WO2021079641A1 - Oxygen concentrator - Google Patents

Oxygen concentrator Download PDF

Info

Publication number
WO2021079641A1
WO2021079641A1 PCT/JP2020/034303 JP2020034303W WO2021079641A1 WO 2021079641 A1 WO2021079641 A1 WO 2021079641A1 JP 2020034303 W JP2020034303 W JP 2020034303W WO 2021079641 A1 WO2021079641 A1 WO 2021079641A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
oxygen
concentration
oxygen concentrator
exhaled gas
Prior art date
Application number
PCT/JP2020/034303
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 近藤
平野 智也
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202080074396.8A priority Critical patent/CN114641330A/en
Publication of WO2021079641A1 publication Critical patent/WO2021079641A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices

Definitions

  • This disclosure relates to an oxygen concentrator. More specifically, the present invention relates to an oxygen concentrator that generates a high-concentration oxygen gas containing oxygen having a concentration higher than that of the oxygen in the air and supplies it to the user.
  • An oxygen concentrator that generates a high-concentration oxygen gas containing oxygen having a concentration higher than the oxygen concentration in the air, stores it in an oxygen tank, and supplies the high-concentration oxygen gas to the user from the oxygen tank. (See, for example, Patent Document 1).
  • Such an oxygen concentrator is used, for example, in home oxygen therapy performed by a patient (user) who has a disease in the lung and the function of the lung is deteriorated.
  • the conventional oxygen concentrator only supplies high-concentration oxygen gas to the patient, and the device itself cannot grasp the patient's condition. In other words, the device did not know whether the patient's symptoms improved, remained the same, or worsened as a result of the administration of high-concentration oxygen gas. Therefore, even if there is a lack of oxygen or ventilation failure in which carbon dioxide is accumulated in the body, it is only possible to continue supplying high-concentration oxygen gas at the same flow rate.
  • the object of the present disclosure is to provide an oxygen concentrator capable of grasping the state of the user through the exhaled gas of the user.
  • the oxygen concentrator of the present disclosure is (1) An oxygen concentrator that supplies air to an adsorbent that selectively adsorbs nitrogen and supplies the generated high-concentration oxygen gas to the user.
  • An intake unit that sucks the user's exhaled gas into the device, It is equipped with an exhaled gas detection unit that detects component information of the sucked user's exhaled gas.
  • the component information of the user's exhaled gas sucked into the device is detected by the exhaled gas detection unit. From the detected breath gas component information, it is possible to grasp the state of the user, including, for example, whether the user is in a state of oxygen deficiency or a state of insufficiency of ventilation. Then, it is possible to take measures such as changing the flow rate of the high-concentration oxygen gas supplied to the user according to the grasped state of the user.
  • the "high-concentration oxygen gas” means a gas having an oxygen concentration higher than the oxygen concentration in the air (about 21%: volume content), for example, about 40 to 95%. Means a gas with an oxygen concentration of.
  • the air compressor that generates the air also serves as the intake unit.
  • the air compressor used to generate pressurized air in the oxygen concentrator also serves as a suction unit for sucking the user's exhaled gas, so that the number of parts can be reduced and the device can be miniaturized.
  • a filter is provided in the flow path of the exhaled gas on the upstream side of the intake unit.
  • the filter By providing the filter in the flow path of the exhaled gas, it is possible to limit the range of contact of the exhaled gas of the user in the apparatus.
  • the number of parts to be cleaned or replaced to prevent infection can be reduced, and the flow path to be cleaned or replaced can be shortened.
  • the filter by collecting the components contained in the breath gas of the user for a long period of time with a filter, it is possible to detect the disease of the user at an early stage.
  • a check valve is provided in the flow path of the exhaled gas on the upstream side of the exhaled gas detecting unit.
  • the check valve can prevent the user's exhaled gas that has flowed to the exhaled gas detection unit from flowing back to the upstream side of the exhaled gas detection unit.
  • a vacuum tank is provided in the flow path between the intake unit and the exhaled gas detection unit.
  • the breath gas detection unit can be a CO 2 sensor that measures the CO 2 concentration of the user's breath gas.
  • the CO 2 sensor can measure the CO 2 concentration contained in the user's exhaled gas.
  • the breath gas detection unit can be an oxygen sensor for measuring the oxygen concentration of the user's breath gas.
  • the oxygen sensor can measure the oxygen concentration in the user's exhaled gas.
  • the exhaled gas detection unit can be a hydrogen sensor for measuring the hydrogen concentration of the exhaled gas of the user.
  • the hydrogen sensor can measure the concentration of hydrogen contained in the user's exhaled gas.
  • the oxygen concentrators (1) to (10) are further provided with an alarm unit. It is desirable that the control unit causes the alarm unit to issue an alarm according to the component information detected by the exhaled gas detection unit. By issuing an alarm, it is possible to notify the user that the current state is not a normal state and take measures such as changing the flow rate of the high-concentration oxygen gas.
  • the oxygen concentrators (1) to (11) have a communication function capable of providing information on components detected by the exhaled gas detection unit to a doctor or the like via a communication device. ..
  • the doctor or the like can grasp the state of the user who uses the oxygen concentrator, and can give an instruction such as changing the gas flow rate to the user as needed.
  • a flow path for supplying high-concentration oxygen gas to the user and a flow path for sucking the exhaled gas of the user are provided independently. Is desirable. By making the flow path of the high-concentration oxygen gas and the flow path of the exhaled gas independent from each other, contamination (mixing or mixing) of the high-concentration oxygen gas and the exhaled gas can be suppressed.
  • the high-concentration oxygen gas supply port and the exhaled gas acquisition port provided in the casing of the oxygen concentrator have different shapes.
  • FIG. 1 It is a block diagram of the oxygen concentrator shown in FIG. 1 for explaining an oxygen concentrator process. It is a figure explaining the pressure change of one cycle of the suction cylinder and the switching state of the solenoid valve of an oxygen concentrator. It is a block diagram of the oxygen concentrator shown in FIG. It is a figure explaining an example of the respiratory flow rate of a user, and the switching state of the solenoid valve of the oxygen concentrator shown in FIG. It is explanatory drawing of the other embodiment of the oxygen concentrator of this disclosure. It is a block diagram of the oxygen concentrator shown in FIG. It is a figure explaining an example of the respiratory flow rate of a user, and the switching state of the solenoid valve of the oxygen concentrator shown in FIG. It is explanatory drawing of the modification of the oxygen concentrator shown in FIG.
  • FIG. 1 is an explanatory diagram of an oxygen concentrator M1 according to an embodiment (first embodiment) of the present disclosure
  • FIG. 2 is an oxygen concentrator M1 shown in FIG. 1 for explaining an oxygen concentrator process. It is a block diagram of.
  • FIG. 2 and FIG. 4 described later in order to make it easier to understand, the representation of a part of the configuration or element shown in FIG. 1 is simplified or not shown.
  • the oxygen concentrator M1 is a device that generates a high-concentration oxygen gas having an oxygen concentration higher than the oxygen concentration in the air and supplies it to the user.
  • the oxygen concentrator M1 is used, for example, in home oxygen therapy that provides a high-concentration oxygen gas to a user, a patient with a respiratory disease, or the like.
  • the oxygen concentrator M1 provides information on the components of the patient's exhaled gas, the first adsorption cylinder 1 and the second adsorption cylinder 2, the air compressor 3 that supplies pressurized air to the first adsorption cylinder 1 and the second adsorption cylinder 2. It is provided with an exhaled gas detection unit 4 for detecting.
  • the air compressor 3 in the present embodiment is a pressurized / vacuum combined type air compressor capable of pressurizing and sucking a gas such as air.
  • the air compressor 3 supplies pressurized air to the first adsorption cylinder 1 and the second adsorption cylinder 2, desorbs and exhausts the adsorbed nitrogen-rich gas by depressurization, and also serves as an intake unit that sucks the exhaled gas of the patient into the apparatus. Function.
  • the pressurized / vacuum combined type air compressor 3 as compared with the case where a vacuum pump as an intake unit is provided in the apparatus separately from the air compressor that supplies pressurized air (second embodiment described later). Therefore, the number of parts can be reduced and the size of the device can be reduced.
  • the oxygen concentrator M1 further includes an oxygen tank 5 for storing high-concentration oxygen gas, a humidifier 6 for humidifying high-concentration oxygen gas, a breathing detection unit 7 for detecting the exhalation and inspiration of a patient, and a vacuum tank 8. ,
  • the alarm unit 42 is provided.
  • the operation of the air compressor 3 and the operation of various solenoid valves and the like, which will be described later, are performed by the control unit 40 arranged in the apparatus.
  • the control unit 40 includes a storage unit 40a in which a program for operating the oxygen concentrator M1 is stored, and a calculation unit 40b for transmitting an operation signal of an electromagnetic valve or the like.
  • the alarm unit 42 issues an alarm based on an instruction from the calculation unit 40b according to the component information of the exhaled gas of the patient detected by the exhaled gas detection unit 4.
  • the alarm can be given by displaying on the operation panel (not shown) that operates the oxygen concentrator M1 to the effect that the current state of the patient is not normal, by voice, by blinking the lamp, or the like.
  • the patient who receives this alarm can take measures such as changing the flow rate of high-concentration oxygen gas within the range of the doctor's guidance.
  • the component information can be provided to a doctor or the like by using a communication function or the like separately provided. The doctor or the like who received the information can instruct the user to change the flow rate of the high-concentration oxygen gas as necessary.
  • the air compressor 3 is housed in a compressor box 10 arranged in the casing 9 of the oxygen concentrator M1.
  • the compressor box 10 In the compressor box 10, the flow of pressurized air from the air compressor 3 to the first suction cylinder 1 and the second suction cylinder 2, and the disposal from the first suction cylinder 1 and the second suction cylinder 2 to the air compressor 3.
  • the control valve 11 in the present embodiment is composed of a solenoid valve A which is a 3-port valve and a solenoid valve B which is also a 3-port valve.
  • the numbers "1", "2" or "3" in the vicinity of the marking indicating the valve indicate the port number of the valve.
  • the 3-port valve is numbered from 1 to 3, and the 2-port valve is numbered 1 and 2.
  • a dustproof filter 15 for collecting dust and the like contained in the external air introduced into the apparatus is provided at the air inlet (not shown) of the casing 9.
  • the air from the outside that has passed through the dustproof filter 15 and is introduced into the casing 9 passes through the intake filter 16 provided in the opening (not shown) of the compressor box 10 and is sucked into the air compressor 3. ..
  • the intake muffling box 13 is arranged in the air flow path from the intake filter 16 to the air compressor 3, and reduces noise caused by air supply / compression of the air compressor 3.
  • the air compressed and pressurized by the air compressor 3 (pressurized air) is supplied to the first suction cylinder 1 and the second suction cylinder 2 via the control valve A and the control valve B. Further, the waste gas from the first suction cylinder 1 and the second suction cylinder 2 is decompressed and sucked by the air compressor 3 via the control valve A and the control valve B, and discharged to the outside via the exhaust muffler 14. To.
  • the heat of the air compressor 3 generated by the operation is sucked into the compressor box 10 by the cooling fans 12a and 12b via the air inlet of the casing 9 and the opening 17 of the compressor box 10, and is sucked into the air compressor 3. It is cooled by the blown air.
  • an adsorbent that selectively or preferentially adsorbs nitrogen in the pressurized air supplied from the air compressor 3 is housed.
  • the adsorbent for example, zeolite or the like can be used. The details of the oxygen concentration process using the first adsorption cylinder 1 and the second adsorption cylinder 2 will be described later.
  • the flow path on the downstream side of the first adsorption cylinder 1 and the second adsorption cylinder 2 (the flow path on the outlet side of the high-concentration oxygen gas.
  • FIG. 1 from the lower part of the first adsorption cylinder 1 and the second adsorption cylinder 2 to the oxygen outlet 41.
  • Various valves for controlling the flow rate or flow of a fluid such as high-concentration oxygen gas that is, a purge valve 18, a check valve 19, 20, a pressure reducing valve 21, and a solenoid valve which is a 3-port valve.
  • C1 and a solenoid valve C2 which is a 2-port valve are provided.
  • a flow rate adjusting unit 22 for adjusting the flow rate of the high-concentration oxygen gas is provided on the downstream side of the pressure reducing valve 21.
  • a flow rate proportional valve capable of adjusting the gas flow rate can be used.
  • the oxygen tank 5 is provided on the upstream side of the pressure reducing valve 21 and on the downstream side of the check valves 19 and 20.
  • a pressure sensor 23 for detecting a pressure abnormality or the like is provided in the gas flow path between the check valves 19 and 20 and the oxygen tank 5.
  • the oxygen concentrator M1 is a VPSA (VPSA) that reduces the pressure by sucking the other suction cylinder with the air compressor 3 while the air compressed by the air compressor 3 is being supplied to one suction cylinder.
  • VPSA Vacuum Pressure Swing Adsorption System
  • the oxygen concentrator of the present disclosure is not limited to this, and PSA is depressurized by opening the other adsorption cylinder to the atmosphere while the air compressed by the air compressor is supplied to one adsorption cylinder. It can also be a (Pressure Swing Adsorption System) type oxygen concentrator.
  • the solenoid valve A and the solenoid valve B are both 3-port valves, and are in a pressurized state in which the pressurized air discharged from the air compressor 3 is supplied to the first suction cylinder 1 (second suction cylinder 2) and are sucked. This switches between a reduced pressure state in which the waste gas in the first suction cylinder 1 (second suction cylinder 2) is discharged to the outside. When one suction cylinder is in a pressurized state, the other suction cylinder is in a depressurized state.
  • the check valve 19 is arranged in the gas flow path on the downstream side of the first suction cylinder 1, and the check valve 20 is arranged in the gas flow path on the downstream side of the second suction cylinder 2. Both check valves 19 and 20 are configured so that the high-concentration oxygen gas discharged from the first suction cylinder 1 and the second suction cylinder 2 flows only toward the downstream side.
  • the purge valve 18 is arranged in a gas flow path connecting the gas flow path between the first suction cylinder 1 and the check valve 19 and the gas flow path between the second suction cylinder 2 and the check valve 20. It is installed.
  • the high-concentration oxygen gas from the check valve 19 and the high-concentration oxygen gas from the check valve 20 are alternately supplied to the oxygen tank 5 and stored in the oxygen tank 5.
  • a pressure reducing valve 21 for reducing the pressure of the high-concentration oxygen gas from the oxygen tank 5 and a flow rate adjusting unit 22 for adjusting the flow rate of the high-concentration oxygen gas are provided.
  • the high-concentration oxygen gas whose flow rate is adjusted by the flow rate adjusting unit 22 is supplied to the humidifier 6 via an oxygen sensor 24 for detecting an oxygen concentration abnormality and a bacterial filter 25 for removing foreign substances from the high-concentration oxygen gas.
  • the high-concentration oxygen gas humidified by the humidifier 6 is supplied to the high-concentration oxygen gas fixed to the oxygen outlet 41 of the casing 9 via the solenoid valve C1 which is a 3-port valve and the solenoid valve C2 which is a 2-port valve. It is supplied to the patient via a tube (not shown) connected to port 26. High-concentration oxygen gas is supplied to the patient through the cannula C (see FIG. 2) worn by the patient, and the exhaled gas of the patient is sucked into the device through the cannula C.
  • a respiration detection unit 7 is provided in the gas flow path between the solenoid valve C2 and the high-concentration oxygen gas supply port 26. Based on the patient's exhalation and inspiration detected by the breathing detection unit 7, the timing of supplying the high-concentration oxygen gas to the patient and sucking the patient's exhaled gas into the device is controlled.
  • a pressure sensor that detects a pressure change due to exhalation or inspiration of the patient can be used.
  • the high-concentration oxygen gas supply port 26 that supplies the high-concentration oxygen gas to the patient also serves as an exhaled gas acquisition port for sucking the exhaled gas of the patient into the apparatus and acquiring the exhaled gas. There is.
  • the supply of high-concentration oxygen gas and the suction (acquisition) of exhaled gas are performed at different timings, as will be described later.
  • the patient's breath gas sucked into the apparatus is introduced into the breath gas detection unit 4 through the solenoid valve C2, the solenoid valve C1 and the check valve 27, and the component information of the patient's breath gas is introduced in the breath gas detection unit 4. Is detected.
  • the breath gas detection unit 4 includes, for example, a CO2 sensor that measures the CO2 concentration of the patient's breath gas, an oxygen sensor that measures the oxygen concentration, a hydrogen sensor that measures the hydrogen concentration, an ammonia sensor that measures the ammonia concentration, and a nitrogen monoxide concentration.
  • a nitrogen monoxide sensor or the like for measuring the above can be used.
  • One type of sensor may be used as the exhaled gas detection unit 4, or two or more types of sensors may be used.
  • the exhaled gas discharged from the exhaled gas detection unit 4 after the component information is detected is sucked into the air compressor 3 through the solenoid valve E, the filter 28, the vacuum tank 8, and the solenoid valve D, and the exhaust muffler is sucked by the air compressor 3. It is discharged to the outside via 14.
  • the filter 28 By providing the filter 28 in the flow path of the exhaled gas, it is possible to limit the range of contact of the exhaled gas of the patient in the apparatus. As a result, when a patient who is another user uses the oxygen concentrator M1, the number of parts to be cleaned or replaced to prevent infection can be reduced, and the gas flow path to be cleaned or replaced can be shortened.
  • the filter 28 by collecting the components contained in the exhaled gas of the patient for a long period of time with the filter 28, it is possible to discover the exhaled gas components that are normally extremely minute and cannot be detected. Further, by providing the vacuum tank 8, the load of the air compressor 3 can be leveled and the energy efficiency can be improved.
  • the exhaled gas detection unit 4 including various sensors such as the CO 2 sensor described above obtains the component information of the exhaled gas of the patient acquired in the apparatus. Based on the component information of the exhaled gas of the patient obtained by the exhaled gas detection unit 4, the state of the patient, more specifically, the health state can be grasped. For example, by measuring the CO 2 concentration in the patient's exhaled gas, whether or not the CO 2 produced in the patient's body in the process of consuming oxygen for energy production is normally excreted from the body by respiration. Can be determined. In addition, by measuring the oxygen concentration in the exhaled gas with an oxygen sensor, it is necessary to confirm the lung function and metabolic circulation information, including whether the oxygen in the high-concentration oxygen gas supplied with inspiration is effectively taken into the body. Can be done.
  • nitric oxide (NO) in the exhaled gas by measuring the concentration of nitric oxide (NO) in the exhaled gas with a nitric oxide sensor, it is possible to detect airway inflammation (asthma) at an early stage, and further, the concentration of ammonia in the exhaled gas can be measured.
  • concentration of ammonia in the exhaled gas By measuring with an ammonia sensor, it is possible to detect the state of liver and renal function and signs of gastric cancer at an early stage.
  • concentration of hydrogen gas in the exhaled gas with a hydrogen sensor, it is possible to utilize the measured values obtained in the evaluation of the intestinal environment, the medical examination of the digestive organ system, the medical examination, and the like.
  • the component information includes the pressure (partial pressure) of the gas in addition to the concentration of the specific type of gas in the exhaled gas.
