WO2021079557A1 - Coolant passage way structure for motor - Google Patents

Coolant passage way structure for motor Download PDF

Info

Publication number
WO2021079557A1
WO2021079557A1 PCT/JP2020/024056 JP2020024056W WO2021079557A1 WO 2021079557 A1 WO2021079557 A1 WO 2021079557A1 JP 2020024056 W JP2020024056 W JP 2020024056W WO 2021079557 A1 WO2021079557 A1 WO 2021079557A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant passage
coolant
motor
axial direction
vertical direction
Prior art date
Application number
PCT/JP2020/024056
Other languages
French (fr)
Japanese (ja)
Inventor
泰我 瀬谷
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to CN202080074169.5A priority Critical patent/CN114586262B/en
Publication of WO2021079557A1 publication Critical patent/WO2021079557A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a coolant passage structure of a motor.
  • a coolant passage through which the coolant flows is provided inside the housing that houses the motor element.
  • the coolant passage is formed so that the outer diameter is constant, and the wall surface on the upper side in the vertical direction opposite to the direction of gravity is formed horizontally along the rotation axis of the motor.
  • the wall surface on the upper side in the vertical direction of the coolant passage is formed horizontally. Therefore, when the coolant contains air (air bubbles), the air stays along the wall surface on the upper side in the vertical direction of the coolant passage. As a result, when the discharge port of the coolant passage is formed with an opening in a direction other than the upper side in the vertical direction, it is difficult to sufficiently discharge the air from the discharge port.
  • the present invention has been devised focusing on such a technical problem, and an object of the present invention is to provide a coolant passage structure for a motor capable of efficiently discharging air contained in a coolant. ..
  • a motor element for rotationally driving a rotating shaft a tubular housing provided on the outer peripheral side of the motor element and accommodating the motor element, and a tubular housing provided inside the housing for cooling.
  • It is a coolant passage structure of a motor provided with a coolant passage through which liquid flows, and the coolant passage is along the axial direction of the rotation axis at least at the upper end in the vertical direction of the housing. It is formed through, and the distance from the rotation center of the rotating shaft to the upper wall surface of the coolant passage in the vertical direction is gradually expanded toward one end side in the axial direction, and the coolant in the coolant passage is formed. , It is discharged from a discharge port provided on one end side in the axial direction of the coolant passage.
  • the coolant passage is formed through the upper end in the vertical direction along the axial direction, and is vertically above the coolant passage from the rotation center of the rotation shaft.
  • the distance to the wall surface of the wall surface is formed so as to gradually increase toward one end side in the axial direction.
  • the wall surface on the upper side of the coolant passage in the vertical direction is formed so as to be inclined upward toward one end side in the axial direction.
  • the wall surface on the upper side in the vertical direction of the coolant passage is formed in an ascending slope toward one end side in the axial direction, so that the air contained in the coolant is formed along the ascending wall surface. Can be smoothly transported to the discharge port on one end side in the axial direction. As a result, the air contained in the coolant is efficiently discharged.
  • the coolant passage is formed in an annular shape around the rotation shaft.
  • the coolant passage is formed in an annular shape around the rotation axis, the coolant passage can be easily formed by casting using a cylindrical core. Furthermore, since the coolant passage is formed in an annular shape around the rotation axis, the cooling performance of the motor is improved by ensuring uniform cooling around the entire circumference of the motor and ensuring a larger volume of the coolant passage. Can be done.
  • the discharge port is formed with an opening in a direction other than the upper side in the vertical direction.
  • the air contained in the coolant is collected at one end side in the axial direction of the coolant passage along the upper wall surface in the vertical direction. Therefore, even when the discharge port is open in a direction other than the upper side in the vertical direction, air can be efficiently discharged as the coolant is discharged.
  • a wall portion extending in the radial direction of the rotation shaft from the rotation center of the rotation shaft toward the upper wall surface in the vertical direction in the middle of the coolant passage is provided, and it is desirable that the wall portion of the coolant passage reduces the cross-sectional area of a part of the passage at the upper end in the vertical direction.
  • the flow velocity of the coolant can be adjusted by adjusting the extension amount of the wall portion. That is, the discharge property of the air contained in the coolant can be easily adjusted, and the air can be efficiently discharged.
  • the air contained in the coolant can be moved to one end side in the axial direction along the wall surface on the upper side in the vertical direction of the coolant passage.
  • the air contained in the coolant can be efficiently discharged from the discharge port provided on one end side in the axial direction.
  • FIG. 3 It is a perspective view of the motor provided for the description of the coolant passage structure of the motor which concerns on this invention. It is a top view of the motor seen from the A direction of FIG. It is a vertical sectional view of the motor which shows 1st Embodiment of this invention and corresponds to the cross section of line BB of FIG.
  • the core used for forming the coolant passage shown in FIG. 3 is shown, (a) is a perspective view, and (b) is a sectional view taken along line CC of FIG. 3 (a).
  • b) is a diagram showing a state in which air is discharged from the coolant passage as the coolant is discharged. It is a perspective view of a motor provided for the explanation of the coolant passage structure of a conventional motor, (a) is a view showing the state in which the air contained in the coolant stays in the coolant passage, and (b) is the cooling. It is the figure which showed the state which the air remained in the coolant passage even if the liquid was discharged. It is a vertical sectional view of the motor which shows the 2nd embodiment of this invention and corresponds to FIG.
  • the coolant passage structure of the motor according to the present invention is applied to the cooling structure of the water-cooled motor as in the conventional case.
  • FIG. 1 shows a perspective view of the motor M when the motor M is viewed from diagonally above.
  • FIG. 2 shows a plan view of the motor M as viewed from the direction A shown in FIG.
  • FIG. 3 shows a first embodiment of the present invention, and shows a vertical cross-sectional view of the motor M cut along the line BB shown in FIG. 4A and 4B show a core 8 used for forming the coolant passage 7 shown in FIG. 3,
  • FIG. 4A is a perspective view, and FIG. 4B is a cross-sectional view taken along the line CC of FIG. 4A. Is shown.
  • the motor M includes a tubular metal housing 1, a stator 2 housed and held inside the housing 1, and a stator 2. It includes a rotor 3 that is rotatably arranged inside a minute gap G, and a rotating shaft 4 that is press-fitted and fixed inside the rotor 3 and rotates integrally with the rotor 3.
  • the stator 2 and the rotor 3 constitute a motor element according to the present invention.
  • the housing 1 is formed by casting a metal material, for example, an aluminum alloy, and has a bottomed cylindrical shape in which one end side in the axial direction is open and the other end side is closed.
  • the bottom wall 12 and the bottom wall 12 are integrally formed.
  • the opening on one end side of the housing 1 is closed by a disc-shaped cover plate 5. That is, the housing 1 and the cover plate 5 define a motor accommodating portion 10 for accommodating the stator 2 and the rotor 3 inside.
  • a first shaft insertion hole 12a through which the tip portion 4a of the rotating shaft 4 facing the outside penetrates is formed through, and the inner peripheral side of the first shaft insertion hole 12a is formed.
  • a first bearing 61 that rotatably supports the tip portion 4a side of the rotating shaft 4.
  • a second shaft insertion hole 5a through which the base end portion 4b of the rotary shaft 4 penetrates is formed through the central portion of the cover plate 5, and the rotary shaft is formed on the inner peripheral side of the second shaft insertion hole 5a.
  • a second bearing 62 that rotatably supports the base end portion 4b of 4 is provided.
  • a coolant passage 7 through which a coolant (for example, cooling water) used for cooling the motor M (stator 2) passes is formed.
  • the coolant passage 7 is formed by a so-called collapsible core 8 formed in a substantially cylindrical shape having a conical tapered surface 80a on the outer peripheral side as shown in FIG. 4 when the housing 1 is cast.
  • the core 8 includes a cylindrical core body 80, an introduction port forming portion 81 projecting substantially along the tangential direction on the outer peripheral side of the axial end of the core body 80 on the small diameter side, and a core. It has a discharge port forming portion 82 projecting along the axial direction from the axial end surface of the main body 80 on the large diameter side.
  • the core body 80 has a conical tapered surface 80a on the outer peripheral side and a horizontal plane 80b along the axial direction on the inner peripheral side. Then, when the housing 1 is cast, the core body 80 forms the coolant passage 7, the introduction port forming portion 81 forms the introduction port 13, and the discharge port forming portion 82 forms the discharge port 14.
  • the coolant passage 7 is formed with the above-mentioned core 8 in a continuous annular shape along the circumferential direction, and extends over almost the entire axial direction, so that the rotation center (central axis) of the rotation axis 4 is formed.
  • the distance R from Z) to the outer peripheral side wall surface (for example, the upper wall surface 7a in the vertical direction) is formed so as to gradually increase toward one end side (cover plate 5 side) in the axial direction.
  • the coolant passage 7 is formed in a conical taper shape in which the upper wall surface 7a in the vertical direction is inclined upward toward one end side (cover plate 5 side) in the axial direction, and is formed on the inner peripheral side.
  • the wall surface 7b of the above is formed horizontally along the axial direction.
  • the coolant passage structure of the motor according to the present invention is limited to this embodiment. It is not something that is done. That is, the coolant passage structure of the motor according to the present invention may be formed so that the distance R to the upper wall surface 7a in the vertical direction gradually increases toward one end side in the axial direction. For example, the upper wall surface in the vertical direction.
