WO2021075645A1 - Pharmaceutical composition for preventing or treating familial adenomatous polyposis, comprising niclosamide and metformin - Google Patents

Pharmaceutical composition for preventing or treating familial adenomatous polyposis, comprising niclosamide and metformin Download PDF

Info

Publication number
WO2021075645A1
WO2021075645A1 PCT/KR2020/002935 KR2020002935W WO2021075645A1 WO 2021075645 A1 WO2021075645 A1 WO 2021075645A1 KR 2020002935 W KR2020002935 W KR 2020002935W WO 2021075645 A1 WO2021075645 A1 WO 2021075645A1
Authority
WO
WIPO (PCT)
Prior art keywords
niclosamide
metformin
pharmaceutically acceptable
acceptable salt
adenomatous polyposis
Prior art date
Application number
PCT/KR2020/002935
Other languages
French (fr)
Korean (ko)
Inventor
김태일
육종인
김남희
김현실
최지원
Original Assignee
주식회사 바오밥에이바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 바오밥에이바이오 filed Critical 주식회사 바오밥에이바이오
Publication of WO2021075645A1 publication Critical patent/WO2021075645A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Definitions

  • the present invention relates to a pharmaceutical composition for treating or preventing familial adenomatous polyposis (FAP).
  • FAP familial adenomatous polyposis
  • the invention also relates to a method of treating or preventing familial adenomatous polyposis.
  • Familial adenomatous polyposis is an autosomal dominant disease caused by mutations in the gene of Adenomatous Polyposis Coli (APC) located on chromosome 5. Due to the mutation of the APC gene, the progression of the adenoma-cancer continuum proceeds early, and a myriad of polyps (adenomas, adenomas) can occur even in young patients in their 10s and 20s. In addition, adenomatous polyposis can also occur in the upper gastrointestinal tract, especially in the duodenum, so periodic monitoring through an upper endoscope is required.
  • APC Adenomatous Polyposis Coli
  • Epithelial-mesenchymal transition is a biological mechanism by which cancer cells of epithelial origin lose intrinsic epithelial properties such as cell-cell adhesion changes, cell polarity and metastaticity, invasiveness, and increased mobility. Most solid tumors are carcinomas derived from epithelial cells. Carcinoma cells are involved in invasion, vascular invasion and circulation near the primary tumor by acquiring mobility and reducing cell-cell adhesion to adjacent cells, which migrate and colonize distant organs to form macroscopic metastases. Since 90% of cancer patients die from metastasis and recurrence, not primary tumors, prevention of cancer metastasis is very important for cancer treatment. EMT is associated with penetration and metastasis administered by Wnt dependent Snail expression.
  • Snail a zinc-finger transcription factor, acts as a transcription factor inhibitor of E-cadherin in tumor formation and development and induces EMT.
  • E-cadherin is a predictor of malignant tumors.
  • MCF7 cells are overexpressed with Snail, cell invasion increases and the expression of E-cadherin decreases.
  • Wnt Wnt is overexpressed, Snail increases the expression of E-cadherin.
  • Axin2 plays an important role in the Snail-mediated EMT process via the Wnt pathway.
  • GSK3 ⁇ which induces the degradation of Snail, emerges from the nucleus, stabilizes the nucleus and induces EMT.
  • GSK3 ⁇ is found in the cytoplasm by Axin2 and increases the intranuclear expression of Snail. Snail stabilized in the nucleus acts as an inhibitor of transcription of E-cadherin and induces EMT. Therefore, Axin2 plays a very important role in regulating Snail-mediated EMT through Wnt signaling.
  • the Hippo pathway is a highly conserved pathway that regulates organ size, homeostasis, and cancer development, and is highly conserved in mammals.
  • the Hippo pathway is Mammalian sterile 20-like 1/2 (MST1/2), Salvador (SAV1), large tumor suppressor homolog 1/2 (LATS1/2), and yes-related. It consists of a protein (YAP), a transcriptional co-activator with PDZ binding motif (TAZ), and a TEA domain family member (TEAD).
