WO2021078063A1 - 超声探头、超声探头控制方法及超声扫查设备 - Google Patents
超声探头、超声探头控制方法及超声扫查设备 Download PDFInfo
- Publication number
- WO2021078063A1 WO2021078063A1 PCT/CN2020/121232 CN2020121232W WO2021078063A1 WO 2021078063 A1 WO2021078063 A1 WO 2021078063A1 CN 2020121232 W CN2020121232 W CN 2020121232W WO 2021078063 A1 WO2021078063 A1 WO 2021078063A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic probe
- scanning
- pressure
- ultrasonic
- elastic contact
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000001514 detection method Methods 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 238000002604 ultrasonography Methods 0.000 abstract description 45
- 238000010586 diagram Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/54—Control of the diagnostic device
Definitions
- This application relates to the technical field of ultrasonic inspection, and in particular to an ultrasonic probe, an ultrasonic probe control method, and an ultrasonic scanning equipment.
- the position and posture of the ultrasound probe set at the end of the robotic arm is adjusted in real time by the host computer to make the ultrasound probe contact the human body, so as to obtain the corresponding ultrasound image for the doctor to view.
- the ultrasonic inspection equipment is affected by the structured light accuracy, the accuracy of the mechanical arm, and the human body structure, there may be situations where the ultrasonic probe does not fit the human skin, which makes the ultrasound image obtained by it not clear enough, which affects the doctor's judgment of the condition.
- an ultrasound probe that can feed back related information of the ultrasound probe for the host computer to adjust the pose of the ultrasound probe according to the related information, so that the ultrasound probe can automatically fit the human skin, so as to obtain a clearer ultrasound image.
- the main purpose of the present application is to propose an ultrasonic probe to solve the technical problem that the existing automatic ultrasonic scanning method has the difficulty that the ultrasonic probe keeps in close contact with the human body during the entire scanning process.
- An ultrasonic probe comprising a housing, a matching layer provided at the front end of the housing, and a plurality of pressure sensors arranged at intervals along the circumferential edge of the matching layer, the pressure sensors being used for detecting the ultrasonic probe Scanning pressure received in multiple directions.
- the circumferential contour of the matching layer is rectangular, the pressure sensors are four arranged corresponding to the four sides of the matching layer, and the pressure sensors are arranged inside the housing.
- it further comprises an elastic contact layer arranged in the circumferential direction of the housing for contact with the human body, and the pressure sensors are distributed on the inner peripheral wall of the elastic contact layer.
- the elastic contact layer and the housing are connected by a clamping structure, and the clamping structure includes a hooking portion provided on the elastic contact layer and a hooking portion provided on the housing and connected to the hooking portion. Matching hook groove.
- the end surface of the elastic contact layer is a curved surface protruding outward.
- the housing is configured as a T-shaped structure including a tubular part and a mounting part, the tubular part is used to connect with the mechanical arm of the scanning mechanism, and the mounting part is used to install the matching layer and the pressure sensor.
- the ultrasonic probe further includes a positioning member connected to the tubular portion through a buckle structure, and the positioning member is provided with a positioning protrusion for matching with a groove on the mechanical arm.
- the ultrasonic probe control method includes: obtaining the scanning contact pressure of the ultrasonic probe at each calibration detection point; calculating the absolute value of the pressure difference between every two calibration detection points, and according to the The distribution of the absolute value adjusts the scanning attitude of the ultrasound probe.
- the adjusting the scanning attitude of the ultrasonic probe according to the distribution of the absolute value includes: judging whether there is an absolute value greater than a set threshold among the plurality of absolute values; The one with the largest value is extracted from all absolute values, and the scanning contact pressure A and scanning contact pressure B of the corresponding calibration detection point are determined according to the maximum absolute value, wherein the scanning contact pressure A is greater than the scanning contact pressure B; Control the ultrasonic probe to deflect away from the scanning contact pressure A, and to deflect in the direction closer to the scanning contact pressure B.
- the present application further proposes an ultrasonic scanning device, which includes a host computer, a robot arm that can move along multiple axes, and an ultrasonic probe.
- the ultrasonic probe is arranged at the end of the robot arm, and the host computer is used for To control the scanning attitude of the ultrasound probe.
- multiple pressure sensors are used to detect the scanning pressure of the ultrasonic probe in multiple directions, and the scanning pressure is fed back to the upper computer, and the upper computer controls the ultrasonic probe to adjust the position and posture according to the pressure data, so that The ultrasound probe automatically fits the human skin.
