WO2021079601A1 - Heat insulating body and secondary battery using same - Google Patents

Heat insulating body and secondary battery using same Download PDF

Info

Publication number
WO2021079601A1
WO2021079601A1 PCT/JP2020/031376 JP2020031376W WO2021079601A1 WO 2021079601 A1 WO2021079601 A1 WO 2021079601A1 JP 2020031376 W JP2020031376 W JP 2020031376W WO 2021079601 A1 WO2021079601 A1 WO 2021079601A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
sheet
foam sheet
insulating body
face
Prior art date
Application number
PCT/JP2020/031376
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 千尋
臼井 良輔
坤先 曹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021554100A priority Critical patent/JPWO2021079601A1/ja
Publication of WO2021079601A1 publication Critical patent/WO2021079601A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a heat insulating body used as a heat insulating measure and a secondary battery using the heat insulating body.
  • Patent Document 1 As the prior art document information related to the present application, for example, Patent Document 1 is known.
  • the invention according to the present disclosure has the following configuration in order to solve the above problem. That is, it is a heat insulating body provided with a foam sheet made of a thermoplastic resin, a heat insulating sheet provided inside the foam sheet, and a heat-sealing portion.
  • the foam sheet has a first end face, a second end face facing the first end face, an upper surface arranged between the first end face and the second end face, and a second from the first end face. It is provided with a notch provided along the upper surface toward the end face of the.
  • the heat insulating sheet has a fiber sheet and silica xerogel, and the fiber sheet is impregnated with silica gel and inserted into the notch.
  • the heat-sealing portion seals the heat insulating sheet by heat-sealing the first end face of the foam sheet.
  • the foam sheet is compressed when the battery cells expand and absorbs the expansion. Therefore, the heat insulating sheet is hardly compressed, and the heat insulating property can be maintained, so that the influence on other battery cells can be prevented.
  • Sectional drawing of the heat insulating body in one Embodiment of this disclosure Top view of the heat insulating body according to the embodiment of the present disclosure. Partial sectional view of the secondary battery according to the embodiment of the present disclosure.
  • the flowchart which shows the manufacturing method of the heat insulating body of one Embodiment of this disclosure.
  • FIG. 1 is a cross-sectional view of the heat insulating body 13 according to the embodiment of the present disclosure
  • FIG. 2 is a top view of the same.
  • FIG. 1 is a cross-sectional view of the heat insulating body 13 shown in FIG. 2 when the heat insulating body 13 is cut along a plane including line II and perpendicular to the upper surface of the heat insulating body 13.
  • an XYZ Cartesian coordinate system is defined with the horizontal direction as the X-axis, the vertical direction as the Y-axis, and the thickness direction as the Z-axis.
  • the upper surface of the heat insulating body 13 is a surface directed in the positive direction of the Z axis
  • the lower surface of the heat insulating body 13 is a surface directed in the negative direction of the Z axis.
  • the upper surface of the foam sheet 11 and the upper surface and the lower surface of the heat insulating sheet 12 are also defined in the same manner.
  • the heat insulating body 13 has a rectangular shape when viewed from above.
  • the heat insulating body 13 is composed of a foam sheet 11 made of a thermoplastic resin and a heat insulating sheet 12 provided inside the foam sheet 11.
  • the foam sheet 11 is formed into a sheet shape by foaming urethane resin.
  • a notch 14 is made from the first end surface 18 of the foam sheet 11 to the second end surface 19 along a plane (XY plane) that passes through substantially the center of the foam sheet 11 and is parallel to the upper surface 20 of the foam sheet 11.
  • the heat insulating sheet 12 is inserted into the notch 14 so that the upper surface 21 of the heat insulating sheet 12 is parallel to the upper surface 20 of the foam sheet 11, and the first end surface 18 forming the notch 14 is heat-sealed.
  • the heat-sealed portion 15 is formed. By doing so, the heat insulating sheet 12 is sealed to form the heat insulating body 13.
  • the width Le1 of the heat-sealed portion 15 is about 5 mm. Further, the portion of the foam sheet 11 in which the heat insulating sheet 12 is not inserted becomes the end portion of the foam sheet 11. With respect to the end portion, the width We1 of the end portion on the left side of FIG. 2 is about 5 mm, and the width of the end portion on the right side of FIG. 2 We2 is about 5 mm. Further, the width Le2 of the end portion on the lower side of FIG. 2 is about 5 mm.
  • the thickness of the heat insulating body 13 including the heat insulating sheet 12 is about 4 mm.
  • the above thickness is the thickness in the non-pressurized state described below.
  • the heat insulating sheet 12 is obtained by impregnating the internal space of a fiber sheet made of glass fiber with silica xerogel, and its thermal conductivity is about 0.04 W / (m ⁇ K). Further, when a pressure of 2 MPa is applied to the heat insulating sheet 12, the compressibility is about 15% and the restoration rate is about 97%. On the other hand, the compressibility of the foam sheet 11 is about 55%, the restoration rate is about 99.5%, and the thermal conductivity is about 0.1 W / (m ⁇ K).
  • the compression rate and the restoration rate are defined as follows. That is, consider a case where an object having a predetermined surface is considered and pressure is applied in a direction perpendicular to the surface of the object.
  • the thickness direction is the direction perpendicular to the surface of the object
  • the thickness of the object in the non-pressurized state (before applying pressure and in the state of atmospheric pressure) is t0
  • the object in the state of being pressurized at a pressure of 2 MPa Let t1 be the thickness of the object, and let t2 be the thickness of the object in the state immediately after the pressure is removed (immediately after the pressure is removed and in the state of atmospheric pressure).
  • "immediately after removing the pressurization” is a short time (a few seconds to 1 minute) until the thickness t2 of the object is measured after the pressure applied to the object is removed and the state is returned to the atmospheric pressure state. It means that.
  • the foam sheet 11 is more easily deformed by pressure than the heat insulating sheet 12, and is easier to restore.
  • the heat insulating body 13 configured in this way is sandwiched between the battery cells and fixed in the housing to form the secondary battery, when the battery cells expand due to heat or deterioration, the foam sheet 11 is distorted and expands. Absorb. This does not affect the heat insulating sheet and can maintain the heat insulating property. Further, when the battery cell expands due to heat, the battery cell tries to return to its original state when the temperature drops, but since the restoration rate of the foam sheet 11 is high, it is possible to prevent the formation of a gap.
  • the compressibility of the foam sheet 11 is 40% or more and 75% or less, and the restoration rate is 95% or more and 99.99% or less. It is desirable that the compressibility of the heat insulating sheet 12 is 1% or more and 20% or less, and the restoration rate is 80% or more and 99% or less. This is because if the compressibility of the foam sheet 11 is smaller than 40%, the reaction force that pushes back the dimensional change of the cell from the heat insulating sheet 12 becomes strong, which may deteriorate the battery performance. Further, if the compressibility of the foam sheet 11 is larger than 75%, the binding force for pressing the cell is weakened.