  • the MST1/2 kinase When the Hippo pathway is activated, the MST1/2 kinase binds to SAV1 and phosphorylates LATS1/2 to activate LATS1/2. Activated LATS1/2 phosphorylates YAP and then activates YAP to induce cytoplasmic sequestration and degradation.
  • phosphorylation of YAP When the Hippo pathway is activated, phosphorylation of YAP is reduced and remains in the nucleus, and YAP migrates into the nucleus and binds to the transcriptional enhancer factor (TEF) family of TEAD to express the target gene.
  • TEF transcriptional enhancer factor
  • the proliferation of intercellular contact cells In normal cells, the proliferation of intercellular contact cells is limited by the Hippo pathway. However, in the case of more than contact inhibition such as cancer cells, the Hippo pathway is inhibited and the size of individual and cell growth cannot be controlled, resulting in inhibition of excessive cell proliferation and cell death, thereby contributing to tumor formation.
  • DVL Dishevelled
  • DVL an activator of Wnt signaling
  • CTGF connective tissue growth factor
  • Wnt signaling target gene Axin2 the mutation of the p53 gene had a poorer prognosis compared to the case without the mutation.
  • Abnormal activation of Wnt and Hippo-YAP signaling during cancer progression may be an important biomarker in cancer predicting cancer prognosis.
  • Chemoprevention refers to preventing or prolonging the occurrence of cancer or precancerous lesions by using drugs or natural substances. Because FAP patients develop a large number of polyps, they can be good targets for chemoprophylaxis. When chemoprophylaxis is performed on FAP patients, the effect of inhibiting the occurrence and proliferation of adenomas in the colon or rectum and preventing the occurrence of adenomas in other organs (eg, duodenum, etc.) can be expected. have.
  • NSAIDs non-steroidal anti-inflammatory drugs
  • NSAIDs inhibit cyclooxygenase, which converts arachidonic acid to prostaglandin.
  • Prostaglandins play a major role in the adenoma-cancer process, which changes cell adhesion, inhibits apoptosis, or promotes angiogenesis.
  • Cyclooxygenases include COX-1 and COX-2, and COX-2 is mainly involved in the development and progression of adenomas.
  • erlotinib EGFR tyrosine kinase inhibitor
  • erlotinib EGFR tyrosine kinase inhibitor
  • metformin is a biguanide derivative and is widely used as a therapeutic agent for type 2 diabetes.
  • Metformin inhibits the production of glucose in the liver and improves insulin resistance in peripheral tissues. Because metformin does not directly stimulate insulin secretion, the side effects of hypoglycemia are low, and there is no effect of lowering blood sugar in normal people.
  • DPP Diabetes Prevention Program
  • the most common side effects are gastrointestinal symptoms such as nausea, epigastric discomfort, diarrhea, or constipation. About 4% of patients stopped taking the drug due to side effects. However, most of the symptoms of gastrointestinal side effects recover through an adaptation period of about 1 month.
  • metformin may show slight weight loss in the dose group. Also, because metformin does not directly stimulate insulin secretion, it does not cause hypoglycemia in non-diabetic adults.
  • niclosamide was developed in 1958 and is one of the most effective and safe medicines on the list of essential medicines of the World Health Organization (WHO). have.
  • WHO World Health Organization
  • a single dose of 2g for adults is recommended for up to 2 weeks.
  • Niclosamide has been widely used all over the world, and it is known that the side effects of oral administration are very small (1-4%). Predictable side effects include nausea, abdominal pain, constipation, headache, loss of appetite, diarrhea, dizziness, or itching, and no serious side effects have been reported. And most of these symptoms are side effects related to the digestive system, and reversible recovery is possible by stopping drug administration.
  • Niclosamide used in the above clinical study is 650 mg, which corresponds to approximately 10.8 mg/kg (assuming 60 kg based on the average body weight), so the problem of toxicity after 6 months intake at 10.8 mg/kg/day in the human body is expected to be very slight. I can judge.
  • WHO data and various other toxicity data it is known that there is no genotoxicity or carinogenecity caused by niclosamide. For example, no evidence of cancer incidence was found at 5000 ppm (5000 mg/kg), 104 weeks treatment in mice and rats. There was no possibility of embrotoxic or teratogenic effects with large doses of niclosamide (1000 mg/kg) for various gestational cycles in rabbits.