- Fig. 1 is a schematic structural diagram of an embodiment of an ultrasonic probe of this application
- Figure 2 is an exploded view of the ultrasonic probe shown in Figure 1;
- Figure 3 is an assembly diagram of the elastic contact layer and the pressure sensor of the ultrasonic probe of this application;
- FIG. 6 is a flowchart of a second embodiment of the ultrasonic probe control method of this application.
- the present application proposes an ultrasonic probe, referring to FIGS. 1 to 3, the ultrasonic probe includes a housing 10, a matching layer 20 provided at the front end of the housing 10, and a plurality of spaces along the circumferential edge of the matching layer 20
- the pressure sensor 30 is arranged, and the multiple pressure sensors 30 are respectively used to detect the scanning pressure of the ultrasonic probe in multiple directions.
- a plurality of pressure sensors 30 arranged at intervals along the circumferential edge of the matching layer 20 are used to detect the scanning pressure when the ultrasonic probe is in contact with the human skin, and the scanning pressure is fed back to the host computer, The upper computer adjusts the position and posture of the ultrasound probe according to the received scanning pressure, so that the ultrasound probe automatically fits the human skin, thereby obtaining a clearer ultrasound image.
- the upper computer refers to a computer that can directly issue control instructions. It includes a processor and a storage medium.
- the storage medium stores a pre-programmed algorithm program.
- the upper computer receives the pressure data, it is processed by the The device calls the algorithm program from the storage medium to calculate and process the pressure data, and obtain the corresponding calculation results (control instructions).
- the upper computer controls the movement of the robotic arm according to the control instructions to drive the ultrasonic probe set on the robotic arm. Movement, so as to realize the automatic adjustment of the position and posture of the ultrasound probe until the ultrasound probe fits the human skin.
- the circumferential contour of the matching layer 20 is rectangular, the pressure sensors 30 are arranged corresponding to the four sides of the matching layer 20, and the pressure sensors 30 are arranged inside the housing 10.
- the four directions up, down, left, and right are defined from the direction perpendicular to the human skin by the ultrasound probe, and are denoted as A, B, C, and D.
- the pressure values in the four directions are respectively P A , P B , P C , P D. Compare the pressures of P A , P B , P C , and P D.
- multiple pressure sensors 30 can be installed in the four directions up, down, left, and right. First calculate the average pressure in each direction, and then compare the pressure in each direction. The size of the average pressure to adjust the pose of the ultrasound probe accordingly.
- the ultrasonic probe proposed in the present application further includes an elastic contact layer 40 arranged in the circumferential direction of the housing 10 for contact with the human body, and pressure sensors 30 are distributed on the inner peripheral wall of the elastic contact layer 40.
- an elastic contact layer 40 is provided at the front end of the housing 10 of the ultrasonic probe, and the ultrasonic probe contacts the human skin through the elastic contact layer 40. Realize the soft contact between the ultrasound probe and the human body, thereby improving the comfort of the human body.
- the elastic contact layer 40 will deform accordingly. Since the ultrasonic probe and the human skin are in contact through the elastic contact layer 40, which is a soft contact, it will not cause discomfort to the human body. .
- the pressure sensors 30 are distributed on the inner peripheral wall of the elastic contact layer 40.
- the elastic contact layer 40 will undergo elastic deformation, and the force that causes the elastic contact layer 40 to deform is what the pressure sensor 30 needs to detect pressure.
- the pressure detected by the pressure sensor 30 is The magnitude of the force on the outer end surface of the elastic contact layer 40 is almost the same, thereby reducing the measurement error of the pressure sensor 30.
- the elastic contact layer 40 and the housing 10 are connected by a clamping structure.
- the clamping structure involved in the present application specifically includes a hook portion 51 provided on the elastic contact layer 40 and a hook groove 52 provided on the housing 10 and matched with the hook portion 51.
- the hooking portions 51 are two symmetrically arranged, which include a protruding plate extending toward the inside of the housing 10 and a hook provided on the free end of the protruding plate.
- the hook grooves 52 are also two symmetrically arranged.
- the elastic contact layer 40 and the housing 10 are connected by a clamping structure, which is convenient for disassembly and facilitates the installation and maintenance of the ultrasonic probe.
- the end surface of the elastic contact layer 40 is a curved surface protruding outwards, which can make it fit better with the human skin, thereby obtaining a clearer ultrasound image.
- the elastic contact layer 40 is made of elastic materials such as rubber, sponge, or foam, including but not limited thereto, and those skilled in the art can make selections according to actual conditions.
- the housing 10 involved in the present application is configured as a T-shaped structure including a tubular portion 11 and a mounting portion 12, wherein the tubular portion 11 is used to connect with an ultrasonic clamp provided at the end of the robot arm, and the mounting portion 12 is Used to install the matching layer 20 and the pressure sensor 30.
