WO2021075648A1 - Fiber-type strain sensor having core-shell structure, and manufacturing method therefor - Google Patents

Fiber-type strain sensor having core-shell structure, and manufacturing method therefor Download PDF

Info

Publication number
WO2021075648A1
WO2021075648A1 PCT/KR2020/003915 KR2020003915W WO2021075648A1 WO 2021075648 A1 WO2021075648 A1 WO 2021075648A1 KR 2020003915 W KR2020003915 W KR 2020003915W WO 2021075648 A1 WO2021075648 A1 WO 2021075648A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
fiber
core
elastomer
strain sensor
Prior art date
Application number
PCT/KR2020/003915
Other languages
French (fr)
Korean (ko)
Inventor
김성수
온승윤
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to CN202080000920.7A priority Critical patent/CN113015883B/en
Priority to US16/757,538 priority patent/US11280688B2/en
Publication of WO2021075648A1 publication Critical patent/WO2021075648A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/008Processes for improving the physical properties of a device
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/36Cored or coated yarns or threads
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2287Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges constructional details of the strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0083Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by measuring variation of impedance, e.g. resistance, capacitance, induction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/038Textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups

Definitions

  • the present invention relates to a fibrous strain sensor having a core-shell structure and a method for manufacturing the same, and more particularly, strength and rigidity are improved by a core fiber, a noise level is improved by an elastomer layer, and a conductive layer of a sandwich structure It relates to a fiber-type strain sensor having a core-shell structure having an effect of improving the linearity of a measurement signal and a method of manufacturing the same.
  • the optical fiber Bragg grating sensor has an advantage that can be used as an insertion type, but there is a problem that it acts as another defect inside the composite material due to its large diameter and low mechanical properties compared to the reinforcing fiber.
  • a conductive particle-based nanocomposite that has unique electromechanical properties and is free in physical property design depending on the combination of materials used can be used as an alternative method.
  • the conventional nanocomposite sensor it is not suitable for the structural integrity monitoring system of the composite structure as most of the research is focused on improving the sensitivity as it is focused on the development of a sensor with flexible characteristics for application to the bio and wearable fields.
  • Korean Patent Application Publication No. 10-2015-0046254 discloses a strain sensor having conductivity by forming nanowires on a substrate.
  • the substrate since the substrate itself receives the applied load as it is, there is a disadvantage that it is not suitable for a structure having a high load.
  • the sensor for structural integrity monitoring of a composite material structure has high mechanical properties so that it can be used as an insertion type without deteriorating the properties of the composite material, and has a low noise level and high linearity for stable strain sensing. It is a situation that requires the development of a strain sensor.
  • a problem to be solved by the present invention is to provide a strain sensor capable of supporting a load and having a noise level and linearity suitable for strain sensing of a composite material structure, and a method of manufacturing the same.
  • An embodiment of the present invention is a core-shell structure of a fiber-type strain sensor, the fiber support constituting the core; And a multilayered shell layer formed on the fiber support, wherein the shell layer comprises: a first elastomer formed on the fiber support; A conductive layer formed on the first elastomer; And a second elastomer formed on the conductive layer, wherein the sensor senses a strain rate of a structure including the sensor according to a change in resistance of the conductive layer.
  • the conductive layer may have a sandwich structure in which at least two unit conductive layers having different conductivity are sequentially stacked.
  • the unit conductive layer includes conductive particles, and the two unit conductive layers may have different conductivity by varying the weight% of the different conductive particles.
  • the conductive layer includes a first unit conductive layer; A second unit conductive layer; And a sandwich structure including a first unit conductive layer, wherein the second unit conductive layer has a lower fraction of conductive particles than the first unit conductive layer.
  • the fiber support may be a single filament.
  • the first elastomer and the second elastomer may have a higher Poison's ratio than the fiber support, and the first elastomer and the second elastomer may be polyurethane (PU), Polydimethylsiloxane (PDMS), natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and ethylene vinyl acetate copolymer (EVA). It can contain either.
  • PU polyurethane
  • PDMS Polydimethylsiloxane
  • NR natural rubber
  • BR butadiene rubber
  • SBR styrene butadiene rubber
  • NBR acrylonitrile butadiene rubber
  • EVA ethylene vinyl acetate copolymer
  • the conductive particles may include any one selected from the group consisting of carbon nanotubes, graphene, silver nanowires, and gold nanowires.
  • An embodiment of the present invention is a method for manufacturing a fiber-type strain sensor having a core-shell structure, comprising the steps of: coating a first elastomer on a fiber support; Coating a conductive layer of a sandwich structure on the first elastomer; And coating a second elastomer on the conductive layer, wherein the conductive layer of the sandwich structure has a structure in which unit conductive layers having different conductivity are sequentially stacked.
  • the coating may be performed by dipping or spraying.
  • the unit conductive layer includes conductive particles, and the two unit conductive layers may have different conductivity by varying the weight% of the different conductive particles.
  • the conductive layer is a first unit conductive layer; A second unit conductive layer; And a sandwich structure including a first unit conductive layer, wherein the second unit conductive layer may have a lower fraction of conductive particles than the first unit conductive layer, and the fiber support is a single filament. It is done.
  • the first elastomer and the second elastomer may have a higher Poison's ratio than the fiber support, and the first elastomer and the second elastomer may be polyurethane (PU), Polydimethylsiloxane (PDMS), natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and ethylene vinyl acetate copolymer (EVA). It can contain either.
  • PU polyurethane
  • PDMS Polydimethylsiloxane
  • NR natural rubber
  • BR butadiene rubber
  • SBR styrene butadiene rubber
  • NBR acrylonitrile butadiene rubber
  • EVA ethylene vinyl acetate copolymer
  • the conductive particles may include any one selected from the group consisting of carbon nanotubes, graphene, silver nanowires, and gold nanowires.
  • a multi-layered shell structure sensing layer including an ultra-high strength core fiber, an elastomer layer and a sandwich structure laminated conductive layer according to the present invention, the strength and rigidity are improved by the core fiber, and the noise level is reduced by the elastomer layer. It is possible to manufacture a fibrous sensor with improved linearity of the measurement signal by the conductive layer of the sandwich structure, so that it is possible to stably measure the strain rate without acting as a defect in the composite material structure.
  • FIG. 1 is a schematic diagram showing the structure of a core-shell type fiber strain sensor according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of a fiber-type strain sensor having a core-shell structure according to an embodiment of the present invention.
  • FIG. 3 is a flow chart showing a process of a method for manufacturing a fiber-type strain sensor having a core-shell structure according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a dry jet wet spinning system used in manufacturing a fiber support in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a coating process for forming a multilayered shell structure according to an embodiment of the present invention.
  • Example 8 is a graph showing the surface shape and electrical resistance of the fiber-type strain sensor prepared in Example ((a) the coating thickness and surface shape of the MWCNT layer, (b) the electrical resistance of the sensor fiber).
  • FIG. 9 is a view showing the measurement result of the strain sensitivity of the fiber-type strain sensor.
  • FIG. 10 is a diagram showing a circuit diagram of an electric network according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing SNR measurement values of the fiber-type strain sensors manufactured in Examples 1 and 3.
  • FIG. 11 is a diagram showing SNR measurement values of the fiber-type strain sensors manufactured in Examples 1 and 3.
  • FIG. 12 is a diagram showing a strain distribution diagram of a fiber-type strain sensor manufactured in Examples 1 and 3.
  • FIG. 12 is a diagram showing a strain distribution diagram of a fiber-type strain sensor manufactured in Examples 1 and 3.
  • FIG. 13 is a diagram showing radial strain in the MWCNT layer of the fibrous strain sensor prepared in Examples 1 and 3.
  • FIG. 13 is a diagram showing radial strain in the MWCNT layer of the fibrous strain sensor prepared in Examples 1 and 3.
  • FIG. 14 is a diagram showing a schematic diagram of an electrical network and a measurement value of ⁇ R/Ro for a time of 1000 cycles or more of the fibrous strain sensors manufactured in Examples 2 to 4.
  • FIG. 14 is a diagram showing a schematic diagram of an electrical network and a measurement value of ⁇ R/Ro for a time of 1000 cycles or more of the fibrous strain sensors manufactured in Examples 2 to 4.
  • 15 is a diagram showing a hysteresis curve of DP-MC.
  • the present invention relates to a fibrous strain sensor having a core-shell structure and a method for manufacturing the same, and more particularly, strength and rigidity are improved by a core fiber, a noise level is improved by an elastomer layer, and a conductive layer of a sandwich structure It relates to a fiber-type strain sensor having a core-shell structure having an effect of improving the linearity of a measurement signal and a method of manufacturing the same.
  • FIG. 1 is a schematic diagram showing the structure of a core-shell type fiber strain sensor according to an embodiment of the present invention.
  • a core-shell type fiber strain sensor 1 includes a fiber support 10 forming a core; And a multi-layered shell layer 20 formed on the fiber support 10, wherein the shell layer 20 includes: a first elastic polymer 21 formed on the fiber support 10; A conductive layer 22 formed on the first elastomer 21; And a second elastomer 21 ′ formed on the conductive layer 22.
  • the core-shell type fibrous strain sensor 1 is characterized in that it senses the strain of the structure including the sensor according to the resistance change of the conductive layer 22.
  • the core-shell type fibrous strain sensor 1 In the core-shell type fibrous strain sensor 1 according to an embodiment of the present invention, strength and rigidity are improved by the fiber support 10 constituting the core, the noise level is improved by the elastomer, and the conduction Since the linearity of the measurement signal can be improved by the layer 22, the strain can be easily measured stably without acting as a defect in the composite material structure.
  • the core-shell type fiber strain sensor 1 of the present invention to which a high strength core fiber is applied is a reinforcing fiber used in a composite material. It has the advantage of being able to reduce the difference in mechanical properties between and to maintain the structural reliability of the entire structure and to monitor the strain distribution inside the structure.
  • the fiber support 10 constituting the core may be a single filament, and an ultra high molecular weight polyolefin-based polymer (Ultra High Molecular Weight Polyethylene, UHMWPE) having excellent mechanical properties may be used.
  • the fiber support 10 may be manufactured by using a wet process such as air-gap wet spinning and wet spinning in order to be manufactured in a fibrous shape.
  • the initially spun fiber is stretched while passing between the hot stretching rollers, and mechanical properties can be maximized through alignment of molecular chains in the fiber longitudinal direction.
  • the optimum processing conditions may be determined in a range between the melting point of the polymer material and the recrystallization temperature.
  • the elastomer is uniformly coated on the surface of the fiber support 10, and may be coated by a method such as dip coating or spray coating. For example, it may be coated by a dip coating method.
  • the first elastomer 21 and the second elastomer 21 ′ are characterized by having a Poison's ratio higher than that of the fiber support 10.
  • Poisson's ratio is a ratio of the transverse deformation and the longitudinal deformation when a vertical stress is applied to the material, and may mean an index of material behavior that is considered important in grasping the deformation in the elastic deformation region.
  • the first elastomer 21 and the second elastomer 21 ′ include polyurethane (PU), polydimethylsiloxane (PDMS), natural rubber (NR), butadiene rubber (BR), It may include any one selected from the group consisting of styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and ethylene vinyl acetate copolymer (EVA).
  • the first elastomer 21 and the second elastomer 21 ′ may be made of the same elastomer, or may be made of different elastomers.
  • the first elastomer 21 and the second elastomer 21 ′ may be polyurethane (PU).
  • first elastomer 21 and the second elastomer 21 ′ are compressed into the conductive layer 22 and the two elastomer layers 21 and 21 ′ surrounding the conductive layer 22 to be described later.
  • compressive deformation it is possible to significantly reduce the noise level of the sensor by preventing breakage of the conductive network in the fiber radial direction.
  • the conductive layer 22 may have a sandwich structure in which at least two unit conductive layers 22 having different conductivity are sequentially stacked.
  • the unit conductive layer 22 includes conductive particles, and the two unit conductive layers 22 may have different conductivity by varying the weight% of the different conductive particles. More specifically, a layer having a high weight percent of conductive particles having a stable response characteristic and a layer having a low concentration having a high sensitivity may be alternately stacked.
  • the electroconductive layer 22 having a sandwich structure may complement each other with characteristics of each layer due to the parallel connection effect, thereby implementing a sensor having excellent linearity and a sensitivity.
  • the conductive layer 22 has a sandwich structure including a first unit conductive layer 221, a second unit conductive layer 222, and a first unit conductive layer 221, and the second unit conductive layer 222 ) May have a lower fraction of conductive particles than the first unit conductive layer 221.
  • the conductive particles may include any one selected from the group consisting of carbon nanotubes, graphene, silver nanowires, and gold nanowires, and for example, may be carbon nanotubes.
  • the material of the conductive layer 22 may be an aqueous coating solution in which conductive particles are dispersed, and for more stable sensing, a coating solution in which conductive particles are dispersed in a thermoplastic polymer may be used.
  • a desired characteristic can be designed by varying the stacking order and the number of stacking of the sandwich-type conductive layers 22. In the case of manufacturing the fibrous strain sensor 1 in this manner, it is possible to manufacture the fiber support 10 through the formation of the shell layer 20 in a continuous process, thereby reducing the manufacturing cost.
  • FIG. 2 is a diagram showing the configuration of a fiber-type strain sensor having a core-shell structure according to an embodiment of the present invention.
  • FIG. 3 is a flow chart showing a process of a method for manufacturing a fiber-type strain sensor having a core-shell structure according to an embodiment of the present invention. Referring to FIG. 3, a method of manufacturing a fiber-type strain sensor 1 having a core-shell structure according to an embodiment of the present invention will be described.
  • a method for manufacturing a core-shell structured fibrous strain sensor 1 includes the steps of coating a first elastomer 21 on the fiber support 10 (S100); Coating the conductive layer 22 having a sandwich structure on the first elastomer 21 (S200); And coating a second elastomer (21') on the conductive layer (22) (S300).
  • the conductive layer 22 of the sandwich structure may have a structure in which unit conductive layers 22 having different conductivity are sequentially stacked.
  • the fiber support 10 constituting the core may be a single filament, and an ultra high molecular weight polyolefin-based polymer (Ultra High Molecular Weight Polyethylene, UHMWPE) having excellent mechanical properties may be used.
  • UHMWPE Ultra High Molecular Weight Polyethylene
  • the fiber support 10 may be manufactured using a wet process such as air-gap wet spinning and wet spinning.
  • a spinning solution may be prepared by dissolving UHMWPE powder in a solvent, and the fiber support 10 may be prepared by using the dry-jet wet spinning method as the spinning solution.
  • the initially spun fiber is stretched while passing between the hot stretching rollers, and mechanical properties can be maximized through alignment of molecular chains in the fiber longitudinal direction.
  • the optimum processing conditions may be determined in a range between the melting point of the polymer material and the recrystallization temperature.
  • the coating process may be performed in a dipping or spray method, and for example, may be coated by a dip coating method.
  • the first elastomer 21 and the second elastomer 21 ′ have a Poison's ratio higher than that of the fiber support 10.
  • Poisson's ratio is a ratio of the transverse deformation and the longitudinal deformation when a vertical stress is applied to the material, and may mean an index of material behavior that is considered important in grasping the deformation in the elastic deformation region.
  • the first elastomer 21 and the second elastomer 21 ′ include polyurethane (PU), polydimethylsiloxane (PDMS), natural rubber (NR), butadiene rubber (BR), It may include any one selected from the group consisting of styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and ethylene vinyl acetate copolymer (EVA).
  • the first elastomer 21 and the second elastomer 21 ′ may be made of the same elastomer, or may be made of different elastomers.
  • the first elastomer 21 and the second elastomer 21 ′ may be polyurethane (PU).
  • first elastomer 21 and the second elastomer 21 ′ are compressed into the conductive layer 22 and the two elastomer layers 21 and 21 ′ surrounding the conductive layer 22 to be described later.
  • compressive deformation it is possible to significantly reduce the noise level of the sensor by preventing breakage of the conductive network in the fiber radial direction.
  • the unit conductive layer 22 includes conductive particles, and the two unit conductive layers 22 may have different conductivity by varying the weight% of the different conductive particles. More specifically, a layer having a high weight percent of conductive particles having a stable response characteristic and a layer having a low concentration having a high sensitivity may be alternately stacked. In particular, the electroconductive layer 22 having a sandwich structure may complement each other with characteristics of each layer due to the parallel connection effect, thereby implementing a sensor having excellent linearity and a sensitivity.
  • the conductive layer 22 has a sandwich structure including a first unit conductive layer 221, a second unit conductive layer 222, and a first unit conductive layer 221, and the second unit conductive layer 222 ) May have a lower fraction of conductive particles than the first unit conductive layer 221.
  • the conductive particles may include any one selected from the group consisting of carbon nanotubes, graphene, silver nanowires, and gold nanowires, and for example, may be carbon nanotubes.
  • the material of the conductive layer 22 may be an aqueous coating solution in which conductive particles are dispersed, and for more stable sensing, a coating solution in which conductive particles are dispersed in a thermoplastic polymer may be used.
  • a desired characteristic can be designed by varying the stacking order and the number of stacking of the sandwich-type conductive layers 22. In the case of manufacturing the fibrous strain sensor 1 in this manner, it is possible to manufacture the fiber support 10 through the formation of the shell layer 20 in a continuous process, thereby reducing the manufacturing cost.
  • the resulting core-shell structured fibrous strain sensor 1 forms a multilayer shell including an elastomer layer and a conductive layer 22 on the surface of the fiber support 10 having high strength and rigidity.
  • a multilayer shell including an elastomer layer and a conductive layer 22 on the surface of the fiber support 10 having high strength and rigidity.
  • An ultra-high molecular weight polyolefin-based fiber support was prepared using a wet process. Specifically, the fiber support was manufactured using the dry jet wet spinning system shown in FIG. 4.
  • UHMWPE powder (U050: average molecular weight 5x10 6 g/mol, Daehan Petrochemical) was mixed with paraffin oil (Sigma-Aldrich). In addition, in the subsequent dissolution process, it was maintained at 100° C. for 24 hours for a swelling process to improve the chain mobility of UHMWPE. The swollen UHMWPE powder was dissolved in paraffin oil at 170° C. for 4 hours to prepare a 4% by weight solution, and stored in a spinning solution syringe at this temperature for 2 hours to stabilize the molecular chain of the UHMWPE solution.
  • the UHMWPE core fibers were spun using a dry-jet wet spinning method. Meanwhile, the UHMWPE solution was supplied to the nozzle at 0.2 MPa of N 2 gas pressure to prevent thermal decomposition of the solution and uniformly extruded from the nozzle to prepare UHMWPE fibers.
  • FIG. 5 is a schematic diagram showing a coating process for forming a multilayered shell structure according to an embodiment of the present invention.
  • a method of forming a multilayered shell layer will be described with reference to FIG. 5.
  • the UHMWPE fibers were immersed in a PU aqueous solution (CRP 26301, T & L Co., Ltd), and after 20 seconds, the UHMWPE fibers were removed from the aqueous solution. Subsequently, the PU-coated fiber was dried at 80° C. for 3 minutes. This process was repeated 3 times.
  • a conductive layer was formed on the PU-coated UHMWPE fiber in the same manner as described above using an MWCNT aqueous solution (Kumho Petrochemical) (Examples 1 to 4).
  • MWCNT aqueous solution Kelho Petrochemical
  • Table 1 The structures of the conductive layers of Examples 1 to 4 are shown in Table 1 below.
  • the first unit conductive layer of 3% by weight MWCNT, the second unit conductive layer of 2% by weight MWCNT, and the third unit conductive layer of 3% by weight MWCNT are coated by the same coating procedure. Made it.
  • the UHMWPE fiber coated with the conductive layer was dried in an oven at 60° C. for 1 hour to remove excess water from the MWCNT layer.
  • a second PU layer was coated on the UHMWPE fiber on which the conductive layer was formed to prepare a fibrous strain sensor having a core-shell structure.
  • Example 1 Single layer: 3wt%
  • Example 2 Single layer: 2wt%
  • Example 3 Single layer: 3wt%
  • Example 4 Sandwich Multilayer: 3/2/3 wt%
  • the crystallization and melting temperatures of the spun fibers were confirmed to be 119 and 133°C, respectively.
  • the mobility of polymer chains near the melting point of UHMWPE fibers is improved.
  • the amorphous region of the fiber can be easily transferred to the crystal under external force and temperature.
  • This phenomenon can improve the mechanical properties of UHMWPE fibers due to increased crystallinity and chain alignment.
  • the tensile strength and modulus of the core fiber are improved as the draw ratio and hot stretching temperature increase. This seems to be because the crystallinity of the core-fiber is increased by rearrangement or rearrangement of the molecular chains during the hot drawing process.
  • the surface shape and electrical resistance of the fiber-type strain sensor prepared in Example were measured.
  • FIG. 8. 8 is a graph showing the surface shape and electrical resistance of the fiber-type strain sensor prepared in Example ((a) the coating thickness and surface shape of the MWCNT layer, (b) the electrical resistance of the sensor fiber).
  • Figure 8 (a) shows the surface shape of the coated fiber in relation to the coating sequence.
  • the MWCNT coating layer is uniformly formed on the fiber by a dip coating method.
  • the thickness of the MWCNT coating layer was steadily controlled to 4 ⁇ m with various numbers of dip coatings.
  • Figure 8 (b) shows the electrical resistance measurement results of the fiber-type strain sensor. Referring to Fig. 8(b), it seems that the electrical resistance is related to the concentration of the MWCNT layer. Specifically, the electrical resistance seems to have decreased because the electrical path of DP-SC3 is densely formed compared to DP-SC2.
  • the weight-concentrated specimen appears to have a low electrical resistance value.
  • the resistance value of the sandwich structured MWCNT layer specimen shows an intermediate result between DP-SC2 and DP-SC3 due to the combination of the low-concentration layer and the high-concentration layer.
  • the sensitivity of the fiber-type strain sensor prepared in Example was measured.
  • FIG. 9 is a view showing the measurement result of the strain sensitivity of the fiber-type strain sensor.
  • FIG. 10 is a diagram showing a circuit diagram of an electric network according to an embodiment of the present invention.
  • the sensitivity tends to increase. This is because a change in resistance of the conductive layer occurs due to the breakage of the conductive network due to the tensile load.
  • the relative distance of the MWCNT increases. Accordingly, the total electrical resistance increased due to the disconnection of the MWCNT network.
  • the single PU layer structure is more sensitive than the double PU layer structure, and the reason for the high sensitivity in the single PU layer structure is as shown in FIG. 10(a), This is because the distance between the CNTs increases rapidly due to the tensile deformation in the radial direction of the CNT layer, resulting in a rapid change in resistance.
  • FIG. 10(b) and (c) when an external tensile load is applied, since compressive deformation occurs along the radial direction, the change in resistance to the double PU layer structure is relatively small.
  • the fiber-type strain sensor of Example 2 shows the highest sensitivity and non-linear shape, which seems to be due to the low concentration of MWCNT.
  • concentration of the MWCNT layer is low, the tunneling effect is superior to the direct contact of the MWCNT in the formation of the electric path, and the above phenomenon occurs.
  • the total resistance of the conductive layer increases rapidly.
  • the sensitivity is sensitive, but the electrical path is weak, and the sensing response may be unstable.
  • the GF fitting result also confirmed the nonlinear behavior of the sensor. Specifically, the GF value at 3 to 4% strain increased significantly over 161% over the 1 to 2% strain range.
  • Example 3 in the case of Example 3 (c), it can be seen that the linearity of the sensitivity curve was improved compared to Example 2 due to an increase in the MWCNT concentration.
  • the gauge factor (GF) in the results of fitting the gauge factor (GF), the GF of Example 3 increased by 50% or more over the range of 1 to 2% strain.
  • Example 3 showed a stable response with a lower noise level than Example 2 because the number of electrical paths increased as the MWCNT content increased.
  • the maximum sensitivity was reduced by 55% compared to Example 2.
  • the linear response of the strain sensor is critical for accurate strain detection, signal processing and use. Therefore, in the experimental example, in order to improve the linearity of the sensing response, a sandwich-structured MWCNT layer was introduced.
  • the signal-to-noise ratio (SNR) value of the fiber-type strain sensor prepared in Examples 1 and 3 was measured.
  • FIG. 11 is a view showing the SNR measurement value of the fiber-type strain sensor prepared in Examples 1 and 3.
  • SNR follows the following equation, and SNR measures the relative magnitude of signal-to-noise, which means that the larger the SNR, the less the noise effect.
  • S is the electrical resistance detection signal from the fiber sensor
  • is the standard deviation of the electrical resistance detection signal
  • the average SNR value of DP-SC3 was 359% higher than that of SP-SC3, which means that the double PU layer reduces the noise level.
  • FIG. 12 is a diagram showing a strain distribution diagram of a fiber-type strain sensor manufactured in Examples 1 and 3.
  • FIG. 12 is a diagram showing a strain distribution diagram of a fiber-type strain sensor manufactured in Examples 1 and 3.
  • the double PU layer has a positive effect on reducing the noise level of the fiber sensor by preventing the failure of the electrical network of the conductive layer.
  • FIG. 13 is a diagram showing radial strain in the MWCNT layer of the fibrous strain sensor prepared in Examples 1 and 3.
  • FIG. 13 is a diagram showing radial strain in the MWCNT layer of the fibrous strain sensor prepared in Examples 1 and 3.
  • the radial strain in the MWCNT layer of DP-SC3 is lower than the radial strain in the MWCNT layer of SP-SC3. Accordingly, with reference to FIGS. 11 and 12, it is possible to confirm the noise reduction effect due to the prevention of electrical network failure of the MWCNT layer by the double PU layer.
  • FIG. 14 is a diagram showing a schematic diagram of an electrical network and a measurement value of ⁇ R/Ro for a time of 1000 cycles or more of the fibrous strain sensors manufactured in Examples 2 to 4.
  • Ro is the initial electrical resistance before applying a tensile load
  • ⁇ R is the change in electrical resistance due to tensile deformation.
  • a recoverable signal response was shown in all of Examples 2 to 4, which is due to the PU layer.
  • the breakdown and reconstruction of the filtration network was stably repeated during the stretch release cycle due to the flexibility and stretchability of the PU layer.
  • the excellent adhesion properties of the PU layer were able to form a strong interfacial bond with the MWCNT layer, and the repeatability itself can be realized by the PU layer, but the stability of the electrical signal such as signal fluctuations affects the robustness of the electrical network of the MWCNT layer. Receive. For this reason, different signal patterns were observed in Examples 2 to 4 of the double PU layer.
  • the sensing signal was unstable during the loading-unloading cycle because the conductive network was not completely restored after each cycle.
  • the relative resistance change in the low strain range in the high cycle showed a non-monotonic response due to the corrugated structure (or buckle structure) of the MWCNT formed in the previous cycle (a).
  • DP-SC3 showed a more stable response than DP-SC2, but the peak resistance gradually decreased by 10% after 1000 cycles (b).
  • the reduction rate of the peak resistance between the beginning and the end of 100 cycles of DP-MC was less than 1% (c). This is because the multiple conductive MWCNT layers create a dense conductive filtration network, resulting in a stable signal response in the cycle test.
  • 15 is a diagram showing a hysteresis curve of DP-MC.
  • a single stretch-release cycle using DP-MC showed about 6% hysteresis, which is lower than the previously reported fibrous strain sensor.
  • the fiber-type strain sensor having a core-shell structure according to the present invention is recognized for its industrial applicability in a wide range of applications, such as aerospace, aviation, and automobile fields that require strain sensing of a composite structure.

