WO2021078101A1 - Laser projection light source and laser projection device - Google Patents

Laser projection light source and laser projection device Download PDF

Info

Publication number
WO2021078101A1
WO2021078101A1 PCT/CN2020/121934 CN2020121934W WO2021078101A1 WO 2021078101 A1 WO2021078101 A1 WO 2021078101A1 CN 2020121934 W CN2020121934 W CN 2020121934W WO 2021078101 A1 WO2021078101 A1 WO 2021078101A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light beam
color
laser projection
exit area
Prior art date
Application number
PCT/CN2020/121934
Other languages
French (fr)
Chinese (zh)
Inventor
田新团
周伯禹
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2021078101A1 publication Critical patent/WO2021078101A1/en
Priority to US17/481,800 priority Critical patent/US20220004090A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/145Housing details, e.g. position adjustments thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • This application relates to the technical field of laser projection equipment, and in particular to a laser projection light source and laser projection equipment.
  • Laser projection light sources are an important part of laser projection equipment such as laser TVs and laser projectors, and are used to provide illumination beams.
  • multiple lasers can be arranged in the laser projection light source, and the brightness of the light beam emitted by the laser projection light source can be doubled by combining the light beams emitted by multiple lasers into one beam.
  • the laser is usually a monochromatic laser (such as a blue laser, a red laser or a green laser), and the light beam emitted by the laser projection light source is a white light beam, it is necessary to install multiple fluorescent wheels in the laser projection light source.
  • Each laser has a one-to-one correspondence, and each fluorescent wheel generates another two colors of laser light under the excitation of the monochromatic laser emitted by the laser corresponding to the fluorescent wheel.
  • the other two colors of laser light can be mixed with the monochromatic laser emitted by the laser.
  • the laser projection light source needs to be equipped with multiple sets of lenses to correspond to multiple fluorescent wheels one-to-one. Each set of lenses is used to change the transmission path of the other two colors of laser light to make the The other two colors of laser light are mixed with the monochromatic laser light emitted by the laser.
  • After mixing to form a white light multiple white lights are combined into one beam to increase the brightness of the light beam emitted by the laser projection light source. In this way, more parts are included in the laser projection light source, thereby increasing the structural complexity and volume of the laser projection light source.
  • the first aspect of the present application provides a laser projection light source, including: a housing, two lasers, and an optical path assembly, wherein the housing includes a first side wall and a second side wall opposite to each other, and is connected to the first side wall and the second side wall. A third side wall with two vertical side walls.
  • the first side wall and the second side wall are respectively provided with an accommodating opening, and the third side wall is provided with a light outlet;
  • the two lasers are respectively installed on the first side At the accommodating openings on the wall and the second side wall, each laser emits light toward the inside of the housing, and the light-emitting surface of each laser includes multiple light-emitting areas, and the multiple light-emitting areas are used to emit light of multiple colors;
  • the component is arranged in the housing, and the optical path component is used to combine the lights of multiple colors emitted by the two lasers respectively, and make the combined two beams of light exit toward the light outlet.
  • an embodiment of the present application provides a laser projection device, including a laser projection light source, an optical machine, and a projection lens that are sequentially connected, wherein the laser projection light source is the laser projection light source according to any one of the above technical solutions, the optical machine It is used to modulate the illumination beam emitted by the laser projection light source to generate an image beam and project the image beam to the projection lens, which is used to image the image beam.
  • FIG. 1 is one of the three-dimensional views of a laser projection light source provided by an embodiment of this application;
  • FIG. 3 is one of the optical path diagrams of the first optical path component in a laser projection light source provided by an embodiment of this application;
  • FIG. 5 is a schematic structural diagram of a laser in a laser projection light source provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a laser, a light combining lens group, and a first wave plate in a laser projection light source provided by an embodiment of the application;
  • FIG. 7 is a schematic structural diagram of a laser, a light combining lens group, a second wave plate, and a third wave plate in a laser projection light source provided by an embodiment of the application;
  • FIG. 8 is an optical path diagram of a second type of optical path component in a laser projection light source provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a laser projection device provided by an embodiment of the application.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be mechanically connected; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be mechanically connected; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the laser projection light source is an important part of the laser projection equipment, and the laser projection light source is used to provide an illuminating beam.
  • an embodiment of the present application provides a laser projection light source 1.
  • the laser projection light source 1 includes: a housing 11, two lasers 12, and an optical path assembly 13, wherein, as shown in FIGS. 1 and 2, the housing 11 includes a first side wall 200 and a second side wall 300 opposite to each other, and a third side wall 400 perpendicular to the first side wall 200 and the second side wall 300.
  • An accommodating opening 111 is respectively provided, and a light exit 112 is provided on the third side wall 400; two lasers 12 are respectively installed at the accommodating opening 111 on the first side wall 200 and the second side wall 300, each The lasers 12 all emit light toward the inside of the housing 11. As shown in FIG.
  • each laser 12 includes multiple light-emitting areas, and the multiple light-emitting areas are used to emit light of multiple colors; as shown in FIG. 3 or FIG. 8
  • the optical path assembly 13 is disposed in the housing 11, and the optical path assembly 13 is used to combine the lights of multiple colors emitted by the two lasers 12 respectively, and cause the combined two lights to be emitted toward the light exit 112.
  • the laser projection light source provided by the present application combines multiple colors of light emitted by two lasers 12 through an optical path assembly 13, and causes the combined two beams to be emitted toward the light outlet 112 to achieve multiple beams.
  • the superposition of light can make the laser projection light source have higher brightness.
  • the multiple light-emitting areas are used to emit light of multiple colors. Therefore, the laser projection provided in this application There is no need to provide a large number of lenses in the light source 1, so the volume and structural complexity of the laser projection light source 1 can be reduced.
  • the light-emitting surface of the laser 12 may include two light-emitting areas, three light-emitting areas, or four light-emitting areas, etc., which are not specifically limited herein.
  • the number of light exit areas included in the light exit surface of the laser 12 is equal to the number of colors emitted by the light exit surface of the laser 12, and each light exit area is used to emit light of one color.
  • the light-emitting surface of each laser 12 includes a first light-emitting area 121, a second light-emitting area 122, and a third light-emitting area 123; the first light-emitting area 121 is used to emit the first color Light beam; the second light exit area 122 is used to emit the second color light beam; the third light exit area 123 is used to emit the third color light beam; the first color light beam, the second color light beam and the third color light beam are combined to form a white light beam.
  • This structure is simple, and there is no need to provide a fluorescent wheel in the laser projection light source 1, so the volume of the laser projection light source 1 can be further reduced.
  • the colors of the first color light beam, the second color light beam, and the third color light beam are not specifically limited, as long as the first color light beam, the second color light beam, and the third color light beam can be mixed to form white light.
  • the first color light beam emitted by the first light exit area 121 is a blue light beam
  • the second color light beam emitted by the second light exit area 122 is a green light beam
  • the third color light beam emitted by the third light exit area 123 The beam is a red beam.
  • the first color light beam emitted from the first light exit area 121 is a cyan light beam
  • the second color light beam emitted from the second light exit area 122 is a yellow light beam
  • the third color light beam emitted from the third light exit area 123 is magenta. Light beam.
  • the first light-emitting area 121, the second light-emitting area 122, and the third light-emitting area 123 can correspond to one lamp bead in the laser 12, can also correspond to a row of lamp beads in the laser 12, or can correspond to multiple rows of lamp beads in the laser 12 , There is no specific limitation here.
  • the third light exit area 123 corresponds to two rows of lamp beads in the laser 12
  • the first light exit area 121 and the second light exit area 122 both correspond to a row of lamp beads in the laser 12.
  • Each row of lamp beads includes 6 lamp beads.
  • a spherical lens 14 is installed in the light exit port, and the spherical lens 14 can condense the light beam entering the light exit port.
  • the size of the optical element in the subsequent optical machine of the laser projection light source 1 (such as the light pipe 100 in FIG. 1 and FIG. 2) can be designed to be smaller, which is beneficial to reduce the size of the laser projection device.
  • the structure of the optical path assembly 13 may have the following two embodiments:
  • the optical path assembly 13 includes two light combining lens groups 131 and a reflector 132; the two light combining lens groups 131 are respectively used to emit a variety of colors from the two lasers 12
  • the two light combining lens groups 131 both emit light beams toward the reflector 132; the reflector 132 is used to change the transmission path of the emitted light beams of the two light combining lens groups 131, so that the two light combining lens groups
  • the emitted light beam of 131 is emitted from the light outlet 112.
  • the structure of the light path assembly 13 is simple, the cost is low, the volume of the laser projection light source is small, the structure complexity is low, and it is easy to implement.
  • the first light-emitting area 121, the second light-emitting area 122, and the third light-emitting area 123 of each laser 12 are all along a direction close to the reflector 132 (that is, as shown in FIGS.
  • each combining lens group 131 includes a first reflective lens 1311, a second reflective lens 1312, and a third reflective lens 1313, the first reflective lens 1311 Located on the light exit side of the first light exit area 121 of the laser 12 corresponding to the light combining lens group 131, the first reflecting lens 1311 reflects the first color light beam emitted from the first light exit area 121, and the second reflecting lens 1312 is located in the light combining lens group 131 corresponds to the second light exit area 122 of the laser 12 and the light exit side of the first reflector 1311.