  • metformin and niclosamide are known to be relatively safe drugs to date, and are expected to be more suitable than conventional drugs in terms of the safety of chemoprevention therapy.
  • metformin or niclosamide are known to be relatively safe drugs to date, and are expected to be more suitable than conventional drugs in terms of the safety of chemoprevention therapy.
  • metformin or niclosamide are known to be relatively safe drugs to date, and are expected to be more suitable than conventional drugs in terms of the safety of chemoprevention therapy.
  • metformin or niclosamide are known to be relatively safe drugs to date, and are expected to be more suitable than conventional drugs in terms of the safety of chemoprevention therapy.
  • the problem to be solved by the present invention is to provide a pharmaceutical composition having an excellent preventive or therapeutic effect for familial adenomatous polyposis.
  • Another problem to be solved by the present invention is to provide an effective prevention or treatment method for familial adenomatous polyposis.
  • This synergistic effect is based on the experimental results confirmed by the present inventors to be described later, as the Axin2-Wnt signaling inhibitory effect of niclosamide and the AMPK-mTOR signaling inhibitory effect of metformin act simultaneously, and are related to the proliferation of adenomatic polyps. It is presumed to be due to the fact that the two representative signal transduction systems are simultaneously suppressed and the two signal transduction systems and the Hipp-YAP pathway can interact, but the present invention related to the synergistic effect of these combinations confirmed through various experimental results It is not limited to these theoretical mechanisms.
  • the present inventors confirmed that Wnt and Hippo-YAP signals are activated when there is a mutation of APC, and as a result of confirming the expression of Axin2, a key substance for Wnt signaling, the expression of Axin2 is high in cell lines with APC mutations. I did. Among them, when the DLD-1 and SW480 cell lines were selected to suppress Axin2 expression, the activation of YAP was observed to increase, and the same result was also observed when niclosamide, which inhibits Axin2-GSK3 binding, was treated. Inhibition of Axin2 expression increased the expression of YAP in the nucleus and decreased the expression of phosphorylated YAP (S127).
  • the present invention provides a pharmaceutical composition for the prevention or treatment of familial adenomatous polyposis comprising (a) niclosamide or a pharmaceutically acceptable salt thereof and (b) metformin or a pharmaceutically acceptable salt thereof as an active ingredient do.
  • the pharmaceutical composition of the present invention may include niclosamide or a pharmaceutically acceptable salt thereof, and metformin or a pharmaceutically acceptable salt thereof.
  • Salts suitable as the pharmaceutically acceptable salts are not particularly limited as those commonly used in the art to which the present invention pertains, such as acid or base addition salts.
  • the pharmaceutically acceptable salt of niclosamide may include a metal salt, a salt with an organic base, a salt with an inorganic acid, a salt with an organic acid, a salt with a basic or acidic amino acid, and the like.
  • Suitable metal salts include alkali metal salts such as sodium salts, potassium salts and the like; Alkaline earth metal salts such as calcium salt, magnesium salt, and barium salt; Aluminum salts and the like may be included.
  • Salts with organic bases include trimethylamine, triethylamine, pyridine, picoline, 2,6-lutidine, ethanolamine, diethanolamine, triethanolamine, cyclohexylamine, dicyclohexylamine, N,N-dibenzyl Salts such as ethylenediamine may be included.
  • Salts with inorganic acids may include salts of hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, and the like.
  • Salts with organic acids may include salts of formic acid, acetic acid, trifluoroacetic acid, phthalic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and the like.
  • Salts with basic amino acids may include salts with arginine, lysine, ornithine.
  • Salts with acidic amino acids may include salts with aspartic acid, glutamic acid, and the like.
  • the pharmaceutically acceptable salt of metformin may include salts with organic acids, inorganic acids, or acidic amino acids.
  • Salts with organic acids include acetic acid, propionic acid, isobutyl acid, oxalic acid, maleic acid, malonic acid, succinic acid, suberic acid, fumaric acid, manderic acid, phthalic acid, benzenesulphonic, p-tolylsulphonic, citric acid, tartaric acid.
  • a salt with methanesulphonic acid or an analog thereof, etc. may be included.
