WO2021079609A1 - Co2 facilitated transport membrane, production method therefor, and co2 separation method and device - Google Patents

Co2 facilitated transport membrane, production method therefor, and co2 separation method and device Download PDF

Info

Publication number
WO2021079609A1
WO2021079609A1 PCT/JP2020/032069 JP2020032069W WO2021079609A1 WO 2021079609 A1 WO2021079609 A1 WO 2021079609A1 JP 2020032069 W JP2020032069 W JP 2020032069W WO 2021079609 A1 WO2021079609 A1 WO 2021079609A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
film
gel
hygroscopic agent
transport
Prior art date
Application number
PCT/JP2020/032069
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 治
和美 秋山
保 野々内
Original Assignee
株式会社ルネッサンス・エナジー・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ルネッサンス・エナジー・リサーチ filed Critical 株式会社ルネッサンス・エナジー・リサーチ
Priority to JP2021554109A priority Critical patent/JP7161253B2/en
Publication of WO2021079609A1 publication Critical patent/WO2021079609A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0213Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a CO 2 promoted transport membrane used for separating carbon dioxide (CO 2 ), and more particularly to a CO 2 promoted transport membrane that separates carbon dioxide produced as a by-product in a hydrogen production process or the like at a high selective ratio with respect to hydrogen. also relates to processes for the manufacture of the CO 2 -facilitated transport membrane, to CO 2 separation method and device using the CO 2 -facilitated transport membrane.
  • Chemical absorption method used in the decarboxylation process large plants requires regenerator giant CO 2 absorption tower and CO 2 absorbing solution in the separation of CO 2 in the regeneration step the CO 2 absorbing solution, since it requires a large amount of steam to remove CO 2 from the heated absorption liquid for re-use liquid imbibed with CO 2, wasteful consumption of energy doing.
  • CCS Carbon dioxide Capture and Storage
  • the separation is performed by the speed difference of the gas passing through the membrane using the pressure difference as the driving energy, and the pressure of the separated gas can be used as energy.
  • it is expected as an energy-saving process because it does not involve phase change.
  • Gas separation membranes are roughly classified into organic membranes and inorganic membranes depending on the membrane material.
  • Organic films have the advantages of being cheaper and more moldable than inorganic films.
  • the organic membrane used for gas separation is generally a polymer membrane prepared by the phase conversion method, and the mechanism of separation is the solubility of gas in the membrane material and the diffusion rate of gas in the membrane. It is based on a dissolution / diffusion mechanism that separates gases due to differences.
  • the dissolution / diffusion mechanism is based on the idea that the gas first dissolves on the surface of the polymer membrane, and the dissolved molecules diffuse in the polymer chain gaps in the polymer membrane.
  • the permeability coefficient P A of gas components A, solubility coefficient S A, when the diffusion coefficient is D A, relational expression P A S A ⁇ D A is satisfied.
  • S A / S B solubility selectivity, D A / D B is called the diffusion selectivity.
  • a permeation membrane called a facilitative transport membrane which uses a substance called a "carrier” that selectively and reversibly reacts with CO 2 and selectively permeates gas by a facilitative transport mechanism in addition to a dissolution / diffusion mechanism.
  • the accelerated transport mechanism has a structure in which a carrier that selectively reacts with CO 2 is contained in the membrane.
  • CO 2 in addition to physical permeation by the dissolution / diffusion mechanism, CO 2 also permeates as a reaction product with carriers, so that the permeation rate is promoted.
  • Patent Document 1 by using a specific alkali metal salt such as cesium carbonate or rubidium carbonate as a carrier, CO 2 permeance and CO 2 / H 2 selectivity that can be practically used under high temperature conditions of 100 ° C. or higher are provided.
  • a CO 2 promoted transport membrane has been proposed.
  • Carbon dioxide is promoted and transported even when there is little water in the membrane, but since its permeation rate is generally low, it is necessary to retain a large amount of water in the membrane in order to obtain a high permeation rate.
  • CO 2 permeance and CO 2 selective permeability for example, CO 2 / H 2 selectivity
  • an object of the present invention is to stably supply a CO 2 promoted transport membrane having improved CO 2 permeance and CO 2 selective permeability.
  • the present invention provides a CO 2 promoting transport membrane characterized by containing a CO 2 carrier and a particulate hygroscopic agent in a gel membrane of a hydrophilic polymer.
  • Carbon dioxide is promoted and transported even when there is little water in the membrane, but since its permeation rate is generally low, it is necessary to retain a large amount of water in the membrane in order to obtain a high permeation rate. Therefore, according to the CO 2 promoting transport membrane having the above characteristics, since the gel membrane contains a particulate hygroscopic agent, the water retention capacity of the gel membrane is improved, and the CO 2 permeance and the CO 2 selective permeability are improved. There is expected.
  • the hygroscopic agent is porous particles.
  • the hygroscopic performance is improved by increasing the specific surface area of the hygroscopic agent, and further improvement in CO 2 permeance and CO 2 selective permeability is expected.
  • the hygroscopic agent is dispersed in the gel membrane. As a result, uniform improvement is expected over the entire surface of the CO 2 promoted transport membrane having CO 2 permeance and CO 2 selective permeability.
  • the particle size of the hygroscopic agent is 75 ⁇ m or less. Since it is assumed that the thickness of the gel film of the CO 2 promoting transport film is as thin as about 200 ⁇ m, if the particle size exceeds 75 ⁇ m, the film performance may deteriorate due to defects penetrating the gel film.
  • the particle size is preferably suppressed to about 40% or less, more preferably about 35% or less, based on the thickness of the gel film.
  • the hygroscopic agent is a silicon compound.
  • Silica gel, zeolite and the like are assumed as silicon compounds that can be used as a hygroscopic agent.
  • the hydrophilic polymer is selected from polyvinyl alcohol-polyacrylate copolymer, polyvinyl alcohol, polyacrylic acid, chitosan, polyvinylamine, polyallylamine, and polyvinylpyrrolidone. It is preferably a polymer to be used.
  • those skilled in the art may refer to the polyvinyl alcohol-polyacrylate copolymer as a polyvinyl alcohol-polyacrylic acid copolymer.
  • the CO 2 carrier contains at least one of an alkali metal carbonate, an alkali metal bicarbonate, an alkali metal hydroxide, and an amino acid. It is preferable that the alkali metal is composed of cesium or rubidium. Further, as an amino acid that can be used as a CO 2 carrier, for example, glycine, 2,3-diaminopropionate (DAPA) and the like are assumed.
  • the gel membrane is a hydrogel.
  • Hydrogel is a three-dimensional network structure formed by cross-linking a hydrophilic polymer, and has the property of swelling by absorbing water.
  • the CO 2 promoting transport membrane having the above characteristics, by forming the gel membrane with a hydrogel having high water retention, the water retention capacity of the gel membrane is improved, and further improvement in CO 2 permeance and CO 2 selective permeability is expected. Will be done.
  • the gel membrane is supported on a hydrophilic porous membrane.
  • the strength of the CO 2 promoting transport membrane during use is improved.
  • the pressure of the CO 2 -facilitated transport membrane when applied to CO 2 permeable membrane reactor (CO 2 -facilitated transport membrane CO transformer having a), on both sides of the CO 2 -facilitated transport membrane (reactor internal and external) Sufficient film strength can be secured even if the difference is large (for example, 2 atm or more).
  • the porous membrane when the porous membrane is hydrophobic, it is possible to prevent the moisture in the gel membrane from invading the pores in the porous membrane at 100 ° C. or lower and lower the membrane performance, and the gel at 100 ° C. or higher. Since the same effect can be expected even when the water content in the membrane is low, the use of a hydrophobic porous membrane is recommended, but the reason why the porous membrane that supports the gel membrane is hydrophilic will be described later. As a result, a gel film with few defects can be stably produced, and high selective permeability to hydrogen can be maintained.
  • the CO 2 promoted transport film having the above characteristics is used to supply a mixed gas containing a predetermined main component gas and CO 2 to the CO 2 promoted transport film, and the CO 2 promoted transport from the mixed gas.
  • a CO 2 separation method characterized by separating the CO 2 that has permeated the membrane.
  • the present invention includes a CO 2 -facilitated transport membrane having the above characteristics, supplying a mixed gas containing a predetermined main component gas and CO 2 in the CO 2 -facilitated transport membrane, the CO 2 -facilitated transport membrane from the mixed gas
  • a CO 2 separation apparatus characterized by separating the CO 2 that has passed through the gas.
  • the present invention is a method for producing a CO 2 promoted transport film having the above-mentioned characteristics, wherein a step of preparing a sol solution composed of an aqueous solution containing the hydrophilic polymer, the CO 2 carrier, and the hygroscopic agent, and the above.
  • a method for producing a CO 2- promoted transport film which comprises a step of casting a sol solution into a hydrophilic porous film and then gelling to prepare the gel film.
  • the sol solution when the sol solution is cast on the hydrophilic porous membrane in the step of producing the gel membrane, the pores of the porous membrane are filled with the sol solution, and further. , The sol solution is applied to the surface of the porous membrane.
  • a gel film is produced by gelling this sol solution, the gel film is filled not only on the surface of the porous film but also in the pores, so that defects are less likely to occur and the success rate of gel film formation is increased. ..
  • the gel film in the pores has a large resistance to gas permeation.
  • the permeability is lower than that of the gel membrane on the surface of the porous membrane, and the gas permeance is lowered.
  • the cast solution is cast on the hydrophobic porous membrane, the inside of the pores of the porous membrane is not filled with the liquid, the cast solution is applied only to the surface of the porous membrane, and the pores are filled with gas.
  • the gas permence in the upper gel layer is expected to be higher than that of the hydrophilic porous membrane.
  • the gel film on the surface of the film is more likely to have minute defects, and the success rate of film formation is lowered.
  • H 2 has a much smaller molecular size than CO 2 , so H 2 is better than CO 2 at minute defects.
  • Permeance is significantly increased. Except for the defective part, the CO 2 permeance transmitted by the accelerated transport mechanism is much larger than the H 2 permeance transmitted by the physical dissolution and diffusion mechanism.
  • the hydrogen selectivity (CO 2 / H 2 ) when the hydrophobic porous membrane is used is lower than that when the hydrophilic porous membrane is used. Therefore, from the viewpoint of practical use, the stability and durability of the CO 2 promoted transport membrane are very important, and it is advantageous to use a hydrophilic porous membrane having high hydrogen selectivity (CO 2 / H 2). Become.
  • the hydrophilic polymer and the CO 2 carrier are added to pure water to which the hygroscopic agent has been added first, and the mixture is stirred. It is preferable to do so.
  • the process of preparing the sol solution by adding the hygroscopic agent to the pure water first, it is possible to adsorb the water molecules of the pure water to the hygroscopic agent without being affected by the CO 2 carriers added later. It is possible to increase the water retention of the gel film.
  • CO 2 promoted transport membrane having the above characteristics and the method for producing the same, a CO 2 promoted transport membrane having improved CO 2 permeance and CO 2 selective permeability (for example, CO 2 / H 2 selectivity) is stably supplied. be able to.
  • CO 2 and H 2 and the like can be obtained by using a CO 2 promoting transport film having high CO 2 selective permeability (for example, CO 2 / H 2 selectivity). It is possible to selectively separate CO 2 from a mixed gas containing the main component gas of the above with high efficiency.
  • FIG. 3 is a graph showing the film performance (CO 2 permeance, H 2 permeance, CO 2 / H 2 selectivity) of sample S1 of Example 1 and sample C1 of Comparative Example 1 shown in FIG.
  • FIG. 3 is a graph showing the CO 2 / H 2 selectivity of samples S2 to S6 of Example 1 and sample C2 of Comparative Example 1 shown in FIG.
  • FIG. 3 is a graph showing the CO 2 / H 2 selectivity of the samples G2 to G7 of Example 2 and the sample C2 of Comparative Example 1 shown in FIG.
  • the present inventor has by extensive studies, the gel film of occurrence of the reaction of CO 2 and CO 2 carrier shown in the above (Formula 1) containing CO 2 carrier of CO 2 facilitated transport membrane, free of particulate desiccant It was found that the CO 2 permeance was improved with respect to the H 2 permeance, and the CO 2 / H 2 selectivity was improved as compared with the conventional CO 2 promoting transport film containing no such hygroscopic agent. Then, based on the above new findings, the inventor of the present application has invented the CO 2 promoting transport membrane shown below, a method for producing the same, and a CO 2 separation method and apparatus.
  • This accelerated transport membrane contains a CO 2 carrier and a particulate hygroscopic agent in a gel membrane of a hydrophilic polymer containing water , and has high CO 2 permeation and CO 2 selective permeability (for example, CO 2 / H 2 selectivity).
  • a CO 2 facilitated transport membrane having a applicable a CO 2 -facilitated transport membrane to CO 2 permeable membrane reactor, and the like.
  • a hydrophilic porous membrane is adopted as a support membrane for supporting the gel membrane in order to stably realize high CO 2 selective permeability.
  • this accelerated transport film is, for example, a polyvinyl alcohol-polyacrylic acid (PVA / PAA) salt copolymer, polyvinyl alcohol, polyacrylic acid, chitosan as a hydrophilic polymer which is a film material of a gel film.
  • PVA / PAA polyvinyl alcohol-polyacrylic acid
  • DAPA 2,3-diaminopropionate
  • porous particles such as silica gel and graphite are used as the particulate hygroscopic agent.
  • the graphite surface is modified with a surfactant to reduce water repellency by the method described later.
  • the particulate hygroscopic agent used is one in which the particle size is classified to 75 ⁇ m or less by sieving.
  • the reason for classifying the particle size to 75 ⁇ m or less is that the film thickness of the gel film is assumed to be about 200 ⁇ m to 300 ⁇ m. Therefore, when the particle size exceeds 75 ⁇ m, a path penetrating the gel film via the hygroscopic agent is created. This is because there is a high possibility that it will be formed as a defect, and there is a concern that the film performance, particularly the CO 2 selective permeability, will be deteriorated.
  • this accelerated transport membrane is composed of a hydrophilic porous membrane 2 carrying a gel membrane 1 and a three-layer structure supported by a hydrophobic porous membrane 3, as schematically shown in FIG. ..
  • the hydrophilic porous membrane 2 supporting the gel film 1 may have a four-layer structure sandwiched between two hydrophobic porous membranes 3. Since the gel film 1 is supported by the hydrophilic porous film 2 and has a certain mechanical strength, it does not necessarily have to have a structure supported or sandwiched by the hydrophobic porous film 3. For example, the mechanical strength can be enhanced by forming the hydrophilic porous membrane 2 in a cylindrical shape. Therefore, the accelerated transport membrane is not necessarily limited to a flat plate.
  • the hydrophilic polymer is present in the gel film in the range of about 10 to 80% by weight, and the CO 2 carrier is about 20 to 90% by weight. It exists in the range of%.
  • the particulate hygroscopic agent is, for example, about 0.01 to 0.2% by weight, more preferably about 0.01 to 0.1% by weight, based on the total weight of the sol solution excluding the hygroscopic agent described later.
  • % Is present in the gel membrane.
  • about 0.12 to 2.4% by weight more preferably about 0.12 to 1.2% by weight is present.
  • weight of the hydrophilic polymer there are about 0.44 to 8.8% by weight, more preferably about 0.44 to 4.4% by weight.
  • the hydrophilic porous membrane preferably has heat resistance of 100 ° C. or higher, mechanical strength, and adhesion to the gel membrane, and further has a porosity (porosity) of 55% or higher and is fine.
  • the pore diameter is preferably in the range of 0.1 to 1 ⁇ m.
  • PTFE hydrophilic tetrafluoroethylene polymer
  • the hydrophobic porous membrane preferably has heat resistance of 100 ° C. or higher, mechanical strength, and adhesion to the gel membrane, and further has a porosity (porosity) of 55% or higher and is fine.
  • the pore diameter is preferably in the range of 0.1 to 1 ⁇ m.
  • PTFE non-hydrophilic ethylene tetrafluoroethylene polymer
  • a sol solution composed of an aqueous solution containing a PVA / PAA salt copolymer, a CO 2 carrier, and a particulate hygroscopic agent is prepared (step 1). More specifically, 50 g of pure water and a predetermined amount of hygroscopic agent are added to a container (for example, a weighing bottle) and stirred to adsorb water molecules of pure water to the hygroscopic agent, and then a PVA / PAA salt copolymer.
  • the amount of the hygroscopic agent added was adjusted within the range of 0.01 to 0.2% by weight with respect to the total weight of the sol solution excluding the hygroscopic agent.
  • the surface of graphite is surface-modified with a surfactant in advance to reduce water repellency in the following manner.
  • the surface modification treatment is carried out by adding graphite particles to a mixture of 30 g of pure water and 0.3 g of a surfactant and stirring with a stirrer for 24 hours.
  • the nonionic surfactant acetylenol E00 is used as the surfactant, but if it is possible to surface-modify graphite as the surfactant to reduce water repellency, the nonionic surfactant is used. It is not limited to the agent, and even a nonionic surfactant is not limited to acetylenol E00.
  • step 1 As a post-step of step 1, 0.125 g of water-soluble nylon may be added to the sol solution obtained in step 1 and stirred at 80 ° C. for 24 hours.
  • the sol solution obtained in step 1 or the post-step of step 1 is subjected to a hydrophilic PTFE porous membrane (for example, manufactured by Sumitomo Electric Fine Polymer, WPW-020-80, film thickness 80 ⁇ m, pore diameter 0.2 ⁇ m, void ratio).
  • a hydrophilic PTFE porous membrane for example, manufactured by Sumitomo Electric Fine Polymer, WPW-020-80, film thickness 80 ⁇ m, pore diameter 0.2 ⁇ m, void ratio.
  • hydrophobic PTFE porous membrane for example, manufactured by Sumitomo Electric Fine Polymer, Fluoropore FP010, film thickness 60 ⁇ m, pore diameter 0.1 ⁇ m, void ratio about 55%) Cast with an applicator on the surface of the PTFE porous membrane side (step 2).
  • the cast thickness of the samples of Examples and Comparative Examples described later is 500 ⁇ m.
  • the sol solution permeates into the pores in the hydrophilic PTFE porous membrane, but the permeation stops at the interface of the hydrophobic PTFE porous membrane, and the sol solution does not permeate to the opposite surface of the layered porous membrane. There is no sol solution on the side surface of the hydrophobic PTFE porous membrane of the layered porous membrane, which facilitates handling.
  • gelation means that a sol solution, which is a dispersion liquid of a polymer, is dried to form a solid state, and a gel film is a solid film produced by the gelation, and is a liquid film. Clearly distinguished.
  • the gel film is formed on the surface (cast surface) of the hydrophilic PTFE porous membrane in step 3. Since it is formed by filling the pores as well as being formed, defects (micro defects such as pinholes) are less likely to occur, and the success rate of gel film formation is increased.
  • step 3 it is desirable that the naturally dried PTFE porous membrane is further thermally crosslinked at a temperature of about 120 ° C. for about 2 hours. In the samples of Examples and Comparative Examples described later, thermal cross-linking is performed. By thermal cross-linking, the film thickness of the gel film becomes about 200 ⁇ m.
  • the hydrophilic porous membrane 2 carrying the gel film 1 is supported by the hydrophobic porous membrane 3, and this accelerated transport membrane has a three-layer structure.
  • the same hydrophobic PTFE porous membrane as the hydrophobic PTFE porous membrane of the layered porous membrane used in step 2 was overlaid on the gel layer side of the surface of the hydrophilic PTFE porous membrane obtained in step 3, and the gel film was formed.
  • the main accelerated transport membrane having a four-layer structure in which the hydrophilic porous membrane 2 carrying 1 is sandwiched between two hydrophobic porous membranes 3 may be obtained.
  • FIG. 1 the state in which the gel film 1 is filled in the pores of the hydrophilic PTFE porous film 2 is schematically shown linearly.
  • the samples S1 to S6 and G1 to G7 are produced through the steps 1 (including the post-step) to 3 of the above-mentioned manufacturing method, and the samples C1 to C2 have a hygroscopic agent in the sol solution in the step 1. It was prepared in the same manner as the samples S1 to S6 and G1 to G7 except that it was not added, and the sample C3 was subjected to a surface modification treatment with a surfactant on the graphite particles added in step 1. It is prepared in the same manner as the samples G1 to G7 except that the sample G1 to G7 is not used.
  • the amount of the PVA / PAA salt copolymer and cesium carbonate added is the same between the samples of Example 1, Example 2, Comparative Example 1, and Comparative Example 2, and the amount of the particulate hygroscopic agent is the same. Except for differences in the amount added or the presence or absence of surface modification treatment on graphite particles There is no difference in manufacturing conditions.
  • the addition amounts of the silica gel particles of the samples S1 to S6 of Example 1 were, in order, 0.08% by weight and 0.01% by weight with respect to the total weight of the sol solution excluding the hygroscopic agent. , 0.02% by weight, 0.05% by weight, 0.08% by weight, and 0.1% by weight.
  • the amount of the surface-modified graphite particles added to the samples G1 to G7 of Example 2 was, in order, 0.01% by weight based on the total weight of the sol solution excluding the hygroscopic agent. , 0.01% by weight, 0.04% by weight, 0.05% by weight, 0.08% by weight, 0.1% by weight, 0.2% by weight.
  • the amount of the particulate hygroscopic agents (silica gel particles, graphite particles) added to the samples C1 to C2 of Comparative Example 1 was 0, and the surface-modified untreated graphite of Sample C3 of Comparative Example 2 was added.
  • the amount of particles added is set to 0.01% by weight with respect to the total weight of the sol solution excluding the hygroscopic agent.
  • Each sample was used by fixing a fluororubber gasket as a sealing material between the supply side chamber and the permeation side chamber of the stainless steel flow-type gas permeation cell.
  • the experimental conditions are common to each sample, and the flow-type gas permeation cell is installed in a constant temperature bath (electric furnace), and the temperature in the cell is fixed at 160 ° C.
  • the relative humidity in the cell is 80%.
  • the supply-side gas supplied to the supply-side chamber is a mixed gas consisting of CO 2 , H 2 , and H 2 O (steam). Specifically, CO 2 and H 2 are supplied at a flow rate of 100 ml / min, respectively. was allowed to merge, it is produced by mixing and H 2 O (steam) by passing the bubbler (humidifier).
  • the supply side pressure is 445 kPa (G). In addition, (G) means gauge pressure.
  • the pressure in the permeation concubine is atmospheric pressure. The pressures in the supply side chamber and the permeation side chamber are adjusted by providing a back pressure regulator on the downstream side of the cooling trap in the middle of the exhaust gas discharge path.
  • the gas that has permeated the accelerated transport membrane of each sample is collected in a container after passing through a cooling trap from the permeation side chamber side, and is quantified by a gas chromatograph.
  • the amount of gas that has passed through the accelerated transport membrane of each sample is small, and in order to match the CO 2 concentration within the measurement range of the gas chromatograph, N 2 is used as a dilution gas in the container at a flow rate of 100 ml / min.
  • N 2 is used as a dilution gas in the container at a flow rate of 100 ml / min.
  • the permeance of CO 2 and H 2 [mol / (m 2 ⁇ s ⁇ kPa)] is calculated from the result quantified by the gas chromatograph and the flow rate of N 2 , and the CO 2 / H 2 selectivity is calculated from the ratio.
  • FIG. 4 (A) shows the CO 2 permeance and the H 2 permeance of the samples S1 and C1 as a graph
  • FIG. 4 (B) shows the CO 2 / H 2 selectivity of the samples S1 and C1 as a graph.
  • FIGS. 4 (A) and 4 (B) indicate the CO 2 permeances of sample S1 and sample C1, respectively, and the black squares ( ⁇ ) and white squares ( ⁇ ) indicate H 2 of samples S1 and sample C1. The permeances are shown respectively, and the black triangles ( ⁇ ) and white triangles ( ⁇ ) in FIG. 4 (B) show the CO 2 / H 2 selectivity of the samples S1 and C1, respectively.
  • the horizontal axes of FIGS. 4 (A) and 4 (B) indicate the elapsed time from the start of the experiment.
  • H 2 permeance of samples S1 when compared with H 2 permeance of sample C1, with respect to substantially the same or slightly larger, CO 2 permeance of samples S1 is different from the CO 2 permeance of Sample C1
  • the elapsed time increased 1.6 times or more
  • the addition of silica gel particles to the gel film increased the CO 2 permeance compared to the case without addition, resulting in CO 2 / H. 2
  • the selectivity is greatly improved.
  • the CO 2 / H 2 selectivity of the sample S1 does not change significantly with the passage of time, whereas the CO 2 / H 2 selectivity of the sample C1 tends to decrease with the passage of time.
  • FIG. 5 is a graph showing the CO 2 / H 2 selectivity of samples S2 to S6 and C2 after 1 hour. The horizontal axis of FIG. 5 shows the amount of silica gel particles added (% by weight based on the total weight of the sol solution excluding the hygroscopic agent).
  • Example 1 in which the silica gel particles were added into the gel film, when the addition amount of the silica gel particles was in the range of 0.01% by weight to 0.1% by weight, the addition amount of the silica gel particles increased. , CO 2 / H 2 selectivity tends to increase gradually.
  • FIG. 6 (A) shows the CO 2 permeance and the H 2 permeance of the samples G1 and C3 as a graph
  • FIG. 6 (B) shows the CO 2 / H 2 selectivity of the samples G1 and C3 as a graph.
  • FIGS. 6 (A) and 6 (B) indicate the CO 2 permeances of sample G1 and sample C3, respectively, and the black squares ( ⁇ ) and white squares ( ⁇ ) indicate H 2 of samples G1 and sample C3, respectively.
  • the permeances are shown respectively, and the black triangles ( ⁇ ) and white triangles ( ⁇ ) in FIG. 6 (B) show the CO 2 / H 2 selectivity of the samples G1 and C3, respectively.
  • the horizontal axes of FIGS. 6 (A) and 6 (B) indicate the elapsed time from the start of the experiment.
  • H 2 permeance of samples G1 when compared with H 2 permeance of samples C3, against going slightly larger over time CO 2 permeance of samples G1 is CO 2 samples C3 permeance
  • the elapsed time increased significantly from 1 hour to 1.5 hours by about 1.6 to 4.4 times, and after the elapsed time was 1 hour or later, the surface of the gel film with a surfactant was applied.
  • the CO 2 permeance is increased as compared with the case where the surface is not modified, and as a result, the CO 2 / H 2 selectivity is greatly improved. I understand.
  • the CO 2 permeance of the sample G1 does not change significantly with the passage of time, whereas the CO 2 permeance of the sample C3 tends to decrease significantly with the passage of time. Further, the CO 2 / H 2 selectivity of the sample G1 did not change significantly with the passage of time, and further, a high value of about 350 to 400 could be maintained at a temperature of 160 ° C.
  • FIG. 7 is a graph showing the CO 2 / H 2 selectivity of the samples G2 to G7 and C2 after 1 hour.
  • the horizontal axis of FIG. 7 shows the amount of the surface-modified graphite particles added (% by weight based on the total weight of the sol solution excluding the hygroscopic agent).
  • Example 2 in which the graphite particles subjected to the surface modification treatment were added to the gel film, CO was added in the range of 0.01% by weight to 0.04% by weight of the graphite particles. It can be seen that there is a maximum value of 2 / H 2 selectivity.
  • the addition amount of graphite particles increased by more than 0.04% by weight, the CO 2 / H 2 selectivity tended to decrease, and the same as in Example 1 in which silica gel particles were added.
  • the effect is exhibited even when the amount of the particulate hygroscopic agent added is small.
  • FIG. 8 is a cross-sectional view schematically showing a schematic structure of the CO 2 separation device 10 of the present embodiment.
  • FIG. 8 shows a cross-sectional structure in a cross section perpendicular to the axis of the CO 2 promoted transport membrane (this accelerated transport membrane) 11 having a cylindrical structure
  • FIG. 8 (b) shows the axis of the main promoted transport membrane 11. The cross-sectional structure in the cross section passing through the center is shown.
  • the accelerated transport film 11 shown in FIG. 8 has a structure in which a gel film 1 is supported on an outer peripheral surface of a cylindrical hydrophilic ceramic porous film 2.
  • the gel film 1 the polyvinyl alcohol-polyacrylic acid (PVA / PAA) salt copolymer is used as an example of the film material of the gel film as in the first embodiment, and the gel film 1 is used as a CO 2 carrier.
  • alkali metal carbonates such as cesium carbonate (Cs 2 CO 3 ) and rubidium carbonate (Rb 2 CO 3
  • surface modification treatment with silica gel particles and surfactant was performed as a particulate hygroscopic agent.
  • Use graphite particles Since the method for producing the gel film 1 and the film performance of the second embodiment are basically the same as those of the first embodiment, redundant description will be omitted.
  • the cylindrical main accelerated transport membrane 11 is housed in a bottomed cylindrical container 12, a supply side space 13 surrounded by an inner wall of the container 12 and a gel film 1, and a ceramic porous membrane.
  • a transmissive side space 14 surrounded by the inner wall of No. 2 is formed.
  • a first inlet 15 for feeding the raw material gas FG into the supply side space 13 and a sweep gas SG A second inlet 16 is provided to feed the CO 2 into the permeation side space 14, and the raw material gas EG after CO 2 is separated is discharged from the supply side space 13 on the other side of the bottoms 12a and 12b on both sides of the container 12.
  • a first exhaust port 17 is provided, and a second exhaust port 18 is provided to discharge the exhaust gas SG', which is a mixture of the permeated gas PG containing CO 2 that has permeated the accelerated transport film 11 and the sweep gas SG, from the permeation side space 14.
  • the container 12 is made of stainless steel, for example, and is not shown, but has been described in the first embodiment as an example between both ends of the accelerated transport film 11 and the inner walls of the bottoms 12a and 12b on both sides of the container 12. Similar to the experimental device, the fluororubber gasket is interposed as a sealing material to fix the accelerated transport film 11 in the container 12.
  • the method for fixing and sealing the accelerated transport membrane 11 is not limited to the above method.
  • the first inlet 15 and the first outlet 17 are provided one by one in the supply side space 13 which is separated into left and right in FIG. 8 (b).
  • the supply side space 13 communicates in an annular shape, so that the first inlet 15 and the first discharge port 17 are connected to either the left or right supply side space 13. It may be provided.
  • a first inlet 15 and a second inlet 16 are provided on one side of the bottoms 12a and 12b, and a first outlet 17 and a second outlet are provided on the other side of the bottoms 12a and 12b.
  • the first inlet 15 and the second discharge port 18 are provided on one side of the bottoms 12a and 12b, and the first discharge port 17 and the second discharge port 17 and the second are provided on the other side of the bottoms 12a and 12b.
  • the inlet 16 may be provided. That is, the flow directions of the raw material gases FG and EG and the flow directions of the sweep gas SG and the exhaust gas SG'may be reversed.
  • the raw material gas FG is fed into the supply side space 13 to supply the raw material gas FG to the supply side surface of the promotion transport membrane 11, and is included in the gel film 1 of the promotion transport membrane 11.
  • the CO 2 carrier is reacted with CO 2 in the raw material gas FG to selectively permeate CO 2 with a high selectivity for the main component gas, and the raw material gas EG with an increased concentration of the main component gas after CO 2 separation is supplied. It is discharged from the side space 13.
  • the reaction between CO 2 and CO 2 carriers requires the supply of water (H 2 O) as shown in the reaction formula of (Chemical Formula 1) above, and the more water contained in the gel film 1, the more the chemical equilibrium. Is shifted to the product side (right side), and it can be seen that the permeation of CO 2 is promoted.
  • the temperature of the raw material gas FG is as high as 100 ° C. or higher
  • the gel film 1 in contact with the raw material gas FG is also exposed to a high temperature of 100 ° C. or higher, so that the water contained in the gel film 1 evaporates. Since it penetrates into the transmission side space 14 like CO 2, it is necessary to supply steam (H 2 O) to the supply side space 13.
  • the steam may be contained in the raw material gas FG, or may be supplied to the supply side space 13 separately from the raw material gas FG. In the latter case, the transmitted Steam (H 2 O) was separated from the exhaust gas SG 'to the permeate side space 14 may be circulated to the feed-side space 13.
  • the supply side space 13 is formed on the outside of the cylindrical main promotion transport film 11 and the transmission side space 14 is formed on the inside has been described, but the supply side space is inside. 13 may be formed, and the transmission side space 14 may be formed on the outside.
  • the accelerated transport film 11 may have a structure in which the gel film 1 is supported on the inner peripheral surface of the cylindrical hydrophilic ceramic porous film 2.
  • the accelerated transport membrane 11 used in the CO 2 separation device is not limited to a cylindrical shape, but may be a cylindrical shape having a cross-sectional shape other than a circular shape, and further has a flat plate type structure as shown in FIG. This accelerated transport membrane may be used.
  • CO transformer CO 2 permeation type membrane reactor
  • the supply side space 13 is filled with a CO transformation catalyst, and the supply side space 13 is used as a CO transformer. Can be done.
  • the CO 2 permeation type membrane reactor receives, for example, a raw material gas FG containing H 2 as a main component generated by a steam reformer into a supply side space 13 filled with a CO transformation catalyst and is contained in the raw material gas FG.
  • This is an apparatus for removing carbon monoxide (CO) by the CO transformation reaction shown in (Chemical Formula 4) below.
  • CO carbon monoxide
  • the CO 2 produced by the CO transformation reaction is selectively permeated through the permeation side space 14 by the accelerated transport film 11 to be removed, thereby shifting the chemical equilibrium of the CO transformation reaction to the hydrogen generation side. It is possible to remove CO and CO 2 at a high conversion rate at the same reaction temperature beyond the limit due to equilibrium restrictions.
  • the raw material gas EG mainly of H 2 after removal of CO and CO 2 are removed from the feed-side space 13.
  • the operating temperature is considered to be at least 100 ° C.
  • the supply of the raw material gas FG supplied to the supply side surface of the accelerated transport membrane 11 The temperature is 100 ° C. or higher. Therefore, the raw material gas FG is adjusted to a temperature suitable for the catalytic activity of the CO transformation catalyst, and then sent into the supply side space 13 filled with the CO transformation catalyst, and the CO transformation reaction in the supply side space 13 ( It is supplied to the accelerated transport film 11 via an exothermic reaction).
  • the sweep gas SG lowers the partial pressure of the permeated gas PG containing CO 2 that has permeated the facilitating transport film 11, maintains the permeation propulsive force of the facilitating transport film 11, and discharges the permeated gas PG to the outside. Used to do.
  • the partial pressure of the raw material gas FG is sufficiently high, it is not necessary to flow the sweep gas SG because the partial pressure difference that becomes the permeation propulsion force can be obtained without flowing the sweep gas SG.
  • the gas species used in the sweep gas SG in the same manner as in the evaluation experiments of the membrane performance of the first embodiment, can also use the steam (H 2 O), also further, Ar or the like inert gas used
  • the sweep gas SG is not limited to a specific gas type.
  • a PVA / PAA salt copolymer hydrogel was assumed as the hydrophilic polymer constituting the gel film of the accelerated transport film, but the hydrophilic polymer was used.
  • the hydrophilic polymer was used.
  • the hydrophilic polymer constituting the gel film of the accelerated transport film is not limited to the hydrophilic polymers exemplified in Examples 1 and 2 above.
  • Examples 1 and 2 of the first embodiment it is assumed that cesium carbonate is used as the CO 2 carrier, but in the present invention, a CO 2 carrier and a particulate hygroscopic agent are formed on a gel film of a hydrophilic polymer.
  • the particle-like hygroscopic agent promotes the reaction between CO 2 and CO 2 carriers, which is equivalent to the membrane performance (CO 2 permit and CO 2 selective permeability) exemplified in the first embodiment.
  • Any CO 2 carrier capable of exhibiting a degree or higher film performance is not limited to a specific CO 2 carrier.
  • Examples 1 and 2 of the first embodiment it is assumed that porous particles such as silica gel and graphite are used as the particulate hygroscopic agent, but CO is produced by the particulate hygroscopic agent in the gel film.
  • the material of the particulate hygroscopic agent is not limited to silica gel and graphite as long as it has the same hygroscopicity, and may be a silicon compound such as zeolite other than silica gel, other than graphite. It may be a carbon-based powder such as activated carbon.
  • the specific surface area of the particles is large, but the particles do not necessarily have to be porous, and may have a shape having many protrusions on the surface, for example. ..
  • the upper limit of the distribution range of the particle size of the gel film thickness may be larger than 75 ⁇ m depending on the gel film thickness.
  • a sol solution composed of an aqueous solution containing a PVA / PAA salt copolymer, a CO 2 carrier, and a particulate hygroscopic agent is prepared. Then, the sol solution was cast on the hydrophilic PTFE porous membrane and then gelled to prepare the sol solution, but it may be prepared by a production method other than the production method. For example, a gel film of a PVA / PAA salt copolymer containing a particulate hygroscopic agent and not containing a CO 2 carrier may be formed and then impregnated with an aqueous solution containing a CO 2 carrier.
  • the step of preparing the sol solution the case where the hydrophilic polymer and the CO 2 carrier are added to the pure water to which the particulate hygroscopic agent is added first has been illustrated. And CO 2 carriers may be added to pure water at the same time to prepare a sol solution. Further, a gel film prepared by casting a sol solution prepared by simultaneously adding a particulate hygroscopic agent and a hydrophilic polymer to pure water into a hydrophilic PTFE porous film and then gelling the gel film contains an aqueous solution containing a CO 2 carrier. It may be invaded and produced.
  • the CO 2 separation device using this facilitated transport membrane As one application of the CO 2 separation device using this facilitated transport membrane has been described CO 2 permeable membrane reactor, the CO 2 separation device using this facilitated transport membrane, It can be used in a decarboxylation step in a hydrogen production process other than the membrane reactor, and further, it can be applied to other than the hydrogen production process, and is limited to the application examples exemplified in the second embodiment. is not it. Further, the supply-side gas (raw material gas) supplied to the accelerated transport membrane is not limited to the mixed gas exemplified in each of the above embodiments.
  • the main component gas of the mixed gas is not limited to hydrogen (H 2 ), but nitrogen (N 2 ), methane (CH 4 ), and oxygen (CH 4), which permeate this accelerated transport membrane only by the dissolution / diffusion mechanism. It may be O 2 ) or the like.
  • CO 2 facilitated transport membrane according to the present invention, as an example, decarboxylation process of hydrogen production process, in CO 2 permeable membrane reactor, etc., the CO 2 with high selectivity against hydrogen ratio from a mixed gas containing CO 2 and H 2 It can be used to separate.

