 1 base, particularly T or A, is frequently inserted into the cleaved portion. 'The target base sequence 3 (SEQ ID NO: 9) in which A is inserted between the 3rd and 4th bases from the end can be obtained (the third stage of (b) in FIG. 1).
 さらに、本発明の連続塩基挿入方法において、3番目のガイドRNAは、標的塩基配列2に1塩基が挿入された標的塩基配列3に対して相同な標的化塩基配列3を含む。そのため、2番目のガイドRNAによって上記の標的塩基配列3が得られた場合、3番目のガイドRNA(sgRNA3)は、標的塩基配列3の相補配列に結合し、かつ、NmCas9タンパク質と複合体を形成することで、NmCas9タンパク質を標的塩基配列3に誘導し、誘導されたNmCas9タンパク質が、そのエンドヌクレアーゼ活性によって標的塩基配列3を切断し、当該切断箇所に高頻度で1塩基が挿入される。その結果、標的塩基配列3に1塩基が挿入された塩基配列(すなわち、標的塩基配列1に3塩基が挿入された塩基配列)を得ることができる。例えば、図1では、PAM配列の上流3塩基目と4塩基目との間が切断され、当該切断箇所に1塩基、特にT又はAが高頻度で挿入されるため、標的塩基配列3の3’末から3塩基目と4塩基目との間にAが挿入された塩基配列(配列番号:10)を得ることができ、結果として、終始コドンであるTAAを効率的に標的DNAに挿入することができる(図1の(b)の四段目)。 Further, in the continuous base insertion method of the present invention, the third guide RNA contains a target base sequence 3 homologous to the target base sequence 3 in which one base is inserted into the target base sequence 2. Therefore, when the above target base sequence 3 is obtained by the second guide RNA, the third guide RNA (sgRNA3) binds to the complementary sequence of the target base sequence 3 and forms a complex with the NmCas9 protein. By doing so, the NmCas9 protein is induced to the target base sequence 3, and the induced NmCas9 protein cleaves the target base sequence 3 by its endonuclease activity, and one base is frequently inserted into the cleavage site. As a result, a base sequence in which one base is inserted in the target base sequence 3 (that is, a base sequence in which three bases are inserted in the target base sequence 1) can be obtained. For example, in FIG. 1, the gap between the 3rd and 4th bases upstream of the PAM sequence is cleaved, and 1 base, particularly T or A, is frequently inserted into the cleaved portion, so that 3 of the target base sequence 3 'It is possible to obtain a base sequence (SEQ ID NO: 10) in which A is inserted between the 3rd and 4th bases from the end, and as a result, TAA, which is a stop codon, is efficiently inserted into the target DNA. Can be done (fourth row in (b) of FIG. 1).
 このように、本発明の連続塩基挿入方法においては、NmCas9タンパク質のガイドRNAとして、n個のガイドRNAの組み合わせを用い、n番目のガイドRNAが、標的塩基配列1にn-1個の塩基が挿入された標的塩基配列nに対して相同(すなわち、標的塩基配列nの相補配列に対して相補的)な標的化塩基配列nを含むことにより、上記の1塩基挿入をn回連続させることで、植物細胞の標的DNA領域に、連続するn個の塩基を挿入することが可能となる。特に、本発明に係るNmCas9タンパク質を構成要素とするCRISPR-Cas9システムを植物細胞に導入した場合には、T又はAの1塩基挿入頻度が高いため、終始コドンであるTAAを挿入することが容易となる。 As described above, in the continuous base insertion method of the present invention, a combination of n guide RNAs is used as the guide RNA of the NmCas9 protein, and the nth guide RNA has n-1 bases in the target base sequence 1. By including the targeting base sequence n that is homologous to the inserted target base sequence n (that is, complementary to the complementary sequence of the target base sequence n), the above-mentioned one-base insertion can be continued n times. , It becomes possible to insert n consecutive bases into the target DNA region of a plant cell. In particular, when the CRISPR-Cas9 system containing the NmCas9 protein according to the present invention is introduced into a plant cell, the frequency of inserting one base of T or A is high, so that TAA, which is a stop codon, can be easily inserted from beginning to end. It becomes.
 なお、図1において、nは3であり、3個のガイドRNAは、いずれもsgRNAとして、NmCas9タンパク質と同一の発現ベクター(図1の(a))により植物細胞に導入されるが、本発明の連続塩基挿入方法の態様はこれに限定されるものではなく、例えば、n個のガイドRNAはそれぞれ別々に順次植物細胞に導入されてもよく、このときの導入と導入との間にはクローニング工程等を含んでいてもよい。ただし、本発明によれば、標的塩基配列1に対して高頻度で1塩基の挿入が起き、高頻度でn-1個の塩基(特に、T又はA)が挿入された標的塩基配列nを得ることができるため、これに合わせて設計したn個のガイドRNAを同時に植物細胞に導入することによって、1回の導入操作で容易に、連続するn個の塩基を挿入することが可能である。 In FIG. 1, n is 3, and all three guide RNAs are introduced into plant cells as sgRNA by the same expression vector as NmCas9 protein ((a) in FIG. 1). The mode of the continuous base insertion method is not limited to this, and for example, n guide RNAs may be sequentially introduced into plant cells separately, and cloning is performed between the introductions at this time. It may include steps and the like. However, according to the present invention, the target base sequence n in which one base is frequently inserted into the target base sequence 1 and n-1 bases (particularly T or A) are inserted frequently is used. Therefore, by simultaneously introducing n guide RNAs designed in accordance with this into plant cells, it is possible to easily insert n consecutive bases with a single introduction operation. ..
 <植物細胞のDNAの塩基を置換する方法>
 本発明のDNA編集植物細胞製造方法は、他のCRISPR-Cas9システムと組み合わせてもよい。例えば、本発明に係るNmCas9タンパク質を用いたCRISPR-Cas9システムは、それ以外の他のCas9タンパク質(例えば、他の細菌に由来するCas9タンパク質等)を用いたCRISPR-Cas9システムと組み合わせて用いてもよい。
<Method of replacing bases in DNA of plant cells>
The DNA-edited plant cell production method of the present invention may be combined with other CRISPR-Cas9 systems. For example, the CRISPR-Cas9 system using the NmCas9 protein according to the present invention may be used in combination with the CRISPR-Cas9 system using other Cas9 proteins (for example, Cas9 proteins derived from other bacteria). Good.
 したがって、本発明は、DNA編集植物細胞製造方法を利用した方法として、NmCas9タンパク質を用いたCRISPR-Cas9システムに、他のCRISPR-Cas9システムを併用することにより、植物細胞のDNAの塩基を置換する方法、例えば、
 植物細胞に、NmCas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムと、NmCas9タンパク質以外の他のCas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムと、を導入する工程を含み、
 NmCas9タンパク質のガイドRNAが、塩基を挿入する標的塩基配列1に対して相同な標的化塩基配列1を含むものであり、かつ、前記他のCas9タンパク質のガイドRNAが、標的塩基配列1に1個の塩基が挿入された標的塩基配列2に対して相同な標的化塩基配列2を含むものである、
植物細胞のDNAの塩基を置換する方法(以下、場合により、「塩基置換方法」という)も提供する。
Therefore, the present invention replaces the base of the DNA of a plant cell by using another CRISPR-Cas9 system in combination with the CRISPR-Cas9 system using the NmCas9 protein as a method utilizing the DNA-edited plant cell production method. Method, for example
Including a step of introducing a CRISPR-Cas9 system having NmCas9 protein and its guide RNA as a component and a CRISPR-Cas9 system having another Cas9 protein other than NmCas9 protein and its guide RNA as a component into plant cells. ,
The guide RNA of the NmCas9 protein contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and one guide RNA of the other Cas9 protein is included in the target base sequence 1. Contains a targeting base sequence 2 that is homologous to the target base sequence 2 into which the base is inserted.
A method for substituting a base in DNA of a plant cell (hereinafter, in some cases, referred to as a “base replacement method”) is also provided.
 NmCas9タンパク質以外の他のCas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムとしては、1塩基欠失を起こしやすいCRISPR-Cas9システムであることが好ましく、このようなCRISPR-Cas9システムの構成要素としての他のCas9タンパク質としては、例えば、上記表1に示すSpCas9タンパク質、SaCas9タンパク質等が挙げられ、SpCas9タンパク質が好ましいが、これらに限定されるものではない。 As the CRISPR-Cas9 system whose constituents are Cas9 proteins other than the NmCas9 protein and its guide RNA, it is preferable that the CRISPR-Cas9 system is prone to single-base deletion, and the configuration of such a CRISPR-Cas9 system is preferable. Examples of other Cas9 proteins as elements include, for example, SpCas9 protein and SaCas9 protein shown in Table 1 above, and SpCas9 protein is preferable, but the present invention is not limited thereto.