  • the second reflector 1312 reflects the second color light beam from the second light exit area 122 and transmits the second light beam reflected by the first reflector 1311.
  • One color light beam, the third reflecting lens 1313 is located at the third light exit area 123 of the laser 12 corresponding to the combining lens group 131, the first reflecting lens 1311 and the second reflecting lens 1312, the third reflecting lens 1313 reflects the third
  • the third color light beam emitted from the light exit area 123 transmits the first color light beam reflected by the first mirror 1311 and the second color light beam reflected by the second mirror 1312; the first color beam reflected by the first mirror 1311
  • the optical axis of the color light beam, the optical axis of the second color light beam reflected by the second reflection lens 1312 and the optical axis of the third color light beam reflected by the third reflection lens 1313 are collinear. In this way, the light combining lens group 131 can combine the light of multiple colors emitted by the laser 12, which has a simple structure and a small footprint
  • the optical axis of the first color light beam reflected by the first mirror 1311, the optical axis of the second color light beam reflected by the second mirror 1312, and the optical axis of the second color beam reflected by the second mirror 1312 are ensured.
  • the optical axis of the third color light beam reflected by the lens 1313 is absolutely collinear, which is difficult to achieve in the actual processing and installation process of the laser projection light source 1. Therefore, for the first reflective lens 1311 described in the embodiment of the present application, the optical axis is absolutely collinear.
  • optical axis of the light beam of the first color, the optical axis of the light beam of the second color after being reflected by the second mirror 1312, and the optical axis of the light beam of the third color after being reflected by the third mirror 1313 are not only collinear. Understand as absolute collinear, should be understood as “collinear or nearly collinear”.
  • the optical axis of the light beam of the first color after being reflected by the first mirror 1311, the optical axis of the light beam of the second color after being reflected by the second mirror 1312, and the optical axis of the light beam of the second color after being reflected by the third mirror 1313 described in the embodiment of the present application
  • the collinear optical axis of the third color light beam refers to the optical axis of the first color light beam reflected by the first reflector 1311, the optical axis of the second color light beam reflected by the second reflector 1312 and the In the optical axis of the third color light beam reflected by the third reflecting lens 1313, the distance between any two optical axes is less than the first specific value, the angle between any two optical axes is less than the second specific value, and the first
  • the specific value can be 1mm, 2mm, 3mm, etc., which are not specifically limited here, and the second specific value can be 1°, 2°, or 3°, etc., which are not specifically limited here.
  • the first reflection lens 1311 may be a total reflection mirror, a dichroic lens, or other structures, which is not specifically limited here. As an example, as shown in FIGS. 3 and 4, the first reflecting mirror 1311 is a total reflection mirror.
  • the second reflective lens 1312 and the third reflective lens 1313 may be dichroic lenses or other structures, which are not specifically limited here. In some embodiments, as shown in FIGS. 3 and 4, the second reflective glass 1312 and the third reflective glass 1313 are dichroic plates.
  • the distance between the first reflective glass 1311 and the first light-emitting area 121 on the central axis l1 of the first light-emitting area 121 is a first distance h1;
  • the distance between the second light-emitting areas 122 on the central axis l2 of the second light-emitting area 122 is the second distance h2;
  • the distance between the third reflective lens 1313 and the third light-emitting area 123 is on the central axis l3 of the third light-emitting area 123
  • the distance between is the third distance h3;
  • the first distance h1, the second distance h2 and the third distance h3 are all 1 to 6 mm.
  • the distance between the light combining lens group 131 and the laser 12 is moderate, which can reduce the size of the laser projection light source 1 in the direction perpendicular to the light-emitting surface of the laser 12, and avoid the gap between the light combining lens group 131 and the laser 12
  • the distance between, and the light combining lens group 131 and the laser 12 are collided and damaged during installation.
  • the central axis 11 of the first light-emitting area 121 is an axis perpendicular to the light-emitting surface of the laser 12 and passing through the center of the first light-emitting area 121;
  • the central axis 12 of 122 is the axis perpendicular to the light exit surface of the laser 12 and passes through the center of the second light exit area 122;
  • the central axis 13 of the third light exit area 123 is perpendicular to the light exit surface of the laser 12 and passes through the third light exit area 123.
  • the axis of the center is an axis perpendicular to the light-emitting surface of the laser 12 and passing through the center of the first light-emitting area 121;
  • the central axis 12 of 122 is the axis perpendicular to the light exit surface of the laser 12 and passes through the center of the second light exit area 122;
  • the central axis 13 of the third light exit area 123 is perpendicular to the light exit
  • the light emitted from the light-emitting surface of the laser 12 is emitted by a light-emitting device (that is, a lamp bead) inside the laser 12.
  • a light-emitting device that is, a lamp bead
  • the light-emitting devices that emit red light have a larger divergence angle.
  • the light beam emitted by the laser 12 from being reflected by the light combining lens group 131 and the reflector 132 and transmitted to the light outlet 112 from a large light spot, in some embodiments, as shown in FIG.
  • the light beam of the first color emitted from the first light exit area 121 is one of the blue light beam and the green light beam
  • the light beam of the second color emitted from the second light exit area 122 is the other of the blue light beam and the green light beam.
  • the third color light beam emitted from the area 123 is a red light beam.
  • the third color light beam (that is, the red light beam) emitted from the third light exit area 123 is in the laser
  • the transmission path between the light exit surface of 12 and the light exit 112 is short, and the light spot formed at the light exit 112 is small, which can prevent the light beam emitted by the laser 12 from being reflected by the light combining lens group 131 and the reflector 132 and transmitted to The light spot at the light exit 112 is too large, which is beneficial to reduce the diameter of the spherical lens installed in the light exit 112.
  • the polarization direction of the first color light beam emitted from the first light exit area 121 is the same as the polarization direction of the second color light beam emitted from the second light output area 122.
  • the polarization direction of the second color light beam is perpendicular to the polarization direction of the third color light beam emitted from the third light exit area 123.
  • a first wave plate 134 is provided between the third light exit area 123 and the third reflective lens 1313, and the first wave plate 134 is used to emit the third light exit area 123.
  • the polarization direction of the third color light beam is rotated by 90° ⁇ 10°. In this way, the polarization direction of the light beam emitted from the third light exit area 123 is changed by the first wave plate 134, so that the polarization direction of the light beam emitted from the third light output area 123 is the same as that of the light beam emitted from the first light output area 121 or the second light output area 122.
  • the polarization direction remains the same, which can increase the uniformity of the light output of the laser projection light source 1.
  • a second wave plate is provided between the first light exit area 121 and the first reflective lens 1311, and a second wave plate is provided between the second light exit area 122 and the second reflective lens 1312.
  • the second wave plate is used to rotate the polarization direction of the second color beam emitted from the first light-emitting area 121 by 90° ⁇ 10°
  • the third wave plate is used to rotate the third color light beam from the second light-emitting area 122
  • the polarization direction is rotated by 90° ⁇ 10°.
  • the polarization directions of the light beams emitted from the first light exit area 121 and the second light output area 122 are changed through the second wave plate and the third wave plate, respectively, so that the polarization of the light beams emitted from the first light output area 121 and the second light output area 122 is changed.
  • the direction is consistent with the polarization direction of the light beam emitted from the third light-emitting area 123, which can increase the light-emitting uniformity of the laser projection light source 1.
  • the second wave plate and the third wave plate are integrally formed to form a structure 135.
  • the number of parts included in the laser projection light source 1 is relatively small, and the structure complexity and assembly difficulty are relatively low.
  • a light homogenizing member 133 is provided on the light entrance side of the light exit 112.
  • the homogenizing member 133 can improve the uniformity of the light beams from the multiple light combining lens groups 131 when synthesizing one light beam.
  • the light homogenizing member 133 is a diffuser or a fisheye lens.
  • the light path assembly 13 includes two light combining lens groups 131; the two light combining lens groups 131 are respectively used to combine the light of multiple colors emitted by the two lasers 12, and the two All the light combining lens groups 131 emit light beams toward the light outlet 112.
  • the structure of the light path assembly 13 is simple, the cost is low, the volume of the laser projection light source is small, the structure complexity is low, and it is easy to implement.
  • some embodiments of the present application provide a laser projection device, as shown in FIG. 9, comprising a laser projection light source 1, an optical engine 2, and a projection lens 3 connected in sequence.
  • the laser projection light source 1 is the one in the above first aspect.
  • the laser projection light source 1 and the optical machine 2 described in any embodiment are used to modulate the illumination beam emitted by the laser projection light source 1 to generate an image beam, and project the image beam to the projection lens 3, which is used to The image beam is used for imaging.
  • the laser projection device provided in the present application includes the laser projection light source 1 according to any one of the embodiments in the first aspect, so the laser projection device provided in the present application is the same as the laser projection device described in the foregoing embodiment.
  • the light source 1 can solve the same technical problem and achieve the same expected effect.
  • the laser projection device further includes a projection screen, the projection screen is arranged on the light exit path of the projection lens 3, and the projection light beams imaged by the projection lens 3 form a projection image on the projection screen.