Abstract

Provided is a CO2 facilitated transport membrane having improved CO2 permeance and CO2 permselectivity. The CO2 facilitated transport membrane is formed so as to contain a CO2 carrier and a particulate moisture absorption agent within a hydrophilic polymer gel membrane. More preferably, the moisture absorption agent is formed from porous particles and is present within the gel membrane in a dispersed manner. More preferably, the gel membrane is a hydrogel. More preferably, the gel membrane is supported by a hydrophilic porous membrane.

Description

CO2促進輸送膜及びその製造方法並びにCO2分離方法及び装置CO2-promoted transport membrane and its manufacturing method, and CO2 separation method and equipment
 本発明は、二酸化炭素(CO)の分離に用いられるCO促進輸送膜に関し、特に、水素製造プロセス等において副産する二酸化炭素を、水素に対する高い選択比率で分離するCO促進輸送膜に関し、更に、当該CO促進輸送膜の製造方法、当該CO促進輸送膜を用いたCO分離方法及び装置に関する。 The present invention relates to a CO 2 promoted transport membrane used for separating carbon dioxide (CO 2 ), and more particularly to a CO 2 promoted transport membrane that separates carbon dioxide produced as a by-product in a hydrogen production process or the like at a high selective ratio with respect to hydrogen. also relates to processes for the manufacture of the CO 2 -facilitated transport membrane, to CO 2 separation method and device using the CO 2 -facilitated transport membrane.
 水素製造プロセスでは、水素製造の過程で副産するCOを水素ガス中から分離し除去する必要がある。 In the hydrogen production process, it is necessary to separate and remove CO 2 produced as a by-product in the hydrogen production process from the hydrogen gas.
 既存の水素製造プラントやアンモニア製造プラント等の大規模プラントの脱炭酸プロセスで用いられている化学吸収法は、COの分離に巨大なCO吸収塔及びCO吸収液の再生塔を必要とし、CO吸収液の再生工程においては、COを吸収させた液を再使用できるように加熱して吸収液からCOを取り除くために大量のスチームを必要とするため、無駄なエネルギーを消費している。 Chemical absorption method used in the decarboxylation process large plants, such as existing hydrogen production plant and ammonia production plant requires regenerator giant CO 2 absorption tower and CO 2 absorbing solution in the separation of CO 2 in the regeneration step the CO 2 absorbing solution, since it requires a large amount of steam to remove CO 2 from the heated absorption liquid for re-use liquid imbibed with CO 2, wasteful consumption of energy doing.
 また近年、地球温暖化対策として、COを出さない自然エネルギーの普及が期待されているが、自然エネルギーはコスト面の問題が大きいため、火力発電所や製鉄所等の排ガスからCOを分離及び回収し、地中や海中に埋め戻す、CCS(Carbon dioxide Capture and Storage)と呼ばれる手法が注目されている。現時点では、CCSについても化学吸収法の適用が前提とされており、その場合、火力発電所からのCOを分離及び回収するために、大規模なCO分離設備が必要になるだけでなく、大量のスチームを投入する必要がある。 In recent years, as a measure against global warming, the spread of natural energy that does not emit CO 2 is expected, but since natural energy has a big cost problem, CO 2 is separated from the exhaust gas of thermal power plants and steel mills. A method called CCS (Carbon dioxide Capture and Storage), which collects carbon dioxide and backfills it in the ground or the sea, is attracting attention. At present, it is assumed that the chemical absorption method will be applied to CCS as well, in which case not only a large-scale CO 2 separation facility will be required to separate and recover CO 2 from the thermal power plant. , It is necessary to put in a large amount of steam.
 これに対し、膜分離法を用いたCO分離回収プロセスは、分圧差を駆動エネルギーとして膜を透過するガスの速度差によって分離を行うものであり、分離するガスの持つ圧力をエネルギーとして利用でき、また、相変化を伴わないこともあり、省エネルギープロセスとして期待されている。 On the other hand, in the CO 2 separation and recovery process using the membrane separation method, the separation is performed by the speed difference of the gas passing through the membrane using the pressure difference as the driving energy, and the pressure of the separated gas can be used as energy. In addition, it is expected as an energy-saving process because it does not involve phase change.
 ガス分離膜は、膜材料の違いにより有機膜と無機膜に大別される。有機膜は無機膜に比べて安価であり成形性に優れるという利点がある。ガス分離に用いられる有機膜は、相転換法により作製された高分子膜が一般的であり、分離のメカニズムは、ガスの膜材料への溶解性、及び、ガスの膜内での拡散速度の違いによりガスを分離する溶解・拡散機構に基づく。 Gas separation membranes are roughly classified into organic membranes and inorganic membranes depending on the membrane material. Organic films have the advantages of being cheaper and more moldable than inorganic films. The organic membrane used for gas separation is generally a polymer membrane prepared by the phase conversion method, and the mechanism of separation is the solubility of gas in the membrane material and the diffusion rate of gas in the membrane. It is based on a dissolution / diffusion mechanism that separates gases due to differences.
 溶解・拡散機構は、ガスは先ず高分子膜の膜表面に溶解して、この溶解した分子が高分子膜中の高分子鎖間隙を拡散していくという考え方である。ガス成分Aの透過係数をP、溶解度係数をS、拡散係数をDとすると、P=S×Dの関係式が成り立つ。理想的分離係数αA/Bは、成分Aと成分Bの透過係数の比をとり、αA/B=P/Pとして表されるため、αA/B=(S/S)/(D/D)となる。ここで、S/Sは溶解度選択性、D/Dは拡散選択性と呼ばれる。 The dissolution / diffusion mechanism is based on the idea that the gas first dissolves on the surface of the polymer membrane, and the dissolved molecules diffuse in the polymer chain gaps in the polymer membrane. The permeability coefficient P A of gas components A, solubility coefficient S A, when the diffusion coefficient is D A, relational expression P A = S A × D A is satisfied. Ideally separation factor alpha A / B, for taking the ratio of the permeability coefficients of the components A and B, expressed as α A / B = P A / P B, α A / B = (S A / S B ) / become (D a / D B). Here, S A / S B solubility selectivity, D A / D B is called the diffusion selectivity.
 拡散係数は分子径が小さいほど大きく、また、一般的にガス分離においては拡散選択性の寄与は溶解度選択性の寄与よりも大きいため、分子径の異なる多成分のガスから分子径の小さな気体の透過を抑制して、分子径の大きなガスを選択的に透過させることは困難である。 The smaller the molecular diameter, the larger the diffusion coefficient, and in general, the contribution of diffusion selectivity is larger than the contribution of solubility selectivity in gas separation. Therefore, from a multi-component gas having a different molecular diameter to a gas having a small molecular diameter. It is difficult to suppress permeation and selectively permeate a gas having a large molecular diameter.
 従って、特にHとCOを含む混合ガスから、気体分子の中でも分子径の小さなHに対して高い選択性を有してCOを分離するCO選択透過膜を作製することは極めて困難であり、水素製造プラント等の脱炭酸プロセスでの実用化に耐える100℃以上の高温下で機能するCO選択透過膜を作製することは更に困難であった。 Therefore, it is extremely difficult to prepare a CO 2 selective permeation membrane that separates CO 2 from a mixed gas containing H 2 and CO 2 with high selectivity for H 2 having a small molecular diameter among gas molecules. It was difficult, and it was even more difficult to produce a CO 2 selective permeation membrane that functions at a high temperature of 100 ° C. or higher that can withstand practical use in a decarboxylation process such as a hydrogen production plant.
 そこで、COと選択的且つ可逆的に反応する「キャリア」と呼ばれる物質を用い、溶解拡散機構に加えて促進輸送機構により選択的にガスを透過させる、促進輸送膜と呼ばれる透過膜について検討がなされている(例えば、下記の特許文献1参照)。促進輸送機構では、膜中にCOと選択的に反応するキャリアを含有させた構造となっている。斯かる促進輸送膜では、COは溶解・拡散機構による物理透過に加えて、キャリアとの反応生成物としても透過するため透過速度が促進される。一方、キャリアと反応しないN、H等のガスは溶解・拡散機構のみでしか透過しないため、これらのガスに対するCOの分離係数は極めて大きい。また、COとキャリアの反応時に発生するエネルギーはキャリアがCO放出するためのエネルギーに利用されるため、外部からエネルギーを供給する必要がなく、本質的に省エネルギープロセスである。 Therefore, a permeation membrane called a facilitative transport membrane, which uses a substance called a "carrier" that selectively and reversibly reacts with CO 2 and selectively permeates gas by a facilitative transport mechanism in addition to a dissolution / diffusion mechanism, has been studied. (For example, see Patent Document 1 below). The accelerated transport mechanism has a structure in which a carrier that selectively reacts with CO 2 is contained in the membrane. In such an accelerated transport membrane, in addition to physical permeation by the dissolution / diffusion mechanism, CO 2 also permeates as a reaction product with carriers, so that the permeation rate is promoted. On the other hand, since gases such as N 2 and H 2 that do not react with carriers permeate only by the dissolution / diffusion mechanism, the CO 2 separation coefficient for these gases is extremely large. Further, since the energy generated during the reaction between CO 2 and the carrier is used as the energy for the carrier to release CO 2 , it is not necessary to supply energy from the outside, which is essentially an energy saving process.
国際公開第2009/093666号International Publication No. 2009/093666
 上記特許文献1では、キャリアとして炭酸セシウムや炭酸ルビジウム等の特定のアルカリ金属塩を用いることで、100℃以上の高温条件下で実用可能なCOパーミアンスとCO/H選択性を備えたCO促進輸送膜が提案されている。 In Patent Document 1, by using a specific alkali metal salt such as cesium carbonate or rubidium carbonate as a carrier, CO 2 permeance and CO 2 / H 2 selectivity that can be practically used under high temperature conditions of 100 ° C. or higher are provided. A CO 2 promoted transport membrane has been proposed.
 促進輸送機構によるCOとCOキャリアの反応は、総括反応式としては、下記の(化1)のように示される。但し、(化1)ではCOキャリアが炭酸塩である場合を想定している。反応式中の記号「⇔」は、可逆反応であることを示している。 The reaction between CO 2 and CO 2 carriers by the accelerated transport mechanism is shown as the following (Chemical formula 1) as a general reaction formula. However, in (Chemical formula 1), it is assumed that the CO 2 carrier is a carbonate. The symbol "⇔" in the reaction formula indicates that it is a reversible reaction.
 (化1)
 CO + HO + CO 2- ⇔  2HCO
(Chemical 1)
CO 2 + H 2 O + CO 3 2- ⇔ 2HCO 3 -
 膜内に水分が少ない場合でも二酸化炭素は促進輸送されるが、その透過速度は一般に小さいため、高い透過速度を得るには膜内に多くの水分が保持されている必要がある。(化1)より明らかなように、CO促進輸送膜の性能指標であるCOパーミアンスとCO選択透過性(例えば、CO/H選択性)は、膜内の水分量に依存する。 Carbon dioxide is promoted and transported even when there is little water in the membrane, but since its permeation rate is generally low, it is necessary to retain a large amount of water in the membrane in order to obtain a high permeation rate. As is clear from (Chemical Formula 1) , the CO 2 permeance and CO 2 selective permeability (for example, CO 2 / H 2 selectivity), which are performance indexes of the CO 2 promoted transport membrane, depend on the amount of water in the membrane. ..
 ところで、膜内の水分は、CO促進輸送膜を透過するCO及びCO促進輸送膜の供給側と透過側の差圧によって、透過側に流出する。このため、膜内の水分量を十分に確保できなければ、膜性能の低下を来すことになる。また、当該膜性能の低下は、動作温度が100℃を超えて、高くなるにつれ顕著化する傾向がある。 Meanwhile, moisture in the film, by the differential pressure of the feed side and the permeate side of the CO 2 and CO 2 -facilitated transport membrane transmits CO 2 -facilitated transport membrane, to flow to the permeate side. Therefore, if a sufficient amount of water in the film cannot be secured, the film performance will deteriorate. Further, the deterioration of the film performance tends to become more remarkable as the operating temperature exceeds 100 ° C. and becomes higher.
 本発明は、上述の問題点に鑑み、COパーミアンスとCO選択透過性の改善されたCO促進輸送膜を安定して供給することを目的とする。 In view of the above-mentioned problems, an object of the present invention is to stably supply a CO 2 promoted transport membrane having improved CO 2 permeance and CO 2 selective permeability.
 上記目的を達成するため、本発明は、親水性ポリマーのゲル膜中にCOキャリアと粒子状の吸湿剤を含むことを特徴とするCO促進輸送膜を提供する。 In order to achieve the above object, the present invention provides a CO 2 promoting transport membrane characterized by containing a CO 2 carrier and a particulate hygroscopic agent in a gel membrane of a hydrophilic polymer.
 膜内に水分が少ない場合でも二酸化炭素は促進輸送されるが、その透過速度は一般に小さいため、高い透過速度を得るには膜内に多くの水分が保持されている必要がある。従って、上記特徴のCO促進輸送膜によれば、ゲル膜中に、粒子状の吸湿剤が含まれるため、ゲル膜の水分保持力が向上し、COパーミアンスとCO選択透過性の改善が期待される。 Carbon dioxide is promoted and transported even when there is little water in the membrane, but since its permeation rate is generally low, it is necessary to retain a large amount of water in the membrane in order to obtain a high permeation rate. Therefore, according to the CO 2 promoting transport membrane having the above characteristics, since the gel membrane contains a particulate hygroscopic agent, the water retention capacity of the gel membrane is improved, and the CO 2 permeance and the CO 2 selective permeability are improved. There is expected.
 更に、上記特徴のCO促進輸送膜において、前記吸湿剤が多孔質粒子であることが好ましい。これにより、吸湿剤の比表面積の増加により吸湿性能が向上し、COパーミアンスとCO選択透過性の更なる改善が期待される。 Further, in the CO 2 promoting transport membrane having the above characteristics, it is preferable that the hygroscopic agent is porous particles. As a result, the hygroscopic performance is improved by increasing the specific surface area of the hygroscopic agent, and further improvement in CO 2 permeance and CO 2 selective permeability is expected.
 更に、上記特徴のCO促進輸送膜において、前記吸湿剤が前記ゲル膜中に分散して存在していることが好ましい。これにより、COパーミアンスとCO選択透過性のCO促進輸送膜の全面に亘って一様な改善が期待される。 Further, in the CO 2 promoting transport membrane having the above characteristics, it is preferable that the hygroscopic agent is dispersed in the gel membrane. As a result, uniform improvement is expected over the entire surface of the CO 2 promoted transport membrane having CO 2 permeance and CO 2 selective permeability.
 更に、上記特徴のCO促進輸送膜において、前記吸湿剤の粒子径が75μm以下であることが好ましい。CO促進輸送膜のゲル膜の膜厚として200μm程度の薄さの場合が想定されるため、粒子径が75μmを超えて大きくなると、ゲル膜を貫通する欠陥による膜性能の低下を招く可能性があり、粒子径はゲル膜の膜厚に対して40%程度以下、より好ましくは35%程度以下に抑制するのが好ましい。 Further, in the CO 2 promoting transport membrane having the above characteristics, it is preferable that the particle size of the hygroscopic agent is 75 μm or less. Since it is assumed that the thickness of the gel film of the CO 2 promoting transport film is as thin as about 200 μm, if the particle size exceeds 75 μm, the film performance may deteriorate due to defects penetrating the gel film. The particle size is preferably suppressed to about 40% or less, more preferably about 35% or less, based on the thickness of the gel film.
 更に、上記特徴のCO促進輸送膜において、前記吸湿剤がケイ素化合物であることが好ましい。吸湿剤として利用可能なケイ素化合物として、シリカゲル、ゼオライト等が想定される。 Further, in the CO 2 promoting transport membrane having the above characteristics, it is preferable that the hygroscopic agent is a silicon compound. Silica gel, zeolite and the like are assumed as silicon compounds that can be used as a hygroscopic agent.
 更に、上記特徴のCO促進輸送膜において、前記親水性ポリマーが、ポリビニルアルコール-ポリアクリル酸塩共重合体、ポリビニルアルコール、ポリアクリル酸、キトサン、ポリビニルアミン、ポリアリルアミン、及び、ポリビニルピロリドンから選択されるポリマーであることが好ましい。ここで、当業者において、ポリビニルアルコール-ポリアクリル酸塩共重合体は、ポリビニルアルコール-ポリアクリル酸共重合体と呼ばれることもある。 Further, in the CO 2 promoted transport film having the above characteristics, the hydrophilic polymer is selected from polyvinyl alcohol-polyacrylate copolymer, polyvinyl alcohol, polyacrylic acid, chitosan, polyvinylamine, polyallylamine, and polyvinylpyrrolidone. It is preferably a polymer to be used. Here, those skilled in the art may refer to the polyvinyl alcohol-polyacrylate copolymer as a polyvinyl alcohol-polyacrylic acid copolymer.
 更に、上記特徴のCO促進輸送膜において、前記COキャリアが、アルカリ金属の炭酸塩、アルカリ金属の重炭酸塩、アルカリ金属の水酸化物、及び、アミノ酸の内の少なくとも何れか1つを含んで構成されることが好ましく、更に、前記アルカリ金属が、セシウムまたはルビジウムであることが好ましい。また、COキャリアとして利用できるアミノ酸として、例えば、グリシンや2,3‐ジアミノプロピオン酸塩(DAPA)等が想定される。 Further, in the CO 2 promoting transport film having the above-mentioned characteristics, the CO 2 carrier contains at least one of an alkali metal carbonate, an alkali metal bicarbonate, an alkali metal hydroxide, and an amino acid. It is preferable that the alkali metal is composed of cesium or rubidium. Further, as an amino acid that can be used as a CO 2 carrier, for example, glycine, 2,3-diaminopropionate (DAPA) and the like are assumed.
 更に、上記特徴のCO促進輸送膜において、前記ゲル膜がハイドロゲルであることが好ましい。 Further, in the CO 2 promoting transport membrane having the above characteristics, it is preferable that the gel membrane is a hydrogel.
 ハイドロゲルは、親水性ポリマーが架橋することで形成された三次元網目構造物であり、水を吸収することで膨潤する性質を有している。 Hydrogel is a three-dimensional network structure formed by cross-linking a hydrophilic polymer, and has the property of swelling by absorbing water.
 上記特徴のCO促進輸送膜において、ゲル膜を保水性の高いハイドロゲルで構成することにより、ゲル膜の水分保持力が向上し、COパーミアンスとCO選択透過性の更なる改善が期待される。 In the CO 2 promoting transport membrane having the above characteristics, by forming the gel membrane with a hydrogel having high water retention, the water retention capacity of the gel membrane is improved, and further improvement in CO 2 permeance and CO 2 selective permeability is expected. Will be done.
 更に、上記特徴のCO促進輸送膜において、前記ゲル膜が、親水性の多孔膜に担持されていることが好ましい。 Further, in the CO 2 promoting transport membrane having the above characteristics, it is preferable that the gel membrane is supported on a hydrophilic porous membrane.
 先ず、ゲル膜が多孔膜に支持されることにより、CO促進輸送膜の使用時の強度が向上する。この結果、当該CO促進輸送膜をCO透過型メンブレンリアクター(CO促進輸送膜を備えたCO変成器)へ応用した場合に、CO促進輸送膜の両側(反応器内外)での圧力差が大きく(例えば、2気圧以上)なっても十分な膜強度を確保できる。 First, since the gel membrane is supported by the porous membrane, the strength of the CO 2 promoting transport membrane during use is improved. As a result, the pressure of the CO 2 -facilitated transport membrane when applied to CO 2 permeable membrane reactor (CO 2 -facilitated transport membrane CO transformer having a), on both sides of the CO 2 -facilitated transport membrane (reactor internal and external) Sufficient film strength can be secured even if the difference is large (for example, 2 atm or more).