- the interior of the tubular portion 11 is a hollow structure with an accommodating cavity, which can be used for the arrangement of cables, such as electrode wires or power cables, including but not limited to this.
- the tubular portion 11 is also used to connect with an ultrasonic clamp set at the end of the robotic arm to fix the ultrasound probe on the robotic arm.
- the movement of the robotic arm drives the movement of the ultrasound probe to realize the automatic scanning and inspection of the ultrasound probe.
- the mounting portion 12 is arranged in a rectangular shape and has an opening at the front end thereof, and the opening is sealed after the elastic contact layer 40 and the matching layer 20 are assembled.
- the ultrasonic wave emitted by the ultrasonic probe is emitted toward the human body through the matching layer 20.
- the ultrasonic wave hits an obstacle (internal organs), it will be reflected and enter the ultrasonic probe through the matching layer 20 again.
- the reflected ultrasonic wave is formed after being processed by the host computer. Corresponding ultrasound image.
- the positioning member 60 can control the installation position of the ultrasonic probe.
- the ultrasonic probe involved in the present application further includes a positioning member 60 connected to the tubular portion 11 through a buckle structure.
- the positioning member 60 is provided with a positioning protrusion 61 for matching with a groove provided on the ultrasonic clamp.
- the buckle structure specifically includes a mounting hole provided on the tubular portion 11 and a mounting block provided on the positioning member 60 and adapted to the mounting hole, and the mounting block and the mounting hole are fixed by interference fit. .
- the positioning protrusion 61 and the groove can be matched to fix the ultrasonic probe at a preset position.
- the control method of the ultrasound probe includes:
- Step S10 acquiring the scanning contact pressure of the ultrasonic probe at each calibrated detection point
- the ultrasound probe When the ultrasound probe is in contact with the human skin and pressed down, through multiple pressure sensors arranged inside the ultrasound probe, the scanning contact pressure of the ultrasound probe in multiple directions is obtained, and the pressure data obtained is fed back To the upper computer connected to it.
- Step S20 Calculate the absolute value of the pressure difference between every two calibration detection points, and adjust the scanning attitude of the ultrasonic probe according to the distribution of the absolute value.
- step S20 includes:
- Step S21 judging whether there is an absolute value greater than a set threshold among the multiple absolute values
- Step S22 if it exists, extract the one with the largest value from all absolute values greater than the set threshold, and determine the scanning contact pressure A and scanning contact pressure B of the corresponding calibrated detection point according to the maximum absolute value, The scanning contact pressure A is greater than the scanning contact pressure B;
- Step S23 controlling the ultrasonic probe to deflect in a direction away from the scanning contact pressure A, and to deflect in a direction closer to the scanning contact pressure B.
- the robotic arm if the absolute value is greater than the set threshold (K), that is, P A- P B > K, it indicates that the force in the A direction is heavier and it fits more closely to the skin, while the force in the B direction is lighter. There is less adhesion to the skin. Therefore, it is necessary to control the robotic arm to tilt in the B direction to make the ultrasound probe fit the skin to obtain a clearer ultrasound image.
- K set threshold
- the threshold range set by this application is 0-20N, and the measurement accuracy is 0.1N.
- This application also proposes an ultrasonic scanning equipment, which includes an upper computer, a mechanical arm that can move along multiple axes, and the aforementioned ultrasonic probe.