 本発明の塩基置換方法において、植物細胞、NmCas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システム、並びに、その植物細胞への導入としては、それぞれ独立に、それらの好ましい態様も含めて、DNA編集植物細胞製造方法において述べたとおりである。 In the base substitution method of the present invention, the CRISPR-Cas9 system having plant cells, NmCas9 protein and its guide RNA as components, and its introduction into plant cells are independently, including their preferred embodiments. As described in the method for producing DNA-edited plant cells.
 また、本発明の塩基置換方法において、前記他のCas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システム、並びに、その植物細胞への導入としては、本発明に係るNmCas9タンパク質を用いたCRISPR-Cas9システムにおいて、上記の典型的なNmCas9タンパク質を、前記他のCas9タンパク質、例えば、典型的なアミノ酸配列がUniProtKB/Swiss-Protアクセッション番号:Q99ZW2.1で示されるStreptococcus pyogenes由来のCas9タンパク質(SpCas9)に置き換え、これに対応するガイドRNAを用いること以外は、NmCas9タンパク質及びガイドRNAを構成要素とするCRISPR-Cas9システムと同様であり、公知の技術によって適宜実施可能である。 Further, in the base substitution method of the present invention, the CRISPR-Cas9 system containing the other Cas9 protein and its guide RNA as components, and the CRISPR using the NmCas9 protein according to the present invention as its introduction into plant cells. -In the Cas9 system, the above-mentioned typical NmCas9 protein is replaced with the above-mentioned other Cas9 protein, for example, a Cas9 protein derived from Streptococcus pyogenes whose typical amino acid sequence is shown by UniProtKB / Swiss-Prot accession number: Q99ZW2.1. It is the same as the CRISPR-Cas9 system having NmCas9 protein and guide RNA as components except that it is replaced with SpCas9) and a guide RNA corresponding thereto is used, and it can be appropriately carried out by a known technique.
 図2に、本発明の塩基置換方法の態様の一例の概略図を示す。例えば、図2に示す態様においては、NmCas9タンパク質(NmCas9)及びそのガイドRNA(sgRNA for NmCas9)と、SpCas9タンパク質(SpCas9)及びそのガイドRNA(sgRNA for SpCas9)と、を各発現ベクター(図2の(a))によってそれぞれ植物細胞に導入する。 FIG. 2 shows a schematic view of an example of the aspect of the base substitution method of the present invention. For example, in the embodiment shown in FIG. 2, NmCas9 protein (NmCas9) and its guide RNA (sgRNA for NmCas9), SpCas9 protein (SpCas9) and its guide RNA (sgRNA for SpCas9) are expressed in each expression vector (FIG. 2). Each is introduced into a plant cell according to (a)).
 本発明の塩基置換方法においては、NmCas9タンパク質のガイドRNAが、塩基を挿入する標的塩基配列1(target sequence)に対して相同(すなわち、標的塩基配列1の相補配列に対して相補的)な標的化塩基配列1を含む。つまり、本発明の塩基置換方法において、NmCas9タンパク質のガイドRNAの標的化塩基配列1は、塩基を挿入する目的の部位(すなわち、標的DNAの切断部位)を含む塩基配列(標的塩基配列1)に対して相同な塩基配列である。かかるガイドRNAとNmCas9タンパク質とを構成要素とするCRISPR-Cas9システムを植物細胞に導入することにより、DNA編集植物細胞製造方法において述べたように、標的塩基配列1のNmCas9タンパク質による切断箇所に高頻度で1塩基が挿入されるため、標的塩基配列1に1塩基が挿入された標的塩基配列2を得ることができる。例えば、図2の(b)では、標的DNA(配列番号:11、図2の(b)の一段目)上の、NmCas9タンパク質のPAM配列の上流3塩基目と4塩基目との間が切断され、当該切断箇所に1塩基、特にT又はAが高頻度で挿入されるため、標的塩基配列1の3’末から3塩基目と4塩基目との間にAが挿入された標的塩基配列2(配列番号:12)を得ることができる(図2の(b)の二段目)。 In the base substitution method of the present invention, the guide RNA of the NmCas9 protein is a target homologous to the target base sequence 1 (target sequence) into which the base is inserted (that is, complementary to the complementary sequence of the target base sequence 1). Contains the modified base sequence 1. That is, in the base substitution method of the present invention, the target base sequence 1 of the guide RNA of the NmCas9 protein is arranged in the base sequence (target base sequence 1) containing the target site for inserting the base (that is, the cleavage site of the target DNA). On the other hand, it is a homologous base sequence. By introducing the CRISPR-Cas9 system containing the guide RNA and the NmCas9 protein into plant cells, as described in the method for producing DNA-edited plant cells, the frequency of cleavage by the NmCas9 protein in the target base sequence 1 is high. Since one base is inserted in, the target base sequence 2 in which one base is inserted into the target base sequence 1 can be obtained. For example, in FIG. 2B, the gap between the 3rd and 4th bases upstream of the PAM sequence of the NmCas9 protein on the target DNA (SEQ ID NO: 11, the first stage of FIG. 2B) is cleaved. Since 1 base, especially T or A, is frequently inserted into the cleavage site, the target base sequence in which A is inserted between the 3'end to the 4th base of the target base sequence 1 is inserted. 2 (SEQ ID NO: 12) can be obtained (second stage of (b) in FIG. 2).
 さらに、本発明の塩基置換方法においては、他のCas9タンパク質(図2では、SpCas9タンパク質)のガイドRNAが、標的塩基配列1に1塩基が挿入された標的塩基配列2に対して相同(すなわち、標的塩基配列2の相補配列に対して相補的)な標的化塩基配列2を含む。そのため、NmCas9タンパク質とそのガイドRNAとによって上記の標的塩基配列2が得られた場合、SpCas9タンパク質のガイドRNAは、標的塩基配列2の相補配列に結合し、かつ、SpCas9タンパク質と複合体を形成することで、SpCas9タンパク質を標的塩基配列2に誘導し、誘導されたSpCas9タンパク質が、そのエンドヌクレアーゼ活性によって標的塩基配列2を切断し、当該切断箇所では比較的高頻度で1塩基が欠失する。その結果、標的塩基配列2から1塩基が欠失した塩基配列(すなわち、標的塩基配列1の1塩基が置換された塩基配列)を得ることができる。例えば、図2では、SpCas9タンパク質のPAM配列の上流3塩基目と4塩基目との間が切断され、当該切断箇所において1塩基の欠失が高頻度で起こるため、標的塩基配列2の3’末から3塩基目のCが欠失した塩基配列(配列番号:13)を得ることができ、結果として、標的塩基配列1の3’末から3塩基目の塩基をCからAに置換することができる(図2の(b)の三段目)。 Further, in the base substitution method of the present invention, the guide RNA of another Cas9 protein (SpCas9 protein in FIG. 2) is homologous to the target base sequence 2 in which one base is inserted into the target base sequence 1 (that is, that is). It contains a targeted base sequence 2 that is complementary to the complementary sequence of the target base sequence 2. Therefore, when the above-mentioned target base sequence 2 is obtained by the NmCas9 protein and its guide RNA, the guide RNA of the SpCas9 protein binds to the complementary sequence of the target base sequence 2 and forms a complex with the SpCas9 protein. As a result, the SpCas9 protein is induced into the target base sequence 2, and the induced SpCas9 protein cleaves the target base sequence 2 by its endonuclease activity, and one base is deleted at the cleavage site with a relatively high frequency. As a result, a base sequence in which one base is deleted from the target base sequence 2 (that is, a base sequence in which one base of the target base sequence 1 is substituted) can be obtained. For example, in FIG. 2, the upstream 3rd and 4th bases of the PAM sequence of the SpCas9 protein are cleaved, and 1 base is frequently deleted at the cleavage site, so that 3'of the target base sequence 2'. A base sequence (SEQ ID NO: 13) in which C at the third base from the end is deleted can be obtained, and as a result, the base at the third base from the 3'end of the target base sequence 1 is replaced with C from A. (Third stage of (b) in FIG. 2).