 更に、一般に、多孔膜が疎水性であると、100℃以下においてゲル膜内の水分が多孔膜内の細孔に侵入して膜性能を低下させるのを防止でき、また、100℃以上においてゲル膜内の水分が少なくなる状況でも同様の効果が期待できると考えられるため、疎水性の多孔膜の使用が推奨されるが、ゲル膜を担持する多孔膜が親水性であると、後述する理由により、欠陥の少ないゲル膜を安定して作製することができ、高い対水素選択透過性を維持できる。 Further, in general, when the porous membrane is hydrophobic, it is possible to prevent the moisture in the gel membrane from invading the pores in the porous membrane at 100 ° C. or lower and lower the membrane performance, and the gel at 100 ° C. or higher. Since the same effect can be expected even when the water content in the membrane is low, the use of a hydrophobic porous membrane is recommended, but the reason why the porous membrane that supports the gel membrane is hydrophilic will be described later. As a result, a gel film with few defects can be stably produced, and high selective permeability to hydrogen can be maintained.
 更に、本発明は、上記特徴のCO促進輸送膜を用いて、所定の主成分ガスとCOを含む混合ガスを前記CO促進輸送膜に供給し、前記混合ガスから前記CO促進輸送膜を透過した前記COを分離することを特徴とするCO分離方法を提供する。 Further, in the present invention, the CO 2 promoted transport film having the above characteristics is used to supply a mixed gas containing a predetermined main component gas and CO 2 to the CO 2 promoted transport film, and the CO 2 promoted transport from the mixed gas. Provided is a CO 2 separation method characterized by separating the CO 2 that has permeated the membrane.
 更に、本発明は、上記特徴のCO促進輸送膜を備え、所定の主成分ガスとCOを含む混合ガスを前記CO促進輸送膜に供給し、前記混合ガスから前記CO促進輸送膜を透過した前記COを分離することを特徴とするCO分離装置を提供する。 Furthermore, the present invention includes a CO 2 -facilitated transport membrane having the above characteristics, supplying a mixed gas containing a predetermined main component gas and CO 2 in the CO 2 -facilitated transport membrane, the CO 2 -facilitated transport membrane from the mixed gas Provided is a CO 2 separation apparatus characterized by separating the CO 2 that has passed through the gas.
 更に、本発明は、上記特徴のCO促進輸送膜の製造方法であって、前記親水性ポリマー、前記COキャリア、及び、前記吸湿剤を含む水溶液からなるゾル溶液を調製する工程と、前記ゾル溶液を親水性の多孔膜にキャストした後にゲル化して前記ゲル膜を作製する工程と、を有することを特徴とするCO促進輸送膜の製造方法を提供する。 Further, the present invention is a method for producing a CO 2 promoted transport film having the above-mentioned characteristics, wherein a step of preparing a sol solution composed of an aqueous solution containing the hydrophilic polymer, the CO 2 carrier, and the hygroscopic agent, and the above. Provided is a method for producing a CO 2- promoted transport film, which comprises a step of casting a sol solution into a hydrophilic porous film and then gelling to prepare the gel film.
 上記特徴のCO促進輸送膜の製造方法によれば、ゲル膜を作製する工程において、ゾル溶液を親水性の多孔膜上にキャストすると、多孔膜の細孔内がゾル溶液で満たされ、更に、多孔膜の表面にゾル溶液が塗布される。このゾル溶液をゲル化することによりゲル膜を作製すると、多孔膜の表面のみならず細孔内にもゲル膜が充填されるので欠陥が生じ難くなり、ゲル膜の製膜成功率が高くなる。 According to the method for producing a CO 2 promoted transport membrane having the above characteristics, when the sol solution is cast on the hydrophilic porous membrane in the step of producing the gel membrane, the pores of the porous membrane are filled with the sol solution, and further. , The sol solution is applied to the surface of the porous membrane. When a gel film is produced by gelling this sol solution, the gel film is filled not only on the surface of the porous film but also in the pores, so that defects are less likely to occur and the success rate of gel film formation is increased. ..
 細孔部分の割合(多孔度)、及び、細孔が膜表面に垂直に真っ直ぐではなく曲がりくねっていること(屈曲率)を考慮すると、細孔内のゲル膜はガス透過の大きな抵抗となるので、多孔膜表面のゲル膜と比較して透過性は低くなり、ガスパーミアンスは低下する。他方、疎水性の多孔膜上にキャスト溶液をキャストすると多孔膜の細孔内は液で満たされずに多孔膜の表面のみにキャスト溶液が塗布され細孔はガスで満たされるので、疎水性多孔膜上のゲル層におけるガスパーミアンスは、親水性多孔膜と比較して高くなると予想される。 Considering the proportion of pores (permeance) and the fact that the pores are not straight and meandering (tortuosity) perpendicular to the film surface, the gel film in the pores has a large resistance to gas permeation. , The permeability is lower than that of the gel membrane on the surface of the porous membrane, and the gas permeance is lowered. On the other hand, when the cast solution is cast on the hydrophobic porous membrane, the inside of the pores of the porous membrane is not filled with the liquid, the cast solution is applied only to the surface of the porous membrane, and the pores are filled with gas. The gas permence in the upper gel layer is expected to be higher than that of the hydrophilic porous membrane.
 しかし、細孔内のゲル膜と比較して膜表面のゲル膜では微小な欠陥が生じ易く、製膜成功率は低下する。ここで、HとCOを含む混合ガスからCOを分離する場合を想定すると、HはCOより分子サイズが非常に小さいので、微小な欠陥個所ではCOよりHの方が、パーミアンスが著しく大きくなる。尚、欠陥箇所以外では、促進輸送機構で透過するCOパーミアンスは、物理的な溶解、拡散機構で透過するHパーミアンスより格段に大きい。 However, as compared with the gel film in the pores, the gel film on the surface of the film is more likely to have minute defects, and the success rate of film formation is lowered. Here, assuming a case where CO 2 is separated from a mixed gas containing H 2 and CO 2 , H 2 has a much smaller molecular size than CO 2 , so H 2 is better than CO 2 at minute defects. , Permeance is significantly increased. Except for the defective part, the CO 2 permeance transmitted by the accelerated transport mechanism is much larger than the H 2 permeance transmitted by the physical dissolution and diffusion mechanism.
 結果として、疎水性多孔膜を使用した場合の対水素選択性(CO/H)は、親水性多孔膜を使用した場合と比較して低下することになる。従って、実用化の観点からは、CO促進輸送膜の安定性、耐久性が非常に重要となり、対水素選択性(CO/H)の
高い親水性多孔膜を使用する方が有利となる。
As a result, the hydrogen selectivity (CO 2 / H 2 ) when the hydrophobic porous membrane is used is lower than that when the hydrophilic porous membrane is used. Therefore, from the viewpoint of practical use, the stability and durability of the CO 2 promoted transport membrane are very important, and it is advantageous to use a hydrophilic porous membrane having high hydrogen selectivity (CO 2 / H 2). Become.
 更に、上記特徴のCO促進輸送膜の製造方法において、前記ゾル溶液を調製する工程において、前記吸湿剤を先に添加した純水に、前記親水性ポリマーと前記COキャリアを添加して撹拌することが好ましい。ゾル溶液を調製する工程において、純水に吸湿剤を先に添加することで、後で添加するCOキャリア等の影響を受けずに吸湿剤に純水の水分子を吸着させておくことができ、ゲル膜の保水性を高めることができる。 Further, in the method for producing a CO 2 promoted transport film having the above characteristics, in the step of preparing the sol solution, the hydrophilic polymer and the CO 2 carrier are added to pure water to which the hygroscopic agent has been added first, and the mixture is stirred. It is preferable to do so. In the process of preparing the sol solution, by adding the hygroscopic agent to the pure water first, it is possible to adsorb the water molecules of the pure water to the hygroscopic agent without being affected by the CO 2 carriers added later. It is possible to increase the water retention of the gel film.
 上記特徴のCO促進輸送膜及びその製造方法によれば、COパーミアンスとCO選択透過性(例えばCO/H選択性)の改善されたCO促進輸送膜を安定して供給することができる。 According to the CO 2 promoted transport membrane having the above characteristics and the method for producing the same, a CO 2 promoted transport membrane having improved CO 2 permeance and CO 2 selective permeability (for example, CO 2 / H 2 selectivity) is stably supplied. be able to.
 更に、上記特徴のCO分離方法及び装置によれば、高いCO選択透過性(例えばCO/H選択性)を有するCO促進輸送膜を使用することで、COとH等の主成分ガスを含む混合ガスからCOを選択的に高効率に分離することが可能となる。 Further, according to the CO 2 separation method and apparatus having the above characteristics , CO 2 and H 2 and the like can be obtained by using a CO 2 promoting transport film having high CO 2 selective permeability (for example, CO 2 / H 2 selectivity). It is possible to selectively separate CO 2 from a mixed gas containing the main component gas of the above with high efficiency.
本発明に係るCO促進輸送膜の一実施形態における構造を模式的に示す断面図Sectional drawing which shows typically the structure in one Embodiment of the CO 2 promotion transport membrane which concerns on this invention. 本発明に係るCO促進輸送膜の製造方法を示す工程図The process drawing which shows the manufacturing method of the CO 2 promotion transport membrane which concerns on this invention. 本発明に係るCO促進輸送膜の膜性能の評価実験に使用した実施例1,2及び比較例1,2の各サンプルのゲル膜の構成条件を一覧表示する図The figure which lists the constituent conditions of the gel film of each sample of Examples 1 and 2 and Comparative Examples 1 and 2 used in the evaluation experiment of the membrane performance of the CO 2 promotion transport membrane which concerns on this invention 図3に示す実施例1のサンプルS1と比較例1のサンプルC1の膜性能(COパーミアンス、Hパーミアンス、CO/H選択性)をグラフ化して示す図 FIG. 3 is a graph showing the film performance (CO 2 permeance, H 2 permeance, CO 2 / H 2 selectivity) of sample S1 of Example 1 and sample C1 of Comparative Example 1 shown in FIG. 図3に示す実施例1のサンプルS2~S6及び比較例1のサンプルC2のCO/H選択性をグラフ化して示す図 FIG. 3 is a graph showing the CO 2 / H 2 selectivity of samples S2 to S6 of Example 1 and sample C2 of Comparative Example 1 shown in FIG. 図3に示す実施例2のサンプルG1と比較例2のサンプルC3の膜性能(COパーミアンス、Hパーミアンス、CO/H選択性)をグラフ化して示す図 The graph which shows the film performance (CO 2 permeance, H 2 permeance, CO 2 / H 2 selectivity) of the sample G1 of Example 2 and the sample C3 of Comparative Example 2 shown in FIG. 3 in a graph. 図3に示す実施例2のサンプルG2~G7及び比較例1のサンプルC2のCO/H選択性をグラフ化して示す図 FIG. 3 is a graph showing the CO 2 / H 2 selectivity of the samples G2 to G7 of Example 2 and the sample C2 of Comparative Example 1 shown in FIG. 本発明に係るCO分離装置の一実施形態における概略の構成を模式的に示す構成図A block diagram schematically showing a schematic configuration in one embodiment of the CO 2 separation device according to the present invention.
 本願発明者は、鋭意研究により、CO促進輸送膜のCOキャリアを含む上記(化1)に示したCOとCOキャリアの反応の生じるゲル膜中に、粒子状の吸湿剤を含ませることで、Hパーミアンスに対してCOパーミアンスが向上し、CO/H選択性が従来の当該吸湿剤を含まないCO促進輸送膜と比較して向上することを見出した。そして、本願発明者は、上記新知見に基づいて、以下に示すCO促進輸送膜及びその製造方法、並びに、CO分離方法及び装置の発明に至った。 The present inventor has by extensive studies, the gel film of occurrence of the reaction of CO 2 and CO 2 carrier shown in the above (Formula 1) containing CO 2 carrier of CO 2 facilitated transport membrane, free of particulate desiccant It was found that the CO 2 permeance was improved with respect to the H 2 permeance, and the CO 2 / H 2 selectivity was improved as compared with the conventional CO 2 promoting transport film containing no such hygroscopic agent. Then, based on the above new findings, the inventor of the present application has invented the CO 2 promoting transport membrane shown below, a method for producing the same, and a CO 2 separation method and apparatus.
 [第1実施形態]
 先ず、本発明に係るCO促進輸送膜及びその製造方法(以下、適宜「本促進輸送膜」及び「本製造方法」という。)の一実施形態につき、図面に基づいて説明する。
[First Embodiment]
First, an embodiment of the CO 2 promoted transport membrane and the method for producing the same (hereinafter, appropriately referred to as “the present accelerated transport membrane” and “the present production method”) according to the present invention will be described with reference to the drawings.
 [本促進輸送膜の構成]
 本促進輸送膜は、水分を含む親水性ポリマーのゲル膜内にCOキャリアと粒子状の吸湿剤を含有した、高いCOパーミアンスとCO選択透過性(例えばCO/H選択性)を有するCO促進輸送膜であり、CO透過型メンブレンリアクター等へ応用可能
なCO促進輸送膜である。更に、本促進輸送膜は、高いCO選択透過性を安定して実現するために、ゲル膜を担持する支持膜として、親水性の多孔膜を採用している。
[Construction of this accelerated transport membrane]
This accelerated transport membrane contains a CO 2 carrier and a particulate hygroscopic agent in a gel membrane of a hydrophilic polymer containing water , and has high CO 2 permeation and CO 2 selective permeability (for example, CO 2 / H 2 selectivity). a CO 2 facilitated transport membrane having a applicable a CO 2 -facilitated transport membrane to CO 2 permeable membrane reactor, and the like. Further, in this accelerated transport membrane, a hydrophilic porous membrane is adopted as a support membrane for supporting the gel membrane in order to stably realize high CO 2 selective permeability.
 具体的には、本促進輸送膜は、一例として、ゲル膜の膜材料である親水性ポリマーとして、ポリビニルアルコール-ポリアクリル酸(PVA/PAA)塩共重合体、ポリビニルアルコール、ポリアクリル酸、キトサン、ポリビニルアミン、ポリアリルアミン、または、ポリビニルピロリドンを使用し、COキャリアとして、炭酸セシウム(CsCO)、炭酸ルビジウム(RbCO)等のアルカリ金属の炭酸塩、重炭酸塩、または、水酸化物、或いは、グリシンや2,3‐ジアミノプロピオン酸塩(DAPA)等のアミノ酸を使用し、粒子状の吸湿剤として、シリカゲル、グラファイト等の多孔質粒子を使用する。尚、粒子状の吸湿剤としてグラファイト粒子を使用する場合は、後述する方法で、グラファイト表面を界面活性剤を用いて改質して撥水性を軽減したものを使用する。 Specifically, this accelerated transport film is, for example, a polyvinyl alcohol-polyacrylic acid (PVA / PAA) salt copolymer, polyvinyl alcohol, polyacrylic acid, chitosan as a hydrophilic polymer which is a film material of a gel film. , Polyvinylamine, polyallylamine, or polyvinylpyrrolidone, and as CO 2 carriers, carbonates of alkali metals such as cesium carbonate (Cs 2 CO 3 ), rubidium carbonate (Rb 2 CO 3 ), or bicarbonate, or , Hydrophilic or amino acids such as glycine and 2,3-diaminopropionate (DAPA) are used, and porous particles such as silica gel and graphite are used as the particulate hygroscopic agent. When graphite particles are used as the particulate hygroscopic agent, the graphite surface is modified with a surfactant to reduce water repellency by the method described later.
 ここで、COキャリアがアルカリ金属の炭酸塩の場合には、上記(化1)に示す反応が生じるが、COキャリアがアルカリ金属の水酸化物の場合は、下記の(化2)に示すような反応が生じる。尚、(化2)では、一例としてアルカリ金属がセシウムの場合を示す。 Here, when the CO 2 carrier is an alkali metal carbonate, the reaction shown in (Chemical formula 1) above occurs, but when the CO 2 carrier is an alkali metal hydroxide, the following (Chemical formula 2) occurs. The reaction shown is occurring. In (Chemical Formula 2), the case where the alkali metal is cesium is shown as an example.
 (化2)
 CO2 + CsOH → CsHCO
 CsHCO3 + CsOH → CsCO3 + H
(Chemical 2)
CO 2 + CsOH → CsHCO 3
CsHCO 3 + CsOH → Cs 2 CO 3 + H 2 O
 尚、上記(化2)を纏めると、下記(化3)のように表すことができる。即ち、これにより、添加された水酸化セシウムが炭酸セシウムに転化することが示される。更に、上記(化2)より、COキャリアとして、アルカリ金属の炭酸塩の代わりに重炭酸塩を添加した場合においても同様の効果を得ることができることが分かる。 The above (Chemical formula 2) can be summarized as shown below (Chemical formula 3). That is, this indicates that the added cesium hydroxide is converted to cesium carbonate. Furthermore, from the above (Chemical formula 2), it can be seen that the same effect can be obtained even when a bicarbonate is added instead of the alkali metal carbonate as the CO 2 carrier.
 (化3)
 CO2 + 2CsOH → CsCO3 + H
(Chemical 3)
CO 2 + 2CsOH → Cs 2 CO 3 + H 2 O
 グリシンやDAPA等のアミノ酸をCOキャリアとして利用する場合、二酸化炭素はNH と反応せず、フリーのNHと反応することが知られている。このため、COキャリアとしてグリシンやDAPA等のアミノ酸を用いる場合、アミノ酸に対して同モル数以上のアルカリを添加して、後述のゾル溶液中に溶解したNH を脱プロトン化してNHに変換する必要がある。当該アルカリとしては、プロトン化したNH からプロトンを奪い、NHに変換できるだけの強塩基性を有するものであれば良く、アルカリ金属元素の水酸化物または炭酸塩を好適に利用できる。 When using amino acids such as glycine or DAPA as CO 2 carrier, carbon dioxide does not react with NH 3 +, are known to react with free NH 2 in. Therefore, when using amino acids such as glycine or DAPA as CO 2 carrier, with the addition of the number of moles or more alkali to the amino acid, the NH 3 + dissolved in the sol solution described later deprotonated NH 2 Need to be converted to. As the alkali, it deprives proton from NH 3 + protonated, as long as it has only strongly basic can be converted into NH 2, can be suitably used a hydroxide or carbonate of an alkali metal element.
 粒子状の吸湿剤は、一例として、篩掛けにより粒子径を75μm以下に分級したものを使用する。粒子径を75μm以下に分級する理由は、ゲル膜の膜厚が約200μm~300μmである場合が想定されるため、粒子径が75μmを超えると、吸湿剤を経由するゲル膜を貫通するパスが欠陥として形成される可能性が高くなり、膜性能、特に、CO選択透過性の低下が懸念されるためである。 As an example, the particulate hygroscopic agent used is one in which the particle size is classified to 75 μm or less by sieving. The reason for classifying the particle size to 75 μm or less is that the film thickness of the gel film is assumed to be about 200 μm to 300 μm. Therefore, when the particle size exceeds 75 μm, a path penetrating the gel film via the hygroscopic agent is created. This is because there is a high possibility that it will be formed as a defect, and there is a concern that the film performance, particularly the CO 2 selective permeability, will be deteriorated.
 また、本促進輸送膜は、一例として、図1に模式的に示すように、ゲル膜1を担持した親水性多孔膜2が、疎水性多孔膜3に支持される3層構造で構成される。また、ゲル膜1を担持した親水性多孔膜2が2枚の疎水性多孔膜3に挟持される4層構造であってもよい。尚、ゲル膜1は、親水性多孔膜2によって支持されており、一定の機械的強度を有しているため、必ずしも疎水性多孔膜3に支持または挟持される構造である必要はない。例えば、親水性多孔膜2を円筒状に形成することでも機械的強度は増強できる。従って、本促
進輸送膜は、必ずしも平板状のものに限定されない。
Further, as an example, this accelerated transport membrane is composed of a hydrophilic porous membrane 2 carrying a gel membrane 1 and a three-layer structure supported by a hydrophobic porous membrane 3, as schematically shown in FIG. .. Further, the hydrophilic porous membrane 2 supporting the gel film 1 may have a four-layer structure sandwiched between two hydrophobic porous membranes 3. Since the gel film 1 is supported by the hydrophilic porous film 2 and has a certain mechanical strength, it does not necessarily have to have a structure supported or sandwiched by the hydrophobic porous film 3. For example, the mechanical strength can be enhanced by forming the hydrophilic porous membrane 2 in a cylindrical shape. Therefore, the accelerated transport membrane is not necessarily limited to a flat plate.
 また、ゲル膜中の親水性ポリマーとCOキャリアの合計重量を基準として、ゲル膜中において、親水性ポリマーは約10~80重量%の範囲で存在し、COキャリアは約20~90重量%の範囲で存在する。 Further, based on the total weight of the hydrophilic polymer and the CO 2 carrier in the gel film, the hydrophilic polymer is present in the gel film in the range of about 10 to 80% by weight, and the CO 2 carrier is about 20 to 90% by weight. It exists in the range of%.