Abstract

The present invention relates to a fiber-type strain sensor having a core-shell structure, and a manufacturing method therefor, and the fiber-type strain sensor having a core-shell structure, of the present invention, comprises: a fiber support constituting a core; and a multi-layer structured shell layer formed on the fiber support, and thus the present invention can manufacture a fiber-type sensor having improved strength and stiffness due to a core fiber, having a reduced noise level due to an elastomer layer, and having improved linearity of a measured signal due to a sandwiched-structured conductive layer, thereby enabling stable measurement of strain while not operating defectively in a composite structure.

Description

코어-쉘 구조의 섬유형 변형률 센서 및 그 제조방법Core-shell structure fibrous strain sensor and manufacturing method thereof
본 발명은 코어-쉘 구조의 섬유형 변형률 센서 및 그 제조방법에 관한 것으로, 보다 상세하게는 코어 섬유에 의해 강도와 강성이 향상되고, 탄성중합체층에 의해 잡음 수준이 개선되며 샌드위치 구조의 전도층에 의해 측정 신호의 선형성이 향상된 효과를 갖는 코어-쉘 구조의 섬유형 변형률 센서 및 그 제조방법에 관한 것이다.The present invention relates to a fibrous strain sensor having a core-shell structure and a method for manufacturing the same, and more particularly, strength and rigidity are improved by a core fiber, a noise level is improved by an elastomer layer, and a conductive layer of a sandwich structure It relates to a fiber-type strain sensor having a core-shell structure having an effect of improving the linearity of a measurement signal and a method of manufacturing the same.
섬유 강화 복합재료의 뛰어난 비강도, 비강성, 감쇠 등 다양한 특성에 의해 우주, 항공 뿐만 아니라 자동차 등 광범위한 응용분야에 적용이 증가하고 있는 추세이다. 하지만 구조물에 반복적으로 하중이 가해질 경우 복합재료 내에서 가장 취약 점인 보강 섬유와 기지재 수지 간 계면(Interface) 에서 파단이 발생하고 이는 구조물의 전체의 파괴에 이를 수 있는 라미나(Laminar)의 층간 박리 현상 (Delamination)의 원인이 된다. 때문에, 이러한 복합재료 내 결함을 사전에 확인하고 예방 할 수 있는 센서 네트워크를 활용한 구조 건전성 모니터링(Structural Health Monitoring)에 관한 연구들이 활발히 이루어지고 있다. Due to various properties such as excellent specific strength, specific rigidity, and attenuation of fiber-reinforced composite materials, application to a wide range of applications such as aerospace, aviation as well as automobiles is increasing. However, when a load is repeatedly applied to the structure, breakage occurs at the interface between the reinforcing fiber and the matrix resin, which is the weakest point in the composite material, which can lead to the destruction of the entire structure. It causes delamination. Therefore, studies on structural health monitoring using a sensor network that can identify and prevent defects in such composite materials in advance are being actively conducted.
기존 구조 건전성 모니터링 시스템에는 변형률 게이지(Strain gauge)와 광섬유 브래그 격자 센서(Fiber Bragg Grating sensor)가 일반적으로 사용되어 왔다. In the existing structural integrity monitoring system, a strain gauge and a fiber Bragg grating sensor have been generally used.
변형률 게이지의 경우 부착이 쉽고 민감도(Sensitivity)가 높은 장점이 있지만 라미나 사이에 삽입(Embedding)하여 사용할 수 없으며 미소 결함을 검출하기 위해서는 수많은 센서 노드(Node)가 필요하다는 단점이 있다. 광섬유 브래그 격자 센서의 경우 삽입형으로 사용할 수 있는 장점이 있지만 보강섬유 대비 큰 직경, 낮은 기계적 물성에 의해 복합재료 내부에서 또다른 결함으로 작용하는 문제가 있다. In the case of a strain gauge, it is easy to attach and has a high sensitivity, but it cannot be used by embedding between laminae, and has a disadvantage in that numerous sensor nodes are required to detect micro-defects. The optical fiber Bragg grating sensor has an advantage that can be used as an insertion type, but there is a problem that it acts as another defect inside the composite material due to its large diameter and low mechanical properties compared to the reinforcing fiber.
이와 같은 기존 시스템의 문제를 해결하기 위해 독특한 전기기계적 (Electromechanical) 특성을 가지며 사용하는 재료의 조합에 따라 물성 설계가 자유로운 전도성 입자 보강 나노복합재(Conductive particle-based nanocomposite)가 대체 방안으로 활용 될 수 있다. 하지만 기존의 나노복합재 센서의 경우 바이오 및 웨어러블 분야에 적용을 위해 유연 특성을 가지는 센서 개발에 치중되어 있어 복합재 구조의 구조 건전성 모니터링 시스템에는 적합하지 않으며 대부분의 연구가 민감도 향상에 초점이 맞추어져 있다.To solve the problems of such existing systems, a conductive particle-based nanocomposite that has unique electromechanical properties and is free in physical property design depending on the combination of materials used can be used as an alternative method. . However, in the case of the conventional nanocomposite sensor, it is not suitable for the structural integrity monitoring system of the composite structure as most of the research is focused on improving the sensitivity as it is focused on the development of a sensor with flexible characteristics for application to the bio and wearable fields.
예를 들어 대한민국 공개특허 제10-2015-0046254호를 살펴보면 기판 상에 나노와이어가 형성되어 전도성을 갖는 변형률 센서를 개시하고 있다. 하지만, 이 경우 가해지는 하중을 기판 자체가 그대로 받게 되므로 높은 하중을 갖는 구조물에서는 적합하지 않은 단점이 있다. For example, Korean Patent Application Publication No. 10-2015-0046254 discloses a strain sensor having conductivity by forming nanowires on a substrate. However, in this case, since the substrate itself receives the applied load as it is, there is a disadvantage that it is not suitable for a structure having a high load.
따라서, 복합재료 구조물의 구조 건전성 모니터링을 위한 센서는 복합재료의 물성 저하 없이 삽입형으로 사용할 수 있도록 높은 기계적 특성을 가지며, 안정적인 변형률 센싱을 위해 낮은 잡음 수준(Noise level), 높은 선형성(Linearity)을 갖는 변형율 센서의 개발이 필요한 상황이다.Therefore, the sensor for structural integrity monitoring of a composite material structure has high mechanical properties so that it can be used as an insertion type without deteriorating the properties of the composite material, and has a low noise level and high linearity for stable strain sensing. It is a situation that requires the development of a strain sensor.
따라서, 본 발명이 해결하고자 하는 과제는 하중 지지가 가능하면서도 복합재료 구조물의 변형률 센싱에 적합한 잡음 수준 및 선형성을 가지는 변형률 센서 및 그 제조방법을 제공하는 것이다.Accordingly, a problem to be solved by the present invention is to provide a strain sensor capable of supporting a load and having a noise level and linearity suitable for strain sensing of a composite material structure, and a method of manufacturing the same.
본 발명의 일 실시예는 코어-쉘 구조의 섬유형 변형률 센서로서, 코어를 이루는 섬유 지지체; 및 상기 섬유 지지체상에 형성된 다층구조의 쉘층을 포함하며, 상기 쉘 층은, 상기 섬유 지지체 상에 형성된 제 1 탄성 중합체; 상기 제 1 탄성 중합체 상에 형성된 전도층; 및 상기 전도층 상에 형성된 제 2 탄성 중합체를 포함하며, 상기 센서는 상기 전도층의 저항변화에 따라 상기 센서를 포함하는 구조물의 변형율을 센싱하는 것을 특징으로 한다.An embodiment of the present invention is a core-shell structure of a fiber-type strain sensor, the fiber support constituting the core; And a multilayered shell layer formed on the fiber support, wherein the shell layer comprises: a first elastomer formed on the fiber support; A conductive layer formed on the first elastomer; And a second elastomer formed on the conductive layer, wherein the sensor senses a strain rate of a structure including the sensor according to a change in resistance of the conductive layer.
보다 구체적으로, 상기 전도층은 상이한 전도성을 갖는 적어도 2개의 단위 전도층이 순차적으로 적층된 샌드위치 구조일 수 있다.More specifically, the conductive layer may have a sandwich structure in which at least two unit conductive layers having different conductivity are sequentially stacked.
이때, 상기 단위 전도층은 전도성 입자를 포함하며, 상기 2개의 단위 전도층은 상이한 전도성 입자의 중량%를 달리하여 상이한 전도성을 가질 수 있다. 구체적으로, 상기 전도층은 제 1 단위 전도층; 제 2 단위 전도층; 및 제 1 단위 전도층을 포함하는 샌드위치 구조이며, 상기 제 2 단위 전도층은 상기 제 1 단위 전도층보다 낮은 분율의 전도성 입자를 갖는 것을 특징으로 한다.In this case, the unit conductive layer includes conductive particles, and the two unit conductive layers may have different conductivity by varying the weight% of the different conductive particles. Specifically, the conductive layer includes a first unit conductive layer; A second unit conductive layer; And a sandwich structure including a first unit conductive layer, wherein the second unit conductive layer has a lower fraction of conductive particles than the first unit conductive layer.
상기 섬유 지지체는 단일 필라멘트 (Single filament)일 수 있다.The fiber support may be a single filament.
한편, 상기 제 1 탄성 중합체 및 제 2 탄성 중합체는 상기 섬유 지지체보다 높은 푸아송비 (Poison's ratio)를 가질 수 있으며, 상기 제 1 탄성 중합체 및 제 2 탄성 중합체는 탄성중합체로는 폴리우레탄(PU), 폴리디메틸실록산(PDMS), 천연고무(NR), 부타디엔고무(BR), 스타이렌 부타디엔 고무(SBR), 아크리로니트릴 부타디엔 고무(NBR) 및 에틸렌 비닐아세테이트 공중합체(EVA)로 이루어진 군에서 선택되는 어느 하나를 포함할 수 있다.Meanwhile, the first elastomer and the second elastomer may have a higher Poison's ratio than the fiber support, and the first elastomer and the second elastomer may be polyurethane (PU), Polydimethylsiloxane (PDMS), natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and ethylene vinyl acetate copolymer (EVA). It can contain either.
아울러, 상기 전도성 입자는 탄소나노튜브, 그래핀, 은 나노와이어 및 금 나노와이어로 이루어진 군에서 선택된 어느 하나를 포함할 수 있다.In addition, the conductive particles may include any one selected from the group consisting of carbon nanotubes, graphene, silver nanowires, and gold nanowires.
본 발명의 일 실시예는 코어-쉘 구조의 섬유형 변형률 센서 제조방법으로, 섬유 지지체 상에 제 1 탄성 중합체를 코팅하는 단계; 샌드위치 구조의 전도층을 상기 제 1 탄성 중합체 상에 코팅하는 단계; 및 제 2 탄성 중합체를 상기 전도층 상에 코팅하는 단계를 포함하며, 상기 샌드위치 구조의 전도층은 상이한 전도성을 갖는 단위 전도층이 순차적으로 적층된 구조인 것을 특으로 한다.An embodiment of the present invention is a method for manufacturing a fiber-type strain sensor having a core-shell structure, comprising the steps of: coating a first elastomer on a fiber support; Coating a conductive layer of a sandwich structure on the first elastomer; And coating a second elastomer on the conductive layer, wherein the conductive layer of the sandwich structure has a structure in which unit conductive layers having different conductivity are sequentially stacked.
상기 코팅은 침지(dipping) 또는 스프레이(spray) 방식으로 진행될 수 있다.The coating may be performed by dipping or spraying.
아울러, 상기 단위 전도층은 전도성 입자를 포함하며, 상기 2개의 단위 전도층은 상이한 전도성 입자의 중량%를 달리하여 상이한 전도성을 가질 수 있다.In addition, the unit conductive layer includes conductive particles, and the two unit conductive layers may have different conductivity by varying the weight% of the different conductive particles.
이때, 상기 전도층은 제 1 단위 전도층; 제 2 단위 전도층; 및 제 1 단위 전도층을 포함하는 샌드위치 구조이며, 상기 제 2 단위 전도층은 상기 제 1 단위 전도층보다 낮은 분율의 전도성 입자를 가질 수 있으며, 상기 섬유 지지체는 단일 필라멘트 (Single filament)인 것을 특징으로 한다.In this case, the conductive layer is a first unit conductive layer; A second unit conductive layer; And a sandwich structure including a first unit conductive layer, wherein the second unit conductive layer may have a lower fraction of conductive particles than the first unit conductive layer, and the fiber support is a single filament. It is done.
한편, 상기 제 1 탄성 중합체 및 제 2 탄성 중합체는 상기 섬유 지지체보다 높은 푸아송비 (Poison's ratio)를 가질 수 있으며, 상기 제 1 탄성 중합체 및 제 2 탄성 중합체는 탄성중합체로는 폴리우레탄(PU), 폴리디메틸실록산(PDMS), 천연고무(NR), 부타디엔고무(BR), 스타이렌 부타디엔 고무(SBR), 아크리로니트릴 부타디엔 고무(NBR) 및 에틸렌 비닐아세테이트 공중합체(EVA)로 이루어진 군에서 선택되는 어느 하나를 포함할 수 있다.Meanwhile, the first elastomer and the second elastomer may have a higher Poison's ratio than the fiber support, and the first elastomer and the second elastomer may be polyurethane (PU), Polydimethylsiloxane (PDMS), natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and ethylene vinyl acetate copolymer (EVA). It can contain either.
아울러, 상기 전도성 입자는 탄소나노튜브, 그래핀, 은 나노와이어 및 금 나노와이어로 이루어진 군에서 선택된 어느 하나를 포함할 수 있다.In addition, the conductive particles may include any one selected from the group consisting of carbon nanotubes, graphene, silver nanowires, and gold nanowires.