  • the restoration rate of the foam sheet 11 is smaller than 95%, it becomes difficult to sufficiently follow the dimensional change of the battery cell. It is not realistic to increase the compressibility of the foam sheet 11 to more than 99.99%. Further, when the compressibility of the heat insulating sheet 12 is smaller than 1%, the thermal conductivity becomes large. If the compressibility of the heat insulating sheet 12 is larger than 20%, the restoration rate becomes small. Further, when the restoration rate of the heat insulating sheet 12 becomes smaller than 80%, it becomes impossible to follow the repeated dimensional change of the cell. It is not realistic to make the compressibility of the heat insulating sheet 12 larger than 99%.
  • the thickness Tf of the foam sheet 11 is 0.3 times or more and 30 times or less the thickness Ta of the heat insulating sheet 12. If the thickness Tf of the foam sheet 11 is thinner than 0.3 times the thickness Ta of the heat insulating sheet 12, it is not possible to sufficiently absorb the strain from the outside. Further, when the thickness Tf of the foam sheet 11 is thicker than 30 times the thickness Ta of the heat insulating sheet 12, the foam sheet 11 has better thermal conductivity than the heat insulating sheet 12, so that the heat insulating body having the same thickness This is because the heat insulating property deteriorates when compared with 13.
  • the thickness of the foam sheet 11 means the sum of the thicknesses of the foam sheets 11 arranged on the upper surface and the lower surface of the heat insulating sheet 12.
  • thermoplastic resin capable of foaming such as polyethylene, acrylic, polystyrene, polypropylene, and ethylene vinyl acetate copolyma may be used.
  • the notch 14 is formed from the first end face 18 of the foam sheet 11, but the notch reaching from the first end face 18 to the second end face 19 facing the first end face 18.
  • the first end face 18 and the second end face 19 may be heat-sealed after the heat insulating sheet 12 is inserted. By doing so, it becomes easier to form the notch 14.
  • FIG. 3 is a partial cross-sectional view of the secondary battery according to the embodiment of the present disclosure.
  • This secondary battery is configured by arranging a plurality of battery cells 16 in a housing 17.
  • a heat insulating body 13 is sandwiched between adjacent battery cells 16 and fixed in the housing 17.
  • the secondary battery refers to a rechargeable battery such as a lithium ion battery or a nickel hydrogen battery.
  • the heat insulating body 13 of FIG. 1 is used, and the fused first end face is arranged so as to come to the upper part of the housing 17.
  • the foam sheet 11 By arranging the foam sheet 11 so that the surfaces other than the first end surface face the bottom surface of the housing 17, the silica xerogel can be further prevented from being separated and scattered around.
  • the battery cell 16 and the heat insulating body 13 due to the arrangement of the battery cell 16 and the heat insulating body 13 as described above, when one battery cell 16 becomes hotter than the other battery cells 16 and expands, the foam sheet 11 is compressed and the one battery is concerned. Since the expansion of the cell 16 is absorbed, the heat insulating sheet 12 is hardly compressed, and the heat insulating property can be maintained, it is possible to prevent the influence on other battery cells 16.
  • the foam sheet 11 and the heat insulating sheet 12 are each pressurized at a pressure of 2 MPa, and as soon as the pressure is removed, the thickness becomes the thickness indicated by the above-mentioned predetermined restoration rate. After that, the methods of changing the thicknesses of the foam sheet 11 and the heat insulating sheet 12 can be considered in the following three cases (1) to (3).
  • the secondary battery may be used by ignoring the battery cell 16 which has expanded due to the high temperature.
  • This fiber sheet is made of glass fiber having a thickness of about 1 mm, a size of about 300 mm ⁇ 500 mm, a rectangular shape, a thickness of about 1 mm, and an average fiber thickness of about ⁇ 2 ⁇ m.
  • a silica sol solution is prepared by adding about 6% by weight of ethylene carbonate as a catalyst to about 15% by weight of an aqueous sodium silicate solution (water glass) as this material (adjustment step).
  • the fiber sheet is immersed in this silica sol solution to impregnate the internal space of the fiber sheet with the silica sol solution (impregnation step).
  • the fiber sheet is pressed with the silica sol solution impregnated to make the thickness of the fiber sheet uniform (thickness equalization step).
  • a method of adjusting the thickness of the fiber sheet a method such as a roll press may be used.
  • the gel skeleton is strengthened by curing the fiber sheet with the adjusted thickness sandwiched between the films (curing process).
  • hydrophobize the silica xerogel The fiber sheet impregnated with silica xerogel is immersed in 6N hydrochloric acid for about 30 minutes to react the gel with hydrochloric acid. Then, as the second step of the hydrophobization treatment, the mixture is immersed in a silylation solution consisting of a mixed solution of a silylating agent and an alcohol, and then stored in a constant temperature bath at about 55 ° C. for about 2 hours (hydrophobicization step). At this time, a mixed solution of the silylating agent and alcohol permeates. When the reaction proceeds and trimethylsiloxane bonds begin to form, hydrochloric acid water is discharged to the outside from the fiber sheet containing the gel. After the silylation treatment is completed, the insulation sheet 12 is obtained by drying in a constant temperature bath at about 150 ° C. for about 2 hours (drying step).
  • a foam sheet made of urethane resin having a thickness of about 3 mm is cut to a predetermined size. After that, a notch 14 is formed from one end surface of the foam sheet in the surface direction of the foam sheet.
  • a method of forming the notch 14 a method of forming the notch 14 while moving the micro end mill or the cutting blade in the rear surface direction can be considered.
  • the heat insulating sheet 12 is inserted from one end surface in which the notch 14 is made, and the heat-sealed portion 15 is formed by heat-sealing this surface, and the heat insulating sheet 12 is sealed inside the foam sheet 11. Insulation body 13 can be obtained.
  • the manufacturing method of the heat insulating body 13 shown above is just an example of the optimum manufacturing method, and it is also possible to obtain the heat insulating body 13 according to the present disclosure by applying another manufacturing method.
  • the foam sheet when the battery cell expands, the foam sheet is compressed to absorb the expansion, the heat insulating sheet is hardly compressed, and the heat insulating property can be maintained. It is industrially useful because it can prevent the influence on other battery cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Thermal Insulation (AREA)

Abstract

A purpose of the present invention is to obtain a heat insulating body that, even if a battery cell swells, can absorb said swelling while also maintaining a heat insulating property. This heat insulating body (13) comprises: a foam sheet (11) that comprises a thermoplastic resin; and a heat insulating sheet (12) that is provided in the interior of the foam sheet (11). The heat insulating sheet (12) is configured by impregnating a fiber sheet with a silica xerogel. A slit (14) is provided in a surface direction of the foam sheet (11), from a first end surface (18) of the foam sheet (11). The heat insulating sheet (12) is inserted into the slit (14), and the result is sealed with a heat seal section (15) that is configured by heat-sealing the first end surface (18).