- the ultrasonic probe is set at the end of the mechanical arm, and the upper computer is used for control. Scan the posture of the ultrasound probe. Since the ultrasonic scanning equipment proposed in this application includes the aforementioned ultrasonic probes, the technical solutions of all the embodiments of the aforementioned ultrasonic probes have all the technical effects brought by the technical solutions of the foregoing embodiments, and will not be repeated here. To repeat them one by one, please refer to the previous text for details.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
本申请公开一种超声探头,该超声探头包括外壳、设置在所述外壳前端的匹配层和多个沿着所述匹配层的周向边沿间隔布置的压力传感器,所述压力传感器用于检测所述超声探头在多个方向上受到的扫查压力,根据多个方向上的压力计算得到超声探头的姿态,并反馈给上位机调整姿态使超声探头垂直于扫查表面。本申请超声探头能够实现与人体皮肤的自动贴合,从而获得较为清晰流畅的超声图像。此外,本申请还公开一种超声探头控制方法及超声扫查设备。
Description
本申请涉及超声检查技术领域,具体涉及一种超声探头、超声探头控制方法及超声扫查设备。
随着医疗技术的不断发展,大多数的超声检查项目实现了自动化,如乳腺癌筛查。具体的,通过上位机实时调整设置在机械臂末端的超声探头的位姿以使得超声探头与人体接触,从而获得相应的超声图像以供医生查看。
由于超声检查设备受结构光精度、机械臂精度及人体结构等因素的影响,会存在超声波探头未与人体皮肤贴合的情况,使其获得的超声图像不够清晰,从而影响医生对于病情的判断。
因此,急需一种能够反馈超声探头相关信息以供上位机根据该相关信息调整超声探头的位姿的超声探头,以使得超声探头能够自动贴合人体皮肤,从而获得较为清晰的超声图像。
本申请的主要目的在于提出一种超声探头,以解决现有的自动化超声扫查方式存在超声探头难以持续在整个扫查过程中与人体保持紧密贴合的技术问题。
本申请解决上述技术问题所采用的技术方案如下:
一种超声探头,该超声探头包括外壳、设置在所述外壳前端的匹配层和多个沿着所述匹配层的周向边沿间隔布置的压力传感器,所述压力传感器用于检测所述超声探头在多个方向上受到的扫查压力。
优选地,所述匹配层的周向轮廓呈矩形,所述压力传感器为分别对应所 述匹配层的四条侧边布置的四个,且所述压力传感器设置在所述外壳的内部。
优选地,还包括设置在所述外壳周向上、用于与人体接触的弹性接触层,所述压力传感器分布在所述弹性接触层的内周壁上。
优选地,所述弹性接触层与所述外壳通过卡接结构连接,所述卡接结构包括设置在所述弹性接触层上的钩挂部和设置在所述外壳上且与所述钩挂部相匹配的钩槽。所述弹性接触层的端面为向外凸出的曲面。
优选地,所述外壳被构造成包括管状部和安装部的T形结构,所述管状部用于与扫查机构的机械臂连接,所述安装部用于安装所述匹配层和压力传感器。
优选地,所述超声探头还包括通过卡扣结构与所述管状部连接的定位件,所述定位件上设置有用于与所述机械臂上的凹槽相匹配的定位凸起。
本申请还提出一种超声探头控制方法,该超声探头控制方法包括:获取超声探头在各个标定检测点的扫查接触压力;计算每两个标定检测点的压力差的绝对值,并根据所述绝对值的分布情况调整超声探头的扫查姿态。
优选地,所述根据所述绝对值的分布情况调整超声探头的扫查姿态包括:判断多个所述绝对值中是否存在大于设定阈值的绝对值;若存在,则从大于设定阈值的所有绝对值中提取数值最大的一个,并根据该最大的绝对值确定其对应的标定检测点的扫查接触压力A和扫查接触压力B,其中所述扫查接触压力A大于扫查接触压力B;控制超声探头往远离扫查接触压力A的方向偏转,且往靠近扫查接触压力B的方向偏转。
本申请进一步提出一种超声扫查设备,该超声扫查设备包括上位机、可沿多轴运动的机械臂和超声探头,所述超声探头设置在所述机械臂的末端,所述上位机用于控制所述超声探头扫查姿态。
本申请通过多个压力传感器分别检测超声探头在多个方向上受到的扫查压力,并将该扫查压力反馈给上位机,由上位机根据该压力数据,控制超声探头调整位姿,以使得超声探头自动贴合人体皮肤。
图1为本申请超声探头一实施例的结构示意图;
图2为图1所示的超声探头的爆炸图;
图3为本申请超声探头的弹性接触层与压力传感器的装配图;
图4为本申请超声探头的压力传感器的分布示意图;
图5为本申请超声探头控制方法第一实施例的流程图;
图6为本申请超声探头控制方法第二实施例的流程图。
本申请的实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制,基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为解决上述技术问题,本申请提出一种超声探头,参见图1至图3,该超声探头包括外壳10、设置在外壳10前端的匹配层20和多个沿着匹配层20的周向边沿间隔布置的压力传感器30,多个压力传感器30分别用于检测超声探头在多个方向上受到的扫查压力。