Abstract

A laser projection light source (1) and a laser projection device, which relate to the technical field of laser projection devices, and which are used to solve the problem of how to reduce the volume and structural complexity of a laser projection light source while increasing the brightness of light beams emitted by the laser projection light source. The laser projection light source comprises: a housing (11), two lasers (12) and a light path assembly (13). The housing (11) comprises a first side wall (200), a second side wall (300) and a third side wall (400); the first side wall (200) and the second side wall (300) are each provided with one accommodating opening (111), and the third side wall (400) is provided with one light outlet (112). The two lasers (12) are installed at the accommodating openings (111) on the first side wall (200) and second side wall (300), respectively. Each laser (12) emits light toward the inside of the housing (11). The light exit surfaces of each laser (12) comprise a plurality of light exit regions (121, 122, 123), and the plurality of light exit regions (121, 122, 123) are used to emit light of a plurality of colors. The optical path assembly (13) is provided in the housing (11). The laser projection light source (1) is used for the laser projection device.

Description

一种激光投影光源和激光投影设备Laser projection light source and laser projection equipment
本申请要求在2019年10月25日提交中国专利局、申请号为201911025064.6、发明名称为“一种激光投影光源和激光投影设备”的优先权,其全部内容通过引用结合在本申请中。This application claims priority to be submitted to the Chinese Patent Office on October 25, 2019, with application number 201911025064.6, and title of invention "a laser projection light source and laser projection equipment", the entire content of which is incorporated into this application by reference.
技术领域Technical field
本申请涉及激光投影设备技术领域,尤其涉及一种激光投影光源和激光投影设备。This application relates to the technical field of laser projection equipment, and in particular to a laser projection light source and laser projection equipment.
背景技术Background technique
激光投影光源为激光电视、激光投影仪等激光投影设备的重要组成部分,用于提供照明光束。为了提高激光投影光源发出光束的亮度,激光投影光源内可以设置多个激光器,通过将多个激光器发出的光束合成一束可以成倍地提高激光投影光源发出光束的亮度。但是,由于激光器通常为单色激光器(比如为蓝光激光器、红光激光器或者绿光激光器),而激光投影光源发出的光束为白光光束,因此激光投影光源内,需设置多个荧光轮来与多个激光器一一对应,每个荧光轮在该荧光轮对应的激光器发出的单色激光的激发作用下产生另外两种颜色的激光,该另外两种颜色的激光与激光器发出的单色激光混合能够形成白光,为了达到混光的目的,激光投影光源内还需设置多组镜片来与多个荧光轮一一对应,每组镜片用于改变该另外两种颜色的激光的传输路径,以使该另外两种颜色的激光与激光器发出的单色激光进行混合,在混合形成白光后,再将多束白光合成一束,以提高激光投影光源发出光束的亮度。这样,就使得激光投影光源内包括有较多的零部件,从而增大了激光投影光源的结构复杂度和体积。Laser projection light sources are an important part of laser projection equipment such as laser TVs and laser projectors, and are used to provide illumination beams. In order to improve the brightness of the light beam emitted by the laser projection light source, multiple lasers can be arranged in the laser projection light source, and the brightness of the light beam emitted by the laser projection light source can be doubled by combining the light beams emitted by multiple lasers into one beam. However, since the laser is usually a monochromatic laser (such as a blue laser, a red laser or a green laser), and the light beam emitted by the laser projection light source is a white light beam, it is necessary to install multiple fluorescent wheels in the laser projection light source. Each laser has a one-to-one correspondence, and each fluorescent wheel generates another two colors of laser light under the excitation of the monochromatic laser emitted by the laser corresponding to the fluorescent wheel. The other two colors of laser light can be mixed with the monochromatic laser emitted by the laser. To form white light, in order to achieve the purpose of light mixing, the laser projection light source needs to be equipped with multiple sets of lenses to correspond to multiple fluorescent wheels one-to-one. Each set of lenses is used to change the transmission path of the other two colors of laser light to make the The other two colors of laser light are mixed with the monochromatic laser light emitted by the laser. After mixing to form a white light, multiple white lights are combined into one beam to increase the brightness of the light beam emitted by the laser projection light source. In this way, more parts are included in the laser projection light source, thereby increasing the structural complexity and volume of the laser projection light source.
发明内容Summary of the invention
本申请第一方面提供了一种激光投影光源,包括:壳体、两个激光器和光路组件,其中,壳体包括相对的第一侧壁和第二侧壁,以及与第一侧壁和第二侧壁均垂直的第三侧壁,第一侧壁与第二侧壁上分别设有一个容置开口,第三侧壁上设有一个出光口;两个激光器分别安装于该第一侧壁和第二侧壁上的容置开口处,每个激光器均朝向壳体内出光,每个激光器的出光面均包括多个出光区,该多个出光区用于出射多种颜色的光;光路组件设置于壳体内,该光路组件用于将两个激光器出射的多种颜色的光分别进行合束,并使合束后的两束光朝向出光口射出。The first aspect of the present application provides a laser projection light source, including: a housing, two lasers, and an optical path assembly, wherein the housing includes a first side wall and a second side wall opposite to each other, and is connected to the first side wall and the second side wall. A third side wall with two vertical side walls. The first side wall and the second side wall are respectively provided with an accommodating opening, and the third side wall is provided with a light outlet; the two lasers are respectively installed on the first side At the accommodating openings on the wall and the second side wall, each laser emits light toward the inside of the housing, and the light-emitting surface of each laser includes multiple light-emitting areas, and the multiple light-emitting areas are used to emit light of multiple colors; The component is arranged in the housing, and the optical path component is used to combine the lights of multiple colors emitted by the two lasers respectively, and make the combined two beams of light exit toward the light outlet.
第二方面,本申请实施例提供了一种激光投影设备,包括依次连接的激光投影光源、光机和投影镜头,其中,激光投影光源为上述任一技术方案所述的激光投影光源,光机用于对激光投影光源发出的照明光束进行调制,以生成影像光束,并将影像光束投射至投影镜头,投影镜头用于对影像光束进行成像。In the second aspect, an embodiment of the present application provides a laser projection device, including a laser projection light source, an optical machine, and a projection lens that are sequentially connected, wherein the laser projection light source is the laser projection light source according to any one of the above technical solutions, the optical machine It is used to modulate the illumination beam emitted by the laser projection light source to generate an image beam and project the image beam to the projection lens, which is used to image the image beam.
附图说明Description of the drawings
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly describe the technical solutions in the embodiments of the present application or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments of the present application. For those of ordinary skill in the art, other drawings can be obtained based on these drawings without creative work.
图1为本申请实施例提供的一种激光投影光源的立体图之一;FIG. 1 is one of the three-dimensional views of a laser projection light source provided by an embodiment of this application;
图2为本申请实施例提供的一种激光投影光源的立体图之二;2 is the second three-dimensional view of a laser projection light source provided by an embodiment of this application;
图3为本申请实施例提供的一种激光投影光源中第一种光路组件的光路图之一;3 is one of the optical path diagrams of the first optical path component in a laser projection light source provided by an embodiment of this application;
图4为本申请实施例提供的一种激光投影光源中第一种光路组件的光路图之二;4 is the second optical path diagram of the first optical path component in a laser projection light source provided by an embodiment of the application;
图5为本申请实施例提供的一种激光投影光源中激光器的结构示意图;FIG. 5 is a schematic structural diagram of a laser in a laser projection light source provided by an embodiment of the application;
图6为本申请实施例提供的一种激光投影光源中激光器、合光镜片组和第一波片的结构示意图;6 is a schematic structural diagram of a laser, a light combining lens group, and a first wave plate in a laser projection light source provided by an embodiment of the application;
图7为本申请实施例提供的一种激光投影光源中激光器、合光镜片组、第二波片和第三波片的结构示意图;FIG. 7 is a schematic structural diagram of a laser, a light combining lens group, a second wave plate, and a third wave plate in a laser projection light source provided by an embodiment of the application;
图8为本申请实施例提供的一种激光投影光源中第二种光路组件的光路图;FIG. 8 is an optical path diagram of a second type of optical path component in a laser projection light source provided by an embodiment of the application;
图9为本申请实施例提供的激光投影设备的结构示意图。FIG. 9 is a schematic structural diagram of a laser projection device provided by an embodiment of the application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative work shall fall within the protection scope of this application.