 更に、粒子状の吸湿剤は、後述するゾル溶液の吸湿剤を除く全重量を基準として、例えば、約0.01~0.2重量%、より好ましくは、約0.01~0.1重量%がゲル膜中に存在する。また、親水性ポリマーとCOキャリアの合計重量を基準とした場合には、約0.12~2.4重量%、より好ましくは、約0.12~1.2重量%が存在する。更に、親水性ポリマーの重量を基準とした場合には、約0.44~8.8重量%、より好ましくは、約0.44~4.4重量%が存在する。 Further, the particulate hygroscopic agent is, for example, about 0.01 to 0.2% by weight, more preferably about 0.01 to 0.1% by weight, based on the total weight of the sol solution excluding the hygroscopic agent described later. % Is present in the gel membrane. Further, based on the total weight of the hydrophilic polymer and the CO 2 carrier, about 0.12 to 2.4% by weight, more preferably about 0.12 to 1.2% by weight is present. Further, based on the weight of the hydrophilic polymer, there are about 0.44 to 8.8% by weight, more preferably about 0.44 to 4.4% by weight.
 親水性多孔膜は、親水性に加えて、100℃以上の耐熱性、機械的強度、ゲル膜との密着性を有するのが好ましく、更に、多孔度(空隙率)が55%以上で、細孔径は0.1~1μmの範囲にあるのが好ましい。本実施形態では、これらの条件を備えた親水性多孔膜として、親水性化した四フッ化エチレン重合体(PTFE)多孔膜を使用する。 In addition to hydrophilicity, the hydrophilic porous membrane preferably has heat resistance of 100 ° C. or higher, mechanical strength, and adhesion to the gel membrane, and further has a porosity (porosity) of 55% or higher and is fine. The pore diameter is preferably in the range of 0.1 to 1 μm. In the present embodiment, a hydrophilic tetrafluoroethylene polymer (PTFE) porous membrane is used as the hydrophilic porous membrane satisfying these conditions.
 疎水性多孔膜は、疎水性に加えて、100℃以上の耐熱性、機械的強度、ゲル膜との密着性を有するのが好ましく、更に、多孔度(空隙率)が55%以上で、細孔径は0.1~1μmの範囲にあるのが好ましい。本実施形態では、これらの条件を備えた疎水性多孔膜として、親水性化していない四フッ化エチレン重合体(PTFE)多孔膜を使用する。 In addition to hydrophobicity, the hydrophobic porous membrane preferably has heat resistance of 100 ° C. or higher, mechanical strength, and adhesion to the gel membrane, and further has a porosity (porosity) of 55% or higher and is fine. The pore diameter is preferably in the range of 0.1 to 1 μm. In the present embodiment, a non-hydrophilic ethylene tetrafluoroethylene polymer (PTFE) porous membrane is used as the hydrophobic porous membrane satisfying these conditions.
 [本促進輸送膜の製造方法]
 次に、本促進輸送膜の製造方法(本製造方法)の一実施形態について、図2を参照して説明する。以下の説明では、親水性ポリマーとしてPVA/PAA塩共重合体、COキャリアとして炭酸セシウム(CsCO)、粒子状の吸湿剤として粒子径が75μm以下のシリカゲルまたはグラファイトの使用を想定する。尚、粒子状の吸湿剤としてグラファイトを使用する場合は、後述する方法で、グラファイト表面を界面活性剤を用いて改質して撥水性を軽減している。尚、親水性ポリマー、COキャリア、及び、吸湿剤の各添加量は、一例であり、下記の実施例1及び2のサンプル作製で使用する添加量を例示している。
[Manufacturing method of this accelerated transport membrane]
Next, an embodiment of the method for producing the accelerated transport membrane (the present production method) will be described with reference to FIG. In the following description, it is assumed that PVA / PAA salt copolymer is used as the hydrophilic polymer, cesium carbonate (Cs 2 CO 3 ) is used as the CO 2 carrier, and silica gel or graphite having a particle size of 75 μm or less is used as the particulate hygroscopic agent. .. When graphite is used as the particulate hygroscopic agent, the surface of graphite is modified with a surfactant by a method described later to reduce water repellency. The addition amounts of the hydrophilic polymer, the CO 2 carrier, and the hygroscopic agent are examples, and the addition amounts used in the sample preparation of Examples 1 and 2 below are exemplified.
 先ず、PVA/PAA塩共重合体とCOキャリアと粒子状の吸湿剤を含む水溶液からなるゾル溶液を調製する(工程1)。より詳細には、容器(例えば、秤量瓶)に純水50gと所定量の吸湿剤を添加して撹拌し、吸湿剤に純水の水分子を吸着させた後、PVA/PAA塩共重合体(例えば、住友精化製の仮称SSゲル)を1.25g、炭酸セシウムを3.44g、吸湿剤を先に添加した純水に添加し、溶解するまで(約24時間)攪拌してゾル溶液を得る。本実施形態では、吸湿剤の添加量は、吸湿剤を除くゾル溶液の全重量に対して、0.01~0.2重量%の範囲内で調整した。 First, a sol solution composed of an aqueous solution containing a PVA / PAA salt copolymer, a CO 2 carrier, and a particulate hygroscopic agent is prepared (step 1). More specifically, 50 g of pure water and a predetermined amount of hygroscopic agent are added to a container (for example, a weighing bottle) and stirred to adsorb water molecules of pure water to the hygroscopic agent, and then a PVA / PAA salt copolymer. Add 1.25 g (tentative name SS gel manufactured by Sumitomo Seika), 3.44 g of cesium carbonate, and pure water to which a hygroscopic agent has been added first, and stir until it dissolves (about 24 hours) to make a sol solution. To get. In the present embodiment, the amount of the hygroscopic agent added was adjusted within the range of 0.01 to 0.2% by weight with respect to the total weight of the sol solution excluding the hygroscopic agent.
 尚、本実施形態では、吸湿剤としてグラファイトを使用する場合、予め以下の要領で、グラファイト表面を界面活性剤を用いて表面改質して撥水性を軽減しておく。表面改質処理は、一例として、純水30gに対して界面活性剤を0.3gを混合したものに、グラファイト粒子を添加し、スターラーで24時間撹拌して行っている。本実施形態では、界面活性剤として、非イオン界面活性剤のアセチレノールE00を使用しているが、界面活性剤として、グラファイトを表面改質して撥水性を軽減可能であれば、非イオン界面活性剤に限定されるものではなく、非イオン界面活性剤であっても、アセチレノールE00に限定されるものではない。 In the present embodiment, when graphite is used as a hygroscopic agent, the surface of graphite is surface-modified with a surfactant in advance to reduce water repellency in the following manner. As an example, the surface modification treatment is carried out by adding graphite particles to a mixture of 30 g of pure water and 0.3 g of a surfactant and stirring with a stirrer for 24 hours. In the present embodiment, the nonionic surfactant acetylenol E00 is used as the surfactant, but if it is possible to surface-modify graphite as the surfactant to reduce water repellency, the nonionic surfactant is used. It is not limited to the agent, and even a nonionic surfactant is not limited to acetylenol E00.
 工程1の後工程として、工程1で得たゾル溶液に対して水溶性ナイロン0.125gを添加し、80℃24時間撹拌してもよい。 As a post-step of step 1, 0.125 g of water-soluble nylon may be added to the sol solution obtained in step 1 and stirred at 80 ° C. for 24 hours.
 次に、工程1または工程1の後工程で得たゾル溶液を、親水性PTFE多孔膜(例えば、住友電工ファインポリマー製、WPW-020-80、膜厚80μm、細孔径0.2μm、空隙率約75%)と疎水性PTFE多孔膜(例えば、住友電工ファインポリマー製、フロロポアFP010、膜厚60μm、細孔径0.1μm、空隙率約55%)を2枚重ね合わせた層状多孔膜の親水性PTFE多孔膜側の面上に、アプリケータでキャストする(工程2)。尚、後述する実施例及び比較例のサンプルでのキャスト厚は500μmである。ここで、ゾル溶液は、親水性PTFE多孔膜中の細孔内に浸透するが、疎水性のPTFE多孔膜の境界面で浸透が停止し、層状多孔膜の反対面までゾル溶液がしみ込まず、層状多孔膜の疎水性PTFE多孔膜側面にはゾル溶液が存在せず取り扱いが容易となる。 Next, the sol solution obtained in step 1 or the post-step of step 1 is subjected to a hydrophilic PTFE porous membrane (for example, manufactured by Sumitomo Electric Fine Polymer, WPW-020-80, film thickness 80 μm, pore diameter 0.2 μm, void ratio). Approximately 75%) and hydrophobic PTFE porous membrane (for example, manufactured by Sumitomo Electric Fine Polymer, Fluoropore FP010, film thickness 60 μm, pore diameter 0.1 μm, void ratio about 55%) Cast with an applicator on the surface of the PTFE porous membrane side (step 2). The cast thickness of the samples of Examples and Comparative Examples described later is 500 μm. Here, the sol solution permeates into the pores in the hydrophilic PTFE porous membrane, but the permeation stops at the interface of the hydrophobic PTFE porous membrane, and the sol solution does not permeate to the opposite surface of the layered porous membrane. There is no sol solution on the side surface of the hydrophobic PTFE porous membrane of the layered porous membrane, which facilitates handling.
 次に、キャスト後の親水性PTFE多孔膜を室温で自然乾燥させた後、ゾル溶液をゲル化させゲル膜を生成する(工程3)。ここで、ゲル化とは、ポリマーの分散液であるゾル溶液を乾燥させて固体状にすること意味し、ゲル膜とは、当該ゲル化により生成された固体状の膜で、液膜とは明確に区別される。 Next, the hydrophilic PTFE porous membrane after casting is naturally dried at room temperature, and then the sol solution is gelled to form a gel membrane (step 3). Here, gelation means that a sol solution, which is a dispersion liquid of a polymer, is dried to form a solid state, and a gel film is a solid film produced by the gelation, and is a liquid film. Clearly distinguished.
 本製造方法では、工程2において、ゾル溶液を層状多孔膜の親水性PTFE多孔膜側の表面にキャストするため、工程3において、ゲル膜は、親水性PTFE多孔膜の表面(キャスト面)に形成されるのみならず細孔内にも充填して形成されるので、欠陥(ピンホール等の微小欠陥)が生じ難くなり、ゲル膜の製膜成功率が高くなる。尚、工程3において、自然乾燥させたPTFE多孔膜を、更に、120℃程度の温度で、2時間程度熱架橋するのが望ましい。尚、後述する実施例及び比較例のサンプルでは、何れも熱架橋を行っている。熱架橋により、ゲル膜の膜厚は200μm程度となる。 In this production method, since the sol solution is cast on the surface of the layered porous membrane on the hydrophilic PTFE porous membrane side in step 2, the gel film is formed on the surface (cast surface) of the hydrophilic PTFE porous membrane in step 3. Since it is formed by filling the pores as well as being formed, defects (micro defects such as pinholes) are less likely to occur, and the success rate of gel film formation is increased. In step 3, it is desirable that the naturally dried PTFE porous membrane is further thermally crosslinked at a temperature of about 120 ° C. for about 2 hours. In the samples of Examples and Comparative Examples described later, thermal cross-linking is performed. By thermal cross-linking, the film thickness of the gel film becomes about 200 μm.
 以上、工程1~工程3を経て、図1に模式的に示すように、ゲル膜1を担持した親水性多孔膜2が、疎水性多孔膜3に支持される3層構造の本促進輸送膜を得る。尚、工程3に引き続き、工程3で得た親水性PTFE多孔膜表面のゲル層側に、工程2で用いた層状多孔膜の疎水性PTFE多孔膜と同じ疎水性PTFE多孔膜を重ね、ゲル膜1を担持した親水性多孔膜2が2枚の疎水性多孔膜3に挟持される4層構造の本促進輸送膜を得るようにしてもよい。尚、図1において、ゲル膜1が親水性PTFE多孔膜2の細孔内に充填している様子を模式的に直線状に表示している。 As described above, through the steps 1 to 3, as schematically shown in FIG. 1, the hydrophilic porous membrane 2 carrying the gel film 1 is supported by the hydrophobic porous membrane 3, and this accelerated transport membrane has a three-layer structure. To get. Continuing from step 3, the same hydrophobic PTFE porous membrane as the hydrophobic PTFE porous membrane of the layered porous membrane used in step 2 was overlaid on the gel layer side of the surface of the hydrophilic PTFE porous membrane obtained in step 3, and the gel film was formed. The main accelerated transport membrane having a four-layer structure in which the hydrophilic porous membrane 2 carrying 1 is sandwiched between two hydrophobic porous membranes 3 may be obtained. In FIG. 1, the state in which the gel film 1 is filled in the pores of the hydrophilic PTFE porous film 2 is schematically shown linearly.
 [本促進輸送膜の膜性能の評価]
 以下、本促進輸送膜の具体的な膜性能について、ゲル膜中に粒子状の吸湿剤としてシリカゲル粒子を添加した実施例1のサンプルS1~S6、ゲル膜中に粒子状の吸湿剤として界面活性剤を用いて表面改質処理を施したグラファイト粒子を添加した実施例2のサンプルG1~G7、ゲル膜中に粒子状の吸湿剤を添加していない比較例1のサンプルC1~C2、及び、ゲル膜中に粒子状の吸湿剤として表面改質処理を施していないグラファイト粒子を添加した比較例2のサンプルC3を用いて評価した結果を説明する。
[Evaluation of membrane performance of this accelerated transport membrane]
Hereinafter, regarding the specific membrane performance of this accelerated transport film, the samples S1 to S6 of Example 1 in which silica gel particles are added as a particulate hygroscopic agent in the gel film, and the surface activity as a particulate hygroscopic agent in the gel film. Samples G1 to G7 of Example 2 to which silica gel particles surface-modified with an agent were added, samples C1 to C2 of Comparative Example 1 to which no particulate hygroscopic agent was added to the gel film, and The result of evaluation using the sample C3 of Comparative Example 2 in which graphite particles which have not been surface-modified as a particulate hygroscopic agent are added to the gel film will be described.
 尚、サンプルS1~S6及びG1~G7は、上述の本製造方法の工程1(後工程を含む)~工程3を経て作製されており、サンプルC1~C2は工程1においてゾル溶液に吸湿剤が添加されていない点を除き、サンプルS1~S6及びG1~G7と同様に作製されており、サンプルC3は、工程1において添加されるグラファイト粒子に対して界面活性剤による表面改質処理が施されていない点を除き、サンプルG1~G7と同様に作製されている。従って、実施例1、実施例2、比較例1、及び、比較例2の各サンプル間で、PVA/PAA塩共重合体と炭酸セシウムの各添加量は同じであり、粒子状の吸湿剤の添加量、または、グラファイト粒子に対する表面改質処理の有無において相違している以外は、
製造条件に違いはない。
The samples S1 to S6 and G1 to G7 are produced through the steps 1 (including the post-step) to 3 of the above-mentioned manufacturing method, and the samples C1 to C2 have a hygroscopic agent in the sol solution in the step 1. It was prepared in the same manner as the samples S1 to S6 and G1 to G7 except that it was not added, and the sample C3 was subjected to a surface modification treatment with a surfactant on the graphite particles added in step 1. It is prepared in the same manner as the samples G1 to G7 except that the sample G1 to G7 is not used. Therefore, the amount of the PVA / PAA salt copolymer and cesium carbonate added is the same between the samples of Example 1, Example 2, Comparative Example 1, and Comparative Example 2, and the amount of the particulate hygroscopic agent is the same. Except for differences in the amount added or the presence or absence of surface modification treatment on graphite particles
There is no difference in manufacturing conditions.
 図3に示すように、実施例1のサンプルS1~S6のシリカゲル粒子の添加量は、順番に、吸湿剤を除くゾル溶液の全重量に対して、0.08重量%、0.01重量%、0.02重量%、0.05重量%、0.08重量%、0.1重量%に設定されている。 As shown in FIG. 3, the addition amounts of the silica gel particles of the samples S1 to S6 of Example 1 were, in order, 0.08% by weight and 0.01% by weight with respect to the total weight of the sol solution excluding the hygroscopic agent. , 0.02% by weight, 0.05% by weight, 0.08% by weight, and 0.1% by weight.
 図3に示すように、実施例2のサンプルG1~G7の表面改質処理済のグラファイト粒子の添加量は、順番に、吸湿剤を除くゾル溶液の全重量に対して、0.01重量%、0.01重量%、0.04重量%、0.05重量%、0.08重量%、0.1重量%、0.2重量%に設定されている。 As shown in FIG. 3, the amount of the surface-modified graphite particles added to the samples G1 to G7 of Example 2 was, in order, 0.01% by weight based on the total weight of the sol solution excluding the hygroscopic agent. , 0.01% by weight, 0.04% by weight, 0.05% by weight, 0.08% by weight, 0.1% by weight, 0.2% by weight.
 図3に示すように、比較例1のサンプルC1~C2の粒子状の吸湿剤(シリカゲル粒子、グラファイト粒子)の添加量は0であり、比較例2のサンプルC3の表面改質未処理のグラファイト粒子の添加量は、吸湿剤を除くゾル溶液の全重量に対して、0.01重量%に設定されている。 As shown in FIG. 3, the amount of the particulate hygroscopic agents (silica gel particles, graphite particles) added to the samples C1 to C2 of Comparative Example 1 was 0, and the surface-modified untreated graphite of Sample C3 of Comparative Example 2 was added. The amount of particles added is set to 0.01% by weight with respect to the total weight of the sol solution excluding the hygroscopic agent.
 次に、実施例1,2及び比較例1,2の各サンプルの膜性能を評価するための実験方法について説明する。 Next, an experimental method for evaluating the film performance of each sample of Examples 1 and 2 and Comparative Examples 1 and 2 will be described.
 各サンプルは、ステンレス製の流通式ガス透過セルの供給側室と透過側室の間に、フッ素ゴム製ガスケットをシール材として用いて固定して使用した。実験条件は、各サンプルに対して共通であり、流通式ガス透過セルは恒温槽(電気炉)内に設置され、当該セル内の温度は160℃に固定されている。セル内の相対湿度は80%である。 Each sample was used by fixing a fluororubber gasket as a sealing material between the supply side chamber and the permeation side chamber of the stainless steel flow-type gas permeation cell. The experimental conditions are common to each sample, and the flow-type gas permeation cell is installed in a constant temperature bath (electric furnace), and the temperature in the cell is fixed at 160 ° C. The relative humidity in the cell is 80%.
 供給側室に供給される供給側ガスは、CO、H、HO(スチーム)からなる混合ガスであり、具体的には、それぞれ100ml/分の流量で供給されるCOとHを合流させて、バブラー(加湿装置)を通過させることでHO(スチーム)を混合させて生成される。供給側圧力は、445kPa(G)である。尚、(G)はゲージ圧を意味している。一方、透過側室の圧力は大気圧である。供給側室及び透過側室の各圧力は、排気ガスの排出路の途中の冷却トラップの下流側に背圧調整器を設けて調整される。 The supply-side gas supplied to the supply-side chamber is a mixed gas consisting of CO 2 , H 2 , and H 2 O (steam). Specifically, CO 2 and H 2 are supplied at a flow rate of 100 ml / min, respectively. was allowed to merge, it is produced by mixing and H 2 O (steam) by passing the bubbler (humidifier). The supply side pressure is 445 kPa (G). In addition, (G) means gauge pressure. On the other hand, the pressure in the permeation concubine is atmospheric pressure. The pressures in the supply side chamber and the permeation side chamber are adjusted by providing a back pressure regulator on the downstream side of the cooling trap in the middle of the exhaust gas discharge path.
 各サンプルの促進輸送膜を透過したガスは、透過側室側から冷却トラップを通過した後容器内に回収され、ガスクロマトグラフで定量する。尚、各サンプルの促進輸送膜を透過したガスが少量であり、そのCO濃度をガスクロマトグラフの測定範囲内に整合させるために、当該容器内に100ml/分の流量で希釈用ガスとしてNを供給する。ガスクロマトグラフで定量した結果とNの流量よりCO及びHのパーミアンス[mol/(m・s・kPa)]を計算し、その比より、CO/H選択性を算出する。 The gas that has permeated the accelerated transport membrane of each sample is collected in a container after passing through a cooling trap from the permeation side chamber side, and is quantified by a gas chromatograph. The amount of gas that has passed through the accelerated transport membrane of each sample is small, and in order to match the CO 2 concentration within the measurement range of the gas chromatograph, N 2 is used as a dilution gas in the container at a flow rate of 100 ml / min. To supply. The permeance of CO 2 and H 2 [mol / (m 2 · s · kPa)] is calculated from the result quantified by the gas chromatograph and the flow rate of N 2 , and the CO 2 / H 2 selectivity is calculated from the ratio.
 次に、上記実験結果で得られた実施例1,2及び比較例1,2の各サンプル膜性能の対比を行う。図3に、実施例1,2及び比較例1,2の各サンプルのゲル膜の構成条件(COキャリア、CO水和反応触媒、COキャリアとCO水和反応触媒のモル比率、親水性ポリマー)と、膜性能(COパーミアンス、Hパーミアンス、CO/H選択性)を一覧表示する。 Next, the performance of each sample film of Examples 1 and 2 and Comparative Examples 1 and 2 obtained in the above experimental results is compared. 3, Examples 1, 2 and structure condition (CO 2 carrier gel films of the samples of Comparative Examples 1 and 2, CO 2 hydration reaction catalyst, CO 2 carrier and CO 2 hydration molar ratio of catalyst, Hydrophilic polymer) and membrane performance (CO 2 permence, H 2 permence, CO 2 / H 2 selectivity) are listed.