Description

断熱体およびこれを用いた二次電池Insulation body and secondary battery using this
 本開示は、断熱対策として用いられる断熱体およびこれを用いた二次電池に関する。 This disclosure relates to a heat insulating body used as a heat insulating measure and a secondary battery using the heat insulating body.
 近年省エネルギー化の要求が増加している。省エネルギーを実現する方法として、機器を保温してエネルギー効率を向上させるという方法がある。また複数個の電池セルを組み合わせた二次電池等では、ひとつの電池セルが高温になった場合に隣の電池セルに影響を与えないように、電池セル間の断熱を施したいという要望がある。これらの対策として電池セルの間に、断熱効果に優れた断熱シートを用いることがある。 In recent years, the demand for energy saving has increased. As a method of realizing energy saving, there is a method of keeping the equipment warm to improve energy efficiency. Further, in a secondary battery or the like in which a plurality of battery cells are combined, there is a demand for heat insulation between the battery cells so that the adjacent battery cells are not affected when one battery cell becomes hot. .. As a countermeasure against these, a heat insulating sheet having an excellent heat insulating effect may be used between the battery cells.
 なお、本願に関連する先行技術文献情報としては、例えば、特許文献1が知られている。 As the prior art document information related to the present application, for example, Patent Document 1 is known.
特開2011-136859号公報Japanese Unexamined Patent Publication No. 2011-136859
 二次電池を構成する複数の電池セルのうちひとつの電池セルの寿命が近づく頃には、当該電池セルの内部に発生したガス等によりにセルの中央部分が膨張する。均一な密度でシリカキセロゲルを繊維シートに担持させた従来の断熱シートにおいて、断熱シートが硬すぎるとセルの膨張を十分に吸収できない。また、逆に断熱シートが柔らかすぎると、電池セルの膨張によって断熱シートが圧縮される。そのことによって断熱シートの断熱性が劣化する。そのため、当該断熱シートを用いた場合、ひとつの電池セルが高温になった場合に隣の電池セルに影響を与えてしまうという問題がある。 By the time the life of one of the plurality of battery cells constituting the secondary battery is approaching, the central portion of the cell expands due to the gas generated inside the battery cell. In a conventional heat insulating sheet in which silica xerogel is supported on a fiber sheet at a uniform density, if the heat insulating sheet is too hard, the expansion of the cell cannot be sufficiently absorbed. On the contrary, if the heat insulating sheet is too soft, the heat insulating sheet is compressed by the expansion of the battery cell. As a result, the heat insulating property of the heat insulating sheet deteriorates. Therefore, when the heat insulating sheet is used, there is a problem that when one battery cell becomes hot, the adjacent battery cell is affected.
 本開示にかかる発明は上記問題を解決するために、以下の構成を有する。すなわち、熱可塑性樹脂からなる発泡体シートと、この発泡体シートの内部に設けられた断熱シートと、熱融着部と、を備えた断熱体である。発泡体シートは、第1の端面と、第1の端面に対向する第2の端面と、第1の端面と第2の端面との間に配置された上面と、第1の端面から第2の端面へ向けて上面に沿って設けられた切込みと、を備える。断熱シートは、繊維シートとシリカキセロゲルとを有し、かつ繊維シートにシリカゲルを含浸させてなり、かつ切込みの中に挿入される。熱融着部は、発泡体シートの第1の端面を熱融着することにより断熱シートを封止する。 The invention according to the present disclosure has the following configuration in order to solve the above problem. That is, it is a heat insulating body provided with a foam sheet made of a thermoplastic resin, a heat insulating sheet provided inside the foam sheet, and a heat-sealing portion. The foam sheet has a first end face, a second end face facing the first end face, an upper surface arranged between the first end face and the second end face, and a second from the first end face. It is provided with a notch provided along the upper surface toward the end face of the. The heat insulating sheet has a fiber sheet and silica xerogel, and the fiber sheet is impregnated with silica gel and inserted into the notch. The heat-sealing portion seals the heat insulating sheet by heat-sealing the first end face of the foam sheet.
 以上のように構成した断熱体を隣接する2つの電池セルの間に配置することにより、電池セルが膨張したとき発泡体シートが圧縮されてその膨張を吸収する。そのため、断熱シートはほとんど圧縮されず、断熱性を維持できるため、他の電池セルへの影響を防ぐことができる。 By arranging the heat insulating body configured as described above between two adjacent battery cells, the foam sheet is compressed when the battery cells expand and absorbs the expansion. Therefore, the heat insulating sheet is hardly compressed, and the heat insulating property can be maintained, so that the influence on other battery cells can be prevented.
本開示の一実施の形態における断熱体の断面図Sectional drawing of the heat insulating body in one Embodiment of this disclosure 本開示の一実施の形態における断熱体の平面図Top view of the heat insulating body according to the embodiment of the present disclosure. 本開示の一実施の形態における二次電池の部分断面図Partial sectional view of the secondary battery according to the embodiment of the present disclosure. 本開示の一実施の形態の断熱体の製造方法を示すフローチャート図The flowchart which shows the manufacturing method of the heat insulating body of one Embodiment of this disclosure.
 以下、本開示の一実施の形態における断熱体、二次電池、および断熱体の製造方法について、図面を参照しながら説明する。 Hereinafter, the method for manufacturing the heat insulating body, the secondary battery, and the heat insulating body according to the embodiment of the present disclosure will be described with reference to the drawings.
 なお、以下に示す断熱体の構成や大きさ、形状等はあくまで例示であって、特に断りのない限り当該構成等に限定される趣旨ではない。 Note that the configuration, size, shape, etc. of the heat insulating body shown below are merely examples, and are not intended to be limited to such configurations unless otherwise specified.
 (断熱体)
 図1は本開示の一実施の形態における断熱体13の断面図であり、図2は同上面図である。図1は、図2に示す断熱体13を、I-I線を含みかつ断熱体13の上面に垂直な面で切ったときの断面図である。図1および図2に示す断熱体13について、横方向をX軸、縦方向をY軸、厚さ方向をZ軸としてXYZ直交座標系を定義する。このようにXYZ直交座標系を定義したとき、断熱体13の上面はZ軸の正の方向へ向けた面であり、断熱体13の下面はZ軸の負の方向へ向けた面である。以下に出てくるが、発泡体シート11の上面、および断熱シート12の上面、下面についても同様に定義される。断熱体13は、上面視で矩形の形状を有している。この断熱体13は、熱可塑性樹脂からなる発泡体シート11と、この発泡体シート11の内部に設けられた断熱シート12とから構成されている。断熱シート12の寸法は、横の長さWa=約80mm、縦の長さLa=約140mm、厚さTa=約1mmである。発泡体シート11はウレタン樹脂を発泡させてシート状の形状としている。発泡体シート11の寸法は、横の長さWf=約90mm、縦の長さLf=約150mm、厚さTf=約3mmである。発泡体シート11の第1の端面18から第2の端面19へ向けて、発泡体シート11のほぼ中央を通り発泡体シート11の上面20に平行な面(XY平面)に沿って切込み14を設ける。その切込み14の中に断熱シート12を、断熱シート12の上面21が発泡体シート11の上面20に平行になるように挿入し、切込み14を形成した第1の端面18を熱融着させて熱融着部15を形成する。このようにすることにより、断熱シート12を封止して断熱体13を構成している。熱融着部15の幅Le1=約5mmである。また、発泡体シート11の、断熱シート12が挿入されていない部分は発泡体シート11の端部となる。当該端部について、図2の左側における端部の幅We1=約5mmであり、図2の右側における端部の幅We2=約5mmである。また、図2の下側における端部の幅Le2=約5mmである。
(Insulation body)
