WO2021079531A1 - Route management control server, method, and system, and first flying body and second flying body used in the same - Google Patents

Route management control server, method, and system, and first flying body and second flying body used in the same Download PDF

Info

Publication number
WO2021079531A1
WO2021079531A1 PCT/JP2019/042074 JP2019042074W WO2021079531A1 WO 2021079531 A1 WO2021079531 A1 WO 2021079531A1 JP 2019042074 W JP2019042074 W JP 2019042074W WO 2021079531 A1 WO2021079531 A1 WO 2021079531A1
Authority
WO
WIPO (PCT)
Prior art keywords
route
information
management control
aircraft
control server
Prior art date
Application number
PCT/JP2019/042074
Other languages
French (fr)
Japanese (ja)
Inventor
周平 小松
Original Assignee
株式会社A.L.I. Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社A.L.I. Technologies filed Critical 株式会社A.L.I. Technologies
Priority to JP2020522084A priority Critical patent/JP6820045B1/en
Priority to PCT/JP2019/042074 priority patent/WO2021079531A1/en
Publication of WO2021079531A1 publication Critical patent/WO2021079531A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]

Definitions

  • the present invention relates to a route management control server, a method and a system, and the first and second aircraft used therein, and more particularly to a technique for managing and controlling the appropriate operation of a manned aircraft.
  • Patent Document 1 discloses a technique for displaying a planned flight path as a tunnel-like display on a display unit with respect to a flight path guidance technique for an air vehicle.
  • Patent Document 1 does not disclose the management and control of a plurality of flying objects at the same time.
  • one object of the present invention is to provide a technique capable of simultaneously managing and controlling a plurality of flying objects.
  • a route management control server that is communicably connected to a plurality of first aircraft via a network.
  • a storage means for storing location data including at least one of map information, topographical information, or building information, and route data based on three-dimensional coordinates.
  • a control means for reading the location data and the route data, and Read A route management control server including a transmission means for transmitting the location data and the route data to each of the first aircraft can be obtained.
  • a plurality of flying objects can be managed and controlled at the same time.
  • the route management control server, method and system according to the embodiment of the present invention, and the first and second aircraft used therein have the following configurations.
  • a route management control server that is communicatively connected to multiple 1st Air Divisions via a network.
  • a storage means for storing location data including at least one of map information, topographical information, or building information, and route data based on three-dimensional coordinates.
  • the transmitting means transmits the received traffic information to the first aircraft.
  • Route management control server [Item 3] The route management control server described in item 2.
  • the receiving means receives the traffic information from one of the first aircraft and receives the traffic information.
  • the transmitting means transmits the received traffic information to the other first aircraft.
  • Route management control server. [Item 4] The route management control server according to item 2 or item 3.
  • the control means generates new route data based on the received traffic information, and generates new route data.
  • the transmitting means transmits the generated new route data to the first aircraft.
  • Route management control server [Item 5] The route management control server according to any one of items 2 to 4.
  • the control means generates a flight control instruction based on the received traffic information.
  • the transmitting means transmits the generated flight control instruction to the first aircraft.
  • Route management control server [Item 6] The route management control server according to any one of items 1 to 5. The route data has latitude information, longitude information and altitude information. Route management control server. [Item 7] The route management control server according to any one of items 1 to 6. The route data has speed limit information associated with the first specific area of the route. Route management control server. [Item 8] The route management control server according to any one of items 1 to 7. The route data has toll information associated with the second specific area of the route.
  • the route management control server is a payment means that starts payment processing for the first aircraft when the first aircraft enters the second specific area based on the position information received from the first aircraft. Further equipped, Route management control server.
  • a second aircraft capable of communicating with the route management control server according to any one of items 2 to 8 via a network. Power unit for flight and Positioning unit for positioning position information and A collection unit that collects the traffic information of the route and A transmission unit that transmits the collected traffic information to the route management control server is provided. Second aircraft. [Item 10] The second aircraft according to item 9, Further equipped with a detection means for detecting an abnormality from the collected traffic information, The transmitting means transmits information about the detected abnormality to at least the route management control server, the first aircraft, or another second aircraft. Second aircraft. [Item 11] The first air vehicle according to any one of items 1 to 10.
  • a transmission unit that transmits the positioned position information to the route management control server is further provided. 1st Air Division.
  • the control unit controls the power unit based on the route data and the position information. 1st Air Division.
  • a route management control server that uses a computer that is communicatively connected to multiple 1st Air Divisions via a network.
  • a control step for reading the location data and the route data, Read A route management control method including a transmission step of transmitting the location data and the route data to each of the first aircraft.
  • a route management control system including a plurality of first aircraft, a plurality of second aircraft, and a route management control device. The first air vehicle, the second air vehicle, and the route management control device are connected to each other so as to be able to communicate with each other via a network.
  • the route management control device is: A storage means for storing location data including at least one of map information, topographical information, or building information, and route data based on three-dimensional coordinates; Control means for reading the location data and the route data ;, Read As a transmission means for transmitting the location data and the route data to each of the first aircraft; It has a receiving means to receive route traffic information;
  • the 1st Air Division is: With the power unit for flight; With a positioning unit that positions position information; With a receiver that receives at least either the location data or the route data from the route management control server; With a control unit for accepting operations by the operator and controlling the flight of the first aircraft; It is equipped with at least a display unit that displays the received route data to the operator;
  • the second aircraft is: With the power unit for flight; With a positioning unit that positions position information; With a collecting unit that collects the traffic information of the route;
  • In a route management control system including a transmission unit that transmits the collected traffic information to the route management control server;
  • control system The route management control system (hereinafter referred to as “control system”) according to the present invention particularly appropriately controls the operation of a manned small aircraft (hereinafter referred to as “air mobile”).
  • air mobile a manned small aircraft
  • the control system cooperates with a plurality of surveillance rotary-wing aircraft (hereinafter referred to as “surveillance drones”) to perform more appropriate operation control.
  • surveillance drones a plurality of surveillance rotary-wing aircraft
  • Airmobile is a small flying object that people can ride on, and has the size of a small scooter or a general automobile.
  • the air mobile according to the present embodiment is a so-called multicopter having a plurality of rotor blades.
  • the power source is mainly a rotary blade, it may have a lift generation source other than this, and may be able to move on water, on land, or in water. In this case, it may have auxiliary power means, various instruments, a control device, etc. according to the situation of the moving place.
  • the hardware configuration of the information processing device mounted on the air mobile will be described later.
  • the surveillance drone is an unmanned aerial vehicle, equipped with batteries, multiple motors, position detection units, control units, drivers, storage devices, wireless communication devices, voltage sensors, current sensors, and the like. These components are mounted on a frame having a predetermined shape.
  • the hardware configuration of the information processing device mounted on the surveillance drone will be described later. As for these basic structures, known techniques can be appropriately adopted.
  • the control system 100 includes a route management control server (hereinafter, simply referred to as “server”) 1, an air mobile 2, and a monitoring drone 3.
  • server route management control server
  • the server 1, the air mobile 2, and the monitoring drone 3 are so-called client-server model systems that are connected to each other so as to be able to communicate with each other via the network 4.
  • the network 4 is an IP-based computer network, it may be shared with a carrier network for mobile phones, smartphones, and the like.
  • computer networks are used in a broader concept, including the Internet built by interconnected IP networks.
  • the computer network may include a wireless network constructed by a wireless base station (for example, WiFi) (not shown).
  • the carrier network and the IP network are connected via, for example, a gateway or the like, but the carrier network and the IP network are not limited to this.
  • the server 1 is an information processing device for providing services through the route management control system 100, and may be a general-purpose computer such as a workstation or a personal computer, or a cloud computing device. It may be realized logically by ing. As shown in FIG. 2, the server 1 includes a processor 10, a memory 11, a storage 12, a transmission / reception unit 13, an input / output unit 14, and the like, which are electrically connected to each other through a bus 15.
  • the processor 10 is an arithmetic unit that controls the operation of the entire server 1, controls the transmission and reception of data between each element, and performs information processing and the like necessary for executing an application.
  • the processor 10 is a CPU (Central Processing Unit), and executes each information processing by executing a program or the like stored in the storage 12 and expanded in the memory 11.
  • CPU Central Processing Unit
  • the memory 11 includes a main memory composed of a volatile storage device such as DRAM (Dynamic Random Access Memory) and an auxiliary storage composed of a non-volatile storage device such as a flash memory or HDD (Hard Disc Drive). ..
  • the memory 11 is used as a work area or the like of the processor 10, and also stores a BIOS (Basic Input / Output System) executed when the server 1 is started, various setting information, and the like.
  • BIOS Basic Input / Output System
  • the storage 12 stores an application program and various programs such as an authentication program for each air mobile 2 and a monitoring drone 3.
  • a database location data, route data, etc., which will be described later) storing data used for each process may be built in the storage 12.
  • the air mobile 2 is equipped with an information processing device 200.
  • the information processing device 200 receives the service of the route management control system 100 by executing information processing via communication with the server 1.
  • the information processing device 200 includes at least a processor 20, a memory 21, a storage 22, a transmission / reception unit 23, an input / output unit 24, a positioning unit 26, a detection unit 27, and the like, and these are electrically connected to each other through a bus 25. ..
  • the information processing device 200 may be a general-purpose computer such as a workstation or a personal computer, may be linked with a terminal having a touch panel such as a device such as a smartphone, a PDA, or a tablet computer, or may be linked with a terminal having a touch panel, or cloud computing. It may be realized logically by.
  • the processor 20 is an arithmetic unit that controls the operation of the information processing device 200, controls the transmission and reception of data between each element, and performs processing necessary for executing an application.
  • the processor 20 is a CPU and / or GPU (Graphical Processing Unit) or the like, and performs each necessary information processing by executing a program or the like stored in the storage 22 and expanded in the memory 21.
  • the memory 21 includes a main memory composed of a volatile storage device such as RAM and an auxiliary storage composed of a non-volatile storage device such as a flash memory and an HDD.
  • the memory 21 is used as a work area or the like of the processor 20, and also stores a BIOS executed when the information processing apparatus 200 is started, various setting information, and the like.
  • An application program or the like is stored in the storage 22.
  • the transmission / reception unit 23 connects the information processing device 200 to the network 4 and communicates with the server 1.
  • the transmission / reception unit 23 also includes a short-range communication interface of Bluetooth (registered trademark) and BLE (Bluetooth Low Energy).
  • the input / output unit 24 is an information input device such as a control stick (handle) switch and an output device such as a display, and presents and inputs information to the operator of the air mobile 2.
  • the bus 25 is commonly connected to each of the above elements and transmits, for example, an address signal, a data signal, and various control signals.
  • the positioning unit 26 detects at least the altitude of the air mobile 2.
  • the positioning unit 26 according to the present embodiment is, for example, a GPS (Global Positioning System) detector that detects the latitude, longitude, and altitude of the current position of the air mobile 2.
  • GPS Global Positioning System
  • the detection unit 27 is for sensing the external environment of the air mobile 2 by various sensors such as voice, image, and infrared rays.
  • the air mobile 2 relays a power source, a motor connected to a rotor blade, and an information processing device 200 and a motor for movement and flight of the air mobile 2.
  • the information processing device 200 controls a plurality of motors to control the flight of the air mobile (control of ascending, descending, horizontal movement, etc.) and a plurality of gyros (not shown) mounted on the air mobile 2. Attitude control is also performed by controlling the motor of.
  • the driver drives the motor according to a control signal from the information processing device 200.
  • the motor is a DC motor
  • the driver is a variable voltage power supply circuit that applies a voltage specified by a control signal to the motor.
  • the air mobile 200 has elements (for example, equipment for manned flight, other equipment for flight, etc.) which are not shown.
  • the monitoring drone 3 is equipped with an information processing device 300.
  • the information processing device 300 constitutes a part of the system of the route management control system 100 by executing information processing via communication with the server 1.
  • the information processing device 300 includes at least a processor 30, a memory 31, a storage 32, a transmission / reception unit 33, an output unit 34, a positioning unit 36, a detection unit 37, and the like, and these are electrically connected to each other through a bus 35.
  • the information processing device 300 may be composed of, for example, a microcomputer or an ASIC (Application Specific Integrated Circuit), or may be logically realized by cloud computing.
  • ASIC Application Specific Integrated Circuit
  • the processor 30 is an arithmetic unit that controls the operation of the information processing device 300, controls the transmission and reception of data between each element, and performs processing necessary for executing an application.
  • the processor 30 is a CPU and / or GPU (Graphical Processing Unit) or the like, and performs each necessary information processing by executing a program or the like stored in the storage 32 and expanded in the memory 31.
  • the memory 31 includes a main memory composed of a volatile storage device such as RAM and an auxiliary storage composed of a non-volatile storage device such as a flash memory and an HDD.