  • the partial pressure of carbon dioxide in the exhaled gas (PetCO 2 : partial pressure of carbon dioxide at the end of exhalation, etc.) is measured by the absorbance of infrared rays, and by measuring with an optical sensor as an exhaled gas detector, the patient is not ventilated. And hypoventilation can be detected early.
  • the exhaled gas component the function equivalent to that of non-intubated capnography can be achieved.
  • FIG. 2 is a block diagram of the oxygen concentrator M1 shown in FIG. 1 for explaining the oxygen concentrator process
  • FIG. 3 shows a one-cycle pressure change of the adsorption cylinder and switching of the electromagnetic valve of the oxygen concentrator M1. It is a figure explaining a state.
  • the upper figure shows the open / closed state of each step of the solenoid valve A, the solenoid valve B, the purge valve 18, and the solenoid valve D related to the oxygen concentrator process
  • the lower figure shows the first suction cylinder. It shows the pressure change in the 1st and 2nd suction cylinders 2.
  • the thick solid line shows the pressure change inside the first suction cylinder 1
  • the thin solid line shows the pressure change inside the second suction cylinder 2.
  • the pressurizing step in the suction cylinder is performed in the order of the first suction cylinder 1 and the second suction cylinder.
  • one cycle of the first adsorption cylinder 1 is processed in the period indicated by “T”. This one-cycle process includes six steps from "T1" to "T6" shown in the upper figure.
  • the numbers attached to the blocks indicating the solenoid valve A, the solenoid valve B, the purge valve 18, and the solenoid valve D indicate the port numbers in each valve as described above. Since the solenoid valve A and the solenoid valve B are 3-port valves, three numbers from 1 to 3 are attached, and since the purge valve 18 and the solenoid valve D are 2-port valves, 2 from 1 to 2 are attached. Two numbers are attached.
  • the upper diagram of FIG. 3 for example, when "1 ⁇ 2" of the solenoid valve A is "open", the port indicated by "1" to the port indicated by "2" in the solenoid valve A are in a communicating state. It shows that it is in. At this time, in the solenoid valve A, the port indicated by "2" to the port indicated by "3" are in a non-communication state.
  • step T1 the purge valve 18 and the solenoid valve D are in the “open” state, and the high-concentration oxygen gas in the second suction cylinder 2 is supplied from the second suction cylinder 2 to the first suction cylinder 1 and at the same time.
  • the air compressor 3 evacuates the vacuum tank 8.
  • step T1 since the ports "2" to "3" of the solenoid valve A and the solenoid valve B are both in the "closed” state, the inside of the first suction cylinder 1 and the second suction cylinder 2 is sucked. There is no such thing.
  • the suction of the first suction cylinder 1, the second suction cylinder 2, and the vacuum tank 8 is performed so that the timings are shifted from each other by controlling the opening and closing of the valve.
  • step T2 the ports "1" to “2" of the solenoid valve A and the ports “2" to “3” of the solenoid valve B are in the “open” state, and the first suction cylinder by the air compressor 3 is used.
  • the pressurization of 1 and the depressurization of the second suction cylinder 2 are performed.
  • the purge valve 18 and the solenoid valve D which were in the “open” state in step T1, are in the “closed” state.
  • nitrogen contained in the pressurized air is adsorbed by the adsorbent contained in the first adsorption cylinder 1.
  • the gas in the first adsorption cylinder 1 becomes a high-concentration oxygen gas having an oxygen concentration higher than the oxygen concentration in normal air.
  • the purge valve 18 is in the "open" state, and the high-concentration oxygen gas in the first suction cylinder 1 is supplied into the second suction cylinder 2 via the purge valve 18.
  • step T4 the ports "2" to “3" of the solenoid valve A and the ports “2" to “3” of the solenoid valve B are in the “closed” state, and the solenoid valve D is "open”. It is in a state.
  • step T4 the supply of high-concentration oxygen gas from the first suction cylinder 1 to the second suction cylinder 2 in step T3 is continued, and the vacuum tank 8 is evacuated by the air compressor 3.
  • step T5 the ports "2" to “3" of the solenoid valve A and the ports “1” to “2” of the solenoid valve B are in the “open” state, and the second suction cylinder by the air compressor 3 is used.
  • the pressurization of No. 2 and the depressurization of the first suction cylinder 1 are performed.
  • step T4 the purge valve 18 and the solenoid valve D, which were in the “open” state in step T3, are in the “closed” state.
  • the nitrogen contained in the pressurized air is adsorbed by the adsorbent contained in the second adsorption cylinder 2.
  • the gas in the second adsorption cylinder 2 becomes a high-concentration oxygen gas having an oxygen concentration higher than the oxygen concentration in normal air.
  • the purge valve 18 is in the "open" state, and the high-concentration oxygen gas in the second suction cylinder 2 is supplied into the first suction cylinder 1 via the purge valve 18.
  • the above-mentioned steps T1 to T6 are repeated. By repeating these steps T1 to T6, high-concentration oxygen gas is generated and supplied to the oxygen tank 5.
  • FIG. 4 is a block diagram of the oxygen concentrator shown in FIG. 1
  • FIG. 5 is a diagram illustrating an example of the respiratory flow rate of the patient and a switching state of the solenoid valve of the oxygen concentrator shown in FIG. ..
  • the upper figure shows the steps of solenoid valve C1, solenoid valve C2, and solenoid valve E related to the supply of high-concentration oxygen gas to the patient and the acquisition of the patient's exhaled gas (suction into the apparatus).
  • the open / closed state is shown, and the lower figure shows an example of the patient's respiratory flow.
  • the horizontal axis indicates the elapsed time, and the time has elapsed from the left side to the right side in the figure.
  • the solenoid valve A, the solenoid valve B, and the solenoid valve D are not related to each operation of supplying high-concentration oxygen gas and acquiring exhaled gas based on the breathing detection of the patient, and are not related to the above-mentioned oxygen concentration process. Manipulated in.
  • step T11 is a state of waiting for the patient to inhale, the ports "2" to the ports "3" of the solenoid valve C1 which is a 3-port valve are in the “closed” state, and the solenoid valve C2 is also in the "closed” state. Is.
  • the breathing detection unit 7 detects the patient's inspiration
  • the detection signal is transmitted to the calculation unit 40b, and the calculation unit 40b that receives the detection signal transmits the operation signal to the solenoid valve C2.
  • the solenoid valve C2 changes from “closed” to “open”, and high-concentration oxygen gas is supplied to the patient (step T12).
  • the supply of high-concentration oxygen gas to a patient is not performed over the entire time that the patient is inhaling.
  • the human respiratory pathway from the nose or mouth to the lungs has a portion called the "dead space" that does not contribute to actual breathing. Even if high-concentration oxygen gas is supplied to this dead space, it is not used for human respiration. Further, the gas accumulated (remaining) in the dead space portion is not the gas after human respiration, so it cannot be said to be exhaled gas. Therefore, in the present embodiment, the high-concentration oxygen gas is supplied only for a part of the inspiratory time of the patient, and the exhaled gas is acquired only for a part of the exhaled time of the patient as described later.
  • the ratio of inspiratory time to expiratory time in human respiration is usually 1: 2, and one respiratory time can be calculated from the patient's respiratory rate, and the inspiratory time and expiratory time can be estimated from this respiratory time. it can. Then, the opening / closing operation of the solenoid valve or the like can be controlled so that the high-concentration oxygen gas is supplied only for a part of the estimated inspiratory time and the exhaled gas is acquired only for a part of the estimated expiratory time. For example, in the case of a patient who breathes 20 times per minute, the inspiratory time and the expiratory time in one breath of the patient can be estimated to be 1 second and 2 seconds, respectively.
  • step T12 the time of step T12 described above can be set to, for example, 0.6 seconds. Further, the time for acquiring the exhaled breath in step T16, which will be described later, can be set to 0.6 seconds.
  • the following step T13 is a waiting time, and can be set in consideration of the discharge time of the high-concentration oxygen gas in the tube, which will be described later.
  • the ports "2" to the ports "3" of the solenoid valve C1 are in the "open” state, and the solenoid valve C2 is in the "closed” state.
  • step T14 the high-concentration oxygen gas remaining in the gas flow path or tube from the solenoid valve C1 to the patient's cannula C is discharged.
  • the ports "2" to the ports "3" of the solenoid valve C1 are in the "open” state, and the solenoid valve C2 is also in the “open” state. Further, the ports “2" to the ports "3" of the solenoid valve E located downstream of the exhaled gas detection unit 4 are in the "open” state.
  • the high-concentration oxygen gas remaining in the gas flow path or tube from the solenoid valve C1 to the patient's cannula C bypasses the exhaled gas detection unit 4 by the vacuum tank 8 and passes through the solenoid valve E and the filter 28. It is sucked into the vacuum tank 8.
  • step T15 is a state of waiting for exhalation of the patient, ports "2" to “3" of the solenoid valve C1 which is a 3-port valve are in an "open” state, and in step T14, they are in an "open” state.
  • the solenoid valve C2 is in the “closed” state. Further, the ports “1" to “2” of the solenoid valve E are in the "open” state.
  • the breathing detection unit 7 detects the exhaled breath of the patient
  • the detection signal is transmitted to the calculation unit 40b, and the calculation unit 40b that receives the detection signal transmits the operation signal to the solenoid valve C2.
  • the solenoid valve C2 changes from “closed” to "open”, and the exhaled gas of the patient is sucked (acquired) into the device (step T16).
  • this acquisition of exhaled gas is also not performed over the entire expiratory time of the patient.
  • the breathing detection unit 7 detects the inspiration and exhalation of the patient, and supplies high-concentration oxygen gas and sucks (acquires) the exhaled gas in synchronization with the breathing of the patient.
  • the supply and suction can be performed efficiently.
  • the concentration of CO 2 , oxygen, hydrogen, ammonia, nitric oxide, etc. of the patient's breath gas introduced into the breath gas detection unit 4 is measured by the above-mentioned sensor included in the breath gas detection unit 4. Then, based on the measured values, the patient's condition (ventilation insufficiency, etc.) can be grasped as described above.
  • the flow rate of the high-concentration oxygen gas supplied to the patient can be changed according to the component information detected by the respiratory gas detection unit 4.
  • oxygen can be supplied according to the patient's condition, and for example, the flow rate of high-concentration oxygen gas can be increased within the range prescribed by a doctor for a patient who is considered to be deficient in oxygen. ..
  • the following step T17 is a waiting time, and can be set in consideration of the filling time of the high-concentration oxygen gas into the tube, which will be described later.
  • the ports "1" to the ports “2" of the solenoid valve C1 are in the "open” state, and the solenoid valve C2 is in the "closed” state.
  • the gas flow path or tube from the solenoid valve C1 to the patient's cannula is filled with high-concentration oxygen gas, and the patient's exhaled gas remaining in the gas flow path or tube is discharged.
  • the ports "1" to the ports "2" of the solenoid valve C1 are in the "open” state, and the solenoid valve C2 is also in the "open” state. Further, the ports "2" to the ports "3" of the solenoid valve E located downstream of the exhaled gas detection unit 4 are in the "open” state.
  • the patient's exhaled gas remaining in the gas flow path or tube from the solenoid valve C1 to the patient's cannula C is pushed toward the patient's cannula C by the high-concentration oxygen gas supplied through the flow rate adjusting unit 22. Then, it is discharged to the outside from the cannula C.
  • FIG. 6 is an explanatory diagram of the oxygen concentrator M2 according to another embodiment (second embodiment) of the present disclosure.
  • the oxygen concentrator M2 according to the second embodiment uses an air compressor 30 that only pressurizes instead of the pressurized / vacuum combined type air compressor 3, and the oxygen concentrator according to the first embodiment. It is different from M1.
  • the vacuum pump 31 is used as an intake unit for sucking the exhaled gas of the patient into the device. Therefore, among the configurations or elements of the oxygen concentrator M2, the configurations or elements common to the oxygen concentrator M1 are designated by the same reference numerals as those of the oxygen concentrator M1, and the description thereof will be omitted for the sake of simplicity.
  • one solenoid valve C is used in place of the two solenoid valves C1 and C2 provided in the gas flow path on the upstream side of the exhaled gas detection unit 4 in the oxygen concentrator M1.
  • the solenoid valve C is a 3-port valve having three ports.
  • a check valve 27 provided in the gas flow path between the exhaled gas detection unit 4 and the solenoid valve C1 used in the oxygen concentrator M1 and a check valve 27 provided on the downstream side of the exhaled gas detection unit 4
  • the solenoid valve E, the filter 28, and the vacuum tank 8 provided are omitted.
  • the first suction cylinder 1 is pressurized and depressurized
  • the second suction cylinder 2 is pressurized and depressurized
  • the patient's exhaled gas is injected into the device.
  • the vacuum tank 8 is evacuated by controlling the operation of the air compressor 3.
  • the pressurization and depressurization of the first adsorption cylinder 1 and the pressurization and depressurization of the second adsorption cylinder 2 are performed by controlling the operation of the air compressor 30, and the exhaled gas of the patient.
  • the suction into the device is performed by controlling the operation of the vacuum pump 31.
  • FIG. 7 is a block diagram of the oxygen concentrator M2 shown in FIG. 6, and FIG. 8 is a diagram illustrating an example of the respiratory flow rate of the patient and the switching state of the solenoid valve of the oxygen concentrator M2 shown in FIG. Is.
  • FIG. 7 for the sake of clarity, the representation of a part of the configuration or element shown in FIG. 6 is simplified or not shown.
  • FIG. 8 for the sake of clarity, the representation of a part of the configuration or element shown in FIG. 6 is simplified or not shown.
  • the upper figure shows the open / closed state of the solenoid valve C and the solenoid valve D related to the supply of high-concentration oxygen gas to the patient and the acquisition of the patient's exhaled gas (suction into the apparatus) at each step.
  • the lower figure shows an example of the patient's respiratory flow.
  • the solenoid valve A and the solenoid valve B are not related to each operation of supplying high-concentration oxygen gas and acquiring exhaled gas based on the breathing detection of the patient, and are involved in the oxygen concentration process of the oxygen concentrator M2. Be manipulated.
  • step T21 is a state of waiting for the patient to inhale, the ports "1" to the ports "2" of the solenoid valve C which is a 3-port valve are in the “closed” state, and the solenoid valve which is a 2-port valve is also “closed”. It is in the "closed” state.
  • the breathing detection unit detects the patient's inspiration
  • the detection signal is transmitted to the calculation unit, and the calculation unit that receives the detection signal transmits the operation signal to the solenoid valve C.
  • the ports "1" to “2" of the solenoid valve C are changed from “closed” to “open”, and high-concentration oxygen gas is supplied to the patient (step T22).
  • the supply of high-concentration oxygen gas to the patient is not performed over the entire time during which the patient is inhaling, as in the case of the first embodiment described above. Also in this embodiment, the high-concentration oxygen gas is supplied only for a part of the inspiratory time of the patient. Further, as will be described later, the exhaled gas is acquired only for a part of the exhaled time of the patient.
  • the following step T23 is a waiting time, and can be set in consideration of the discharge time of the high-concentration oxygen gas in the tube, which will be described later.
  • the ports "2" to the ports "3" of the solenoid valve C are in the "open” state, and the solenoid valve D is in the "closed” state.
  • the high-concentration oxygen gas remaining in the gas flow path or tube from the solenoid valve C to the patient's cannula C is discharged.
  • the ports "2" to the ports "3" of the solenoid valve C are in the "open” state, and the solenoid valve D is also in the "open” state. Therefore, the high-concentration oxygen gas remaining in the gas flow path or tube from the solenoid valve C to the patient's cannula C is sucked by the operation of the vacuum pump 31 and discharged to the outside.
  • step T25 is a state of waiting for exhalation of the patient, ports "2" to "3" of the solenoid valve C1 which is a 3-port valve are in an "open” state, and in step T24, they are in an "open” state.
  • the solenoid valve D is in the “closed” state.
  • the breathing detection unit 7 detects the exhaled breath of the patient
  • the detection signal is transmitted to the calculation unit, and the calculation unit that receives the detection signal transmits the operation signal to the solenoid valve D.
  • the solenoid valve D changes from “closed” to “open”, and the patient's exhaled gas is sucked (acquired) into the device by the operation of the vacuum pump 31 (step T26).
  • this acquisition of exhaled gas is also not performed over the entire expiratory time of the patient.
  • the breath gas of the patient introduced into the breath gas detection unit 4 is CO 2 , oxygen, hydrogen, ammonia, etc. by the above-mentioned sensor included in the breath gas detection unit 4 as in the oxygen concentrator M1 according to the first embodiment. Concentration is measured.
  • the following step T27 is a waiting time, and can be set in consideration of the filling time of the high-concentration oxygen gas into the tube, which will be described later.
  • the ports "2" to the ports "3" of the solenoid valve C are in the "open” state, and the solenoid valve D is in the "closed” state.
  • the gas flow path or tube from the solenoid valve C to the patient's cannula C is filled with high-concentration oxygen gas, and the patient's exhaled gas remaining in the gas flow path or tube is discharged.
  • the ports "1" to "2" of the solenoid valve C are in the "open” state, and the solenoid valve D is in the "closed” state. Therefore, the patient's exhaled gas remaining in the gas flow path or tube from the solenoid valve C to the patient's cannula C is pushed toward the patient's cannula by the high-concentration oxygen gas supplied through the flow rate adjusting unit 22. Then, it is discharged to the outside from the cannula C.
  • the present disclosure is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims.
  • the pressure sensor that detects both the exhalation and the inspiration of the patient is used as the breathing detection unit, but the pressure sensor that detects only the exhalation or the inspiration of the patient can also be used.
  • the inspiratory time and expiratory time in one breath of the patient are calculated based on the past average respiratory time and data or experiential value of the patient, and for example, 60% of the calculated inspiratory time.
  • High-concentration oxygen gas can be supplied for a period of time.
  • the exhaled gas of the patient can be acquired (sucked) only for a part of the calculated expiratory time.
  • the respiration detector can be configured simply by using a pressure sensor that detects only the patient's exhalation or inspiration, but the patient is more accurately supplied with high-concentration oxygen gas and exhaled in synchronization with the patient's respiration. From the point of view of gas acquisition, it is desirable to use a pressure sensor that detects both the patient's exhalation and inspiration.
  • the patient is supplied with high-concentration oxygen gas via the cannula and the exhaled gas of the patient is acquired.
  • this cannula for example, a mask worn on the patient is used. It is also possible to supply high-concentration oxygen gas and acquire exhaled gas through the gas.
  • FIG. 9 is a modification of the oxygen concentrator shown in FIG. 6, in which the oxygen outlet 41 and the exhaled gas acquisition port 43 are separately provided. A tube connected to the oxygen outlet and a tube connected to the exhaled gas acquisition port are inserted into the patient's nostrils.
  • the high-concentration oxygen gas supply port 26 provided at the oxygen outlet 41 of the casing 9 of the oxygen concentrator and the exhaled breath of the casing 9. It is desirable that the exhaled gas acquisition ports 44 provided in the gas acquisition port 43 have different shapes from each other. This makes it possible to prevent the tube from being connected to the wrong place. Further, instead of the shape, it is possible to suppress the connection to the wrong place by changing the colors of each other.
  • the oxygen concentrator is an oxygen concentrator that supplies pressurized air pressurized by a compressor to an adsorption cylinder, and then depressurizes the inside of the adsorption cylinder in a pressurized state to exhaust nitrogen-rich gas.
  • the disclosure is not limited to this, and the present disclosure can be applied to a VSA type oxygen concentrator that supplies air to an adsorption cylinder and repeats only atmospheric pressure and depressurization, and a membrane type oxygen concentrator. ..