 このように、本発明の塩基置換方法においては、NmCas9タンパク質を用いたCRISPR-Cas9システムに、特に1塩基欠失を起こしやすいCRISPR-Cas9システムを組み合わせることにより、標的塩基配列への1塩基挿入後に、同標的塩基配列に存在した1塩基を欠失させることができ、効率よく塩基を置換することが可能となる。特に、本発明に係るNmCas9タンパク質を用いたCRISPR-Cas9システムを植物細胞に導入した場合には、T又はAの1塩基挿入頻度が高いため、標的塩基配列へのT又はAの1塩基挿入後に、同標的塩基配列に存在した1塩基を欠失させることにより、A/C/GからTへ、又は、C/G/TからAへ、効率よく塩基を置換することが可能となる。 As described above, in the base substitution method of the present invention, by combining the CRISPR-Cas9 system using the NmCas9 protein with the CRISPR-Cas9 system, which is particularly prone to single nucleotide deletion, after insertion of one base into the target base sequence. , One base existing in the same target base sequence can be deleted, and the base can be replaced efficiently. In particular, when the CRISPR-Cas9 system using the NmCas9 protein according to the present invention is introduced into a plant cell, the frequency of inserting one base of T or A is high, and therefore, after inserting one base of T or A into the target base sequence. By deleting one base existing in the same target base sequence, it is possible to efficiently replace the base from A / C / G to T or from C / G / T to A.
 なお、図2において、各ガイドRNAは、いずれもsgRNAとして、各Cas9タンパク質とそれぞれ同一の発現ベクター(図2の(a))により植物細胞に導入されるが、本発明の塩基置換方法の態様はこれに限定されるものではなく、例えば、これらは全て同一の発現ベクターにより植物細胞に導入されても、NmCas9タンパク質及びそのガイドRNAを植物細胞に導入した後、SpCas9タンパク質及びそのガイドRNAを当該植物細胞に導入してもよく、このときの導入と導入との間にはクローニング工程等を含んでいてもよい。ただし、本発明によれば、標的塩基配列1に対して高頻度で1塩基(特に、T又はA)が挿入された標的塩基配列2を得ることができるため、これらを同時に植物細胞に導入することによって、1回の導入操作で容易に、塩基を置換することが可能である。 In FIG. 2, each guide RNA is introduced into a plant cell as an sgRNA by the same expression vector as each Cas9 protein ((a) in FIG. 2), but the embodiment of the base substitution method of the present invention. Is not limited to this, for example, even if they are all introduced into a plant cell by the same expression vector, the NmCas9 protein and its guide RNA are introduced into the plant cell, and then the SpCas9 protein and its guide RNA are introduced. It may be introduced into a plant cell, and a cloning step or the like may be included between the introduction at this time. However, according to the present invention, since the target base sequence 2 in which one base (particularly T or A) is inserted with high frequency with respect to the target base sequence 1 can be obtained, these are simultaneously introduced into plant cells. As a result, it is possible to easily replace the base with a single introduction operation.
 <キット>
 また、本発明は、上記本発明の方法に用いるためのキットを提供する。本発明のキットは、(A)NmCas9タンパク質、該タンパク質をコードするポリヌクレオチド、又は該ポリヌクレオチドを発現するベクター、及び(B)NmCas9タンパク質のガイドRNA、該ガイドRNAをコードするポリヌクレオチド、又は該ポリヌクレオチドを発現するベクターを含む。前記ベクター(A)と(B)とは、互いに別のベクターであっても、同一のベクターであってもよい。
<Kit>
The present invention also provides a kit for use in the method of the present invention. The kit of the present invention comprises (A) NmCas9 protein, a polynucleotide encoding the protein, or a vector expressing the polynucleotide, and (B) a guide RNA of the NmCas9 protein, a polynucleotide encoding the guide RNA, or the said. Contains a vector that expresses a polynucleotide. The vectors (A) and (B) may be different vectors from each other or may be the same vector.
 植物細胞のDNAに連続するn個の塩基を挿入する目的においては、NmCas9タンパク質のガイドRNAとして、n個のガイドRNAの組み合わせを用いる。ここで、nは2以上の自然数であり、1番目のガイドRNAは、塩基を挿入する標的塩基配列1に対して相同な標的化塩基配列1を含むものであり、かつ、n番目のガイドRNAは、標的塩基配列1にn-1個の塩基が挿入された標的塩基配列nに対して相同な標的化塩基配列nを含むものである。 For the purpose of inserting n consecutive bases into the DNA of plant cells, a combination of n guide RNAs is used as a guide RNA for the NmCas9 protein. Here, n is a natural number of 2 or more, and the first guide RNA contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and is the nth guide RNA. Contains a targeting base sequence n that is homologous to the target base sequence n in which n-1 bases are inserted into the target base sequence 1.
 植物細胞のDNAの塩基を置換する目的において、本発明のキットは、(C)NmCas9タンパク質以外の他のCas9タンパク質(例えば、SpCas9タンパク質)、該タンパク質をコードするポリヌクレオチド、又は該ポリヌクレオチドを発現するベクター、及び(D)前記他のCas9タンパク質(例えば、SpCas9タンパク質)のガイドRNA、該ガイドRNAをコードするポリヌクレオチド、又は該ポリヌクレオチドを発現するベクターをさらに含むことが好ましい。ここで、前記NmCas9タンパク質のガイドRNAは、塩基を挿入する標的塩基配列1に対して相同な標的化塩基配列1を含むものであり、前記他のCas9タンパク質のガイドRNAは、標的塩基配列1に1個の塩基が挿入された標的塩基配列2に対して相同な標的化塩基配列2を含むものである。前記ベクター(C)と(D)とは、互いに別のベクターであっても、同一のベクターであってもよい。さらに、前記ベクター(C)及び/又は(D)としては、前記ベクター(A)及び/又は(B)と同一のベクターであってもよい。 For the purpose of substituting bases in DNA of plant cells, the kits of the present invention express Cas9 proteins other than (C) NmCas9 proteins (eg, SpCas9 proteins), polynucleotides encoding the proteins, or the polynucleotides. It is preferable to further include (D) a guide RNA of the other Cas9 protein (for example, SpCas9 protein), a polynucleotide encoding the guide RNA, or a vector expressing the polynucleotide. Here, the guide RNA of the NmCas9 protein contains a targeting base sequence 1 that is homologous to the target base sequence 1 into which the base is inserted, and the guide RNA of the other Cas9 protein is in the target base sequence 1. It contains a targeting base sequence 2 that is homologous to the target base sequence 2 in which one base is inserted. The vectors (C) and (D) may be different vectors from each other or may be the same vector. Further, the vectors (C) and / or (D) may be the same vectors as the vectors (A) and / or (B).
 また、本発明のキットは、一つ又は複数の追加の試薬をさらに含んでいてもよい。このような追加の試薬としては、例えば、希釈緩衝液、再構成溶液、洗浄緩衝液、核酸導入試薬、タンパク質導入試薬、対照試薬(例えば、対照のガイドRNA)が挙げられるが、これらに制限されるものではない。また、当該キットは、本発明の方法を実施するための使用説明書をさらに含んでいてもよい。 Also, the kit of the present invention may further include one or more additional reagents. Such additional reagents include, but are limited to, for example, dilution buffers, reconstruction solutions, wash buffers, nucleic acid transfer reagents, protein transfer reagents, control reagents (eg, control guide RNAs). It's not a thing. In addition, the kit may further include an instruction manual for carrying out the method of the present invention.
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.