  • Salts with inorganic acids may include salts with hydrochloric acid, bromic acid, nitric acid, carbonic acid, monohydrocarbon acid, phosphoric acid, monohydrogen phosphoric acid, dihydrogenphosphoric acid, sulfuric acid, monohydrogen sulfuric acid, hydrogen iodide or phosphorous acid, and analogs thereof.
  • Salts with acidic amino acids may include salts with aspartic acid, glutamic acid, and the like.
  • niclosamide or a pharmaceutically acceptable salt thereof of the pharmaceutical composition of the present invention is 1: 10 to 10000, preferably 1: 100 to 7000, more preferably 1: 2000 to 4000 (Niclosamide or a pharmaceutically acceptable salt thereof: metformin or its Pharmaceutically acceptable salt).
  • the pharmaceutical composition of the present invention contains niclosamide and metformin in the specific molar ratio, the effect of preventing or treating familial adenomatic polyposis may be remarkably increased.
  • the present invention provides a therapeutically effective amount of (a) niclosamide or a pharmaceutically acceptable salt thereof, (b) a therapeutically effective amount of metformin or a pharmaceutically acceptable salt thereof, and (c) a pharmaceutical. It provides a pharmaceutical composition comprising an acceptable carrier.
  • Effective amount destroys, transforms, controls, or eliminates familial adenomatic polyps; Slowing down or minimizing the expansion of familial adenomatic polyps; Or it refers to the amount of niclosamide and metformin sufficient to provide a therapeutic benefit in the treatment or management of familial adenomatous polyposis. "Effective amount” also refers to the amount of niclosamide and metformin sufficient to cause the death of familial adenomatic polyp cells. “Effective amount” also refers to an amount sufficient to inhibit or reduce the activity of familial adenomatic polyps, either in vitro or in vivo.
  • the present invention provides a therapeutically effective amount of niclosamide or a pharmaceutically acceptable salt thereof, and a therapeutically effective amount of metformin or a pharmaceutically acceptable salt thereof, to an individual in need thereof. It provides a method of treating or preventing familial adenomatous polyposis comprising a.
  • the subject is a human.
  • the method exhibits the effect of preventing or treating familial adenomatic polyposis through inhibition of Wnt/YAP/mTOR signaling and Snail-mediated epithelial mesenchymal transition (EMT).
  • EMT epithelial mesenchymal transition
  • the familial adenomatous polyposis treated or prevented by the method is a familial adenomatous polyposis caused by mutations in the APC (adenomatous polyposis coli) gene.
  • the present invention provides niclosamide or a pharmaceutically acceptable salt thereof; And it provides a kit for the prevention or treatment of familial adenomatous polyposis comprising metformin or a pharmaceutically acceptable salt thereof as an active ingredient.
  • the kit refers to a set comprising a composition and accessories necessary for the prevention or treatment of familial adenomatous polyposis.
  • the accessory included in the kit is a tool or device commonly used in the art for the prevention or treatment of familial adenomatous polyposis.
  • niclosamide or a pharmaceutically acceptable salt thereof included in the kit; And metformin or a pharmaceutically acceptable salt thereof are administered simultaneously or sequentially.
  • the kit additionally includes an instruction for taking any one or more selected from the group consisting of the amount of the active ingredients, the route of administration, the number of administrations, and indications (familial adenomatic polyposis).
  • the kit exhibits an effect of preventing or treating familial adenomatic polyposis through inhibition of Wnt/YAP/mTOR signaling and Snail-mediated epithelial mesenchymal transition (EMT).
  • the familial adenomatous polyposis treated or prevented by the kit is a familial adenomatous polyposis caused by mutations in the APC (adenomatous polyposis coli) gene.
  • the present invention provides a pharmaceutical use, characterized in that niclosamide or a pharmaceutically acceptable salt thereof, and metformin or a pharmaceutically acceptable salt thereof are used as active ingredients.
  • the pharmaceutical use of the present invention is for the treatment or prophylaxis of familial adenomatous polyposis as described herein.
  • the pharmaceutical use shows the effect of preventing or treating familial adenomatous polyposis through inhibition of Wnt/YAP/mTOR signaling and Snail-mediated epithelial mesenchymal transition (EMT).