  • the memory 31 is used as a work area or the like of the processor 30, and also stores a BIOS executed when the information processing apparatus 300 is started, various setting information, and the like.
  • An application program or the like is stored in the storage 32.
  • the transmission / reception unit 33 connects the information processing device 300 to the network 4 and communicates with the server 1.
  • the transmission / reception unit 33 also includes a short-range communication interface of Bluetooth (registered trademark) and BLE (Bluetooth Low Energy).
  • the input / output unit 34 is an information input device such as a control stick (handle) switch and an output device such as a display.
  • the bus 35 is commonly connected to each of the above elements and transmits, for example, an address signal, a data signal, and various control signals.
  • the positioning unit 36 detects at least the altitude of the surveillance drone 3.
  • the positioning unit 26 is, for example, a GPS (Global Positioning System) detector that detects the latitude, longitude, and altitude of the current position of the air mobile 2.
  • GPS Global Positioning System
  • the detection unit 37 is for sensing the external environment of the surveillance drone 3 by various sensors such as voice, image, and infrared rays.
  • the monitoring drone 3 relays the power supply, the motor connected to the rotor blade, the information processing device 300, and the motor for the movement and flight of the monitoring drone 3.
  • the information processing device 300 controls a plurality of motors to control the flight of the surveillance drone (control of ascent, descent, horizontal movement, etc.) and a plurality of gyros (not shown) mounted on the surveillance drone 3. Attitude control is also performed by controlling the motor of.
  • the driver drives the motor according to a control signal from the information processing device 300.
  • the motor is a DC motor
  • the driver is a variable voltage power supply circuit that applies a voltage specified by a control signal to the motor.
  • the surveillance drone 300 may have other elements (not shown).
  • location data 530 including at least one of map information, topographical information, and building information, route data 510 based on three-dimensional coordinates, and a state on the route.
  • the traffic data 520 representing the above is used.
  • the location data is map information and includes information about topography, buildings and other structures.
  • the location data in the present embodiment includes so-called plane map information (latitude information and longitude information) as well as accurate height information (altitude information) of the structure. Further, particularly for a structure, it also has coordinate information of the volume occupied in the real space (that is, includes shape information of the structure for the air mobile 2 to fly without colliding).
  • the route data 510 serves as a road in the sky of the air mobile 2, and as will be described later, the route data is displayed on the display unit of the air mobile 2 to enable safe operation of the air mobile. Become.
  • the route data has at least continuous latitude information, longitude information, and altitude information, and the route is specified by the information.
  • the route data may have a certain width information that can be operated in the same manner as the width of a normal road.
  • the route data 510 includes information on route branching, speed limit, distance from other routes, traveling direction, vehicle type restriction, and traffic restriction (information corresponding to a signal and information on operation restriction).
  • the traffic data 520 is information for identifying the area of the obstacle on the route, for example, when the route has an obstacle, and has at least latitude information, longitude information, altitude information, and the content of the obstacle.
  • the server 1 reads out the location data and the route data and transmits them to the air mobile 2, and displays the serviceable area on the display unit of the air mobile 2.
  • the display unit of the air mobile 2 according to the present embodiment is preferably a display means such as a head-up display that does not block the driver's field of vision, such as a method of projecting onto a windshield or AR (Augmented Reality).
  • Various devices and the like using the technology can be adopted.
  • the windshield of the air mobile 2 displays the route 710 based on the route data 510.
  • the state of the route 710 (congestion status, accident status, etc.) is collected by the monitoring drone 2 as traffic information and transmitted to the server 1.
  • the traffic information may be automatically or manually transmitted from the air mobile 2 to the server 1.
  • the traffic information is shared with each other among a plurality of air mobiles 2, a monitoring drone 3, and a server 1.
  • the server 1 generates data for a new route in the received traffic information when the current route is not appropriate, for example, when it is congested.
  • the generated new route data is transmitted to Air Mobile 2.
  • the generated new route 510' is set, and the information of the new route 510' is shared with the air mobile and the surveillance drone 3.
  • the server 1 may generate and transmit a flight control instruction for (remotely) automatically controlling the air mobile so that the air mobile 2 flies over the new route 510'. In this case, the flight of the air mobile 2 is controlled based on the received flight control instruction.
  • the route data according to the present embodiment may further have speed limit information. That is, more appropriate route management can be performed by setting a speed limit for a part or all of the route as in the case of a road for automobiles.
  • the routes may be separate roads according to the up line, the down line, and the speed limit.
  • the route 520 having a high speed limit is set at an altitude higher than that of the route 530 having a low speed limit.
  • the air mobile 2 passes through a guidance route (a route connecting route 530 and route 520) (not shown).
  • a toll may be set for a part or all of the route.
  • the area where the toll is set (hereinafter referred to as "toll section") is specified by, for example, information such as latitude, longitude, and altitude.
  • the invention according to the present embodiment has the following configurations.
  • [Item 16] It is a method of guiding an air vehicle using a plurality of columns and a cable for connecting the columns.
  • the guidance device A step of receiving a route request; a step of reading out the support column node information corresponding to the position of the support column; a route is determined by identifying at least the start point support column node and the end point support column node based on the route request and the support column node information.
  • [Item 17] The method for guiding an air vehicle according to claim 1.
  • the flying object flies along the cable. How to guide the flying object.
  • [Item 18] The method for guiding an air vehicle according to claim 2.
  • the flying object flies while maintaining a predetermined distance from the cable. How to guide the flying object.
  • [Item 19] The method for guiding an air vehicle according to claim 3.
  • the flying object detects that at least an electric field or a magnetic field of the cable is in a predetermined condition, and measures the distance from the cable. How to guide the flying object.
  • [Item 20] Meet by the method of guiding the flying object according to claim 4.
  • the air vehicle receives at least information about the value of voltage or current flowing in the cable and corrects the result of the measurement based on the information.
  • the strut node information includes X, Y and Z coordinates with respect to the position of the strut in real space.
  • the generated route is generated at least at a position higher than the Z coordinate. How to guide the flying object.
  • the plurality of said aircraft can communicate with each other via a network.
  • Each of the flying objects generates its own route in consideration of the position of the flying object or the generated route. How to guide the flying object.
  • An air vehicle guidance device that uses a plurality of columns and a cable that connects the columns.
  • An air vehicle guidance device that includes means for transmitting the generated route to the air vehicle.
  • the guidance device is: Step to receive route request; Read column node information corresponding to the position of the column; Based on the route request and the support node information, at least the start point support node and the end point support node are specified to generate a route; Send the generated route to the aircraft; The flying object flies according to the route. Guidance system for flying objects.
  • the flight body guidance system is for flying an unmanned flight body (described later) according to a predetermined flight route, and is used for home delivery, security / patrol, agriculture, surveying, and investigation. It can be applied to any application that can set a flight route in advance, such as disaster relief applications. In the following, a guidance system mainly applied to home delivery applications will be described.
  • the unmanned aerial vehicle 1 flies over the utility pole 20 and the electric wire 30 provided between the utility poles as a flight route.
  • the flight route can be expressed as a virtual network having utility poles a to j as nodes, and in route generation, the utility poles (start point nodes) and end points are the start points.
  • Utility poles (end point nodes), utility poles (via nodes) that pass between start point nodes and end point nodes, and electric wires provided between them are considered (details will be described later).
  • the vehicle guidance system includes a plurality of unmanned aircraft 1 and a management server 2 connected to the unmanned aircraft 1 via a network.
  • This is a so-called client-server model.
  • the unmanned flying object 1 In addition to the information processing device, the unmanned flying object 1 according to the present embodiment relays a power source, a motor connected to a rotor blade, an information processing device and a motor for moving / flying the unmanned flying object 1. Have at least more drivers.
  • Multiple information processing devices are used to control the flight of a surveillance drone by controlling multiple motors (control of ascent, descent, horizontal movement, etc.) and the gyro (not shown) mounted on the unmanned aerial vehicle 1. Attitude control is also performed by controlling the motor of.
  • the driver drives the motor according to the control signal from the information processing device.
  • the motor is a DC motor
  • the driver is a variable voltage power supply circuit that applies a voltage specified by a control signal to the motor.
  • the unmanned aerial vehicle 100 may have other elements (not shown).
  • the management server 2 is an information processing device for providing services through an information transmission system, and may be a general-purpose computer such as a workstation or a personal computer, or cloud computing. It may be realized logically by.
  • the server 2 includes a processor 20, a memory 21, a storage 22, a transmission / reception unit 23, an input / output unit 24, and the like, which are electrically connected to each other through a bus 25.
  • the management server 2 has a pole node information DB regarding the position of each utility pole.
  • the pole node information DB includes at least a node identifier and position coordinates uniquely assigned to each utility pole.
  • the position coordinates according to the present embodiment include at least three elements: latitude, longitude and height of the utility pole.
  • the guidance system according to the present embodiment is in charge of a transaction related to delivery of a product purchased by a user using EC or the like (hereinafter referred to as “delivery transaction”).
  • delivery transaction a transaction related to delivery of a product purchased by a user using EC or the like
  • the delivery transaction itself is generated, for example, based on pre-registered user address information.
  • the management server 2 When the management server 2 starts a delivery transaction, the utility pole closest to the package shipping source (starting point node) and the utility pole closest to the delivery destination (user's address, etc.) are specified.
  • the start point node is the utility pole a and the end node is the utility pole j.
  • the management server 2 calculates the shortest path connecting the utility pole a and the utility pole j. At this time, a route capable of avoiding a collision is generated in consideration of the position and route of the other unmanned aircraft 1.
  • Collision avoidance may be performed by unmanned aerial vehicles 1 to each other.
  • the height of one unmanned vehicle and the height of the other unmanned vehicle may be changed to avoid a collision.
  • the route according to the present embodiment proceeds in the order of utility pole a ⁇ utility pole b ⁇ utility pole d ⁇ utility pole f ⁇ utility pole h ⁇ utility pole j. It should be noted that some routes may be bypassed in order to avoid the collision described above. It flies in a region vertically (height) away from the electric wire by a predetermined distance.
  • the delivery transaction (route request) occurs (step S601)
  • the support node information is read (step S603).
  • the management server 2 identifies the start point node, the transit node, and the end point node based on the delivery transaction and the support node information, and generates a route (step S605).
  • the generated route information is transmitted to the unmanned aerial vehicle 1, and the delivery of the unmanned aerial vehicle 1 by flight is started (step S607).
  • the delivery process is executed by the management server 2, the unmanned aerial vehicle 1, and the user terminal.
  • the management server 2 When the delivery transaction occurs (SQ701), the management server 2 reads the support node information from the node DB (SQ703) and generates a route (SQ705). The management server 2 transmits the generated route information to the unmanned aerial vehicle (SQ707). The unmanned aerial vehicle starts flying based on the received route information (SQ709).
  • the management server 2 When the unmanned aerial vehicle arrives at the destination, the management server 2 is notified of the destination arrival notification (SQ711). The management server 2 notifies the user terminal of the arrival notification (SQ713). After confirming the destination of the arrived package, the user sends a notification of each location to the management server 2 (SQ715). Upon receiving the confirmation notification from the user regarding the luggage, the management server 2 unlocks the luggage loaded on the unmanned aerial vehicle 1 (SQ717). Unlocked packages can be picked up by the user. The management server 2 updates the status of the delivery transaction when the delivery is completed, if necessary (SQ719).
  • the unmanned aerial vehicle 1 is placed on the utility pole 20 and the electric wire 30 from the luggage storage location 100 (for example, a warehouse or the like) according to the route generated by loading the luggage P. It is possible to fly and deliver the package P to the user's home 200 and deliver it to the user.
  • the luggage storage location 100 for example, a warehouse or the like
  • the above-described embodiment uses a so-called client-server model including the unmanned aerial vehicle 1 and a management server 2 connected via a network.
  • a peer-to-peer system composed of a plurality of unmanned flying objects 1 may be used.
  • the management server 2 may generate a patrol route based on the patrol route and the support node information specified by the user. Further, when the patrol is completed, the patrol transaction may be terminated after sending the completed patrol to the user and receiving approval from the user.
  • the flying object 1 flies along the electric wire 30.
  • the aircraft flies within a predetermined range L from the electric wire 30.
  • the flying object 1 flies along the electric wire 30 while maintaining a predetermined distance from the electric wire 30.
  • both of the two electric wires 30 enter either of the predetermined ranges L and L'. I just need to be there.
  • the area above the electric wire 30 (FIG. 19A) or laterally. It is preferable to fly in any of the regions (FIG. 10 (b)).
  • the detection of the positional relationship with the electric wire 30 may be performed by combining an ultrasonic sensor, position information including height information, a vision sensor, and the like.
  • the information of the electric field and the magnetic field generated in the electric wire 30 is detected by the flying object 1. May be good.
  • Route management control server Small aircraft 3 Monitoring rotary wing machine 4 Network 10 Processor 11 Memory 12 Storage 13 Transmission / output unit 14 Input / output unit 15 Bus 20 Processor 21 Memory 22 Storage 23 Transmission / output unit 24 Input / output unit 25 Bus 26 Positioning unit 27 Detection unit 30 Processor 31 Memory 32 Storage 33 Transmission / output unit 34 Input / output unit 35 Bus 36 Positioning unit 37 Detection unit 100 Route management Control system 200, 300 Information processing device 510, 510', 520, 530 Route data 520 Traffic data 530 Location data