본 발명에 따른 초고강도 코어 섬유와 탄성중합체 층 및 샌드위치 구조의 적층형 전도층을 포함하는 다층 쉘 구조의 센싱층 활용에 의하면 코어 섬유에 의해 강도와 강성이 향상되고, 탄성중합체층에 의해 잡음 수준이 개선되며 샌드위치 구조의 전도층에 의해 측정 신호의 선형성이 향상된 섬유형 센서를 제조할 수 있어 복합재료 구조 내에서 결함으로 작용하지 않으면서도 안정적으로 변형률 측정이 가능하다. 따라서 복합재료 구조물 내에서 결함으로 작용하던 기존 센서의 문제점을 해결해 보다 다양한 분야에 적용 가능하며 신뢰성 있는 측정 결과를 얻을 수 있는 이점이 있으며, 연속식으로 제조가 가능하기 때문에 기존 센서들보다 제작 단가를 낮출 수 있는 장점이 있다.According to the use of a multi-layered shell structure sensing layer including an ultra-high strength core fiber, an elastomer layer and a sandwich structure laminated conductive layer according to the present invention, the strength and rigidity are improved by the core fiber, and the noise level is reduced by the elastomer layer. It is possible to manufacture a fibrous sensor with improved linearity of the measurement signal by the conductive layer of the sandwich structure, so that it is possible to stably measure the strain rate without acting as a defect in the composite material structure. Therefore, it is possible to apply to a wider variety of fields by solving the problem of the existing sensor that was acting as a defect in the composite material structure, and has the advantage of obtaining a reliable measurement result.Since it can be manufactured continuously, the manufacturing cost is lower than that of existing sensors. There is an advantage that can be lowered.
도 1은 본 발명의 일 실시예에 따른 코어-쉘 형태의 섬유형 변형률 센서의 구조를 보여주는 모식도이다.1 is a schematic diagram showing the structure of a core-shell type fiber strain sensor according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 코어-쉘 구조의 섬유형 변형률 센서의 구성을 보여주는 도면이다.2 is a diagram showing the configuration of a fiber-type strain sensor having a core-shell structure according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 코어-쉘 구조의 섬유형 변형률 센서 제조방법의 과정을 나타내는 순서도이다.3 is a flow chart showing a process of a method for manufacturing a fiber-type strain sensor having a core-shell structure according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에서 섬유 지지체 제조시 사용한 건식 제트 습식방사 시스템을 나타내는 모식도이다.4 is a schematic diagram showing a dry jet wet spinning system used in manufacturing a fiber support in an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 다층구조의 쉘 구조 형성을 위한 코팅 공정을 보여주는 모식도이다.5 is a schematic diagram showing a coating process for forming a multilayered shell structure according to an embodiment of the present invention.
도 6은 실시예에서 제조한 UHMWPE 섬유의 DSC 분석 결과를 나타내는 그래프이다.6 is a graph showing DSC analysis results of UHMWPE fibers prepared in Examples.
도 7은 실시예에서 제조한 UHMWPE 섬유의 기계적 성질을 보여주는 그래프이다((a) 인장 강도, (b) 인장 모듈러스).7 is a graph showing the mechanical properties of UHMWPE fibers prepared in Examples ((a) tensile strength, (b) tensile modulus).
도 8은 실시예에서 제조한 섬유형 변형률 센서의 표면 형태와 전기저항을 나타내는 그래프이다((a) MWCNT 층의 코팅 두께 및 표면 형태, (b) 센서 섬유의 전기 저항).8 is a graph showing the surface shape and electrical resistance of the fiber-type strain sensor prepared in Example ((a) the coating thickness and surface shape of the MWCNT layer, (b) the electrical resistance of the sensor fiber).
도 9는 섬유형 변형율 센서의 변형 감도의 측정 결과를 보여주는 도면이다.9 is a view showing the measurement result of the strain sensitivity of the fiber-type strain sensor.
도 10은 본 발명의 실시예에 따른 전기 네트워크의 회로도를 나타내는 도면이다.10 is a diagram showing a circuit diagram of an electric network according to an embodiment of the present invention.
도 11은 실시예 1 및 3에서 제조한 섬유형 변형율 센서의 SNR 측정값을 나타내는 도면이다.11 is a diagram showing SNR measurement values of the fiber-type strain sensors manufactured in Examples 1 and 3. FIG.
도 12는 실시예 1 및 3에서 제조한 섬유형 변형율 센서의 변형 분포도를 나타내는 도면이다.12 is a diagram showing a strain distribution diagram of a fiber-type strain sensor manufactured in Examples 1 and 3. FIG.
도 13은 실시예 1 및 3에서 제조한 섬유형 변형율 센서의 MWCNT 층에서의 방사형 변형을 나타내는 도면이다.13 is a diagram showing radial strain in the MWCNT layer of the fibrous strain sensor prepared in Examples 1 and 3. FIG.
도 14는 실시예 2 내지 4에서 제조한 섬유형 변형율 센서의 1000 사이클 이상의 시간에 대한 ΔR/Ro 측정값 및 전기 네트워크의 개략도를 나타내는 도면이다.14 is a diagram showing a schematic diagram of an electrical network and a measurement value of ΔR/Ro for a time of 1000 cycles or more of the fibrous strain sensors manufactured in Examples 2 to 4. FIG.
도 15는 DP-MC의 히스테리시스 곡선을 나타내는 도면이다.15 is a diagram showing a hysteresis curve of DP-MC.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.In the present invention, various modifications may be made and various embodiments may be provided, and specific embodiments will be illustrated in the drawings and described in detail in the detailed description.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, when it is determined that a detailed description of a related known technology may obscure the subject matter of the present invention, a detailed description thereof will be omitted.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 발명에서, “포함한다” 또는 “가지다” 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present invention, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements, numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance the possibility of the presence or addition.
본 발명은 코어-쉘 구조의 섬유형 변형률 센서 및 그 제조방법에 관한 것으로, 보다 상세하게는 코어 섬유에 의해 강도와 강성이 향상되고, 탄성 중합체층에 의해 잡음 수준이 개선되며 샌드위치 구조의 전도층에 의해 측정 신호의 선형성이 향상된 효과를 갖는 코어-쉘 구조의 섬유형 변형률 센서 및 그 제조방법에 관한 것이다. The present invention relates to a fibrous strain sensor having a core-shell structure and a method for manufacturing the same, and more particularly, strength and rigidity are improved by a core fiber, a noise level is improved by an elastomer layer, and a conductive layer of a sandwich structure It relates to a fiber-type strain sensor having a core-shell structure having an effect of improving the linearity of a measurement signal and a method of manufacturing the same.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
도 1은 본 발명의 일 실시예에 따른 코어-쉘 형태의 섬유형 변형률 센서의 구조를 보여주는 모식도이다.1 is a schematic diagram showing the structure of a core-shell type fiber strain sensor according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 코어-쉘(core-shell) 형태의 섬유형 변형률 센서(1)는 코어를 이루는 섬유 지지체(10); 및 상기 섬유 지지체(10) 상에 형성된 다층구조의 쉘층(20)을 포함하여 구성되며, 상기 쉘층(20)은, 상기 섬유 지지체(10) 상에 형성된 제 1 탄성 중합체(21); 상기 제 1 탄성 중합체(21) 상에 형성된 전도층(22); 및 상기 전도층(22) 상에 형성된 제 2 탄성 중합체(21')를 포함한다.Referring to FIG. 1, a core-shell type fiber strain sensor 1 according to an embodiment of the present invention includes a fiber support 10 forming a core; And a multi-layered shell layer 20 formed on the fiber support 10, wherein the shell layer 20 includes: a first elastic polymer 21 formed on the fiber support 10; A conductive layer 22 formed on the first elastomer 21; And a second elastomer 21 ′ formed on the conductive layer 22.
이때, 상기 코어-쉘 형태의 섬유형 변형률 센서(1)는 전도층(22)의 저항변화에 따라 상기 센서를 포함하는 구조물의 변형율을 센싱하는 것을 특징으로 한다.At this time, the core-shell type fibrous strain sensor 1 is characterized in that it senses the strain of the structure including the sensor according to the resistance change of the conductive layer 22.
본 발명의 일 실시예에 따른 코어-쉘 형태의 섬유형 변형률 센서(1)는 코어를 이루는 섬유 지지체(10)에 의해 강도와 강성이 향상되고, 탄성 중합체에 의해 잡음 수준이 개선되며, 상기 전도층(22)에 의해 측정 신호의 선형성이 향상될 수 있어, 복합재료 구조 내에서 결함으로 작용하지 않으면서도 안정적으로 변형률을 용이하게 측정할 수 있다. 참고로, 통상적인 센서의 경우에는 삽입형으로 사용하였을 때, 복합재 내부에서 결함으로 작용하지만, 고강도 코어 섬유를 적용한 본 발명의 코어-쉘 형태의 섬유형 변형률 센서(1)는 복합재에 사용되는 보강섬유와의 기계적 물성 차이를 줄일 수 있어 전체 구조물의 구조적 신뢰성을 유지하는 동시에 구조 내부의 변형률 분포를 모니터링 할 수 있는 장점이 있다.In the core-shell type fibrous strain sensor 1 according to an embodiment of the present invention, strength and rigidity are improved by the fiber support 10 constituting the core, the noise level is improved by the elastomer, and the conduction Since the linearity of the measurement signal can be improved by the layer 22, the strain can be easily measured stably without acting as a defect in the composite material structure. For reference, in the case of a conventional sensor, when used as an insert type, it acts as a defect in the composite material, but the core-shell type fiber strain sensor 1 of the present invention to which a high strength core fiber is applied is a reinforcing fiber used in a composite material. It has the advantage of being able to reduce the difference in mechanical properties between and to maintain the structural reliability of the entire structure and to monitor the strain distribution inside the structure.
먼저, 코어를 이루는 섬유 지지체(10)는 단일 필라멘트 (Single filament)일 수 있으며, 우수한 기계적 특성을 가지고 있는 초고분자량 폴리올레핀계 고분자(Ultra High Molecular Weight Polyethylene, UHMWPE)가 사용될 수 있다. 아울러, 상기 섬유 지지체(10)는 섬유형상으로 제조하기 위하여 기격 습식방사, 습식방사 등의 습식 공정을 이용하여 제조될 수 있다. First, the fiber support 10 constituting the core may be a single filament, and an ultra high molecular weight polyolefin-based polymer (Ultra High Molecular Weight Polyethylene, UHMWPE) having excellent mechanical properties may be used. In addition, the fiber support 10 may be manufactured by using a wet process such as air-gap wet spinning and wet spinning in order to be manufactured in a fibrous shape.
구체적으로, 초기 방사된 섬유는 열연신 롤러 사이를 지나며 연신되어, 섬유 길이방향으로 분자쇄의 정렬을 통해 기계적 물성이 극대화될 수 있다. 이때 최적의 처리 조건은 고분자 재료의 녹는점 및 재결정화 온도 사이의 범위에서 결정될 수 있다. Specifically, the initially spun fiber is stretched while passing between the hot stretching rollers, and mechanical properties can be maximized through alignment of molecular chains in the fiber longitudinal direction. At this time, the optimum processing conditions may be determined in a range between the melting point of the polymer material and the recrystallization temperature.
다음으로, 탄성중합체는 섬유 지지체(10)의 표면에 균일하게 코팅되는 것으로, 딥코팅, 스프레이 코팅 등의 방법으로 코팅될 수 있으며, 일 예로 딥코팅 방법으로 코팅될 수 있다.Next, the elastomer is uniformly coated on the surface of the fiber support 10, and may be coated by a method such as dip coating or spray coating. For example, it may be coated by a dip coating method.
상기 제 1 탄성 중합체(21) 및 제 2 탄성 중합체(21')는 상기 섬유 지지체(10)보다 높은 푸아송비 (Poison's ratio)를 갖는 것을 특징으로 한다.The first elastomer 21 and the second elastomer 21 ′ are characterized by having a Poison's ratio higher than that of the fiber support 10.
여기서, "푸아송비"라 함은, 재료에 수직 응력을 주었을 때의 가로 변형과 세로 변형의 비로, 탄성 변형 영역에서의 변형을 파악함에 있어서 중요하게 고려되는 재료 거동의 지표를 의미할 수 있다.Here, the term "Poisson's ratio" is a ratio of the transverse deformation and the longitudinal deformation when a vertical stress is applied to the material, and may mean an index of material behavior that is considered important in grasping the deformation in the elastic deformation region.
구체적으로, 상기 제 1 탄성 중합체(21) 및 제 2 탄성 중합체(21')는 탄성중합체로는 폴리우레탄(PU), 폴리디메틸실록산(PDMS), 천연고무(NR), 부타디엔고무(BR), 스타이렌 부타디엔 고무(SBR), 아크리로니트릴 부타디엔 고무(NBR) 및 에틸렌 비닐아세테이트 공중합체(EVA)로 이루어진 군에서 선택되는 어느 하나를 포함할 수 있다. 제 1 탄성 중합체(21) 및 제 2 탄성 중합체(21')는 서로 동일한 탄성중합체로 이루어질 수 있으며, 또는 서로 다른 탄성중합체로 이루어질 수 있다. 일 예로, 제 1 탄성 중합체(21) 및 제 2 탄성 중합체(21')는 폴리우레탄(PU) 일 수 있다.Specifically, the first elastomer 21 and the second elastomer 21 ′ include polyurethane (PU), polydimethylsiloxane (PDMS), natural rubber (NR), butadiene rubber (BR), It may include any one selected from the group consisting of styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and ethylene vinyl acetate copolymer (EVA). The first elastomer 21 and the second elastomer 21 ′ may be made of the same elastomer, or may be made of different elastomers. For example, the first elastomer 21 and the second elastomer 21 ′ may be polyurethane (PU).
특히, 상기 제 1 탄성 중합체(21) 및 제 2 탄성 중합체(21')는 후술하게 되는 전도층(22)을 감싸고 있는 두 개의 탄성중합체층(21, 21')은 전도층(22)에 압축 변형(compressive deformation)을 유도하여, 섬유 반경방향으로 전도성 네트워크(conductive network) 의 파단을 막아 센서의 노이즈 수준을 크게 감소시킬 수 있다.In particular, the first elastomer 21 and the second elastomer 21 ′ are compressed into the conductive layer 22 and the two elastomer layers 21 and 21 ′ surrounding the conductive layer 22 to be described later. By inducing compressive deformation, it is possible to significantly reduce the noise level of the sensor by preventing breakage of the conductive network in the fiber radial direction.