  • EMT epithelial mesenchymal transition
  • the familial adenomatous polyposis in the pharmaceutical use is a familial adenomatous polyposis caused by mutation of the APC (adenomatous polyposis coli) gene.
  • prevention refers to any action that delays the development, growth, and proliferation of familial adenomatic polyps by administration of the composition of the present invention.
  • treatment refers to any action that improves or beneficially alters familial adenomatic polyp by inhibiting the growth and proliferation of familial adenomatal polyp by administration of the composition of the present invention.
  • niclosamide of the present invention or a pharmaceutically acceptable salt thereof, and metformin or a pharmaceutically acceptable salt thereof are generally administered in a therapeutically effective amount.
  • Niclosamide or a pharmaceutically acceptable salt thereof of the present invention, and metformin or a pharmaceutically acceptable salt thereof are in the form of a pharmaceutical composition suitable for this route by any suitable route, and effective administration for the intended treatment. It can be administered in amounts.
  • the effective dosage of niclosamide or a pharmaceutically acceptable salt thereof is generally about 0.0001 to about 200 mg/kg body weight/day, preferably about 0.001 to about 100 mg/day, in single or divided doses. kg/day.
  • the effective dosage of metformin or a pharmaceutically acceptable salt thereof is generally about 0.0001 to about 200 mg/kg body weight/day, preferably about 0.001 to about 100 mg/kg/day, in single or divided doses.
  • dosage levels below the lower limit of this range may be suitable. In other cases, still larger dosages can be used without harmful side effects. Larger dosages can be divided into several smaller dosages, for administration throughout the day. Methods for determining the appropriate dosage are well known in the art.
  • the niclosamide and metformin described herein, or pharmaceutically acceptable salts thereof may be administered in various ways as follows.
  • the pharmaceutical composition of the present invention can be administered orally, and the oral cavity is a concept including swallowing.
  • oral administration the pharmaceutical composition of the present invention enters the gastrointestinal tract, or can be absorbed directly from the mouth into the bloodstream, for example, buccal or sublingual administration.
  • compositions for oral administration may be in the form of solid, liquid, gel, or powder, and may have formulations such as tablets, lozenges, capsules, granules, powders, etc. .
  • compositions for oral administration may optionally be enteric coated and exhibit delayed or sustained release through enteric coating. That is, the composition for oral administration according to the present invention may be a formulation having an immediate or modified release pattern.
  • Liquid formulations may include solutions, syrups and suspensions, and such liquid compositions may be contained within soft or hard capsules.
  • Such formulations may contain a pharmaceutically acceptable carrier, such as water, ethanol, polyethylene glycol, cellulose, or oil.
  • the formulation may also contain one or more emulsifying and/or suspending agents.
  • the amount of the active ingredient drug may be present in about 0.05% to about 95% by weight, more generally from about 2% to about 50% by weight of the formulation, based on the total weight of the tablet.
  • the tablet may contain a disintegrant comprising from about 0.5% to about 35% by weight, more generally from about 2% to about 25% by weight of the formulation.
  • the disintegrant may include lactose, starch, sodium starch glycolate, crospovidone, croscarmellose sodium, maltodextrin, or a mixture thereof, but is not limited thereto.
  • Suitable lubricants included to make tablets may be present in an amount of about 0.1% to about 5% by weight, such as talc, silicon dioxide, stearic acid, calcium, zinc or magnesium stearate, sodium stearyl fumarate, and the like. Although it can be used as a lubricant, the present invention is not limited to the types of these additives.
  • Gelatin polyethylene glycol, sugar, gum, starch, polyvinylpyrrolidone, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, etc. can be used as a binder for manufacturing into tablets.
  • mannitol, xylitol, lactose, dextrose, sucrose, sorbitol, starch, microcrystalline cellulose, etc. may be used, but the present invention is not limited to the types of these additives. .