Abstract

 A route management control server according to the present invention is connected to a plurality of first flying bodies so as to be able to communicate therewith over a network. This server comprises: a storage means that stores location data including at least one among map information, topographic information, and building information, and route data based on three-dimensional coordinates; a control means that retrieves the location data and the route data; and a transmission means that transmits the retrieved location data and route data to each of the first flying bodies.

Description

ルート管理制御サーバ、方法及びシステム並びにこれに用いられる第1飛行体及び第2飛行体Route management control servers, methods and systems, and the 1st and 2nd aircraft used for them.
 本発明は、ルート管理制御サーバ、方法及びシステム並びにこれに用いられる第1飛行体及び第2飛行体に関し、特に、有人飛行体の適切な運行を管理制御する技術に関する。 The present invention relates to a route management control server, a method and a system, and the first and second aircraft used therein, and more particularly to a technique for managing and controlling the appropriate operation of a manned aircraft.
 特許文献1には、飛行体の飛行経路誘導技術に関して、計画された飛行経路をトンネル状の表示として表示部に映し出す技術が開示されている。 Patent Document 1 discloses a technique for displaying a planned flight path as a tunnel-like display on a display unit with respect to a flight path guidance technique for an air vehicle.
特開2009-269604号公報JP-A-2009-269604
 しかしながら、特許文献1に記載の技術は、複数の飛行体を同時に管理制御することについては何ら開示されていない。 However, the technique described in Patent Document 1 does not disclose the management and control of a plurality of flying objects at the same time.
 そこで、本発明は、複数飛行体を同時に管理制御し得る技術を提供することを一つの目的とする。 Therefore, one object of the present invention is to provide a technique capable of simultaneously managing and controlling a plurality of flying objects.
 本発明によれば、複数の第1飛行体とネットワークを介して通信可能に接続されたルート管理制御サーバであって、
 地図情報、地形情報又は建造物情報の少なくともいずれかを含むロケーションデータと、三次元座標に基づくルートデータを格納する記憶手段と、
 前記ロケーションデータ及び前記ルートデータを読み出す制御手段と、
 読み出し前記ロケーションデータ及び前記ルートデータを前記第1飛行体の夫々に送信する送信手段、を備える
ルート管理制御サーバが得られる。
According to the present invention, it is a route management control server that is communicably connected to a plurality of first aircraft via a network.
A storage means for storing location data including at least one of map information, topographical information, or building information, and route data based on three-dimensional coordinates.
A control means for reading the location data and the route data, and
Read A route management control server including a transmission means for transmitting the location data and the route data to each of the first aircraft can be obtained.
 本発明によれば、複数飛行体を同時に管理制御し得る。 According to the present invention, a plurality of flying objects can be managed and controlled at the same time.
本発明の実施の形態によるルート管理制御システムに用いられるネットワークの構成図である。It is a block diagram of the network used for the route management control system by embodiment of this invention. 図1のルート管理制御サーバのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware configuration of the route management control server of FIG. 図1の第1飛行体に搭載されているコンピュータのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the computer mounted on the 1st Air Division of FIG. 図1の第2飛行体に搭載されているコンピュータのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the computer mounted on the 2nd flying body of FIG. 図1のルート管理制御システムに使用されるデータの内容を模式的に示すイメージ図である。It is an image diagram which shows typically the content of the data used for the route management control system of FIG. 図1のルート管理制御システムの概要を示す模式図である。It is a schematic diagram which shows the outline of the route management control system of FIG. 図1の第1飛行体の表示部の画面表示例である。It is a screen display example of the display part of the 1st Air Division of FIG. 図1のルート管理制御システムの概要を示す他の模式図である。It is another schematic diagram which shows the outline of the route management control system of FIG. 図1のルート管理制御システムの概要を示す他の模式図である。It is another schematic diagram which shows the outline of the route management control system of FIG. 本発明の実施の形態による誘導システムの概略図とイメージ図である。It is a schematic diagram and an image diagram of the guidance system according to the embodiment of the present invention. 図1の無人移動体のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the unmanned moving body of FIG. 図1の管理サーバのハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware configuration of the management server of FIG. 図1の誘導システムに使用されるデータの内容を模式的に示すイメージ図である。It is an image diagram which shows typically the content of the data used for the guidance system of FIG. 図1の誘導システムによるルート生成のイメージ図である。It is an image diagram of the route generation by the guidance system of FIG. 図1の誘導システムによる管理サーバの処理の流れである。It is a processing flow of the management server by the guidance system of FIG. 図1の誘導システムによる管理サーバ、無人飛行体、ユーザ端末の間の処理の流れを示す図である。It is a figure which shows the flow of processing between a management server, an unmanned aerial vehicle, and a user terminal by the guidance system of FIG. 図1の誘導システムを配送システムに適用した例を示すイメージ図である。It is an image diagram which shows the example which applied the guidance system of FIG. 1 to a delivery system. 管理サーバと複数の無人航空機とによって構成されるクライアントサーバモデルと、複数の無人航空機のみによって構成されるピア・トゥ・ピアモデルのイメージを表した図である。It is the figure which showed the image of the client-server model which consists of a management server and a plurality of unmanned aerial vehicles, and the peer-to-peer model which consists only of a plurality of unmanned aerial vehicles. 図1の誘導システムによる飛行体の飛行時の様子を示す図である。It is a figure which shows the state at the time of flight of the flying object by the guidance system of FIG. 飛行体と電線との距離を測定する原理を示す概念図である。It is a conceptual diagram which shows the principle of measuring the distance between an air vehicle and an electric wire.
 本発明の実施形態の内容を列記して説明する。本発明の実施の形態によるルート管理制御サーバ、方法及びシステム並びにこれに用いられる第1飛行体及び第2飛行体は、以下のような構成を備える。
[項目1]
 複数の第1飛行体とネットワークを介して通信可能に接続されたルート管理制御サーバであって、
 地図情報、地形情報又は建造物情報の少なくともいずれかを含むロケーションデータと、三次元座標に基づくルートデータとを格納する記憶手段と、
 前記ロケーションデータ及び前記ルートデータを読み出す制御手段と、
 読み出した前記ロケーションデータ及び前記ルートデータを前記第1飛行体の夫々に送信する送信手段と、を備える
ルート管理制御サーバ。
[項目2]
 項目1に記載のルート管理制御サーバであって、
 前記ルートのトラフィック情報を受信する受信手段を更に備え、
 前記送信手段は、受信した前記トラフィック情報を前記第1飛行体に送信する、
ルート管理制御サーバ。
[項目3]
 項目2に記載のルート管理制御サーバであって、
 前記受信手段は、一の前記第1飛行体から前記トラフィック情報を受信し、
 前記送信手段は、受信した前記トラフィック情報を他の前記第1飛行体に送信する、
ルート管理制御サーバ。
[項目4]
 項目2又は項目3に記載のルート管理制御サーバであって、
 前記制御手段は、受信した前記トラフィック情報に基づいて、新ルートデータを生成し、
 前記送信手段は、生成した前記新ルートデータを前記第1飛行体に送信する、
ルート管理制御サーバ。
[項目5]
 項目2乃至項目4のいずれかに記載のルート管理制御サーバであって、
 前記制御手段は、受信した前記トラフィック情報に基づいて、飛行制御指示を生成し、
 前記送信手段は、生成した前記飛行制御指示を前記第1飛行体に送信する、
ルート管理制御サーバ。
[項目6]
 項目1乃至項目5のいずれかに記載のルート管理制御サーバであって、
 前記ルートデータは、緯度情報、経度情報及び高度情報を有している、
ルート管理制御サーバ。
[項目7]
 項目1乃至項目6のいずれかに記載のルート管理制御サーバであって、
 前記ルートデータは、当該ルートの第1特定領域に関連付けられた制限速度情報を有している、
ルート管理制御サーバ。
[項目8]
 項目1乃至項目7のいずれかに記載のルート管理制御サーバであって、
 前記ルートデータは、当該ルートの第2特定領域に関連付けられた料金情報を有しており、
 前記ルート管理制御サーバは、前記第1飛行体から受信した位置情報に基づいて当該第1飛行体が前記第2特定領域に進入した場合に、当該第1飛行体に関する決済処理を開始する決済手段を更に備えている、
ルート管理制御サーバ。
[項目9]
 項目2乃至項目8のいずれかに記載のルート管理制御サーバとネットワークを介して通信可能な第2飛行体であって、
 飛行のための動力部と、
 位置情報を測位する測位部と、
 前記ルートの前記トラフィック情報を収集する収集部と、
 収集した前記トラフィック情報を前記ルート管理制御サーバに送信する送信部と、を備える、
第2飛行体。
[項目10]
 項目9に記載の第2飛行体であって、
 収集した前記トラフィック情報から異常を検知する検知手段を更に備え、
 前記送信手段は、検知した異常に関する情報を少なくとも前記ルート管理制御サーバ、前記第1飛行体又は他の前記第2飛行体に送信する、
第2飛行体。
[項目11]
 項目1乃至項目10のいずれかに記載の第1飛行体であって、
 飛行のための動力部と、
 位置情報を測位する測位部と、
 前記ルート管理制御サーバから、少なくとも前記ロケーションデータ又は前記ルートデータのいずれかを受信する受信部と、
 前記操作者による操作を受け付けると共に前記第1飛行体の飛行を制御するための制御部と、
 少なくとも受信した前記ルートデータを操作者に表示する表示部と、を備える
第1飛行体。
[項目12]
 項目11に記載の第1飛行体であって、
 測位した前記位置情報を前記ルート管理制御サーバに送信する送信部を更に備える、
第1飛行体。
[項目13]
 項目11又は項目12に記載の第1飛行体であって、
 前記制御部は、前記ルートデータ及び前記位置情報に基づいて、前記動力部を制御する、
第1飛行体。
[項目14]
 複数の第1飛行体とネットワークを介して通信可能に接続されたコンピュータを利用したルート管理制御サーバであって、
 前記コンピュータが
 地図情報、地形情報又は建造物情報の少なくともいずれかを含むロケーションデータと、三次元座標に基づくルートデータを格納する記憶ステップと、
 前記ロケーションデータ及び前記ルートデータを読み出す制御ステップと、
 読み出し前記ロケーションデータ及び前記ルートデータを前記第1飛行体の夫々に送信する送信ステップと、を含む
ルート管理制御方法。
[項目15]
 複数の第1飛行体と、複数の第2飛行体と、ルート管理制御装置とを含むルート管理制御システムであって、
 前記第1飛行体、前記第2飛行体及び前記ルート管理制御装置は、互いにネットワークを介して通信可能に接続されており、
 前記ルート管理制御装置は:
  地図情報、地形情報又は建造物情報の少なくともいずれかを含むロケーションデータと、三次元座標に基づくルートデータを格納する記憶手段と;
  前記ロケーションデータ及び前記ルートデータを読み出す制御手段;、
  読み出し前記ロケーションデータ及び前記ルートデータを前記第1飛行体の夫々に送信する送信手段と;
  ルートのトラフィック情報を受信する受信手段と;を備えており、
 前記第1飛行体は:
  飛行のための動力部と;
  位置情報を測位する測位部と;
  前記ルート管理制御サーバから、少なくとも前記ロケーションデータ又は前記ルートデータのいずれかを受信する受信部と;
  前記操作者による操作を受け付けると共に前記第1飛行体の飛行を制御するための制御部と;
  少なくとも受信した前記ルートデータを操作者に表示する表示部と;を備えており、
 前記第2飛行体は:
  飛行のための動力部と;
  位置情報を測位する測位部と;
  前記ルートの前記トラフィック情報を収集する収集部と;
  収集した前記トラフィック情報を前記ルート管理制御サーバに送信する送信部と;を備えている、ルート管理制御システムにおいて、
 前記ルート管理制御装置の前記制御手段は、受信した前記トラフィック情報に基づいて、新ルートデータを生成すると共に、当該ルート管理制御装置の前記送信手段は、生成した前記新ルートデータを前記第1飛行体及び前記第2飛行体に送信する、
ルート管理制御システム。
The contents of the embodiments of the present invention will be described in a list. The route management control server, method and system according to the embodiment of the present invention, and the first and second aircraft used therein have the following configurations.
[Item 1]
A route management control server that is communicatively connected to multiple 1st Air Divisions via a network.
A storage means for storing location data including at least one of map information, topographical information, or building information, and route data based on three-dimensional coordinates.
A control means for reading the location data and the route data, and
A route management control server including a transmission means for transmitting the read location data and the route data to each of the first aircraft.
[Item 2]
The route management control server according to item 1.
Further provided with a receiving means for receiving the traffic information of the route,
The transmitting means transmits the received traffic information to the first aircraft.
Route management control server.
[Item 3]
The route management control server described in item 2.
The receiving means receives the traffic information from one of the first aircraft and receives the traffic information.
The transmitting means transmits the received traffic information to the other first aircraft.
Route management control server.
[Item 4]
The route management control server according to item 2 or item 3.
The control means generates new route data based on the received traffic information, and generates new route data.
The transmitting means transmits the generated new route data to the first aircraft.
Route management control server.
[Item 5]
The route management control server according to any one of items 2 to 4.
The control means generates a flight control instruction based on the received traffic information.
The transmitting means transmits the generated flight control instruction to the first aircraft.
Route management control server.
[Item 6]
The route management control server according to any one of items 1 to 5.
The route data has latitude information, longitude information and altitude information.
Route management control server.
[Item 7]
The route management control server according to any one of items 1 to 6.
The route data has speed limit information associated with the first specific area of the route.
Route management control server.
[Item 8]
The route management control server according to any one of items 1 to 7.
The route data has toll information associated with the second specific area of the route.
The route management control server is a payment means that starts payment processing for the first aircraft when the first aircraft enters the second specific area based on the position information received from the first aircraft. Further equipped,
Route management control server.
[Item 9]
A second aircraft capable of communicating with the route management control server according to any one of items 2 to 8 via a network.
Power unit for flight and
Positioning unit for positioning position information and
A collection unit that collects the traffic information of the route and
A transmission unit that transmits the collected traffic information to the route management control server is provided.
Second aircraft.
[Item 10]
The second aircraft according to item 9,
Further equipped with a detection means for detecting an abnormality from the collected traffic information,
The transmitting means transmits information about the detected abnormality to at least the route management control server, the first aircraft, or another second aircraft.
Second aircraft.
[Item 11]
The first air vehicle according to any one of items 1 to 10.
Power unit for flight and
Positioning unit for positioning position information and
A receiving unit that receives at least either the location data or the route data from the route management control server.
A control unit for accepting operations by the operator and controlling the flight of the first aircraft,
A first air vehicle including at least a display unit that displays the received route data to an operator.
[Item 12]
The first aircraft according to item 11,
A transmission unit that transmits the positioned position information to the route management control server is further provided.
1st Air Division.
[Item 13]
The first aircraft according to item 11 or item 12, which is the first aircraft.
The control unit controls the power unit based on the route data and the position information.
1st Air Division.
[Item 14]
It is a route management control server that uses a computer that is communicatively connected to multiple 1st Air Divisions via a network.
A storage step in which the computer stores location data, including at least one of map information, topographical information, or building information, and route data based on three-dimensional coordinates.
A control step for reading the location data and the route data,
Read A route management control method including a transmission step of transmitting the location data and the route data to each of the first aircraft.
[Item 15]
A route management control system including a plurality of first aircraft, a plurality of second aircraft, and a route management control device.
The first air vehicle, the second air vehicle, and the route management control device are connected to each other so as to be able to communicate with each other via a network.
The route management control device is:
A storage means for storing location data including at least one of map information, topographical information, or building information, and route data based on three-dimensional coordinates;
Control means for reading the location data and the route data ;,
Read As a transmission means for transmitting the location data and the route data to each of the first aircraft;
It has a receiving means to receive route traffic information;
The 1st Air Division is:
With the power unit for flight;
With a positioning unit that positions position information;
With a receiver that receives at least either the location data or the route data from the route management control server;
With a control unit for accepting operations by the operator and controlling the flight of the first aircraft;
It is equipped with at least a display unit that displays the received route data to the operator;
The second aircraft is:
With the power unit for flight;
With a positioning unit that positions position information;
With a collecting unit that collects the traffic information of the route;