  • the 7a being formed in a curved shape having a convex or concave arc shape in the vertical cross section toward one end side in the axial direction.
  • the peripheral wall 11 on the other end side (bottom wall 12 side) in the axial direction of the housing 1 extends tangentially along the vertical direction and is aligned with the rotation center (central axis Z) of the rotation shaft 4 in the vertical direction.
  • Cylindrical introduction ports 13 connected to the coolant passage 7 at overlapping positions are formed so as to project. That is, the coolant is introduced into the coolant passage 7 from the outside of the housing 1 through the introduction port 13.
  • the introduction port 13 is opened in the tangential direction with respect to the peripheral wall of the housing 1, but the opening direction of the introduction port 13 is, for example, the axial direction in addition to the tangential direction. Alternatively, it can be freely changed according to the layout of the coolant passage 7 such as the radial direction.
  • the cover plate 5 has a cylindrical discharge port 14 connected to the coolant passage 7 at a position overlapping the rotation center (center axis Z) of the rotation shaft 4 in the vertical direction and extending along the axial direction. , Protruding is formed. That is, the coolant flowing through the coolant passage 7 is discharged to the outside of the housing 1 through the discharge port 14.
  • the discharge port 14 is opened in the axial direction in the cover plate 5 corresponding to the axial end portion of the housing 1, but in the coolant passage structure of the motor according to the present invention, the discharge port 14 is discharged.
  • the outlet 14 may be opened in a direction other than the upper side in the vertical direction, and the opening direction of the discharge port 14 can be freely changed according to the layout of the coolant passage 7, such as the axial direction or the radial direction. is there.
  • FIG. 5 is a perspective view of the motor M used to explain the operation of the coolant passage structure of the motor M according to the present embodiment
  • FIG. 5A is a perspective view of the motor M in which air contained in the coolant stays in the coolant passage.
  • a diagram showing the state (b) shows a diagram showing a state in which air is discharged from the coolant passage as the coolant is discharged.
  • FIG. 6 is a perspective view of the motor used to explain the coolant passage structure of the conventional motor
  • FIG. 6A is a view showing a state in which air contained in the coolant stays in the coolant passage.
  • (B) shows a diagram showing a state in which air remains in the coolant passage even when the coolant is discharged.
  • the coolant passage 7, the introduction port 13, and the discharge port 14 are shown by solid lines, and the housing 1, the rotating shaft 4, and the cover plate 5 are shown by virtual lines of two-dot chain lines.
  • the direction parallel to the central axis Z of the rotation axis 4 of the motor M is the "axial direction”
  • the direction orthogonal to the central axis Z is the "diameter direction”
  • the direction around the central axis Z is the "circumferential direction”. It will be explained as "direction”.
  • the wall surface 7a on the upper side of the coolant passage 7 in the vertical direction is formed horizontally along the axial direction. Therefore, as shown in FIG. 6A, the air A contained in the coolant stays so as to extend in the axial direction along the wall surface 7a on the upper side in the vertical direction of the coolant passage 7.
  • the coolant on the side closer to the discharge port 14 indicated by the arrow N has a high flow velocity
  • the discharge port 14 indicated by the arrow F has a high flow velocity.
  • the air A gathers along the arrow X on the other end side (bottom wall 12 side) in the axial direction where the flow rate of the cooling water is slow, and is not discharged from the discharge port 14. There was a problem that it remained in the coolant. Then, the portion where the air A remains cannot contribute to the cooling of the motor M, and there is a possibility that the cooling efficiency of the motor M may decrease.
  • the coolant passage 7 is formed through the upper end in the vertical direction along the axial direction, and the rotating shaft 4 is formed.
  • the distance R from the center of rotation (central axis Z) to the wall surface 7a on the upper side in the vertical direction of the coolant passage 7 is gradually expanded toward one end side in the axial direction. Therefore, the air A contained in the coolant is moved to one end side in the axial direction along the vertical upper wall surface 7a of the coolant passage 7, and is in the axial direction of the coolant passage 7 close to the discharge port 14. It becomes possible to collect at one end.
  • the air A contained in the coolant is concentrated at one end in the axial direction in which the flow velocity of the cooling water is high, and the air A is included in the coolant along the arrow E with the discharge of the cooling water with this high flow velocity.
  • the exhausted air A can be efficiently discharged from the discharge port 14. As a result, the retention of air A in the coolant in the coolant passage 7 is suppressed, and the cooling efficiency of the motor M can be improved.
  • the wall surface 7a on the upper side in the vertical direction of the coolant passage 7 is formed so as to be inclined upward toward one end side in the axial direction.
  • the air A contained in the coolant can be smoothly carried to the discharge port 14 on one end side in the axial direction along the wall surface 7a on the upper side in the vertical direction formed in the upward inclination, and the cooling can be performed. It is used for efficient discharge of air A contained in the liquid.
  • the coolant passage 7 is formed in an annular shape around the rotating shaft 4.
  • coolant passage 7 can be easily formed by casting using the cylindrical core 8. Further, since the coolant passage 7 is formed in an annular shape around the rotating shaft 4, uniform cooling can be achieved over the entire circumference of the motor M, and a larger volume of the coolant passage 7 is secured, so that the motor M can be cooled more uniformly. Cooling performance can be improved.
  • the discharge port 14 is formed with an opening in a direction other than the upper side in the vertical direction. Specifically, the discharge port 14 is formed with an opening in the cover plate 5 along the axial direction.
  • the coolant passage 7 When the coolant passage 7 is formed horizontally along the axial direction as in the conventional case, the air A contained in the coolant is axially along the vertical upper wall surface 7a of the coolant passage 7. Will stay in. Therefore, when the discharge port 14 is open in a direction other than the upper side in the vertical direction, it is difficult to efficiently discharge the air A contained in the coolant.
  • the air A contained in the coolant is collected at one end side in the axial direction of the coolant passage 7 along the wall surface 7a on the upper side in the vertical direction. Therefore, when the discharge port 14 is opened in a direction other than the upper side in the vertical direction, for example, even when the cover plate 5 is formed along the axial direction as in the present embodiment, air is discharged as the coolant is discharged. A can be discharged efficiently.
  • FIG. 7 shows a second embodiment of the coolant passage structure of the motor according to the present invention, and this embodiment is a modification of the configuration of the coolant passage 7 in the first embodiment.
  • the basic configuration other than such changes is the same as that of the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the direction parallel to the central axis Z of the rotation axis 4 of the motor M is the "axial direction”
  • the direction orthogonal to the central axis Z is the "diameter direction”
  • the direction around the central axis Z is "axial direction”. It will be described as "circumferential direction”.
  • a plurality of motor coolant passage structures extending along the radial direction on the inner peripheral wall surface 7b of the coolant passage 7 in the housing 1 are integrally formed at substantially equal intervals in the axial direction. That is, in the present embodiment, at the upper end of the coolant passage 7 in the vertical direction, the space between the wall surface 7a and the wall portion 7c on the upper side in the vertical direction is narrowed, so that the passage is cut at the axial position where the wall portion 7c is provided.
  • the area S2 is configured to be smaller than the passage cross-sectional area S1 at another axial position where the wall portion 7c is not provided.
  • the wall portion 7c is integrally formed on the inner peripheral side wall surface 7b of the coolant passage 7, so that a part of the passage cross-sectional area S2 at the upper end of the coolant passage 7 in the vertical direction is formed.
  • the means for reducing a part of the passage cross-sectional area S2 at the upper end of the coolant passage 7 in the vertical direction according to the present invention is not limited to the mode in which the wall portion 7c is provided. However, it can be freely changed according to the specifications of the motor M and the like.
  • the passage cross-sectional area S2 of a part of the coolant passage 7 is reduced at the upper end of the coolant passage 7 in the vertical direction.
  • a wall portion 7c extending in the radial direction from the rotation center (central axis Z) of the rotation shaft 4 toward the wall surface 7a on the upper side in the vertical direction is provided in the middle of the coolant passage 7 for cooling.
  • the wall portion 7c of the liquid passage 7 reduces a part of the passage cross-sectional area S2 at the upper end in the vertical direction.
  • the flow velocity of the coolant can be adjusted by adjusting the extension amount of the wall portion 7c.
  • the discharge property of the air A contained in the coolant can be easily adjusted, and the air A can be discharged more efficiently.
  • the present invention is not limited to the configuration exemplified in the above embodiment, and can be freely changed according to the specifications and the like to be applied within a range not deviating from the gist of the present invention.
  • the form of the coolant passage 7 disclosed in the above embodiment is only an example of the coolant passage structure of the motor according to the present invention.
  • the coolant passage 7 is formed through the upper end in the vertical direction along the axial direction, and is formed from the rotation center (central axis Z) of the rotation shaft 4. It suffices that the distance R to the vertical upper wall surface 7a of the coolant passage 7 is gradually expanded toward one end side in the axial direction, and in the circumferential direction, in addition to the annular shape, the spiral shape or the cross section is circular.
  • Various forms such as an arc-shaped semi-annular shape can be adopted depending on the specifications of the motor M, the layout of the coolant passage 7, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