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。In the description of this application, it should be noted that the terms "installation", "connection", and "connection" should be understood in a broad sense, unless otherwise clearly specified and limited. For example, it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be mechanically connected; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components. For those of ordinary skill in the art, the specific meanings of the above-mentioned terms in this application can be understood under specific circumstances.
激光投影光源为激光投影设备的重要组成部分,激光投影光源用于提供照明光束。The laser projection light source is an important part of the laser projection equipment, and the laser projection light source is used to provide an illuminating beam.
第一方面,本申请实施例提供了一种激光投影光源1,该激光器投影光源1包括:壳体11、两个激光器12和光路组件13,其中,如图1和图2所示,壳体11包括相对的第一侧壁200和第二侧壁300,以及与第一侧壁200和第二侧壁300均垂直的第三侧壁400,第一侧壁200和第二侧壁300上分别设有一个容置开口111,第三侧壁400上设有一个出光口112;两个激光器12分别安装于第一侧壁200和第二侧壁300上的容置开口111处,每个激光器12均朝向壳体11内出光,如图5所示,每个激光器12的出光面均包括多个出光区,该多个出光区用于出射多种颜色的光;如图3或图8所示,光路组件13设置于壳体11内,光路组件13用于将两个激光器12出射的多种颜色的光分别进行合束,并使合束后的两束光朝向出光口112射出。In the first aspect, an embodiment of the present application provides a laser projection light source 1. The laser projection light source 1 includes: a housing 11, two lasers 12, and an optical path assembly 13, wherein, as shown in FIGS. 1 and 2, the housing 11 includes a first side wall 200 and a second side wall 300 opposite to each other, and a third side wall 400 perpendicular to the first side wall 200 and the second side wall 300. An accommodating opening 111 is respectively provided, and a light exit 112 is provided on the third side wall 400; two lasers 12 are respectively installed at the accommodating opening 111 on the first side wall 200 and the second side wall 300, each The lasers 12 all emit light toward the inside of the housing 11. As shown in FIG. 5, the light-emitting surface of each laser 12 includes multiple light-emitting areas, and the multiple light-emitting areas are used to emit light of multiple colors; as shown in FIG. 3 or FIG. 8 As shown, the optical path assembly 13 is disposed in the housing 11, and the optical path assembly 13 is used to combine the lights of multiple colors emitted by the two lasers 12 respectively, and cause the combined two lights to be emitted toward the light exit 112.
本申请提供的一种激光投影光源,通过光路组件13将两个激光器12出射的多种颜色的光分别进行合束,并使合束后的两束光朝向出光口112射出,以实现多束光的叠加,从而能够使激光投影光源具有较高的亮度。同时,如图5所示,由于激光投影光源1内的激光器均的出光面均包括多个出光区,该多个出光区用于出射多种颜色的光,因此,在本申请提供的激光投影光源1中无需设置较多数量的镜片,因此能够减小激光投影光源1的体积和结构复杂度。The laser projection light source provided by the present application combines multiple colors of light emitted by two lasers 12 through an optical path assembly 13, and causes the combined two beams to be emitted toward the light outlet 112 to achieve multiple beams. The superposition of light can make the laser projection light source have higher brightness. At the same time, as shown in FIG. 5, since the light-emitting surfaces of the lasers in the laser projection light source 1 all include multiple light-emitting areas, the multiple light-emitting areas are used to emit light of multiple colors. Therefore, the laser projection provided in this application There is no need to provide a large number of lenses in the light source 1, so the volume and structural complexity of the laser projection light source 1 can be reduced.
激光器12的出光面可以包括两个出光区、三个出光区或者四个出光区等等,在此不做具体限定。可选的,激光器12的出光面所包括的出光区的数量与激光器12的出光面出射的颜色的数量相等,每个出光区用于出射一种颜色的光。The light-emitting surface of the laser 12 may include two light-emitting areas, three light-emitting areas, or four light-emitting areas, etc., which are not specifically limited herein. Optionally, the number of light exit areas included in the light exit surface of the laser 12 is equal to the number of colors emitted by the light exit surface of the laser 12, and each light exit area is used to emit light of one color.
在一些实施例中,如图5所示,每个激光器12的出光面均包括第一出光区121、第二出光区122和第三出光区123;第一出光区121用于出射第一颜色光束;第二出光区122用于出射第二颜色光束;第三出光区123用于出射第三颜色光束;第一颜色光束、第二颜色光束和第三颜色光束合束形成白光光束。此结构简单,激光投影光源1内无需设置荧光轮,因此能够进一步减小激光投影光源1的体积。In some embodiments, as shown in FIG. 5, the light-emitting surface of each laser 12 includes a first light-emitting area 121, a second light-emitting area 122, and a third light-emitting area 123; the first light-emitting area 121 is used to emit the first color Light beam; the second light exit area 122 is used to emit the second color light beam; the third light exit area 123 is used to emit the third color light beam; the first color light beam, the second color light beam and the third color light beam are combined to form a white light beam. This structure is simple, and there is no need to provide a fluorescent wheel in the laser projection light source 1, so the volume of the laser projection light source 1 can be further reduced.
在上述实施例中,对第一颜色光束、第二颜色光束和第三颜色光束的颜色不做具体限定,只要第一颜色光束、第二颜色光束和第三颜色光束能够混合形成白光即可。示例的,如图5所示,第一出光区121出射的第一颜色光束为蓝光光束,第二出光区122出射的第二颜色光束为绿光光束,第三出光区123出射的第三颜色光束为红光光束。又示例的,第一出光区121出射的第一颜色光束为青光光束,第二出光区122出射的第二颜色光束为黄光光束,第三出光区123出射的第三颜色光束为品红光光束。In the foregoing embodiment, the colors of the first color light beam, the second color light beam, and the third color light beam are not specifically limited, as long as the first color light beam, the second color light beam, and the third color light beam can be mixed to form white light. For example, as shown in FIG. 5, the first color light beam emitted by the first light exit area 121 is a blue light beam, the second color light beam emitted by the second light exit area 122 is a green light beam, and the third color light beam emitted by the third light exit area 123 The beam is a red beam. In another example, the first color light beam emitted from the first light exit area 121 is a cyan light beam, the second color light beam emitted from the second light exit area 122 is a yellow light beam, and the third color light beam emitted from the third light exit area 123 is magenta. Light beam.
第一出光区121、第二出光区122和第三出光区123可以对应激光器12内的一个灯珠,也可以对应激光器12内的一排灯珠,还可以对应激光器12内的多排灯珠,在此不做具体限定。在一些实施例中,如图5所示,第三出光区123对应激光器12内的两排灯珠,第一出光区121和第二出光区122均对应激光器12内的一排灯珠。每排灯珠包括6个灯珠。The first light-emitting area 121, the second light-emitting area 122, and the third light-emitting area 123 can correspond to one lamp bead in the laser 12, can also correspond to a row of lamp beads in the laser 12, or can correspond to multiple rows of lamp beads in the laser 12 , There is no specific limitation here. In some embodiments, as shown in FIG. 5, the third light exit area 123 corresponds to two rows of lamp beads in the laser 12, and the first light exit area 121 and the second light exit area 122 both correspond to a row of lamp beads in the laser 12. Each row of lamp beads includes 6 lamp beads.
在一些实施例中,出光口内安装有球面透镜14,该球面透镜14能够汇聚射入出光口内的光束。这样,激光投影光源1的后续光机中的光学元件(比如图1和图2中的光导管100)的尺寸可以设计得较小,有利于减小激光投影设备的尺寸。In some embodiments, a spherical lens 14 is installed in the light exit port, and the spherical lens 14 can condense the light beam entering the light exit port. In this way, the size of the optical element in the subsequent optical machine of the laser projection light source 1 (such as the light pipe 100 in FIG. 1 and FIG. 2) can be designed to be smaller, which is beneficial to reduce the size of the laser projection device.
光路组件13的结构形式有多种,示例的,光路组件13的结构可以有以下两个实施例:There are various structural forms of the optical path assembly 13. As an example, the structure of the optical path assembly 13 may have the following two embodiments:
实施例一,如图3和图4所示,光路组件13包括两个合光镜片组131和一个反射件132;两个合光镜片组131分别用于将两个激光器12出射的多种颜色的光进行合束,且两个合光镜片组131均朝向反射件132出射光束;反射件132用于改变两个合光镜片组131的出射光束的传输路径,以使两个合光镜片组131的出射光束由出光口112射出。这样,光路组件13的结构简单,成本较低,激光投影光源的体积较小,结构复杂度较低,容易实现。In the first embodiment, as shown in FIGS. 3 and 4, the optical path assembly 13 includes two light combining lens groups 131 and a reflector 132; the two light combining lens groups 131 are respectively used to emit a variety of colors from the two lasers 12 The two light combining lens groups 131 both emit light beams toward the reflector 132; the reflector 132 is used to change the transmission path of the emitted light beams of the two light combining lens groups 131, so that the two light combining lens groups The emitted light beam of 131 is emitted from the light outlet 112. In this way, the structure of the light path assembly 13 is simple, the cost is low, the volume of the laser projection light source is small, the structure complexity is low, and it is easy to implement.