아울러, 상기 전도층(22)은 상이한 전도성을 갖는 적어도 2개의 단위 전도층(22)이 순차적으로 적층된 샌드위치 구조일 수 있다. 구체적으로, 상기 단위 전도층(22)은 전도성 입자를 포함하며, 상기 2개의 단위 전도층(22)은 상이한 전도성 입자의 중량 %를 달리하여 상이한 전도성을 가질 수 있다. 보다 구체적으로, 안정적인 응답 특성을 가지는 전도성 입자의 무게 분율(weight percent)이 높은 층과 높은 민감도를 가지는 낮은 농도의 층을 교대로 적층시켜 제조할 수 있다. 특히, 샌드위치구조의 전기전도층(22)은 병렬 연결 효과로 인해 각 층의 특성을 상호 보완하여 선형성이 뛰어나면서도 민감한 센서를 구현할 수 있다.In addition, the conductive layer 22 may have a sandwich structure in which at least two unit conductive layers 22 having different conductivity are sequentially stacked. Specifically, the unit conductive layer 22 includes conductive particles, and the two unit conductive layers 22 may have different conductivity by varying the weight% of the different conductive particles. More specifically, a layer having a high weight percent of conductive particles having a stable response characteristic and a layer having a low concentration having a high sensitivity may be alternately stacked. In particular, the electroconductive layer 22 having a sandwich structure may complement each other with characteristics of each layer due to the parallel connection effect, thereby implementing a sensor having excellent linearity and a sensitivity.
예컨대, 상기 전도층(22)은 제 1 단위 전도층(221), 제 2 단위 전도층(222) 및 제 1 단위 전도층(221)을 포함하는 샌드위치 구조이며, 상기 제 2 단위 전도층(222)은 상기 제 1 단위 전도층(221)보다 낮은 분율의 전도성 입자를 가질 수 있다.For example, the conductive layer 22 has a sandwich structure including a first unit conductive layer 221, a second unit conductive layer 222, and a first unit conductive layer 221, and the second unit conductive layer 222 ) May have a lower fraction of conductive particles than the first unit conductive layer 221.
상기 전도성 입자는 탄소나노튜브, 그래핀, 은 나노와이어 및 금 나노와이어로 이루어진 군에서 선택된 어느 하나를 포함할 수 있으며, 일 예로, 탄소나토튜브일 수 있다. The conductive particles may include any one selected from the group consisting of carbon nanotubes, graphene, silver nanowires, and gold nanowires, and for example, may be carbon nanotubes.
보다 구체적으로, 상기 전도층(22)의 재료는 전도성 입자가 분산된 수계 코팅용액이 사용 될 수 있으며 보다 안정적인 센싱을 위해 열가소성 (Thermoplastic) 고분자에 전도성 입자가 분산된 코팅 용액을 사용할 수 있다. 나아가, 샌드위치형의 전도층(22)의 적층 순서 및 적층 수를 달리하여 원하고자 하는 특성을 설계할 수 있다. 이와 같은 방식으로 섬유형 변형률 센서(1)를 제작할 경우 섬유 지지체(10)의 제작부터 쉘층(20)의 형성 까지 연속 공정으로 제조 가능해 제작 단가를 줄일 수 있는 장점이 있다.More specifically, the material of the conductive layer 22 may be an aqueous coating solution in which conductive particles are dispersed, and for more stable sensing, a coating solution in which conductive particles are dispersed in a thermoplastic polymer may be used. Furthermore, a desired characteristic can be designed by varying the stacking order and the number of stacking of the sandwich-type conductive layers 22. In the case of manufacturing the fibrous strain sensor 1 in this manner, it is possible to manufacture the fiber support 10 through the formation of the shell layer 20 in a continuous process, thereby reducing the manufacturing cost.
도 2는 본 발명의 실시예에 따른 코어-쉘 구조의 섬유형 변형률 센서의 구성을 보여주는 도면이다.2 is a diagram showing the configuration of a fiber-type strain sensor having a core-shell structure according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 코어-쉘 구조의 섬유형 변형률 센서 제조방법의 과정을 나타내는 순서도이다. 도 3을 참조하여, 본 발명의 일 실시예에 따른 코어-쉘 구조의 섬유형 변형률 센서(1) 제조방법을 설명한다.3 is a flow chart showing a process of a method for manufacturing a fiber-type strain sensor having a core-shell structure according to an embodiment of the present invention. Referring to FIG. 3, a method of manufacturing a fiber-type strain sensor 1 having a core-shell structure according to an embodiment of the present invention will be described.
구체적으로, 본 발명의 일 실시예에 따른 코어-쉘 구조의 섬유형 변형률 센서(1) 제조방법은 섬유 지지체(10) 상에 제 1 탄성 중합체(21)를 코팅하는 단계(S100); 샌드위치 구조의 전도층(22)을 상기 제 1 탄성 중합체(21) 상에 코팅하는 단계(S200); 및 제 2 탄성 중합체(21')를 상기 전도층(22) 상에 코팅하는 단계를 포함(S300)한다.Specifically, a method for manufacturing a core-shell structured fibrous strain sensor 1 according to an embodiment of the present invention includes the steps of coating a first elastomer 21 on the fiber support 10 (S100); Coating the conductive layer 22 having a sandwich structure on the first elastomer 21 (S200); And coating a second elastomer (21') on the conductive layer (22) (S300).
이때, 상기 샌드위치 구조의 전도층(22)은 상이한 전도성을 갖는 단위 전도층(22)이 순차적으로 적층된 구조일 수 있다.In this case, the conductive layer 22 of the sandwich structure may have a structure in which unit conductive layers 22 having different conductivity are sequentially stacked.
먼저, 코어를 이루는 섬유 지지체(10)는 단일 필라멘트 (Single filament)일 수 있으며, 우수한 기계적 특성을 가지고 있는 초고분자량 폴리올레핀계 고분자(Ultra High Molecular Weight Polyethylene, UHMWPE)가 사용될 수 있다.First, the fiber support 10 constituting the core may be a single filament, and an ultra high molecular weight polyolefin-based polymer (Ultra High Molecular Weight Polyethylene, UHMWPE) having excellent mechanical properties may be used.
상기 섬유 지지체(10)를 제조하기 위하여, 기격 습식방사, 습식방사 등의 습식 공정을 이용하여 제조될 수 있다. 일 예로, UHMWPE 분말을 용매에 용해시켜 방사용액을 준비하고, 상기 방사용액으로 dry-jet 습식 방사법을 이용하여 섬유 지지체(10)를 제조할 수 있다. In order to manufacture the fiber support 10, it may be manufactured using a wet process such as air-gap wet spinning and wet spinning. As an example, a spinning solution may be prepared by dissolving UHMWPE powder in a solvent, and the fiber support 10 may be prepared by using the dry-jet wet spinning method as the spinning solution.
아울러, 초기 방사된 섬유는 열연신 롤러 사이를 지나며 연신되어, 섬유 길이방향으로 분자쇄의 정렬을 통해 기계적 물성이 극대화될 수 있다. 이때 최적의 처리 조건은 고분자 재료의 녹는점 및 재결정화 온도 사이의 범위에서 결정될 수 있다. In addition, the initially spun fiber is stretched while passing between the hot stretching rollers, and mechanical properties can be maximized through alignment of molecular chains in the fiber longitudinal direction. At this time, the optimum processing conditions may be determined in a range between the melting point of the polymer material and the recrystallization temperature.
다음으로, 각각의 코팅하는 단계(S100, S200, S300)에서 코팅 공정은 침지(dipping) 또는 스프레이(spray) 방식으로 진행될 수 있으며, 일 예로, 딥코팅 방법으로 코팅될 수 있다.Next, in each of the coating steps (S100, S200, S300), the coating process may be performed in a dipping or spray method, and for example, may be coated by a dip coating method.
상기 제 1 탄성 중합체(21) 및 제 2 탄성 중합체(21')는 상기 섬유 지지체(10)보다 높은 푸아송비 (Poison's ratio)를 갖는 것을 특으로 한다.The first elastomer 21 and the second elastomer 21 ′ have a Poison's ratio higher than that of the fiber support 10.
여기서, "푸아송비"라 함은, 재료에 수직 응력을 주었을 때의 가로 변형과 세로 변형의 비로, 탄성 변형 영역에서의 변형을 파악함에 있어서 중요하게 고려되는 재료 거동의 지표를 의미할 수 있다.Here, the term "Poisson's ratio" is a ratio of the transverse deformation and the longitudinal deformation when a vertical stress is applied to the material, and may mean an index of material behavior that is considered important in grasping the deformation in the elastic deformation region.
구체적으로, 상기 제 1 탄성 중합체(21) 및 제 2 탄성 중합체(21')는 탄성중합체로는 폴리우레탄(PU), 폴리디메틸실록산(PDMS), 천연고무(NR), 부타디엔고무(BR), 스타이렌 부타디엔 고무(SBR), 아크리로니트릴 부타디엔 고무(NBR) 및 에틸렌 비닐아세테이트 공중합체(EVA)로 이루어진 군에서 선택되는 어느 하나를 포함할 수 있다. 제 1 탄성 중합체(21) 및 제 2 탄성 중합체(21')는 서로 동일한 탄성중합체로 이루어질 수 있으며, 또는 서로 다른 탄성중합체로 이루어질 수 있다. 일 예로, 제 1 탄성 중합체(21) 및 제 2 탄성 중합체(21')는 폴리우레탄(PU) 일 수 있다.Specifically, the first elastomer 21 and the second elastomer 21 ′ include polyurethane (PU), polydimethylsiloxane (PDMS), natural rubber (NR), butadiene rubber (BR), It may include any one selected from the group consisting of styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and ethylene vinyl acetate copolymer (EVA). The first elastomer 21 and the second elastomer 21 ′ may be made of the same elastomer, or may be made of different elastomers. For example, the first elastomer 21 and the second elastomer 21 ′ may be polyurethane (PU).
특히, 상기 제 1 탄성 중합체(21) 및 제 2 탄성 중합체(21')는 후술하게 되는 전도층(22)을 감싸고 있는 두 개의 탄성중합체층(21, 21')은 전도층(22)에 압축 변형(compressive deformation)을 유도하여, 섬유 반경방향으로 전도성 네트워크(conductive network) 의 파단을 막아 센서의 노이즈 수준을 크게 감소시킬 수 있다.In particular, the first elastomer 21 and the second elastomer 21 ′ are compressed into the conductive layer 22 and the two elastomer layers 21 and 21 ′ surrounding the conductive layer 22 to be described later. By inducing compressive deformation, it is possible to significantly reduce the noise level of the sensor by preventing breakage of the conductive network in the fiber radial direction.
아울러, 상기 단위 전도층(22)은 전도성 입자를 포함하며, 상기 2개의 단위 전도층(22)은 상이한 전도성 입자의 중량 %를 달리하여 상이한 전도성을 가질 수 있다. 보다 구체적으로, 안정적인 응답 특성을 가지는 전도성 입자의 무게 분율(weight percent)이 높은 층과 높은 민감도를 가지는 낮은 농도의 층을 교대로 적층시켜 제조할 수 있다. 특히, 샌드위치구조의 전기전도층(22)은 병렬 연결 효과로 인해 각 층의 특성을 상호 보완하여 선형성이 뛰어나면서도 민감한 센서를 구현할 수 있다.In addition, the unit conductive layer 22 includes conductive particles, and the two unit conductive layers 22 may have different conductivity by varying the weight% of the different conductive particles. More specifically, a layer having a high weight percent of conductive particles having a stable response characteristic and a layer having a low concentration having a high sensitivity may be alternately stacked. In particular, the electroconductive layer 22 having a sandwich structure may complement each other with characteristics of each layer due to the parallel connection effect, thereby implementing a sensor having excellent linearity and a sensitivity.
예컨대, 상기 전도층(22)은 제 1 단위 전도층(221), 제 2 단위 전도층(222) 및 제 1 단위 전도층(221)을 포함하는 샌드위치 구조이며, 상기 제 2 단위 전도층(222)은 상기 제 1 단위 전도층(221)보다 낮은 분율의 전도성 입자를 가질 수 있다.For example, the conductive layer 22 has a sandwich structure including a first unit conductive layer 221, a second unit conductive layer 222, and a first unit conductive layer 221, and the second unit conductive layer 222 ) May have a lower fraction of conductive particles than the first unit conductive layer 221.
상기 전도성 입자는 탄소나노튜브, 그래핀, 은 나노와이어 및 금 나노와이어로 이루어진 군에서 선택된 어느 하나를 포함할 수 있으며, 일 예로, 탄소나토튜브일 수 있다. The conductive particles may include any one selected from the group consisting of carbon nanotubes, graphene, silver nanowires, and gold nanowires, and for example, may be carbon nanotubes.
보다 구체적으로, 상기 전도층(22)의 재료는 전도성 입자가 분산된 수계 코팅용액이 사용 될 수 있으며 보다 안정적인 센싱을 위해 열가소성 (Thermoplastic) 고분자에 전도성 입자가 분산된 코팅 용액을 사용할 수 있다. 나아가, 샌드위치형의 전도층(22)의 적층 순서 및 적층 수를 달리하여 원하고자하는 특성을 설계할 수 있다. 이와 같은 방식으로 섬유형 변형률 센서(1)를 제작할 경우 섬유 지지체(10)의 제작부터 쉘층(20)의 형성 까지 연속 공정으로 제조 가능해 제작 단가를 줄일 수 있는 장점이 있다.More specifically, the material of the conductive layer 22 may be an aqueous coating solution in which conductive particles are dispersed, and for more stable sensing, a coating solution in which conductive particles are dispersed in a thermoplastic polymer may be used. Furthermore, a desired characteristic can be designed by varying the stacking order and the number of stacking of the sandwich-type conductive layers 22. In the case of manufacturing the fibrous strain sensor 1 in this manner, it is possible to manufacture the fiber support 10 through the formation of the shell layer 20 in a continuous process, thereby reducing the manufacturing cost.
이에 따라 제조되는 코어-쉘 구조의 섬유형 변형률 센서(1)는 강도 및 강성이 높은 섬유 지지체(10)의 표면에 탄성중합체(Elastomer)층과 전도층(22)을 포함하는 다층 쉘을 형성 시킴으로써 복합재구조물 내에 삽입형으로 사용하였을 때 인장, 압축, 충격 또는 굴곡하중과 같은 외부 하중에 대한 지지력을 향상 시키는 동시에 전도층(22)의 저항 변화 감지를 통해 변형률을 측정할 수 있다.The resulting core-shell structured fibrous strain sensor 1 forms a multilayer shell including an elastomer layer and a conductive layer 22 on the surface of the fiber support 10 having high strength and rigidity. When used as an insertion type in a composite structure, it is possible to measure the strain through detection of a change in resistance of the conductive layer 22 while improving the support for external loads such as tensile, compression, impact, or bending load.