Abstract

Oxygen concentrators M1 and M2 feed air to an adsorbent that selectively adsorbs nitrogen and feed the resulting highly concentrated oxygen gas to a user. The oxygen concentrators are provided with: an intake part 3 for suctioning the exhaled gas from a user; and an exhaled gas detector 4 for detecting component information of the suctioned exhaled gas from the user.

Description

酸素濃縮装置Oxygen concentrator
 本開示は酸素濃縮装置に関する。さらに詳しくは、空気中の酸素濃度よりも高濃度の酸素を含む高濃度酸素ガスを生成してユーザに供給する酸素濃縮装置に関する。 This disclosure relates to an oxygen concentrator. More specifically, the present invention relates to an oxygen concentrator that generates a high-concentration oxygen gas containing oxygen having a concentration higher than that of the oxygen in the air and supplies it to the user.
 空気中の酸素濃度よりも高濃度の酸素を含む高濃度酸素ガスを生成して、これを酸素タンクに貯留し、当該酸素タンクからユーザに高濃度酸素ガスを供給する酸素濃縮装置が知られている(例えば、特許文献1参照)。かかる酸素濃縮装置は、例えば肺に疾患を有し当該肺の機能が低下している患者(ユーザ)が行っている在宅酸素療法に使用される。 An oxygen concentrator is known that generates a high-concentration oxygen gas containing oxygen having a concentration higher than the oxygen concentration in the air, stores it in an oxygen tank, and supplies the high-concentration oxygen gas to the user from the oxygen tank. (See, for example, Patent Document 1). Such an oxygen concentrator is used, for example, in home oxygen therapy performed by a patient (user) who has a disease in the lung and the function of the lung is deteriorated.
特開2019-54954号公報Japanese Unexamined Patent Publication No. 2019-54954
 従来の酸素濃縮装置では、患者に対して高濃度酸素ガスを供給するだけであり、当該装置自体が患者の状態を把握することはできなかった。換言すれば、高濃度酸素ガスを投与した結果、患者の症状が改善されたのか、そのままであるのか、又は悪化したのかが装置側では分からなかった。このため、仮に酸素不足であったり、二酸化炭素が体内に蓄積される換気不全であったりしても、同じ流量で高濃度酸素ガスの供給を続けることしかできなかった。 The conventional oxygen concentrator only supplies high-concentration oxygen gas to the patient, and the device itself cannot grasp the patient's condition. In other words, the device did not know whether the patient's symptoms improved, remained the same, or worsened as a result of the administration of high-concentration oxygen gas. Therefore, even if there is a lack of oxygen or ventilation failure in which carbon dioxide is accumulated in the body, it is only possible to continue supplying high-concentration oxygen gas at the same flow rate.
 本開示は、ユーザの呼気ガスを通じて当該ユーザの状態を把握することができる酸素濃縮装置を提供することを目的としている。 The object of the present disclosure is to provide an oxygen concentrator capable of grasping the state of the user through the exhaled gas of the user.
 本開示の酸素濃縮装置は、
(1)窒素を選択的に吸着する吸着剤に空気を供給し、生成された高濃度酸素ガスをユーザに供給する酸素濃縮装置であって、
 前記装置内にユーザの呼気ガスを吸引する吸気部と、
 吸引されたユーザの呼気ガスの成分情報を検知する呼気ガス検知部と
を備えている。
The oxygen concentrator of the present disclosure is
(1) An oxygen concentrator that supplies air to an adsorbent that selectively adsorbs nitrogen and supplies the generated high-concentration oxygen gas to the user.
An intake unit that sucks the user's exhaled gas into the device,
It is equipped with an exhaled gas detection unit that detects component information of the sucked user's exhaled gas.
 本開示の酸素濃縮装置では、装置内に吸引されたユーザの呼気ガスの成分情報を呼気ガス検知部により検知している。検知された呼気ガスの成分情報により、例えばユーザが酸素不足の状態にあるのか、又は、換気不全の状態にあるのかを含み、当該ユーザの状態を把握することができる。そして、把握されたユーザの状態に応じて、例えば当該ユーザに供給される高濃度酸素ガスの流量を変更する等の措置をとることができる。なお、本明細書において「高濃度酸素ガス」とは、空気中の酸素の濃度(約21%:体積含有率)よりも高い酸素濃度のガスのことを意味し、例えば、40~95%程度の酸素濃度のガスを意味する。 In the oxygen concentrator of the present disclosure, the component information of the user's exhaled gas sucked into the device is detected by the exhaled gas detection unit. From the detected breath gas component information, it is possible to grasp the state of the user, including, for example, whether the user is in a state of oxygen deficiency or a state of insufficiency of ventilation. Then, it is possible to take measures such as changing the flow rate of the high-concentration oxygen gas supplied to the user according to the grasped state of the user. In the present specification, the "high-concentration oxygen gas" means a gas having an oxygen concentration higher than the oxygen concentration in the air (about 21%: volume content), for example, about 40 to 95%. Means a gas with an oxygen concentration of.
(2)前記(1)の酸素濃縮装置において、ユーザの呼吸に同調して、吸気時に高濃度酸素ガスを供給し且つ呼気時に呼気ガスを吸引することが望ましい。ユーザの呼吸に同調して、高濃度酸素ガスの供給及び呼気ガスの吸引を行うことで、効率よく前記供給及び吸引を行うことができる。 (2) In the oxygen concentrator of the above (1), it is desirable to supply high-concentration oxygen gas at the time of inspiration and suck the exhaled gas at the time of exhalation in synchronization with the user's respiration. By supplying high-concentration oxygen gas and sucking exhaled gas in synchronization with the user's breathing, the supply and suction can be performed efficiently.
(3)前記(1)又は(2)の酸素濃縮装置において、前記空気を生成するエアコンプレッサが前記吸気部を兼用することが望ましい。酸素濃縮装置において加圧空気を生成するために用いられるエアコンプレッサがユーザの呼気ガスを吸引する吸引部を兼用することにより、部品数を減らして、装置の小型化を図ることができる。 (3) In the oxygen concentrator according to (1) or (2), it is desirable that the air compressor that generates the air also serves as the intake unit. The air compressor used to generate pressurized air in the oxygen concentrator also serves as a suction unit for sucking the user's exhaled gas, so that the number of parts can be reduced and the device can be miniaturized.
(4)前記(1)~(3)の酸素濃縮装置において、前記吸気部の上流側の呼気ガスの流路にフィルタが設けられていることが望ましい。フィルタを呼気ガスの流路に設けることで、装置内においてユーザの呼気ガスが接触する範囲を限定することができる。これにより、別のユーザが酸素濃縮装置を使用する場合に、感染防止のために洗浄又は交換する部品を少なくし、又、洗浄又は交換する流路を短くすることができる。また、ユーザの呼気ガスに含まれる成分をフィルタで長期間捕集することで、当該ユーザの疾患を早期に発見することも可能となる。 (4) In the oxygen concentrators (1) to (3), it is desirable that a filter is provided in the flow path of the exhaled gas on the upstream side of the intake unit. By providing the filter in the flow path of the exhaled gas, it is possible to limit the range of contact of the exhaled gas of the user in the apparatus. As a result, when another user uses the oxygen concentrator, the number of parts to be cleaned or replaced to prevent infection can be reduced, and the flow path to be cleaned or replaced can be shortened. Further, by collecting the components contained in the breath gas of the user for a long period of time with a filter, it is possible to detect the disease of the user at an early stage.
(5)前記(1)~(4)の酸素濃縮装置において、前記呼気ガス検知部の上流側の呼気ガスの流路に逆止弁が設けられていることが望ましい。逆止弁により、呼気ガス検知部に流れたユーザの呼気ガスが当該呼気ガス検知部の上流側に逆流することを抑制することができる。 (5) In the oxygen concentrators (1) to (4), it is desirable that a check valve is provided in the flow path of the exhaled gas on the upstream side of the exhaled gas detecting unit. The check valve can prevent the user's exhaled gas that has flowed to the exhaled gas detection unit from flowing back to the upstream side of the exhaled gas detection unit.
(6)前記(1)~(5)の酸素濃縮装置において、前記吸気部と呼気ガス検知部との間の流路に真空タンクが設けられていることが望ましい。真空タンクを設けることで、吸気部の負荷を平準化してエネルギー効率を向上させることができる。 (6) In the oxygen concentrators (1) to (5), it is desirable that a vacuum tank is provided in the flow path between the intake unit and the exhaled gas detection unit. By providing a vacuum tank, the load on the intake portion can be leveled and energy efficiency can be improved.
(7)前記(1)~(6)の酸素濃縮装置において、前記呼気ガス検知部を、ユーザの呼気ガスのCO濃度を測定するCOセンサとすることができる。COセンサにより、ユーザの呼気ガスに含まれるCO濃度を測定することができる。 (7) In the oxygen concentrators (1) to (6), the breath gas detection unit can be a CO 2 sensor that measures the CO 2 concentration of the user's breath gas. The CO 2 sensor can measure the CO 2 concentration contained in the user's exhaled gas.
(8)前記(1)~(6)の酸素濃縮装置において、前記呼気ガス検知部を、ユーザの呼気ガスの酸素濃度を測定する酸素センサとすることができる。酸素センサにより、ユーザの呼気ガスに含まれる酸素濃度を測定することができる。 (8) In the oxygen concentrators (1) to (6), the breath gas detection unit can be an oxygen sensor for measuring the oxygen concentration of the user's breath gas. The oxygen sensor can measure the oxygen concentration in the user's exhaled gas.
(9)前記(1)~(6)の酸素濃縮装置において、前記呼気ガス検知部を、ユーザの呼気ガスの水素濃度を測定する水素センサとすることができる。水素センサにより、ユーザの呼気ガスに含まれる水素濃度を測定することができる。 (9) In the oxygen concentrators (1) to (6), the exhaled gas detection unit can be a hydrogen sensor for measuring the hydrogen concentration of the exhaled gas of the user. The hydrogen sensor can measure the concentration of hydrogen contained in the user's exhaled gas.
(10)前記(1)~(9)の酸素濃縮装置において、前記呼気ガス検知部で検知された成分情報に応じてユーザに供給する高濃度酸素ガスの流量を変更することが望ましい。ユーザの呼気ガスの成分情報に応じて当該ユーザに供給する高濃度酸素ガスの流量を変更することで、ユーザの状態に応じた酸素供給を行うことができる。例えば、酸素が不足していると考えられるユーザに対しては高濃度酸素ガスの流量を増やすことができる。 (10) In the oxygen concentrators (1) to (9), it is desirable to change the flow rate of the high-concentration oxygen gas supplied to the user according to the component information detected by the exhaled gas detection unit. By changing the flow rate of the high-concentration oxygen gas supplied to the user according to the component information of the breath gas of the user, oxygen can be supplied according to the state of the user. For example, the flow rate of high-concentration oxygen gas can be increased for a user who is considered to be deficient in oxygen.
(11)前記(1)~(10)の酸素濃縮装置において、警報部を更に備えており、
 前記制御部は、呼気ガス検知部で検知された成分情報に応じて前記警報部に警報を出させることが望ましい。警報を発することで、ユーザに対して現在の状態が正常な状態ではないことを知らせて、高濃度酸素ガスの流量を変更する等の措置をとらせることができる。
(11) The oxygen concentrators (1) to (10) are further provided with an alarm unit.
It is desirable that the control unit causes the alarm unit to issue an alarm according to the component information detected by the exhaled gas detection unit. By issuing an alarm, it is possible to notify the user that the current state is not a normal state and take measures such as changing the flow rate of the high-concentration oxygen gas.
(12)前記(1)~(11)の酸素濃縮装置において、前記呼気ガス検知部で検知された成分情報を通信機器を経由して医師等に情報提供できる通信機能を備えていることが望ましい。これにより、医師等は酸素濃縮装置を使用するユーザの状態を把握することができ、必要に応じて当該ユーザにガス流量変更等の指示を与えることができる。 (12) It is desirable that the oxygen concentrators (1) to (11) have a communication function capable of providing information on components detected by the exhaled gas detection unit to a doctor or the like via a communication device. .. As a result, the doctor or the like can grasp the state of the user who uses the oxygen concentrator, and can give an instruction such as changing the gas flow rate to the user as needed.
(13)前記(1)~(12)の酸素濃縮装置において、ユーザに高濃度酸素ガスを供給する流路と、当該ユーザの呼気ガスを吸引する流路とがそれぞれ独立して設けられていることが望ましい。高濃度酸素ガスの流路と、呼気ガスの流路とを互いに独立した流路とすることで、高濃度酸素ガスと呼気ガスのコンタミネーション(混入又は混合)を抑制することができる。 (13) In the oxygen concentrators (1) to (12), a flow path for supplying high-concentration oxygen gas to the user and a flow path for sucking the exhaled gas of the user are provided independently. Is desirable. By making the flow path of the high-concentration oxygen gas and the flow path of the exhaled gas independent from each other, contamination (mixing or mixing) of the high-concentration oxygen gas and the exhaled gas can be suppressed.
(14)前記(13)の酸素濃縮装置において、酸素濃縮装置のケーシングに設けられる高濃度酸素ガス供給ポート及び呼気ガス取得ポートが互いに異なる形状を有していることが望ましい。高濃度酸素ガス供給ポートと呼気ガス取得ポートの形状を互いに異なる形状とすることで、チューブ等からなるガスの流路を間違った箇所に接続することを抑制することができる。 (14) In the oxygen concentrator according to (13), it is desirable that the high-concentration oxygen gas supply port and the exhaled gas acquisition port provided in the casing of the oxygen concentrator have different shapes. By making the shapes of the high-concentration oxygen gas supply port and the exhaled gas acquisition port different from each other, it is possible to prevent the gas flow path made of a tube or the like from being connected to an incorrect location.
本開示の酸素濃縮装置の一実施形態の説明図である。It is explanatory drawing of one Embodiment of the oxygen concentrator of this disclosure. 酸素濃縮プロセスを説明するための、図1に示される酸素濃縮装置のブロック図である。It is a block diagram of the oxygen concentrator shown in FIG. 1 for explaining an oxygen concentrator process. 吸着筒の1サイクルの圧力変化と酸素濃縮装置の電磁弁の切替状態とを説明する図である。It is a figure explaining the pressure change of one cycle of the suction cylinder and the switching state of the solenoid valve of an oxygen concentrator. 図1に示される酸素濃縮装置のブロック図である。It is a block diagram of the oxygen concentrator shown in FIG. ユーザの呼吸流量の一例と図1に示される酸素濃縮装置の電磁弁の切替状態とを説明する図である。It is a figure explaining an example of the respiratory flow rate of a user, and the switching state of the solenoid valve of the oxygen concentrator shown in FIG. 本開示の酸素濃縮装置の他の実施形態の説明図である。It is explanatory drawing of the other embodiment of the oxygen concentrator of this disclosure. 図6に示される酸素濃縮装置のブロック図である。It is a block diagram of the oxygen concentrator shown in FIG. ユーザの呼吸流量の一例と図6に示される酸素濃縮装置の電磁弁の切替状態とを説明する図である。It is a figure explaining an example of the respiratory flow rate of a user, and the switching state of the solenoid valve of the oxygen concentrator shown in FIG. 図6に示される酸素濃縮装置の変形例の説明図である。It is explanatory drawing of the modification of the oxygen concentrator shown in FIG.
 以下、添付図面を参照しつつ、本開示の酸素濃縮装置を詳細に説明する。なお、本開示はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 Hereinafter, the oxygen concentrator of the present disclosure will be described in detail with reference to the attached drawings. It should be noted that the present disclosure is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
〔第1実施形態〕
 図1は、本開示の一実施形態(第1実施形態)に係る酸素濃縮装置M1の説明図であり、図2は、酸素濃縮プロセスを説明するための、図1に示される酸素濃縮装置M1のブロック図である。なお、図2及び後出する図4では、分かり易くするために、図1に示される構成ないし要素の一部の表現を簡略化するか、又は、図示を省略している。
[First Embodiment]
FIG. 1 is an explanatory diagram of an oxygen concentrator M1 according to an embodiment (first embodiment) of the present disclosure, and FIG. 2 is an oxygen concentrator M1 shown in FIG. 1 for explaining an oxygen concentrator process. It is a block diagram of. In addition, in FIG. 2 and FIG. 4 described later, in order to make it easier to understand, the representation of a part of the configuration or element shown in FIG. 1 is simplified or not shown.
 [装置の全体構成]
 まず、酸素濃縮装置M1の全体構成について説明する。
 酸素濃縮装置M1は、空気中の酸素濃度よりも高い酸素濃度の高濃度酸素ガスを生成して、ユーザに供給する装置である。酸素濃縮装置   M1は、例えば、ユーザである呼吸器疾患患者等に対して高濃度酸素ガスを提供する在宅酸素療法において用いられる。
[Overall configuration of device]
First, the overall configuration of the oxygen concentrator M1 will be described.