 (実施例1)
 [プラスミド構築]
 先ず、GeneArt Gene Synthesis(サーモフィッシャーサイエンティフィック社製)により、シロイヌナズナのコドンに最適化し、N末端側にFLAGタグ及びSimian Virus40(SV40)由来核移行シグナルを付加したNmCas9タンパク質遺伝子のDNA(配列番号:3に記載のアミノ酸配列をコードする、配列番号:4に記載の塩基配列)を合成した。次いで、バイナリーベクターpRI-SpCas9(Kaya et al.(2016)Sci.Rep.6:26871)をバックボーンとして、NmCas9タンパク質(NmCas9)の発現ベクターの構築を行った。すなわち、pRI-SpCas9内のカリフラワーモザイクウイルスの35Sプロモーターとシロイヌナズナのアルコール脱水素酵素遺伝子の5’-UTR部分とを、パセリのユビキチン4-2遺伝子のプロモーター(PcUBI)とイネのアルコール脱水素酵素遺伝子の5’-UTRとに、それぞれ置き換えた。また、pRI-SpCas9内のカナマイシン耐性遺伝子発現カセット(アグロバクテリウムのNOS遺伝子のプロモーターとネオマイシンホスホトランスフェラーゼ遺伝子)を、ハイグロマイシン耐性遺伝子発現カセット(カリフラワーモザイクウイルスの35Sプロモーターとハイグロマイシンホスホトランスフェラーゼ遺伝子)と置換して、pRI-PcUBI-pro::SpCas9ベクターを構築した。次いで、pRI-PcUBI-pro::SpCas9ベクターをSmaIとSacIとで切断し、ベクター内のSpCas9タンパク質遺伝子のDNAを上記で合成したNmCas9タンパク質遺伝子のDNAに置き換え、NmCas9発現ベクターを構築した。
(Example 1)
[Plasid construction]
First, the DNA (SEQ ID NO:) of the NmCas9 protein gene optimized for the codon of Shiroinu nazuna by GeneArt Gene Synthesis (manufactured by Thermo Fisher Scientific) and added with a FLAG tag and a nuclear localization signal derived from Simian Virus40 (SV40) on the N-terminal side. : The base sequence shown in SEQ ID NO: 4, which encodes the amino acid sequence shown in 3, was synthesized. Next, an expression vector for the NmCas9 protein (NmCas9) was constructed using the binary vector pRI-SpCas9 (Kaya et al. (2016) Sci. Rep. 6: 26871) as the backbone. That is, the 35S promoter of cauliflower mosaic virus in pRI-SpCas9 and the 5'-UTR portion of the alcohol dehydrogenase gene of white inunazuna, the promoter of the ubiquitin 4-2 gene of parsley (PcUBI) and the alcohol dehydrogenase gene of rice. It was replaced with 5'-UTR of. In addition, the canamycin resistance gene expression cassette (promoter of NOS gene of agrobacterium and neomycin phosphotransferase gene) in pRI-SpCas9 is used as a hyglomycin resistance gene expression cassette (35S promoter of cauliflower mosaic virus and hyglomycin phosphotransferase gene). Substitution was used to construct the pRI-PcUBI-pro :: SpCas9 vector. Next, the pRI-PcUBI-pro :: SpCas9 vector was cleaved with SmaI and SacI, and the DNA of the SpCas9 protein gene in the vector was replaced with the DNA of the NmCas9 protein gene synthesized above to construct an NmCas9 expression vector.
 また、GeneArt Gene Synthesis(サーモフィッシャーサイエンティフィック社製)により、NmCas9タンパク質のPAM配列(5′-NNNNGATT)及びSpCas9タンパク質のPAM配列(5′-NGG)をいずれも含むイネ内在遺伝子配列(配列番号:5に記載の塩基配列を含む配列、遺伝子ID(「RAP-DB」、https://rapdb.dna.affrc.go.jp/):Os01g0899200(イネ標的DNA_A))における、NmCas9タンパク質のPAM配列の上流の22ヌクレオチドの標的塩基配列A(target sequenceA corresponding to sgRNA of NmCas9)に対して相同な塩基配列(標的化塩基配列)を含むガイドRNA(sgRNA)を合成し、pOsU6-sgRNA_SaCas9(Kaya et al.(2016)Sci.Rep.6:26871)内のSaCas9タンパク質のガイドRNAと置換して、ガイドRNA発現カセットを構築した。次いで、ガイドRNA発現カセットをBbsIで切断してクローニングした。PacIとAscIとを利用して、クローニングしたガイドRNA発現カセットを上記のNmCas9発現ベクターに組み込み、sgRNA-NmCas9発現ベクターを構築した。 In addition, a rice endogenous gene sequence (SEQ ID NO:) containing both a PAM sequence of NmCas9 protein (5'-NNNGATT) and a PAM sequence of SpCas9 protein (5'-NGG) by GeneArt Gene Synthesis (manufactured by Thermo Fisher Scientific Co., Ltd.) : PAM sequence of NmCas9 protein in the sequence containing the nucleotide sequence according to 5 and the gene ID (“RAP-DB”, https: //rapdb.dna.affrc.go.jp/): Os01g0899200 (rice target DNA_A)). A guide RNA (sgRNA) containing a base sequence (targeted base sequence) homologous to the target base sequence A (target sequence A corresponding to sgRNA of NmCas9) of 22 nucleotides upstream of the above is synthesized, and pOsU6-sgRNA_SaCas9 (Kaya et al.) (2016) Sci. Rep. 6: 26871) was replaced with the guide RNA of the SaCas9 protein to construct a guide RNA expression cassette. The guide RNA expression cassette was then cleaved with BbsI and cloned. Using PacI and AscI, the cloned guide RNA expression cassette was incorporated into the above NmCas9 expression vector to construct an sgRNA-NmCas9 expression vector.
 [イネカルスへの形質転換]
 上記のsgRNA-NmCas9発現ベクターを用いて、土岐らの方法(Toki(1997)Plant Mol.Biol.Rep.15:16-21、Toki et al.(2006)Plant J 47:969-976)に従い、アグロバクテリウムによるイネカルスの形質転換を行った。先ず、sgRNA-NmCas9発現ベクターをアグロバクテリウム(菌株:EHA105)に導入し、また、胚盤由来のイネカルス(イネ:Oryza sativa L. 品種:日本晴)を1か月間培養した。次いで、これらアグロバクテリウム及びイネカルスを3日間共存培養した後、25mg/L meropenem(富士フイルム和光純薬株式会社製)溶液でカルスを洗い、50mg/L hygromycin Bと25mg/L meropenemとを含む培地で4~5週間培養した。
[Transformation to Inekals]
Using the above sgRNA-NmCas9 expression vector, according to the method of Toki et al. (Toki (1997) Plant Mol. Biol. Rep. 15: 16-21, Toki et al. (2006) Plant J 47: 969-976). Inecarus was transformed with Agrobacterium. First, an sgRNA-NmCas9 expression vector was introduced into Agrobacterium (strain: EHA105), and blastoderm-derived rice karus (rice: Oryza sativa L. cultivar: Nihonharu) was cultured for one month. Next, after co-culturing these Agrobacterium and rice callus for 3 days, the callus was washed with a 25 mg / L meropenem (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) solution, and a medium containing 50 mg / L hygromycin B and 25 mg / L meropenem. Incubated for 4-5 weeks.
 [CAPS解析]
 形質転換後、4~5週間培養したイネカルス、24個のサンプルについて、簡易DNA抽出法(Kasajima et al.(2004)Plant Mol.Biol.Rep.22:49-52)によりゲノムDNAを抽出した。KOD-FX neo DNA polymerase(東洋紡株式会社製)を用いて、標的塩基配列(target sequenceA corresponding to sgRNA of NmCas9)をPCR法により増幅した。得られたPCR産物を、SacIによる制限酵素処理で一晩切断し、MCE-202 MultiNA with a DNA-500 kit(株式会社島津製作所製)を用いて、CAPS(Cleaved Amplified Polymorphic Sequences)法により、前記標的塩基配列に変異が導入されているかを調べた。
[CAPS analysis]
Genomic DNA was extracted from 24 samples of rice cults cultured for 4 to 5 weeks after transformation by a simple DNA extraction method (Kasazima et al. (2004) Plant Mol. Biol. Rep. 22: 49-52). Using KOD-FX neo DNA polymerase (manufactured by Toyobo Co., Ltd.), the target nucleotide sequence (target sequenceA correspending to sgRNA of NmCas9) was amplified by the PCR method. The obtained PCR product was cleaved overnight by restriction enzyme treatment with SacI, and using the MCE-202 MultiNA with a DNA-500 kit (manufactured by Shimadzu Corporation), the CAPS (Cleared Applied Polymorphic Sequences) method was used. It was investigated whether a mutation was introduced into the target base sequence.