FIG. 1 is a cross-sectional view of the heat insulating body 13 according to the embodiment of the present disclosure, and FIG. 2 is a top view of the same. FIG. 1 is a cross-sectional view of the heat insulating body 13 shown in FIG. 2 when the heat insulating body 13 is cut along a plane including line II and perpendicular to the upper surface of the heat insulating body 13. For the heat insulating body 13 shown in FIGS. 1 and 2, an XYZ Cartesian coordinate system is defined with the horizontal direction as the X-axis, the vertical direction as the Y-axis, and the thickness direction as the Z-axis. When the XYZ Cartesian coordinate system is defined in this way, the upper surface of the heat insulating body 13 is a surface directed in the positive direction of the Z axis, and the lower surface of the heat insulating body 13 is a surface directed in the negative direction of the Z axis. As described below, the upper surface of the foam sheet 11 and the upper surface and the lower surface of the heat insulating sheet 12 are also defined in the same manner. The heat insulating body 13 has a rectangular shape when viewed from above. The heat insulating body 13 is composed of a foam sheet 11 made of a thermoplastic resin and a heat insulating sheet 12 provided inside the foam sheet 11. The dimensions of the heat insulating sheet 12 are a horizontal length Wa = about 80 mm, a vertical length La = about 140 mm, and a thickness Ta = about 1 mm. The foam sheet 11 is formed into a sheet shape by foaming urethane resin. The dimensions of the foam sheet 11 are a horizontal length Wf = about 90 mm, a vertical length Lf = about 150 mm, and a thickness Tf = about 3 mm. A notch 14 is made from the first end surface 18 of the foam sheet 11 to the second end surface 19 along a plane (XY plane) that passes through substantially the center of the foam sheet 11 and is parallel to the upper surface 20 of the foam sheet 11. Provide. The heat insulating sheet 12 is inserted into the notch 14 so that the upper surface 21 of the heat insulating sheet 12 is parallel to the upper surface 20 of the foam sheet 11, and the first end surface 18 forming the notch 14 is heat-sealed. The heat-sealed portion 15 is formed. By doing so, the heat insulating sheet 12 is sealed to form the heat insulating body 13. The width Le1 of the heat-sealed portion 15 is about 5 mm. Further, the portion of the foam sheet 11 in which the heat insulating sheet 12 is not inserted becomes the end portion of the foam sheet 11. With respect to the end portion, the width We1 of the end portion on the left side of FIG. 2 is about 5 mm, and the width of the end portion on the right side of FIG. 2 We2 is about 5 mm. Further, the width Le2 of the end portion on the lower side of FIG. 2 is about 5 mm.
 なお、断熱シート12を含む断熱体13の厚さは、約4mmである。なお、上記厚さは、以下に説明する無加圧状態での厚さである。 The thickness of the heat insulating body 13 including the heat insulating sheet 12 is about 4 mm. The above thickness is the thickness in the non-pressurized state described below.
 断熱シート12は、ガラス繊維からなる繊維シートの内部空間にシリカキセロゲルを含浸させたものであり、その熱伝導率は約0.04W/(m・K)となっている。またこの断熱シート12に2MPaの圧力を加えたときの圧縮率が約15%、復元率が約97%となっている。一方、発泡体シート11の圧縮率は約55%、復元率は約99.5%、熱伝導率は約0.1W/(m・K)となっている。 The heat insulating sheet 12 is obtained by impregnating the internal space of a fiber sheet made of glass fiber with silica xerogel, and its thermal conductivity is about 0.04 W / (m · K). Further, when a pressure of 2 MPa is applied to the heat insulating sheet 12, the compressibility is about 15% and the restoration rate is about 97%. On the other hand, the compressibility of the foam sheet 11 is about 55%, the restoration rate is about 99.5%, and the thermal conductivity is about 0.1 W / (m · K).
 ここで圧縮率、および復元率は、以下のように定義される。すなわち、所定の面を有する物体を考え、当該物体の面に垂直な方向に圧力を加える場合を考える。物体の面に垂直な方向を厚さの方向として、無加圧状態(圧力を加える前かつ大気圧の状態)での物体の厚さをt0とし、2MPaの圧力で加圧した状態での物体の厚さをt1とし、この加圧を取り除いた直後の状態(圧力を取り除いた直後かつ大気圧の状態)での物体の厚さをt2とする。そのとき、圧縮率=((t0-t1)/t0)×100%、復元率=(t2/t0)×100%と定義される。なお、「加圧を取り除いた直後」というのは、物体にかかる圧力を取り除いて大気圧の状態に戻した後、物体の厚さt2を測定し終わるまでの短い時間(数秒~1分程度)のことをいう。 Here, the compression rate and the restoration rate are defined as follows. That is, consider a case where an object having a predetermined surface is considered and pressure is applied in a direction perpendicular to the surface of the object. The thickness direction is the direction perpendicular to the surface of the object, the thickness of the object in the non-pressurized state (before applying pressure and in the state of atmospheric pressure) is t0, and the object in the state of being pressurized at a pressure of 2 MPa. Let t1 be the thickness of the object, and let t2 be the thickness of the object in the state immediately after the pressure is removed (immediately after the pressure is removed and in the state of atmospheric pressure). At that time, the compression rate is defined as ((t0-t1) / t0) × 100%, and the restoration rate = (t2 / t0) × 100%. In addition, "immediately after removing the pressurization" is a short time (a few seconds to 1 minute) until the thickness t2 of the object is measured after the pressure applied to the object is removed and the state is returned to the atmospheric pressure state. It means that.
 上記より、発泡体シート11の方が、断熱シート12よりも圧力に対して変形しやすく、復元しやすい。このように構成した断熱体13を電池セル間に挟んで筐体内に固定して二次電池を構成すると、電池セルが熱あるいは劣化によって膨張したときに、発泡体シート11が歪むことにより膨張を吸収する。このことにより断熱シートに影響を与えず、断熱性を維持することができる。また電池セルが熱により膨張した場合、温度が下がると電池セルが元に戻ろうとするが、発泡体シート11の復元率が高いため、隙間ができるのを防止することができる。 From the above, the foam sheet 11 is more easily deformed by pressure than the heat insulating sheet 12, and is easier to restore. When the heat insulating body 13 configured in this way is sandwiched between the battery cells and fixed in the housing to form the secondary battery, when the battery cells expand due to heat or deterioration, the foam sheet 11 is distorted and expands. Absorb. This does not affect the heat insulating sheet and can maintain the heat insulating property. Further, when the battery cell expands due to heat, the battery cell tries to return to its original state when the temperature drops, but since the restoration rate of the foam sheet 11 is high, it is possible to prevent the formation of a gap.
 以上のように切込み14を形成した端面を融着させることにより、断熱シート12からシリカキセロゲルが離脱し、周囲に散らばることを防ぐことができる。 By fusing the end faces having the cuts 14 formed as described above, it is possible to prevent the silica xerogel from being separated from the heat insulating sheet 12 and being scattered around.