The oxygen concentrator M1 is a device that generates a high-concentration oxygen gas having an oxygen concentration higher than the oxygen concentration in the air and supplies it to the user. The oxygen concentrator M1 is used, for example, in home oxygen therapy that provides a high-concentration oxygen gas to a user, a patient with a respiratory disease, or the like.
 酸素濃縮装置M1は、第1吸着筒1及び第2吸着筒2と、第1吸着筒1及び第2吸着筒2に加圧空気を供給するエアコンプレッサ3と、患者の呼気ガスの成分情報を検知する呼気ガス検知部4とを備えている。本実施形態におけるエアコンプレッサ3は、空気等のガスの加圧及び吸引を行うことができる加圧・真空併用型のエアコンプレッサである。エアコンプレッサ3は、第1吸着筒1及び第2吸着筒2に加圧空気を供給し吸着した窒素リッチガスを減圧により脱着・排気するとともに、患者の呼気ガスを装置内に吸引する吸気部としても機能する。かかる加圧・真空併用型のエアコンプレッサ3を用いることで、加圧空気を供給するエアコンプレッサとは別に、吸気部である真空ポンプを装置内に設ける場合(後述する第2実施形態)に比べて、部品数を減らして、装置の小型化を図ることができる。 The oxygen concentrator M1 provides information on the components of the patient's exhaled gas, the first adsorption cylinder 1 and the second adsorption cylinder 2, the air compressor 3 that supplies pressurized air to the first adsorption cylinder 1 and the second adsorption cylinder 2. It is provided with an exhaled gas detection unit 4 for detecting. The air compressor 3 in the present embodiment is a pressurized / vacuum combined type air compressor capable of pressurizing and sucking a gas such as air. The air compressor 3 supplies pressurized air to the first adsorption cylinder 1 and the second adsorption cylinder 2, desorbs and exhausts the adsorbed nitrogen-rich gas by depressurization, and also serves as an intake unit that sucks the exhaled gas of the patient into the apparatus. Function. By using the pressurized / vacuum combined type air compressor 3, as compared with the case where a vacuum pump as an intake unit is provided in the apparatus separately from the air compressor that supplies pressurized air (second embodiment described later). Therefore, the number of parts can be reduced and the size of the device can be reduced.
 酸素濃縮装置M1は、更に、高濃度酸素ガスを貯留する酸素タンク5と、高濃度酸素ガスを加湿する加湿器6と、患者の呼気及び吸気を検知する呼吸検知部7と、真空タンク8と、警報部42とを備えている。エアコンプレッサ3の作動や、後述する種々の電磁弁等の作動は、装置内に配設された制御部40により行われる。制御部40は、酸素濃縮装置M1を作動させるためのプログラムが記憶されている記憶部40a、及び電磁弁等の作動信号などを発信する演算部40bを備えている。警報部42は、呼気ガス検知部4により検知された患者の呼気ガスの成分情報に応じて、演算部40bからの指示に基づいて警報を発する。警報は、酸素濃縮装置M1の操作を行う操作パネル(図示せず)への当該患者の現在の状態が正常ではない旨の表示、音声、又は、ランプの点滅等により行うことができる。この警報を受けた患者は、医師の指導の範囲内で高濃度酸素ガスの流量を変更する等の措置をとることができる。また、前記成分情報は、別途設ける通信機能等を用いて医師等に情報提供することができる。情報提供を受けた医師等は、必要に応じて、ユーザに対して高濃度酸素ガスの流量変更等の指示をすることができる。 The oxygen concentrator M1 further includes an oxygen tank 5 for storing high-concentration oxygen gas, a humidifier 6 for humidifying high-concentration oxygen gas, a breathing detection unit 7 for detecting the exhalation and inspiration of a patient, and a vacuum tank 8. , The alarm unit 42 is provided. The operation of the air compressor 3 and the operation of various solenoid valves and the like, which will be described later, are performed by the control unit 40 arranged in the apparatus. The control unit 40 includes a storage unit 40a in which a program for operating the oxygen concentrator M1 is stored, and a calculation unit 40b for transmitting an operation signal of an electromagnetic valve or the like. The alarm unit 42 issues an alarm based on an instruction from the calculation unit 40b according to the component information of the exhaled gas of the patient detected by the exhaled gas detection unit 4. The alarm can be given by displaying on the operation panel (not shown) that operates the oxygen concentrator M1 to the effect that the current state of the patient is not normal, by voice, by blinking the lamp, or the like. The patient who receives this alarm can take measures such as changing the flow rate of high-concentration oxygen gas within the range of the doctor's guidance. Further, the component information can be provided to a doctor or the like by using a communication function or the like separately provided. The doctor or the like who received the information can instruct the user to change the flow rate of the high-concentration oxygen gas as necessary.
 エアコンプレッサ3は、酸素濃縮装置M1のケーシング9内に配置されたコンプレッサボックス10内に収容されている。コンプレッサボックス10内には、エアコンプレッサ3から第1吸着筒1及び第2吸着筒2への加圧空気の流れ、及び、第1吸着筒1及び第2吸着筒2からエアコンプレッサ3への廃棄ガスの流れを制御する制御弁11と、エアコンプレッサ3を冷却するための一対の冷却ファン12a、12bと、吸気消音ボックス13と、排気マフラー14とが設けられている。本実施形態における制御弁11は、3ポート弁である電磁弁Aと、同じく3ポート弁である電磁弁Bとで構成されている。なお、図1、2、4、6、7及び9において、弁を示す標記の近傍において「1」、「2」又は「3」という数字は当該弁のポートの番号を示している。3ポート弁には、1から3までの数字が付されており、2ポート弁には、1及び2の数字が付されている。 The air compressor 3 is housed in a compressor box 10 arranged in the casing 9 of the oxygen concentrator M1. In the compressor box 10, the flow of pressurized air from the air compressor 3 to the first suction cylinder 1 and the second suction cylinder 2, and the disposal from the first suction cylinder 1 and the second suction cylinder 2 to the air compressor 3. A control valve 11 for controlling the flow of gas, a pair of cooling fans 12a and 12b for cooling the air compressor 3, an intake muffling box 13, and an exhaust muffler 14 are provided. The control valve 11 in the present embodiment is composed of a solenoid valve A which is a 3-port valve and a solenoid valve B which is also a 3-port valve. In FIGS. 1, 2, 4, 6, 7 and 9, the numbers "1", "2" or "3" in the vicinity of the marking indicating the valve indicate the port number of the valve. The 3-port valve is numbered from 1 to 3, and the 2-port valve is numbered 1 and 2.
 ケーシング9の空気入口(図示せず)には、装置内に導入される外部の空気中に含まれる塵埃等を捕集するための防塵フィルタ15が設けられている。防塵フィルタ15を通過してケーシング9内に導入された外部からの空気は、コンプレッサボックス10の開口部(図示せず)に設けられた吸気フィルタ16を通過してエアコンプレッサ3内に吸引される。吸気消音ボックス13は、吸気フィルタ16からエアコンプレッサ3に至る空気の流路に配設されており、エアコンプレッサ3の給気・圧縮に起因する騒音を低減させる。 A dustproof filter 15 for collecting dust and the like contained in the external air introduced into the apparatus is provided at the air inlet (not shown) of the casing 9. The air from the outside that has passed through the dustproof filter 15 and is introduced into the casing 9 passes through the intake filter 16 provided in the opening (not shown) of the compressor box 10 and is sucked into the air compressor 3. .. The intake muffling box 13 is arranged in the air flow path from the intake filter 16 to the air compressor 3, and reduces noise caused by air supply / compression of the air compressor 3.
 エアコンプレッサ3により圧縮されて加圧された空気(加圧空気)は、制御弁A及び制御弁Bを経由して第1吸着筒1及び第2吸着筒2に供給される。また、第1吸着筒1及び第2吸着筒2からの廃棄ガスは、制御弁A及び制御弁Bを経由してエアコンプレッサ3により減圧・吸引され、排気マフラー14を経由して外部に排出される。
 運転により発生するエアコンプレッサ3の熱は、冷却ファン12a、12bによって、ケーシング9の空気入口及びコンプレッサボックス10の開口17を経由して当該コンプレッサボックス10内に吸引され、且つ、当該エアコンプレッサ3に吹き付けられる空気により冷却される。
The air compressed and pressurized by the air compressor 3 (pressurized air) is supplied to the first suction cylinder 1 and the second suction cylinder 2 via the control valve A and the control valve B. Further, the waste gas from the first suction cylinder 1 and the second suction cylinder 2 is decompressed and sucked by the air compressor 3 via the control valve A and the control valve B, and discharged to the outside via the exhaust muffler 14. To.
The heat of the air compressor 3 generated by the operation is sucked into the compressor box 10 by the cooling fans 12a and 12b via the air inlet of the casing 9 and the opening 17 of the compressor box 10, and is sucked into the air compressor 3. It is cooled by the blown air.
 第1吸着筒1及び第2吸着筒2の内部には、エアコンプレッサ3から供給される加圧空気中の窒素を選択的ないし優先的に吸着する吸着剤が収容されている。吸着剤としては、例えばゼオライト等を用いることができる。第1吸着筒1及び第2吸着筒2を用いた酸素濃縮のプロセスの詳細については後述する。 Inside the first adsorption cylinder 1 and the second adsorption cylinder 2, an adsorbent that selectively or preferentially adsorbs nitrogen in the pressurized air supplied from the air compressor 3 is housed. As the adsorbent, for example, zeolite or the like can be used. The details of the oxygen concentration process using the first adsorption cylinder 1 and the second adsorption cylinder 2 will be described later.
 第1吸着筒1及び第2吸着筒2の下流側の流路(高濃度酸素ガスの出口側の流路。図1では第1吸着筒1及び第2吸着筒2の下部から酸素出口41に至る流路)には、高濃度酸素ガス等の流体の流量又は流れを制御するための種々の弁、すなわちパージ弁18、逆止弁19、20、減圧弁21、3ポート弁である電磁弁C1、及び2ポート弁である電磁弁C2が設けられている。減圧弁21の下流側には、高濃度酸素ガスの流量を調整するための流量調整部22が設けられている。流量調整部22として、ガス流量を調節することができる流量比例弁を用いることができる。酸素タンク5は、減圧弁21の上流側であり、且つ、逆止弁19、20の下流側に設けられている。また、逆止弁19、20と酸素タンク5との間のガス流路には、圧力異常等を検出するための圧力センサ23が設けられている。 The flow path on the downstream side of the first adsorption cylinder 1 and the second adsorption cylinder 2 (the flow path on the outlet side of the high-concentration oxygen gas. In FIG. 1, from the lower part of the first adsorption cylinder 1 and the second adsorption cylinder 2 to the oxygen outlet 41. Various valves for controlling the flow rate or flow of a fluid such as high-concentration oxygen gas, that is, a purge valve 18, a check valve 19, 20, a pressure reducing valve 21, and a solenoid valve which is a 3-port valve. C1 and a solenoid valve C2 which is a 2-port valve are provided. A flow rate adjusting unit 22 for adjusting the flow rate of the high-concentration oxygen gas is provided on the downstream side of the pressure reducing valve 21. As the flow rate adjusting unit 22, a flow rate proportional valve capable of adjusting the gas flow rate can be used. The oxygen tank 5 is provided on the upstream side of the pressure reducing valve 21 and on the downstream side of the check valves 19 and 20. Further, a pressure sensor 23 for detecting a pressure abnormality or the like is provided in the gas flow path between the check valves 19 and 20 and the oxygen tank 5.
 本実施形態に係る酸素濃縮装置M1は、一方の吸着筒にエアコンプレッサ3で圧縮された空気が供給されている間に、他方の吸着筒を当該エアコンプレッサ3によって吸引することで減圧するVPSA(Vacuum Pressure Swing Adsorption System)タイプの酸素濃縮装置である。しかし、本開示の酸素濃縮装置はこれに限定されず、一方の吸着筒にエアコンプレッサで圧縮された空気が供給されている間に、他方の吸着筒が大気開放されることで減圧されるPSA(Pressure Swing Adsorption System)タイプの酸素濃縮装置とすることもできる。 The oxygen concentrator M1 according to the present embodiment is a VPSA (VPSA) that reduces the pressure by sucking the other suction cylinder with the air compressor 3 while the air compressed by the air compressor 3 is being supplied to one suction cylinder. Vacuum Pressure Swing Adsorption System) type oxygen concentrator. However, the oxygen concentrator of the present disclosure is not limited to this, and PSA is depressurized by opening the other adsorption cylinder to the atmosphere while the air compressed by the air compressor is supplied to one adsorption cylinder. It can also be a (Pressure Swing Adsorption System) type oxygen concentrator.
 電磁弁A及び電磁弁Bは、いずれも3ポート弁であり、エアコンプレッサ3から吐出された加圧空気を第1吸着筒1(第2吸着筒2)に供給する加圧状態と、吸引することで当該第1吸着筒1(第2吸着筒2)内の廃棄ガスを外部に排出する減圧状態とを切り替える。一方の吸着筒が加圧状態にあるときは、他方の吸着筒は減圧状態にある。 The solenoid valve A and the solenoid valve B are both 3-port valves, and are in a pressurized state in which the pressurized air discharged from the air compressor 3 is supplied to the first suction cylinder 1 (second suction cylinder 2) and are sucked. This switches between a reduced pressure state in which the waste gas in the first suction cylinder 1 (second suction cylinder 2) is discharged to the outside. When one suction cylinder is in a pressurized state, the other suction cylinder is in a depressurized state.
 逆止弁19は第1吸着筒1の下流側のガス流路に配設され、逆止弁20は第2吸着筒2の下流側のガス流路に配設されている。両逆止弁19、20は、第1吸着筒1及び第2吸着筒2から排出される高濃度酸素ガスが下流側に向かってだけ流れるように構成されている。パージ弁18は、第1吸着筒1と逆止弁19との間のガス流路と、第2吸着筒2と逆止弁20との間のガス流路とを接続するガス流路に配設されている。 The check valve 19 is arranged in the gas flow path on the downstream side of the first suction cylinder 1, and the check valve 20 is arranged in the gas flow path on the downstream side of the second suction cylinder 2. Both check valves 19 and 20 are configured so that the high-concentration oxygen gas discharged from the first suction cylinder 1 and the second suction cylinder 2 flows only toward the downstream side. The purge valve 18 is arranged in a gas flow path connecting the gas flow path between the first suction cylinder 1 and the check valve 19 and the gas flow path between the second suction cylinder 2 and the check valve 20. It is installed.
 逆止弁19からの高濃度酸素ガスと、逆止弁20からの高濃度酸素ガスとが交互に酸素タンク5に供給され、当該酸素タンク5に貯留される。酸素タンク5の下流側には、当該酸素タンク5からの高濃度酸素ガスを減圧する減圧弁21と、高濃度酸素ガスの流量を調製する流量調整部22が配設されている。流量調整部22で流量調整された高濃度酸素ガスは酸素濃度異常を検出するための酸素センサ24及び高濃度酸素ガスから異物を除去するためのバクテリアフィルタ25を経由して加湿器6に供給される。 The high-concentration oxygen gas from the check valve 19 and the high-concentration oxygen gas from the check valve 20 are alternately supplied to the oxygen tank 5 and stored in the oxygen tank 5. On the downstream side of the oxygen tank 5, a pressure reducing valve 21 for reducing the pressure of the high-concentration oxygen gas from the oxygen tank 5 and a flow rate adjusting unit 22 for adjusting the flow rate of the high-concentration oxygen gas are provided. The high-concentration oxygen gas whose flow rate is adjusted by the flow rate adjusting unit 22 is supplied to the humidifier 6 via an oxygen sensor 24 for detecting an oxygen concentration abnormality and a bacterial filter 25 for removing foreign substances from the high-concentration oxygen gas. To.
 加湿器6により加湿された高濃度酸素ガスは、3ポート弁である電磁弁C1及び2ポート弁である電磁弁C2を経由して、ケーシング9の酸素出口41に固定された高濃度酸素ガス供給ポート26に接続されたチューブ(図示せず)を介して患者に供給される。患者へは当該患者が装着しているカニューラC(図2参照)を介して高濃度酸素ガスが供給され、又、当該カニューラCを介して患者の呼気ガスが装置内に吸引される。 The high-concentration oxygen gas humidified by the humidifier 6 is supplied to the high-concentration oxygen gas fixed to the oxygen outlet 41 of the casing 9 via the solenoid valve C1 which is a 3-port valve and the solenoid valve C2 which is a 2-port valve. It is supplied to the patient via a tube (not shown) connected to port 26. High-concentration oxygen gas is supplied to the patient through the cannula C (see FIG. 2) worn by the patient, and the exhaled gas of the patient is sucked into the device through the cannula C.
 電磁弁C2と高濃度酸素ガス供給ポート26との間のガス流路に呼吸検知部7が配設されている。呼吸検知部7により検知される患者の呼気及び吸気に基づいて、高濃度酸素ガスの患者への供給及び患者の呼気ガスの装置内への吸引のタイミングが制御される。呼吸検知部7としては、患者の呼気又は吸気による圧力変化を検知する圧力センサを用いることができる。 A respiration detection unit 7 is provided in the gas flow path between the solenoid valve C2 and the high-concentration oxygen gas supply port 26. Based on the patient's exhalation and inspiration detected by the breathing detection unit 7, the timing of supplying the high-concentration oxygen gas to the patient and sucking the patient's exhaled gas into the device is controlled. As the breathing detection unit 7, a pressure sensor that detects a pressure change due to exhalation or inspiration of the patient can be used.