当超声探头靠近人体并接触人体皮肤时,会在超声成像设备上显示出获得的超声图像,但超声探头在实际扫查时,并不能完全的贴合人体皮肤。在本申请实施例中,利用多个沿着匹配层20的周向边沿间隔布置的压力传感器30,检测超声探头与人体皮肤接触时的扫查压力,并将该扫查压力反馈给上位机,由上位机根据接收到的扫查压力对超声探头的位姿进行调整,以使得超声探头自动贴合人体皮肤,从而获得较为清晰的超声图像。
需要说明的是,上位机是指可以直接发出操控指令的计算机,其包括有处理器和存储介质,在存储介质中存储有预先编程好的算法程序,上位机在接收到压力数据时,由处理器从存储介质中调用算法程序以对压力数据进行计算处理,得出相应的计算结果(控制指令),上位机根据该控制指令控制机械臂的运动,以带动设置在机械臂上的超声探头的运动,从而实现对超声 探头的位姿的自动调整,直至超声探头与人体皮肤贴合。
在一优选实施例中,参见图4,匹配层20的周向轮廓呈矩形,压力传感器30为分别对应匹配层20的四条侧边布置的四个,且压力传感器30设置在外壳10的内部。本实施例中,从超声探头垂直于人体皮肤的方向定义出上、下、左、右四个方向,并分别记为A、B、C、D,其在四个方向处的压力值分别为P
A、P
B、P
C、P
D。比较P
A、P
B、P
C、P
D的压力大小,假设P
A>P
C=P
D>P
B,则表明A方向受力较重,与皮肤贴合较多,而B方向受力较轻,与皮肤贴合较少。而后,再判断P
A与P
B的差值是否大于设定的阈值(K),即判断P
A-P
B是否大于K,若P
A-P
B>K,则表明需要将超声探头朝B方向偏转,即控制机械臂朝B方向作出调整。需要说明的是,中间的调节过程是循环的过程,直至各方向的压力差小于设定的阈值,方才停止调整,此时,超声探头与皮肤贴合程度较高,获得的超声图像也较为清晰。
此外,为更精准的调整超声探头的位姿,可在上、下、左、右四个方向上分别设置多个压力传感器30,先计算各个方向上的压力平均值,再比较各个方向上的压力平均值的大小,以据此对超声探头的位姿进行调整。
结合图1、图2,本申请所提出的超声探头还包括设置在外壳10周向上、用于与人体接触的弹性接触层40,压力传感器30分布在弹性接触层40的内周壁上。本实施例中,为使得人体在超声扫查过程中感知到较为舒适的接触,在超声探头的外壳10的前端设置有弹性接触层40,超声探头则通过该弹性接触层40与人体皮肤接触,实现超声探头与人体的软接触,从而提高人体的舒适感。具体的,在超声探头下压的过程当中,弹性接触层40会相应的发生形变,由于超声探头与人体皮肤是通过弹性接触层40接触的,是软接触,因此不会给人体带来不适感。
为更加精准的获取超声探头与人体接触时各个方向处的压力,在上述实施例中,将压力传感器30分布在弹性接触层40的内周壁上。当超声探头与人体接触时,即弹性接触层40的外端面与人体皮肤接触,弹性接触层40会发生弹性形变,而使得该弹性接触层40发生形变的作用力即为压力传感器30需要检测的压力。由于使得弹性接触层40发生形变的作用力是作用在其外端面上,而本实施例中的压力传感器30又是设置在其内端面上,如此,由压力传感器30检测到的压力与作用在弹性接触层40外端面上的作用力的大小几 乎相同,从而减小压力传感器30的测量误差。
进一步的,弹性接触层40与外壳10是通过卡接结构连接,当然,还可以通过其它方式与外壳10连接,包括但不限于此,本领域技术人员可根据实际情况进行选择。结合图2、图3,本申请所涉及的卡接结构具体包括设置在弹性接触层40上的钩挂部51和设置在外壳10上且与钩挂部51相匹配的钩槽52。在一优选实施例中,钩挂部51为对称设置的两个,其包括朝外壳10内部延伸的突板和设置在突板的自由端的挂钩,相应的,钩槽52也为对称设置的两个,其包括通孔和挂板,钩挂部51穿过通孔并通过挂钩挂接在挂板上,从而将弹性接触层40与外壳10固定。在本实施例中,弹性接触层40与外壳10通过卡接结构连接,方便拆卸,利于超声探头的安装和维修。
更进一步的,弹性接触层40的端面为向外凸出的曲面,能够使其与人体皮肤更好的贴合,从而获得更为清晰的超声图像。另外,弹性接触层40由橡胶、海绵或泡棉等弹性材料制成,包括但不限于此,本领域技术人员可根据实际情况进行选择。
参见图2,本申请所涉及的外壳10被构造成包括管状部11和安装部12的T形结构,其中,管状部11用于与设置在机械臂末端的超声夹连接,而安装部12则用于安装匹配层20和压力传感器30。本实施例中,管状部11的内部呈中空结构,具有一个容置腔体,该容置腔体可用于线缆的布置,比如电极线或电源线等,包括但不限于此。同时,该管状部11还用于与设置在机械臂末端的超声夹连接,以将超声探头固定在机械臂上,通过机械臂的运动,带动超声探头的运动,实现超声探头的自动扫查及位姿调整。安装部12呈矩形状设置,并在其前端具有一个开口,该开口在装配弹性接触层40和匹配层20后被密封。超声探头发出的超声波经匹配层20朝人体发射,当超声波碰到障碍物(内脏器官)后,会发生反射,并再次经匹配层20进入到超声探头内,该反射超声波经上位机处理后形成相应的超声图像。