 発泡体シート11の圧縮率は40%以上、75%以下、復元率は95%以上、99.99%以下とすることが望ましい。断熱シート12の圧縮率は1%以上、20%以下、復元率は80%以上、99%以下とすることが望ましい。発泡体シート11の圧縮率が40%よりも小さいと断熱シート12からのセルの寸法変化を押し戻す反力が強くなることで、電池性能を劣化させる可能性があるためである。また、発泡体シート11の圧縮率が75%よりも大きいとセルを押さえつける拘束力が弱くなってしまう。また発泡体シート11の復元率が95%よりも小さいと十分に電池セルの寸法変化に追従しにくくなる。発泡体シート11の圧縮率を99.99%より大きくすることは現実的ではない。また断熱シート12の圧縮率が1%よりも小さくなると熱伝導率が大きくなる。断熱シート12の圧縮率が20%よりも大きくなると復元率が小さくなってしまう。また断熱シート12の復元率が80%よりも小さくなるとセルの繰り返し寸法変化に追従できなくなる。断熱シート12の圧縮率が99%よりも大きくすることは現実的ではない。 It is desirable that the compressibility of the foam sheet 11 is 40% or more and 75% or less, and the restoration rate is 95% or more and 99.99% or less. It is desirable that the compressibility of the heat insulating sheet 12 is 1% or more and 20% or less, and the restoration rate is 80% or more and 99% or less. This is because if the compressibility of the foam sheet 11 is smaller than 40%, the reaction force that pushes back the dimensional change of the cell from the heat insulating sheet 12 becomes strong, which may deteriorate the battery performance. Further, if the compressibility of the foam sheet 11 is larger than 75%, the binding force for pressing the cell is weakened. Further, if the restoration rate of the foam sheet 11 is smaller than 95%, it becomes difficult to sufficiently follow the dimensional change of the battery cell. It is not realistic to increase the compressibility of the foam sheet 11 to more than 99.99%. Further, when the compressibility of the heat insulating sheet 12 is smaller than 1%, the thermal conductivity becomes large. If the compressibility of the heat insulating sheet 12 is larger than 20%, the restoration rate becomes small. Further, when the restoration rate of the heat insulating sheet 12 becomes smaller than 80%, it becomes impossible to follow the repeated dimensional change of the cell. It is not realistic to make the compressibility of the heat insulating sheet 12 larger than 99%.
 また発泡体シート11の厚さTfを、断熱シート12の厚さTaの0.3倍以上、30倍以下とすることが望ましい。発泡体シート11の厚さTfが断熱シート12の厚さTaの0.3倍よりも薄くなると外部からの歪みを十分に吸収することができない。また、発泡体シート11の厚さTfが断熱シート12の厚さTaの30倍よりも厚くなると、発泡体シート11のほうが断熱シート12よりも熱伝導率がよいので、同じ厚さの断熱体13で比較したとき断熱性が劣化するためである。ここで発泡体シート11の厚さとは、断熱シート12の上面および下面に配置される発泡体シート11の厚さの和を意味する。 It is also desirable that the thickness Tf of the foam sheet 11 is 0.3 times or more and 30 times or less the thickness Ta of the heat insulating sheet 12. If the thickness Tf of the foam sheet 11 is thinner than 0.3 times the thickness Ta of the heat insulating sheet 12, it is not possible to sufficiently absorb the strain from the outside. Further, when the thickness Tf of the foam sheet 11 is thicker than 30 times the thickness Ta of the heat insulating sheet 12, the foam sheet 11 has better thermal conductivity than the heat insulating sheet 12, so that the heat insulating body having the same thickness This is because the heat insulating property deteriorates when compared with 13. Here, the thickness of the foam sheet 11 means the sum of the thicknesses of the foam sheets 11 arranged on the upper surface and the lower surface of the heat insulating sheet 12.
 なお上記発泡体シート11にはウレタン樹脂を用いたが、ポリエチレン、アクリル、ポリスチレン、ポリプロピレン、エチレンビニルアセタートコポリマのような発泡が可能な熱可塑性樹脂を用いても構わない。 Although urethane resin is used for the foam sheet 11, a thermoplastic resin capable of foaming such as polyethylene, acrylic, polystyrene, polypropylene, and ethylene vinyl acetate copolyma may be used.
 なお上記実施の形態では発泡体シート11の第1の端面18から切込み14を形成しているが、第1の端面18から、第1の端面18と対向する第2の端面19まで到達する切込みを設け、断熱シート12を挿入した後、第1の端面18および第2の端面19を熱融着させても良い。このようにすることにより、さらに切込み14を形成しやすくなる。 In the above embodiment, the notch 14 is formed from the first end face 18 of the foam sheet 11, but the notch reaching from the first end face 18 to the second end face 19 facing the first end face 18. The first end face 18 and the second end face 19 may be heat-sealed after the heat insulating sheet 12 is inserted. By doing so, it becomes easier to form the notch 14.
 (二次電池)
 図3は本開示の一実施の形態における二次電池の部分断面図である。この二次電池は、複数個の電池セル16が筐体17内に配列されて構成されている。隣接する電池セル16の間には、断熱体13が挟まれて筐体17内に固定されている。なお、二次電池とは、リチウムイオン電池やニッケル水素電池といった充電可能な電池のことをいう。この二次電池において、図1の断熱体13が用いられ、融着された第1の端面が筐体17の上部にくるように配置されている。このように発泡体シート11の第1の端面以外の面が筐体17の底面に対向するように配置することにより、シリカキセロゲルが離脱し、周囲に散らばることをさらに防ぐことができる。
(Secondary battery)
FIG. 3 is a partial cross-sectional view of the secondary battery according to the embodiment of the present disclosure. This secondary battery is configured by arranging a plurality of battery cells 16 in a housing 17. A heat insulating body 13 is sandwiched between adjacent battery cells 16 and fixed in the housing 17. The secondary battery refers to a rechargeable battery such as a lithium ion battery or a nickel hydrogen battery. In this secondary battery, the heat insulating body 13 of FIG. 1 is used, and the fused first end face is arranged so as to come to the upper part of the housing 17. By arranging the foam sheet 11 so that the surfaces other than the first end surface face the bottom surface of the housing 17, the silica xerogel can be further prevented from being separated and scattered around.
 また、上記のような電池セル16と断熱体13の配置により、1つの電池セル16が他の電池セル16と比べて高温になり膨張した場合に発泡体シート11が圧縮されて当該1つの電池セル16の膨張を吸収し、断熱シート12はほとんど圧縮されず、断熱性を維持できるため、他の電池セル16への影響を防ぐことができる。 Further, due to the arrangement of the battery cell 16 and the heat insulating body 13 as described above, when one battery cell 16 becomes hotter than the other battery cells 16 and expands, the foam sheet 11 is compressed and the one battery is concerned. Since the expansion of the cell 16 is absorbed, the heat insulating sheet 12 is hardly compressed, and the heat insulating property can be maintained, it is possible to prevent the influence on other battery cells 16.
 なお、発泡体シート11および断熱シート12について、それぞれ2MPaの圧力で加圧した後、圧力を取り除くとすぐに上記所定の復元率で示す厚さになる。その後においては、発泡体シート11および断熱シート12の厚さの変化の仕方は、以下(1)~(3)で示す3つの場合が考えられる。 The foam sheet 11 and the heat insulating sheet 12 are each pressurized at a pressure of 2 MPa, and as soon as the pressure is removed, the thickness becomes the thickness indicated by the above-mentioned predetermined restoration rate. After that, the methods of changing the thicknesses of the foam sheet 11 and the heat insulating sheet 12 can be considered in the following three cases (1) to (3).
 (1)発泡体シート11および断熱シート12が所定の復元率で示す厚さのままである場合。 (1) When the foam sheet 11 and the heat insulating sheet 12 still have the thickness indicated by the predetermined restoration rate.
 (2)発泡体シート11または断熱シート12の厚さが、ある程度の時間(数分~数時間)をかけて厚さが増加するが、加圧前の厚さに戻らない場合。 (2) When the thickness of the foam sheet 11 or the heat insulating sheet 12 increases over a certain period of time (several minutes to several hours), but does not return to the thickness before pressurization.