 本実施形態では、患者に高濃度酸素ガスを供給する高濃度酸素ガス供給ポート26が、患者の呼気ガスを装置内に吸引して当該呼気ガスを取得するための呼気ガス取得口の役割も果たしている。高濃度酸素ガスの供給及び呼気ガスの吸引(取得)は、後述するように、タイミングをずらして行われる。 In the present embodiment, the high-concentration oxygen gas supply port 26 that supplies the high-concentration oxygen gas to the patient also serves as an exhaled gas acquisition port for sucking the exhaled gas of the patient into the apparatus and acquiring the exhaled gas. There is. The supply of high-concentration oxygen gas and the suction (acquisition) of exhaled gas are performed at different timings, as will be described later.
 装置内に吸引される患者の呼気ガスは、電磁弁C2、電磁弁C1及び逆止弁27を通って呼気ガス検知部4に導入され、当該呼気ガス検知部4において患者の呼気ガスの成分情報が検知される。呼気ガス検知部4としては、例えば患者の呼気ガスのCO2濃度を測定するCO2センサ、酸素濃度を測定する酸素センサ、水素濃度を測定する水素センサ、アンモニア濃度を測定するアンモニアセンサ、一酸化窒素濃度を測定する一酸化窒素センサ等を用いることができる。呼気ガス検知部4として1種類のセンサを用いてもよいし、2種類以上のセンサを用いてもよい。呼気ガス検知部4の上流側に逆止弁27を設けることで、呼気ガス検知部4に流れた患者の呼気ガスが当該呼気ガス検知部4の上流側に逆流することを抑制することができる。 The patient's breath gas sucked into the apparatus is introduced into the breath gas detection unit 4 through the solenoid valve C2, the solenoid valve C1 and the check valve 27, and the component information of the patient's breath gas is introduced in the breath gas detection unit 4. Is detected. The breath gas detection unit 4 includes, for example, a CO2 sensor that measures the CO2 concentration of the patient's breath gas, an oxygen sensor that measures the oxygen concentration, a hydrogen sensor that measures the hydrogen concentration, an ammonia sensor that measures the ammonia concentration, and a nitrogen monoxide concentration. A nitrogen monoxide sensor or the like for measuring the above can be used. One type of sensor may be used as the exhaled gas detection unit 4, or two or more types of sensors may be used. By providing the check valve 27 on the upstream side of the exhaled gas detection unit 4, it is possible to prevent the exhaled gas of the patient flowing through the exhaled gas detection unit 4 from flowing back to the upstream side of the exhaled gas detection unit 4. ..
 成分情報が検知されて呼気ガス検知部4から排出された呼気ガスは、電磁弁E、フィルタ28、真空タンク8、電磁弁Dを通ってエアコンプレッサ3に吸引され、当該エアコンプレッサ3により排気マフラー14を経由して外部に排出される。フィルタ28を呼気ガスの流路に設けることで、装置内において患者の呼気ガスが接触する範囲を限定することができる。これにより、別のユーザである患者が酸素濃縮装置M1を使用する場合に、感染防止のために洗浄又は交換する部品を少なくし、又、洗浄又は交換するガス流路を短くすることができる。また、患者の呼気ガスに含まれる成分をフィルタ28で長期間捕集することで、通常では極微小で検出できないような呼気ガス成分を発見することも可能となる。また、真空タンク8を設けることで、エアコンプレッサ3の負荷を平準化してエネルギー効率を向上させることができる。 The exhaled gas discharged from the exhaled gas detection unit 4 after the component information is detected is sucked into the air compressor 3 through the solenoid valve E, the filter 28, the vacuum tank 8, and the solenoid valve D, and the exhaust muffler is sucked by the air compressor 3. It is discharged to the outside via 14. By providing the filter 28 in the flow path of the exhaled gas, it is possible to limit the range of contact of the exhaled gas of the patient in the apparatus. As a result, when a patient who is another user uses the oxygen concentrator M1, the number of parts to be cleaned or replaced to prevent infection can be reduced, and the gas flow path to be cleaned or replaced can be shortened. In addition, by collecting the components contained in the exhaled gas of the patient for a long period of time with the filter 28, it is possible to discover the exhaled gas components that are normally extremely minute and cannot be detected. Further, by providing the vacuum tank 8, the load of the air compressor 3 can be leveled and the energy efficiency can be improved.
 本実施形態では、装置内に取得した患者の呼気ガスの成分情報を前述したCOセンサ等の各種センサからなる呼気ガス検知部4で求めている。呼気ガス検知部4で得られる患者の呼気ガスの成分情報に基づいて、当該患者の状態、より詳細には健康状態を把握することができる。例えば、患者の呼気ガス中のCO濃度を測定することで、エネルギー産生のために酸素を消費する過程で患者の体内で産生されたCOが呼吸により正常に体外に排出されているか否かを判定することができる。また、呼気ガス中の酸素濃度を酸素センサで測定することで、吸気とともに供給された高濃度酸素ガス中の酸素が体内に有効に取り込めているかを含み、肺機能や代謝循環情報を確認することができる。 In the present embodiment, the exhaled gas detection unit 4 including various sensors such as the CO 2 sensor described above obtains the component information of the exhaled gas of the patient acquired in the apparatus. Based on the component information of the exhaled gas of the patient obtained by the exhaled gas detection unit 4, the state of the patient, more specifically, the health state can be grasped. For example, by measuring the CO 2 concentration in the patient's exhaled gas, whether or not the CO 2 produced in the patient's body in the process of consuming oxygen for energy production is normally excreted from the body by respiration. Can be determined. In addition, by measuring the oxygen concentration in the exhaled gas with an oxygen sensor, it is necessary to confirm the lung function and metabolic circulation information, including whether the oxygen in the high-concentration oxygen gas supplied with inspiration is effectively taken into the body. Can be done.
 また、呼気ガス中の一酸化窒素(NO)の濃度を一酸化窒素センサで測定することで、気道の炎症(喘息)を早期に発見することもでき、さらに、呼気ガス中のアンモニアの濃度をアンモニアセンサで測定することで、肝臓や腎機能の状態や、胃がんの兆候等を早期に発見することもできる。また、呼気ガス中の水素ガスの濃度を水素センサで測定することで、腸内環境の評価や消化器官系の医療検査や健康診断等において得られた測定値を活用することができる。 In addition, by measuring the concentration of nitric oxide (NO) in the exhaled gas with a nitric oxide sensor, it is possible to detect airway inflammation (asthma) at an early stage, and further, the concentration of ammonia in the exhaled gas can be measured. By measuring with an ammonia sensor, it is possible to detect the state of liver and renal function and signs of gastric cancer at an early stage. In addition, by measuring the concentration of hydrogen gas in the exhaled gas with a hydrogen sensor, it is possible to utilize the measured values obtained in the evaluation of the intestinal environment, the medical examination of the digestive organ system, the medical examination, and the like.
 なお、成分情報としては、呼気ガス中の特定種類の気体の濃度以外に、気体の圧力(分圧)も含まれる。例えば、呼気ガス中の二酸化炭素分圧(PEtCO:呼気終末二酸化炭素分圧等)を赤外線の吸光度により測定する、呼気ガス検知部としての光センサ等で測定することで、当該患者の無換気や低換気を早期に発見することができる。かかる呼気ガス成分の測定により、非挿管のカプノグラフィーと同等の機能を果たすことができる。 The component information includes the pressure (partial pressure) of the gas in addition to the concentration of the specific type of gas in the exhaled gas. For example, the partial pressure of carbon dioxide in the exhaled gas (PetCO 2 : partial pressure of carbon dioxide at the end of exhalation, etc.) is measured by the absorbance of infrared rays, and by measuring with an optical sensor as an exhaled gas detector, the patient is not ventilated. And hypoventilation can be detected early. By measuring the exhaled gas component, the function equivalent to that of non-intubated capnography can be achieved.
 [酸素濃縮プロセス]
 つぎに、前述した酸素濃縮装置M1を用いて高濃度酸素ガスを生成するプロセスについて説明する。
 図2は、酸素濃縮プロセスを説明するための、図1に示される酸素濃縮装置M1のブロック図であり、図3は、吸着筒の1サイクルの圧力変化と酸素濃縮装置M1の電磁弁の切替状態とを説明する図である。図3において、上側の図は酸素濃縮プロセスに関係する電磁弁A、電磁弁B、パージ弁18、及び電磁弁Dの各ステップにおける開閉状態を示しており、下側の図は第1吸着筒1及び第2吸着筒2内の圧力変化を示している。下側の図において、太い実線は第1吸着筒1の内部の圧力変化を示しており、細い実線は第2吸着筒2の内部の圧力変化を示している。図2~3に示される例では、第1吸着筒1及び第2吸着筒の順に吸着筒内の加圧工程が行われる。また、図3において、「T」で示される期間で第1吸着筒1の1サイクルの処理が行われる。この1サイクルの処理には、上側の図に示される「T1」から「T6」までの6つのステップが含まれる。
[Oxygen concentration process]
Next, a process for generating a high-concentration oxygen gas using the oxygen concentrator M1 described above will be described.
FIG. 2 is a block diagram of the oxygen concentrator M1 shown in FIG. 1 for explaining the oxygen concentrator process, and FIG. 3 shows a one-cycle pressure change of the adsorption cylinder and switching of the electromagnetic valve of the oxygen concentrator M1. It is a figure explaining a state. In FIG. 3, the upper figure shows the open / closed state of each step of the solenoid valve A, the solenoid valve B, the purge valve 18, and the solenoid valve D related to the oxygen concentrator process, and the lower figure shows the first suction cylinder. It shows the pressure change in the 1st and 2nd suction cylinders 2. In the lower figure, the thick solid line shows the pressure change inside the first suction cylinder 1, and the thin solid line shows the pressure change inside the second suction cylinder 2. In the example shown in FIGS. 2 to 3, the pressurizing step in the suction cylinder is performed in the order of the first suction cylinder 1 and the second suction cylinder. Further, in FIG. 3, one cycle of the first adsorption cylinder 1 is processed in the period indicated by “T”. This one-cycle process includes six steps from "T1" to "T6" shown in the upper figure.
 図2において、電磁弁A、電磁弁B、パージ弁18、及び電磁弁Dを示す各ブロックに付された数字は、前述したように各弁におけるポートの番号を示している。電磁弁A及び電磁弁Bは3ポート弁であるので、1から3までの3つの数字が付されており、パージ弁18及び電磁弁Dは2ポート弁であるので、1から2までの2つの数字が付されている。図3の上側の図において、例えば電磁弁Aの「1→2」が「開」であるとは、電磁弁Aにおいて「1」で示されるポートから「2」で示されるポートまでが連通状態にあることを示している。このとき、当該電磁弁Aにおいて「2」で示されるポートから「3」で示されるポートまでは非連通の状態である。 In FIG. 2, the numbers attached to the blocks indicating the solenoid valve A, the solenoid valve B, the purge valve 18, and the solenoid valve D indicate the port numbers in each valve as described above. Since the solenoid valve A and the solenoid valve B are 3-port valves, three numbers from 1 to 3 are attached, and since the purge valve 18 and the solenoid valve D are 2-port valves, 2 from 1 to 2 are attached. Two numbers are attached. In the upper diagram of FIG. 3, for example, when "1 → 2" of the solenoid valve A is "open", the port indicated by "1" to the port indicated by "2" in the solenoid valve A are in a communicating state. It shows that it is in. At this time, in the solenoid valve A, the port indicated by "2" to the port indicated by "3" are in a non-communication state.
 図3の下側の図において、横軸は時間経過を示しており、同図において、左側から右側に時間が経過している。
 ステップT1では、パージ弁18及び電磁弁Dが「開」の状態であり、第2吸着筒2から第1吸着筒1に当該第2吸着筒2内の高濃度酸素ガスが供給されるとともに、エアコンプレッサ3により真空タンク8の真空引きが行われる。このステップT1では、電磁弁A及び電磁弁Bのポート「2」からポート「3」はいずれも「閉」の状態であるので、第1吸着筒1及び第2吸着筒2内が吸引されることはない。第1吸着筒1、第2吸着筒2及び真空タンク8の各吸引は、弁の開閉を制御することでタイミングが互いにずれるように行われる。
In the lower figure of FIG. 3, the horizontal axis shows the passage of time, and in the same figure, the passage of time is from the left side to the right side.
In step T1, the purge valve 18 and the solenoid valve D are in the “open” state, and the high-concentration oxygen gas in the second suction cylinder 2 is supplied from the second suction cylinder 2 to the first suction cylinder 1 and at the same time. The air compressor 3 evacuates the vacuum tank 8. In this step T1, since the ports "2" to "3" of the solenoid valve A and the solenoid valve B are both in the "closed" state, the inside of the first suction cylinder 1 and the second suction cylinder 2 is sucked. There is no such thing. The suction of the first suction cylinder 1, the second suction cylinder 2, and the vacuum tank 8 is performed so that the timings are shifted from each other by controlling the opening and closing of the valve.
 つづくステップT2では、電磁弁Aのポート「1」からポート「2」、及び電磁弁Bのポート「2」からポート「3」が「開」の状態であり、エアコンプレッサ3による第1吸着筒1の加圧及び第2吸着筒2の減圧が行われる。このステップT2では、ステップT1で「開」の状態であったパージ弁18及び電磁弁Dは「閉」の状態である。加圧空気が供給されて加圧状態になった第1吸着筒1内では、加圧空気に含まれる窒素が当該第1吸着筒1内に収容されている吸着剤に吸着される。これにより、第1吸着筒1内のガスは、酸素濃度が通常の空気中の酸素濃度よりも高い高濃度酸素ガスとなる。 In the following step T2, the ports "1" to "2" of the solenoid valve A and the ports "2" to "3" of the solenoid valve B are in the "open" state, and the first suction cylinder by the air compressor 3 is used. The pressurization of 1 and the depressurization of the second suction cylinder 2 are performed. In this step T2, the purge valve 18 and the solenoid valve D, which were in the “open” state in step T1, are in the “closed” state. In the first adsorption cylinder 1 to which the pressurized air is supplied and put into a pressurized state, nitrogen contained in the pressurized air is adsorbed by the adsorbent contained in the first adsorption cylinder 1. As a result, the gas in the first adsorption cylinder 1 becomes a high-concentration oxygen gas having an oxygen concentration higher than the oxygen concentration in normal air.
 つづくステップT3では、パージ弁18が「開」の状態であり、第1吸着筒1内の高濃度酸素ガスがパージ弁18を経由して第2吸着筒2内に供給される。 In the subsequent step T3, the purge valve 18 is in the "open" state, and the high-concentration oxygen gas in the first suction cylinder 1 is supplied into the second suction cylinder 2 via the purge valve 18.
 つづくステップT4では、電磁弁Aのポート「2」からポート「3」、及び電磁弁Bのポート「2」からポート「3」が「閉」の状態であり、電磁弁Dが「開」の状態である。このステップT4では、ステップT3での第1吸着筒1から第2吸着筒2への高濃度酸素ガスの供給が継続されるとともに、エアコンプレッサ3により真空タンク8の真空引きが行われる。 In the following step T4, the ports "2" to "3" of the solenoid valve A and the ports "2" to "3" of the solenoid valve B are in the "closed" state, and the solenoid valve D is "open". It is in a state. In step T4, the supply of high-concentration oxygen gas from the first suction cylinder 1 to the second suction cylinder 2 in step T3 is continued, and the vacuum tank 8 is evacuated by the air compressor 3.
 つづくステップT5では、電磁弁Aのポート「2」からポート「3」、及び電磁弁Bのポート「1」からポート「2」が「開」の状態であり、エアコンプレッサ3による第2吸着筒2の加圧及び第1吸着筒1の減圧が行われる。このステップT4では、ステップT3で「開」の状態であったパージ弁18及び電磁弁Dは「閉」の状態である。加圧空気が供給されて加圧状態になった第2吸着筒2内では、加圧空気に含まれる窒素が当該第2吸着筒2内に収容されている吸着剤に吸着される。これにより、第2吸着筒2内のガスは、酸素濃度が通常の空気中の酸素濃度よりも高い高濃度酸素ガスとなる。 In the following step T5, the ports "2" to "3" of the solenoid valve A and the ports "1" to "2" of the solenoid valve B are in the "open" state, and the second suction cylinder by the air compressor 3 is used. The pressurization of No. 2 and the depressurization of the first suction cylinder 1 are performed. In this step T4, the purge valve 18 and the solenoid valve D, which were in the “open” state in step T3, are in the “closed” state. In the second adsorption cylinder 2 to which the pressurized air is supplied and put into a pressurized state, the nitrogen contained in the pressurized air is adsorbed by the adsorbent contained in the second adsorption cylinder 2. As a result, the gas in the second adsorption cylinder 2 becomes a high-concentration oxygen gas having an oxygen concentration higher than the oxygen concentration in normal air.