 先ず、実施例1のサンプルS1と比較例1のサンプルC1の膜性能(COパーミアンス、Hパーミアンス、CO/H選択性)の対比を行う。ここでは、ゲル膜中の粒子状の吸湿剤(シリカゲル粒子)の有無による膜性能への影響が評価される。図4(A)に、サンプルS1及びC1のCOパーミアンスとHパーミアンスをグラフ化して示し、図4(B)に、サンプルS1及びC1のCO/H選択性をグラフ化して示す。図4(A)中の黒丸(●)と白丸(○)はサンプルS1とサンプルC1のCOパーミアンスを
それぞれ示し、黒四角(■)と白四角(□)はサンプルS1とサンプルC1のHパーミアンスをそれぞれ示し、図4(B)中の黒三角(▲)と白三角(△)はサンプルS1とサンプルC1のCO/H選択性をそれぞれ示している。図4(A)及び(B)の横軸は、実験開始からの経過時間を示している。
First, the film performance (CO 2 permeance, H 2 permeance, CO 2 / H 2 selectivity) of sample S1 of Example 1 and sample C1 of Comparative Example 1 is compared. Here, the effect of the presence or absence of particulate hygroscopic agents (silica gel particles) in the gel film on the film performance is evaluated. FIG. 4 (A) shows the CO 2 permeance and the H 2 permeance of the samples S1 and C1 as a graph, and FIG. 4 (B) shows the CO 2 / H 2 selectivity of the samples S1 and C1 as a graph. The black circles (●) and white circles (○) in FIG. 4 (A) indicate the CO 2 permeances of sample S1 and sample C1, respectively, and the black squares (■) and white squares (□) indicate H 2 of samples S1 and sample C1. The permeances are shown respectively, and the black triangles (▲) and white triangles (Δ) in FIG. 4 (B) show the CO 2 / H 2 selectivity of the samples S1 and C1, respectively. The horizontal axes of FIGS. 4 (A) and 4 (B) indicate the elapsed time from the start of the experiment.
 図4より、サンプルS1のHパーミアンスは、サンプルC1のHパーミアンスと比較すると、略同じか僅かに大きいのに対して、サンプルS1のCOパーミアンスは、サンプルC1のCOパーミアンスと比較すると、経過時間が1時間以降では1.6倍以上に増加しており、ゲル膜にシリカゲル粒子を添加したことにより、添加しない場合に比べてCOパーミアンスが増加し、その結果、CO/H選択性が大きく向上していることが分かる。また、サンプルS1のCO/H選択性は、時間経過とともに大きく変化してないのに対して、サンプルC1のCO/H選択性は、時間経過とともに低下する傾向が見られる。 From FIG. 4, H 2 permeance of samples S1, when compared with H 2 permeance of sample C1, with respect to substantially the same or slightly larger, CO 2 permeance of samples S1 is different from the CO 2 permeance of Sample C1 After 1 hour, the elapsed time increased 1.6 times or more, and the addition of silica gel particles to the gel film increased the CO 2 permeance compared to the case without addition, resulting in CO 2 / H. 2 It can be seen that the selectivity is greatly improved. Further, the CO 2 / H 2 selectivity of the sample S1 does not change significantly with the passage of time, whereas the CO 2 / H 2 selectivity of the sample C1 tends to decrease with the passage of time.
 次に、シリカゲル粒子の添加量の異なる実施例1のサンプルS2~S6及びゲル膜中に粒子状の吸湿剤を添加していない比較例1のサンプルC2のCO/H選択性の対比を行う。ここでは、ゲル膜中の粒子状の吸湿剤(シリカゲル粒子)の添加量によるCO/H選択性への影響が評価される。図5に、サンプルS2~S6及びC2の1時間経過後のCO/H選択性をグラフ化して示す。図5の横軸は、シリカゲル粒子の添加量(吸湿剤を除くゾル溶液の全重量に対する重量%)を示している。 Next, the CO 2 / H 2 selectivity of Samples S2 to S6 of Example 1 in which the amount of silica gel particles added is different and the CO 2 / H 2 selectivity of Sample C2 of Comparative Example 1 in which the particulate hygroscopic agent is not added to the gel film is compared. Do. Here, the effect of the amount of the particulate hygroscopic agent (silica gel particles) added in the gel film on the CO 2 / H 2 selectivity is evaluated. FIG. 5 is a graph showing the CO 2 / H 2 selectivity of samples S2 to S6 and C2 after 1 hour. The horizontal axis of FIG. 5 shows the amount of silica gel particles added (% by weight based on the total weight of the sol solution excluding the hygroscopic agent).
 図5より、ゲル膜内にシリカゲル粒子を添加した実施例1では、シリカゲル粒子の添加量が、0.01重量%~0.1重量%の範囲内では、シリカゲル粒子の添加量が増加に伴い、CO/H選択性が徐々に増加する傾向が見られる。 From FIG. 5, in Example 1 in which the silica gel particles were added into the gel film, when the addition amount of the silica gel particles was in the range of 0.01% by weight to 0.1% by weight, the addition amount of the silica gel particles increased. , CO 2 / H 2 selectivity tends to increase gradually.
 ここで、工程1及び2においてシリカゲル粒子表面に吸着した水分子が、工程3の乾燥過程を経てゲル膜表面に形成されるものと考えられる。これにより、新たにゲル膜に浸入した水分子が、シリカゲル粒子内の微小空間に入り込むため、上記(化1)で示されるCO促進輸送反応が促進される。 Here, it is considered that the water molecules adsorbed on the surface of the silica gel particles in steps 1 and 2 are formed on the surface of the gel film through the drying process of step 3. As a result, the water molecules newly infiltrated into the gel film enter the microspace in the silica gel particles, so that the CO 2 promoted transport reaction shown in (Chemical Formula 1) above is promoted.
 次に、実施例2のサンプルG1と比較例2のサンプルC3の膜性能(COパーミアンス、Hパーミアンス、CO/H選択性)の対比を行う。ここでは、ゲル膜中の粒子状の吸湿剤(グラファイト粒子)の界面活性剤による表面改質処理の有無による膜性能への影響が評価される。図6(A)に、サンプルG1及びC3のCOパーミアンスとHパーミアンスをグラフ化して示し、図6(B)に、サンプルG1及びC3のCO/H選択性をグラフ化して示す。図6(A)中の黒丸(●)と白丸(○)はサンプルG1とサンプルC3のCOパーミアンスをそれぞれ示し、黒四角(■)と白四角(□)はサンプルG1とサンプルC3のHパーミアンスをそれぞれ示し、図6(B)中の黒三角(▲)と白三角(△)はサンプルG1とサンプルC3のCO/H選択性をそれぞれ示している。図6(A)及び(B)の横軸は、実験開始からの経過時間を示している。 Next, the film performance (CO 2 permeance, H 2 permeance, CO 2 / H 2 selectivity) of sample G1 of Example 2 and sample C3 of Comparative Example 2 is compared. Here, the influence of the presence or absence of surface modification treatment by the surfactant of the particulate hygroscopic agent (graphite particles) in the gel film on the film performance is evaluated. FIG. 6 (A) shows the CO 2 permeance and the H 2 permeance of the samples G1 and C3 as a graph, and FIG. 6 (B) shows the CO 2 / H 2 selectivity of the samples G1 and C3 as a graph. The black circles (●) and white circles (○) in FIG. 6 (A) indicate the CO 2 permeances of sample G1 and sample C3, respectively, and the black squares (■) and white squares (□) indicate H 2 of samples G1 and sample C3, respectively. The permeances are shown respectively, and the black triangles (▲) and white triangles (Δ) in FIG. 6 (B) show the CO 2 / H 2 selectivity of the samples G1 and C3, respectively. The horizontal axes of FIGS. 6 (A) and 6 (B) indicate the elapsed time from the start of the experiment.
 図6より、サンプルG1のHパーミアンスは、サンプルC3のHパーミアンスと比較すると、時間経過とともに僅かに大きくなっていくのに対して、サンプルG1のCOパーミアンスは、サンプルC3のCOパーミアンスと比較すると、経過時間が1時間から1.5時間に掛けて約1.6倍~4.4倍に大きく増加しており、経過時間が1時間以降において、ゲル膜に界面活性剤による表面改質処理の施されたグラファイト粒子を添加したことにより、表面改質処理されていない場合に比べてCOパーミアンスが増加し、その結果、CO/H選択性が大きく向上していることが分かる。また、サンプルG1のCOパーミアンスは、時間経過とともに大きく変化してないのに対して、サンプルC3のCOパーミアンスは、時間経過とともに大きく低下する傾向が見られる。また、サ
ンプルG1のCO/H選択性も、時間経過とともに大きく変化しておらず、更に、160℃の温度下で、約350~400という高い値を維持できている。
From FIG. 6, H 2 permeance of samples G1 when compared with H 2 permeance of samples C3, against going slightly larger over time, CO 2 permeance of samples G1 is CO 2 samples C3 permeance Compared with, the elapsed time increased significantly from 1 hour to 1.5 hours by about 1.6 to 4.4 times, and after the elapsed time was 1 hour or later, the surface of the gel film with a surfactant was applied. By adding the modified graphite particles, the CO 2 permeance is increased as compared with the case where the surface is not modified, and as a result, the CO 2 / H 2 selectivity is greatly improved. I understand. Further, the CO 2 permeance of the sample G1 does not change significantly with the passage of time, whereas the CO 2 permeance of the sample C3 tends to decrease significantly with the passage of time. Further, the CO 2 / H 2 selectivity of the sample G1 did not change significantly with the passage of time, and further, a high value of about 350 to 400 could be maintained at a temperature of 160 ° C.
 これは、表面改質されていない撥水性を呈するグラファイト粒子では、グラファイト粒子の細孔内に水分子を十分に吸着できず、ゲル膜の保水性を十分に維持できないためと考えられ、比較例2のサンプルC3の膜性能は、サンプルの個体差及び撥水性を呈するグラファイト粒子に起因するピンホール発生の可能性を除けば、ゲル膜中に粒子状の吸湿剤を添加していない比較例1のサンプルC1の膜性能と、基本的に大差がないことを示している。 It is considered that this is because the water-repellent graphite particles that have not been surface-modified cannot sufficiently adsorb water molecules in the pores of the graphite particles and cannot sufficiently maintain the water retention of the gel film. Regarding the film performance of Sample C3 of No. 2, Comparative Example 1 in which no particulate hygroscopic agent was added to the gel film, except for individual differences of the samples and the possibility of pinholes occurring due to the graphite particles exhibiting water repellency. It is shown that there is basically no big difference from the film performance of the sample C1 of the above.
 次に、界面活性剤による表面改質処理の施されたグラファイト粒子の添加量の異なる実施例2のサンプルG2~G7及びゲル膜中に粒子状の吸湿剤を添加していない比較例1のサンプルC2のCO/H選択性の対比を行う。ここでは、ゲル膜中の粒子状の吸湿剤(表面改質処理の施されたグラファイト粒子)の添加量によるCO/H選択性への影響が評価される。図7に、サンプルG2~G7及びC2の1時間経過後のCO/H選択性をグラフ化して示す。図7の横軸は、表面改質処理の施されたグラファイト粒子の添加量(吸湿剤を除くゾル溶液の全重量に対する重量%)を示している。 Next, the samples G2 to G7 of Example 2 in which the amounts of the graphite particles subjected to the surface modification treatment with the surfactant are different, and the sample of Comparative Example 1 in which the particulate hygroscopic agent is not added to the gel film. The CO 2 / H 2 selectivity of C2 is compared. Here, the effect of the amount of the particulate hygroscopic agent (graphite particles subjected to the surface modification treatment) added in the gel film on the CO 2 / H 2 selectivity is evaluated. FIG. 7 is a graph showing the CO 2 / H 2 selectivity of the samples G2 to G7 and C2 after 1 hour. The horizontal axis of FIG. 7 shows the amount of the surface-modified graphite particles added (% by weight based on the total weight of the sol solution excluding the hygroscopic agent).
 図7より、ゲル膜内に表面改質処理の施されたグラファイト粒子を添加した実施例2では、グラファイト粒子の添加量が、0.01重量%~0.04重量%の範囲内において、CO/H選択性の最大値が存在することが分かる。実施例2の本促進輸送膜では、グラファイト粒子の添加量が0.04重量%を超えて増加するとCO/H選択性が低下する傾向が見られ、シリカゲル粒子を添加した実施例1と比較すると、粒子状の吸湿剤の添加量は少量でその効果を発揮している。 From FIG. 7, in Example 2 in which the graphite particles subjected to the surface modification treatment were added to the gel film, CO was added in the range of 0.01% by weight to 0.04% by weight of the graphite particles. It can be seen that there is a maximum value of 2 / H 2 selectivity. In the accelerated transport film of Example 2, when the addition amount of graphite particles increased by more than 0.04% by weight, the CO 2 / H 2 selectivity tended to decrease, and the same as in Example 1 in which silica gel particles were added. By comparison, the effect is exhibited even when the amount of the particulate hygroscopic agent added is small.
 [第2実施形態]
 次に、第1実施形態で説明したCO促進輸送膜を応用したCO分離装置及びCO分離方法について、図8を参照して説明する。尚、CO分離装置及びCO分離方法において、CO分離の対象となる原料ガスは、COとCO促進輸送膜を溶解・拡散機構のみでしか透過しないN、H等の所定の主成分ガスを含む混合ガスを想定する。
[Second Embodiment]
Next, the CO 2 separation apparatus and the CO 2 separation method to which the CO 2 promotion transport membrane described in the first embodiment is applied will be described with reference to FIG. Note that in the CO 2 separation device and CO 2 separation process, the raw material gas to be CO 2 separation, the predetermined N 2, H 2 or the like which does not transmit only a lysis-diffusion mechanism of CO 2 and CO 2 -facilitated transport membrane A mixed gas containing the main component gas of is assumed.
 図8は、本実施形態のCO分離装置10の概略の構造を模式的に示す断面図である。本実施形態では、一例として、上記第1実施形態で説明した平板型構造のCO促進輸送膜ではなく、円筒型構造に変形したCO促進輸送膜を使用する。図8(a)は、円筒型構造のCO促進輸送膜(本促進輸送膜)11の軸心に垂直な断面における断面構造を示し、図8(b)は、本促進輸送膜11の軸心を通過する断面における断面構造を示す。 FIG. 8 is a cross-sectional view schematically showing a schematic structure of the CO 2 separation device 10 of the present embodiment. In the present embodiment, as an example, rather than CO 2 -facilitated transport membrane of the plate type structures described in the first embodiment, using a CO 2 facilitated transport membrane which is deformed into a cylindrical structure. FIG. 8 (a) shows a cross-sectional structure in a cross section perpendicular to the axis of the CO 2 promoted transport membrane (this accelerated transport membrane) 11 having a cylindrical structure, and FIG. 8 (b) shows the axis of the main promoted transport membrane 11. The cross-sectional structure in the cross section passing through the center is shown.
 図8に示す本促進輸送膜11は、円筒形状の親水性のセラミックス製多孔膜2の外周面上に、ゲル膜1を担持させた構造である。尚、ゲル膜1は、上記第1実施形態と同様に、ゲル膜の膜材料として、一例として、ポリビニルアルコール-ポリアクリル酸(PVA/PAA)塩共重合体を使用し、COキャリアとして、炭酸セシウム(CsCO)、炭酸ルビジウム(RbCO)等のアルカリ金属の炭酸塩を使用し、粒子状の吸湿剤として、シリカゲル粒子、界面活性剤による表面改質処理が施されたグラファイト粒子を使用する。本第2実施形態のゲル膜1の製造方法及び膜性能は、基本的には、上記第1実施形態と同様であるので、重複する説明は省略する。 The accelerated transport film 11 shown in FIG. 8 has a structure in which a gel film 1 is supported on an outer peripheral surface of a cylindrical hydrophilic ceramic porous film 2. As the gel film 1, the polyvinyl alcohol-polyacrylic acid (PVA / PAA) salt copolymer is used as an example of the film material of the gel film as in the first embodiment, and the gel film 1 is used as a CO 2 carrier. Using alkali metal carbonates such as cesium carbonate (Cs 2 CO 3 ) and rubidium carbonate (Rb 2 CO 3 ), surface modification treatment with silica gel particles and surfactant was performed as a particulate hygroscopic agent. Use graphite particles. Since the method for producing the gel film 1 and the film performance of the second embodiment are basically the same as those of the first embodiment, redundant description will be omitted.
 図8に示すように、円筒型の本促進輸送膜11は、有底円筒型の容器12に収容され、容器12の内壁とゲル膜1に囲まれた供給側空間13と、セラミックス製多孔膜2の内壁に囲まれた透過側空間14が形成されている。容器12の両側の底部12a,12bの一方側に、原料ガスFGを供給側空間13に送入する第1送入口15と、スイープガスSG
を透過側空間14に送入する第2送入口16が設けられ、容器12の両側の底部12a,12bの他方側に、COの分離された後の原料ガスEGを供給側空間13から排出する第1排出口17と、本促進輸送膜11を透過したCOを含む透過ガスPGとスイープガスSGの混合された排出ガスSG’を透過側空間14から排出する第2排出口18が設けられている。容器12は、例えば、ステンレス製で、図示していないが、本促進輸送膜11の両端と容器12の両側の底部12a,12bの内壁との間に、一例として、第1実施形態で説明した実験装置と同様に、フッ素ゴム製ガスケットをシール材として介装して、本促進輸送膜11を容器12内に固定している。尚、本促進輸送膜11の固定方法及びシール方法は、上記方法に限定されるものではない。
As shown in FIG. 8, the cylindrical main accelerated transport membrane 11 is housed in a bottomed cylindrical container 12, a supply side space 13 surrounded by an inner wall of the container 12 and a gel film 1, and a ceramic porous membrane. A transmissive side space 14 surrounded by the inner wall of No. 2 is formed. On one side of the bottoms 12a and 12b on both sides of the container 12, a first inlet 15 for feeding the raw material gas FG into the supply side space 13 and a sweep gas SG
A second inlet 16 is provided to feed the CO 2 into the permeation side space 14, and the raw material gas EG after CO 2 is separated is discharged from the supply side space 13 on the other side of the bottoms 12a and 12b on both sides of the container 12. A first exhaust port 17 is provided, and a second exhaust port 18 is provided to discharge the exhaust gas SG', which is a mixture of the permeated gas PG containing CO 2 that has permeated the accelerated transport film 11 and the sweep gas SG, from the permeation side space 14. Has been done. The container 12 is made of stainless steel, for example, and is not shown, but has been described in the first embodiment as an example between both ends of the accelerated transport film 11 and the inner walls of the bottoms 12a and 12b on both sides of the container 12. Similar to the experimental device, the fluororubber gasket is interposed as a sealing material to fix the accelerated transport film 11 in the container 12. The method for fixing and sealing the accelerated transport membrane 11 is not limited to the above method.
 尚、図8(b)では、第1送入口15と第1排出口17は、図8(b)で左右に分離して図示されている供給側空間13に夫々1つずつ設けられているが、供給側空間13は、図8(a)に示すように、環状に連通しているので、第1送入口15と第1排出口17は、左右の何れか一方の供給側空間13に設けても構わない。更に、図8(b)では、底部12a,12bの一方側に、第1送入口15と第2送入口16を設け、底部12a,12bの他方側に、第1排出口17と第2排出口18を設ける構成を例示したが、底部12a,12bの一方側に、第1送入口15と第2排出口18を設け、底部12a,12bの他方側に、第1排出口17と第2送入口16を設ける構成としてもよい。つまり、原料ガスFG及びEGの流れる向きと、スイープガスSG及び排出ガスSG’の流れる向きを逆にしても構わない。 In addition, in FIG. 8 (b), the first inlet 15 and the first outlet 17 are provided one by one in the supply side space 13 which is separated into left and right in FIG. 8 (b). However, as shown in FIG. 8A, the supply side space 13 communicates in an annular shape, so that the first inlet 15 and the first discharge port 17 are connected to either the left or right supply side space 13. It may be provided. Further, in FIG. 8B, a first inlet 15 and a second inlet 16 are provided on one side of the bottoms 12a and 12b, and a first outlet 17 and a second outlet are provided on the other side of the bottoms 12a and 12b. Although the configuration in which the outlet 18 is provided is illustrated, the first inlet 15 and the second discharge port 18 are provided on one side of the bottoms 12a and 12b, and the first discharge port 17 and the second discharge port 17 and the second are provided on the other side of the bottoms 12a and 12b. The inlet 16 may be provided. That is, the flow directions of the raw material gases FG and EG and the flow directions of the sweep gas SG and the exhaust gas SG'may be reversed.