 (3)発泡体シート11および断熱シート12の厚さがある程度の時間(数分~数時間)をかけてゆっくりと加圧前の厚さに戻る場合。 (3) When the thickness of the foam sheet 11 and the heat insulating sheet 12 slowly returns to the thickness before pressurization over a certain period of time (several minutes to several hours).
 なお、上記(2)(3)において「ある程度の時間」と「加圧を取り除いた直後」との時間の長さの関係は、(ある程度の時間)>>(加圧を取り除いた直後)である。 In the above (2) and (3), the relationship between the length of time between "a certain amount of time" and "immediately after the pressurization is removed" is (a certain amount of time) >> (immediately after the pressurization is removed). is there.
 上記(1)(2)の場合、高温になり膨張した電池セル16に接する断熱体13は変形するので、膨張した電池セル16および変形した断熱体13を、新しい電池セル16および新しい断熱体13に交換すればよい。 In the cases of (1) and (2) above, since the heat insulating body 13 in contact with the expanded battery cell 16 becomes deformed due to high temperature, the expanded battery cell 16 and the deformed heat insulating body 13 are replaced with the new battery cell 16 and the new heat insulating body 13. You can replace it with.
 また、上記(3)の場合、断熱体13は引き続き使用可能であるから、高温になり膨張した電池セル16を無視して二次電池を使用すればよい。 Further, in the case of (3) above, since the heat insulating body 13 can still be used, the secondary battery may be used by ignoring the battery cell 16 which has expanded due to the high temperature.
 (断熱シートの製造方法)
 次に本開示の一実施の形態における断熱シートの製造方法について説明する。当該製造方法は、図4のフローチャートに示す各工程の順に行われる。
(Manufacturing method of heat insulating sheet)
Next, a method for manufacturing a heat insulating sheet according to an embodiment of the present disclosure will be described. The manufacturing method is performed in the order of each step shown in the flowchart of FIG.
 まず内部空間を有する繊維シートを準備する(準備工程)。この繊維シートは、厚さ約1mm、大きさ約300mm×500mmの矩形状、厚さ約1mmで、平均繊維太さ約φ2μmのガラス繊維からなっている。 First, prepare a fiber sheet with an internal space (preparation process). This fiber sheet is made of glass fiber having a thickness of about 1 mm, a size of about 300 mm × 500 mm, a rectangular shape, a thickness of about 1 mm, and an average fiber thickness of about φ2 μm.
 次にシリカキセロゲルを繊維シートの内部空間に含浸するための準備を行う。この材料として約15重量%の珪酸ナトリウム水溶液(水ガラス)に対し触媒として重量比で約6%のエチレンカーボネートを添加してシリカゾル溶液を調整する(調整工程)。このシリカゾル溶液に繊維シートを浸漬して繊維シートの内部空間にシリカゾル溶液を含浸させる(含侵工程)。 Next, prepare for impregnating the internal space of the fiber sheet with silica xerogel. A silica sol solution is prepared by adding about 6% by weight of ethylene carbonate as a catalyst to about 15% by weight of an aqueous sodium silicate solution (water glass) as this material (adjustment step). The fiber sheet is immersed in this silica sol solution to impregnate the internal space of the fiber sheet with the silica sol solution (impregnation step).
 次にシリカゾル溶液を含浸した状態で繊維シートをプレスして繊維シートの厚みを均一にする(厚み均一化工程)。繊維シートの厚みの整え方は、ロールプレス等の方法を用いてもよい。厚みを整えた繊維シートをフィルムに挟んだ状態で養生してゲル骨格を強化する(養生工程)。 Next, the fiber sheet is pressed with the silica sol solution impregnated to make the thickness of the fiber sheet uniform (thickness equalization step). As a method of adjusting the thickness of the fiber sheet, a method such as a roll press may be used. The gel skeleton is strengthened by curing the fiber sheet with the adjusted thickness sandwiched between the films (curing process).
 次にシリカキセロゲルを疎水化する。シリカキセロゲルを含浸した繊維シートを6Nの塩酸に約30分浸漬し、ゲルと塩酸を反応させる。そのあと疎水化処理の第二段階として、シリル化剤とアルコールの混合溶液からなるシリル化液に浸漬させた後、約55℃の恒温槽にて約2時間保管する(疎水化工程)。この際に、シリル化剤とアルコールの混合溶液が浸透する。反応が進行し、トリメチルシロキサン結合が形成し始めるとゲルを含有した繊維シートから塩酸水が外部に排出される。シリル化処理が終了したら、約150℃の恒温槽にて約2時間乾燥して(乾燥工程)、断熱シート12を得る。 Next, hydrophobize the silica xerogel. The fiber sheet impregnated with silica xerogel is immersed in 6N hydrochloric acid for about 30 minutes to react the gel with hydrochloric acid. Then, as the second step of the hydrophobization treatment, the mixture is immersed in a silylation solution consisting of a mixed solution of a silylating agent and an alcohol, and then stored in a constant temperature bath at about 55 ° C. for about 2 hours (hydrophobicization step). At this time, a mixed solution of the silylating agent and alcohol permeates. When the reaction proceeds and trimethylsiloxane bonds begin to form, hydrochloric acid water is discharged to the outside from the fiber sheet containing the gel. After the silylation treatment is completed, the insulation sheet 12 is obtained by drying in a constant temperature bath at about 150 ° C. for about 2 hours (drying step).
 次に発泡体シートを準備する。厚さ約3mmのウレタン樹脂からなる発泡体シートを所定の寸法に切断する。そのあと発泡体シートの一端面から発泡体シートの面方向に切込み14を形成する。切込み14を形成する方法としては、マイクロエンドミルあるいはカット刃を挿入した後面方向に移動させながら切込み14を形成するという方法等が考えられる。 Next, prepare the foam sheet. A foam sheet made of urethane resin having a thickness of about 3 mm is cut to a predetermined size. After that, a notch 14 is formed from one end surface of the foam sheet in the surface direction of the foam sheet. As a method of forming the notch 14, a method of forming the notch 14 while moving the micro end mill or the cutting blade in the rear surface direction can be considered.
 次に切込み14を入れた一端面から断熱シート12を挿入し、この面を熱融着させることにより熱融着部15を形成し、発泡体シート11の内部に断熱シート12を封止して断熱体13を得ることができる。 Next, the heat insulating sheet 12 is inserted from one end surface in which the notch 14 is made, and the heat-sealed portion 15 is formed by heat-sealing this surface, and the heat insulating sheet 12 is sealed inside the foam sheet 11. Insulation body 13 can be obtained.
 なお、上記に示した断熱体13の製造方法はあくまで最適な製造方法の一例であって、他の製造方法を適用して本開示にかかる断熱体13を得ることも可能である。 The manufacturing method of the heat insulating body 13 shown above is just an example of the optimum manufacturing method, and it is also possible to obtain the heat insulating body 13 according to the present disclosure by applying another manufacturing method.
 本開示に係る断熱体およびこれを用いた二次電池は、電池セルが膨張したとき発泡体シートが圧縮されてその膨張を吸収し、断熱シートはほとんど圧縮されず、断熱性を維持できるため、他の電池セルへの影響を防ぐことができて産業上有用である。 In the heat insulating body according to the present disclosure and the secondary battery using the same, when the battery cell expands, the foam sheet is compressed to absorb the expansion, the heat insulating sheet is hardly compressed, and the heat insulating property can be maintained. It is industrially useful because it can prevent the influence on other battery cells.
 11 発泡体シート
 12 断熱シート
 13 断熱体
 14 切込み
 15 熱融着部
 16 電池セル
 17 筐体
 18 第1の端面
 19 第2の端面
 20、21 上面
11 Foam sheet 12 Insulation sheet 13 Insulation body 14 Notch 15 Heat fusion part 16 Battery cell 17 Housing 18 First end face 19 Second end face 20, 21 Top surface