 つづくステップT6では、パージ弁18が「開」の状態であり、第2吸着筒2内の高濃度酸素ガスがパージ弁18を経由して第1吸着筒1内に供給される。以後、前述したステップT1~T6が繰り返される。かかるステップT1~T6が繰り返すことで高濃度酸素ガスが生成され、酸素タンク5に供給される。 In the subsequent step T6, the purge valve 18 is in the "open" state, and the high-concentration oxygen gas in the second suction cylinder 2 is supplied into the first suction cylinder 1 via the purge valve 18. After that, the above-mentioned steps T1 to T6 are repeated. By repeating these steps T1 to T6, high-concentration oxygen gas is generated and supplied to the oxygen tank 5.
 [呼気ガスの取得]
 つぎに、前述した酸素濃縮装置M1を用いて行われる患者の呼気ガスの取得について説明する。
 図4は、図1に示される酸素濃縮装置のブロック図であり、図5は、患者の呼吸流量の一例と図1に示される酸素濃縮装置の電磁弁の切替状態とを説明する図である。図5において、上側の図は患者への高濃度酸素ガスの供給及び患者の呼気ガスの取得(装置内への吸引)に関係する電磁弁C1、電磁弁C2、及び電磁弁Eの各ステップにおける開閉状態を示しており、下側の図は患者の呼吸流量の一例を示している。図5の下側の図において、横軸は経過時間を示しており、同図において左側から右側に時間が経過している。なお、図4において、電磁弁A、電磁弁B及び電磁弁Dは、患者の呼吸検知に基づく高濃度酸素ガスの供給及び呼気ガスの取得の各操作には関係がなく、前述した酸素濃縮プロセスにおいて操作される。
[Acquisition of exhaled gas]
Next, the acquisition of the exhaled gas of the patient performed by using the oxygen concentrator M1 described above will be described.
FIG. 4 is a block diagram of the oxygen concentrator shown in FIG. 1, and FIG. 5 is a diagram illustrating an example of the respiratory flow rate of the patient and a switching state of the solenoid valve of the oxygen concentrator shown in FIG. .. In FIG. 5, the upper figure shows the steps of solenoid valve C1, solenoid valve C2, and solenoid valve E related to the supply of high-concentration oxygen gas to the patient and the acquisition of the patient's exhaled gas (suction into the apparatus). The open / closed state is shown, and the lower figure shows an example of the patient's respiratory flow. In the lower figure of FIG. 5, the horizontal axis indicates the elapsed time, and the time has elapsed from the left side to the right side in the figure. In FIG. 4, the solenoid valve A, the solenoid valve B, and the solenoid valve D are not related to each operation of supplying high-concentration oxygen gas and acquiring exhaled gas based on the breathing detection of the patient, and are not related to the above-mentioned oxygen concentration process. Manipulated in.
 まず、ステップT11は患者の吸気待ちの状態であり、3ポート弁である電磁弁C1のポート「2」からポート「3」は「閉」の状態であり、電磁弁C2も「閉」の状態である。 First, step T11 is a state of waiting for the patient to inhale, the ports "2" to the ports "3" of the solenoid valve C1 which is a 3-port valve are in the "closed" state, and the solenoid valve C2 is also in the "closed" state. Is.
 呼吸検知部7により患者の吸気が検知されると、検知信号が演算部40bに送信され、検知信号を受けた演算部40bは電磁弁C2に操作信号を送信する。この操作信号に基づいて、電磁弁C2は「閉」から「開」の状態になり、患者に対して高濃度酸素ガスが供給される(ステップT12)。 When the breathing detection unit 7 detects the patient's inspiration, the detection signal is transmitted to the calculation unit 40b, and the calculation unit 40b that receives the detection signal transmits the operation signal to the solenoid valve C2. Based on this operation signal, the solenoid valve C2 changes from "closed" to "open", and high-concentration oxygen gas is supplied to the patient (step T12).
 高濃度酸素ガスの患者への供給は、当該患者が吸気している時間のすべてにわたって行なわれるわけではない。鼻又は口から肺に至るヒトの呼吸経路には、実際の呼吸に寄与しない「死腔」と呼ばれる部分がある。この死腔部分へ高濃度酸素ガスを供給してもヒトの呼吸には使用されない。また、この死腔部分に溜まっている(残っている)ガスは、ヒトの呼吸後のガスではないので、呼気ガスとは言えない。そこで、本実施形態では、患者の吸気時間の一部だけ高濃度酸素ガスの供給を行い、後述するように、患者の呼気時間の一部だけ呼気ガスの取得をしている。 The supply of high-concentration oxygen gas to a patient is not performed over the entire time that the patient is inhaling. The human respiratory pathway from the nose or mouth to the lungs has a portion called the "dead space" that does not contribute to actual breathing. Even if high-concentration oxygen gas is supplied to this dead space, it is not used for human respiration. Further, the gas accumulated (remaining) in the dead space portion is not the gas after human respiration, so it cannot be said to be exhaled gas. Therefore, in the present embodiment, the high-concentration oxygen gas is supplied only for a part of the inspiratory time of the patient, and the exhaled gas is acquired only for a part of the exhaled time of the patient as described later.
 ヒトの呼吸における吸気時間と呼気時間との比は、通常、1:2であり、患者の呼吸回数から1回の呼吸時間を算出し、この呼吸時間から吸気時間及び呼気時間を推定することができる。そして、この推定された吸気時間の一部だけ高濃度酸素ガスを供給し、同じく推定された呼気時間の一部だけ呼気ガスを取得するように電磁弁等の開閉操作を制御することができる。例えば、1分間に20回の呼吸を行う患者の場合、当該患者の1回の呼吸における吸気時間及び呼気時間は、それぞれ1秒及び2秒と推定することができる。そして、1秒の吸気時間のうち、例えば60%にあたる0.6秒を高濃度酸素ガスの供給時間とすることができる。同様に、2秒の呼気時間のうち、例えば30%にあたる0.6秒を呼気ガスの取得時間とすることができる。前記60%や30%という割合はデータや経験値に基づいて適宜選定することができる。本実施形態の場合、前述したステップT12の時間を、例えば0.6秒に設定することができる。また、後述するステップT16の呼気取得の時間を0.6秒に設定することができる。 The ratio of inspiratory time to expiratory time in human respiration is usually 1: 2, and one respiratory time can be calculated from the patient's respiratory rate, and the inspiratory time and expiratory time can be estimated from this respiratory time. it can. Then, the opening / closing operation of the solenoid valve or the like can be controlled so that the high-concentration oxygen gas is supplied only for a part of the estimated inspiratory time and the exhaled gas is acquired only for a part of the estimated expiratory time. For example, in the case of a patient who breathes 20 times per minute, the inspiratory time and the expiratory time in one breath of the patient can be estimated to be 1 second and 2 seconds, respectively. Then, out of the intake time of 1 second, for example, 0.6 seconds, which is 60%, can be set as the supply time of the high-concentration oxygen gas. Similarly, out of the exhalation time of 2 seconds, for example, 0.6 seconds, which is 30%, can be used as the exhalation gas acquisition time. The ratio of 60% or 30% can be appropriately selected based on data and empirical values. In the case of the present embodiment, the time of step T12 described above can be set to, for example, 0.6 seconds. Further, the time for acquiring the exhaled breath in step T16, which will be described later, can be set to 0.6 seconds.
 つづくステップT13は、待ち時間であり、後述するチューブ内の高濃度酸素ガスの排出時間を考慮して設定することができる。このステップT13では、電磁弁C1のポート「2」からポート「3」が「開」の状態であり、電磁弁C2は「閉」の状態である。 The following step T13 is a waiting time, and can be set in consideration of the discharge time of the high-concentration oxygen gas in the tube, which will be described later. In this step T13, the ports "2" to the ports "3" of the solenoid valve C1 are in the "open" state, and the solenoid valve C2 is in the "closed" state.
 つづくステップT14では、電磁弁C1から患者のカニューラCに至るガス流路又はチューブ内に残っている高濃度酸素ガスが排出される。このステップT14では、電磁弁C1のポート「2」からポート「3」が「開」の状態であり、電磁弁C2も「開」の状態である。また、呼気ガス検知部4の下流に位置する電磁弁Eのポート「3」からポート「2」が「開」の状態である。したがって、電磁弁C1から患者のカニューラCに至るガス流路又はチューブ内に残っている高濃度酸素ガスは真空タンク8によって呼気ガス検知部4をバイパスして電磁弁E及びフィルタ28を経由して当該真空タンク8内に吸引される。 In the subsequent step T14, the high-concentration oxygen gas remaining in the gas flow path or tube from the solenoid valve C1 to the patient's cannula C is discharged. In this step T14, the ports "2" to the ports "3" of the solenoid valve C1 are in the "open" state, and the solenoid valve C2 is also in the "open" state. Further, the ports "2" to the ports "3" of the solenoid valve E located downstream of the exhaled gas detection unit 4 are in the "open" state. Therefore, the high-concentration oxygen gas remaining in the gas flow path or tube from the solenoid valve C1 to the patient's cannula C bypasses the exhaled gas detection unit 4 by the vacuum tank 8 and passes through the solenoid valve E and the filter 28. It is sucked into the vacuum tank 8.
 つづくステップT15は患者の呼気待ちの状態であり、3ポート弁である電磁弁C1のポート「2」からポート「3」は「開」の状態であり、ステップT14において「開」の状態であった電磁弁C2は「閉」の状態である。また、電磁弁Eのポート「1」からポート「2」が「開」の状態である。 Subsequent step T15 is a state of waiting for exhalation of the patient, ports "2" to "3" of the solenoid valve C1 which is a 3-port valve are in an "open" state, and in step T14, they are in an "open" state. The solenoid valve C2 is in the "closed" state. Further, the ports "1" to "2" of the solenoid valve E are in the "open" state.
 呼吸検知部7により患者の呼気が検知されると、検知信号が演算部40bに送信され、検知信号を受けた演算部40bは電磁弁C2に操作信号を送信する。この操作信号に基づいて、電磁弁C2は「閉」から「開」の状態になり、患者の呼気ガスが装置内に吸引(取得)される(ステップT16)。前述したように、この呼気ガスの取得も、患者の呼気時間のすべてにわたって行なわれるわけではない。 When the breathing detection unit 7 detects the exhaled breath of the patient, the detection signal is transmitted to the calculation unit 40b, and the calculation unit 40b that receives the detection signal transmits the operation signal to the solenoid valve C2. Based on this operation signal, the solenoid valve C2 changes from "closed" to "open", and the exhaled gas of the patient is sucked (acquired) into the device (step T16). As mentioned above, this acquisition of exhaled gas is also not performed over the entire expiratory time of the patient.
 本実施形態では、呼吸検知部7により患者の吸気及び呼気を検知して当該患者の呼吸に同調して高濃度酸素ガスの供給及び呼気ガスの吸引(取得)が行われている。患者の呼吸に同調して、高濃度酸素ガスの供給及び呼気ガスの吸引を行うことで、効率よく前記供給及び吸引を行うことができる。 In the present embodiment, the breathing detection unit 7 detects the inspiration and exhalation of the patient, and supplies high-concentration oxygen gas and sucks (acquires) the exhaled gas in synchronization with the breathing of the patient. By supplying high-concentration oxygen gas and sucking exhaled gas in synchronization with the patient's respiration, the supply and suction can be performed efficiently.
 呼気ガス検知部4に導入された患者の呼気ガスは、当該呼気ガス検知部4に含まれる前述したセンサによってCO、酸素、水素、アンモニア、一酸化窒素等の濃度が測定される。そして、測定された値に基づいて、前述したように患者の状態(換気不全等)を把握することができる。本実施形態では、呼吸ガス検知部4で検知された成分情報に応じて患者に供給する高濃度酸素ガスの流量を変更させることができる。これにより、患者の状態に応じた酸素供給を行うことができ、例えば、酸素が不足していると考えられる患者に対して医師の処方の範囲内で高濃度酸素ガスの流量を増やすことができる。 The concentration of CO 2 , oxygen, hydrogen, ammonia, nitric oxide, etc. of the patient's breath gas introduced into the breath gas detection unit 4 is measured by the above-mentioned sensor included in the breath gas detection unit 4. Then, based on the measured values, the patient's condition (ventilation insufficiency, etc.) can be grasped as described above. In the present embodiment, the flow rate of the high-concentration oxygen gas supplied to the patient can be changed according to the component information detected by the respiratory gas detection unit 4. As a result, oxygen can be supplied according to the patient's condition, and for example, the flow rate of high-concentration oxygen gas can be increased within the range prescribed by a doctor for a patient who is considered to be deficient in oxygen. ..
 つづくステップT17は、待ち時間であり、後述するチューブ内への高濃度酸素ガスの充填時間を考慮して設定することができる。このステップT17では、電磁弁C1のポート「1」からポート「2」が「開」の状態であり、電磁弁C2は「閉」の状態である。 The following step T17 is a waiting time, and can be set in consideration of the filling time of the high-concentration oxygen gas into the tube, which will be described later. In this step T17, the ports "1" to the ports "2" of the solenoid valve C1 are in the "open" state, and the solenoid valve C2 is in the "closed" state.
 つづくステップT18では、電磁弁C1から患者のカニューラに至るガス流路又はチューブ内に高濃度酸素ガスを充填させて当該ガス流路又はチューブ内に残っている患者の呼気ガスが排出される。このステップT18では、電磁弁C1のポート「1」からポート「2」が「開」の状態であり、電磁弁C2も「開」の状態である。また、呼気ガス検知部4の下流に位置する電磁弁Eのポート「3」からポート「2」が「開」の状態である。したがって、電磁弁C1から患者のカニューラCに至るガス流路又はチューブ内に残っている患者の呼気ガスは、流量調整部22を通って供給される高濃度酸素ガスにより患者のカニューラC側に押されて、当該カニューラCから外部に排出される。 In the subsequent step T18, the gas flow path or tube from the solenoid valve C1 to the patient's cannula is filled with high-concentration oxygen gas, and the patient's exhaled gas remaining in the gas flow path or tube is discharged. In this step T18, the ports "1" to the ports "2" of the solenoid valve C1 are in the "open" state, and the solenoid valve C2 is also in the "open" state. Further, the ports "2" to the ports "3" of the solenoid valve E located downstream of the exhaled gas detection unit 4 are in the "open" state. Therefore, the patient's exhaled gas remaining in the gas flow path or tube from the solenoid valve C1 to the patient's cannula C is pushed toward the patient's cannula C by the high-concentration oxygen gas supplied through the flow rate adjusting unit 22. Then, it is discharged to the outside from the cannula C.
〔第2実施形態〕
 つぎに、本開示の第2実施形態について説明する。図6は、本開示の他の実施形態(第2実施形態)に係る酸素濃縮装置M2の説明図である。
 第2実施形態に係る酸素濃縮装置M2は、加圧・真空併用型のエアコンプレッサ3に代えて、加圧だけを行うエアコンプレッサ30を用いている点において、第1実施形態に係る酸素濃縮装置M1と異なっている。そして、装置内に患者の呼気ガスを吸引する吸気部として真空ポンプ31を用いている。したがって、酸素濃縮装置M2の構成又は要素のうち酸素濃縮装置M1と共通する構成又は要素には、当該酸素濃縮装置M1と同じ参照符号を付し、簡単のため、それらについての説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present disclosure will be described. FIG. 6 is an explanatory diagram of the oxygen concentrator M2 according to another embodiment (second embodiment) of the present disclosure.
The oxygen concentrator M2 according to the second embodiment uses an air compressor 30 that only pressurizes instead of the pressurized / vacuum combined type air compressor 3, and the oxygen concentrator according to the first embodiment. It is different from M1. Then, the vacuum pump 31 is used as an intake unit for sucking the exhaled gas of the patient into the device. Therefore, among the configurations or elements of the oxygen concentrator M2, the configurations or elements common to the oxygen concentrator M1 are designated by the same reference numerals as those of the oxygen concentrator M1, and the description thereof will be omitted for the sake of simplicity.
 酸素濃縮装置M2では、酸素濃縮装置M1において呼気ガス検知部4の上流側のガス流路に設けられている2つの電磁弁C1及びC2に代えて、1つの電磁弁Cが用いられている。電磁弁Cは、3つのポートを有する3ポート弁である。また、酸素濃縮装置M2では、酸素濃縮装置M1において用いられている呼気ガス検知部4と電磁弁C1との間のガス流路に設けられる逆止弁27、呼気ガス検知部4の下流側に設けられる電磁弁E、フィルタ28及び真空タンク8が省略されている。これにより、酸素濃縮装置M2では、必要な機能を確保しつつ、部品数を減らすことができる。 In the oxygen concentrator M2, one solenoid valve C is used in place of the two solenoid valves C1 and C2 provided in the gas flow path on the upstream side of the exhaled gas detection unit 4 in the oxygen concentrator M1. The solenoid valve C is a 3-port valve having three ports. Further, in the oxygen concentrator M2, a check valve 27 provided in the gas flow path between the exhaled gas detection unit 4 and the solenoid valve C1 used in the oxygen concentrator M1 and a check valve 27 provided on the downstream side of the exhaled gas detection unit 4 The solenoid valve E, the filter 28, and the vacuum tank 8 provided are omitted. As a result, in the oxygen concentrator M2, the number of parts can be reduced while ensuring the necessary functions.