 本第2実施形態のCO分離方法では、原料ガスFGを供給側空間13に送入することで、本促進輸送膜11の供給側面に供給し、本促進輸送膜11のゲル膜1に含まれるCOキャリアと原料ガスFG中のCOを反応させ、高い対主成分ガス選択比でCOを選択的に透過させ、CO分離後の主成分ガス濃度の増加した原料ガスEGを供給側空間13から排出する。 In the CO 2 separation method of the second embodiment, the raw material gas FG is fed into the supply side space 13 to supply the raw material gas FG to the supply side surface of the promotion transport membrane 11, and is included in the gel film 1 of the promotion transport membrane 11. The CO 2 carrier is reacted with CO 2 in the raw material gas FG to selectively permeate CO 2 with a high selectivity for the main component gas, and the raw material gas EG with an increased concentration of the main component gas after CO 2 separation is supplied. It is discharged from the side space 13.
 COとCOキャリアの反応は、上記(化1)の反応式に示すように、水分(HO)の供給が必要であり、ゲル膜1内に含まれる水分が多いほど、化学平衡は生成物側(右側)にシフトし、COの透過が促進されることが分かる。原料ガスFGの温度が100℃以上の高温の場合、当該原料ガスFGと接触するゲル膜1も100℃以上の高温下に曝されるため、ゲル膜1内に含まれる水分は蒸発して、COと同様に透過側空間14に透過するため、供給側空間13にスチーム(HO)を供給する必要がある。当該スチームは、原料ガスFG中に含まれていてもよく、また、原料ガスFGとは別に供給側空間13に供給されてもよい。後者の場合、透過側空間14に透過したスチーム(HO)を排出ガスSG’から分離して、供給側空間13内に循環させるようにしてもよい。 The reaction between CO 2 and CO 2 carriers requires the supply of water (H 2 O) as shown in the reaction formula of (Chemical Formula 1) above, and the more water contained in the gel film 1, the more the chemical equilibrium. Is shifted to the product side (right side), and it can be seen that the permeation of CO 2 is promoted. When the temperature of the raw material gas FG is as high as 100 ° C. or higher, the gel film 1 in contact with the raw material gas FG is also exposed to a high temperature of 100 ° C. or higher, so that the water contained in the gel film 1 evaporates. Since it penetrates into the transmission side space 14 like CO 2, it is necessary to supply steam (H 2 O) to the supply side space 13. The steam may be contained in the raw material gas FG, or may be supplied to the supply side space 13 separately from the raw material gas FG. In the latter case, the transmitted Steam (H 2 O) was separated from the exhaust gas SG 'to the permeate side space 14 may be circulated to the feed-side space 13.
 図8に示すCO分離装置では、円筒型の本促進輸送膜11の外側に供給側空間13を形成し、内側に透過側空間14を形成する構成例を説明したが、内側に供給側空間13を形成し、外側に透過側空間14を形成してもよい。更に、本促進輸送膜11を、円筒形状の親水性のセラミックス製多孔膜2の内周面上に、ゲル膜1を担持させた構造としてもよい。更に、CO分離装置に使用する本促進輸送膜11は、円筒型に限定されるものではなく、円形以外の断面形状の筒型でもよく、更には、図1に示すような平板型構造の本促進輸送膜を用いてもよい。 In the CO 2 separation device shown in FIG. 8, a configuration example in which the supply side space 13 is formed on the outside of the cylindrical main promotion transport film 11 and the transmission side space 14 is formed on the inside has been described, but the supply side space is inside. 13 may be formed, and the transmission side space 14 may be formed on the outside. Further, the accelerated transport film 11 may have a structure in which the gel film 1 is supported on the inner peripheral surface of the cylindrical hydrophilic ceramic porous film 2. Further, the accelerated transport membrane 11 used in the CO 2 separation device is not limited to a cylindrical shape, but may be a cylindrical shape having a cross-sectional shape other than a circular shape, and further has a flat plate type structure as shown in FIG. This accelerated transport membrane may be used.
 次に、本実施形態で説明したCO分離装置の一応用例として、本促進輸送膜を備えたCO変成器(CO透過型メンブレンリアクター)について簡単に説明する。 Next, as an application example of the CO 2 separation device described in the present embodiment, a CO transformer (CO 2 permeation type membrane reactor) provided with the accelerated transport membrane will be briefly described.
 例えば、図8に示すCO分離装置10を用いて、CO透過型メンブレンリアクターを構成する場合、供給側空間13にCO変成触媒を充填し、供給側空間13をCO変成器
として利用することができる。
For example, when the CO 2 permeation type membrane reactor is constructed by using the CO 2 separation device 10 shown in FIG. 8, the supply side space 13 is filled with a CO transformation catalyst, and the supply side space 13 is used as a CO transformer. Can be done.
 CO透過型メンブレンリアクターは、例えば、水蒸気改質器で生成されたHを主成分とする原料ガスFGをCO変成触媒の充填された供給側空間13に受け入れ、原料ガスFG中に含まれる一酸化炭素(CO)を、下記(化4)に示すCO変成反応によって除去する装置である。そして、当該CO変成反応で生成されるCOを、本促進輸送膜11により選択的に透過側空間14に透過させて除去することで、CO変成反応の化学平衡を水素生成側にシフトさせることができ、同一反応温度において高い転化率で、CO及びCOを平衡の制約による限界を超えて除去することが可能となる。そして、CO及びCOを除去後のHを主成分とする原料ガスEGが供給側空間13から取り出される。 The CO 2 permeation type membrane reactor receives, for example, a raw material gas FG containing H 2 as a main component generated by a steam reformer into a supply side space 13 filled with a CO transformation catalyst and is contained in the raw material gas FG. This is an apparatus for removing carbon monoxide (CO) by the CO transformation reaction shown in (Chemical Formula 4) below. Then, the CO 2 produced by the CO transformation reaction is selectively permeated through the permeation side space 14 by the accelerated transport film 11 to be removed, thereby shifting the chemical equilibrium of the CO transformation reaction to the hydrogen generation side. It is possible to remove CO and CO 2 at a high conversion rate at the same reaction temperature beyond the limit due to equilibrium restrictions. Then, the raw material gas EG mainly of H 2 after removal of CO and CO 2 are removed from the feed-side space 13.
 (化4)
  CO + HO ⇔ CO + H
(Chemical 4)
CO + H 2 O ⇔ CO 2 + H 2
 CO変成反応に供するCO変成触媒の性能が温度とともに低下する傾向にあるため、使用温度は最低でも100℃であると考えられ、本促進輸送膜11の供給側面に供給される原料ガスFGの供給温度は100℃以上となっている。従って、原料ガスFGは、CO変成触媒の触媒活性に適した温度に調整された後、CO変成触媒の充填された供給側空間13に送入され、供給側空間13内でのCO変成反応(発熱反応)を経て、本促進輸送膜11に供給される。 Since the performance of the CO transformation catalyst subjected to the CO transformation reaction tends to decrease with temperature, the operating temperature is considered to be at least 100 ° C., and the supply of the raw material gas FG supplied to the supply side surface of the accelerated transport membrane 11 The temperature is 100 ° C. or higher. Therefore, the raw material gas FG is adjusted to a temperature suitable for the catalytic activity of the CO transformation catalyst, and then sent into the supply side space 13 filled with the CO transformation catalyst, and the CO transformation reaction in the supply side space 13 ( It is supplied to the accelerated transport film 11 via an exothermic reaction).
 一方、スイープガスSGは、本促進輸送膜11を透過したCOを含む透過ガスPGの分圧を低くして、本促進輸送膜11の透過推進力を維持し、透過ガスPGを外部に排出するために使用される。但し、原料ガスFGの分圧が十分高い場合には、スイープガスSGを流さなくとも透過推進力となる分圧差が得られるため、スイープガスSGを流す必要はない。また、スイープガスSGに用いるガス種として、上記第1実施形態の膜性能の評価実験と同様に、スチーム(HO)を使用することもでき、更には、不活性ガスのAr等も使用することができ、スイープガスSGは特定のガス種に限定されるものではない。 On the other hand, the sweep gas SG lowers the partial pressure of the permeated gas PG containing CO 2 that has permeated the facilitating transport film 11, maintains the permeation propulsive force of the facilitating transport film 11, and discharges the permeated gas PG to the outside. Used to do. However, when the partial pressure of the raw material gas FG is sufficiently high, it is not necessary to flow the sweep gas SG because the partial pressure difference that becomes the permeation propulsion force can be obtained without flowing the sweep gas SG. Further, as the gas species used in the sweep gas SG, in the same manner as in the evaluation experiments of the membrane performance of the first embodiment, can also use the steam (H 2 O), also further, Ar or the like inert gas used The sweep gas SG is not limited to a specific gas type.
 [別実施形態]
 以下に、別実施形態について説明する。
[Another Embodiment]
Hereinafter, another embodiment will be described.
 〈1〉上記第1実施形態の実施例1及び2では、本促進輸送膜のゲル膜を構成する親水性ポリマーとして、PVA/PAA塩共重合体のハイドロゲルを想定したが、親水性ポリマーのゲル膜内に粒子状の吸湿剤を含むことにより、COパーミアンスとCO/H選択性が改善される効果は、程度の差はあるが、PVA/PAA塩共重合体以外の親水性ポリマー、例えば、第1実施形態で例示したポリアクリル酸塩等においても奏し得る。従って、本促進輸送膜のゲル膜を構成する親水性ポリマーは、上記実施例1及び2で例示した親水性ポリマーに限定されるものではない。 <1> In Examples 1 and 2 of the first embodiment, a PVA / PAA salt copolymer hydrogel was assumed as the hydrophilic polymer constituting the gel film of the accelerated transport film, but the hydrophilic polymer was used. By including a particulate hygroscopic agent in the gel film, the effect of improving CO 2 permence and CO 2 / H 2 selectivity is more or less hydrophilic except for PVA / PAA salt copolymers. It can also be used with polymers such as the polyacrylic acid salt exemplified in the first embodiment. Therefore, the hydrophilic polymer constituting the gel film of the accelerated transport film is not limited to the hydrophilic polymers exemplified in Examples 1 and 2 above.
 〈2〉上記第1実施形態の実施例1及び2では、COキャリアとして、炭酸セシウムの使用を想定したが、本発明は、親水性ポリマーのゲル膜にCOキャリアと粒子状の吸湿剤を含むことを特徴としており、粒子状の吸湿剤によって、COとCOキャリアの反応が促進され、上記第1実施形態で例示した膜性能(COパーミアンスとCO選択透過性)と同等程度またはそれ以上の膜性能を発現し得るCOキャリアであれば、特定のCOキャリアに限定されるものではない。 <2> In Examples 1 and 2 of the first embodiment, it is assumed that cesium carbonate is used as the CO 2 carrier, but in the present invention, a CO 2 carrier and a particulate hygroscopic agent are formed on a gel film of a hydrophilic polymer. The particle-like hygroscopic agent promotes the reaction between CO 2 and CO 2 carriers, which is equivalent to the membrane performance (CO 2 permit and CO 2 selective permeability) exemplified in the first embodiment. Any CO 2 carrier capable of exhibiting a degree or higher film performance is not limited to a specific CO 2 carrier.
 〈3〉上記第1実施形態の実施例1及び2では、粒子状の吸湿剤は、シリカゲル、グラファイト等の多孔質粒子の使用を想定したが、ゲル膜中の粒子状の吸湿剤によって、COとCOキャリアの反応が促進され、上記第1実施形態で例示した膜性能(COパー
ミアンスとCO選択透過性)と同等程度またはそれ以上の膜性能を発現し得る粒子状の吸湿剤であれば、特定の粒子状の吸湿剤に限定されるものではない。例えば、粒子状の吸湿剤の素材は、同様の吸湿性を有するものであれば、シリカゲル及びグラファイトに限定されるものではなく、シリカゲル以外のゼオライト等のケイ素化合物であってもよく、グラファイト以外の活性炭等の炭素系粉体であってもよい。
<3> In Examples 1 and 2 of the first embodiment, it is assumed that porous particles such as silica gel and graphite are used as the particulate hygroscopic agent, but CO is produced by the particulate hygroscopic agent in the gel film. A particulate hygroscopic agent that promotes the reaction between 2 and CO 2 carriers and can exhibit film performance equal to or better than the film performance (CO 2 permit and CO 2 selective permeability) exemplified in the first embodiment. If so, the present invention is not limited to a specific particulate hygroscopic agent. For example, the material of the particulate hygroscopic agent is not limited to silica gel and graphite as long as it has the same hygroscopicity, and may be a silicon compound such as zeolite other than silica gel, other than graphite. It may be a carbon-based powder such as activated carbon.
 尚、吸湿剤粒子の吸湿性を担保するためには、粒子の比表面積は大きい方が好ましいが、必ずしも多孔質である必要はなく、例えば、表面に多くの突起を有する形状であってもよい。 In order to ensure the hygroscopicity of the hygroscopic particles, it is preferable that the specific surface area of the particles is large, but the particles do not necessarily have to be porous, and may have a shape having many protrusions on the surface, for example. ..
 更に、上記第1実施形態では、グラファイト粒子を使用する場合に、吸湿性を担保するために、グラファイト粒子の表面を界面活性剤を用いて改質して撥水性を軽減する実施態様を説明したが、グラファイト粒子以外の粒子状の吸湿剤を使用する場合においても、必要に応じて、同様の界面活性剤を用いた表面改質処理を行うのが好ましい。 Further, in the first embodiment, when graphite particles are used, an embodiment in which the surface of the graphite particles is modified with a surfactant to reduce water repellency has been described in order to ensure hygroscopicity. However, even when a particulate hygroscopic agent other than graphite particles is used, it is preferable to perform a surface modification treatment using the same surfactant, if necessary.
 更に、上記第1実施形態では、粒子状の吸湿剤として粒子径を篩掛けにより75μm以下に分級したものを使用する場合を想定したが、粒子径が75μmを超えるものが一部に混在していても、ゲル膜の膜厚が約200μmより厚い場合には、吸湿剤を経由するゲル膜を貫通するパスが欠陥として形成されるとは限らない。従って、ゲル膜の膜厚の粒子径の分布範囲の上限は、ゲル膜の膜厚に応じて、75μmより大きくてもよい。 Further, in the first embodiment, it is assumed that a particulate hygroscopic agent having a particle size classified to 75 μm or less by sieving is used, but some particles having a particle size exceeding 75 μm are mixed. However, when the thickness of the gel film is thicker than about 200 μm, the path passing through the gel film via the hygroscopic agent is not always formed as a defect. Therefore, the upper limit of the distribution range of the particle size of the gel film thickness may be larger than 75 μm depending on the gel film thickness.
 〈4〉上記第1実施形態では、本促進輸送膜の製造方法(本製造方法)として、PVA/PAA塩共重合体とCOキャリアと粒子状の吸湿剤を含む水溶液からなるゾル溶液を調製し、親水性PTFE多孔膜にゾル溶液をキャストした後にゲル化して作製したが、当該作製方法以外の作製方法で作製しても構わない。例えば、粒子状の吸湿剤を含みCOキャリア含まないPVA/PAA塩共重合体のゲル膜を形成した後に、COキャリアを含む水溶液を含侵させて作製しても構わない。 <4> In the first embodiment, as a method for producing the accelerated transport film (the present production method), a sol solution composed of an aqueous solution containing a PVA / PAA salt copolymer, a CO 2 carrier, and a particulate hygroscopic agent is prepared. Then, the sol solution was cast on the hydrophilic PTFE porous membrane and then gelled to prepare the sol solution, but it may be prepared by a production method other than the production method. For example, a gel film of a PVA / PAA salt copolymer containing a particulate hygroscopic agent and not containing a CO 2 carrier may be formed and then impregnated with an aqueous solution containing a CO 2 carrier.
 更に、ゾル溶液を調製する工程において、粒子状の吸湿剤を先に添加した純水に、親水性ポリマーとCOキャリアを添加する場合を例示したが、粒子状の吸湿剤を、親水性ポリマーとCOキャリアと同時に、純水に添加してゾル溶液を調製してもよい。更に、粒子状の吸湿剤と親水性ポリマーを同時に純水に添加して調製したゾル溶液を親水性PTFE多孔膜にキャストした後にゲル化して作製したゲル膜に、COキャリアを含む水溶液を含侵させて作製しても構わない。 Further, in the step of preparing the sol solution, the case where the hydrophilic polymer and the CO 2 carrier are added to the pure water to which the particulate hygroscopic agent is added first has been illustrated. And CO 2 carriers may be added to pure water at the same time to prepare a sol solution. Further, a gel film prepared by casting a sol solution prepared by simultaneously adding a particulate hygroscopic agent and a hydrophilic polymer to pure water into a hydrophilic PTFE porous film and then gelling the gel film contains an aqueous solution containing a CO 2 carrier. It may be invaded and produced.
 〈5〉上記第1実施形態では、ゲル膜が親水性PTFE多孔膜に担持される場合を説明したが、ゲル膜が疎水性PTFE多孔膜に担持される構成であっても構わない。 <5> In the first embodiment, the case where the gel membrane is supported on the hydrophilic PTFE porous membrane has been described, but the gel membrane may be supported on the hydrophobic PTFE porous membrane.
 〈6〉上記第2実施形態では、本促進輸送膜を用いたCO分離装置の一応用例として、CO透過型メンブレンリアクターについて説明したが、本促進輸送膜を用いたCO分離装置は、メンブレンリアクター以外の水素製造プロセスにおける脱炭酸工程にも利用することが可能であり、更には、水素製造プロセス以外にも適用可能であり、上記第2実施形態で例示した応用例に限定されるものではない。また、本促進輸送膜に供給される供給側ガス(原料ガス)は、上記各実施形態で例示した混合ガスに限定されるものではない。つまり、混合ガスの主成分ガスは水素(H)に限定されるものではなく、本促進輸送膜を溶解・拡散機構のみでしか透過しない窒素(N)、メタン(CH)、酸素(O)等であってもよい。 <6> In the second embodiment, as one application of the CO 2 separation device using this facilitated transport membrane has been described CO 2 permeable membrane reactor, the CO 2 separation device using this facilitated transport membrane, It can be used in a decarboxylation step in a hydrogen production process other than the membrane reactor, and further, it can be applied to other than the hydrogen production process, and is limited to the application examples exemplified in the second embodiment. is not it. Further, the supply-side gas (raw material gas) supplied to the accelerated transport membrane is not limited to the mixed gas exemplified in each of the above embodiments. That is, the main component gas of the mixed gas is not limited to hydrogen (H 2 ), but nitrogen (N 2 ), methane (CH 4 ), and oxygen (CH 4), which permeate this accelerated transport membrane only by the dissolution / diffusion mechanism. It may be O 2 ) or the like.
 〈7〉上記各実施形態において例示した、本促進輸送膜の組成における各成分の混合比率、ゲル膜の膜厚等は、本発明の理解の容易のための例示であり、本発明はそれらの数値
のCO促進輸送膜に限定されるものではない。
<7> The mixing ratio of each component in the composition of the accelerated transport film, the film thickness of the gel film, and the like exemplified in each of the above embodiments are examples for easy understanding of the present invention, and the present invention is an example thereof. It is not limited to the numerical CO 2 promoting transport membrane.
 本発明に係るCO促進輸送膜は、一例として、水素製造プロセスの脱炭酸工程、CO透過型メンブレンリアクター等において、COとHを含む混合ガスから高い対水素選択比でCOを分離するのに利用可能である。 CO 2 facilitated transport membrane according to the present invention, as an example, decarboxylation process of hydrogen production process, in CO 2 permeable membrane reactor, etc., the CO 2 with high selectivity against hydrogen ratio from a mixed gas containing CO 2 and H 2 It can be used to separate.
 1:   ゲル膜
 2:   親水性多孔膜
 3:   疎水性多孔膜
 10:  CO分離装置
 11:  CO促進輸送膜
 12:  容器
 12a,12b: 容器の底部(上底部,下底部)
 13:  供給側空間
 14:  透過側空間
 15:  第1送入口
 16:  第2送入口
 17:  第1排出口
 18:  第2排出口
 FG:  原料ガス
 EG:  CO分離後の原料ガス
 PG:  透過ガス
 SG、SG’: スイープガス
1: Gel membrane 2: Hydrophilic porous membrane 3: Hydrophobic porous membrane 10: CO 2 separator 11: CO 2 accelerated transport membrane 12: Containers 12a, 12b: Bottom of container (upper bottom, lower bottom)
13: Supply side space 14: Permeation side space 15: 1st inlet 16: 2nd inlet 17: 1st outlet 18: 2nd outlet FG: Raw material gas EG: Raw material gas after CO 2 separation PG: Permeation Gas SG, SG': Sweep gas