In a route management control system including a transmission unit that transmits the collected traffic information to the route management control server;
The control means of the route management control device generates new route data based on the received traffic information, and the transmission means of the route management control device uses the generated new route data for the first flight. Transmit to the body and the 2nd Air Division,
Route management control system.
<実施の形態の詳細>
 以下、本発明の実施の形態によるルート管理制御サーバ、方法及びシステム並びにこれに用いられる第1飛行体及び第2飛行体によって実現されるルート管理制御庫管理システムついて、図面を参照しながら説明する。
<Details of the embodiment>
Hereinafter, the route management control server, the method and the system according to the embodiment of the present invention, and the route management control warehouse management system realized by the 1st Air Division and the 2nd Air Division used therein will be described with reference to the drawings. ..
<概要>
 本発明によるルート管理制御システム(以下「管制システム」という)は、特に有人の小型飛行体(以下「エアモービル」という)の適切な運行制御を行うものである。管制システムは、複数の監視用回転翼機(以下「監視ドローン」という)と協働してより適切な運行制御を行う。
<Overview>
The route management control system (hereinafter referred to as "control system") according to the present invention particularly appropriately controls the operation of a manned small aircraft (hereinafter referred to as "air mobile"). The control system cooperates with a plurality of surveillance rotary-wing aircraft (hereinafter referred to as "surveillance drones") to perform more appropriate operation control.
 エアモービルは、人が乗車可能な小型の飛行体であり、小型スクーター乃至一般の自動車程度の大きさを有している。本実施の形態によるエアモービルは複数の回転翼を有する所謂マルチコプターである。なお、動力源は回転翼を主たるものとしているが、これ以外の揚力発生源を有していてもよく、水上、陸上又は水中の移動も可能であってもよい。この場合、移動地の状況に応じた補助動力手段、種々の計器類、制御装置等を有していてもよい。エアモービルに搭載される情報処理装置のハードウェア構成については後述する。 Airmobile is a small flying object that people can ride on, and has the size of a small scooter or a general automobile. The air mobile according to the present embodiment is a so-called multicopter having a plurality of rotor blades. Although the power source is mainly a rotary blade, it may have a lift generation source other than this, and may be able to move on water, on land, or in water. In this case, it may have auxiliary power means, various instruments, a control device, etc. according to the situation of the moving place. The hardware configuration of the information processing device mounted on the air mobile will be described later.
 監視ドローンは、無人飛行体であり、電池、複数のモータ、位置検出部、制御部、ドライバ、記憶装置、無線通信装置、電圧センサ、及び電流センサ等を備えている。これらの構成要素は、所定形状のフレームに搭載されている。監視ドローンに搭載される情報処理装置のハードウェア構成については後述する。なお、これらの基本構造については、既知の技術を適宜採用可能である。 The surveillance drone is an unmanned aerial vehicle, equipped with batteries, multiple motors, position detection units, control units, drivers, storage devices, wireless communication devices, voltage sensors, current sensors, and the like. These components are mounted on a frame having a predetermined shape. The hardware configuration of the information processing device mounted on the surveillance drone will be described later. As for these basic structures, known techniques can be appropriately adopted.
<構成>
 図1に示されるように、本実施の形態による管制システム100は、ルート管理制御サーバ(以下単に「サーバ」という)1と、エアモービル2と、監視ドローン3とを備えている。
<Structure>
As shown in FIG. 1, the control system 100 according to the present embodiment includes a route management control server (hereinafter, simply referred to as “server”) 1, an air mobile 2, and a monitoring drone 3.
 サーバ1と、エアモービル2と、監視ドローン3は、ネットワーク4を介して互いに通信可能に接続された所謂クライアント・サーバモデルのシステムである。本実施の形態によるネットワーク4は、IPベースのコンピュータネットワークであるが携帯電話機やスマートフォン等に対するキャリアネットワークと共通化してもよい。ここでは、コンピュータネットワークは、相互に接続されたIPネットワークによって構築されたインターネットを含む広い概念で用いられている。また、コンピュータネットワークは、図示されていない無線基地局(例えばWiFi)によって構築される無線ネットワークを含んでも良い。キャリアネットワークとIPネットワークとは、例えば、ゲートウェイ等を介して接続されるが、これに限られるものではない。 The server 1, the air mobile 2, and the monitoring drone 3 are so-called client-server model systems that are connected to each other so as to be able to communicate with each other via the network 4. Although the network 4 according to the present embodiment is an IP-based computer network, it may be shared with a carrier network for mobile phones, smartphones, and the like. Here, computer networks are used in a broader concept, including the Internet built by interconnected IP networks. Further, the computer network may include a wireless network constructed by a wireless base station (for example, WiFi) (not shown). The carrier network and the IP network are connected via, for example, a gateway or the like, but the carrier network and the IP network are not limited to this.
<ハードウェア構成>
 図2乃至図4を夫々参照して、サーバ1、エアモービル2及び監視ドローン3のハードウェア構成について説明する。
<Hardware configuration>
The hardware configurations of the server 1, the air mobile 2, and the monitoring drone 3 will be described with reference to FIGS. 2 to 4, respectively.
<ルート管理制御サーバ(サーバ)1>
 図2に示されるように、サーバ1は、ルート管理制御システム100を通じてサービスを提供するための情報処理装置であり、例えばワークステーションやパーソナルコンピュータのような汎用コンピュータとしてもよいし、或いはクラウド・コンピューティングによって論理的に実現されてもよい。図2に示されるように、サーバ1は、プロセッサ10、メモリ11、ストレージ12、送受信部13、及び入出力部14等を備え、これらはバス15を通じて相互に電気的に接続される。
<Route management control server (server) 1>
As shown in FIG. 2, the server 1 is an information processing device for providing services through the route management control system 100, and may be a general-purpose computer such as a workstation or a personal computer, or a cloud computing device. It may be realized logically by ing. As shown in FIG. 2, the server 1 includes a processor 10, a memory 11, a storage 12, a transmission / reception unit 13, an input / output unit 14, and the like, which are electrically connected to each other through a bus 15.
 プロセッサ10は、サーバ1全体の動作を制御し、各要素間におけるデータの送受信の制御、及びアプリケーションの実行に必要な情報処理等を行う演算装置である。例えばプロセッサ10はCPU(Central Processing Unit)であり、ストレージ12に格納されメモリ11に展開されたプログラム等を実行して各情報処理を実施する。 The processor 10 is an arithmetic unit that controls the operation of the entire server 1, controls the transmission and reception of data between each element, and performs information processing and the like necessary for executing an application. For example, the processor 10 is a CPU (Central Processing Unit), and executes each information processing by executing a program or the like stored in the storage 12 and expanded in the memory 11.
 メモリ11は、DRAM(Dynamic Random Access Memory)等の揮発性記憶装置で構成される主記憶と、フラッシュメモリやHDD(Hard Disc Drive)等の不揮発性記憶装置で構成される補助記憶と、を含む。メモリ11は、プロセッサ10のワークエリア等として使用され、また、サーバ1の起動時に実行されるBIOS(Basic Input / Output System)、及び各種設定情報等を格納する。ストレージ12は、アプリケーション・プログラム、及び各エアモービル2及び監視ドローン3の認証プログラム等の各種プログラムを格納する。各処理に用いられるデータを格納したデータベース(後述するロケーションデータ、ルートデータ等)がストレージ12に構築されていてもよい。 The memory 11 includes a main memory composed of a volatile storage device such as DRAM (Dynamic Random Access Memory) and an auxiliary storage composed of a non-volatile storage device such as a flash memory or HDD (Hard Disc Drive). .. The memory 11 is used as a work area or the like of the processor 10, and also stores a BIOS (Basic Input / Output System) executed when the server 1 is started, various setting information, and the like. The storage 12 stores an application program and various programs such as an authentication program for each air mobile 2 and a monitoring drone 3. A database (location data, route data, etc., which will be described later) storing data used for each process may be built in the storage 12.
<小型飛行体(エアモービル)2>
 図3に示されるように、エアモービル2は、情報処理装置200を搭載している。情報処理装置200は、サーバ1と通信を介して情報処理を実行することにより、ルート管理制御システム100のサービスの提供を受ける。情報処理装置200は、少なくとも、プロセッサ20、メモリ21、ストレージ22、送受信部23、入出力部24、測位部26、検知部27等を備え、これらはバス25を通じて相互に電気的に接続される。情報処理装置200は、例えばワークステーションやパーソナルコンピュータのような汎用コンピュータとしてもよいし、スマートフォン、PDA、タブレット型コンピュータ等のデバイス等タッチパネルを備える端末と連携することとしてもよく、或いはクラウド・コンピューティングによって論理的に実現されてもよい。
<Small aircraft (air mobile) 2>
As shown in FIG. 3, the air mobile 2 is equipped with an information processing device 200. The information processing device 200 receives the service of the route management control system 100 by executing information processing via communication with the server 1. The information processing device 200 includes at least a processor 20, a memory 21, a storage 22, a transmission / reception unit 23, an input / output unit 24, a positioning unit 26, a detection unit 27, and the like, and these are electrically connected to each other through a bus 25. .. The information processing device 200 may be a general-purpose computer such as a workstation or a personal computer, may be linked with a terminal having a touch panel such as a device such as a smartphone, a PDA, or a tablet computer, or may be linked with a terminal having a touch panel, or cloud computing. It may be realized logically by.
 プロセッサ20は、情報処理装置200の動作を制御し、各要素間におけるデータの送受信の制御、及びアプリケーションの実行に必要な処理等を行う演算装置である。例えばプロセッサ20はCPU及び/又はGPU(Graphical Processing Unit)等であり、ストレージ22に格納されメモリ21に展開されたプログラム等を実行することによって、必要な各情報処理を実施する。 The processor 20 is an arithmetic unit that controls the operation of the information processing device 200, controls the transmission and reception of data between each element, and performs processing necessary for executing an application. For example, the processor 20 is a CPU and / or GPU (Graphical Processing Unit) or the like, and performs each necessary information processing by executing a program or the like stored in the storage 22 and expanded in the memory 21.
 メモリ21は、RAMなどの揮発性記憶装置で構成される主記憶と、フラッシュメモリやHDD等の不揮発性記憶装置で構成される補助記憶と、を含む。メモリ21はプロセッサ20のワークエリア等として使用され、また、情報処理装置200の起動時に実行されるBIOS、及び各種設定情報等が格納される。ストレージ22には、アプリケーション・プログラム等が格納される。 The memory 21 includes a main memory composed of a volatile storage device such as RAM and an auxiliary storage composed of a non-volatile storage device such as a flash memory and an HDD. The memory 21 is used as a work area or the like of the processor 20, and also stores a BIOS executed when the information processing apparatus 200 is started, various setting information, and the like. An application program or the like is stored in the storage 22.
 送受信部23は、情報処理装置200をネットワーク4に接続し、サーバ1と通信を行う。また、送受信部23には、Bluetooth(登録商標)及びBLE(Bluetooth Low Energy)の近距離通信インタフェースも含まれる。 The transmission / reception unit 23 connects the information processing device 200 to the network 4 and communicates with the server 1. The transmission / reception unit 23 also includes a short-range communication interface of Bluetooth (registered trademark) and BLE (Bluetooth Low Energy).
 入出力部24は、操縦桿(ハンドル)スイッチ類等の情報入力機器、及びディスプレイ等の出力機器であり、エアモービル2の操作者に対する情報の提示と入力操作とを行う。 The input / output unit 24 is an information input device such as a control stick (handle) switch and an output device such as a display, and presents and inputs information to the operator of the air mobile 2.
 バス25は、上記各要素に共通に接続され、例えば、アドレス信号、データ信号及び各種制御信号を伝達する。 The bus 25 is commonly connected to each of the above elements and transmits, for example, an address signal, a data signal, and various control signals.
 測位部26は、エアモービル2の高度を少なくとも検出する。本実施の形態による測位部26は、例えばGPS(Global Positioning System)検出器であって、エアモービル2の現在位置の緯度、経度、及び高度を検出する。 The positioning unit 26 detects at least the altitude of the air mobile 2. The positioning unit 26 according to the present embodiment is, for example, a GPS (Global Positioning System) detector that detects the latitude, longitude, and altitude of the current position of the air mobile 2.
 検知部27は、エアモービル2の外部環境を音声、画像、赤外線等種々のセンサによってセンシングするためのものである。 The detection unit 27 is for sensing the external environment of the air mobile 2 by various sensors such as voice, image, and infrared rays.
 本実施の形態によるエアモービル2は、情報処理装置200の他に、当該エアモービル2の移動・飛行のための、電源、回転翼に接続されたモータ、情報処理装置200とモータとを中継するドライバを少なくとも更に有している。情報処理装置200は、複数のモータを制御してエアモービルの飛行制御(上昇、下降、水平移動などの制御)や、エアモービル2に搭載されているジャイロ(図示せず)を使用して複数のモータを制御することによって姿勢制御をも行う。ドライバは、情報処理装置200からの制御信号に従ってモータを駆動する。例えば、モータは直流モータであり、ドライバは制御信号により指定された電圧をモータに印加する可変電圧電源回路である。なお、当然のことながら、エアモービル200は図示しない要素(例えば、有人飛行のための設備、その他飛行のための設備等)を有している。 In addition to the information processing device 200, the air mobile 2 according to the present embodiment relays a power source, a motor connected to a rotor blade, and an information processing device 200 and a motor for movement and flight of the air mobile 2. Have at least more drivers. The information processing device 200 controls a plurality of motors to control the flight of the air mobile (control of ascending, descending, horizontal movement, etc.) and a plurality of gyros (not shown) mounted on the air mobile 2. Attitude control is also performed by controlling the motor of. The driver drives the motor according to a control signal from the information processing device 200. For example, the motor is a DC motor, and the driver is a variable voltage power supply circuit that applies a voltage specified by a control signal to the motor. As a matter of course, the air mobile 200 has elements (for example, equipment for manned flight, other equipment for flight, etc.) which are not shown.
<監視用回転翼機(監視ドローン)3>
 図4に示されるように、監視ドローン3は、情報処理装置300を搭載している。情報処理装置300は、サーバ1と通信を介して情報処理を実行することにより、ルート管理制御システム100のシステムの一部を構成する。情報処理装置300は、少なくとも、プロセッサ30、メモリ31、ストレージ32、送受信部33、出力部34、測位部36、検知部37等を備え、これらはバス35を通じて相互に電気的に接続される。情報処理装置300は、例えばマイクロコンピューター、ASIC(Application Specific Integrated Circuit)で構成されていてもよく、或いはクラウド・コンピューティングによって論理的に実現されてもよい。
<Monitoring rotary wing aircraft (surveillance drone) 3>
As shown in FIG. 4, the monitoring drone 3 is equipped with an information processing device 300. The information processing device 300 constitutes a part of the system of the route management control system 100 by executing information processing via communication with the server 1. The information processing device 300 includes at least a processor 30, a memory 31, a storage 32, a transmission / reception unit 33, an output unit 34, a positioning unit 36, a detection unit 37, and the like, and these are electrically connected to each other through a bus 35. The information processing device 300 may be composed of, for example, a microcomputer or an ASIC (Application Specific Integrated Circuit), or may be logically realized by cloud computing.
 プロセッサ30は、情報処理装置300の動作を制御し、各要素間におけるデータの送受信の制御、及びアプリケーションの実行に必要な処理等を行う演算装置である。例えばプロセッサ30はCPU及び/又はGPU(Graphical Processing Unit)等であり、ストレージ32に格納されメモリ31に展開されたプログラム等を実行することによって、必要な各情報処理を実施する。 The processor 30 is an arithmetic unit that controls the operation of the information processing device 300, controls the transmission and reception of data between each element, and performs processing necessary for executing an application. For example, the processor 30 is a CPU and / or GPU (Graphical Processing Unit) or the like, and performs each necessary information processing by executing a program or the like stored in the storage 32 and expanded in the memory 31.
 メモリ31は、RAMなどの揮発性記憶装置で構成される主記憶と、フラッシュメモリやHDD等の不揮発性記憶装置で構成される補助記憶と、を含む。メモリ31はプロセッサ30のワークエリア等として使用され、また、情報処理装置300の起動時に実行されるBIOS、及び各種設定情報等が格納される。ストレージ32には、アプリケーション・プログラム等が格納される。 The memory 31 includes a main memory composed of a volatile storage device such as RAM and an auxiliary storage composed of a non-volatile storage device such as a flash memory and an HDD. The memory 31 is used as a work area or the like of the processor 30, and also stores a BIOS executed when the information processing apparatus 300 is started, various setting information, and the like. An application program or the like is stored in the storage 32.