이하, 본 발명을 실시예 및 실험예를 통해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail through examples and experimental examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.However, the following Examples and Experimental Examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following Examples and Experimental Examples.
<실시예><Example>
실시예 1~4. 코어-쉘 구조의 섬유형 변형률 센서의 제조Examples 1-4. Fabrication of core-shell structured fibrous strain sensor
코어를 이루는 섬유 지지체의 제조Fabrication of the fiber support forming the core
습식 공정을 이용하여 초고분자량 폴리올레핀계 섬유 지지체(코어 섬유)를 제조하였다. 구체적으로 섬유 지지체는 도 4에 도시된 건식 제트 습식방사 시스템을 이용하여 제조하였다.An ultra-high molecular weight polyolefin-based fiber support (core fiber) was prepared using a wet process. Specifically, the fiber support was manufactured using the dry jet wet spinning system shown in FIG. 4.
먼저, UHMWPE 분말(U050: Average molecular weight 5x106 g/mol, 대한유화)을 파라핀 오일(Sigma-Aldrich)과 혼합하였다. 그리고, 후속 용해 공정에서 UHMWPE 의 사슬 이동성을 향상시키기 위한 팽윤 공정을 위하여 24시간 동안 100 ℃ 에서 유지시켰다. 상기 팽윤된 UHMWPE 분말을 170 ℃ 에서 4시간 동안 파라핀 오일에 용해시켜 4 중량% 의 용액을 제조하고, 상기 온도에서 2시간 동안 방사 용액 주사기에 보관하여, 상기 UHMWPE 용액의 분자 사슬을 안정화시켰다.First, UHMWPE powder (U050: average molecular weight 5x10 6 g/mol, Daehan Petrochemical) was mixed with paraffin oil (Sigma-Aldrich). In addition, in the subsequent dissolution process, it was maintained at 100° C. for 24 hours for a swelling process to improve the chain mobility of UHMWPE. The swollen UHMWPE powder was dissolved in paraffin oil at 170° C. for 4 hours to prepare a 4% by weight solution, and stored in a spinning solution syringe at this temperature for 2 hours to stabilize the molecular chain of the UHMWPE solution.
다음으로, UHMWPE 코어 섬유를 dry-jet 습식 방사법을 사용하여 방사하였다. 한편, 상기 UHMWPE 용액은 상기 용액의 열분해를 방지하고 노즐로부터 균일하게 압출시키기 위하여 0.2MPa 의 N2 가스 압력으로 노즐에 공급하여 UHMWPE 섬유를 제조하였다.Next, the UHMWPE core fibers were spun using a dry-jet wet spinning method. Meanwhile, the UHMWPE solution was supplied to the nozzle at 0.2 MPa of N 2 gas pressure to prevent thermal decomposition of the solution and uniformly extruded from the nozzle to prepare UHMWPE fibers.
그리고, 상기 UHMWPE 섬유 내에 잔류하는 파라핀 오일을 제거하였다.And, the paraffin oil remaining in the UHMWPE fiber was removed.
다층 구조의 쉘층 형성Multi-layered shell layer formation
먼저, 제조된 UHMWPE 섬유의 기계적 물성을 극대화 시키기 위하여 속도가 다른 각각의 롤러를 지나며 열연신을 처리하였다. First, in order to maximize the mechanical properties of the manufactured UHMWPE fiber, it was subjected to hot stretching while passing through rollers having different speeds.
그리고, 상기 UHMWPE 섬유에 다층구조의 쉘층을 형성하였다. 도 5는 본 발명의 일 실시예에 따른 다층구조의 쉘 구조 형성을 위한 코팅 공정을 보여주는 모식도이다.In addition, a multi-layered shell layer was formed on the UHMWPE fiber. 5 is a schematic diagram showing a coating process for forming a multilayered shell structure according to an embodiment of the present invention.
도 5를 참조하여 다층 구조의 쉘층 형성 방법을 설명한다.A method of forming a multilayered shell layer will be described with reference to FIG. 5.
먼저, 상기 UHMWPE 섬유를 PU 수용액(CRP 26301, T & L Co., Ltd)에 침지시키고, 20초 후에 수용액 상에서 빼내었다. 이어서, PU가 코팅된 섬유를 80℃ 에서 3분 동안 건조시켰다. 이 과정을 3회 반복하였다.First, the UHMWPE fibers were immersed in a PU aqueous solution (CRP 26301, T & L Co., Ltd), and after 20 seconds, the UHMWPE fibers were removed from the aqueous solution. Subsequently, the PU-coated fiber was dried at 80° C. for 3 minutes. This process was repeated 3 times.
그리고, PU 가 코팅된 UHMWPE 섬유 상에 MWCNT 수용액(금호 석유화학)을 사용하여 상기와 같은 방법으로 도전층을 형성하였다(실시예 1~4). 실시예 1~4의 도전층의 구조는 아래의 표 1에 나타내었다. 한편, 샌드위치 구조의 전도층인 경우에는, 동일한 코팅 절차로 각각 3 중량 % MWCNT의 제1단위 전도층, 2 중량 % MWCNT의 제2단위 전도층 및 3 중량 % MWCNT의 제3단위 전도층을 코팅시켰다.In addition, a conductive layer was formed on the PU-coated UHMWPE fiber in the same manner as described above using an MWCNT aqueous solution (Kumho Petrochemical) (Examples 1 to 4). The structures of the conductive layers of Examples 1 to 4 are shown in Table 1 below. On the other hand, in the case of a sandwich structure conductive layer, the first unit conductive layer of 3% by weight MWCNT, the second unit conductive layer of 2% by weight MWCNT, and the third unit conductive layer of 3% by weight MWCNT are coated by the same coating procedure. Made it.
이어서, 전도성 층으로 코팅된 UHMWPE 섬유를 60 ℃ 오븐에서 1시간 동안 건조시켜 MWCNT 층에서 과잉수를 제거하였다.Subsequently, the UHMWPE fiber coated with the conductive layer was dried in an oven at 60° C. for 1 hour to remove excess water from the MWCNT layer.
마지막으로, 상기 도전층이 형성된 UHMWPE 섬유에 제2 PU 층을 코팅하여 코어-쉘 구조의 섬유형 변형률 센서를 제조하였다.Finally, a second PU layer was coated on the UHMWPE fiber on which the conductive layer was formed to prepare a fibrous strain sensor having a core-shell structure.
MWCNT 층 구조MWCNT layer structure
실시예 1(SP-SC3)Example 1 (SP-SC3) Single layer: 3wt%Single layer: 3wt%
실시예 2(DP-SC2)Example 2 (DP-SC2) Single layer: 2wt%Single layer: 2wt%
실시예 3(DP-SC3)Example 3 (DP-SC3) Single layer: 3wt%Single layer: 3wt%
실시예 4 (DP-MC)Example 4 (DP-MC) Sandwich Multilayer: 3/2/3 wt%Sandwich Multilayer: 3/2/3 wt%
<실험예><Experimental Example>
실험예 1. UHMWPE 섬유의 DSC 분석Experimental Example 1. DSC Analysis of UHMWPE Fiber
UHMWPE 섬유의 DSC 를 분석하였으며, 그 결과를 도 6에 나타내었다.DSC analysis of the UHMWPE fiber was performed, and the results are shown in FIG. 6.
도 6은 방사 된 UHMWPE 섬유의 DSC 분석 결과를 보여준다.6 shows the results of DSC analysis of spun UHMWPE fibers.
그 결과, 방사된 섬유의 결정화 및 용융 온도는 각각 119 및 133 ℃로 각각 확인되었다.As a result, the crystallization and melting temperatures of the spun fibers were confirmed to be 119 and 133°C, respectively.
UHMWPE 섬유의 녹는 점 근처에서 중합체 사슬의 이동성이 향상된다. 이 경우, 섬유의 비정질 영역은 외력 및 온도 하에서 결정으로 쉽게 전달될 수 있다.The mobility of polymer chains near the melting point of UHMWPE fibers is improved. In this case, the amorphous region of the fiber can be easily transferred to the crystal under external force and temperature.
또한, 가열된 섬유가 결정화 온도 근처로 냉각될 때, 결정질 영역뿐만 아니라 비정질 영역에서도 재결정화가 진행되었다.In addition, when the heated fiber was cooled to near the crystallization temperature, recrystallization proceeded not only in the crystalline region but also in the amorphous region.
이 현상은 결정성 및 연쇄 정렬 증가로 인해 UHMWPE 섬유의 기계적 특성을 향상시킬 수 있다.This phenomenon can improve the mechanical properties of UHMWPE fibers due to increased crystallinity and chain alignment.
실험예 2. UHMWPE 섬유의 기계적 특성 분석Experimental Example 2. Analysis of mechanical properties of UHMWPE fibers
실시예에서 제조한 UHMWPE 섬유의 기계적 특성을 분석하였다. 그리고, 그 결과를 도 7에 나타내었다.The mechanical properties of the UHMWPE fibers prepared in the examples were analyzed. And, the results are shown in FIG. 7.
도 7은 실시예에서 제조한 UHMWPE 섬유의 기계적 성질을 보여주는 그래프이다((a) 인장 강도, (b) 인장 모듈러스)7 is a graph showing the mechanical properties of UHMWPE fibers prepared in Examples ((a) tensile strength, (b) tensile modulus)
도 7을 참조하면, 코어 섬유의 인장 강도 및 모듈러스는 연신비 및 열연신 온도가 증가함에 따라 코어 섬유의 인장 강도 및 모듈러스가 향상된 것을 알 수 있다. 이는, 코어-섬유의 결정도가 열연신 공정 동안 분자 사슬의 재배열 또는 재배향에 의해 증가하기 때문인 것으로 보인다.Referring to FIG. 7, it can be seen that the tensile strength and modulus of the core fiber are improved as the draw ratio and hot stretching temperature increase. This seems to be because the crystallinity of the core-fiber is increased by rearrangement or rearrangement of the molecular chains during the hot drawing process.
특히, 최고 인장 강도 및 모듈러스는 최고 처리 온도에서 나타났는데, 이러한 현상은 방사된 섬유의 열분석 결과에 의해 설명되었다.In particular, the highest tensile strength and modulus appeared at the highest processing temperature, which was explained by the results of thermal analysis of the spun fibers.
실험예 3. 섬유형 변형율 센서의 표면 형태와 전기 저항 측정Experimental Example 3. Measurement of surface shape and electrical resistance of fiber-type strain sensor
실시예에서 제조한 섬유형 변형율 센서의 표면 형태와 전기 저항을 측정하였다.The surface shape and electrical resistance of the fiber-type strain sensor prepared in Example were measured.
그리고, 그 결과를 도 8에 나타내었다. 도 8은 실시예에서 제조한 섬유형 변형율 센서의 표면 형태와 전기저항을 나타내는 그래프이다((a) MWCNT 층의 코팅 두께 및 표면 형태, (b) 센서 섬유의 전기 저항).And, the results are shown in FIG. 8. 8 is a graph showing the surface shape and electrical resistance of the fiber-type strain sensor prepared in Example ((a) the coating thickness and surface shape of the MWCNT layer, (b) the electrical resistance of the sensor fiber).
먼저, 도 8(a)는 코팅 순서와 관련하여 코팅된 섬유의 표면 형태를 보여준다. 도 8(a)를 참조하면, MWCNT 코팅층은 딥 코팅법에 의해 섬유상에 균일하게 형성된 것을 알 수 있다. MWCNT 코팅층의 두께는 다양한 수의 딥 코팅으로 4 ㎛로 꾸준히 제어되었다.First, Figure 8 (a) shows the surface shape of the coated fiber in relation to the coating sequence. Referring to FIG. 8(a), it can be seen that the MWCNT coating layer is uniformly formed on the fiber by a dip coating method. The thickness of the MWCNT coating layer was steadily controlled to 4 μm with various numbers of dip coatings.
그리고, 도 8(b)는 섬유형 변형율 센서의 전기 저항 측정 결과를 보여준다. 도 8(b) 를 참조하면, 전기 저항은 MWCNT 층의 농도와 관련이 있는 것으로 보인다. 구체적으로, DP-SC2 대비 DP-SC3의 전기적 통로가 조밀하게 형성되어 있기 때문에 전기 저항이 감소한 것으로 보인다.And, Figure 8 (b) shows the electrical resistance measurement results of the fiber-type strain sensor. Referring to Fig. 8(b), it seems that the electrical resistance is related to the concentration of the MWCNT layer. Specifically, the electrical resistance seems to have decreased because the electrical path of DP-SC3 is densely formed compared to DP-SC2.
결과적으로, 중량이 집중된 시편은 낮은 전기 저항값을 갖는 것으로 보인다. 특히, 샌드위치 구조화된 MWCNT 층 시편의 저항값은 저농도 층과 고농도 층의 조합으로 인하여, DP-SC2와 DP-SC3 사이의 중간 결과를 보여준다.As a result, the weight-concentrated specimen appears to have a low electrical resistance value. In particular, the resistance value of the sandwich structured MWCNT layer specimen shows an intermediate result between DP-SC2 and DP-SC3 due to the combination of the low-concentration layer and the high-concentration layer.
실험예 4. 섬유형 변형율 센서의 감도 측정Experimental Example 4. Sensitivity measurement of fiber-type strain sensor
실시예에서 제조한 섬유형 변형율 센서의 감도를 측정하였다.The sensitivity of the fiber-type strain sensor prepared in Example was measured.
그리고, 그 결과를 도 9에 나타내었다. 도 9는 섬유형 변형율 센서의 변형 감도의 측정 결과를 보여주는 도면이다.And, the results are shown in FIG. 9. 9 is a view showing the measurement result of the strain sensitivity of the fiber-type strain sensor.
도 10은 본 발명의 실시예에 따른 전기 네트워크의 회로도를 나타내는 도면이다.10 is a diagram showing a circuit diagram of an electric network according to an embodiment of the present invention.
도 9를 참조하면, 실시예 1~4에서 모두 감도가 증가하는 경향을 보인다. 이는, 인장 하중으로 인하여 전도성 네트워크의 파손에 의한 전도성 층의 저항 변화가 발생하였기 때문이다. 아울러, 센서에 외부 인장 하중을 가하면, MWCNT의 상대 거리가 커지게 된다. 이에 따라, 총 전기저항은 MWCNT 네트워크의 단절로 증가하였다.Referring to FIG. 9, in Examples 1 to 4, the sensitivity tends to increase. This is because a change in resistance of the conductive layer occurs due to the breakage of the conductive network due to the tensile load. In addition, when an external tensile load is applied to the sensor, the relative distance of the MWCNT increases. Accordingly, the total electrical resistance increased due to the disconnection of the MWCNT network.