 加圧・真空併用型のエアコンプレッサ3を用いた酸素濃縮装置M1では、第1吸着筒1の加圧及び減圧、第2吸着筒2の加圧及び減圧、並びに患者の呼気ガスの装置内への吸引のための真空タンク8の真空引きを当該エアコンプレッサ3の運転を制御することで行っている。これに対し、酸素濃縮装置M2では、第1吸着筒1の加圧及び減圧、並びに第2吸着筒2の加圧及び減圧はエアコンプレッサ30の運転を制御することで行い、患者の呼気ガスの装置内への吸引は真空ポンプ31の運転を制御することで行っている。 In the oxygen concentrator M1 using the pressurized / vacuum combined type air compressor 3, the first suction cylinder 1 is pressurized and depressurized, the second suction cylinder 2 is pressurized and depressurized, and the patient's exhaled gas is injected into the device. The vacuum tank 8 is evacuated by controlling the operation of the air compressor 3. On the other hand, in the oxygen concentrator M2, the pressurization and depressurization of the first adsorption cylinder 1 and the pressurization and depressurization of the second adsorption cylinder 2 are performed by controlling the operation of the air compressor 30, and the exhaled gas of the patient. The suction into the device is performed by controlling the operation of the vacuum pump 31.
 [呼気ガスの取得]
 つぎに、前述した酸素濃縮装置M2を用いて行われる患者の呼気ガスの取得について説明する。
 図7は、図6に示される酸素濃縮装置M2のブロック図であり、図8は、患者の呼吸流量の一例と図7に示される酸素濃縮装置M2の電磁弁の切替状態とを説明する図である。
 なお、図7では、分かり易くするために、図6に示される構成又は要素の一部の表現を簡略化するか、又は、図示を省略している。
 図8において、上側の図は患者への高濃度酸素ガスの供給及び患者の呼気ガスの取得(装置内への吸引)に関係する電磁弁C及び電磁弁Dの各ステップにおける開閉状態を示しており、下側の図は患者の呼吸流量の一例を示している。なお、図7において、電磁弁A及び電磁弁Bは、患者の呼吸検知に基づく高濃度酸素ガスの供給及び呼気ガスの取得の各操作には関係がなく、酸素濃縮装置M2の酸素濃縮プロセスにおいて操作される。
[Acquisition of exhaled gas]
Next, the acquisition of the exhaled gas of the patient performed by using the oxygen concentrator M2 described above will be described.
FIG. 7 is a block diagram of the oxygen concentrator M2 shown in FIG. 6, and FIG. 8 is a diagram illustrating an example of the respiratory flow rate of the patient and the switching state of the solenoid valve of the oxygen concentrator M2 shown in FIG. Is.
In FIG. 7, for the sake of clarity, the representation of a part of the configuration or element shown in FIG. 6 is simplified or not shown.
In FIG. 8, the upper figure shows the open / closed state of the solenoid valve C and the solenoid valve D related to the supply of high-concentration oxygen gas to the patient and the acquisition of the patient's exhaled gas (suction into the apparatus) at each step. The lower figure shows an example of the patient's respiratory flow. In FIG. 7, the solenoid valve A and the solenoid valve B are not related to each operation of supplying high-concentration oxygen gas and acquiring exhaled gas based on the breathing detection of the patient, and are involved in the oxygen concentration process of the oxygen concentrator M2. Be manipulated.
 まず、ステップT21は患者の吸気待ちの状態であり、3ポート弁である電磁弁Cのポート「1」からポート「2」は「閉」の状態であり、2ポート弁である電磁弁も「閉」の状態である。 First, step T21 is a state of waiting for the patient to inhale, the ports "1" to the ports "2" of the solenoid valve C which is a 3-port valve are in the "closed" state, and the solenoid valve which is a 2-port valve is also "closed". It is in the "closed" state.
 呼吸検知部により患者の吸気が検知されると、検知信号が演算部に送信され、検知信号を受けた演算部は電磁弁Cに操作信号を送信する。この操作信号に基づいて、電磁弁Cのポート「1」からポート「2」が「閉」から「開」の状態になり、患者に対して高濃度酸素ガスが供給される(ステップT22)。 When the breathing detection unit detects the patient's inspiration, the detection signal is transmitted to the calculation unit, and the calculation unit that receives the detection signal transmits the operation signal to the solenoid valve C. Based on this operation signal, the ports "1" to "2" of the solenoid valve C are changed from "closed" to "open", and high-concentration oxygen gas is supplied to the patient (step T22).
 高濃度酸素ガスの患者への供給は、前述した第1実施形態の場合と同様に、当該患者が吸気している時間のすべてにわたって行なわれるわけではない。本実施形態においても、患者の吸気時間の一部だけ高濃度酸素ガスが供給される。また、後述するように、患者の呼気時間の一部だけ呼気ガスの取得をしている。 The supply of high-concentration oxygen gas to the patient is not performed over the entire time during which the patient is inhaling, as in the case of the first embodiment described above. Also in this embodiment, the high-concentration oxygen gas is supplied only for a part of the inspiratory time of the patient. Further, as will be described later, the exhaled gas is acquired only for a part of the exhaled time of the patient.
 つづくステップT23は、待ち時間であり、後述するチューブ内の高濃度酸素ガスの排出時間を考慮して設定することができる。このステップT23では、電磁弁Cのポート「2」からポート「3」が「開」の状態であり、電磁弁Dは「閉」の状態である。 The following step T23 is a waiting time, and can be set in consideration of the discharge time of the high-concentration oxygen gas in the tube, which will be described later. In this step T23, the ports "2" to the ports "3" of the solenoid valve C are in the "open" state, and the solenoid valve D is in the "closed" state.
 つづくステップT24では、電磁弁Cから患者のカニューラCに至るガス流路又はチューブ内に残っている高濃度酸素ガスが排出される。このステップT24では、電磁弁Cのポート「2」からポート「3」が「開」の状態であり、電磁弁Dも「開」の状態である。したがって、電磁弁Cから患者のカニューラCに至るガス流路又はチューブ内に残っている高濃度酸素ガスは真空ポンプ31の作動により吸引され、外部に排出される。 In the subsequent step T24, the high-concentration oxygen gas remaining in the gas flow path or tube from the solenoid valve C to the patient's cannula C is discharged. In this step T24, the ports "2" to the ports "3" of the solenoid valve C are in the "open" state, and the solenoid valve D is also in the "open" state. Therefore, the high-concentration oxygen gas remaining in the gas flow path or tube from the solenoid valve C to the patient's cannula C is sucked by the operation of the vacuum pump 31 and discharged to the outside.
 つづくステップT25は患者の呼気待ちの状態であり、3ポート弁である電磁弁C1のポート「2」からポート「3」は「開」の状態であり、ステップT24において「開」の状態であった電磁弁Dは「閉」の状態である。 Subsequent step T25 is a state of waiting for exhalation of the patient, ports "2" to "3" of the solenoid valve C1 which is a 3-port valve are in an "open" state, and in step T24, they are in an "open" state. The solenoid valve D is in the “closed” state.
 呼吸検知部7により患者の呼気が検知されると、検知信号が演算部に送信され、検知信号を受けた演算部は電磁弁Dに操作信号を送信する。この操作信号に基づいて、電磁弁Dは「閉」から「開」の状態になり、真空ポンプ31の作動により患者の呼気ガスが装置内に吸引(取得)される(ステップT26)。前述したように、この呼気ガスの取得も、患者の呼気時間のすべてにわたって行なわれるわけではない。 When the breathing detection unit 7 detects the exhaled breath of the patient, the detection signal is transmitted to the calculation unit, and the calculation unit that receives the detection signal transmits the operation signal to the solenoid valve D. Based on this operation signal, the solenoid valve D changes from "closed" to "open", and the patient's exhaled gas is sucked (acquired) into the device by the operation of the vacuum pump 31 (step T26). As mentioned above, this acquisition of exhaled gas is also not performed over the entire expiratory time of the patient.
 呼気ガス検知部4に導入された患者の呼気ガスは、第1実施形態に係る酸素濃縮装置M1と同様に当該呼気ガス検知部4に含まれる前述したセンサによってCO、酸素、水素、アンモニア等の濃度が測定される。 The breath gas of the patient introduced into the breath gas detection unit 4 is CO 2 , oxygen, hydrogen, ammonia, etc. by the above-mentioned sensor included in the breath gas detection unit 4 as in the oxygen concentrator M1 according to the first embodiment. Concentration is measured.
 つづくステップT27は、待ち時間であり、後述するチューブ内への高濃度酸素ガスの充填時間を考慮して設定することができる。このステップT27では、電磁弁Cのポート「2」からポート「3」が「開」の状態であり、電磁弁Dは「閉」の状態である。 The following step T27 is a waiting time, and can be set in consideration of the filling time of the high-concentration oxygen gas into the tube, which will be described later. In this step T27, the ports "2" to the ports "3" of the solenoid valve C are in the "open" state, and the solenoid valve D is in the "closed" state.
 つづくステップT28では、電磁弁Cから患者のカニューラCに至るガス流路又はチューブ内に高濃度酸素ガスを充填させて当該ガス流路又はチューブ内に残っている患者の呼気ガスが排出される。このステップT28では、電磁弁Cのポート「1」からポート「2」が「開」の状態であり、電磁弁Dは「閉」の状態である。したがって、電磁弁Cから患者のカニューラCに至るガス流路又はチューブ内に残っている患者の呼気ガスは、流量調整部22を通って供給される高濃度酸素ガスにより患者のカニューラ側に押されて、当該カニューラCから外部に排出される。 In the subsequent step T28, the gas flow path or tube from the solenoid valve C to the patient's cannula C is filled with high-concentration oxygen gas, and the patient's exhaled gas remaining in the gas flow path or tube is discharged. In this step T28, the ports "1" to "2" of the solenoid valve C are in the "open" state, and the solenoid valve D is in the "closed" state. Therefore, the patient's exhaled gas remaining in the gas flow path or tube from the solenoid valve C to the patient's cannula C is pushed toward the patient's cannula by the high-concentration oxygen gas supplied through the flow rate adjusting unit 22. Then, it is discharged to the outside from the cannula C.
〔その他の変形例〕
 本開示は前述した実施形態に限定されるものではなく、請求の範囲内において種々の変更が可能である。
 例えば、前述した実施形態では、呼吸検知部として患者の呼気及び吸気の両方を検知する圧力センサを用いているが、患者の呼気だけ又は吸気だけを検知する圧力センサとすることもできる。この場合、例えば当該患者の過去の平均的な呼吸時間及びデータないし経験値に基づいて当該患者の1回の呼吸における吸気時間及び呼気時間を演算し、演算された吸気時間の、例えば60%の時間だけ高濃度酸素ガスを供給することができる。また、演算された呼気時間の一部の時間だけ患者の呼気ガスを取得(吸引)することができる。患者の呼気だけ又は吸気だけを検知する圧力センサとすることで呼吸検知部を簡単な構成とすることができるが、より正確に患者に患者の呼吸に同調して高濃度酸素ガスの供給及び呼気ガスの取得を行うという点からは、患者の呼気及び吸気の両方を検知する圧力センサを用いることが望ましい。
[Other variants]
The present disclosure is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims.
For example, in the above-described embodiment, the pressure sensor that detects both the exhalation and the inspiration of the patient is used as the breathing detection unit, but the pressure sensor that detects only the exhalation or the inspiration of the patient can also be used. In this case, for example, the inspiratory time and expiratory time in one breath of the patient are calculated based on the past average respiratory time and data or experiential value of the patient, and for example, 60% of the calculated inspiratory time. High-concentration oxygen gas can be supplied for a period of time. In addition, the exhaled gas of the patient can be acquired (sucked) only for a part of the calculated expiratory time. The respiration detector can be configured simply by using a pressure sensor that detects only the patient's exhalation or inspiration, but the patient is more accurately supplied with high-concentration oxygen gas and exhaled in synchronization with the patient's respiration. From the point of view of gas acquisition, it is desirable to use a pressure sensor that detects both the patient's exhalation and inspiration.
 また、前述した実施形態では、カニューラを介して患者に高濃度酸素ガスを供給し、また、患者の呼気ガスを取得しているが、このカニューラに代えて、例えば当該患者に装着されるマスクを介して高濃度酸素ガスの供給及び呼気ガスの取得を行うこともできる。 Further, in the above-described embodiment, the patient is supplied with high-concentration oxygen gas via the cannula and the exhaled gas of the patient is acquired. Instead of this cannula, for example, a mask worn on the patient is used. It is also possible to supply high-concentration oxygen gas and acquire exhaled gas through the gas.
 また、前述した実施形態では、酸素濃縮装置から患者に至るガス流路は1本であり、患者に高濃度酸素ガスを供給する流路と当該患者の呼気ガスを取得する流路が共通しているが、例えば図9に示されるように、患者に高濃度酸素ガスを供給する流路と当該患者の呼気ガスを取得する流路を独立して設けることもできる。図9は、図6に示される酸素濃縮装置の変形例であり、この変形例では、酸素出口41と呼気ガス取得口43とが別々に設けられている。酸素出口に接続されるチューブと、呼気ガス取得口に接続されるチューブとが、患者の鼻孔内に挿入される。この場合、高濃度酸素ガスの供給流路と、呼気ガスの取得流路とが別々の流路となるので、前述した実施形態における、流路内の高濃度酸素ガスの排出や流路内への高濃度酸素ガスの充填(チューブ内の呼気ガスの排出)という操作が不要になる。 Further, in the above-described embodiment, there is only one gas flow path from the oxygen concentrator to the patient, and the flow path for supplying the high-concentration oxygen gas to the patient and the flow path for acquiring the exhaled gas of the patient are common. However, as shown in FIG. 9, for example, a flow path for supplying the high-concentration oxygen gas to the patient and a flow path for acquiring the exhaled gas of the patient can be provided independently. FIG. 9 is a modification of the oxygen concentrator shown in FIG. 6, in which the oxygen outlet 41 and the exhaled gas acquisition port 43 are separately provided. A tube connected to the oxygen outlet and a tube connected to the exhaled gas acquisition port are inserted into the patient's nostrils. In this case, since the supply flow path of the high-concentration oxygen gas and the acquisition flow path of the exhaled gas gas are separate flow paths, the high-concentration oxygen gas in the flow path and the flow path in the above-described embodiment are discharged. The operation of filling with high-concentration oxygen gas (exhaust of exhaled gas in the tube) becomes unnecessary.
 前記のように、酸素出口41と呼気ガス取得口43とを別々に設ける変形例の場合、酸素濃縮装置のケーシング9の酸素出口41に設けられる高濃度酸素ガス供給ポート26及び当該ケーシング9の呼気ガス取得口43に設けられる呼気ガス取得ポート44を互いに異なる形状としておくことが望ましい。これにより、チューブを間違った箇所に接続することを抑制することができる。また、形状に代えて、互いに色を変えることで間違った箇所への接続を抑制することもできる。 As described above, in the case of a modification in which the oxygen outlet 41 and the exhaled gas acquisition port 43 are separately provided, the high-concentration oxygen gas supply port 26 provided at the oxygen outlet 41 of the casing 9 of the oxygen concentrator and the exhaled breath of the casing 9. It is desirable that the exhaled gas acquisition ports 44 provided in the gas acquisition port 43 have different shapes from each other. This makes it possible to prevent the tube from being connected to the wrong place. Further, instead of the shape, it is possible to suppress the connection to the wrong place by changing the colors of each other.
 また、前述した実施形態では、コンプレッサにより加圧された加圧空気を吸着筒に供給し、ついで加圧状態にある吸着筒内を減圧して窒素リッチガスを排気する酸素濃縮装置であるが、本開示はこれに限定されるものではなく、吸着筒に空気を供給し、大気圧と減圧だけを繰り返すVSA方式の酸素濃縮装置や、膜式の酸素濃縮装置にも本開示を適用することができる。 Further, in the above-described embodiment, the oxygen concentrator is an oxygen concentrator that supplies pressurized air pressurized by a compressor to an adsorption cylinder, and then depressurizes the inside of the adsorption cylinder in a pressurized state to exhaust nitrogen-rich gas. The disclosure is not limited to this, and the present disclosure can be applied to a VSA type oxygen concentrator that supplies air to an adsorption cylinder and repeats only atmospheric pressure and depressurization, and a membrane type oxygen concentrator. ..
 1 : 第1吸着筒
 2 : 第2吸着筒
 3 : エアコンプレッサ
 4 : 呼気ガス検知部
 5 : 酸素タンク
 6 : 加湿器
 7 : 呼吸検知部
 8 : 真空タンク
 9 : ケーシング
10 : コンプレッサボックス
11 : 制御弁
12a: 冷却ファン
12b: 冷却ファン
13 : 吸気消音ボックス
14 : 排気マフラー
15 : 防塵フィルタ
16 : 吸気フィルタ
17 : 開口
18 : パージ弁
19 : 逆止弁
20 : 逆止弁
21 : 減圧弁
22 : 流量調整部
23 : 圧力センサ
24 : 酸素センサ
25 : バクテリアフィルタ
26 : 高濃度酸素ガス供給ポート
27 : 逆止弁
28 : フィルタ
30 : エアコンプレッサ
31 : 真空ポンプ
40 : 制御部
40a: 記憶部
40b: 演算部
41 : 酸素出口
42 : 警報部
43 : 呼気ガス取得口
44 : 呼気ガス取得ポート
 C : カニューラ
M1 : 酸素濃縮装置
M2 : 酸素濃縮装置
 