 [シークエンス解析]
 CAPS解析で変異導入が確認された系統について、上記のCAPS解析と同様にして得られた標的塩基配列A(target sequenceA corresponding to sgRNA of NmCas9)のPCR産物をpCR-bluntII-TOPO(サーモフィッシャーサイエンティフィック社製)にクローニングした。このプラスミドはBigDye Terminator v3.1 cycle sequencing kit(サーモフィッシャーサイエンティフィック社製)を利用して塩基配列を解読した。シークエンスデータはSnapGene software(GSL Biotech LLC社製)を用いて解析した。
[Sequence analysis]
For strains in which mutation introduction was confirmed by CAPS analysis, the PCR product of the target nucleotide sequence A (target sequencingA cloning to sgRNA of NmCas9) obtained in the same manner as in the above CAPS analysis was used as pCR-bluntII-TOPO (Thermo Fisher Scientific). Clone to Fick). This plasmid was sequenced using a BigDye Terminator v3.1 cycle sequencing kit (manufactured by Thermo Fisher Scientific). Sequence data was analyzed using SnapGene software (manufactured by GSL Biotech LLC).
 (比較例1)
 賀屋らの方法(Kaya et al.(2016)Sci.Rep.6:26871)に従い、sgRNA-SpCas9発現ベクターを構築した。sgRNAにおいて、標的化塩基配列は、イネ標的DNA_Aにおける、SpCas9タンパク質のPAM配列の上流の20ヌクレオチドの標的塩基配列A(target sequenceA corresponding to sgRNA of SpCas9)に対して相同な塩基配列を含む配列とした。また、かかるsgRNA-SpCas9発現ベクターを用いたこと以外は実施例1と同様にしてイネカルスへの形質転換を行い、24個のサンプルについて、CAPS解析及びシークエンス解析を行った。
(Comparative Example 1)
An sgRNA-SpCas9 expression vector was constructed according to the method of Kaya et al. (Kaya et al. (2016) Sci. Rep. 6: 26871). In the sgRNA, the targeting base sequence was a sequence containing a base sequence homologous to the target base sequence A (target sequenceA correspending to sgRNA of SpCas9) of 20 nucleotides upstream of the PAM sequence of the SpCas9 protein in the rice target DNA_A. .. In addition, transformation to rice carrus was performed in the same manner as in Example 1 except that the sgRNA-SpCas9 expression vector was used, and CAPS analysis and sequence analysis were performed on 24 samples.
 (実施例2)
 ガイドRNA(sgRNA)の標的化塩基配列を、NmCas9タンパク質のPAM配列及びSpCas9タンパク質のPAM配列を含むイネ内在遺伝子配列(配列番号:6に記載の塩基配列を含む配列、遺伝子ID(「RAP-DB」、https://rapdb.dna.affrc.go.jp/):Os07g0583800のプロモーター配列(イネ標的DNA_B))における、NmCas9タンパク質のPAM配列の上流の22ヌクレオチドの標的塩基配列B(target sequenceB corresponding to sgRNA of NmCas9)に対して相同な塩基配列としたこと以外は実施例1と同様にして、sgRNA-NmCas9発現ベクターを構築した。
(Example 2)
The target base sequence of guide RNA (sgRNA) is a rice endogenous gene sequence containing the PAM sequence of NmCas9 protein and the PAM sequence of SpCas9 protein (sequence including the base sequence shown in SEQ ID NO: 6), gene ID ("RAP-DB"). , Https: //rapdb.dna.affrc.go.jp/): Target base sequence B (target sequenceB correspring) of 22 nucleotides upstream of the PAM sequence of NmCas9 protein in the promoter sequence of Os07g0583800 (rice target DNA_B)). An sgRNA-NmCas9 expression vector was constructed in the same manner as in Example 1 except that the nucleotide sequence was homologous to sgRNA of NmCas9).
 また、かかるsgRNA-NmCas9発現ベクターを用いたこと以外は実施例1と同様にしてイネカルスへの形質転換を行い、24個のサンプルについて、CAPS解析及びシークエンス解析を行った。なお、CAPS解析において、イネ標的DNA_Bの切断には、SacIに代えてXhoIを用いた。 Further, transformation to rice carrus was performed in the same manner as in Example 1 except that the sgRNA-NmCas9 expression vector was used, and CAPS analysis and sequence analysis were performed on 24 samples. In the CAPS analysis, XhoI was used instead of SacI to cleave the rice target DNA_B.
 (比較例2)
 ガイドRNA(sgRNA)の標的化塩基配列を、イネ標的DNA_Bにおける、SpCas9タンパク質のPAM配列の上流の20ヌクレオチドの標的塩基配列B(target sequenceB corresponding to sgRNA of SpCas9)に対して相同な塩基配列としたこと以外は比較例1と同様にして、sgRNA-SpCas9発現ベクターを構築した。また、かかるsgRNA-SpCas9発現ベクターを用いたこと以外は実施例2と同様にしてイネカルスへの形質転換を行い、24個のサンプルについて、CAPS解析及びシークエンス解析を行った。
(Comparative Example 2)
The target base sequence of the guide RNA (sgRNA) was set to be a base sequence homologous to the target base sequence B (target sequenceB correspending to sgRNA of SpCas9) of 20 nucleotides upstream of the PAM sequence of the SpCas9 protein in the rice target DNA_B. An sgRNA-SpCas9 expression vector was constructed in the same manner as in Comparative Example 1 except for the above. In addition, transformation to rice carrus was performed in the same manner as in Example 2 except that the sgRNA-SpCas9 expression vector was used, and CAPS analysis and sequence analysis were performed on 24 samples.
 実施例1~2及び比較例1~2においてCAPS解析を行った結果、イネ標的DNA_A及びイネ標的DNA_Bのいずれにおいても、SpCas9タンパク質とNmCas9タンパク質とでは、変異導入効率には大きな差は見られなかった。 As a result of CAPS analysis in Examples 1 and 2 and Comparative Examples 1 and 2, no significant difference was observed in the mutagenesis efficiency between the SpCas9 protein and the NmCas9 protein in both the rice target DNA_A and the rice target DNA_B. It was.
 他方、シークエンス解析を行った結果を図3~4に示す。図3~4に示すように、イネ標的DNA_A及びイネ標的DNA_Bのいずれにおいても、SpCas9タンパク質を導入した場合(比較例1、2)と比較して、NmCas9タンパク質を導入した場合(実施例1、2)では、1塩基、特に、A又はTの挿入が高頻度で生じたことが確認された。 On the other hand, the results of sequence analysis are shown in Figures 3-4. As shown in FIGS. 3 to 4, when the NmCas9 protein was introduced in both the rice target DNA_A and the rice target DNA_B as compared with the case where the SpCas9 protein was introduced (Comparative Examples 1 and 2) (Example 1, In 2), it was confirmed that the insertion of one base, particularly A or T, occurred frequently.
 図3~4には、それぞれ、イネ標的DNA_Aの配列の一部(図3のWT、配列番号:5)又はイネ標的DNA_Bの一部(図4のWT、配列番号:6)の配列と、当該WTの配列に塩基の挿入/欠失(indel)が起きた配列とをそれぞれ示し、また、かかる塩基の挿入/欠失が起きた頻度(当該変異の起きたサンプル数*100/全サンプル数(%))をそれぞれ示す。なお、図3~4中、太字で示す塩基配列は、それぞれ、各標的塩基配列(target sequenceA corresponding to sgRNA of NmCas9、target sequenceA corresponding to sgRNA of SpCas9、target sequenceB corresponding to sgRNA of NmCas9、又はtarget sequenceB corresponding to sgRNA of SpCas9(target sequence))を示し、下線で示す塩基配列は、それぞれ、各Cas9タンパク質(NmCas9タンパク質又はSpCas9タンパク質)のPAM配列を示し、小文字で示す塩基は、挿入のあった塩基を示す。 3 to 4 show a part of the sequence of the rice target DNA_A (WT of FIG. 3, SEQ ID NO: 5) or a part of the rice target DNA_B (WT of FIG. 4, SEQ ID NO: 6), respectively. The sequence in which the base is inserted / deleted (indel) is shown in the sequence of the WT, and the frequency of the insertion / deletion of the base (number of samples in which the mutation occurred * 100 / total number of samples). (%)) Are shown respectively. In addition, in FIGS. 3 to 4, the base sequences shown in bold are the respective target base sequences (target searchA corresponding to sgRNA of NmCas9, targetsequenceA corresponding to sgRNA of SpCasceptNest To sgRNA of SpCas9 (target sequence)) is shown, the base sequence shown by the underline shows the PAM sequence of each Cas9 protein (NmCas9 protein or SpCas9 protein), and the base shown in lower case indicates the inserted base. ..