A coolant passage way structure for a motor according to the present invention has a coolant passage way (7) formed so as to axially penetrate a vertically upper-side end thereof. The distance (R) from a rotation center (central axis line Z) of a rotary shaft (4) to a vertically upper-side wall surface (7a) of the coolant passage way (7) gradually increases toward one end side in the axial direction. Thus, it becomes possible to cause air included in the coolant to move to one end side in the axial direction along the vertically upper-side wall surface (7a) of the coolant passage way (7), and to be accumulated at one end of the coolant passage way (7) in the axial direction closer to a discharge port (14). Accordingly, with the air included in the coolant accumulating at one end in the axial direction where cooling water flows at a higher speed, it is possible to efficiently discharge the air included in the coolant from the discharge port (14) when the cooling water is discharged.

Description

モータの冷却液通路構造Motor coolant passage structure
 本発明は、モータの冷却液通路構造に関する。 The present invention relates to a coolant passage structure of a motor.
 例えば従来のモータの冷却液通路構造としては、以下の特許文献に記載されたものが知られている。 For example, as a coolant passage structure of a conventional motor, those described in the following patent documents are known.
 すなわち、従来のモータの冷却液通路構造では、モータ要素を収容するハウジングの内部に、冷却液が通流する冷却液通路が設けられている。この冷却液通路は、外径が一定となるように形成されていて、重力方向反対側となる鉛直方向上側の壁面が、モータの回転軸線に沿って水平状に形成されている。 That is, in the conventional coolant passage structure of the motor, a coolant passage through which the coolant flows is provided inside the housing that houses the motor element. The coolant passage is formed so that the outer diameter is constant, and the wall surface on the upper side in the vertical direction opposite to the direction of gravity is formed horizontally along the rotation axis of the motor.
特許第6106873号公報Japanese Patent No. 6106873
 しかしながら、前記従来のモータの冷却液通路構造では、前記冷却液通路の鉛直方向上側の壁面が水平状に形成されている。このため、冷却液にエア(気泡)が含まれた場合には、このエアは、前記冷却液通路の鉛直方向上側の壁面に沿って滞留する。これにより、前記冷却液通路の排出口が前記鉛直方向上側を除く方向に開口形成されていた場合には、当該排出口から前記エアを十分に排出することが困難であった。 However, in the coolant passage structure of the conventional motor, the wall surface on the upper side in the vertical direction of the coolant passage is formed horizontally. Therefore, when the coolant contains air (air bubbles), the air stays along the wall surface on the upper side in the vertical direction of the coolant passage. As a result, when the discharge port of the coolant passage is formed with an opening in a direction other than the upper side in the vertical direction, it is difficult to sufficiently discharge the air from the discharge port.
 本発明は、かかる技術的課題に着目して案出されたものであって、冷却液に含まれたエアを効率よく排出することができるモータの冷却液通路構造を提供することを目的としている。 The present invention has been devised focusing on such a technical problem, and an object of the present invention is to provide a coolant passage structure for a motor capable of efficiently discharging air contained in a coolant. ..
 本発明は、その一態様として、回転軸を回転駆動するモータ要素と、前記モータ要素の外周側に設けられ、前記モータ要素を収容する筒状のハウジングと、前記ハウジングの内部に設けられ、冷却液が通流する冷却液通路と、を備えたモータの冷却液通路構造であって、前記冷却液通路は、少なくとも前記ハウジングの鉛直方向上側の端部において、前記回転軸の軸方向に沿って貫通形成され、前記回転軸の回転中心から前記冷却液通路の前記鉛直方向上側の壁面までの距離が、前記軸方向の一端側に向かって漸次拡大形成され、前記冷却液通路内の冷却液は、前記冷却液通路の前記軸方向の一端側に設けられた排出口から排出される。 As one aspect of the present invention, a motor element for rotationally driving a rotating shaft, a tubular housing provided on the outer peripheral side of the motor element and accommodating the motor element, and a tubular housing provided inside the housing for cooling. It is a coolant passage structure of a motor provided with a coolant passage through which liquid flows, and the coolant passage is along the axial direction of the rotation axis at least at the upper end in the vertical direction of the housing. It is formed through, and the distance from the rotation center of the rotating shaft to the upper wall surface of the coolant passage in the vertical direction is gradually expanded toward one end side in the axial direction, and the coolant in the coolant passage is formed. , It is discharged from a discharge port provided on one end side in the axial direction of the coolant passage.
 このように、本発明に係るモータの冷却液通路構造では、冷却液通路が鉛直方向上側の端部において軸方向に沿って貫通形成され、かつ回転軸の回転中心から冷却液通路の鉛直方向上側の壁面までの距離が軸方向の一端側に向かって漸次拡大するように形成されている。これにより、冷却液に含まれたエアを、冷却液通路の鉛直方向上側の壁面に沿って軸方向の一端側へ移動させることが可能となり、当該冷却液通路の軸方向の一端側に設けられた排出口から効率的に排出させることができる。 As described above, in the coolant passage structure of the motor according to the present invention, the coolant passage is formed through the upper end in the vertical direction along the axial direction, and is vertically above the coolant passage from the rotation center of the rotation shaft. The distance to the wall surface of the wall surface is formed so as to gradually increase toward one end side in the axial direction. As a result, the air contained in the coolant can be moved to one end side in the axial direction along the vertical upper wall surface of the coolant passage, and is provided on one end side in the axial direction of the coolant passage. It can be efficiently discharged from the outlet.
 また、前記モータの冷却液通路構造の別の態様として、前記冷却液通路の前記鉛直方向上側の壁面は、前記軸方向の一端側に向かって上り傾斜状に形成されていることが望ましい。 Further, as another aspect of the coolant passage structure of the motor, it is desirable that the wall surface on the upper side of the coolant passage in the vertical direction is formed so as to be inclined upward toward one end side in the axial direction.
 このように、冷却液通路の鉛直方向上側の壁面が軸方向の一端側に向かって上り傾斜状に形成されていることにより、かかる上り傾斜状の壁面に沿って、冷却液に含まれたエアを軸方向一端側の排出口へとスムーズに運ぶことが可能となる。これにより、冷却液に含まれたエアの効率的な排出に供する。 In this way, the wall surface on the upper side in the vertical direction of the coolant passage is formed in an ascending slope toward one end side in the axial direction, so that the air contained in the coolant is formed along the ascending wall surface. Can be smoothly transported to the discharge port on one end side in the axial direction. As a result, the air contained in the coolant is efficiently discharged.
 また、前記モータの冷却液通路構造のさらに別の態様として、前記冷却液通路は、前記回転軸の周りに環状に形成されていることが望ましい。 Further, as yet another aspect of the coolant passage structure of the motor, it is desirable that the coolant passage is formed in an annular shape around the rotation shaft.
 このように、冷却液通路が回転軸の周りに環状に形成されていることにより、冷却液通路を、円筒状の中子を用いて鋳造により容易に形成することができる。さらに、冷却液通路が回転軸の周りに環状に形成されていることから、モータ全周の均一な冷却に供すると共に、冷却液通路の体積がより大きく確保され、モータの冷却性能を向上させることができる。 As described above, since the coolant passage is formed in an annular shape around the rotation axis, the coolant passage can be easily formed by casting using a cylindrical core. Furthermore, since the coolant passage is formed in an annular shape around the rotation axis, the cooling performance of the motor is improved by ensuring uniform cooling around the entire circumference of the motor and ensuring a larger volume of the coolant passage. Can be done.
 また、前記モータの冷却液通路構造のさらに別の態様として、前記排出口は、前記鉛直方向上側を除く方向へ開口形成されていることが望ましい。 Further, as yet another aspect of the coolant passage structure of the motor, it is desirable that the discharge port is formed with an opening in a direction other than the upper side in the vertical direction.
 従来のように、冷却液通路が軸方向に沿って水平状に形成されている場合、冷却液に含まれたエアは、冷却液通路の鉛直方向上側の壁面に沿って軸方向に滞留することになる。このため、排出口が鉛直方向上側を除く方向に開口している場合には、冷却液に含まれたエアを効率的に排出することは困難であった。 When the coolant passage is formed horizontally along the axial direction as in the conventional case, the air contained in the coolant stays in the axial direction along the wall surface on the upper side in the vertical direction of the coolant passage. become. Therefore, when the discharge port is open in a direction other than the upper side in the vertical direction, it is difficult to efficiently discharge the air contained in the coolant.
 一方、本発明では、前述のように、冷却液に含まれたエアが鉛直方向上側の壁面に沿って冷却液通路の軸方向の一端側に集められる。このため、排出口が鉛直方向上側を除く方向に開口している場合でも、冷却液の排出に伴ってエアを効率よく排出させることができる。 On the other hand, in the present invention, as described above, the air contained in the coolant is collected at one end side in the axial direction of the coolant passage along the upper wall surface in the vertical direction. Therefore, even when the discharge port is open in a direction other than the upper side in the vertical direction, air can be efficiently discharged as the coolant is discharged.
 また、前記モータの冷却液通路構造のさらに別の態様として、前記冷却液通路は、前記鉛直方向上側の端部において、一部の通路断面積が縮小されていることが望ましい。 Further, as yet another aspect of the coolant passage structure of the motor, it is desirable that a part of the passage cross-sectional area of the coolant passage is reduced at the upper end in the vertical direction.
 このように、冷却液通路の一部の通路断面積が縮小されていることにより、排出口へ向かう冷却液の流速を高めることが可能になる。これにより、冷却液に含まれたエアを、より効率的に排出させることができる。 In this way, by reducing the cross-sectional area of a part of the coolant passage, it is possible to increase the flow velocity of the coolant toward the discharge port. As a result, the air contained in the coolant can be discharged more efficiently.
 また、前記モータの冷却液通路構造のさらに別の態様として、前記冷却液通路の途中に、前記回転軸の回転中心から前記鉛直方向上側の壁面に向かって前記回転軸の径方向に延びる壁部が設けられ、前記冷却液通路は、前記壁部により、前記鉛直方向上側の端部における一部の通路断面積が縮小されていることが望ましい。 Further, as yet another aspect of the coolant passage structure of the motor, a wall portion extending in the radial direction of the rotation shaft from the rotation center of the rotation shaft toward the upper wall surface in the vertical direction in the middle of the coolant passage. Is provided, and it is desirable that the wall portion of the coolant passage reduces the cross-sectional area of a part of the passage at the upper end in the vertical direction.