在将超声探头安装至机械臂的末端时,可通过定位件60对超声探头的安装位置进行把控。具体的,本申请所涉及的超声探头还包括通过卡扣结构与管状部11连接的定位件60,在定位件60上设置有用于与设置在超声夹上的凹槽相匹配的定位凸起61。本实施例中,卡扣结构具体包括设置在管状部11上的安装孔和设置在定位件60上且与安装孔适配的安装块,安装块与安装孔 之间通过过盈配合的方式固定。参见图1,在将超声探头安装至机械臂的过程中,可通过定位凸起61与凹槽的配合,使得超声探头固定在预设位置上。
基于上述提出的超声探头,本申请还提出一种超声探头的控制方法,参见图5,该超声探头的控制方法包括:
步骤S10,获取超声探头在各个标定检测点的扫查接触压力;
在超声探头与人体皮肤接触并下压的过程中,通过设置在超声探头内部的多个压力传感器,获取超声探头在多个方向上受到的扫查接触压力,并将其获取到的压力数据反馈给与其连接的上位机。
步骤S20,计算每两个标定检测点的压力差的绝对值,并根据所述绝对值的分布情况调整超声探头的扫查姿态。
上位机对接收到的压力数据进行计算处理,即先计算两两标定点之间的压力差的绝对值,再将计算得到的绝对值与设定阈值进行比较。具体的,假设各个方向上的压力值分别为P
A、P
B、P
C、P
D,且P
A>P
C=P
D>P
B,则只要再计算P
A、P
B的压力差的绝对值即可,在计算得到压力差的绝对值之后,再将该绝对值与设定的阈值进行比较,以根据该比对结果调整超声探头的扫查姿态。
参见图6,在上述实施例中,步骤S20包括:
步骤S21,判断多个绝对值中是否存在大于设定阈值的绝对值;
步骤S22,若存在,则从大于设定阈值的所有绝对值中提取数值最大的一个,并根据该最大的绝对值确定其对应的标定检测点的扫查接触压力A和扫查接触压力B,其中扫查接触压力A大于扫查接触压力B;
步骤S23,控制超声探头往远离扫查接触压力A的方向偏转,且往靠近扫查接触压力B的方向偏转。
本实施例中,若绝对值大于设定的阈值(K),即P
A-P
B>K,则表明A方向受力较重,与皮肤贴合较多,而B方向受力较轻,与皮肤贴合较少,因此,需要控制机械臂朝B方向倾斜,以使得超声探头与皮肤贴合,从而获得较为清晰的超声图像。
在上述方法实施例中,本申请所设定的阈值范围为0-20N,测量精度为0.1N。
本申请还提出一种超声扫查设备,该超声扫查设备包括上位机、可沿多 轴运动的机械臂和前述所涉及的超声探头,超声探头设置在机械臂的末端,上位机用于控制超声探头扫查姿态。由于本申请所提出的超声扫查设备包括前述所涉及的超声探头,因此包括前述超声探头的所有实施例的技术方案,具有前述实施例的技术方案所带来的全部技术效果,在此不再一一赘述,具体可参见前文。
以上所述的仅为本申请的部分或优选实施例,无论是文字还是附图都不能因此限制本申请保护的范围,凡是在与本申请一个整体的构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请保护的范围内。
Claims (10)
- 一种超声探头,其特征在于,包括外壳、设置在所述外壳前端的匹配层和多个沿着所述匹配层的周向边沿间隔布置的压力传感器,所述压力传感器用于检测所述超声探头在多个方向上受到的扫查压力。
- 根据权利要求1所述的超声探头,其特征在于,所述匹配层的周向轮廓呈矩形,所述压力传感器为分别对应所述匹配层的四条侧边布置的四个,且所述压力传感器设置在所述外壳的内部。
- 根据权利要求1所述的超声探头,其特征在于,还包括设置在所述外壳周向上、用于与人体接触的弹性接触层,所述压力传感器分布在所述弹性接触层的内周壁上。
- 根据权利要求3所述的超声探头,其特征在于,所述弹性接触层与所述外壳通过卡接结构连接,所述卡接结构包括设置在所述弹性接触层上的钩挂部和设置在所述外壳上且与所述钩挂部相匹配的钩槽。
- 根据权利要求3所述的超声探头,其特征在于,所述弹性接触层的端面为向外凸出的曲面。
- 根据权利要求1所述的超声探头,其特征在于,所述外壳被构造成包括管状部和安装部的T形结构,所述管状部用于与扫查机构的机械臂连接,所述安装部用于安装所述匹配层和压力传感器。
- 根据权利要求6所述的超声探头,其特征在于,还包括通过卡扣结构与所述管状部连接的定位件,所述定位件上设置有用于与所述机械臂上的凹槽相匹配的定位凸起。
- 一种超声探头控制方法,其特征在于,包括:获取超声探头在各个标定检测点的扫查接触压力;计算每两个标定检测点的压力差的绝对值,并根据所述绝对值的分布情况调整超声探头的扫查姿态。
- 根据权利要求8所述的超声探头控制方法,其特征在于,所述根据所述绝对值的分布情况调整超声探头的扫查姿态包括:判断多个所述绝对值中是否存在大于设定阈值的绝对值;若存在,则从大于设定阈值的所有绝对值中提取数值最大的一个,并根据该最大的绝对值确定其对应的标定检测点的扫查接触压力A和扫查接触压力B,其中所述扫查接触压力A大于扫查接触压力B;控制超声探头往远离扫查接触压力A的方向偏转,且往靠近扫查接触压力B的方向偏转。
- 一种超声扫查设备,其特征在于,包括上位机、可沿多轴运动的机械臂和权利要求1至7任一项所述的超声探头,所述超声探头设置在所述机械臂的末端,所述上位机用于控制所述超声探头扫查姿态。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911007830.6A CN110664432A (zh) | 2019-10-22 | 2019-10-22 | 超声探头、超声探头控制方法及超声扫查设备 |
CN201911007830.6 | 2019-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021078063A1 true WO2021078063A1 (zh) | 2021-04-29 |