 送受信部33は、情報処理装置300をネットワーク4に接続し、サーバ1と通信を行う。また、送受信部33には、Bluetooth(登録商標)及びBLE(Bluetooth Low Energy)の近距離通信インタフェースも含まれる。 The transmission / reception unit 33 connects the information processing device 300 to the network 4 and communicates with the server 1. The transmission / reception unit 33 also includes a short-range communication interface of Bluetooth (registered trademark) and BLE (Bluetooth Low Energy).
 入出力部34は、操縦桿(ハンドル)スイッチ類等の情報入力機器、及びディスプレイ等の出力機器である。 The input / output unit 34 is an information input device such as a control stick (handle) switch and an output device such as a display.
 バス35は、上記各要素に共通に接続され、例えば、アドレス信号、データ信号及び各種制御信号を伝達する。 The bus 35 is commonly connected to each of the above elements and transmits, for example, an address signal, a data signal, and various control signals.
 測位部36は、監視ドローン3の高度を少なくとも検出する。本実施の形態による測位部26は、例えばGPS(Global Positioning System)検出器であって、エアモービル2の現在位置の緯度、経度、及び高度を検出する。 The positioning unit 36 detects at least the altitude of the surveillance drone 3. The positioning unit 26 according to the present embodiment is, for example, a GPS (Global Positioning System) detector that detects the latitude, longitude, and altitude of the current position of the air mobile 2.
 検知部37は、監視ドローン3の外部環境を音声、画像、赤外線等種々のセンサによってセンシングするためのものである。 The detection unit 37 is for sensing the external environment of the surveillance drone 3 by various sensors such as voice, image, and infrared rays.
 本実施の形態による監視ドローン3は、情報処理装置300の他に、当該監視ドローン3の移動・飛行のための、電源、回転翼に接続されたモータ、情報処理装置300とモータとを中継するドライバを少なくとも更に有している。情報処理装置300は、複数のモータを制御して監視ドローンの飛行制御(上昇、下降、水平移動などの制御)や、監視ドローン3に搭載されているジャイロ(図示せず)を使用して複数のモータを制御することによって姿勢制御をも行う。ドライバは、情報処理装置300からの制御信号に従ってモータを駆動する。例えば、モータは直流モータであり、ドライバは制御信号により指定された電圧をモータに印加する可変電圧電源回路である。なお、監視ドローン300は図示しない他の要素を有していてもよい。 In addition to the information processing device 300, the monitoring drone 3 according to the present embodiment relays the power supply, the motor connected to the rotor blade, the information processing device 300, and the motor for the movement and flight of the monitoring drone 3. Have at least more drivers. The information processing device 300 controls a plurality of motors to control the flight of the surveillance drone (control of ascent, descent, horizontal movement, etc.) and a plurality of gyros (not shown) mounted on the surveillance drone 3. Attitude control is also performed by controlling the motor of. The driver drives the motor according to a control signal from the information processing device 300. For example, the motor is a DC motor, and the driver is a variable voltage power supply circuit that applies a voltage specified by a control signal to the motor. The surveillance drone 300 may have other elements (not shown).
<データ>
 図5に示されるように、本実施の形態においては、地図情報、地形情報又は建造物情報の少なくともいずれかを含むロケーションデータ530と、三次元座標に基づくルートデータ510と、当該ルート上の状態を表すトラフィックデータ520とが利用される。これらのデータは、サーバ1から一部又は全てのエアモービル2又は監視ドローン3に送信され夫々共有される。
<Data>
As shown in FIG. 5, in the present embodiment, location data 530 including at least one of map information, topographical information, and building information, route data 510 based on three-dimensional coordinates, and a state on the route. The traffic data 520 representing the above is used. These data are transmitted from the server 1 to a part or all of the air mobile 2 or the monitoring drone 3 and shared with each other.
 詳しくは、図5に示されるように、ロケーションデータは、地図情報であり、地形や建物その他の構造物についての情報が含まれている。本実施の形態におけるロケーションデータには、所謂平面地図情報(緯度情報及び経度情報)の他、当該構造物の有する正確な高さの情報(高度情報)をも有している。また、特に構造物については、実空間に占める体積の座標情報(すなわち、エアモービル2が衝突せずに飛ぶための構造物の形状情報を含む)をも有している。 Specifically, as shown in FIG. 5, the location data is map information and includes information about topography, buildings and other structures. The location data in the present embodiment includes so-called plane map information (latitude information and longitude information) as well as accurate height information (altitude information) of the structure. Further, particularly for a structure, it also has coordinate information of the volume occupied in the real space (that is, includes shape information of the structure for the air mobile 2 to fly without colliding).
 ルートデータ510は、エアモービル2の空における道路たる役目を担うものであり、後述するように、当該ルートデータがエアモービル2の表示部に表示されることによってエアモービルの安全な運行が可能となる。ルートデータは、連続する緯度情報、経度情報及び高度情報を少なくとも有しており、当該情報によってルートが特定される。なお、ルートデータは、通常の道路の幅と同様に運行可能な一定の幅情報を有していてもよい。ルートデータ510には、ルートの分岐、制限速度、他のルートとの間隔、進行方向、車種制限、交通制限(信号に相当する情報や、運行の制限に関する情報)に関する情報が含まれている。 The route data 510 serves as a road in the sky of the air mobile 2, and as will be described later, the route data is displayed on the display unit of the air mobile 2 to enable safe operation of the air mobile. Become. The route data has at least continuous latitude information, longitude information, and altitude information, and the route is specified by the information. In addition, the route data may have a certain width information that can be operated in the same manner as the width of a normal road. The route data 510 includes information on route branching, speed limit, distance from other routes, traveling direction, vehicle type restriction, and traffic restriction (information corresponding to a signal and information on operation restriction).
 トラフィックデータ520は、例えばルートに支障が発生した場合に当該ルート上の支障の領域を特定するための情報であり、緯度情報、経度情報及び高度情報と、支障の内容を少なくとも有している。 The traffic data 520 is information for identifying the area of the obstacle on the route, for example, when the route has an obstacle, and has at least latitude information, longitude information, altitude information, and the content of the obstacle.
<処理の流れ>
 図6に示される本実施の形態による管制システムの概念図を参照すると、サーバ1は、ロケーションデータとルートデータとを読み出してエアモービル2に送信し、エアモービル2の表示部に運行可能領域として表示する。本実施の形態によるエアモービル2の表示部は、例えば、ヘッドアップディスプレイ等、運転者の視界を遮らないような表示手段が好ましく、フロントガラスに投影させる方法や、AR(Augmented Reality:拡張現実)技術を利用した各種装置等を採用することができる。
<Processing flow>
With reference to the conceptual diagram of the control system according to the present embodiment shown in FIG. 6, the server 1 reads out the location data and the route data and transmits them to the air mobile 2, and displays the serviceable area on the display unit of the air mobile 2. indicate. The display unit of the air mobile 2 according to the present embodiment is preferably a display means such as a head-up display that does not block the driver's field of vision, such as a method of projecting onto a windshield or AR (Augmented Reality). Various devices and the like using the technology can be adopted.
 図7に示されるように、エアモービル2のフロントガラスには、ルートデータ510に基づくルート710が表示される。当該ルート710の状態(混雑状況、事故状況等)は、トラフィック情報として監視ドローン2によって収集されサーバ1に送信される。トラフィック情報は、エアモービル2から自動又は手動によってサーバ1に送信されることとしてもよい。当該トラフィック情報は、複数のエアモービル2、監視ドローン3、サーバ1の間で相互に共有される。 As shown in FIG. 7, the windshield of the air mobile 2 displays the route 710 based on the route data 510. The state of the route 710 (congestion status, accident status, etc.) is collected by the monitoring drone 2 as traffic information and transmitted to the server 1. The traffic information may be automatically or manually transmitted from the air mobile 2 to the server 1. The traffic information is shared with each other among a plurality of air mobiles 2, a monitoring drone 3, and a server 1.
 サーバ1は、受信したトラフィック情報において、例えば、混雑している場合等、現在のルートが適切ではない場合には新ルートのデータを生成する。生成した新ルートのデータをエアモービル2に送信する。図8に示されるように、生成された新ルート510’が設定されると共に、当該新ルート510’の情報がエアモービル及び監視ドローン3に共有される。サーバ1は、エアモービル2が新ルート510’上を飛行するように、エアモービルを(遠隔で)自動制御するための飛行制御指示を生成して送信することとしてもよい。この場合、エアモービル2は、受信した飛行制御指示に基づいて飛行が制御されることとなる。 The server 1 generates data for a new route in the received traffic information when the current route is not appropriate, for example, when it is congested. The generated new route data is transmitted to Air Mobile 2. As shown in FIG. 8, the generated new route 510'is set, and the information of the new route 510' is shared with the air mobile and the surveillance drone 3. The server 1 may generate and transmit a flight control instruction for (remotely) automatically controlling the air mobile so that the air mobile 2 flies over the new route 510'. In this case, the flight of the air mobile 2 is controlled based on the received flight control instruction.
 本実施の形態によるルートデータは、制限速度情報を更に有することとしてもよい。即ち、自動車用の道路と同様に、ルートの一部又は全部に制限速度を設定することによって、より適切なルート管理を行うことができる。また、例えば、図9に示されるように、ルートは上り線と下り線、制限速度応じて別々の道路にすることとしてもよい。図9に示されるように、制限速度の大きいルート520は、制限速度の小さいルート530よりも大きい高度に設定されている。エアモービル2は、ルート530からルート520に移動する場合には、図示しない誘導ルート(ルート530及びルート520を接続するルート)を通過して行う。 The route data according to the present embodiment may further have speed limit information. That is, more appropriate route management can be performed by setting a speed limit for a part or all of the route as in the case of a road for automobiles. Further, for example, as shown in FIG. 9, the routes may be separate roads according to the up line, the down line, and the speed limit. As shown in FIG. 9, the route 520 having a high speed limit is set at an altitude higher than that of the route 530 having a low speed limit. When moving from route 530 to route 520, the air mobile 2 passes through a guidance route (a route connecting route 530 and route 520) (not shown).
 更には、ルートデータは、当該ルートの一部又は全部に通行料金を設定することとしてもよい。通行料金が設定される領域(以下「有料区間」という)は、例えば、緯度・経度・高度等の情報によって特定される。サーバ1は、エアモービルから受信した位置情報に基づいてエアモービル2が有料区間に進入した場合に、当該エアモービル2に関する決済を開始する。決済は、種々の従来技術が利用可能である。 Furthermore, for the route data, a toll may be set for a part or all of the route. The area where the toll is set (hereinafter referred to as "toll section") is specified by, for example, information such as latitude, longitude, and altitude. When the air mobile 2 enters the toll road based on the location information received from the air mobile, the server 1 starts the payment for the air mobile 2. Various conventional techniques can be used for payment.
 本発明の他の実施形態の内容を列記して説明する。本実施の形態による発明は、以下のような構成を備える。
[項目16]
 複数の支柱と、当該支柱を架線するケーブルとを利用する、飛行体の誘導方法であって、
 誘導装置が:ルートリクエストを受け取るステップ;前記支柱の位置に対応する支柱ノード情報を読み出すステップ;前記ルートリクエスト及び前記支柱ノード情報に基づいて少なくとも始点支柱ノードと終点支柱ノードとを特定してルートを生成するステップ;生成した前記ルートを飛行体に送信するステップと、
 前記飛行体が、前記ルートに従って飛行するステップと、を含む
飛行体の誘導方法。
[項目17]
 請求項1に記載の飛行体の誘導方法であって、
 前記飛行体は、前記ケーブルに沿って飛行する、
飛行体の誘導方法。
[項目18]
 請求項2に記載の飛行体の誘導方法であって、
 前記飛行体は、前記ケーブルから所定距離を維持しながら飛行する、
飛行体の誘導方法。
[項目19]
 請求項3に記載の飛行体の誘導方法であって、
 前記飛行体は、前記ケーブルの少なくとも電界又は磁界が所定の条件であることを検出し、前記ケーブルとの距離を測定する、
飛行体の誘導方法。
[項目20]
 請求項4に記載の飛行体の誘導方法で会って、
 前記飛行体は、少なくとも前記ケーブル内を流れる電圧又は電流の値に関する情報を受信するとともに、当該情報に基づいて前記測定の結果を補正する、
飛行体の誘導方法。
[項目21]
 請求項2乃至請求項5のいずれかに記載の飛行体の誘導方法であって、
 前記支柱ノード情報は、実空間の支柱の位置に関するX座標、Y座標及びZ座標を含んでおり、
 生成される前記ルートは、少なくとも前記Z座標よりも高い位置に生成される、
飛行体の誘導方法。
[項目22]
 請求項1乃至請求項6のいずれかに記載の飛行体の誘導方法であって、
 複数の前記飛行体はネットワークを介して互いに通信可能であり、
 前記飛行体の夫々は、前記飛行体の位置又は生成された前記ルートを考慮して自己の前記ルートを生成する、
飛行体の誘導方法。
[項目23]
 複数の支柱と、当該支柱を架線するケーブルとを利用する、飛行体の誘導装置であって、
 ルートリクエストを受け取る手段と、
 前記支柱の位置に対応する支柱ノード情報を読み出す手段と、
 前記ルートリクエスト及び前記支柱ノード情報に基づいて少なくとも始点支柱ノードと終点支柱ノードとを特定してルートを生成す手段と、
 生成した前記ルートを飛行体に送信する手段と、を含む
飛行体の誘導装置。
[項目24]
 複数の支柱と、当該支柱を架線するケーブルとを利用する、飛行体の誘導方法であって、
 誘導装置が:
  ルートリクエストを受け取るステップ;前記支柱の位置に対応する支柱ノード情報を読み出し;
  前記ルートリクエスト及び前記支柱ノード情報に基づいて少なくとも始点支柱ノードと終点支柱ノードとを特定してルートを生成し;
  生成した前記ルートを飛行体に送信し;
 前記飛行体が、前記ルートに従って飛行する、
飛行体の誘導システム。
The contents of other embodiments of the present invention will be described in a list. The invention according to the present embodiment has the following configurations.
[Item 16]
It is a method of guiding an air vehicle using a plurality of columns and a cable for connecting the columns.
The guidance device: A step of receiving a route request; a step of reading out the support column node information corresponding to the position of the support column; a route is determined by identifying at least the start point support column node and the end point support column node based on the route request and the support column node information. The step to generate; the step to send the generated route to the flying object, and
A method of guiding an air vehicle, including a step in which the air vehicle flies according to the route.
[Item 17]
The method for guiding an air vehicle according to claim 1.
The flying object flies along the cable.
How to guide the flying object.
[Item 18]
The method for guiding an air vehicle according to claim 2.
The flying object flies while maintaining a predetermined distance from the cable.
How to guide the flying object.
[Item 19]
The method for guiding an air vehicle according to claim 3.
The flying object detects that at least an electric field or a magnetic field of the cable is in a predetermined condition, and measures the distance from the cable.
How to guide the flying object.
[Item 20]
Meet by the method of guiding the flying object according to claim 4.
The air vehicle receives at least information about the value of voltage or current flowing in the cable and corrects the result of the measurement based on the information.
How to guide the flying object.
[Item 21]
The method for guiding an air vehicle according to any one of claims 2 to 5.
The strut node information includes X, Y and Z coordinates with respect to the position of the strut in real space.
The generated route is generated at least at a position higher than the Z coordinate.
How to guide the flying object.
[Item 22]
The method for guiding an air vehicle according to any one of claims 1 to 6.
The plurality of said aircraft can communicate with each other via a network.
Each of the flying objects generates its own route in consideration of the position of the flying object or the generated route.
How to guide the flying object.
[Item 23]
An air vehicle guidance device that uses a plurality of columns and a cable that connects the columns.
Means of receiving route requests and
A means for reading the column node information corresponding to the position of the column, and
A means for generating a route by identifying at least a start point support node and an end point support node based on the route request and the support node information.
An air vehicle guidance device that includes means for transmitting the generated route to the air vehicle.
[Item 24]
It is a method of guiding an air vehicle using a plurality of columns and a cable for connecting the columns.
The guidance device is:
Step to receive route request; Read column node information corresponding to the position of the column;
Based on the route request and the support node information, at least the start point support node and the end point support node are specified to generate a route;
Send the generated route to the aircraft;
The flying object flies according to the route.
Guidance system for flying objects.
<実施の形態の詳細>
 以下、本発明の実施の形態によるルート管理制御サーバ、方法及びシステム並びにこれに用いられる第1飛行体及び第2飛行体について、図面を参照しながら説明する。
<Details of the embodiment>
Hereinafter, the route management control server, the method and the system according to the embodiment of the present invention, and the first and second aircraft used thereto will be described with reference to the drawings.
<概要>
 本発明の実施の形態による飛行体の誘導システは、例えば無人飛行体(後述する)を所定の飛行ルートに従って飛行させるものであり、宅配用途、警備・巡回用途、農業用途、測量用途、調査用途、災害支援用途などあらかじめ飛行ルートを設定し得る用途であれば、どのようなものにも適用可能である。以下においては、主に宅配用途に適用される誘導システムを説明する。
<Overview>