在一些实施例中,如图5所示,每个激光器12的第一出光区121、第二出光区122、第三出光区123均沿靠近反射件132的方向(也即是图3和图4中的方向X)依次排列; 如图3和图4所示,每个合光镜片组131均包括第一反射镜片1311、第二反射镜片1312和第三反射镜片1313,第一反射镜片1311位于该合光镜片组131对应的激光器12的第一出光区121的出光侧,第一反射镜片1311反射第一出光区121出射的第一颜色光束,第二反射镜片1312位于该合光镜片组131对应的激光器12的第二出光区122和第一反射镜片1311的出光侧,第二反射镜片1312反射第二出光区122出射的第二颜色光束且透射经第一反射镜片1311反射后的第一颜色光束,第三反射镜片1313位于该合光镜片组131对应的激光器12的第三出光区123、第一反射镜片1311以及第二反射镜片1312的出光侧,第三反射镜片1313反射第三出光区123出射的第三颜色光束且透射经第一反射镜片1311反射后的第一颜色光束和经第二反射镜片1312反射后的第二颜色光束;经第一反射镜片1311反射后的第一颜色光束的光轴、经第二反射镜片1312反射后的第二颜色光束的光轴和经第三反射镜片1313反射后的第三颜色光束的光轴共线。这样,合光镜片组131能够将激光器12出射的多种颜色的光进行合束,此结构简单,占用空间较小,有利于减小激光投影光源1的体积。In some embodiments, as shown in FIG. 5, the first light-emitting area 121, the second light-emitting area 122, and the third light-emitting area 123 of each laser 12 are all along a direction close to the reflector 132 (that is, as shown in FIGS. 3 and 4 in the direction X) are arranged in sequence; as shown in Figures 3 and 4, each combining lens group 131 includes a first reflective lens 1311, a second reflective lens 1312, and a third reflective lens 1313, the first reflective lens 1311 Located on the light exit side of the first light exit area 121 of the laser 12 corresponding to the light combining lens group 131, the first reflecting lens 1311 reflects the first color light beam emitted from the first light exit area 121, and the second reflecting lens 1312 is located in the light combining lens group 131 corresponds to the second light exit area 122 of the laser 12 and the light exit side of the first reflector 1311. The second reflector 1312 reflects the second color light beam from the second light exit area 122 and transmits the second light beam reflected by the first reflector 1311. One color light beam, the third reflecting lens 1313 is located at the third light exit area 123 of the laser 12 corresponding to the combining lens group 131, the first reflecting lens 1311 and the second reflecting lens 1312, the third reflecting lens 1313 reflects the third The third color light beam emitted from the light exit area 123 transmits the first color light beam reflected by the first mirror 1311 and the second color light beam reflected by the second mirror 1312; the first color beam reflected by the first mirror 1311 The optical axis of the color light beam, the optical axis of the second color light beam reflected by the second reflection lens 1312 and the optical axis of the third color light beam reflected by the third reflection lens 1313 are collinear. In this way, the light combining lens group 131 can combine the light of multiple colors emitted by the laser 12, which has a simple structure and a small footprint, which is beneficial to reduce the volume of the laser projection light source 1.
在上述实施例中,应当知道的是,保证经第一反射镜片1311反射后的第一颜色光束的光轴、经第二反射镜片1312反射后的第二颜色光束的光轴和经第三反射镜片1313反射后的第三颜色光束的光轴绝对共线,在激光投影光源1的实际加工和安装过程中是很难实现的,因此,对于本申请实施例描述的经第一反射镜片1311反射后的第一颜色光束的光轴、经第二反射镜片1312反射后的第二颜色光束的光轴和经第三反射镜片1313反射后的第三颜色光束的光轴“共线”并非只能理解成绝对共线,应当理解为“共线或近似共线”。示例的,本申请实施例描述的经第一反射镜片1311反射后的第一颜色光束的光轴、经第二反射镜片1312反射后的第二颜色光束的光轴和经第三反射镜片1313反射后的第三颜色光束的光轴共线,是指,经第一反射镜片1311反射后的第一颜色光束的光轴、经第二反射镜片1312反射后的第二颜色光束的光轴和经第三反射镜片1313反射后的第三颜色光束的光轴中,任意两个光轴之间的间距小于第一特定值,任意两个光轴之间的夹角小于第二特定值,第一特定值可以为1mm、2mm或3mm等等,在此不做具体限定,第二特定值可以为1°、2°或3°等等,在此不做具体限定。In the above-mentioned embodiment, it should be known that the optical axis of the first color light beam reflected by the first mirror 1311, the optical axis of the second color light beam reflected by the second mirror 1312, and the optical axis of the second color beam reflected by the second mirror 1312 are ensured. The optical axis of the third color light beam reflected by the lens 1313 is absolutely collinear, which is difficult to achieve in the actual processing and installation process of the laser projection light source 1. Therefore, for the first reflective lens 1311 described in the embodiment of the present application, the optical axis is absolutely collinear. The optical axis of the light beam of the first color, the optical axis of the light beam of the second color after being reflected by the second mirror 1312, and the optical axis of the light beam of the third color after being reflected by the third mirror 1313 are not only collinear. Understand as absolute collinear, should be understood as "collinear or nearly collinear". For example, the optical axis of the light beam of the first color after being reflected by the first mirror 1311, the optical axis of the light beam of the second color after being reflected by the second mirror 1312, and the optical axis of the light beam of the second color after being reflected by the third mirror 1313 described in the embodiment of the present application The collinear optical axis of the third color light beam refers to the optical axis of the first color light beam reflected by the first reflector 1311, the optical axis of the second color light beam reflected by the second reflector 1312 and the In the optical axis of the third color light beam reflected by the third reflecting lens 1313, the distance between any two optical axes is less than the first specific value, the angle between any two optical axes is less than the second specific value, and the first The specific value can be 1mm, 2mm, 3mm, etc., which are not specifically limited here, and the second specific value can be 1°, 2°, or 3°, etc., which are not specifically limited here.
第一反射镜片1311可以为全反射镜,也可以为二向色片,还可以为其他结构,在此不做具体限定。示例的,如图3和图4所示,第一反射镜片1311为全反射镜。The first reflection lens 1311 may be a total reflection mirror, a dichroic lens, or other structures, which is not specifically limited here. As an example, as shown in FIGS. 3 and 4, the first reflecting mirror 1311 is a total reflection mirror.
第二反射镜片1312和第三反射镜片1313可以为二向色片,也可以为其他结构,在此不做具体限定。在一些实施例中,如图3和图4所示,第二反射镜片1312和第三反射镜片1313为二向色片。The second reflective lens 1312 and the third reflective lens 1313 may be dichroic lenses or other structures, which are not specifically limited here. In some embodiments, as shown in FIGS. 3 and 4, the second reflective glass 1312 and the third reflective glass 1313 are dichroic plates.
在一些实施例中,如图6所示,第一反射镜片1311与第一出光区121之间在第一出光区121的中轴线l1上的距离为第一距离h1;第二反射镜片1312与第二出光区122之间在第二出光区122的中轴线l2上的距离为第二距离h2;第三反射镜片1313与第三出光区123之间在第三出光区123的中轴线l3上的距离为第三距离h3;第一距离h1、第二距离h2和第三距离h3均为1~6mm。这样,合光镜片组131与激光器12之间的距离适中,能够减小激光投影光源1在垂直于激光器12的出光面的方向上的尺寸,同时避免因 合光镜片组131与激光器12之间的距离较近而使得合光镜片组131和激光器12在安装时产生碰撞损坏。In some embodiments, as shown in FIG. 6, the distance between the first reflective glass 1311 and the first light-emitting area 121 on the central axis l1 of the first light-emitting area 121 is a first distance h1; The distance between the second light-emitting areas 122 on the central axis l2 of the second light-emitting area 122 is the second distance h2; the distance between the third reflective lens 1313 and the third light-emitting area 123 is on the central axis l3 of the third light-emitting area 123 The distance between is the third distance h3; the first distance h1, the second distance h2 and the third distance h3 are all 1 to 6 mm. In this way, the distance between the light combining lens group 131 and the laser 12 is moderate, which can reduce the size of the laser projection light source 1 in the direction perpendicular to the light-emitting surface of the laser 12, and avoid the gap between the light combining lens group 131 and the laser 12 The distance between, and the light combining lens group 131 and the laser 12 are collided and damaged during installation.
在上述实施例中,需要说明的是,如图6所示,第一出光区121的中轴线l1为垂直于激光器12的出光面且过第一出光区121的中心的轴线;第二出光区122的中轴线l2为垂直于激光器12的出光面且过第二出光区122的中心的轴线;第三出光区123的中轴线l3为垂直于激光器12的出光面且过第三出光区123的中心的轴线。In the above-mentioned embodiment, it should be noted that, as shown in FIG. 6, the central axis 11 of the first light-emitting area 121 is an axis perpendicular to the light-emitting surface of the laser 12 and passing through the center of the first light-emitting area 121; The central axis 12 of 122 is the axis perpendicular to the light exit surface of the laser 12 and passes through the center of the second light exit area 122; the central axis 13 of the third light exit area 123 is perpendicular to the light exit surface of the laser 12 and passes through the third light exit area 123. The axis of the center.