 このように、壁部によって冷却液通路の通路断面積を縮小させる場合、壁部の延出量を調整することにより、冷却液の流速を調整することが可能となる。すなわち、冷却液に含まれたエアの排出性を容易に調整でき、当該エアの効率的な排出に供する。 In this way, when the passage cross-sectional area of the coolant passage is reduced by the wall portion, the flow velocity of the coolant can be adjusted by adjusting the extension amount of the wall portion. That is, the discharge property of the air contained in the coolant can be easily adjusted, and the air can be efficiently discharged.
 本発明によれば、冷却液に含まれたエアを、冷却液通路の鉛直方向上側の壁面に沿って軸方向の一端側へ移動させることができる。これにより、冷却液に含まれたエアを、軸方向の一端側に設けられた排出口から効率的に排出させることができる。 According to the present invention, the air contained in the coolant can be moved to one end side in the axial direction along the wall surface on the upper side in the vertical direction of the coolant passage. As a result, the air contained in the coolant can be efficiently discharged from the discharge port provided on one end side in the axial direction.
本発明に係るモータの冷却液通路構造の説明に供するモータの斜視図である。It is a perspective view of the motor provided for the description of the coolant passage structure of the motor which concerns on this invention. 図1のA方向から見たモータの平面図である。It is a top view of the motor seen from the A direction of FIG. 本発明の第1実施形態を示し、図2のB-B線断面に相当するモータの縦断面図である。It is a vertical sectional view of the motor which shows 1st Embodiment of this invention and corresponds to the cross section of line BB of FIG. 図3に示す冷却液通路の形成に供する中子を示し、(a)は斜視図、(b)は同図(a)のC-C線断面図である。The core used for forming the coolant passage shown in FIG. 3 is shown, (a) is a perspective view, and (b) is a sectional view taken along line CC of FIG. 3 (a). 本発明に係るモータの冷却液通路構造の作用の説明に供するモータの斜視図であって、(a)は冷却液に含まれたエアが冷却液通路内に滞留した状態を表した図、(b)は冷却液の排出に伴い冷却液通路からエアが排出された状態を表した図である。It is a perspective view of the motor provided to explain the operation of the coolant passage structure of the motor which concerns on this invention, and (a) is the figure which showed the state which the air contained in the coolant stayed in the coolant passage, (a). b) is a diagram showing a state in which air is discharged from the coolant passage as the coolant is discharged. 従来のモータの冷却液通路構造の説明に供するモータの斜視図であって、(a)は冷却液に含まれたエアが冷却液通路内に滞留した状態を表した図、(b)は冷却液が排出されてもエアが冷却液通路内に残留した状態を表した図である。It is a perspective view of a motor provided for the explanation of the coolant passage structure of a conventional motor, (a) is a view showing the state in which the air contained in the coolant stays in the coolant passage, and (b) is the cooling. It is the figure which showed the state which the air remained in the coolant passage even if the liquid was discharged. 本発明の第2施形態を示し、図3に相当するモータの縦断面図である。It is a vertical sectional view of the motor which shows the 2nd embodiment of this invention and corresponds to FIG.
 以下、本発明に係るモータの冷却液通路構造の実施形態を、図面に基づき詳述する。なお、下記実施形態では、本発明に係るモータの冷却液通路構造を、従来と同様、水冷モータの冷却構造に適用したものを示している。 Hereinafter, embodiments of the coolant passage structure of the motor according to the present invention will be described in detail with reference to the drawings. In the following embodiment, the coolant passage structure of the motor according to the present invention is applied to the cooling structure of the water-cooled motor as in the conventional case.
 〔第1実施形態〕
 図1~図4は、本実施形態に係るモータの冷却液通路構造の第1実施形態を示す。図1は、モータMを斜め上方から見たモータMの斜視図を示している。図2は、モータMを図1に示すA方向から見たモータMの平面図を示している。図3は、本発明の第1実施形態を示し、図2に示すB-B線に沿って切断したモータMの縦断面図を示している。図4は、図3に示す冷却液通路7の形成に供する中子8を示し、(a)は斜視図、(b)は図4(a)のC-C線に沿って切断した断面図を示している。なお、各図の説明においては、モータMの回転軸4の中心軸線Zに平行な方向を「軸方向」、中心軸線Zに直交する方向を「径方向」、中心軸線Z周りの方向を「周方向」として説明する。
[First Embodiment]
1 to 4 show a first embodiment of the coolant passage structure of the motor according to the present embodiment. FIG. 1 shows a perspective view of the motor M when the motor M is viewed from diagonally above. FIG. 2 shows a plan view of the motor M as viewed from the direction A shown in FIG. FIG. 3 shows a first embodiment of the present invention, and shows a vertical cross-sectional view of the motor M cut along the line BB shown in FIG. 4A and 4B show a core 8 used for forming the coolant passage 7 shown in FIG. 3, FIG. 4A is a perspective view, and FIG. 4B is a cross-sectional view taken along the line CC of FIG. 4A. Is shown. In the description of each figure, the direction parallel to the central axis Z of the rotation axis 4 of the motor M is the "axial direction", the direction orthogonal to the central axis Z is the "radial direction", and the direction around the central axis Z is "axial direction". It will be described as "circumferential direction".
 (モータの構成)
 本実施形態に係るモータMは、図1~図4に示すように、筒状に形成された金属製のハウジング1と、ハウジング1の内側に収容保持される固定子2と、固定子2の内側に微小のギャップGを隔てて回転可能に配置される回転子3と、回転子3の内側に圧入固定され、該回転子3と一体に回転する回転軸4と、を備える。固定子2と回転子3とで、本発明に係るモータ要素が構成されている。
(Motor configuration)
As shown in FIGS. 1 to 4, the motor M according to the present embodiment includes a tubular metal housing 1, a stator 2 housed and held inside the housing 1, and a stator 2. It includes a rotor 3 that is rotatably arranged inside a minute gap G, and a rotating shaft 4 that is press-fitted and fixed inside the rotor 3 and rotates integrally with the rotor 3. The stator 2 and the rotor 3 constitute a motor element according to the present invention.
 ハウジング1は、金属材料、例えばアルミニウム合金を鋳造することにより形成され、軸方向の一端側が開口し、他端側が閉塞された有底円筒状を呈し、円筒状の周壁11と、円板状の底壁12と、が一体に形成されている。ハウジング1の一端側の開口は、円板状のカバープレート5によって閉塞されている。すなわち、ハウジング1とカバープレート5により、内部に固定子2及び回転子3を収容するモータ収容部10が画定されている。 The housing 1 is formed by casting a metal material, for example, an aluminum alloy, and has a bottomed cylindrical shape in which one end side in the axial direction is open and the other end side is closed. The bottom wall 12 and the bottom wall 12 are integrally formed. The opening on one end side of the housing 1 is closed by a disc-shaped cover plate 5. That is, the housing 1 and the cover plate 5 define a motor accommodating portion 10 for accommodating the stator 2 and the rotor 3 inside.
 また、ハウジング1の底壁12の中央部には、外部に臨む回転軸4の先端部4aが貫通する第1軸挿通孔12aが貫通形成されていて、第1軸挿通孔12aの内周側に、回転軸4の先端部4a側を回転可能に支持する第1軸受61が設けられている。同様に、カバープレート5の中央部には、回転軸4の基端部4bが貫通する第2軸挿通孔5aが貫通形成されていて、第2軸挿通孔5aの内周側に、回転軸4の基端部4bを回転可能に支持する第2軸受62が設けられている。 Further, in the central portion of the bottom wall 12 of the housing 1, a first shaft insertion hole 12a through which the tip portion 4a of the rotating shaft 4 facing the outside penetrates is formed through, and the inner peripheral side of the first shaft insertion hole 12a is formed. Is provided with a first bearing 61 that rotatably supports the tip portion 4a side of the rotating shaft 4. Similarly, a second shaft insertion hole 5a through which the base end portion 4b of the rotary shaft 4 penetrates is formed through the central portion of the cover plate 5, and the rotary shaft is formed on the inner peripheral side of the second shaft insertion hole 5a. A second bearing 62 that rotatably supports the base end portion 4b of 4 is provided.
 また、ハウジング1の内部には、モータM(固定子2)の冷却に供する冷却液(例えば冷却水)が通流する冷却液通路7が形成されている。冷却液通路7は、ハウジング1の鋳造の際に、図4に示すような、外周側に円錐状のテーパ面80aを有する概ね円筒状に形成された、いわゆる崩壊性の中子8によって形成される。この中子8は、円筒状の中子本体80と、中子本体80の小径側の軸方向端部の外周側に概ね接線方向に沿って突設された導入口形成部81と、中子本体80の大径側の軸方向端面に軸方向に沿って突設された排出口形成部82と、を有する。また、中子本体80は、外周側に円錐状のテーパ面80aを有し、内周側に軸方向に沿った水平面80bを有する。そして、ハウジング1を鋳造する際、中子本体80により冷却液通路7を形成すると共に、導入口形成部81により導入口13を形成し、排出口形成部82により排出口14を形成する。 Further, inside the housing 1, a coolant passage 7 through which a coolant (for example, cooling water) used for cooling the motor M (stator 2) passes is formed. The coolant passage 7 is formed by a so-called collapsible core 8 formed in a substantially cylindrical shape having a conical tapered surface 80a on the outer peripheral side as shown in FIG. 4 when the housing 1 is cast. To. The core 8 includes a cylindrical core body 80, an introduction port forming portion 81 projecting substantially along the tangential direction on the outer peripheral side of the axial end of the core body 80 on the small diameter side, and a core. It has a discharge port forming portion 82 projecting along the axial direction from the axial end surface of the main body 80 on the large diameter side. Further, the core body 80 has a conical tapered surface 80a on the outer peripheral side and a horizontal plane 80b along the axial direction on the inner peripheral side. Then, when the housing 1 is cast, the core body 80 forms the coolant passage 7, the introduction port forming portion 81 forms the introduction port 13, and the discharge port forming portion 82 forms the discharge port 14.
 すなわち、冷却液通路7は、上述した中子8をもって、周方向に沿って連続する環状に形成されると共に、軸方向のほぼ全域にわたって延設されていて、回転軸4の回転中心(中心軸線Z)から外周側の壁面(例えば鉛直方向上側の壁面7a)までの距離Rが軸方向の一端側(カバープレート5側)に向かって漸次拡大するように形成されている。より具体的には、冷却液通路7は、鉛直方向上側の壁面7aが軸方向の一端側(カバープレート5側)に向かって上り傾斜状となる円錐テーパ状に形成されると共に、内周側の壁面7bが軸方向に沿って水平状に形成されている。 That is, the coolant passage 7 is formed with the above-mentioned core 8 in a continuous annular shape along the circumferential direction, and extends over almost the entire axial direction, so that the rotation center (central axis) of the rotation axis 4 is formed. The distance R from Z) to the outer peripheral side wall surface (for example, the upper wall surface 7a in the vertical direction) is formed so as to gradually increase toward one end side (cover plate 5 side) in the axial direction. More specifically, the coolant passage 7 is formed in a conical taper shape in which the upper wall surface 7a in the vertical direction is inclined upward toward one end side (cover plate 5 side) in the axial direction, and is formed on the inner peripheral side. The wall surface 7b of the above is formed horizontally along the axial direction.