Family
ID=69083659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/121232 WO2021078063A1 (zh) | 2019-10-22 | 2020-10-15 | 超声探头、超声探头控制方法及超声扫查设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110664432A (zh) |
WO (1) | WO2021078063A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110664432A (zh) * | 2019-10-22 | 2020-01-10 | 深圳瀚维智能医疗科技有限公司 | 超声探头、超声探头控制方法及超声扫查设备 |
CN111920452A (zh) * | 2020-08-12 | 2020-11-13 | 上海市第十人民医院 | 一种颈部超声扫描机器人末端执行装置及方法 |
CN112057105B (zh) * | 2020-09-11 | 2021-10-26 | 中国科学院长春光学精密机械与物理研究所 | 超声探头压力调整装置 |
CN112656442A (zh) * | 2020-12-22 | 2021-04-16 | 深圳市德力凯医疗设备股份有限公司 | 一种超声探头压力检测装置及压力检测方法 |
CN114694825B (zh) * | 2020-12-29 | 2024-12-24 | 无锡祥生医疗科技股份有限公司 | 超声探头扫查方法、装置及存储介质 |
CN113317818B (zh) * | 2021-07-28 | 2021-11-26 | 苏州圣泽医疗科技有限公司 | 超声探头姿态检测的装置及方法 |
CN113558660B (zh) * | 2021-08-03 | 2024-09-13 | 深圳瀚维智能医疗科技有限公司 | 超声扫查组件和4d超声成像系统 |
CN114767154B (zh) * | 2021-09-07 | 2024-11-12 | 中山大学孙逸仙纪念医院 | 一种用于超声检查的力反馈方法、装置及电子设备 |
CN114812892B (zh) * | 2022-05-08 | 2023-06-06 | 湖南非雀医疗科技有限公司 | 一种机械臂的探头检测压力方法及系统 |
CN118299039B (zh) * | 2024-04-12 | 2025-01-21 | 东莞索诺星科技有限公司 | 一种超声检测仪的三维成像及交互方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07303643A (ja) * | 1994-05-11 | 1995-11-21 | Aloka Co Ltd | 超音波骨評価装置 |
CN103747739A (zh) * | 2011-07-04 | 2014-04-23 | 株式会社东芝 | 超声波诊断装置以及超声波探头控制方法 |
CN104936529A (zh) * | 2013-01-22 | 2015-09-23 | 皇家飞利浦有限公司 | 超声探头和超声成像系统 |
CN208610882U (zh) * | 2017-12-20 | 2019-03-19 | 华中科技大学同济医学院附属同济医院 | 超声探头耦合装置 |
CN109745076A (zh) * | 2019-02-19 | 2019-05-14 | 苏州佳世达电通有限公司 | 超音波扫描组合及超音波传导模组 |
CN209450553U (zh) * | 2018-06-19 | 2019-10-01 | 福建(泉州)哈工大工程技术研究院 | 一种医用超声波检测装置 |
CN110664432A (zh) * | 2019-10-22 | 2020-01-10 | 深圳瀚维智能医疗科技有限公司 | 超声探头、超声探头控制方法及超声扫查设备 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008173157A (ja) * | 2007-01-16 | 2008-07-31 | Aloka Co Ltd | 超音波プローブおよび超音波診断装置 |
CN103006269B (zh) * | 2012-12-28 | 2014-06-11 | 汕头市超声仪器研究所有限公司 | 用于弹性成像的液压式自动超声探头 |
CN105877780B (zh) * | 2015-08-25 | 2019-05-31 | 上海深博医疗器械有限公司 | 全自动超声扫描仪及扫描检测方法 |
CN106798572A (zh) * | 2016-12-23 | 2017-06-06 | 汕头市超声仪器研究所有限公司 | 一种超声自动扫查装置及其成像方法 |
-
2019
- 2019-10-22 CN CN201911007830.6A patent/CN110664432A/zh active Pending
-
2020
- 2020-10-15 WO PCT/CN2020/121232 patent/WO2021078063A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07303643A (ja) * | 1994-05-11 | 1995-11-21 | Aloka Co Ltd | 超音波骨評価装置 |