激光器12的出光面出射的光由激光器12内部的发光器件(也即是灯珠)发出,相比于发射其他颜色激光的发光器件,发射红光的发光器件发射的光束的发散角较大,在此基础上,为了避免激光器12发出的光束在经合光镜片组131和反射件132反射后并传输至出光口112处时的光斑较大,在一些实施例中,如图5所示,第一出光区121出射的第一颜色光束为蓝光光束和绿光光束中的一种,第二出光区122出射的第二颜色光束为蓝光光束和绿光光束中的另一种,第三出光区123出射的第三颜色光束为红光光束。这样,相比于第一出光区121出射的第一颜色光束和第二出光区122出射的第二颜色光束,第三出光区123出射的第三颜色光束(也即是红光光束)在激光器12的出光面与出光口112之间的传输路径较短,在出光口112处形成的光斑较小,能够避免激光器12发出的光束在经合光镜片组131和反射件132反射后并传输至出光口112处时的光斑过大,有利于减小出光口112内安装的球面透镜的直径。The light emitted from the light-emitting surface of the laser 12 is emitted by a light-emitting device (that is, a lamp bead) inside the laser 12. Compared with light-emitting devices that emit lasers of other colors, the light-emitting devices that emit red light have a larger divergence angle. On this basis, in order to prevent the light beam emitted by the laser 12 from being reflected by the light combining lens group 131 and the reflector 132 and transmitted to the light outlet 112 from a large light spot, in some embodiments, as shown in FIG. 5, The light beam of the first color emitted from the first light exit area 121 is one of the blue light beam and the green light beam, and the light beam of the second color emitted from the second light exit area 122 is the other of the blue light beam and the green light beam. The third color light beam emitted from the area 123 is a red light beam. In this way, compared to the first color light beam emitted from the first light exit area 121 and the second color light beam emitted from the second light exit area 122, the third color light beam (that is, the red light beam) emitted from the third light exit area 123 is in the laser The transmission path between the light exit surface of 12 and the light exit 112 is short, and the light spot formed at the light exit 112 is small, which can prevent the light beam emitted by the laser 12 from being reflected by the light combining lens group 131 and the reflector 132 and transmitted to The light spot at the light exit 112 is too large, which is beneficial to reduce the diameter of the spherical lens installed in the light exit 112.
在一些实施例中,如图5所示,第一出光区121出射的第一颜色光束的偏振方向与第二出光区122出射的第二颜色光束的偏振方向相同,第二出光区122出射的第二颜色光束的偏振方向与第三出光区123出射的第三颜色光束的偏振方向垂直。In some embodiments, as shown in FIG. 5, the polarization direction of the first color light beam emitted from the first light exit area 121 is the same as the polarization direction of the second color light beam emitted from the second light output area 122. The polarization direction of the second color light beam is perpendicular to the polarization direction of the third color light beam emitted from the third light exit area 123.
在上述实施例中,为了增大激光投影光源1的出光均匀性,可以采用以下两种可选实现方式实现:In the foregoing embodiment, in order to increase the uniformity of the light output of the laser projection light source 1, the following two optional implementation manners may be adopted:
第一种可选实现方式,如图6所示,第三出光区123与第三反射镜片1313之间设有第一波片134,第一波片134用于将第三出光区123出射的第三颜色光束的偏振方向旋转90°±10°。这样,通过该第一波片134改变第三出光区123出射的光束的偏振方向,使得第三出光区123出射的光束的偏振方向与第一出光区121或第二出光区122出射的光束的偏振方向保持一致,能够增大激光投影光源1的出光均匀性。In the first optional implementation manner, as shown in FIG. 6, a first wave plate 134 is provided between the third light exit area 123 and the third reflective lens 1313, and the first wave plate 134 is used to emit the third light exit area 123. The polarization direction of the third color light beam is rotated by 90°±10°. In this way, the polarization direction of the light beam emitted from the third light exit area 123 is changed by the first wave plate 134, so that the polarization direction of the light beam emitted from the third light output area 123 is the same as that of the light beam emitted from the first light output area 121 or the second light output area 122. The polarization direction remains the same, which can increase the uniformity of the light output of the laser projection light source 1.
第二种可选实现方式,如图7所示,第一出光区121与第一反射镜片1311之间设置有第二波片,第二出光区122与第二反射镜片1312之间设有第三波片,第二波片用于将第一出光区121出射的第二颜色光束的偏振方向旋转90°±10°,第三波片用于将第二出光区122出射的第三颜色光束的偏振方向旋转90°±10°。这样,通过该第二波片和第三波片分别改变第一出光区121和第二出光区122出射的光束的偏振方向,使得第一出光区121和第二出光区122出射的光束的偏振方向与第三出光区123出射的光束的偏振方向保持一致,能够增大激光投影光源1的出光均匀性。In the second optional implementation manner, as shown in FIG. 7, a second wave plate is provided between the first light exit area 121 and the first reflective lens 1311, and a second wave plate is provided between the second light exit area 122 and the second reflective lens 1312. Three-wave plate, the second wave plate is used to rotate the polarization direction of the second color beam emitted from the first light-emitting area 121 by 90°±10°, and the third wave plate is used to rotate the third color light beam from the second light-emitting area 122 The polarization direction is rotated by 90°±10°. In this way, the polarization directions of the light beams emitted from the first light exit area 121 and the second light output area 122 are changed through the second wave plate and the third wave plate, respectively, so that the polarization of the light beams emitted from the first light output area 121 and the second light output area 122 is changed. The direction is consistent with the polarization direction of the light beam emitted from the third light-emitting area 123, which can increase the light-emitting uniformity of the laser projection light source 1.
在上述实施例中,可选的,如图7所示,第二波片与第三波片一体成型,形成结构135。这样,激光投影光源1包括的零部件的数量较少,结构复杂度和装配难度较低。In the foregoing embodiment, optionally, as shown in FIG. 7, the second wave plate and the third wave plate are integrally formed to form a structure 135. In this way, the number of parts included in the laser projection light source 1 is relatively small, and the structure complexity and assembly difficulty are relatively low.
为了提高多个合光镜片组131的出射光束在合成一束光时的均匀性,在一些实施例中, 如图4所示,出光口112的入光侧设有匀光件133。通过匀光件133能够提高多个合光镜片组131的出射光束在合成一束光时的均匀性。In order to improve the uniformity of the output light beams of the multiple light combining lens groups 131 when synthesizing one light beam, in some embodiments, as shown in FIG. 4, a light homogenizing member 133 is provided on the light entrance side of the light exit 112. The homogenizing member 133 can improve the uniformity of the light beams from the multiple light combining lens groups 131 when synthesizing one light beam.
在一些实施例中,匀光件133为扩散片或者鱼眼透镜。In some embodiments, the light homogenizing member 133 is a diffuser or a fisheye lens.
实施例二,如图8所示,光路组件13包括两个合光镜片组131;两个合光镜片组131分别用于将两个激光器12出射的多种颜色的光进行合束,且两个合光镜片组131均朝向出光口112出射光束。这样,光路组件13的结构简单,成本较低,激光投影光源的体积较小,结构复杂度较低,容易实现。In the second embodiment, as shown in FIG. 8, the light path assembly 13 includes two light combining lens groups 131; the two light combining lens groups 131 are respectively used to combine the light of multiple colors emitted by the two lasers 12, and the two All the light combining lens groups 131 emit light beams toward the light outlet 112. In this way, the structure of the light path assembly 13 is simple, the cost is low, the volume of the laser projection light source is small, the structure complexity is low, and it is easy to implement.
第二方面,本申请一些实施例提供了一种激光投影设备,如图9所示,包括依次连接的激光投影光源1、光机2和投影镜头3,激光投影光源1为上述第一方面中任一实施例所述的激光投影光源1,光机2用于对激光投影光源1发出的照明光束进行调制,以生成影像光束,并将影像光束投射至投影镜头3,投影镜头3用于对影像光束进行成像。In the second aspect, some embodiments of the present application provide a laser projection device, as shown in FIG. 9, comprising a laser projection light source 1, an optical engine 2, and a projection lens 3 connected in sequence. The laser projection light source 1 is the one in the above first aspect. The laser projection light source 1 and the optical machine 2 described in any embodiment are used to modulate the illumination beam emitted by the laser projection light source 1 to generate an image beam, and project the image beam to the projection lens 3, which is used to The image beam is used for imaging.
本申请提供的一种激光投影设备,由于该激光投影设备包括上述第一方面中任一实施例所述的激光投影光源1,因此本申请提供的激光投影设备与上述实施例所述的激光投影光源1能够解决相同的技术问题,并达到相同的预期效果。The laser projection device provided in the present application includes the laser projection light source 1 according to any one of the embodiments in the first aspect, so the laser projection device provided in the present application is the same as the laser projection device described in the foregoing embodiment. The light source 1 can solve the same technical problem and achieve the same expected effect.
在一些实施例中,激光投影设备还包括投影屏幕,投影屏幕设置于投影镜头3的出光路径上,经投影镜头3成像后的投影光束在投影屏幕上形成投影画面。In some embodiments, the laser projection device further includes a projection screen, the projection screen is arranged on the light exit path of the projection lens 3, and the projection light beams imaged by the projection lens 3 form a projection image on the projection screen.
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, specific features, structures, materials or characteristics can be combined in any one or more embodiments or examples in a suitable manner.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。The above are only specific implementations of this application, but the protection scope of this application is not limited to this. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed in this application, All should be covered within the scope of protection of this application. Therefore, the protection scope of this application should be subject to the protection scope of the claims.