도 9(a), (b)및 도 10을 참조하면, 단일 PU 층 구조는 이중 PU 층 구조보다 민감하고, 단일 PU 층 구조에서 높은 감도의 이유는 도 10 (a)에 도시된 바와 같이, CNT 층의 반경 방향의 인장 변형으로 인해 CNT 사이의 거리가 급격히 증가하여, 저항의 급격한 변화를 초래하기 때문이다. 반대로 도 10(b), (c)에 도시된 바와 같이, 외부 인장 하중이 가해질 때 반경 방향을 따라 압축 변형이 발생하기 때문에 이중 PU 층 구조에 대한 저항 변화는 비교적 작았다.9(a), (b) and FIG. 10, the single PU layer structure is more sensitive than the double PU layer structure, and the reason for the high sensitivity in the single PU layer structure is as shown in FIG. 10(a), This is because the distance between the CNTs increases rapidly due to the tensile deformation in the radial direction of the CNT layer, resulting in a rapid change in resistance. On the contrary, as shown in Figs. 10(b) and (c), when an external tensile load is applied, since compressive deformation occurs along the radial direction, the change in resistance to the double PU layer structure is relatively small.
도 9(b)를 참조하면, 실시예 2의 섬유형 변형율 센서는 가장 높은 감도와 비선형 형태를 보여주는데, 이는 MWCNT의 농도가 낮기 때문인 것으로 보인다. 참고로, MWCNT 층의 농도가 낮을 때, 터널링 효과는 전기 경로의 형성에서 MWCNT의 직접 접촉보다 우세하여 상기 현상이 발생하였다. 외부 부하에 의해 전기 경로 중 하나가 끊어지면 전도층의 총 저항이 급격히 증가하였다. 한편, 실시예 2의 경우에는 감도는 민감하나, 전기적 경로가 약하여 감지 응답이 불안정할 수 있다.Referring to FIG. 9(b), the fiber-type strain sensor of Example 2 shows the highest sensitivity and non-linear shape, which seems to be due to the low concentration of MWCNT. For reference, when the concentration of the MWCNT layer is low, the tunneling effect is superior to the direct contact of the MWCNT in the formation of the electric path, and the above phenomenon occurs. When one of the electrical paths is cut off by an external load, the total resistance of the conductive layer increases rapidly. On the other hand, in the case of the second embodiment, the sensitivity is sensitive, but the electrical path is weak, and the sensing response may be unstable.
실시예 2의 경우, GF 피팅 결과 또한 해당 센서의 비선형 거동을 확인시켜 주었다. 구체적으로, 3 ~ 4 % 변형률에서의 GF 값은 1 ~ 2 % 변형률 범위보다 161 % 에 걸쳐 크게 증가하였다.In the case of Example 2, the GF fitting result also confirmed the nonlinear behavior of the sensor. Specifically, the GF value at 3 to 4% strain increased significantly over 161% over the 1 to 2% strain range.
도 9(c)를 참조하면, 실시예 3의 경우(c), MWCNT 농도의 증가로 인하여 실시예 2 보다 감도 곡선의 선형성이 개선된 것을 알 수 있다. 아울러, 게이지 팩터(GF) 피팅 결과에서는 실시예 3의 GF 는 1~2% 변형률 범위보다 50% 이상 증가하였다. 실시예 3은 MWCNT 함량이 증가하면 전기 경로의 수가 증가하기 때문에 실시예 2 보다 낮은 잡음 수준(Noise level)으로 안정적인 응답을 나타내었다. 실시예 3은 실시예 2 대비 최대 감도가 55% 감소하였다.Referring to FIG. 9(c), in the case of Example 3 (c), it can be seen that the linearity of the sensitivity curve was improved compared to Example 2 due to an increase in the MWCNT concentration. In addition, in the results of fitting the gauge factor (GF), the GF of Example 3 increased by 50% or more over the range of 1 to 2% strain. Example 3 showed a stable response with a lower noise level than Example 2 because the number of electrical paths increased as the MWCNT content increased. In Example 3, the maximum sensitivity was reduced by 55% compared to Example 2.
mono-MWCNT 층 구조를 가진 광섬유 센서의 감도 측정 결과에 기초하여, 단일 층 구조를 사용하여 감지 응답의 선형성의 향상이 제한됨을 확인하였다.Based on the result of the sensitivity measurement of the optical fiber sensor having the mono-MWCNT layer structure, it was confirmed that the improvement of the linearity of the sensing response was limited using the single layer structure.
스트레인 센서의 선형 응답은 정확한 스트레인 감지, 신호 처리 및 사용에 중요하다. 따라서, 실험예에서 센싱 응답의 선형성을 향상시키기 위하여 샌드위치 구조의 MWCNT 층이 도입되었다.The linear response of the strain sensor is critical for accurate strain detection, signal processing and use. Therefore, in the experimental example, in order to improve the linearity of the sensing response, a sandwich-structured MWCNT layer was introduced.
도 9(d)에 나타낸 바와 같이, 샌드위치 구조화된 MWCNT 층을 갖는 센서 섬유의 감도 측정 결과로부터, 선형 감지 응답이 개선된 것을 알 수 있다. 이는 상이한 농도의 MWCNT 층의 조합이 측정 신호의 선형성 향상에 효과가 있음을 알 수 있다.As shown in Fig. 9(d), it can be seen from the result of the sensitivity measurement of the sensor fiber having the sandwich structured MWCNT layer, that the linear sensing response is improved. It can be seen that the combination of the MWCNT layers of different concentrations is effective in improving the linearity of the measurement signal.
실험예 5. 섬유형 변형율 센서의 SNR 값 측정Experimental Example 5. Measurement of SNR value of fiber-type strain sensor
실시예 1 및 3에서 제조한 섬유형 변형율 센서의 signal-to-noise ratio(SNR) 값을 측정하였다.The signal-to-noise ratio (SNR) value of the fiber-type strain sensor prepared in Examples 1 and 3 was measured.
그리고, 그 결과를 도 11에 나타내었다. 도 11은 실시예 1 및 3에서 제조한섬유형 변형율 센서의 SNR 측정값을 나타내는 도면이다. 여기에서 SNR은 하기 식을 따르며, SNR은 신호 대 잡음의 상대적인 크기를 재는 것으로서, SNR이 크면 클수록 잡음영향이 적다는 의미이다.And, the results are shown in FIG. 11. 11 is a view showing the SNR measurement value of the fiber-type strain sensor prepared in Examples 1 and 3. Here, SNR follows the following equation, and SNR measures the relative magnitude of signal-to-noise, which means that the larger the SNR, the less the noise effect.
Figure PCTKR2020003915-appb-I000001
Figure PCTKR2020003915-appb-I000001
여기에서 S는 섬유 센서로부터의 전기 저항 감지 신호, σ는 전기 저항 감지 신호의 표준 편차이다.Where S is the electrical resistance detection signal from the fiber sensor, and σ is the standard deviation of the electrical resistance detection signal.
도 11을 참조하면, DP-SC3의 평균 SNR 값은 SP-SC3의 평균 SNR 값과 비교할 때 359 % 더 높았으며, 이는 이중 PU 층이 소음 수준을 감소시킨다는 것을 의미한다.Referring to FIG. 11, the average SNR value of DP-SC3 was 359% higher than that of SP-SC3, which means that the double PU layer reduces the noise level.
도 12는 실시예 1 및 3에서 제조한 섬유형 변형율 센서의 변형 분포도를 나타내는 도면이다.12 is a diagram showing a strain distribution diagram of a fiber-type strain sensor manufactured in Examples 1 and 3. FIG.
도 12를 참조하면, SP-SC3의 단일 PU 층에서, Poisson의 효과에 의해 코어 섬유의 방사상 수축이 MWCNT 층을 방사상 방향으로 당겨 MWCNT 층의 방사상 방향으로 인장 변형이 발생하는데, 이는 MWCNT 층의 전기 네트워크를 파괴할 수 있다(a). 반면, DP-SC3의 이중 PU 층에서는, MWCNT 층과 UHMWPE 코어 섬유 사이의 제 1 PU 층이 낮은 탄성 계수에 의해 MWCNT 층에 대한 코어 섬유 수축의 효과를 보상하기 때문에 압축 변형이 MWCNT 층의 반경 방향으로 생성되었다(b). 상기 효과는 도 12(b)에 도시된 것처럼, 코어 섬유와 MWCNT 층의 반경 방향으로의 Poisson 수축으로 인한 제 1 PU 층의 반경 방향으로의 상당한 인장 변형에 의해 확인될 수 있다. 이는 상기 도 11과 관련하여, 이중 PU 층은 전도층의 전기 네트워크의 고장을 방지함으로써 섬유 센서의 노이즈 레벨 감소에 긍정적인 영향을 미쳤음을 의미한다.Referring to Figure 12, in the single PU layer of SP-SC3, the radial contraction of the core fiber due to the effect of Poisson pulls the MWCNT layer in the radial direction and tensile deformation occurs in the radial direction of the MWCNT layer, which is the electricity of the MWCNT layer. Network can be destroyed (a). On the other hand, in the double PU layer of DP-SC3, the compressive deformation is the radial direction of the MWCNT layer because the first PU layer between the MWCNT layer and the UHMWPE core fiber compensates for the effect of the core fiber shrinkage on the MWCNT layer by a low modulus of elasticity. Was created as (b). This effect can be confirmed by significant tensile deformation in the radial direction of the first PU layer due to Poisson shrinkage in the radial direction of the core fiber and the MWCNT layer, as shown in Fig. 12(b). This means that with reference to FIG. 11, the double PU layer has a positive effect on reducing the noise level of the fiber sensor by preventing the failure of the electrical network of the conductive layer.
도 13은 실시예 1 및 3에서 제조한 섬유형 변형율 센서의 MWCNT 층에서의 방사형 변형을 나타내는 도면이다.13 is a diagram showing radial strain in the MWCNT layer of the fibrous strain sensor prepared in Examples 1 and 3. FIG.
도 13을 참조하면, DP-SC3의 MWCNT 층에서의 방사형 변형율이 SP-SC3의 MWCNT 층에서의 방사형 변형율보다 낮다. 따라서, 상기 도 11 및 도 12와 관련하여 이중 PU 층에 의한 MWCNT 층의 전기 네트워크 고장 방지에 따른 노이즈 감소 효과를 확인할 수 있다.13, the radial strain in the MWCNT layer of DP-SC3 is lower than the radial strain in the MWCNT layer of SP-SC3. Accordingly, with reference to FIGS. 11 and 12, it is possible to confirm the noise reduction effect due to the prevention of electrical network failure of the MWCNT layer by the double PU layer.
실험예 6. 섬유형 센서의 1000 사이클 이상의 시간에 대한 ΔR/Ro 값 측정Experimental Example 6. Measurement of ΔR/Ro value for a time of 1000 cycles or more of a fiber-type sensor
실시예 2 내지 4에서 제조한 섬유형 변형율 센서의 1000 사이클 이상의 시간에 대한 ΔR/Ro 값을 측정하였다.The ΔR/Ro values for 1000 cycles or more of the fibrous strain sensors prepared in Examples 2 to 4 were measured.
그리고, 그 결과를 도 14에 나타내었다. 도 14는 실시예 2 내지 4에서 제조한 섬유형 변형율 센서의 1000 사이클 이상의 시간에 대한 ΔR/Ro 측정값 및 전기 네트워크의 개략도를 나타내는 도면이다. 여기에서 Ro는 인장 하중 적용 전 초기 전기 저항, ΔR는 인장 변형에 의한 전기 저항의 변화값이다.And, the results are shown in Fig. 14. 14 is a diagram showing a schematic diagram of an electrical network and a measurement value of ΔR/Ro for a time of 1000 cycles or more of the fibrous strain sensors manufactured in Examples 2 to 4. FIG. Here, Ro is the initial electrical resistance before applying a tensile load, and ΔR is the change in electrical resistance due to tensile deformation.
도 14를 참조하면, 실시예 2 내지 4 모두에서 회복 가능한 신호 반응을 보였으며, 이는 PU 층에 기인한다. 또한, PU 층의 유연성 및 신축성으로 인해 연신 해제 사이클 동안 여과 네트워크의 파괴 및 재구성이 안정적으로 반복되었다.Referring to FIG. 14, a recoverable signal response was shown in all of Examples 2 to 4, which is due to the PU layer. In addition, the breakdown and reconstruction of the filtration network was stably repeated during the stretch release cycle due to the flexibility and stretchability of the PU layer.
PU 층의 우수한 접착 특성은 MWCNT 층과 강한 계면 결합을 형성 할 수 있었으며, 반복성 자체는 PU 층에 의해 구현될 수 있지만, 신호 변동과 같은 전기 신호의 안정성은 MWCNT 층의 전기 네트워크의 견고성에 영향을 받는다. 이러한 이유로 이중 PU 층의 실시예 2 내지 4에서 상이한 신호 패턴이 관찰되었다. The excellent adhesion properties of the PU layer were able to form a strong interfacial bond with the MWCNT layer, and the repeatability itself can be realized by the PU layer, but the stability of the electrical signal such as signal fluctuations affects the robustness of the electrical network of the MWCNT layer. Receive. For this reason, different signal patterns were observed in Examples 2 to 4 of the double PU layer.
보다 구체적으로, DP-SC2 에서는 각 사이클 후 전도성 네트워크가 완전히 복구되지 않았기 때문에 로딩-언로딩 사이클동안 감지 신호가 불안정했다. 또한, 높은 사이클에서 낮은 변형 범위에서의 상대 저항 변화는 이전 사이클에서 형성된 MWCNT의 파형 구조(또는 버클 구조)로 인해 비단조 반응을 나타냈다(a). DP-SC3은 DP-SC2보다 더 안정적인 반응을 나타냈으나, 1000 사이클 후에 피크 저항이 10% 씩 점차 감소했다(b). 반면, DP-MC의 100 사이클의 초기와 마지막 사이의 피크 저항의 감소율은 1% 미만이었다(c). 이는 다중 전도성 MWCNT 층이 밀도가 높은 전도성 여과 네트워크를 만듦으로써, 사이클 테스트에서 신호 응답이 안정적으로 이루어진 것이다.More specifically, in DP-SC2, the sensing signal was unstable during the loading-unloading cycle because the conductive network was not completely restored after each cycle. In addition, the relative resistance change in the low strain range in the high cycle showed a non-monotonic response due to the corrugated structure (or buckle structure) of the MWCNT formed in the previous cycle (a). DP-SC3 showed a more stable response than DP-SC2, but the peak resistance gradually decreased by 10% after 1000 cycles (b). On the other hand, the reduction rate of the peak resistance between the beginning and the end of 100 cycles of DP-MC was less than 1% (c). This is because the multiple conductive MWCNT layers create a dense conductive filtration network, resulting in a stable signal response in the cycle test.
도 15는 DP-MC의 히스테리시스 곡선을 나타내는 도면이다.15 is a diagram showing a hysteresis curve of DP-MC.
도 15를 참조하면, DP-MC를 사용한 단일 연신-방출 사이클은 약 6 %의 히스테리시스를 보였으며, 이는 이전에 보고된 섬유형 변형률 센서보다 낮다.Referring to FIG. 15, a single stretch-release cycle using DP-MC showed about 6% hysteresis, which is lower than the previously reported fibrous strain sensor.
본 발명에 따른 코어-쉘 구조의 섬유형 변형률 센서는, 복합재료 구조물의 변형률 센싱이 필요한 우주, 항공, 자동차 분야 등 광범위한 응용분야에서의 산업상 이용 가능성이 인정된다.The fiber-type strain sensor having a core-shell structure according to the present invention is recognized for its industrial applicability in a wide range of applications, such as aerospace, aviation, and automobile fields that require strain sensing of a composite structure.