Claims (13)

  1.  親水性ポリマーのゲル膜中にCOキャリアと粒子状の吸湿剤を含むことを特徴とするCO促進輸送膜。 A CO 2 promoting transport membrane characterized by containing a CO 2 carrier and a particulate hygroscopic agent in a gel film of a hydrophilic polymer.
  2.  前記吸湿剤が多孔質粒子であることを特徴とする請求項1に記載のCO促進輸送膜。 The CO 2 promoting transport membrane according to claim 1, wherein the hygroscopic agent is porous particles.
  3.  前記吸湿剤が前記ゲル膜中に分散して存在していることを特徴とする請求項1または2に記載のCO促進輸送膜。 The CO 2 promoting transport membrane according to claim 1 or 2, wherein the hygroscopic agent is dispersed in the gel membrane.
  4.  前記吸湿剤の粒子径が75μm以下であることを特徴とする請求項1~3の何れか1項に記載のCO促進輸送膜。 The CO 2 promoting transport membrane according to any one of claims 1 to 3, wherein the moisture absorbing agent has a particle size of 75 μm or less.
  5.  前記吸湿剤がケイ素化合物であることを特徴とする請求項1~4の何れか1項に記載のCO促進輸送膜。 The CO 2 promoting transport membrane according to any one of claims 1 to 4, wherein the hygroscopic agent is a silicon compound.
  6.  前記親水性ポリマーが、ポリビニルアルコール-ポリアクリル酸塩共重合体、ポリビニルアルコール、ポリアクリル酸、キトサン、ポリビニルアミン、ポリアリルアミン、及び、ポリビニルピロリドンから選択されるポリマーであることを特徴とする請求項1~5の何れか1項に記載のCO促進輸送膜。 The claim is that the hydrophilic polymer is a polymer selected from polyvinyl alcohol-polyacrylate copolymer, polyvinyl alcohol, polyacrylic acid, chitosan, polyvinylamine, polyallylamine, and polyvinylpyrrolidone. The CO 2- promoted transport film according to any one of 1 to 5.
  7.  前記COキャリアが、アルカリ金属の炭酸塩、アルカリ金属の重炭酸塩、アルカリ金属の水酸化物、及び、アミノ酸の内の少なくとも何れか1つを含んで構成されることを特徴とする請求項1~6の何れか1項に記載のCO促進輸送膜。 A claim, wherein the CO 2 carrier is composed of at least one of an alkali metal carbonate, an alkali metal bicarbonate, an alkali metal hydroxide, and an amino acid. The CO 2 promoting transport film according to any one of 1 to 6.
  8.  前記ゲル膜がハイドロゲルであることを特徴とする請求項1~7の何れか1項に記載のCO促進輸送膜。 The CO 2 promoting transport membrane according to any one of claims 1 to 7, wherein the gel membrane is a hydrogel.
  9.  前記ゲル膜が、親水性の多孔膜に担持されていることを特徴とする請求項1~8の何れか1項に記載のCO促進輸送膜。 The CO 2 promoting transport membrane according to any one of claims 1 to 8, wherein the gel membrane is supported on a hydrophilic porous membrane.
  10.  請求項1~9の何れか1項に記載のCO促進輸送膜を用いて、所定の主成分ガスとCOを含む混合ガスを前記CO促進輸送膜に供給し、前記混合ガスから前記CO促進輸送膜を透過した前記COを分離することを特徴とするCO分離方法。 Using the CO 2 promoting transport film according to any one of claims 1 to 9, a mixed gas containing a predetermined main component gas and CO 2 is supplied to the CO 2 promoting transport film, and the mixed gas is used as described above. A CO 2 separation method, which comprises separating the CO 2 that has permeated the CO 2 promoting transport film.
  11.  請求項1~9の何れか1項に記載のCO促進輸送膜を備え、所定の主成分ガスとCOを含む混合ガスを前記CO促進輸送膜に供給し、前記混合ガスから前記CO促進輸送膜を透過した前記COを分離することを特徴とするCO分離装置。 The CO 2 promoting transport film according to any one of claims 1 to 9 is provided, a mixed gas containing a predetermined main component gas and CO 2 is supplied to the CO 2 promoting transport film, and the mixed gas is used to supply the CO. 2 A CO 2 separation device for separating the CO 2 that has permeated the accelerated transport film.
  12.  請求項1~9の何れか1項に記載のCO促進輸送膜の製造方法であって、
     前記親水性ポリマー、前記COキャリア、及び、前記吸湿剤を含む水溶液からなるゾル溶液を調製する工程と、
     前記ゾル溶液を親水性の多孔膜にキャストした後にゲル化して前記ゲル膜を作製する工程と、を有することを特徴とするCO促進輸送膜の製造方法。
    The method for producing a CO 2- promoted transport membrane according to any one of claims 1 to 9.
    A step of preparing a sol solution consisting of an aqueous solution containing the hydrophilic polymer, the CO 2 carrier, and the hygroscopic agent, and
    A method for producing a CO 2- promoted transport membrane, which comprises a step of casting the sol solution into a hydrophilic porous membrane and then gelling the sol solution to prepare the gel membrane.
  13.  前記ゾル溶液を調製する工程において、前記吸湿剤を先に添加した純水に、前記親水性ポリマーと前記COキャリアを添加して撹拌することを特徴とする請求項12に記載のCO促進輸送膜の製造方法。 The CO 2 promotion according to claim 12, wherein in the step of preparing the sol solution, the hydrophilic polymer and the CO 2 carrier are added to pure water to which the hygroscopic agent has been added first and stirred. A method for manufacturing a transport membrane.
PCT/JP2020/032069 2019-10-23 2020-08-25 Co2 facilitated transport membrane, production method therefor, and co2 separation method and device WO2021079609A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021554109A JP7161253B2 (en) 2019-10-23 2020-08-25 CO2-facilitated transport membrane, manufacturing method thereof, and CO2 separation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019192862 2019-10-23
JP2019-192862 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021079609A1 true WO2021079609A1 (en) 2021-04-29