 なお、本実施形態では、冷却液通路7の鉛直方向上側の壁面7aを概ね円錐テーパ状に構成した態様を例示しているが、本発明に係るモータの冷却液通路構造は、当該形態に限定されるものではない。すなわち、本発明に係るモータの冷却液通路構造は、鉛直方向上側の壁面7aまでの距離Rが軸方向一端側に向かって漸次拡大するように形成されていればよく、例えば鉛直方向上側の壁面7aが軸方向一端側に向かって縦断面が凸又は凹円弧状となる曲面状に形成されるなど、種々の態様が含まれる。 In the present embodiment, an embodiment in which the wall surface 7a on the upper side of the coolant passage 7 in the vertical direction is formed in a substantially conical taper shape is illustrated, but the coolant passage structure of the motor according to the present invention is limited to this embodiment. It is not something that is done. That is, the coolant passage structure of the motor according to the present invention may be formed so that the distance R to the upper wall surface 7a in the vertical direction gradually increases toward one end side in the axial direction. For example, the upper wall surface in the vertical direction. Various aspects are included, such as the 7a being formed in a curved shape having a convex or concave arc shape in the vertical cross section toward one end side in the axial direction.
 また、ハウジング1における軸方向の他端側(底壁12側)の周壁11には、鉛直方向に沿って接線状に延出し、かつ鉛直方向において回転軸4の回転中心(中心軸線Z)と重なる位置で冷却液通路7に接続する円筒状の導入口13が、突出形成されている。すなわち、この導入口13を介して、ハウジング1の外部から冷却液通路7内へ冷却液が導入される。なお、本実施形態では、導入口13を、ハウジング1の周壁に対して接線方向に開口した態様を例示したが、当該導入口13の開口方向については、前記接線方向のほかに、例えば軸方向又は径方向など、冷却液通路7のレイアウト等に応じて自由に変更可能である。 Further, the peripheral wall 11 on the other end side (bottom wall 12 side) in the axial direction of the housing 1 extends tangentially along the vertical direction and is aligned with the rotation center (central axis Z) of the rotation shaft 4 in the vertical direction. Cylindrical introduction ports 13 connected to the coolant passage 7 at overlapping positions are formed so as to project. That is, the coolant is introduced into the coolant passage 7 from the outside of the housing 1 through the introduction port 13. In the present embodiment, the introduction port 13 is opened in the tangential direction with respect to the peripheral wall of the housing 1, but the opening direction of the introduction port 13 is, for example, the axial direction in addition to the tangential direction. Alternatively, it can be freely changed according to the layout of the coolant passage 7 such as the radial direction.
 他方、カバープレート5には、鉛直方向において回転軸4の回転中心(中心軸線Z)と重なる位置で冷却液通路7に接続し、かつ軸方向に沿って延出する円筒状の排出口14が、突出形成されている。すなわち、この排出口14を介して、冷却液通路7内を通流する冷却液がハウジング1の外部へ排出される。なお、本実施形態では、排出口14を、ハウジング1の軸方向端部に相当するカバープレート5において軸方向に開口した態様を例示したが、本発明に係るモータの冷却液通路構造では、排出口14はとりわけ鉛直方向上側を除く方向に開口していればよく、当該排出口14の開口方向については、軸方向又は径方向など、冷却液通路7のレイアウト等に応じて自由に変更可能である。 On the other hand, the cover plate 5 has a cylindrical discharge port 14 connected to the coolant passage 7 at a position overlapping the rotation center (center axis Z) of the rotation shaft 4 in the vertical direction and extending along the axial direction. , Protruding is formed. That is, the coolant flowing through the coolant passage 7 is discharged to the outside of the housing 1 through the discharge port 14. In the present embodiment, the discharge port 14 is opened in the axial direction in the cover plate 5 corresponding to the axial end portion of the housing 1, but in the coolant passage structure of the motor according to the present invention, the discharge port 14 is discharged. The outlet 14 may be opened in a direction other than the upper side in the vertical direction, and the opening direction of the discharge port 14 can be freely changed according to the layout of the coolant passage 7, such as the axial direction or the radial direction. is there.
 (本実施形態の作用効果)
 図5は、本実施形態に係るモータMの冷却液通路構造の作用の説明に供するモータMの斜視図であって、(a)は冷却液に含まれたエアが冷却液通路内に滞留した状態を表した図、(b)は冷却液の排出に伴い冷却液通路からエアが排出された状態を表した図を示している。図6は、前記従来のモータの冷却液通路構造の説明に供するモータの斜視図であって、(a)は冷却液に含まれたエアが冷却液通路内に滞留した状態を表した図、(b)は冷却液が排出されてもエアが冷却液通路内に残留した状態を表した図を示している。なお、説明の便宜上、各図では、冷却液通路7、導入口13及び排出口14を実線で示し、ハウジング1、回転軸4及びカバープレート5を二点鎖線の仮想線で示している。また、各図の説明では、モータMの回転軸4の中心軸線Zに平行な方向を「軸方向」、中心軸線Zに直交する方向を「径方向」、中心軸線Z周りの方向を「周方向」として説明する。
(Action and effect of this embodiment)
FIG. 5 is a perspective view of the motor M used to explain the operation of the coolant passage structure of the motor M according to the present embodiment, and FIG. 5A is a perspective view of the motor M in which air contained in the coolant stays in the coolant passage. A diagram showing the state, (b) shows a diagram showing a state in which air is discharged from the coolant passage as the coolant is discharged. FIG. 6 is a perspective view of the motor used to explain the coolant passage structure of the conventional motor, and FIG. 6A is a view showing a state in which air contained in the coolant stays in the coolant passage. (B) shows a diagram showing a state in which air remains in the coolant passage even when the coolant is discharged. For convenience of explanation, in each figure, the coolant passage 7, the introduction port 13, and the discharge port 14 are shown by solid lines, and the housing 1, the rotating shaft 4, and the cover plate 5 are shown by virtual lines of two-dot chain lines. Further, in the description of each figure, the direction parallel to the central axis Z of the rotation axis 4 of the motor M is the "axial direction", the direction orthogonal to the central axis Z is the "diameter direction", and the direction around the central axis Z is the "circumferential direction". It will be explained as "direction".
 図6に示すように、前記従来のモータの冷却液通路構造では、冷却液通路7の鉛直方向上側の壁面7aが、軸方向に沿って水平状に形成されている。このため、冷却液に含まれたエアAは、図6(a)に示すように、冷却液通路7の鉛直方向上側の壁面7aに沿って、軸方向に延びるように滞留することになる。この場合、排出口14から冷却液が排出される際、図6(b)に示すように、矢印Nで示す排出口14に近い側の冷却液は流速が速く、矢印Fで示す排出口14から遠い側の冷却液は流速が遅くなる結果、エアAは矢印Xに沿って冷却水の流速が遅い軸方向の他端側(底壁12側)に集まり、排出口14から排出されずに冷却液中に残存してしまう問題があった。そうすると、このエアAが残存した部分については、モータMの冷却に寄与し得ず、モータMの冷却効率が低下してしまうおそれがあった。 As shown in FIG. 6, in the coolant passage structure of the conventional motor, the wall surface 7a on the upper side of the coolant passage 7 in the vertical direction is formed horizontally along the axial direction. Therefore, as shown in FIG. 6A, the air A contained in the coolant stays so as to extend in the axial direction along the wall surface 7a on the upper side in the vertical direction of the coolant passage 7. In this case, when the coolant is discharged from the discharge port 14, as shown in FIG. 6B, the coolant on the side closer to the discharge port 14 indicated by the arrow N has a high flow velocity, and the discharge port 14 indicated by the arrow F has a high flow velocity. As a result of the slow flow of the coolant on the side far from the air A, the air A gathers along the arrow X on the other end side (bottom wall 12 side) in the axial direction where the flow rate of the cooling water is slow, and is not discharged from the discharge port 14. There was a problem that it remained in the coolant. Then, the portion where the air A remains cannot contribute to the cooling of the motor M, and there is a possibility that the cooling efficiency of the motor M may decrease.
 これに対して、本実施形態に係るモータの冷却液通路構造では、図5に示すように、冷却液通路7が鉛直方向上側の端部において軸方向に沿って貫通形成され、かつ回転軸4の回転中心(中心軸線Z)から冷却液通路7の鉛直方向上側の壁面7aまでの距離Rが軸方向の一端側に向かって漸次拡大されている。このため、冷却液に含まれたエアAを、冷却液通路7の鉛直方向上側の壁面7aに沿って軸方向の一端側へ移動させ、冷却液通路7のうち排出口14に近い軸方向の一端部に集めることが可能となる。こうして、冷却液に含まれたエアAが冷却水の流速が速い軸方向の一端部に集約されることで、この速い流速をもって、冷却水の排出に伴い、矢印Eに沿って冷却液に含まれたエアAを排出口14から効率的に排出させることができる。これにより、冷却液通路7内の冷却液中におけるエアAの滞留が抑制され、モータMの冷却効率を向上させることができる。 On the other hand, in the coolant passage structure of the motor according to the present embodiment, as shown in FIG. 5, the coolant passage 7 is formed through the upper end in the vertical direction along the axial direction, and the rotating shaft 4 is formed. The distance R from the center of rotation (central axis Z) to the wall surface 7a on the upper side in the vertical direction of the coolant passage 7 is gradually expanded toward one end side in the axial direction. Therefore, the air A contained in the coolant is moved to one end side in the axial direction along the vertical upper wall surface 7a of the coolant passage 7, and is in the axial direction of the coolant passage 7 close to the discharge port 14. It becomes possible to collect at one end. In this way, the air A contained in the coolant is concentrated at one end in the axial direction in which the flow velocity of the cooling water is high, and the air A is included in the coolant along the arrow E with the discharge of the cooling water with this high flow velocity. The exhausted air A can be efficiently discharged from the discharge port 14. As a result, the retention of air A in the coolant in the coolant passage 7 is suppressed, and the cooling efficiency of the motor M can be improved.
 また、本実施形態では、冷却液通路7の鉛直方向上側の壁面7aが軸方向の一端側に向かって上り傾斜状に形成されている。 Further, in the present embodiment, the wall surface 7a on the upper side in the vertical direction of the coolant passage 7 is formed so as to be inclined upward toward one end side in the axial direction.