Claims (16)

  1. 코어-쉘 구조의 섬유형 변형률 센서로서, A fiber-type strain sensor with a core-shell structure,
    코어를 이루는 섬유 지지체; 및A fiber support forming a core; And
    상기 섬유 지지체상에 형성된 다층구조의 쉘층을 포함하며, It includes a multi-layered shell layer formed on the fiber support,
    상기 쉘 층은, The shell layer,
    상기 섬유 지지체 상에 형성된 제 1 탄성 중합체;A first elastomer formed on the fiber support;
    상기 제 1 탄성 중합체 상에 형성된 전도층; 및 A conductive layer formed on the first elastomer; And
    상기 전도층 상에 형성된 제 2 탄성 중합체를 포함하며, 상기 센서는 상기 전도층의 저항변화에 따라 상기 센서를 포함하는 구조물의 변형율을 센싱하는 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서.And a second elastomer formed on the conductive layer, wherein the sensor senses a strain of a structure including the sensor according to a change in resistance of the conductive layer.
  2. 제 1항에 있어서, The method of claim 1,
    상기 전도층은 상이한 전도성을 갖는 적어도 2개의 단위 전도층이 순차적으로 적층된 샌드위치 구조인 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서.The conductive layer is a core-shell structure fiber-type strain sensor, characterized in that the sandwich structure in which at least two unit conductive layers having different conductivity are sequentially stacked.
  3. 제 2항에 있어서, The method of claim 2,
    상기 단위 전도층은 전도성 입자를 포함하며, 상기 2개의 단위 전도층은 상이한 전도성 입자의 중량%를 달리하여 상이한 전도성을 갖는 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서.The unit conductive layer includes conductive particles, and the two unit conductive layers have different conductivity by varying the weight% of the different conductive particles.
  4. 제 3항에 있어서, The method of claim 3,
    상기 전도층은 The conductive layer is
    제 1 단위 전도층; A first unit conductive layer;
    제 2 단위 전도층; 및 A second unit conductive layer; And
    제 1 단위 전도층을 포함하는 샌드위치 구조이며, 상기 제 2 단위 전도층은 상기 제 1 단위 전도층보다 낮은 분율의 전도성 입자를 갖는 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서.A sandwich structure including a first unit conductive layer, wherein the second unit conductive layer has a lower fraction of conductive particles than the first unit conductive layer.
  5. 제 4항에 있어서, The method of claim 4,
    상기 섬유 지지체는 단일 필라멘트 (Single filament)인 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서.The fiber support is a single filament (Single filament), characterized in that the core-shell structure of the fibrous strain sensor.
  6. 제 1항에 있어서, The method of claim 1,
    상기 제 1 탄성 중합체 및 제 2 탄성 중합체는 상기 섬유 지지체보다 높은 푸아송비 (Poison's ratio)를 갖는 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서.The first elastomer and the second elastomer have a higher Poison's ratio than the fiber support.
  7. 제 6항에 있어서, The method of claim 6,
    상기 제 1 탄성 중합체 및 제 2 탄성 중합체는 폴리우레탄(PU), 폴리디메틸실록산(PDMS), 천연고무(NR), 부타디엔고무(BR), 스타이렌 부타디엔 고무(SBR), 아크리로니트릴 부타디엔 고무(NBR) 및 에틸렌 비닐아세테이트 공중합체(EVA)로 이루어진 군에서 선택되는 어느 하나를 포함하는 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서.The first and second elastomers are polyurethane (PU), polydimethylsiloxane (PDMS), natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber ( NBR) and ethylene vinyl acetate copolymer (EVA), characterized in that it comprises any one selected from the group consisting of a core-shell structured fiber strain sensor.
  8. 제 3항에 있어서, The method of claim 3,
    상기 전도성 입자는 탄소나노튜브, 그래핀, 은 나노와이어 및 금 나노와이어로 이루어진 군에서 선택된 어느 하나를 포함하는 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서.The conductive particles are carbon nanotubes, graphene, silver nanowires and gold nanowires, characterized in that it comprises any one selected from the group consisting of a core-shell structured fiber strain sensor.
  9. 코어-쉘 구조의 섬유형 변형률 센서 제조방법으로, A method for manufacturing a fiber-type strain sensor with a core-shell structure,
    섬유 지지체 상에 제 1 탄성 중합체를 코팅하는 단계;Coating a first elastomer on the fiber support;
    샌드위치 구조의 전도층을 상기 제 1 탄성 중합체 상에 코팅하는 단계; 및 Coating a conductive layer of a sandwich structure on the first elastomer; And
    제 2 탄성 중합체를 상기 전도층 상에 코팅하는 단계를 포함하며, Coating a second elastomer on the conductive layer,
    상기 샌드위치 구조의 전도층은 상이한 전도성을 갖는 단위 전도층이 순차적으로 적층된 구조인 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서 제조방법.The conductive layer of the sandwich structure is a core-shell structure fiber-type strain sensor manufacturing method, characterized in that the structure in which unit conductive layers having different conductivity are sequentially stacked.
  10. 제 9항에 있어서, The method of claim 9,
    상기 코팅은 침지(dipping) 또는 스프레이(spray) 방식으로 진행되는 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서 제조방법.The coating is a method of manufacturing a fibrous strain sensor having a core-shell structure, characterized in that the coating is performed in a dipping or spray method.
  11. 제 9항에 있어서, The method of claim 9,
    상기 단위 전도층은 전도성 입자를 포함하며, 상기 2개의 단위 전도층은 상이한 전도성 입자의 중량%를 달리하여 상이한 전도성을 갖는 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서 제조방법.The unit conductive layer includes conductive particles, and the two unit conductive layers have different conductivity by varying the weight% of the different conductive particles.
  12. 제 11항에 있어서, The method of claim 11,
    상기 전도층은 The conductive layer is
    제 1 단위 전도층; A first unit conductive layer;
    제 2 단위 전도층; 및 A second unit conductive layer; And
    제 1 단위 전도층을 포함하는 샌드위치 구조이며, 상기 제 2 단위 전도층은 상기 제 1 단위 전도층보다 낮은 분율의 전도성 입자를 갖는 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서 제조방법.A sandwich structure including a first unit conductive layer, wherein the second unit conductive layer has a lower fraction of conductive particles than the first unit conductive layer.
  13. 제 9항에 있어서, The method of claim 9,
    상기 섬유 지지체는 단일 필라멘트 (Single filament)인 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서 제조방법.The fiber support is a single filament (Single filament), characterized in that the core-shell structure fibrous strain sensor manufacturing method.
  14. 제 9항에 있어서, The method of claim 9,
    상기 제 1 탄성 중합체 및 제 2 탄성 중합체는 상기 섬유 지지체보다 높은 푸아송비 (Poison's ratio)를 갖는 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서 제조방법.The first elastomer and the second elastomer have a higher Poison's ratio than the fiber support.
  15. 제 9항에 있어서, The method of claim 9,
    상기 제 1 탄성 중합체 및 제 2 탄성 중합체는 폴리우레탄(PU), 폴리디메틸실록산(PDMS), 천연고무(NR), 부타디엔고무(BR), 스타이렌 부타디엔 고무(SBR), 아크리로니트릴 부타디엔 고무(NBR) 및 에틸렌 비닐아세테이트 공중합체(EVA)로 이루어진 군에서 선택되는 어느 하나를 포함하는 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서 제조방법.The first and second elastomers are polyurethane (PU), polydimethylsiloxane (PDMS), natural rubber (NR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber ( NBR) and ethylene vinyl acetate copolymer (EVA), characterized in that it comprises any one selected from the group consisting of a core-shell structure fibrous strain sensor manufacturing method.
  16. 제 9항에 있어서, The method of claim 9,
    상기 전도성 입자는 탄소나노튜브, 그래핀, 은 나노와이어 및 금 나노와이어로 이루어진 군에서 선택된 어느 하나를 포함하는 것을 특징으로 하는 코어-쉘 구조의 섬유형 변형률 센서 제조방법.The conductive particles are carbon nanotubes, graphene, silver nanowires, and gold nanowires.
PCT/KR2020/003915 2019-10-18 2020-03-23 Fiber-type strain sensor having core-shell structure, and manufacturing method therefor WO2021075648A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080000920.7A CN113015883B (en) 2019-10-18 2020-03-23 Fiber type strain rate sensor of core-sheath structure and method for manufacturing the same
US16/757,538 US11280688B2 (en) 2019-10-18 2020-03-23 Core-shell structured fiber type strain sensor and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0130104 2019-10-18
KR20190130104 2019-10-18