CN103747739A (zh) * | 2011-07-04 | 2014-04-23 | 株式会社东芝 | 超声波诊断装置以及超声波探头控制方法 |
CN104936529A (zh) * | 2013-01-22 | 2015-09-23 | 皇家飞利浦有限公司 | 超声探头和超声成像系统 |
CN208610882U (zh) * | 2017-12-20 | 2019-03-19 | 华中科技大学同济医学院附属同济医院 | 超声探头耦合装置 |
CN209450553U (zh) * | 2018-06-19 | 2019-10-01 | 福建(泉州)哈工大工程技术研究院 | 一种医用超声波检测装置 |
CN109745076A (zh) * | 2019-02-19 | 2019-05-14 | 苏州佳世达电通有限公司 | 超音波扫描组合及超音波传导模组 |
CN110664432A (zh) * | 2019-10-22 | 2020-01-10 | 深圳瀚维智能医疗科技有限公司 | 超声探头、超声探头控制方法及超声扫查设备 |
Also Published As
Publication number | Publication date |
---|---|
CN110664432A (zh) | 2020-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021078063A1 (zh) | 超声探头、超声探头控制方法及超声扫查设备 | |
US8753278B2 (en) | Pressure control in medical diagnostic ultrasound imaging | |
JP6009699B2 (ja) | エアクッション動作感知装置および方法 | |
EP3739331B1 (en) | Estimation device, inspection system, estimation method, and storage medium | |
US9199380B2 (en) | Acoustic proximity sensing | |
US20120101388A1 (en) | System for Locating Anatomical Objects in Ultrasound Imaging | |
CN100399995C (zh) | X射线诊断装置和摄象系统移动控制方法 | |
JP6105483B2 (ja) | 照明装置及び照明方法 | |
JP2007322416A (ja) | 音源の位置を推定するための、聴覚手がかりを位置に変換するオンライン補正の方法 | |
US20220079558A1 (en) | Probe cable support | |
WO2015046055A1 (ja) | 生体情報検知装置及び生体情報検知装置を備えた座席 | |
US8701300B2 (en) | Measurement apparatus, measurement method, program, and recording medium | |
US20210299886A1 (en) | Deformable sensors having multiple time-of-flight emitters | |
JP2004229823A (ja) | 超音波診断装置 | |
JP7555964B2 (ja) | 音検出システム及び情報処理装置 | |
KR20140070428A (ko) | 계측 장치 및 그 제어 프로그램 | |
CN211432988U (zh) | 超声探头及超声扫查设备 | |
CN112656442A (zh) | 一种超声探头压力检测装置及压力检测方法 | |
CN110573086B (zh) | 一种超声探头 | |
US12356176B2 (en) | Sound processing method, sound processing apparatus, and non-transitory computer-readable storage medium storing sound processing program | |
CN110604573A (zh) | 用于心内超声定位导管的声学模型和方法 | |
CN107049356B (zh) | 扫描孔防护膜片脱离预警装置、医疗影像设备及预警方法 | |
US20190090858A1 (en) | System and method for calibration of mechanical three-dimensional ultrasound probe | |
CN114504207A (zh) | 智能座椅及检测用户坐姿的方法 | |
KR20180120050A (ko) | 방사 초음파 가시화 방법 및 방사 초음파 가시화 방법을 수행하는 프로그램이 기록된 전자적 기록 매체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20878568 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20878568 Country of ref document: EP Kind code of ref document: A1 |