Claims (10)

  1. 一种激光投影光源,其特征在于,包括:A laser projection light source, characterized in that it comprises:
    壳体,所述壳体包括相对的第一侧壁和第二侧壁,以及与所述第一侧壁和所述第二侧壁均垂直的第三侧壁,所述第一侧壁与所述第二侧壁上分别设有一个容置开口,所述第三侧壁上设有一个出光口;A housing, the housing includes a first side wall and a second side wall opposite to each other, and a third side wall perpendicular to the first side wall and the second side wall, the first side wall and Each of the second side walls is provided with an accommodating opening, and the third side wall is provided with a light outlet;
    两个激光器,所述两个激光器分别安装于所述第一侧壁和所述第二侧壁上的容置开口处,每个所述激光器均朝向所述壳体内出光,每个所述激光器的出光面均包括多个出光区,所述多个出光区用于出射多种颜色的光;Two lasers, the two lasers are respectively installed at the accommodating openings on the first side wall and the second side wall, each of the lasers emits light toward the inside of the housing, and each of the lasers The light-emitting surface of each includes a plurality of light-emitting areas, and the multiple light-emitting areas are used to emit light of multiple colors;
    光路组件,所述光路组件设置于所述壳体内,所述光路组件用于将两个所述激光器出射的多种颜色的光分别进行合束,并使合束后的两束光朝向所述出光口射出。The optical path assembly, the optical path assembly is arranged in the housing, and the optical path assembly is used to combine the lights of multiple colors emitted by the two lasers respectively, and make the combined two beams face the The light exits.
  2. 根据权利要求1所述的激光投影光源,其特征在于,每个所述激光器的出光面均包括第一出光区、第二出光区和第三出光区;The laser projection light source according to claim 1, wherein the light exit surface of each laser includes a first light exit area, a second light exit area, and a third light exit area;
    所述第一出光区用于出射第一颜色光束;The first light exit area is used to emit a first color light beam;
    所述第二出光区用于出射第二颜色光束;The second light exit area is used to emit a second color light beam;
    所述第三出光区用于出射第三颜色光束;The third light exit area is used to emit a third color light beam;
    所述第一颜色光束、所述第二颜色光束和所述第三颜色光束合束形成白光光束。The first color light beam, the second color light beam, and the third color light beam are combined to form a white light beam.
  3. 根据权利要求2所述的激光投影光源,其特征在于,所述光路组件包括两个合光镜片组和一个反射件;The laser projection light source according to claim 2, wherein the optical path assembly includes two light combining lens groups and a reflector;
    所述两个合光镜片组分别用于将所述两个激光器出射的多种颜色的光进行合束,且所述两个合光镜片组均朝向所述反射件出射光束;The two light combining lens groups are respectively used to combine light of multiple colors emitted by the two lasers, and the two light combining lens groups both emit light beams toward the reflector;
    所述反射件用于改变所述两个合光镜片组的出射光束的传输路径,以使所述两个合光镜片组的出射光束由所述出光口射出。The reflector is used to change the transmission path of the outgoing light beams of the two light combining lens groups, so that the outgoing light beams of the two light combining lens groups are emitted from the light exit port.
  4. 根据权利要求3所述的激光投影光源,其特征在于,每个所述激光器的所述第一出光区、所述第二出光区、所述第三出光区均沿靠近所述反射件的方向依次排列;The laser projection light source according to claim 3, wherein the first light exit area, the second light exit area, and the third light exit area of each of the lasers are all along a direction close to the reflector In sequence
    每个所述合光镜片组均包括第一反射镜片、第二反射镜片和第三反射镜片,所述第一反射镜片位于所述合光镜片组对应的激光器的第一出光区的出光侧,所述第一反射镜片反射所述第一出光区出射的第一颜色光束,所述第二反射镜片位于所述合光镜片组对应的激光器的第二出光区和所述第一反射镜片的出光侧,所述第二反射镜片反射所述第二出光区出射的第二颜色光束且透射经所述第一反射镜片反射后的第一颜色光束,所述第三反射镜片位于所述合光镜片组对应的激光器的第三出光区、所述第一反射镜片以及所述第二反射镜片的出光侧,所述第三反射镜片反射所述第三出光区出射的第三颜色光束且透射经所述第一反射镜片反射后的第一颜色光束和经所述第二反射镜片反射后的第二颜色光束;Each of the light combining lens groups includes a first reflective lens, a second reflective lens, and a third reflective lens, and the first reflective lens is located on the light exit side of the first light exit area of the laser corresponding to the light combining lens group, The first reflecting lens reflects the first color light beam emitted from the first light exit area, and the second reflecting lens is located at the second light exit area of the laser corresponding to the light combining lens group and the light output of the first reflecting lens On the other hand, the second reflecting lens reflects the second color light beam emitted from the second light exit area and transmits the first color light beam reflected by the first reflecting lens, and the third reflecting lens is located in the combining lens The third light-emitting area of the corresponding group of lasers, the light-emitting side of the first reflector and the second reflector, the third reflector reflects the third color light beam emitted from the third light-emitting area and transmits through all The first color light beam reflected by the first reflecting lens and the second color light beam reflected by the second reflecting lens;
    经所述第一反射镜片反射后的第一颜色光束的光轴、经所述第二反射镜片反射后的第 二颜色光束的光轴和经所述第三反射镜片反射后的第三颜色光束的光轴共线。The optical axis of the light beam of the first color after being reflected by the first reflector, the optical axis of the light beam of the second color after being reflected by the second reflector, and the light of the third color after being reflected by the third reflector The optical axis is collinear.
  5. 根据权利要求4所述的激光投影光源,其特征在于,所述第一反射镜片与所述第一出光区之间在所述第一出光区的中轴线上的距离为第一距离;4. The laser projection light source according to claim 4, wherein the distance between the first reflecting mirror and the first light-emitting area on the central axis of the first light-emitting area is a first distance;
    所述第二反射镜片与所述第二出光区之间在所述第二出光区的中轴线上的距离为第二距离;The distance between the second reflecting mirror and the second light-emitting area on the central axis of the second light-emitting area is a second distance;
    所述第三反射镜片与所述第三出光区之间在所述第三出光区的中轴线上的距离为第三距离;The distance between the third reflecting mirror and the third light-emitting area on the central axis of the third light-emitting area is a third distance;
    所述第一距离、所述第二距离和所述第三距离均为1~6mm。The first distance, the second distance, and the third distance are all 1 to 6 mm.
  6. 根据权利要求4或5所述的激光投影光源,其特征在于,所述第一出光区出射的第一颜色光束为蓝光光束和绿光光束中的一种,所述第二出光区出射的第二颜色光束为所述蓝光光束和所述绿光光束中的另一种,所述第三出光区出射的第三颜色光束为红光光束。The laser projection light source according to claim 4 or 5, wherein the first color light beam emitted from the first light exit area is one of a blue light beam and a green light beam, and the first color light beam emitted from the second light exit area The two-color light beam is the other of the blue light beam and the green light beam, and the third color light beam emitted from the third light exit area is a red light beam.
  7. 根据权利要求4或5所述的激光投影光源,其特征在于,所述第一出光区出射的第一颜色光束的偏振方向与所述第二出光区出射的第二颜色光束的偏振方向相同,所述第二出光区出射的第二颜色光束的偏振方向与所述第三出光区出射的第三颜色光束的偏振方向垂直;The laser projection light source according to claim 4 or 5, wherein the polarization direction of the first color light beam emitted from the first light exit area is the same as the polarization direction of the second color light beam emitted from the second light output area. The polarization direction of the second color light beam emitted from the second light exit area is perpendicular to the polarization direction of the third color light beam emitted from the third light output area;
    所述第三出光区与所述第三反射镜片之间设有第一波片,所述第一波片用于将所述第三出光区出射的的第三颜色光束的偏振方向旋转90°±10°。A first wave plate is provided between the third light exit area and the third reflecting mirror, and the first wave plate is used to rotate the polarization direction of the third color light beam emitted from the third light exit area by 90° ±10°.
  8. 根据权利要求4或5所述的激光投影光源,其特征在于,所述第一出光区出射的第一颜色光束的偏振方向与所述第二出光区出射的第二颜色光束的偏振方向相同,所述第二出光区出射的第二颜色光束的偏振方向与所述第三出光区出射的第三颜色光束的偏振方向垂直;The laser projection light source according to claim 4 or 5, wherein the polarization direction of the first color light beam emitted from the first light exit area is the same as the polarization direction of the second color light beam emitted from the second light output area. The polarization direction of the second color light beam emitted from the second light exit area is perpendicular to the polarization direction of the third color light beam emitted from the third light output area;
    所述第一出光区与所述第一反射镜片之间设置有第二波片,所述第二出光区与所述第二反射镜片之间设有第三波片,所述第二波片用于将所述第一出光区出射的第一颜色光束的偏振方向旋转90°±10°,所述第三波片用于将所述第二出光区出射的第二颜色光束的偏振方向旋转90°±10°。A second wave plate is arranged between the first light exit area and the first reflecting mirror, a third wave plate is arranged between the second light exit area and the second reflecting mirror, and the second wave plate Used to rotate the polarization direction of the first color light beam emitted from the first light exit area by 90°±10°, and the third wave plate is used to rotate the polarization direction of the second color light beam emitted from the second light output area 90°±10°.
  9. 根据权利要求1~5中任一项所述的激光投影光源,其特征在于,所述出光口的入光侧设有匀光件。The laser projection light source according to any one of claims 1 to 5, wherein a light homogenizing member is provided on the light entrance side of the light exit port.
  10. 一种激光投影设备,其特征在于,包括依次连接的激光投影光源、光机和投影镜头,所述激光投影光源为权利要求1~9中任一项所述的激光投影光源,所述光机配置为对所述激光投影光源发出的照明光束进行调制,以生成影像光束,并将所述影像光束投射至所述投影镜头,所述投影镜头配置为对所述影像光束进行成像。A laser projection device, characterized by comprising a laser projection light source, an optical machine and a projection lens connected in sequence, the laser projection light source being the laser projection light source according to any one of claims 1-9, and the optical machine It is configured to modulate the illumination light beam emitted by the laser projection light source to generate an image light beam, and project the image light beam to the projection lens, and the projection lens is configured to image the image light beam.
PCT/CN2020/121934 2019-10-25 2020-10-19 Laser projection light source and laser projection device WO2021078101A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/481,800 US20220004090A1 (en) 2019-10-25 2021-09-22 Laser source and laser projection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911025064.6A CN112711166A (en) 2019-10-25 2019-10-25 Laser projection light source and laser projection equipment
CN201911025064.6 2019-10-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121935 Continuation-In-Part WO2021078102A1 (en) 2019-10-25 2020-10-19 Laser projection light source and laser projection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/481,800 Continuation-In-Part US20220004090A1 (en) 2019-10-25 2021-09-22 Laser source and laser projection apparatus