 これにより、当該上り傾斜状に形成された鉛直方向上側の壁面7aに沿って、冷却液に含まれたエアAを軸方向一端側の排出口14へとスムーズに運ぶことが可能となり、当該冷却液に含まれたエアAの効率的な排出に供する。 As a result, the air A contained in the coolant can be smoothly carried to the discharge port 14 on one end side in the axial direction along the wall surface 7a on the upper side in the vertical direction formed in the upward inclination, and the cooling can be performed. It is used for efficient discharge of air A contained in the liquid.
 また、本実施形態では、冷却液通路7が回転軸4の周りに環状に形成されている。 Further, in the present embodiment, the coolant passage 7 is formed in an annular shape around the rotating shaft 4.
 これにより、冷却液通路7を、円筒状の中子8を用いて鋳造により容易に形成できるメリットがある。さらに、冷却液通路7が回転軸4の周りに環状に形成されていることにより、モータMの全周の均一な冷却が図れると共に、冷却液通路7の体積がより大きく確保され、モータMの冷却性能を向上させることができる。 This has the advantage that the coolant passage 7 can be easily formed by casting using the cylindrical core 8. Further, since the coolant passage 7 is formed in an annular shape around the rotating shaft 4, uniform cooling can be achieved over the entire circumference of the motor M, and a larger volume of the coolant passage 7 is secured, so that the motor M can be cooled more uniformly. Cooling performance can be improved.
 また、本実施形態では、排出口14が、鉛直方向上側を除く方向へ開口形成されている。具体的には、排出口14が、カバープレート5に軸方向に沿って開口形成されている。 Further, in the present embodiment, the discharge port 14 is formed with an opening in a direction other than the upper side in the vertical direction. Specifically, the discharge port 14 is formed with an opening in the cover plate 5 along the axial direction.
 従来のように、冷却液通路7が軸方向に沿って水平状に形成されている場合、冷却液に含まれたエアAは、冷却液通路7の鉛直方向上側の壁面7aに沿って軸方向に滞留することになる。このため、排出口14が鉛直方向上側を除く方向に開口している場合には、冷却液に含まれたエアAを効率的に排出することは困難であった。 When the coolant passage 7 is formed horizontally along the axial direction as in the conventional case, the air A contained in the coolant is axially along the vertical upper wall surface 7a of the coolant passage 7. Will stay in. Therefore, when the discharge port 14 is open in a direction other than the upper side in the vertical direction, it is difficult to efficiently discharge the air A contained in the coolant.
 これに対して、本実施形態では、前述のように、冷却液に含まれたエアAが鉛直方向上側の壁面7aに沿って冷却液通路7の軸方向の一端側に集められる。このため、排出口14が鉛直方向上側を除く方向に開口している場合、例えば本実施形態のようにカバープレート5に軸方向に沿って形成された場合でも、冷却液の排出に伴い、エアAを効率よく排出させることができる。 On the other hand, in the present embodiment, as described above, the air A contained in the coolant is collected at one end side in the axial direction of the coolant passage 7 along the wall surface 7a on the upper side in the vertical direction. Therefore, when the discharge port 14 is opened in a direction other than the upper side in the vertical direction, for example, even when the cover plate 5 is formed along the axial direction as in the present embodiment, air is discharged as the coolant is discharged. A can be discharged efficiently.
 〔第2実施形態〕
 図7は本発明に係るモータの冷却液通路構造の第2実施形態を示し、本実施形態は、前記第1実施形態における冷却液通路7の構成を変更したものである。なお、かかる変更点以外の基本的な構成については、前記第1実施形態と同様である。そのため、第1実施形態と同一の構成については、同一の符号を付すことにより、その説明を省略する。また、図7の説明においては、モータMの回転軸4の中心軸線Zに平行な方向を「軸方向」、中心軸線Zに直交する方向を「径方向」、中心軸線Z周りの方向を「周方向」として説明する。
[Second Embodiment]
FIG. 7 shows a second embodiment of the coolant passage structure of the motor according to the present invention, and this embodiment is a modification of the configuration of the coolant passage 7 in the first embodiment. The basic configuration other than such changes is the same as that of the first embodiment. Therefore, the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. Further, in the description of FIG. 7, the direction parallel to the central axis Z of the rotation axis 4 of the motor M is the "axial direction", the direction orthogonal to the central axis Z is the "diameter direction", and the direction around the central axis Z is "axial direction". It will be described as "circumferential direction".
 図7に示すように、本実施形態に係るモータの冷却液通路構造では、ハウジング1における冷却液通路7の内周側の壁面7bに、径方向に沿って延びる複数(本実施形態では3つ)の壁部7cが、軸方向においてほぼ等間隔に一体に形成されている。すなわち、本実施形態では、冷却液通路7の鉛直方向上側の端部において、鉛直方向上側の壁面7aと壁部7cの間が狭くなる分、壁部7cが設けられた軸方向位置の通路断面積S2が、壁部7cが設けられていない他の軸方向位置の通路断面積S1よりも小さくなるように構成されている。 As shown in FIG. 7, in the coolant passage structure of the motor according to the present embodiment, a plurality of motor coolant passage structures extending along the radial direction on the inner peripheral wall surface 7b of the coolant passage 7 in the housing 1 (three in the present embodiment). ) Are integrally formed at substantially equal intervals in the axial direction. That is, in the present embodiment, at the upper end of the coolant passage 7 in the vertical direction, the space between the wall surface 7a and the wall portion 7c on the upper side in the vertical direction is narrowed, so that the passage is cut at the axial position where the wall portion 7c is provided. The area S2 is configured to be smaller than the passage cross-sectional area S1 at another axial position where the wall portion 7c is not provided.
 なお、本実施形態では、冷却液通路7の内周側の壁面7bに壁部7cが一体に形成されることで、冷却液通路7の鉛直方向上側の端部における一部の通路断面積S2が縮小されているが、本発明に係る冷却液通路7の鉛直方向上側の端部における一部の通路断面積S2を縮小する手段としては、当該壁部7cを設ける態様に限定されるものではなく、モータMの仕様等に応じて自由に変更可能である。 In the present embodiment, the wall portion 7c is integrally formed on the inner peripheral side wall surface 7b of the coolant passage 7, so that a part of the passage cross-sectional area S2 at the upper end of the coolant passage 7 in the vertical direction is formed. However, the means for reducing a part of the passage cross-sectional area S2 at the upper end of the coolant passage 7 in the vertical direction according to the present invention is not limited to the mode in which the wall portion 7c is provided. However, it can be freely changed according to the specifications of the motor M and the like.
 以上のように、本実施形態によれば、冷却液通路7の鉛直方向上側の端部において、冷却液通路7の一部の通路断面積S2が縮小されている。 As described above, according to the present embodiment, the passage cross-sectional area S2 of a part of the coolant passage 7 is reduced at the upper end of the coolant passage 7 in the vertical direction.
 このように、冷却液通路7の鉛直方向上側の端部において途中の一部の通路断面積S2が縮小形成されていることで、排出口14へ向かう冷却液の流速を高めることが可能になる。これにより、当該高められた冷却液の流速をもって、冷却液に含まれたエアAを、より効率的に排出させることができる。 In this way, a part of the passage cross-sectional area S2 in the middle is reduced and formed at the upper end of the coolant passage 7 in the vertical direction, so that the flow velocity of the coolant toward the discharge port 14 can be increased. .. Thereby, the air A contained in the coolant can be discharged more efficiently with the increased flow velocity of the coolant.
 また、とりわけ、本実施形態では、冷却液通路7の途中に、回転軸4の回転中心(中心軸線Z)から鉛直方向上側の壁面7aに向かって径方向に延びる壁部7cが設けられ、冷却液通路7が、壁部7cにより、鉛直方向上側の端部における一部の通路断面積S2が縮小されている。 Further, in particular, in the present embodiment, a wall portion 7c extending in the radial direction from the rotation center (central axis Z) of the rotation shaft 4 toward the wall surface 7a on the upper side in the vertical direction is provided in the middle of the coolant passage 7 for cooling. The wall portion 7c of the liquid passage 7 reduces a part of the passage cross-sectional area S2 at the upper end in the vertical direction.
 このように、壁部7cによって冷却液通路7の通路断面積S2を縮小させる場合には、壁部7cの延出量を調整することにより、冷却液の流速を調整することが可能となる。これにより、冷却液に含まれたエアAの排出性を容易に調整することができ、当該エアAのより効率的な排出に供する。 In this way, when the passage cross-sectional area S2 of the coolant passage 7 is reduced by the wall portion 7c, the flow velocity of the coolant can be adjusted by adjusting the extension amount of the wall portion 7c. As a result, the discharge property of the air A contained in the coolant can be easily adjusted, and the air A can be discharged more efficiently.
 本発明は、前記実施形態において例示した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で適用対象の仕様等に応じて自由に変更することができる。 The present invention is not limited to the configuration exemplified in the above embodiment, and can be freely changed according to the specifications and the like to be applied within a range not deviating from the gist of the present invention.
 特に、前記実施形態で開示した冷却液通路7の形態は、本発明に係るモータの冷却液通路構造の一例に過ぎない。換言すれば、本発明に係るモータの冷却液通路構造では、冷却液通路7が鉛直方向上側の端部において軸方向に沿って貫通形成され、かつ回転軸4の回転中心(中心軸線Z)から冷却液通路7の鉛直方向上側の壁面7aまでの距離Rが軸方向の一端側に向かって漸次拡大されていればよく、周方向においては、前記環状のほか、螺旋状や、横断面が円弧状となる半環状など、モータMの仕様や冷却液通路7のレイアウト等に応じて種々の形態を採用することができる。 In particular, the form of the coolant passage 7 disclosed in the above embodiment is only an example of the coolant passage structure of the motor according to the present invention. In other words, in the coolant passage structure of the motor according to the present invention, the coolant passage 7 is formed through the upper end in the vertical direction along the axial direction, and is formed from the rotation center (central axis Z) of the rotation shaft 4. It suffices that the distance R to the vertical upper wall surface 7a of the coolant passage 7 is gradually expanded toward one end side in the axial direction, and in the circumferential direction, in addition to the annular shape, the spiral shape or the cross section is circular. Various forms such as an arc-shaped semi-annular shape can be adopted depending on the specifications of the motor M, the layout of the coolant passage 7, and the like.
1…ハウジング
2…固定子(モータ要素)
3…回転子(モータ要素)
4…回転軸
5…カバープレート(ハウジング)
7…冷却液通路
7a…鉛直方向上側の壁面
M…モータ
Z…中心軸線(回転中心)
1 ... Housing 2 ... Stator (motor element)
3 ... Rotor (motor element)
4 ... Rotating shaft 5 ... Cover plate (housing)
7 ... Coolant passage 7a ... Wall surface on the upper side in the vertical direction M ... Motor Z ... Central axis (center of rotation)