 (実施例3 3塩基挿入による終止コドンの挿入)
 ガイドRNA(sgRNA)の標的化塩基配列を、NmCas9タンパク質のPAM配列を含むイネ内在遺伝子配列(配列番号:7に記載の塩基配列を含む配列、遺伝子ID(「RAP-DB」、https://rapdb.dna.affrc.go.jp/):Os12g0224000のイントロン(イネ標的DNA_C))における、NmCas9タンパク質のPAM配列の上流の22ヌクレオチドの標的塩基配列1(target sequence1 corresponding to sgRNA1 of NmCas9)に対して相同な塩基配列としたこと以外は実施例1と同様にして、ガイドRNA1(sgRNA1)発現カセットを構築した。また、ガイドRNAの標的化塩基配列を、標的塩基配列1の2~22ヌクレオチドの配列の3’末から3塩基目と4塩基目との間にTが挿入された標的塩基配列2(配列番号:8に記載の塩基配列)に対して相同な塩基配列としたこと以外は実施例1と同様にして、ガイドRNA2(sgRNA2)発現カセットを構築した。さらに、ガイドRNAの標的化塩基配列を、標的塩基配列2の2~22ヌクレオチドの配列の3’末から3塩基目と4塩基目との間にAが挿入された標的塩基配列3(配列番号:9に記載の塩基配列)に対して相同な塩基配列としたこと以外は実施例1と同様にして、ガイドRNA3(sgRNA3)発現カセットを構築した。次いで、これらをいずれも用いたこと以外は実施例1と同様にして、sgRNA1-sgRNA2-sgRNA3-NmCas9発現ベクターを構築した。
(Example 3 Insertion of stop codon by insertion of 3 bases)
The target base sequence of the guide RNA (sgRNA) is the rice endogenous gene sequence containing the PAM sequence of the NmCas9 protein (sequence containing the base sequence set forth in SEQ ID NO: 7, gene ID (“RAP-DB”, https: // rapdb.dna.affrc.go.jp/): Intron (rice target DNA_C) of Os12g0224000), 22 nucleotides upstream of the PAM sequence of the NmCas9 protein target base sequence 1 (target sequence1 corresponding to sgRNA1 ofN A guide RNA1 (sgRNA1) expression cassette was constructed in the same manner as in Example 1 except that the nucleotide sequences were homologous. In addition, the target base sequence of the guide RNA is the target base sequence 2 (SEQ ID NO:) in which T is inserted between the 3'end to the 3rd base and the 4th base of the 2 to 22 nucleotide sequence of the target base sequence 1. A guide RNA2 (sgRNA2) expression cassette was constructed in the same manner as in Example 1 except that the base sequence was homologous to the base sequence described in: 8. Further, the target base sequence of the guide RNA is the target base sequence 3 (SEQ ID NO:) in which A is inserted between the 3'end to the 3rd base and the 4th base of the 2 to 22 nucleotide sequence of the target base sequence 2. A guide RNA3 (sgRNA3) expression cassette was constructed in the same manner as in Example 1 except that the base sequence was homologous to the base sequence described in: 9. Next, an sgRNA1-sgRNA2-sgRNA3-NmCas9 expression vector was constructed in the same manner as in Example 1 except that all of these were used.
 また、上記のsgRNA1-sgRNA2-sgRNA3-NmCas9発現ベクターを用いたこと以外は実施例1と同様にしてイネカルスへの形質転換を行い、344個のサンプルについて、CAPS解析及びシークエンス解析を行った。なお、CAPS解析において、イネ標的DNA_Cの切断には、SacIに代えてHpaIを用いた。 Further, transformation to rice carrus was performed in the same manner as in Example 1 except that the above-mentioned sgRNA1-sgRNA2-sgRNA3-NmCas9 expression vector was used, and CAPS analysis and sequence analysis were performed on 344 samples. In the CAPS analysis, HpaI was used instead of SacI to cleave the rice target DNA_C.
 シークエンス解析を行った結果を下記の表2に示す。表2には、イネ標的DNA_C(WT、変異なし)の配列に塩基の挿入/欠失(indel)が起きた頻度(当該変異の起きたサンプル数*100/全サンプル数(%))もそれぞれ示す。表2に示すように、3塩基が導入された頻度は合計で26.2%であり、また、それらのうち、目的の3塩基(TAA又はTAT)が導入された頻度は88.9%と、高いものであった。そのため、NmCas9タンパク質と、標的塩基配列を1塩基ずつずらした3種類のガイドRNAとを組み合わせて用いることにより、図1に示した系によって高精度で3塩基の導入ができ、終止コドンを導入できることが確認された。 The results of sequence analysis are shown in Table 2 below. Table 2 also shows the frequency of base insertion / deletion (indel) in the sequence of rice target DNA_C (WT, no mutation) (number of samples with the mutation * 100 / total number of samples (%)). Shown. As shown in Table 2, the frequency of introduction of 3 bases was 26.2% in total, and the frequency of introduction of the target 3 bases (TAA or TAT) was 88.9%. It was expensive. Therefore, by using the NmCas9 protein in combination with three types of guide RNAs in which the target base sequence is shifted by one base, three bases can be introduced with high accuracy by the system shown in FIG. 1, and a stop codon can be introduced. Was confirmed.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例4 1塩基の挿入と隣接する1塩基の欠失による塩基置換)
 [プラスミド構築]
 ・NmCas9発現ベクター:実施例1で構築したsgRNA-NmCas9発現ベクター[sgRNA for NmCas9(標的化塩基配列:イネ標的DNA_Aにおける標的塩基配列A(図2では標的塩基配列1)に対して相同な塩基配列)+NmCas9]を用いた。
(Example 4 Base substitution by insertion of 1 base and deletion of adjacent 1 base)
[Plasid construction]
NmCas9 expression vector: sgRNA-NmCas9 expression vector constructed in Example 1 [sgRNA for NmCas9 (targeted base sequence: target base sequence A in rice target DNA_A (target base sequence 1 in FIG. 2)) homologous base sequence ) + NmCas9] was used.
 ・SpCas9発現ベクター:先ず、pZH_MMCas9(Mikami et al.(2015)Plant Mol.Biol.88-561)をバックボーンとして、トウモロコシのユビキチン遺伝子のプロモーターでSpCas9を発現させ、植物の選抜用抗生物質マーカーとしてカナマイシン耐性遺伝子発現カセット(カリフラワーモザイクウイルスの35Sプロモーターとネオマイシンホスホトランスフェラーゼ遺伝子)を有するバイナリーベクターを構築した。また、ガイドRNAの標的化塩基配列を、イネ標的DNA_Aにおける、SpCas9タンパク質のPAM配列の上流の19ヌクレオチドの3’末から3塩基目と4塩基目との間にAが挿入された、20ヌクレオチドの標的塩基配列2(配列番号:12に記載の塩基配列)に対して相同な塩基配列としたこと以外は実施例1と同様にして、ガイドRNA(sgRNA for SpCas9)発現カセットを構築した。これを鋳型として、F-プライマー(配列番号:14に記載の塩基配列)及びR-プライマー(配列番号:15に記載の塩基配列)を用いて、PCRにより、前記ガイドRNA発現カセットを増幅した。上記で構築したバイナリーベクターをAscIで切断後、In-Fusion HD Cloning Kit(クロンテック社)を用いて前記ガイドRNA発現カセットのPCR産物をクローニングし、SpCas9発現ベクターを構築した。 -SpCas9 expression vector: First, using pZH_MMCas9 (Mikami et al. (2015) Plant Mol. Biol. 88-561) as a backbone, SpCas9 is expressed by the promoter of the corn ubiquitin gene, and canamycin is used as an antibiotic marker for plant selection. A binary vector having a resistance gene expression cassette (cauliflower mosaic virus 35S promoter and neomycin phosphotransferase gene) was constructed. In addition, the target base sequence of the guide RNA is 20 nucleotides in which A is inserted between the 3'end to the 4th base of 19 nucleotides upstream of the PAM sequence of SpCas9 protein in the rice target DNA_A. A guide RNA (sgRNA for SpCas9) expression cassette was constructed in the same manner as in Example 1 except that the base sequence was homologous to the target base sequence 2 (base sequence shown in SEQ ID NO: 12). Using this as a template, the guide RNA expression cassette was amplified by PCR using an F-primer (base sequence shown in SEQ ID NO: 14) and an R-primer (base sequence shown in SEQ ID NO: 15). After cleaving the binary vector constructed above with AscI, the PCR product of the guide RNA expression cassette was cloned using In-Fusion HD Cloning Kit (Clontech) to construct a SpCas9 expression vector.