Claims (5)

  1.  熱可塑性樹脂からなる発泡体シートと、
     この発泡体シートの内部に設けられた断熱シートと、
     熱融着部と、を備えた断熱体であって、
     前記発泡体シートは、第1の端面と、前記第1の端面に対向する第2の端面と、前記第1の端面と前記第2の端面との間に配置された上面と、前記第1の端面から前記第2の端面へ向けて前記上面に沿って設けられた切込みと、を備え、
     前記断熱シートは、繊維シートとシリカキセロゲルとを有し、かつ前記繊維シートに前記シリカゲルを含浸させてなり、かつ前記切込みの中に挿入され、
     前記熱融着部は、前記発泡体シートの前記第1の端面を熱融着することにより前記断熱シートを封止する、断熱体。
    A foam sheet made of thermoplastic resin and
    The heat insulating sheet provided inside this foam sheet and
    It is a heat insulating body equipped with a heat-sealing part,
    The foam sheet has a first end face, a second end face facing the first end face, an upper surface arranged between the first end face and the second end face, and the first. With a notch provided along the upper surface from the end face of the body to the second end face.
    The heat insulating sheet has a fiber sheet and silica gel, and the fiber sheet is impregnated with the silica gel and inserted into the notch.
    The heat-sealing portion is a heat insulating body that seals the heat insulating sheet by heat-sealing the first end face of the foam sheet.
  2.  2MPaの圧力を加えたときの厚さの変化率を圧縮率、この圧力を取り除いたときに厚さが戻る割合を復元率としたとき、
     前記発泡体シートの圧縮率を前記断熱シートの圧縮率よりも大きくし、
     かつ前記発泡体シートの復元率を前記断熱シートの復元率をよりも大きくした、請求項1記載の断熱体。
    When the rate of change in thickness when a pressure of 2 MPa is applied is the compression rate, and the rate at which the thickness returns when this pressure is removed is the recovery rate.
    The compression rate of the foam sheet is made larger than the compression rate of the heat insulating sheet.
    The heat insulating body according to claim 1, wherein the restoration rate of the foam sheet is made larger than the restoration rate of the heat insulating sheet.
  3.  前記発泡体シートの圧縮率が40%以上かつ75%以下であり、復元率が95%以上かつ99.99%以下であり、
     前記断熱シートの圧縮率が1%以上かつ20%以下、復元率が80%以上かつ99%以下である、請求項2記載の断熱体。
    The compressibility of the foam sheet is 40% or more and 75% or less, and the restoration rate is 95% or more and 99.99% or less.
    The heat insulating body according to claim 2, wherein the heat insulating sheet has a compression rate of 1% or more and 20% or less, and a restoration rate of 80% or more and 99% or less.
  4.  前記発泡体シートに、ウレタン、ポリエチレン、アクリル、ポリスチレン、ポリプロピレン、エチレンビニルアセタートコポリマの中から選ばれる少なくも一種の樹脂を用いた、請求項1記載の断熱体。 The heat insulating body according to claim 1, wherein at least one kind of resin selected from urethane, polyethylene, acrylic, polystyrene, polypropylene, and ethylene vinyl acetate copolyma is used for the foam sheet.
  5.  筐体と、
     この筐体の中に配置した複数個の電池セルと、
     前記電池セル間に配置した断熱体と、を備えた二次電池であって、
     前記断熱体に請求項1の断熱体を用い、前記発泡体シートの第1の端面以外の面が前記筐体の底面に対向するように配置した、二次電池。
    With the housing
    A plurality of battery cells arranged in this housing and
    A secondary battery including a heat insulating body arranged between the battery cells.
    A secondary battery in which the heat insulating body according to claim 1 is used as the heat insulating body, and a surface other than the first end surface of the foam sheet is arranged so as to face the bottom surface of the housing.
PCT/JP2020/031376 2019-10-24 2020-08-20 Heat insulating body and secondary battery using same WO2021079601A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021554100A JPWO2021079601A1 (en) 2019-10-24 2020-08-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019193200 2019-10-24
JP2019-193200 2019-10-24