Claims (6)

  1.  回転軸を回転駆動するモータ要素と、
     前記モータ要素の外周側に設けられ、前記モータ要素を収容する筒状のハウジングと、
     前記ハウジングの内部に設けられ、冷却液が通流する冷却液通路と、
     を備えたモータの冷却液通路構造であって、
     前記冷却液通路は、少なくとも前記ハウジングの鉛直方向上側の端部において、前記回転軸の軸方向に沿って貫通形成され、
     前記回転軸の回転中心から前記冷却液通路の前記鉛直方向上側の壁面までの距離が、前記軸方向の一端側に向かって漸次拡大形成され、
     前記冷却液通路内の冷却液は、前記冷却液通路の前記軸方向の一端側に設けられた排出口から排出されることを特徴とするモータの冷却液通路構造。
    A motor element that rotates and drives the rotating shaft,
    A tubular housing provided on the outer peripheral side of the motor element and accommodating the motor element,
    A coolant passage provided inside the housing through which the coolant flows,
    It is a coolant passage structure of a motor equipped with
    The coolant passage is formed through at least at the upper end of the housing in the vertical direction along the axial direction of the rotation axis.
    The distance from the center of rotation of the rotating shaft to the upper wall surface of the coolant passage in the vertical direction is gradually expanded toward one end side in the axial direction.
    The coolant passage structure of a motor, characterized in that the coolant in the coolant passage is discharged from a discharge port provided on one end side of the coolant passage in the axial direction.
  2.  請求項1に記載のモータの冷却液通路構造において、
     前記冷却液通路の前記鉛直方向上側の壁面は、前記軸方向の一端側に向かって上り傾斜状に形成されていることを特徴とするモータの冷却液通路構造。
    In the coolant passage structure of the motor according to claim 1,
    A coolant passage structure for a motor, wherein a wall surface on the upper side of the coolant passage in the vertical direction is formed so as to be inclined upward toward one end side in the axial direction.
  3.  請求項1に記載のモータの冷却液通路構造において、
     前記冷却液通路は、前記回転軸の周りに環状に形成されていることを特徴とするモータの冷却液通路構造。
    In the coolant passage structure of the motor according to claim 1,
    The coolant passage structure of the motor, wherein the coolant passage is formed in an annular shape around the rotation shaft.
  4.  請求項1に記載のモータの冷却液通路構造において、
     前記排出口は、前記鉛直方向上側を除く方向へ開口形成されていることを特徴とするモータの冷却液通路構造。
    In the coolant passage structure of the motor according to claim 1,
    A coolant passage structure for a motor, wherein the discharge port is formed with an opening in a direction other than the upper side in the vertical direction.
  5.  請求項1に記載のモータの冷却液通路構造において、
     前記冷却液通路は、前記鉛直方向上側の端部において、一部の通路断面積が縮小されていることを特徴とするモータの冷却液通路構造。
    In the coolant passage structure of the motor according to claim 1,
    The coolant passage structure of the motor is characterized in that a part of the passage cross-sectional area is reduced at the upper end portion in the vertical direction.
  6.  請求項5に記載のモータの冷却液通路構造において、
     前記冷却液通路の途中に、前記回転軸の回転中心から前記鉛直方向上側の壁面に向かって前記回転軸の径方向に延びる壁部が設けられ、
     前記冷却液通路は、前記壁部により、前記鉛直方向上側の端部における一部の通路断面積が縮小されていることを特徴とするモータの冷却液通路構造。
    In the coolant passage structure of the motor according to claim 5.
    A wall portion extending in the radial direction of the rotating shaft from the rotation center of the rotating shaft toward the upper wall surface in the vertical direction is provided in the middle of the coolant passage.
    The coolant passage structure of the motor is characterized in that the wall portion reduces the cross-sectional area of a part of the passage at the upper end portion in the vertical direction.
PCT/JP2020/024056 2019-10-23 2020-06-19 Coolant passage way structure for motor WO2021079557A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080074169.5A CN114586262B (en) 2019-10-23 2020-06-19 Cooling liquid passage structure of motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019192385A JP7053554B2 (en) 2019-10-23 2019-10-23 Motor coolant passage structure
JP2019-192385 2019-10-23