The flight body guidance system according to the embodiment of the present invention is for flying an unmanned flight body (described later) according to a predetermined flight route, and is used for home delivery, security / patrol, agriculture, surveying, and investigation. It can be applied to any application that can set a flight route in advance, such as disaster relief applications. In the following, a guidance system mainly applied to home delivery applications will be described.
 図10(a)に示されるように、本実施の形態による誘導システムは、無人飛行体1が電柱20及び当該電柱間に設けられた電線30の上を飛行ルートとして飛行するものである。図11(b)に示されるように、飛行ルートは、電柱a乃至電柱jをノードとする仮想ネットワークとして表現することができ、ルート生成にあたっては、始点となる電柱(始点ノード)、終点となる電柱(終点ノード)、始点ノードと終点ノードとを経由する電柱(経由ノード)とそれらの間に設けられる電線が考慮される(詳しくは後述する) As shown in FIG. 10A, in the guidance system according to the present embodiment, the unmanned aerial vehicle 1 flies over the utility pole 20 and the electric wire 30 provided between the utility poles as a flight route. As shown in FIG. 11B, the flight route can be expressed as a virtual network having utility poles a to j as nodes, and in route generation, the utility poles (start point nodes) and end points are the start points. Utility poles (end point nodes), utility poles (via nodes) that pass between start point nodes and end point nodes, and electric wires provided between them are considered (details will be described later).
<構成>
 本実施の形態による飛行体の誘導システムは、図18(a)に示されるように、複数の無人飛行体1と、当該無人飛行体1とネットワークを介して接続される管理サーバ2とを含む所謂クライアントサーバモデルである。
<Structure>
As shown in FIG. 18A, the vehicle guidance system according to the present embodiment includes a plurality of unmanned aircraft 1 and a management server 2 connected to the unmanned aircraft 1 via a network. This is a so-called client-server model.
 本実施の形態による無人飛行体1は、情報処理装置の他に、当該無人飛行体1の移動・飛行のための、電源、回転翼に接続されたモータ、情報処理装置とモータとを中継するドライバを少なくとも更に有している。 In addition to the information processing device, the unmanned flying object 1 according to the present embodiment relays a power source, a motor connected to a rotor blade, an information processing device and a motor for moving / flying the unmanned flying object 1. Have at least more drivers.
 情報処理装置は、複数のモータを制御して監視ドローンの飛行制御(上昇、下降、水平移動などの制御)や、無人飛行体1に搭載されているジャイロ(図示せず)を使用して複数のモータを制御することによって姿勢制御をも行う。 Multiple information processing devices are used to control the flight of a surveillance drone by controlling multiple motors (control of ascent, descent, horizontal movement, etc.) and the gyro (not shown) mounted on the unmanned aerial vehicle 1. Attitude control is also performed by controlling the motor of.
 ドライバは、情報処理装置からの制御信号に従ってモータを駆動する。例えば、モータは直流モータであり、ドライバは制御信号により指定された電圧をモータに印加する可変電圧電源回路である。なお、無人飛行体100は図示しない他の要素を有していてもよい。 The driver drives the motor according to the control signal from the information processing device. For example, the motor is a DC motor, and the driver is a variable voltage power supply circuit that applies a voltage specified by a control signal to the motor. The unmanned aerial vehicle 100 may have other elements (not shown).
<管理サーバ2>
 図13に示されるように、管理サーバ2は、情報伝達システムを通じてサービスを提供するための情報処理装置であり、例えばワークステーションやパーソナルコンピュータのような汎用コンピュータとしてもよいし、或いはクラウド・コンピューティングによって論理的に実現されてもよい。
<Management server 2>
As shown in FIG. 13, the management server 2 is an information processing device for providing services through an information transmission system, and may be a general-purpose computer such as a workstation or a personal computer, or cloud computing. It may be realized logically by.
 図13に示されるように、サーバ2は、プロセッサ20、メモリ21、ストレージ22、送受信部23、及び入出力部24等を備え、これらはバス25を通じて相互に電気的に接続される。 As shown in FIG. 13, the server 2 includes a processor 20, a memory 21, a storage 22, a transmission / reception unit 23, an input / output unit 24, and the like, which are electrically connected to each other through a bus 25.
<データ>
 本実施の形態による管理サーバ2は、各電柱の位置に関する支柱ノード情報DBを有している。支柱ノード情報DBは、図13に示されるように、各電柱に固有に付与されるノード識別子と位置座標とを少なくとも含んでいる。本実施の形態による位置座標は、緯度、経度及び当該電柱の高さという3つの要素を少なくとも含んでいる。
<Data>
The management server 2 according to the present embodiment has a pole node information DB regarding the position of each utility pole. As shown in FIG. 13, the pole node information DB includes at least a node identifier and position coordinates uniquely assigned to each utility pole. The position coordinates according to the present embodiment include at least three elements: latitude, longitude and height of the utility pole.
<処理の流れ>
 図14を参照して、本実施の形態によるルート生成の方法を説明する。本実施の形態による誘導システムは、EC等を利用してユーザが購入した商品の配送に関するトランザクション(以下「配送トランザクション」と呼ぶ)を担当する。配送トランザクション自体は、例えば、あらかじめ登録されていたユーザの住所情報に基づいて生成される。
<Processing flow>
A method of route generation according to the present embodiment will be described with reference to FIG. The guidance system according to the present embodiment is in charge of a transaction related to delivery of a product purchased by a user using EC or the like (hereinafter referred to as “delivery transaction”). The delivery transaction itself is generated, for example, based on pre-registered user address information.
 管理サーバ2が配送トランザクションを開始すると、荷物の出荷元に最も近い電柱(始点ノード)と、配送先(ユーザの住所等)に最も近い電柱を特定する。図示される例では、始点ノードは電柱aであり、終点ノードは電柱jである。管理サーバ2は、電柱aと電柱jを結ぶ最短経路を計算する。この際、他の無人飛行体1の位置やルートを考慮し、衝突回避が可能なルートを生成する。 When the management server 2 starts a delivery transaction, the utility pole closest to the package shipping source (starting point node) and the utility pole closest to the delivery destination (user's address, etc.) are specified. In the illustrated example, the start point node is the utility pole a and the end node is the utility pole j. The management server 2 calculates the shortest path connecting the utility pole a and the utility pole j. At this time, a route capable of avoiding a collision is generated in consideration of the position and route of the other unmanned aircraft 1.
 なお、衝突回避は無人飛行体1同士に行わせることとしてもよい。例えば、一方の無人飛行体の高さと他方の無人飛行体の高さとを変更して、衝突を回避することとしてもよい。 Collision avoidance may be performed by unmanned aerial vehicles 1 to each other. For example, the height of one unmanned vehicle and the height of the other unmanned vehicle may be changed to avoid a collision.
 図14に戻り、本実施の形態によるルートは、電柱a→電柱b→電柱d→電柱f→電柱h→電柱jの順に進むものである。なお、上述した衝突回避を行うために一部ルートを迂回することとしてもよい。電線から垂直方向(高さ方向)において所定の距離だけ離れた領域を飛行する。 Returning to FIG. 14, the route according to the present embodiment proceeds in the order of utility pole a → utility pole b → utility pole d → utility pole f → utility pole h → utility pole j. It should be noted that some routes may be bypassed in order to avoid the collision described above. It flies in a region vertically (height) away from the electric wire by a predetermined distance.
 図15を参照して、管理サーバ2の処理フローを説明する。本実施の形態において、配送トランザクション(ルートリクエスト)が発生すると(ステップS601)、支柱ノード情報の読込みが行われる(ステップS603)。管理サーバ2は、配送トランザクション及び支柱ノード情報に基づいて、始点ノードと経由ノードと終点ノードとを特定してルートを生成する(ステップS605)。生成したルート情報を無人飛行体1に送信し、当該無人飛行体1の飛行による配送が開始される(ステップS607)。 The processing flow of the management server 2 will be described with reference to FIG. In the present embodiment, when the delivery transaction (route request) occurs (step S601), the support node information is read (step S603). The management server 2 identifies the start point node, the transit node, and the end point node based on the delivery transaction and the support node information, and generates a route (step S605). The generated route information is transmitted to the unmanned aerial vehicle 1, and the delivery of the unmanned aerial vehicle 1 by flight is started (step S607).
 図16を参照して、本実施の形態による誘導システムを用いた配送処理の流れを説明する。図示されるように、配送処理は、管理サーバ2と、無人飛行体1と、ユーザ端末とによって実行される。 The flow of the delivery process using the guidance system according to the present embodiment will be described with reference to FIG. As shown, the delivery process is executed by the management server 2, the unmanned aerial vehicle 1, and the user terminal.
 管理サーバ2は、配送トランザクションが発生すると(SQ701)、ノードDBから支柱ノード情報を読み込み(SQ703)、ルートを生成する(SQ705)。管理サーバ2は、生成したルート情報を無人飛行体に送信する(SQ707)。無人飛行体は受信したルート情報に基づいて飛行を開始する(SQ709)。 When the delivery transaction occurs (SQ701), the management server 2 reads the support node information from the node DB (SQ703) and generates a route (SQ705). The management server 2 transmits the generated route information to the unmanned aerial vehicle (SQ707). The unmanned aerial vehicle starts flying based on the received route information (SQ709).
 無人飛行体が目的地に到着すると、管理サーバ2に対して、目的地到着通知が通知される(SQ711)。管理サーバ2は、ユーザ端末に対して到着通知を通知する(SQ713)。ユーザは、到着した荷物の宛先を確認したら各任地の通知を管理サーバ2に対して送信する(SQ715)。管理サーバ2は、当該荷物に関するユーザからの確認通知を受信すると、無人飛行体1に積載されている荷物をアンロックする(SQ717)。アンロックされた荷物はユーザによって受け取ることが可能になる。管理サーバ2は、必要に応じて、当該配送が完了した段階で、配送トランザクションのステータスを更新する(SQ719)。 When the unmanned aerial vehicle arrives at the destination, the management server 2 is notified of the destination arrival notification (SQ711). The management server 2 notifies the user terminal of the arrival notification (SQ713). After confirming the destination of the arrived package, the user sends a notification of each location to the management server 2 (SQ715). Upon receiving the confirmation notification from the user regarding the luggage, the management server 2 unlocks the luggage loaded on the unmanned aerial vehicle 1 (SQ717). Unlocked packages can be picked up by the user. The management server 2 updates the status of the delivery transaction when the delivery is completed, if necessary (SQ719).
 以上の処理によれば、図8に示されるように無人飛行体1は、荷物の保管場所100(例えば倉庫等)から、荷物Pを積載して生成したルートに従って、電柱20及び電線30の上を飛行し、ユーザの自宅200まで荷物Pを配送してユーザに届けることが可能となる。 According to the above processing, as shown in FIG. 8, the unmanned aerial vehicle 1 is placed on the utility pole 20 and the electric wire 30 from the luggage storage location 100 (for example, a warehouse or the like) according to the route generated by loading the luggage P. It is possible to fly and deliver the package P to the user's home 200 and deliver it to the user.
 上述した実施の形態は、図9(a)に示されるように、当該無人飛行体1とネットワークを介して接続される管理サーバ2とを含む所謂クライアントサーバモデルを利用するものであった。しかしながら、図9(b)に示されるように、複数の無人飛行体1同士によって構成されるピア・トゥ・ピア(Peer to Peer)方式としてもよい。 As shown in FIG. 9A, the above-described embodiment uses a so-called client-server model including the unmanned aerial vehicle 1 and a management server 2 connected via a network. However, as shown in FIG. 9B, a peer-to-peer system composed of a plurality of unmanned flying objects 1 may be used.
 以上説明した実施の形態は配送用途のものであったが、例えば警備等の巡回用途に適用することとしてもよい。この場合、管理サーバ2は、ユーザにより指定された巡回ルート及び支柱ノード情報基づいて、巡回ルートを生成すればよい。また、巡回が完了した際には、巡回が完了した内をユーザに送信して当該ユーザから承認を受けてから、巡回のトランザクションを終了することとしてもよい。 Although the embodiment described above was for delivery, it may be applied to patrol use such as security. In this case, the management server 2 may generate a patrol route based on the patrol route and the support node information specified by the user. Further, when the patrol is completed, the patrol transaction may be terminated after sending the completed patrol to the user and receiving approval from the user.
<電線との距離測定>
 本実施の形態においては、飛行体1は、電線30に沿って飛行する。この際、図20に示されるように、電線30から所定の範囲L内を飛行する。これにより、飛行体1は、電線30から所定距離を維持しつつ電線30に沿って飛行する。
<Measurement of distance from electric wire>
In this embodiment, the flying object 1 flies along the electric wire 30. At this time, as shown in FIG. 20, the aircraft flies within a predetermined range L from the electric wire 30. As a result, the flying object 1 flies along the electric wire 30 while maintaining a predetermined distance from the electric wire 30.
 なお、図(a)に示されるように、同じ高さの電線30、30’が2本ある場合には、当該2本の電線30双方から所定範囲L、L’の領域のいずれかに入っていればよい。 As shown in FIG. (A), when there are two electric wires 30 and 30'of the same height, both of the two electric wires 30 enter either of the predetermined ranges L and L'. I just need to be there.
 また、図19(a)及び(b)に示されるように、飛行体1は、電柱20と衝突することを防止するために、電線30の上側の領域(図19(a))又は、横の領域(図10(b))のいずれかを飛行することが好ましい。かかる電線30との位置関係の検出は、超音波センサや、高さ情報を含む位置情報、ビジョンセンサなどを組み合わせてもよい。 Further, as shown in FIGS. 19A and 19B, in order to prevent the flying object 1 from colliding with the utility pole 20, the area above the electric wire 30 (FIG. 19A) or laterally. It is preferable to fly in any of the regions (FIG. 10 (b)). The detection of the positional relationship with the electric wire 30 may be performed by combining an ultrasonic sensor, position information including height information, a vision sensor, and the like.
 このように、電線30と飛行体1との距離を維持する方法として、例えば、図201に示されるように、電線30に発生する電界や磁界の情報を飛行体1によって検出することにより行ってもよい。 As a method of maintaining the distance between the electric wire 30 and the flying object 1 in this way, for example, as shown in FIG. 201, the information of the electric field and the magnetic field generated in the electric wire 30 is detected by the flying object 1. May be good.
 公共インフラとしての電線の場合、送電時の電圧は一定であることから、電流の大きさにかかわらず、電界の強度に基づいて距離を算出することが可能である。(図20(a))。一方、送電時の電流の大きさは電力需給量によって異なる場合があるため、予め送電電流量がわかっている場合には磁界の強度に基づいて距離を算出することが可能である(図11(b))。 In the case of electric wires as public infrastructure, since the voltage during power transmission is constant, it is possible to calculate the distance based on the strength of the electric field regardless of the magnitude of the current. (Fig. 20 (a)). On the other hand, since the magnitude of the current during power transmission may differ depending on the amount of power supply and demand, it is possible to calculate the distance based on the strength of the magnetic field if the amount of power transmission is known in advance (FIG. 11 (FIG. 11). b)).
 なお、予め飛行ルートに含まれる送電線の電流量、電圧量の情報を得ておき、距離計測の結果を適宜補正することによって、より正確な距離を測定することとしてもよい。 Note that more accurate distance may be measured by obtaining information on the amount of current and voltage of the transmission line included in the flight route in advance and appropriately correcting the result of distance measurement.
 上述した実施の形態は、本発明の理解を容易にするための例示に過ぎず、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良することができると共に、本発明にはその均等物が含まれることは言うまでもない。 The above-described embodiment is merely an example for facilitating the understanding of the present invention, and is not intended to limit the interpretation of the present invention. It goes without saying that the present invention can be modified and improved without departing from the spirit thereof, and the present invention includes an equivalent thereof.
 1    ルート管理制御サーバ
 2    小型飛行体
 3    監視用回転翼機
 4    ネットワーク
 10    プロセッサ
 11    メモリ
 12    ストレージ
 13    送受信部
 14    入出力部
 15    バス
 20    プロセッサ
 21    メモリ
 22    ストレージ
 23    送受信部
 24    入出力部
 25    バス
 26    測位部
 27    検知部
 30    プロセッサ
 31    メモリ
 32    ストレージ
 33    送受信部
 34    入出力部
 35    バス
 36    測位部
 37    検知部
 100    ルート管理制御システム
 200、300    情報処理装置
 510、510’、520、530    ルートデータ
 520    トラフィックデータ
 530    ロケーションデータ
1 Route management control server 2 Small aircraft 3 Monitoring rotary wing machine 4 Network 10 Processor 11 Memory 12 Storage 13 Transmission / output unit 14 Input / output unit 15 Bus 20 Processor 21 Memory 22 Storage 23 Transmission / output unit 24 Input / output unit 25 Bus 26 Positioning unit 27 Detection unit 30 Processor 31 Memory 32 Storage 33 Transmission / output unit 34 Input / output unit 35 Bus 36 Positioning unit 37 Detection unit 100 Route management Control system 200, 300 Information processing device 510, 510', 520, 530 Route data 520 Traffic data 530 Location data