1: 1st suction cylinder 2: 2nd suction cylinder 3: Air compressor 4: Exhaled gas detector 5: Oxygen tank 6: Humidifier 7: Breath detector 8: Vacuum tank 9: Casing 10: Compressor box 11: Control valve 12a: Cooling fan 12b: Cooling fan 13: Intake muffling box 14: Exhaust muffler 15: Dustproof filter 16: Intake filter 17: Opening 18: Purge valve 19: Check valve 20: Check valve 21: Pressure reducing valve 22: Flow rate adjustment Unit 23: Pressure sensor 24: Oxygen sensor 25: Bacterial filter 26: High-concentration oxygen gas supply port 27: Check valve 28: Filter 30: Air compressor 31: Vacuum pump 40: Control unit 40a: Storage unit 40b: Calculation unit 41 : Oxygen outlet 42: Alarm 43: Exhaled gas acquisition port 44: Exhaled gas acquisition port C: Cannula M1: Oxygen concentrator M2: Oxygen concentrator

Claims (14)

  1.  窒素を選択的に吸着する吸着剤に空気を供給し、生成された高濃度酸素ガスをユーザに供給する酸素濃縮装置(M1、M2)であって、
     前記装置内にユーザの呼気ガスを吸引する吸気部(3)と、
     吸引されたユーザの呼気ガスの成分情報を検知する呼気ガス検知部(4)と
    を備えている酸素濃縮装置(M1、M2)。
    An oxygen concentrator (M1, M2) that supplies air to an adsorbent that selectively adsorbs nitrogen and supplies the generated high-concentration oxygen gas to the user.
    An intake unit (3) that sucks the user's exhaled gas into the device,
    An oxygen concentrator (M1, M2) including an exhaled gas detection unit (4) that detects component information of the sucked user's exhaled gas.
  2.  ユーザの呼吸に同調して、吸気時に高濃度酸素ガスを供給し且つ呼気時に呼気ガスを吸引する、請求項1に記載の酸素濃縮装置(M1、M2)。 The oxygen concentrator (M1, M2) according to claim 1, which supplies high-concentration oxygen gas at the time of inspiration and sucks the exhaled gas at the time of exhalation in synchronization with the user's respiration.
  3.  前記空気を生成するエアコンプレッサ(3)が前記吸気部を兼用する、請求項1又は請求項2に記載の酸素濃縮装置(M1、M2)。 The oxygen concentrator (M1, M2) according to claim 1 or 2, wherein the air compressor (3) that generates the air also serves as the intake unit.
  4.  前記吸気部(3)の上流側の呼気ガスの経路にフィルタ(28)が設けられている、請求項1~3のいずれか1項に記載の酸素濃縮装置(M1、M2)。 The oxygen concentrator (M1, M2) according to any one of claims 1 to 3, wherein a filter (28) is provided in the path of the exhaled gas on the upstream side of the intake unit (3).
  5.  前記呼気ガス検知部(4)の上流側の呼気ガスの経路に逆止弁(27)が設けられている、請求項1~4のいずれか1項に記載の酸素濃縮装置(M1、M2)。 The oxygen concentrator (M1, M2) according to any one of claims 1 to 4, wherein a check valve (27) is provided in the path of the exhaled gas on the upstream side of the exhaled gas detection unit (4). ..
  6.  前記吸気部(3)と呼気ガス検知部(4)との間の経路に真空タンク(8)が設けられている、請求項1~5のいずれか1項に記載の酸素濃縮装置(M1、M2)。 The oxygen concentrator (M1) according to any one of claims 1 to 5, wherein a vacuum tank (8) is provided in the path between the intake unit (3) and the exhaled gas detection unit (4). M2).
  7.  前記呼気ガス検知部(4)は、ユーザの呼気ガスのCO濃度を測定するCOセンサである、請求項1~6のいずれか1項に記載の酸素濃縮装置(M1、M2)。 The oxygen concentrator (M1, M2) according to any one of claims 1 to 6, wherein the exhaled gas detection unit (4) is a CO 2 sensor that measures the CO 2 concentration of the user's exhaled gas.
  8.  前記呼気ガス検知部(4)は、ユーザの呼気ガスの酸素濃度を測定する酸素センサである、請求項1~6のいずれか1項に記載の酸素濃縮装置(M1、M2)。 The oxygen concentrator (M1, M2) according to any one of claims 1 to 6, wherein the breath gas detection unit (4) is an oxygen sensor that measures the oxygen concentration of the user's breath gas.
  9.  前記呼気ガス検知部(4)は、ユーザの呼気ガスの水素濃度を測定する水素センサである、請求項1~6のいずれか1項に記載の酸素濃縮装置(M1、M2)。 The oxygen concentrator (M1, M2) according to any one of claims 1 to 6, wherein the breath gas detection unit (4) is a hydrogen sensor that measures the hydrogen concentration of the user's breath gas.
  10.  前記呼気ガス検知部(4)で検知された成分情報に応じてユーザに供給する高濃度酸素ガスの流量を変更する、請求項1~9のいずれか1項に記載の酸素濃縮装置(M1、M2)。 The oxygen concentrator according to any one of claims 1 to 9, wherein the flow rate of the high-concentration oxygen gas supplied to the user is changed according to the component information detected by the exhaled gas detection unit (4). M2).
  11.  前記呼気ガス検知部(4)で検知された成分情報に応じて警報を発する警報部を更に備えている、請求項1~10のいずれか1項に記載の酸素濃縮装置(M1、M2)。 The oxygen concentrator (M1, M2) according to any one of claims 1 to 10, further comprising an alarm unit that issues an alarm according to component information detected by the exhaled gas detection unit (4).
  12.  前記呼気ガス検知部(4)で検知された成分情報を通信機器を経由して医師等に情報提供できる通信機能を備えている、請求項1~11のいずれか1項に記載の酸素濃縮装置(M1、M2)。 The oxygen concentrator according to any one of claims 1 to 11, which has a communication function capable of providing information to a doctor or the like via a communication device for component information detected by the exhaled gas detection unit (4). (M1, M2).
  13.  ユーザに高濃度酸素ガスを供給する経路と、当該ユーザの呼気ガスを吸引する経路とがそれぞれ独立して設けられている、請求項1~12のいずれか1項に記載の酸素濃縮装置(M1、M2)。 The oxygen concentrator (M1) according to any one of claims 1 to 12, wherein a path for supplying high-concentration oxygen gas to the user and a path for sucking the breath gas of the user are provided independently. , M2).
  14.  酸素濃縮装置(M2)のケーシング(9)に設けられる高濃度酸素ガス供給ポート及び呼気ガス取得ポートが互いに異なる形状を有している、請求項13に記載の酸素濃縮装置(M2)。
     
    The oxygen concentrator (M2) according to claim 13, wherein the high-concentration oxygen gas supply port and the exhaled gas acquisition port provided in the casing (9) of the oxygen concentrator (M2) have different shapes.
PCT/JP2020/034303 2019-10-25 2020-09-10 Oxygen concentrator WO2021079641A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080074396.8A CN114641330A (en) 2019-10-25 2020-09-10 Oxygen concentration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-194243 2019-10-25
JP2019194243A JP7165113B2 (en) 2019-10-25 2019-10-25 oxygen concentrator

Publications (1)

Publication Number Publication Date
WO2021079641A1 true WO2021079641A1 (en) 2021-04-29

Family

ID=75619786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034303 WO2021079641A1 (en) 2019-10-25 2020-09-10 Oxygen concentrator

Country Status (3)

Country Link
JP (1) JP7165113B2 (en)
CN (1) CN114641330A (en)
WO (1) WO2021079641A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279519A (en) * 1999-03-30 2000-10-10 Suzuki Motor Corp High frequency artificial respiratory apparatus
JP2006132482A (en) * 2004-11-08 2006-05-25 Univ Kurume Vacuum generator and medical suction system using it
JP2009502265A (en) * 2005-07-28 2009-01-29 スレッサレブ、マラト Method and apparatus for achieving and maintaining target end-tidal concentrations
WO2015156690A1 (en) * 2014-04-11 2015-10-15 Fisher & Paykel Heathcare Limited Gas therapy system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0951950A (en) * 1995-08-11 1997-02-25 Nikkiso Y S I Kk Artificial respirator and sensor module
JP3681453B2 (en) * 1995-12-28 2005-08-10 帝人株式会社 Oxygen-enriched air supply device
JP4152010B2 (en) * 1998-01-12 2008-09-17 帝人株式会社 Intermittent positive pressure breathing assist device
JP2004077467A (en) * 2003-06-16 2004-03-11 Mitoreeben Kenkyusho:Kk Sampling method and device of end expiration
JP4031403B2 (en) * 2003-07-18 2008-01-09 エア・ウォーター防災株式会社 Ventilator
JP5249665B2 (en) * 2008-07-30 2013-07-31 株式会社呼気生化学栄養代謝研究所 Breath test device
EP3603714B1 (en) * 2017-03-27 2023-08-30 Teijin Pharma Limited Gas supply device for respiration
JP2019118412A (en) 2017-12-28 2019-07-22 日本特殊陶業株式会社 Respiration gas supply device and control method therefor and control program for respiration gas supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000279519A (en) * 1999-03-30 2000-10-10 Suzuki Motor Corp High frequency artificial respiratory apparatus
JP2006132482A (en) * 2004-11-08 2006-05-25 Univ Kurume Vacuum generator and medical suction system using it
JP2009502265A (en) * 2005-07-28 2009-01-29 スレッサレブ、マラト Method and apparatus for achieving and maintaining target end-tidal concentrations
WO2015156690A1 (en) * 2014-04-11 2015-10-15 Fisher & Paykel Heathcare Limited Gas therapy system

Also Published As

Publication number Publication date
JP7165113B2 (en) 2022-11-02
CN114641330A (en) 2022-06-17
JP2021065516A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
CN105899249B (en) For determining that patient specifically ventilates the method and arrangement of demand
US8770191B2 (en) System and method for providing mechanical ventilation support to a patient
US7305988B2 (en) Integrated ventilator nasal trigger and gas monitoring system
JP6165631B2 (en) System and method for determining carbon dioxide emitted during non-invasive ventilation
US7814908B2 (en) Method and device for reducing the carbon dioxide content in a dead volume
JP5184534B2 (en) Ventilation device and method that allows a patient to speak with or without a tracheostomy tube check valve
JP3366651B2 (en) Device for identifying nitric oxide in exhaled breath
JPS63264076A (en) Inhalation anesthetic apparatus
JP2011502547A (en) Portable life support device
US8925549B2 (en) Flow control adapter for performing spirometry and pulmonary function testing
JP2010502402A5 (en)
JP2006518617A (en) Breathing circuit for easier measurement of cardiac output during controlled and spontaneous ventilation
JP2012513807A5 (en)
JP2013544124A (en) Pressure line purge system for mechanical ventilators
KR20140137004A (en) Virtual respiratory gas delivery systems and circuits
CN115916311A (en) Power management in portable oxygen concentrator
US20180169369A1 (en) Oxygen rebreathing apparatus and method for using the same
US8915249B2 (en) Systems and methods for conserving oxygen in a breathing assistance device
WO2021079641A1 (en) Oxygen concentrator
CN104014063B (en) Noinvasive nitric oxide autonomous respiration feed system
JPH0819615A (en) Medical gaseous oxygen supply device
WO2016086347A1 (en) Electric-powered anaesthetic respiratory apparatus
US20080184997A1 (en) Anaesthetic apparatus with circulation of respiratory gases
JP2015080699A (en) High concentration oxygen inhalation system
JP4606655B2 (en) Breathing gas supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879285

Country of ref document: EP

Kind code of ref document: A1