Publications (1)

Publication Number Publication Date
WO2021079557A1 true WO2021079557A1 (en) 2021-04-29

Family

ID=75619716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024056 WO2021079557A1 (en) 2019-10-23 2020-06-19 Coolant passage way structure for motor

Country Status (3)

Country Link
JP (1) JP7053554B2 (en)
CN (1) CN114586262B (en)
WO (1) WO2021079557A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7294479B1 (en) * 2022-03-10 2023-06-20 株式会社明電舎 Rotating electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220960A (en) * 2013-05-10 2014-11-20 株式会社豊田自動織機 Drive device
WO2014199516A1 (en) * 2013-06-14 2014-12-18 三菱電機株式会社 Rotating electric machine
WO2015087707A1 (en) * 2013-12-11 2015-06-18 三菱電機株式会社 Drive module
WO2017057442A1 (en) * 2015-09-30 2017-04-06 Ntn株式会社 Electric motor
JP2019075871A (en) * 2017-10-13 2019-05-16 ファナック株式会社 Stator frame, stator, and rotary electric machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6314158B2 (en) 2013-12-27 2018-04-18 日立オートモティブシステムズ株式会社 Rotating electric machine
CN106655631B (en) * 2016-12-13 2018-12-21 安徽江淮汽车集团股份有限公司 A kind of cooling water jacket structure of motor of hybrid power automobile
CN108574365A (en) * 2017-03-10 2018-09-25 郑州宇通客车股份有限公司 A kind of fluid-cooled electrical machine shell and the fluid-cooled electrical machine using the fluid-cooled electrical machine shell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220960A (en) * 2013-05-10 2014-11-20 株式会社豊田自動織機 Drive device
WO2014199516A1 (en) * 2013-06-14 2014-12-18 三菱電機株式会社 Rotating electric machine
WO2015087707A1 (en) * 2013-12-11 2015-06-18 三菱電機株式会社 Drive module
WO2017057442A1 (en) * 2015-09-30 2017-04-06 Ntn株式会社 Electric motor
JP2019075871A (en) * 2017-10-13 2019-05-16 ファナック株式会社 Stator frame, stator, and rotary electric machine

Also Published As

Publication number Publication date
JP7053554B2 (en) 2022-04-12
CN114586262A (en) 2022-06-03
CN114586262B (en) 2022-09-23
JP2021069179A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
US8181754B2 (en) Brake disk
EP2299564A1 (en) Cooling structure of motor
JP2010263696A (en) Motor cooling structure
JP5857421B2 (en) Turbo compressor
KR20010006476A (en) Rotor, especially for incorporation into the enclosure of a free jet centrifuge
WO2021079557A1 (en) Coolant passage way structure for motor
US11352999B2 (en) Separation assembly with a two-piece impulse turbine
JP2006291917A (en) Impeller for centrifugal pump and centrifugal pump having the same
EP3088744A1 (en) Vacuum exhaust mechanism, compound vacuum pump, and rotating body component
KR100449136B1 (en) Rotor for centrifugal separator with sound damping radial openings
JPH08340653A (en) Rotor of rotating machine
JP6579717B2 (en) Turbocharger
JP4769118B2 (en) Centrifugal multiblade blower
JP2006214700A (en) Accumulator
JPH10128242A (en) Separation wheel for air separator
WO2021157118A1 (en) Motor cooling liquid passage structure and motor manufacturing method
KR102139262B1 (en) Stator frame of electric machine and electric machine
US11056951B2 (en) Motor cooling device
JP2005074373A (en) Screw decanter type centrifugal separator
JP2006189164A (en) Balancer
JP2020011189A (en) Air separator
KR200344862Y1 (en) A Decanter Centrifuge with Mechanism of Balance Weight
JP2019143585A (en) Centrifugal pump
US20220401965A1 (en) Inlet region of a centrifuge screw, and solid bowl centrifuge
FR3067412A1 (en) SPIRAL COMPRESSOR WITH FLUID DIVERTING DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20880247

Country of ref document: EP

Kind code of ref document: A1