Family

ID=75620461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032069 WO2021079609A1 (en) 2019-10-23 2020-08-25 Co2 facilitated transport membrane, production method therefor, and co2 separation method and device

Country Status (2)

Country Link
JP (1) JP7161253B2 (en)
WO (1) WO2021079609A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027841A (en) * 2011-07-29 2013-02-07 Fujifilm Corp Carbon dioxide separation member, method for manufacturing the same, and carbon dioxide separation module
JP2016041415A (en) * 2013-12-26 2016-03-31 富士フイルム株式会社 Acidic gas separation module
WO2017154519A1 (en) * 2016-03-09 2017-09-14 株式会社ルネッサンス・エナジー・リサーチ Combustion system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027841A (en) * 2011-07-29 2013-02-07 Fujifilm Corp Carbon dioxide separation member, method for manufacturing the same, and carbon dioxide separation module
JP2016041415A (en) * 2013-12-26 2016-03-31 富士フイルム株式会社 Acidic gas separation module
WO2017154519A1 (en) * 2016-03-09 2017-09-14 株式会社ルネッサンス・エナジー・リサーチ Combustion system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAHAN, ZAIB ET AL.: "Cellulose nanocrystal/PVA nanocomposite membranes for C02/ CH 4 separation at high pressure", JOURNAL OF MEMBRANE SCIENCE, vol. 554, 6 March 2018 (2018-03-06), pages 275 - 281, XP055819511 *

Also Published As

Publication number Publication date
JPWO2021079609A1 (en) 2021-04-29
JP7161253B2 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
JP5796136B2 (en) CO2 facilitated transport membrane, production method thereof, and CO2 separation method and apparatus
JP5553421B2 (en) CO2-facilitated transport membrane and method for producing the same
EP2239048B1 (en) Co2-facilitated transport membrane and manufacturing method for same
JP5555332B2 (en) Gas separation device, membrane reactor, hydrogen production device
JP6294304B2 (en) CO2-facilitated transport membrane, production method thereof, resin composition used in the production method, CO2 separation module, CO2 separation method and apparatus
JP5996742B2 (en) Method for producing facilitated transport membrane
WO2021079609A1 (en) Co2 facilitated transport membrane, production method therefor, and co2 separation method and device
Okada et al. CO2-facilitated transport membrane and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879990

Country of ref document: EP

Kind code of ref document: A1