Publications (1)

Publication Number Publication Date
WO2021079601A1 true WO2021079601A1 (en) 2021-04-29

Family

ID=75620442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031376 WO2021079601A1 (en) 2019-10-24 2020-08-20 Heat insulating body and secondary battery using same

Country Status (2)

Country Link
JP (1) JPWO2021079601A1 (en)
WO (1) WO2021079601A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237910A (en) * 2013-06-10 2014-12-18 パナソニック株式会社 Fiber sheet
JP2018204708A (en) * 2017-06-06 2018-12-27 パナソニックIpマネジメント株式会社 Heat insulation material, heat generation unit using the same and battery unit
WO2019155713A1 (en) * 2018-02-09 2019-08-15 三洋電機株式会社 Power supply device, and electric vehicle and power storage device provided with said power supply device
CN209675463U (en) * 2019-06-04 2019-11-22 王贝尔 Aerogel heat-proof piece
WO2019225060A1 (en) * 2018-05-24 2019-11-28 パナソニックIpマネジメント株式会社 Heat-insulating molded article and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237910A (en) * 2013-06-10 2014-12-18 パナソニック株式会社 Fiber sheet
JP2018204708A (en) * 2017-06-06 2018-12-27 パナソニックIpマネジメント株式会社 Heat insulation material, heat generation unit using the same and battery unit
WO2019155713A1 (en) * 2018-02-09 2019-08-15 三洋電機株式会社 Power supply device, and electric vehicle and power storage device provided with said power supply device
WO2019225060A1 (en) * 2018-05-24 2019-11-28 パナソニックIpマネジメント株式会社 Heat-insulating molded article and manufacturing method therefor
CN209675463U (en) * 2019-06-04 2019-11-22 王贝尔 Aerogel heat-proof piece

Also Published As

Publication number Publication date
JPWO2021079601A1 (en) 2021-04-29

Similar Documents

Publication Publication Date Title
CN102365773B (en) Electrode plate manufacturing device
JP2009533834A (en) Pouch type battery
CN216354448U (en) Insulating part, electric core, battery and power consumption device
WO2021079601A1 (en) Heat insulating body and secondary battery using same
KR20190099056A (en) Hollow-core Rolled-electrode Battery Cells
WO2005081343A1 (en) Solid polymer electrolyte membrane and separator both for fuel cell
JP2007048616A (en) Fuel cell separator, device and method for manufacturing separator
JP2014120317A (en) Electrolyte membrane for fuel cell, membrane-electrode joined body and manufacturing method of electrolyte membrane for fuel cell
CN101351915A (en) Combined electrode component for ultrasonic welding fuel cell
CN107204478A (en) The manufacture method of fuel battery membrane electrode assembly
JP4527844B2 (en) Manufacturing method of battery electrode plate
JP2008248618A (en) Heat-insulating and sound-insulating material
JP7422293B2 (en) Heat insulation sheet and its manufacturing method
US20210115622A1 (en) Heat-insulating sheet and manufacturing method therefor
JP2016103450A (en) Battery electrode plate manufacturing device and method
KR101303440B1 (en) Refrigerator
US20230198055A1 (en) Battery Case Shaping Apparatus and Method Using Shock Wave
JP7462134B2 (en) Heat insulating sheet and secondary battery using same
JP7332332B2 (en) Heat transfer suppression sheet and assembled battery
JP2020187870A (en) Battery cell and battery pack
JP2008192403A (en) Feul cell, its manufacturing method, and laminated member for fuel cell
WO2023153447A1 (en) Secondary battery and method for producing secondary battery
JP6240542B2 (en) How to recycle vacuum insulation
EP3843185B1 (en) Method and device for manufacturing an active layer membrane assembly of a fuel cell or an electrolyser
KR102660377B1 (en) manufacture method of insulation sheet by using mica and mica insulation sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880249

Country of ref document: EP

Kind code of ref document: A1