 [イネカルスへの形質転換]
 上記のNmCas9発現ベクター及びSpCas9発現ベクターを用い、カルス選抜のための培養を、35mg/L G418と25mg/L meropenemとを含む培地において2週間培養としたこと以外は実施例1と同様にして、イネカルスの形質転換を行った。
[Transformation to Inekals]
Using the above NmCas9 expression vector and SpCas9 expression vector, the culture for callus selection was carried out in the same manner as in Example 1 except that the culture was carried out in a medium containing 35 mg / LG418 and 25 mg / L meropenem for 2 weeks. Inecallus was transformed.
 [シークエンス解析]
 形質転換後、2週間培養したイネカルス24個のサンプルについて、実施例1と同様にして標的塩基配列をPCR法により増幅した。得られたPCR産物について、ダイレクトシークエンス法によって直接シークエンス解析を行った。
[Sequence analysis]
For 24 samples of Inekals cultured for 2 weeks after transformation, the target nucleotide sequence was amplified by the PCR method in the same manner as in Example 1. The obtained PCR product was subjected to direct sequence analysis by the direct sequence method.
 ダイレクトシークエンス解析で塩基置換が確認された系統について、シークエンス解析を行った結果を下記の表3に示す。表3に示すように、イネ標的DNA_A(WT、変異なし)の配列にA又はCの塩基の挿入が起きた頻度(当該変異の起きたサンプル数*100/全サンプル数(%))は、合計で44.2%であった。他方、目的とした、CからAへの塩基置換が起きた頻度は37.2%であった。このことから、NmCas9による1塩基挿入とSpCas9による1塩基欠失とを組み合わせることで目的とする塩基置換を高精度で導入できることが確認された。 Table 3 below shows the results of sequence analysis for strains in which base substitution was confirmed by direct sequence analysis. As shown in Table 3, the frequency of insertion of A or C base into the sequence of rice target DNA_A (WT, no mutation) (number of samples with the mutation * 100 / total number of samples (%)) is determined. The total was 44.2%. On the other hand, the target frequency of base substitution from C to A was 37.2%. From this, it was confirmed that the desired base substitution can be introduced with high accuracy by combining the single base insertion by NmCas9 and the single base deletion by SpCas9.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上説明したように、本発明によれば、高頻度で1塩基を挿入することができ、高精度のDNA編集が可能な、DNAが編集された植物細胞を製造する方法、及びそれに用いるキットを提供することが可能となる。 As described above, according to the present invention, a method for producing a plant cell in which DNA has been edited, which can insert one base with high frequency and can edit DNA with high accuracy, and a kit used for the method are provided. It will be possible to provide.
 また、本発明によれば、特に1塩基欠失を起こしやすいCRISPR-Cas9システムを併用して、標的塩基配列への1塩基挿入後に、同標的塩基配列に存在した1塩基を欠失させることにより、効率よく塩基を置換することも可能となる。 Further, according to the present invention, a CRISPR-Cas9 system, which is particularly prone to single base deletion, is used in combination to delete one base existing in the target base sequence after inserting one base into the target base sequence. , It is also possible to replace the base efficiently.
 本発明は、基礎から応用まで様々な研究で利用され得る。特に、3塩基の導入を制御可能な塩基置換技術は、従来の遺伝子を破壊する標的変異と比べて、遺伝子の破壊のみならず遺伝子機能を改変することが可能であり、ニーズが極めて高いと考えられる。よって、新しい形質を付与した農林水産物の開発や、遺伝子治療等、現在、DNAの編集技術が積極的に利用されている研究開発分野における新しい方法として広く利用することができる。 The present invention can be used in various studies from basics to applications. In particular, base substitution technology that can control the introduction of three bases can modify not only gene disruption but also gene function as compared to conventional target mutations that disrupt genes, and it is considered that there is an extremely high need for it. Be done. Therefore, it can be widely used as a new method in the research and development field in which DNA editing technology is currently actively used, such as development of agriculture, forestry and fishery products with new traits, and gene therapy.
配列番号:3
<223> Neisseria meningitidis Cas9の改変配列
配列番号:4
<223> Neisseria meningitidis Cas9の改変配列
配列番号:5
<223> NmCas9タンパク質のガイドRNAに対応する標的塩基配列A
<223> SpCas9タンパク質のガイドRNAに対応する標的塩基配列A
配列番号:6
<223> NmCas9タンパク質のガイドRNAに対応する標的塩基配列B
<223> SpCas9タンパク質のガイドRNAに対応する標的塩基配列B
配列番号:7
<223> NmCas9タンパク質のガイドRNA1に対応する標的塩基配列1
配列番号:8
<223> NmCas9タンパク質のガイドRNA2に対応する標的塩基配列2
配列番号:9
<223> NmCas9タンパク質のガイドRNA3に対応する標的塩基配列3
配列番号:10
<223> TAAが挿入された標的DNA
配列番号:11
<223> NmCas9タンパク質のガイドRNAに対応する標的塩基配列1
配列番号:12
<223> SpCas9タンパク質のガイドRNAに対応する標的塩基配列2
配列番号:13
<223> CがAに置換された標的DNA
配列番号:14
<223> F-プライマー
配列番号:15
<224> R-プライマー
SEQ ID NO: 3
<223> Modified sequence of Neisseria meningitidis Cas9 SEQ ID NO: 4
<223> Modified sequence of Neisseria meningitidis Cas9 SEQ ID NO: 5
<223> Target base sequence A corresponding to the guide RNA of NmCas9 protein
<223> Target base sequence A corresponding to the guide RNA of SpCas9 protein
SEQ ID NO: 6
<223> Target base sequence B corresponding to the guide RNA of NmCas9 protein
<223> Target base sequence B corresponding to the guide RNA of SpCas9 protein
SEQ ID NO: 7
<223> Target base sequence 1 corresponding to the guide RNA1 of the NmCas9 protein
SEQ ID NO: 8
<223> Target base sequence 2 corresponding to the guide RNA2 of the NmCas9 protein
SEQ ID NO: 9
<223> Target base sequence 3 corresponding to the guide RNA3 of the NmCas9 protein
SEQ ID NO: 10
<223> Target DNA with TAA inserted
SEQ ID NO: 11
<223> Target base sequence 1 corresponding to the guide RNA of NmCas9 protein
SEQ ID NO: 12
<223> Target base sequence 2 corresponding to the guide RNA of SpCas9 protein
SEQ ID NO: 13
<223> Target DNA in which C is replaced with A
SEQ ID NO: 14
<223> F-primer SEQ ID NO: 15
<224> R-primer

Claims (8)

  1.  DNAが編集された植物細胞を製造する方法であり、植物細胞に、Cas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムを導入する工程を含み、かつ、前記Cas9タンパク質がNeisseria meningitidis由来である、方法。 A method for producing a plant cell in which DNA has been edited, which comprises a step of introducing a CRISPR-Cas9 system having a Cas9 protein and its guide RNA as a component into the plant cell, and the Cas9 protein is derived from Neisseria meningitidis. There is a way.
  2.  植物細胞のDNAに連続するn個の塩基を挿入する方法であり、植物細胞に、Cas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムを導入する工程を含み、
     前記Cas9タンパク質がNeisseria meningitidis由来であり、
     前記ガイドRNAがn個のガイドRNAの組み合わせであり、
     nが2以上の自然数であり、
     1番目のガイドRNAが、塩基を挿入する標的塩基配列1に対して相同な標的化塩基配列1を含むものであり、かつ、n番目のガイドRNAが、標的塩基配列1にn-1個の塩基が挿入された標的塩基配列nに対して相同な標的化塩基配列nを含むものである、
    方法。
    A method of inserting n consecutive bases into the DNA of a plant cell, which comprises the step of introducing a CRISPR-Cas9 system having a Cas9 protein and its guide RNA as components into the plant cell.
    The Cas9 protein is derived from Neisseria meningitidis and
    The guide RNA is a combination of n guide RNAs.
    n is a natural number of 2 or more,
    The first guide RNA contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the nth guide RNA has n-1 in the target base sequence 1. It contains a targeting base sequence n that is homologous to the target base sequence n into which the base is inserted.
    Method.