  • the solubilizing agent that may be included in the tablet may be used in an amount of about 0.1% to about 3% by weight based on the total weight of the tablet, for example, polysorbate, sodium lauryl sulfate, sodium dodecyl sulfate, propylene carbonate, Diethylene glycol monoethyl ether, dimethyl isosorbide, polyoxyethylene glycolated natural or hydrogenated castor oil, HCOR TM (Nikkol), oleyl ester, Gelucire TM , caprylic/caprylic acid mono/ Although diglyceride, sorbitan fatty acid ester, sorbitol HS TM and the like can be used in the pharmaceutical composition according to the present invention, the present invention is not limited to the specific types of such solubilizing agents.
  • the pharmaceutical composition of the present invention can be administered directly into the bloodstream, muscle, or intestines.
  • Suitable methods for parenteral administration include intravenous, intra-muscular, subcutaneous intraarterial, intraperitoneal, intrathecal, intracranial injection, etc. Includes.
  • Suitable devices for parenteral administration include injectors (including needles and needleless syringes) and infusion methods.
  • compositions for parenteral administration may be formulations with immediate or modified release patterns, and modified release patterns may be delayed or sustained release patterns.
  • parenteral formulations are liquid compositions, and such liquid compositions are aqueous solutions containing active ingredients, salts, buffers, isotonic agents, and the like according to the present invention.
  • Parenteral formulations can also be prepared in dried form (eg, lyophilized) or as sterile non-aqueous solutions. These formulations can be used with a suitable vehicle such as sterile water. Solubility-enhancing agents can also be used in the preparation of parenteral solutions.
  • compositions of the present invention can be administered topically to the skin or transdermally.
  • Formulations for this topical administration include lotions, solutions, creams, gels, hydrogels, ointments, foams, implants, patches and the like.
  • Pharmaceutically acceptable carriers for topical administration formulations may include water, alcohol, mineral oil, glycerin, polyethylene glycol, and the like. Topical administration can also be performed by electroporation, iontophoresis, phonophoresis, or the like.
  • compositions for topical administration may be formulations with immediate or modified release patterns, and modified release patterns may be delayed or sustained release patterns.
  • the pharmaceutical composition of the present invention exhibits a remarkable synergistic effect in the treatment or prevention of familial adenomatic polyposis through the combination of niclosamide and metformin.
  • the treatment or prevention method of the present invention exerts a remarkable synergistic effect in the treatment or prevention of familial adenomatic polyposis through the combination of niclosamide and metformin.
  • Figure 1a and b show the results of measuring TCF/LEF and TEAD reporter activity after transfecting 293 cells with mutant APC.
  • Figure 1c is a protein-rich pSer127-YAP, the mobility shift of YAP
  • Figure 1d is the evaluation of CTGF transcript and TEAD reporter activity through Axin2 knockdown.
  • FIG. 2C is an evaluation of pSer127-YAP abundance according to niclosamide, mobility shift of YAP in a force-tag gel, and nuclear YAP levels.
  • 2D is an evaluation of CTGF transcription and TEAD reporter activity according to niclosamide.
  • FIG. 2E is a measurement of YAP phosphorylation in all cell lines, and
  • FIG. 2F is a measurement of relative fluorescence intensity in the entire nuclear region.
  • FIGS. 3A and 3B are immunoblot analysis, evaluation of the effect of metformin-mediated YAP regulation on YAP mobility shift, CTGF transcript and TEAD reporter activity in CRC cells on a force-tag gel.
  • Figure 3c is to evaluate the phosphorylation of mTOR substrate liposome protein S6,
  • Figure 3d is to evaluate the transcription level and TCF / LEF reporter activity of metformin in CRC cells.
  • 4A is an evaluation of the expression of nuclear YAP and p-Ser127-YAP when niclosamide and metformin are administered in combination through immunoblot analysis.
  • 4B is an evaluation of CTGF transcription level and TEAD reporter activity.
  • 4C is an evaluation of nuclear YAP in a group administered with a combination of niclosamide and metformin through immunofluorescence analysis.
  • FIG. 5A is an evaluation of AMPK activation upon administration of niclosamide and/or metformin
  • FIG. 5B is an evaluation of ATP levels by phosphorylated AMPK
  • 5C is an evaluation of the activation of S6 acting as an mTOR effector.
  • Figure 6a, b shows the evaluation of Wnt signaling (Figure 6a), Axin2 transcription level (Figure 6b left), and TCF/LEF reporter activity (Figure 6b right) through immunoblot analysis.