Claims (24)

  1.  複数の第1飛行体とネットワークを介して通信可能に接続されたルート管理制御サーバであって、
     複数のポイントを含むロケーションデータと、三次元座標に基づくルートデータとを格納する記憶手段と、
     前記ロケーションデータ及び前記ルートデータを読み出す制御手段と、
     読み出した前記ロケーションデータ及び前記ルートデータを前記第1飛行体の夫々に送信する送信手段と、を備える
    ルート管理制御サーバ。
    A route management control server that is communicatively connected to multiple 1st Air Divisions via a network.
    A storage means for storing location data including a plurality of points and route data based on three-dimensional coordinates,
    A control means for reading the location data and the route data, and
    A route management control server including a transmission means for transmitting the read location data and the route data to each of the first aircraft.
  2.  請求項1に記載のルート管理制御サーバであって、
     前記ルートのトラフィック情報を受信する受信手段を更に備え、
     前記送信手段は、受信した前記トラフィック情報を前記第1飛行体に送信する、
    ルート管理制御サーバ。
    The route management control server according to claim 1.
    Further provided with a receiving means for receiving the traffic information of the route,
    The transmitting means transmits the received traffic information to the first aircraft.
    Route management control server.
  3.  請求項2に記載のルート管理制御サーバであって、
     前記受信手段は、一の前記第1飛行体から前記トラフィック情報を受信し、
     前記送信手段は、受信した前記トラフィック情報を他の前記第1飛行体に送信する、
    ルート管理制御サーバ。
    The route management control server according to claim 2.
    The receiving means receives the traffic information from one of the first aircraft and receives the traffic information.
    The transmitting means transmits the received traffic information to the other first aircraft.
    Route management control server.
  4.  請求項2又は請求項3に記載のルート管理制御サーバであって、
     前記制御手段は、受信した前記トラフィック情報に基づいて、新ルートデータを生成し、
     前記送信手段は、生成した前記新ルートデータを前記第1飛行体に送信する、
    ルート管理制御サーバ。
    The route management control server according to claim 2 or 3.
    The control means generates new route data based on the received traffic information, and generates new route data.
    The transmitting means transmits the generated new route data to the first aircraft.
    Route management control server.
  5.  請求項2乃至請求項4のいずれかに記載のルート管理制御サーバであって、
     前記制御手段は、受信した前記トラフィック情報に基づいて、飛行制御指示を生成し、
     前記送信手段は、生成した前記飛行制御指示を前記第1飛行体に送信する、
    ルート管理制御サーバ。
    The route management control server according to any one of claims 2 to 4.
    The control means generates a flight control instruction based on the received traffic information.
    The transmitting means transmits the generated flight control instruction to the first aircraft.
    Route management control server.
  6.  請求項1乃至請求項5のいずれかに記載のルート管理制御サーバであって、
     前記ルートデータは、緯度情報、経度情報及び高度情報を有している、
    ルート管理制御サーバ。
    The route management control server according to any one of claims 1 to 5.
    The route data has latitude information, longitude information and altitude information.
    Route management control server.
  7.  請求項1乃至請求項6のいずれかに記載のルート管理制御サーバであって、
     前記ルートデータは、当該ルートの第1特定領域に関連付けられた制限速度情報を有している、
    ルート管理制御サーバ。
    The route management control server according to any one of claims 1 to 6.
    The route data has speed limit information associated with the first specific area of the route.
    Route management control server.
  8.  請求項1乃至請求項7のいずれかに記載のルート管理制御サーバであって、
     前記ルートデータは、当該ルートの第2特定領域に関連付けられた料金情報を有しており、
     前記ルート管理制御サーバは、前記第1飛行体から受信した位置情報に基づいて当該第1飛行体が前記第2特定領域に進入した場合に、当該第1飛行体に関する決済処理を開始する決済手段を更に備えている、
    ルート管理制御サーバ。
    The route management control server according to any one of claims 1 to 7.
    The route data has toll information associated with the second specific area of the route.
    The route management control server is a payment means that starts payment processing for the first aircraft when the first aircraft enters the second specific area based on the position information received from the first aircraft. Further equipped,
    Route management control server.
  9.  請求項2乃至請求項8のいずれかに記載のルート管理制御サーバとネットワークを介して通信可能な第2飛行体であって、
     飛行のための動力部と、
     位置情報を測位する測位部と、
     前記ルートの前記トラフィック情報を収集する収集部と、
     収集した前記トラフィック情報を前記ルート管理制御サーバに送信する送信部と、を備える、
    第2飛行体。
    A second aircraft capable of communicating with the route management control server according to any one of claims 2 to 8 via a network.
    Power unit for flight and
    Positioning unit for positioning position information and
    A collection unit that collects the traffic information of the route and
    A transmission unit that transmits the collected traffic information to the route management control server is provided.
    Second aircraft.
  10.  請求項9に記載の第2飛行体であって、
     収集した前記トラフィック情報から異常を検知する検知手段を更に備え、
     前記送信手段は、検知した異常に関する情報を少なくとも前記ルート管理制御サーバ、前記第1飛行体又は他の前記第2飛行体に送信する、
    第2飛行体。
    The second flying object according to claim 9.
    Further equipped with a detection means for detecting an abnormality from the collected traffic information,
    The transmitting means transmits information about the detected abnormality to at least the route management control server, the first aircraft, or another second aircraft.
    Second aircraft.
  11.  請求項1乃至請求項10のいずれかに記載の第1飛行体であって、
     飛行のための動力部と、
     位置情報を測位する測位部と、
     前記ルート管理制御サーバから、少なくとも前記ロケーションデータ又は前記ルートデータのいずれかを受信する受信部と、
     前記操作者による操作を受け付けると共に前記第1飛行体の飛行を制御するための制御部と、
     少なくとも受信した前記ルートデータを操作者に表示する表示部と、を備える
    第1飛行体。
    The first air vehicle according to any one of claims 1 to 10.
    Power unit for flight and
    Positioning unit for positioning position information and
    A receiving unit that receives at least either the location data or the route data from the route management control server.
    A control unit for accepting operations by the operator and controlling the flight of the first aircraft,
    A first air vehicle including at least a display unit that displays the received route data to an operator.
  12.  請求項11に記載の第1飛行体であって、
     測位した前記位置情報を前記ルート管理制御サーバに送信する送信部を更に備える、
    第1飛行体。
    The first aircraft according to claim 11,
    A transmission unit that transmits the positioned position information to the route management control server is further provided.
    1st Air Division.
  13.  請求項11又は請求項12に記載の第1飛行体であって、
     前記制御部は、前記ルートデータ及び前記位置情報に基づいて、前記動力部を制御する、
    第1飛行体。
    The first aircraft according to claim 11 or 12.
    The control unit controls the power unit based on the route data and the position information.
    1st Air Division.
  14.  複数の第1飛行体とネットワークを介して通信可能に接続されたコンピュータを利用したルート管理制御サーバであって、
     前記コンピュータが
     地図情報、地形情報又は建造物情報の少なくともいずれかを含むロケーションデータと、三次元座標に基づくルートデータを格納する記憶ステップと、
     前記ロケーションデータ及び前記ルートデータを読み出す制御ステップと、
     読み出し前記ロケーションデータ及び前記ルートデータを前記第1飛行体の夫々に送信する送信ステップと、を含む
    ルート管理制御方法。
    It is a route management control server that uses a computer that is communicatively connected to multiple 1st Air Divisions via a network.
    A storage step in which the computer stores location data, including at least one of map information, topographical information, or building information, and route data based on three-dimensional coordinates.
    A control step for reading the location data and the route data,
    Read A route management control method including a transmission step of transmitting the location data and the route data to each of the first aircraft.
  15.  複数の第1飛行体と、複数の第2飛行体と、ルート管理制御装置とを含むルート管理制御システムであって、
     前記第1飛行体、前記第2飛行体及び前記ルート管理制御装置は、互いにネットワークを介して通信可能に接続されており、
     前記ルート管理制御装置は:
      地図情報、地形情報又は建造物情報の少なくともいずれかを含むロケーションデータと、三次元座標に基づくルートデータを格納する記憶手段と;
      前記ロケーションデータ及び前記ルートデータを読み出す制御手段;、
      読み出し前記ロケーションデータ及び前記ルートデータを前記第1飛行体の夫々に送信する送信手段と;
      ルートのトラフィック情報を受信する受信手段と;を備えており、
     前記第1飛行体は:
      飛行のための動力部と;
      位置情報を測位する測位部と;
      前記ルート管理制御サーバから、少なくとも前記ロケーションデータ又は前記ルートデータのいずれかを受信する受信部と;
      前記操作者による操作を受け付けると共に前記第1飛行体の飛行を制御するための制御部と;
      少なくとも受信した前記ルートデータを操作者に表示する表示部と;を備えており、
     前記第2飛行体は:
      飛行のための動力部と;
      位置情報を測位する測位部と;
      前記ルートの前記トラフィック情報を収集する収集部と;
      収集した前記トラフィック情報を前記ルート管理制御サーバに送信する送信部と;を備えている、ルート管理制御システムにおいて、
     前記ルート管理制御装置の前記制御手段は、受信した前記トラフィック情報に基づいて、新ルートデータを生成すると共に、当該ルート管理制御装置の前記送信手段は、生成した前記新ルートデータを前記第1飛行体及び前記第2飛行体に送信する、
    ルート管理制御システム。
    A route management control system including a plurality of first aircraft, a plurality of second aircraft, and a route management control device.
    The first air vehicle, the second air vehicle, and the route management control device are connected to each other so as to be able to communicate with each other via a network.
    The route management control device is:
    A storage means for storing location data including at least one of map information, topographical information, or building information, and route data based on three-dimensional coordinates;
    Control means for reading the location data and the route data ;,
    Read As a transmission means for transmitting the location data and the route data to each of the first aircraft;
    It has a receiving means to receive route traffic information;
    The 1st Air Division is:
    With the power unit for flight;
    With a positioning unit that positions position information;
    With a receiver that receives at least either the location data or the route data from the route management control server;
    With a control unit for accepting operations by the operator and controlling the flight of the first aircraft;
    It is equipped with at least a display unit that displays the received route data to the operator;
    The second aircraft is:
    With the power unit for flight;
    With a positioning unit that positions position information;
    With a collecting unit that collects the traffic information of the route;
    In a route management control system including a transmission unit that transmits the collected traffic information to the route management control server;
    The control means of the route management control device generates new route data based on the received traffic information, and the transmission means of the route management control device uses the generated new route data for the first flight. Transmit to the body and the 2nd Air Division,
    Route management control system.
  16.  請求項1に記載のルート制御システムであって、
     前記複数のポイントは、複数の支柱であり、
     前記ルートは、当該支柱を架線するケーブルであり、
     誘導装置が:ルートリクエストを受け取るステップ;前記支柱の位置に対応する支柱ノード情報を読み出すステップ;前記ルートリクエスト及び前記支柱ノード情報に基づいて少なくとも始点支柱ノードと終点支柱ノードとを特定してルートを生成するステップ;生成した前記ルートを飛行体に送信するステップと、
     前記飛行体が、前記ルートに従って飛行するステップと、を含む
    飛行体の誘導方法。
    The route control system according to claim 1.
    The plurality of points are a plurality of columns, and the plurality of points are
    The route is a cable that connects the columns.
    The guidance device: A step of receiving a route request; a step of reading out the support column node information corresponding to the position of the support column; a route is determined by identifying at least the start point support column node and the end point support column node based on the route request and the support column node information. The step to generate; the step to send the generated route to the flying object, and
    A method of guiding an air vehicle, including a step in which the air vehicle flies according to the route.
  17.  請求項16に記載の飛行体の誘導方法であって、
     前記飛行体は、前記ケーブルに沿って飛行する、
    飛行体の誘導方法。
    The method for guiding an air vehicle according to claim 16.
    The flying object flies along the cable.
    How to guide the flying object.
  18.  請求項17に記載の飛行体の誘導方法であって、
     前記飛行体は、前記ケーブルから所定距離を維持しながら飛行する、
    飛行体の誘導方法。
    The method for guiding an air vehicle according to claim 17.
    The flying object flies while maintaining a predetermined distance from the cable.
    How to guide the flying object.
  19.  請求項18に記載の飛行体の誘導方法であって、
     前記飛行体は、前記ケーブルの少なくとも電界又は磁界が所定の条件であることを検出し、前記ケーブルとの距離を測定する、
    飛行体の誘導方法。
    The method for guiding an air vehicle according to claim 18.
    The flying object detects that at least an electric field or a magnetic field of the cable is in a predetermined condition, and measures the distance from the cable.
    How to guide the flying object.
  20.  請求項19に記載の飛行体の誘導方法で会って、
     前記飛行体は、少なくとも前記ケーブル内を流れる電圧又は電流の値に関する情報を受信するとともに、当該情報に基づいて前記測定の結果を補正する、
    飛行体の誘導方法。
    Meet by the method of guiding an air vehicle according to claim 19.
    The air vehicle receives at least information about the value of voltage or current flowing in the cable and corrects the result of the measurement based on the information.
    How to guide the flying object.
  21.  請求項2乃至請求項5のいずれかに記載の飛行体の誘導方法であって、
     前記支柱ノード情報は、実空間の支柱の位置に関するX座標、Y座標及びZ座標を含んでおり、
     生成される前記ルートは、少なくとも前記Z座標よりも高い位置に生成される、
    飛行体の誘導方法。
    The method for guiding an air vehicle according to any one of claims 2 to 5.
    The strut node information includes X, Y and Z coordinates with respect to the position of the strut in real space.
    The generated route is generated at least at a position higher than the Z coordinate.
    How to guide the flying object.
  22.  請求項1乃至請求項6のいずれかに記載の飛行体の誘導方法であって、
     複数の前記飛行体はネットワークを介して互いに通信可能であり、
     前記飛行体の夫々は、前記飛行体の位置又は生成された前記ルートを考慮して自己の前記ルートを生成する、
    飛行体の誘導方法。
    The method for guiding an air vehicle according to any one of claims 1 to 6.
    The plurality of said aircraft can communicate with each other via a network.
    Each of the flying objects generates its own route in consideration of the position of the flying object or the generated route.
    How to guide the flying object.
  23.  複数の支柱と、当該支柱を架線するケーブルとを利用する、飛行体の誘導装置であって、
     ルートリクエストを受け取る手段と、
     前記支柱の位置に対応する支柱ノード情報を読み出す手段と、
     前記ルートリクエスト及び前記支柱ノード情報に基づいて少なくとも始点支柱ノードと終点支柱ノードとを特定してルートを生成す手段と、
     生成した前記ルートを飛行体に送信する手段と、を含む
    飛行体の誘導装置。
    An air vehicle guidance device that uses a plurality of columns and a cable that connects the columns.
    Means of receiving route requests and
    A means for reading the column node information corresponding to the position of the column, and
    A means for generating a route by identifying at least a start point support node and an end point support node based on the route request and the support node information.
    An air vehicle guidance device that includes means for transmitting the generated route to the air vehicle.
  24.  複数の支柱と、当該支柱を架線するケーブルとを利用する、飛行体の誘導方法であって、
     誘導装置が:
      ルートリクエストを受け取るステップ;前記支柱の位置に対応する支柱ノード情報を読み出し;
      前記ルートリクエスト及び前記支柱ノード情報に基づいて少なくとも始点支柱ノードと終点支柱ノードとを特定してルートを生成し;
      生成した前記ルートを飛行体に送信し;
     前記飛行体が、前記ルートに従って飛行する、
    飛行体の誘導システム。