  3.  植物細胞のDNAの塩基を置換する方法であり、植物細胞に、Neisseria meningitidis由来のCas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムと、Neisseria meningitidis由来のCas9タンパク質以外の他のCas9タンパク質及びそのガイドRNAを構成要素とするCRISPR-Cas9システムと、を導入する工程を含み、
     前記Neisseria meningitidis由来のCas9タンパク質のガイドRNAが、塩基を挿入する標的塩基配列1に対して相同な標的化塩基配列1を含むものであり、かつ、前記他のCas9タンパク質のガイドRNAが、標的塩基配列1に1個の塩基が挿入された標的塩基配列2に対して相同な標的化塩基配列2を含むものである、
    方法。
    It is a method of substituting a base in the DNA of a plant cell, and in the plant cell, a Cas9 protein derived from Neisseria meningitidis and a CRISPR-Cas9 system having a guide RNA thereof as a constituent, and a Cas9 protein other than the Cas9 protein derived from Neisseria meningitidis are added. Including the step of introducing the CRISPR-Cas9 system having the guide RNA as a component and the guide RNA thereof.
    The guide RNA of the Cas9 protein derived from Neisseria meningitidis contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the guide RNA of the other Cas9 protein is the target base. It contains a targeting base sequence 2 that is homologous to the target base sequence 2 in which one base is inserted into the sequence 1.
    Method.
  4.  前記植物細胞がイネ細胞である、請求項1~3のうちのいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the plant cell is a rice cell.
  5.  DNAが編集された植物細胞の製造に用いるためのキットであり、
     以下の(A)及び(B):
     (A)Neisseria meningitidis由来のCas9タンパク質、該タンパク質をコードするポリヌクレオチド、又は該ポリヌクレオチドを発現するベクター、
     (B)前記Cas9タンパク質のガイドRNA、該ガイドRNAをコードするポリヌクレオチド、又は該ポリヌクレオチドを発現するベクター、
    を含む、キット。
    A kit for use in the production of DNA-edited plant cells.
    The following (A) and (B):
    (A) Cas9 protein derived from Neisseria meningitidis, a polynucleotide encoding the protein, or a vector expressing the polynucleotide,
    (B) A guide RNA of the Cas9 protein, a polynucleotide encoding the guide RNA, or a vector expressing the polynucleotide.
    Including, kit.
  6.  前記ガイドRNAがn個のガイドRNAの組み合わせであり、
     nが2以上の自然数であり、
     1番目のガイドRNAが、塩基を挿入する標的塩基配列1に対して相同な標的化塩基配列1を含むものであり、かつ、n番目のガイドRNAが、標的塩基配列1にn-1個の塩基が挿入された標的塩基配列nに対して相同な標的化塩基配列nを含むものである、
    請求項5に記載のキット。
    The guide RNA is a combination of n guide RNAs.
    n is a natural number of 2 or more,
    The first guide RNA contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the nth guide RNA has n-1 in the target base sequence 1. It contains a targeting base sequence n that is homologous to the target base sequence n into which the base is inserted.
    The kit according to claim 5.
  7.  以下の(C)及び(D):
     (C)Neisseria meningitidis由来のCas9タンパク質以外の他のCas9タンパク質、該タンパク質をコードするポリヌクレオチド、又は該ポリヌクレオチドを発現するベクター、
     (D)前記他のCas9タンパク質のガイドRNA、該ガイドRNAをコードするポリヌクレオチド、又は該ポリヌクレオチドを発現するベクター、
    をさらに含み、
     前記Neisseria meningitidis由来のCas9タンパク質のガイドRNAが、塩基を挿入する標的塩基配列1に対して相同な標的化塩基配列1を含むものであり、かつ、前記他のCas9タンパク質のガイドRNAが、標的塩基配列1に1個の塩基が挿入された標的塩基配列2に対して相同な標的化塩基配列2を含むものである、
    請求項5に記載のキット。
    The following (C) and (D):
    (C) Cas9 protein other than Cas9 protein derived from Neisseria meningitidis, a polynucleotide encoding the protein, or a vector expressing the polynucleotide,
    (D) A guide RNA of the other Cas9 protein, a polynucleotide encoding the guide RNA, or a vector expressing the polynucleotide.
    Including
    The guide RNA of the Cas9 protein derived from Neisseria meningitidis contains a targeting base sequence 1 homologous to the target base sequence 1 into which the base is inserted, and the guide RNA of the other Cas9 protein is the target base. It contains a targeting base sequence 2 that is homologous to the target base sequence 2 in which one base is inserted into the sequence 1.
    The kit according to claim 5.
  8.  前記植物細胞がイネ細胞である、請求項5~7のうちのいずれか一項に記載のキット。 The kit according to any one of claims 5 to 7, wherein the plant cell is a rice cell.
PCT/JP2020/038323 2019-10-23 2020-10-09 Method for producing dna-edited plant cell, and kit to be used therein WO2021079759A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021554273A JP7452884B2 (en) 2019-10-23 2020-10-09 Method for producing plant cells with edited DNA, and kit for use therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019192913 2019-10-23
JP2019-192913 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021079759A1 true WO2021079759A1 (en) 2021-04-29

Family

ID=75620495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038323 WO2021079759A1 (en) 2019-10-23 2020-10-09 Method for producing dna-edited plant cell, and kit to be used therein

Country Status (2)

Country Link
JP (1) JP7452884B2 (en)
WO (1) WO2021079759A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018057407A (en) * 2013-11-18 2018-04-12 クリスパー セラピューティクス アーゲー Crispr-cas system materials and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018057407A (en) * 2013-11-18 2018-04-12 クリスパー セラピューティクス アーゲー Crispr-cas system materials and methods

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EDRAKI, A. ET AL.: "A compact, high-accuracy Cas9 with a dinucleotide PAM for In vivo genome editing", MOLECULAR CELL, vol. 73, no. 4, 20 December 2018 (2018-12-20), pages 714 - 726, XP055585186 *
JAGANATHAN, D. ET AL.: "CRISPR for crop improvement: An update review", FRONTIERS IN PLANT SCIENCE, vol. 9, no. Article 985, 2018, XP055647931, DOI: 10.3389/fpls.2018.00985 *
OSAKABE, KEISHI: "Establishment of highly efficient chloroplast genome editing by using synthetic custom design nucleases", GRANTS-IN-AID FOR SCIENTIFIC RESEARCH, FINAL RESEARCH REPORT, 2016, XP055819245, Retrieved from the Internet <URL:https://kaken.nii.ac.jp/file/KAKENHI-PROJECT-25450002/25450002seika.pdf> *

Also Published As

Publication number Publication date
JP7452884B2 (en) 2024-03-19
JPWO2021079759A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
Nakajima et al. CRISPR/Cas9-mediated targeted mutagenesis in grape
US20240110197A1 (en) Expression modulating elements and use thereof
WO2017028768A1 (en) Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution
US20210403901A1 (en) Targeted mutagenesis using base editors
JP7273033B2 (en) Compositions and methods for extending the shelf life of bananas
CN110157726A (en) The method of Plant Genome fixed point replacement
CN115315516B (en) Method for improving genetic transformation and gene editing efficiency of plants
Jedličková et al. Hairy root transformation system as a tool for CRISPR/Cas9-directed genome editing in oilseed rape (Brassica napus)
Rather et al. Advances in protoplast transfection promote efficient CRISPR/Cas9-mediated genome editing in tetraploid potato
WO2021079759A1 (en) Method for producing dna-edited plant cell, and kit to be used therein
US20200270626A1 (en) Balanced indels
CA3131193A1 (en) Methods and compositions for generating dominant short stature alleles using genome editing
KR20190122595A (en) Gene Construct for Base Editing in Plant, Vector Comprising the Same and Method for Base Editing Using the Same
US20200377909A1 (en) Directed genome engineering using enhanced targeted editing technologies
US20230124856A1 (en) Genome editing in sunflower
KR20240031315A (en) Delaying or preventing browning of banana fruit
AU2022413848A1 (en) Modified agrobacteria for editing plants
WO2023111130A1 (en) Modified agrobacteria for editing plants
WO2023199304A1 (en) Controlling juvenile to reproductive phase transition in tree crops
WO2021183753A1 (en) Modulating nucleotide expression using expression modulating elements and modified tata and use thereof
WO2023111225A1 (en) Double decapitation of plants
JP2023526035A (en) Methods for obtaining mutant plants by targeted mutagenesis
CN118127073A (en) Rice alkyl purine glycosylase and application of mutant thereof in plant A-to-K single base editing
JP2007060979A (en) Plant with its anther cleavage inhibited through transferring cysteine protease gene thereinto

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879291

Country of ref document: EP

Kind code of ref document: A1