Publications (1)

Publication Number Publication Date
WO2021078101A1 true WO2021078101A1 (en) 2021-04-29

Family

ID=75540848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121934 WO2021078101A1 (en) 2019-10-25 2020-10-19 Laser projection light source and laser projection device

Country Status (2)

Country Link
CN (1) CN112711166A (en)
WO (1) WO2021078101A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115308982A (en) * 2022-08-29 2022-11-08 深圳市火乐科技发展有限公司 Light source device and projector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414583A (en) * 2009-04-30 2012-04-11 伊斯曼柯达公司 Digital projector using arrayed light sources
CN103792769A (en) * 2012-10-31 2014-05-14 建兴电子科技股份有限公司 Laser projection system
US20140247431A1 (en) * 2014-05-09 2014-09-04 Terry James Boss Projector with light emitting diodes
CN205485254U (en) * 2016-01-14 2016-08-17 张建平 A light source subassembly for projecting system
CN208506475U (en) * 2018-04-20 2019-02-15 中强光电股份有限公司 Projection arrangement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102414583A (en) * 2009-04-30 2012-04-11 伊斯曼柯达公司 Digital projector using arrayed light sources
CN103792769A (en) * 2012-10-31 2014-05-14 建兴电子科技股份有限公司 Laser projection system
US20140247431A1 (en) * 2014-05-09 2014-09-04 Terry James Boss Projector with light emitting diodes
CN205485254U (en) * 2016-01-14 2016-08-17 张建平 A light source subassembly for projecting system
CN208506475U (en) * 2018-04-20 2019-02-15 中强光电股份有限公司 Projection arrangement

Also Published As

Publication number Publication date
CN112711166A (en) 2021-04-27

Similar Documents

Publication Publication Date Title
EP3598230B1 (en) Light source device and projection system
JP4477571B2 (en) Illumination unit and image projection apparatus employing the same
CN111562713B (en) Laser projection equipment
CN210954574U (en) Laser projection light source and laser projection equipment
CN111258165B (en) Laser projection equipment
JP2010520498A (en) Color synthesizer for solid-state light sources
WO2020259615A1 (en) Light source system and display apparatus
US10802267B2 (en) Projection apparatus and illumination system
WO2021258673A1 (en) Mixed light source system and projection display device
WO2021078103A1 (en) Laser projection light source and laser projection apparatus
TW201833653A (en) Projection System
WO2021078101A1 (en) Laser projection light source and laser projection device
CN210954575U (en) Laser projection light source and laser projection equipment
CN210954576U (en) Laser projection light source and laser projection equipment
WO2021078102A1 (en) Laser projection light source and laser projection device
US20220004090A1 (en) Laser source and laser projection apparatus
CN212207949U (en) Illumination system and projection device
CN113885285A (en) Light source assembly and projection equipment
CN216772180U (en) Light source device and laser projection apparatus
CN218630503U (en) Laser light source and laser display device
CN218957014U (en) Laser light source and laser projection device
JP7338409B2 (en) Light source device, image projection device and light source optical system
US11809069B2 (en) Coaxial laser light source apparatus
US11874590B2 (en) Illumination system and projection device
WO2023030419A1 (en) Laser projection apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20879957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20879957

Country of ref document: EP

Kind code of ref document: A1