     
    It is a method of guiding an air vehicle using a plurality of columns and a cable for connecting the columns.
    The guidance device is:
    Step to receive route request; Read column node information corresponding to the position of the column;
    Based on the route request and the support node information, at least the start point support node and the end point support node are specified to generate a route;
    Send the generated route to the aircraft;
    The flying object flies according to the route.
    Guidance system for flying objects.

PCT/JP2019/042074 2019-10-26 2019-10-26 Route management control server, method, and system, and first flying body and second flying body used in the same WO2021079531A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020522084A JP6820045B1 (en) 2019-10-26 2019-10-26 Route management Control servers, methods and systems, as well as the 1st and 2nd Air Divisions used in them.
PCT/JP2019/042074 WO2021079531A1 (en) 2019-10-26 2019-10-26 Route management control server, method, and system, and first flying body and second flying body used in the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042074 WO2021079531A1 (en) 2019-10-26 2019-10-26 Route management control server, method, and system, and first flying body and second flying body used in the same

Publications (1)

Publication Number Publication Date
WO2021079531A1 true WO2021079531A1 (en) 2021-04-29

Family

ID=74200214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042074 WO2021079531A1 (en) 2019-10-26 2019-10-26 Route management control server, method, and system, and first flying body and second flying body used in the same

Country Status (2)

Country Link
JP (1) JP6820045B1 (en)
WO (1) WO2021079531A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018114807A (en) * 2017-01-17 2018-07-26 中国電力株式会社 Unmanned flight vehicle and flight system
JP2018163517A (en) * 2017-03-25 2018-10-18 株式会社Aerial Lab Industries Server, method and system for route management control and first and second flight vehicles used therein
JP2019028712A (en) * 2017-07-31 2019-02-21 株式会社Aerial Lab Industries Guidance method, guidance device, and guidance system of flying body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601810B1 (en) * 2018-09-17 2019-11-06 株式会社A.L.I.Technologies Aircraft guidance method, guidance device, and guidance system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018114807A (en) * 2017-01-17 2018-07-26 中国電力株式会社 Unmanned flight vehicle and flight system
JP2018163517A (en) * 2017-03-25 2018-10-18 株式会社Aerial Lab Industries Server, method and system for route management control and first and second flight vehicles used therein
JP2019028712A (en) * 2017-07-31 2019-02-21 株式会社Aerial Lab Industries Guidance method, guidance device, and guidance system of flying body

Also Published As

Publication number Publication date
JP6820045B1 (en) 2021-01-27
JPWO2021079531A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US11163319B2 (en) Link level wind factor computation for efficient drone routing using 3D city map data
US11554714B1 (en) Unique signaling for vehicles to preserve user privacy
US11150646B2 (en) Delivery with swarming aerial vehicles
CN107796374A (en) A kind of image position method, system and device
US20200233439A1 (en) Airflow modeling from aerial vehicle pose
JP6861434B2 (en) Aircraft guidance methods, guidance devices, and guidance systems
US20200327811A1 (en) Devices for autonomous vehicle user positioning and support
WO2021076686A1 (en) Systems and methods for energy based autonomous vehicle control
JP6335354B1 (en) Route management control server, method and system, and first and second flying bodies used therefor
EP3954103A1 (en) Methods and systems for configuring vehicle communications
JP6749612B2 (en) Route management control server, method and system, and first and second air vehicles used therein
JP6820045B1 (en) Route management Control servers, methods and systems, as well as the 1st and 2nd Air Divisions used in them.
WO2021079516A1 (en) Flight route creation method for flying body and management server
JP6601810B1 (en) Aircraft guidance method, guidance device, and guidance system
JP2019035771A (en) Server, method and system for route management control and first and second flight vehicles used therein
JP6899606B2 (en) Route management control servers, methods and systems, and the 1st and 2nd aircraft used for them.
JP6899608B2 (en) Route management control servers, methods and systems, and the 1st and 2nd aircraft used for them.
JP6899607B2 (en) Route management control servers, methods and systems, and the 1st and 2nd aircraft used for them.
JP6899605B2 (en) Route management control servers, methods and systems, and the 1st and 2nd aircraft used for them.
JP2018163664A (en) Server, method and system for route management control and first and second flight vehicles used therein
JP6818379B1 (en) Flight route creation method and management server for aircraft
JP2019035769A (en) Server, method and system for route management control and first and second flight vehicles used therein
JP2019035770A (en) Server, method and system for route management control and first and second flight vehicles used therein
JP2021056778A (en) Method for guiding flight body, guiding device, and guiding system
JP2020135327A (en) Flight body system, flight body, position measuring method and program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020522084

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949920

Country of ref document: EP

Kind code of ref document: A1