Publications (1)

Publication Number Publication Date
WO2021075648A1 true WO2021075648A1 (en) 2021-04-22

Family

ID=75537616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003915 WO2021075648A1 (en) 2019-10-18 2020-03-23 Fiber-type strain sensor having core-shell structure, and manufacturing method therefor

Country Status (4)

Country Link
US (1) US11280688B2 (en)
KR (1) KR102297044B1 (en)
CN (1) CN113015883B (en)
WO (1) WO2021075648A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699789A (en) * 2021-09-23 2021-11-26 天津理工大学 Preparation method of low-cost elastic strain sensing material with fold structure
GB202207052D0 (en) * 2022-05-13 2022-06-29 Footfalls And Heartbeats Uk Ltd Integrated Sensor for Composite Materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282009A1 (en) * 2002-09-14 2005-12-22 W. Zimmermann Gmbh & Co. Kg Electrically conductive yarn
US20170059421A1 (en) * 2013-04-03 2017-03-02 Peyman Servati Core-shell nanofiber textiles for strain sensing, and methods of their manufacture
KR20180101038A (en) * 2017-03-03 2018-09-12 울산과학기술원 3-dimensional strain sensor and manufacturing method of the same
KR20190062020A (en) * 2017-11-28 2019-06-05 중앙대학교 산학협력단 Strain sensing device, sensor array using the same and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2847180B2 (en) * 1996-09-05 1999-01-13 建設省土木研究所長 Landslide displacement measurement method
US8101862B2 (en) * 1999-01-11 2012-01-24 Southwire Company Self-sealing electrical cable using rubber resins
EP1507040A1 (en) * 2003-08-13 2005-02-16 Heimbach GmbH &amp; Co. Textile product with an integrated pressure and temperature sensor
DE102007050402B3 (en) * 2007-10-19 2009-06-04 Geo. Gleistein & Sohn Gmbh Rope with electrical conductor received therein
US8333012B2 (en) * 2008-10-10 2012-12-18 Voyage Medical, Inc. Method of forming electrode placement and connection systems
US8816205B2 (en) * 2009-04-03 2014-08-26 Ppc Broadband, Inc. Conductive elastomer and method of applying a conductive coating to a cable
US10804038B2 (en) * 2010-02-24 2020-10-13 Auckland Uniservices Limited Electrical components and circuits including said components
US8468688B2 (en) * 2010-04-02 2013-06-25 John Mezzalingua Associates, LLC Coaxial cable preparation tools
KR101912477B1 (en) * 2010-11-22 2018-10-26 이턴 코포레이션 Pressure-sensing hose
KR101123402B1 (en) * 2011-02-28 2012-03-23 부산교통공사 Optical fiber sensor
WO2014193370A1 (en) * 2013-05-29 2014-12-04 Hewlett-Packard Development Company, L.P. Multilayer roller
KR101781680B1 (en) * 2014-12-02 2017-09-25 한양대학교 산학협력단 flexible and stretchable piezoelectronic fiber and fabrication method thereof
CN107407621B (en) * 2015-01-27 2021-02-09 国立研究开发法人物质材料研究机构 Sensor with porous or granular material as receptor layer
KR101881195B1 (en) 2015-04-01 2018-07-23 성균관대학교산학협력단 Strain sensor using nanocomposite and method for manufacturing thereof
WO2018165264A1 (en) * 2017-03-07 2018-09-13 President And Fellows Of Harvard College Stretchable electrooptical and mechanooptical devices
US10424424B2 (en) * 2017-06-16 2019-09-24 The Boeing Company Coaxial radio frequency connectors for high-power handling
CN109431460B (en) * 2018-09-10 2021-06-11 中原工学院 Flexible high-flexibility nanofiber core-spun yarn stress sensor with fold structure and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050282009A1 (en) * 2002-09-14 2005-12-22 W. Zimmermann Gmbh & Co. Kg Electrically conductive yarn
US20170059421A1 (en) * 2013-04-03 2017-03-02 Peyman Servati Core-shell nanofiber textiles for strain sensing, and methods of their manufacture
KR20180101038A (en) * 2017-03-03 2018-09-12 울산과학기술원 3-dimensional strain sensor and manufacturing method of the same
KR20190062020A (en) * 2017-11-28 2019-06-05 중앙대학교 산학협력단 Strain sensing device, sensor array using the same and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ON, SEUNG YOON ET AL.: "Study on the core-shell structured fiber type strain sensor with load bearing characteristics in composite structures", IN: ICCM22 2019 . MELBOURNE, VIC: ENGINEERS AUSTRALIA, 2019, pages 3323 - 3330 *

Also Published As

Publication number Publication date
CN113015883B (en) 2023-01-10
CN113015883A (en) 2021-06-22
KR102297044B1 (en) 2021-09-03
US11280688B2 (en) 2022-03-22
US20210404892A1 (en) 2021-12-30
KR20210046522A (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2021075648A1 (en) Fiber-type strain sensor having core-shell structure, and manufacturing method therefor
WO2020036253A1 (en) Pixel-type pressure sensor and manufacturing method therefor
WO2014204165A9 (en) Polarizing plate and display device comprising same
WO2016060427A1 (en) Sensor unit using electro-active polymer for wireless transmission/reception of deformation information, and sensor using same
WO2018052168A1 (en) Highly stretchable three-dimensional conductive nano-network structure, method for manufacturing same, tensile sensor comprising same, and wearable device
KR20180061003A (en) Conductive flexible device
KR101881195B1 (en) Strain sensor using nanocomposite and method for manufacturing thereof
WO2019083093A1 (en) Polyimide film for preparing roll type graphite sheet
WO2011149241A2 (en) Polyimide porous web, method for manufacturing the same, and electrolyte membrane comprising the same
KR20160118159A (en) Strain sensor using nanocomposite and method for manufacturing thereof
WO2019212284A1 (en) Multilayer graphite sheet with excellent electromagnetic shielding capability and thermal conductivity and manufacturing method therefor
WO2012165839A2 (en) Reversible electrical connector using interlocking of a fine cilium, a multi functional sensor using same, and method of manufacturing same
Jun et al. A pressure-induced bending sensitive capacitor based on an elastomer-free, extremely thin transparent conductor
Chen et al. Improving the sensitivity of elastic capacitive pressure sensors using silver nanowire mesh electrodes
WO2018014425A1 (en) Nano conductive rubber sensing unit and preparation method therefor
WO2016144043A1 (en) Conductive polymeric composite material and production method therefor
WO2010093668A1 (en) Structural health monitoring system/method using electroactive polymer fibers
WO2020105923A1 (en) Foldable backplate, method for manufacturing foldable backplate, and foldable display device comprising same
Miao et al. On finding of high piezoresistive response of carbon nanotube films without surfactants for in-plane strain detection
WO2023075201A1 (en) Thin-film type stretchable electronics including stretchable substrate and manufacturing method therefor
KR102184025B1 (en) A skin-mimicking stretchable transparent substrate and a method for manufacturing the same
WO2021085877A1 (en) Metal deposition-based strechable electrode using electrospun mat and manufacturing method therefor
Méndez-Hernández et al. Effects of mechanical deformations on P3HT: PCBM layers for flexible solar cells
KR102194023B1 (en) Process sheet for flexible printed circuit board and the manufacturing method thereof
WO2019208997A1 (en) Composite fibers including graphene fibers having coating film formed thereon, and method for preparing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876534

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876534

Country of ref document: EP

Kind code of ref document: A1