  • Figure 6c confirms the increase or decrease of epithelial markers and mesenchymal markers
  • Figure 6d is to evaluate the migration of CRC cells.
  • Figure 7a is a change in the weight of the mouse according to the drug administration
  • Figure 7b-d confirms that the tumorigenic potential according to the drug administration is suppressed.
  • FIG. 8A is a change in body weight of a mouse according to drug administration
  • FIG. 8B is a measurement of the number of small intestine polyps 14 weeks after drug administration
  • FIG. 8C is a result of observing small intestine polyps through a stereoscopic microscope.
  • DLD-1 (ATCC, CCL-221) and human embryonic kidney 293 cells cultured in Dullbecco's Modified Eagle's Medium (DMEM, Lonza, 12-604F) and SW480 (Korea Cell Line Bank, KCLB No. 10228) Were grown in Roswell Park Memorial Laboratory 1640 (RPMI 1640, Lonza, 12-702F) using 10% fetal bovine serum (FBS, Life technologies) and 100 IU/ml penicillin/streptomycin.
  • SW480 and DLD-1 cells are cells carrying the truncated APC gene. All cells were cultured in a humidified incubator at 37° C. and 5% CO 2.
  • the Tet-pLKO-puro vector (#21915 obtained from Addgene) was used for inducible shRNA knockdown.
  • the target sequence of shRNA for Axin2 was 5'-ACCACCACTACATCCACCA-3' (SEQ ID NO: 1).
  • Mutant APC expression vectors pCMV-neo-Bam APC 1-1309 (# 16508) and pCMV-neo-Bam APC 1-1941 (# 16510) were obtained from Addgene.
  • Mycoplasma infection test was performed with a PCR-based kit (Sigma, MP0040). Transfection was performed by Lipofectamine 2000 according to the manufacturer's protocol (Invitrogen, 11668-019).
  • Niclosamide (2', 5-dichloro-4'-nitrosalicylanilide) was purchased from CAYMAN, and metformin was obtained from TCI America (TCI, M2009).
  • Niclosamide and metformin were dissolved in DMSO and distilled water in an in vitro experiment.
  • DLD-1, SW480 cells (5 x 10 4 ) were seeded into transwell inserts (5.0 ⁇ m pores, BD Biosciences).
  • the filter insert was pre-wetted before adding 1 x PBS and cotton cloth to the cells.
  • 1 mL of medium was added to the lower chamber.
  • 5 ⁇ 10 4 /100 ul of cells were added to the medium on the top of the insert.
  • a medium containing 0.5 ⁇ M niclosamide and 5 mM metformin was added to the bottom, washed twice for 18 hours with 1 ⁇ PBS, and fixed with 4% formaldehyde.
  • the upper part was wiped with cotton, and the lower part was stained with 0.25% crystal violet. Cell counts were measured in 5 random fields.
  • Niclosamide and metformin were treated for 16 hours, then washed twice with PBS, and 1% Triton X-100 lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% triton X-100) and Incubated together. The cells were collected through a scraper and centrifuged at 13,200 rpm for 15 minutes at 4°C.
  • buffer A (10mM HEPES[pH7.9], 10mM KCl, 0.1mM EDTA, 1mM DTT) and buffer C (20mM HEPES[pH7.9], added with 10% Nonidet NP-40), 0.4M NaCl, 1mM EDTA, 1mM DTT) was dissolved on ice for 5 minutes (buffer A) and 15 minutes (buffer C). Total and nuclear extraction were used according to the manufacturer's instructions. The supernatant was collected and transferred to a new tube to extract the protein eluate. Protein was quantified using BCA protein analysis (Thermo), 5x sample buffer was added, boiled for 10 minutes, and then stored on ice.
  • SDS-polyacrylamide was separated by electrophoresis and transferred to a nitrocellulose membrane (Whatman). After transfer, the membrane was blocked with 5% skim milk (BD bioscience) for 1 hour, and incubated at room temperature for 3 hours or at 4°C for 12 hours or more. Relative YAP abundance compared to loading control HDAC1 was determined through the ImageJ program downloaded from NIH (https://imagej.nih.gov/ij/).
  • TEAD or TCF/LEF cells were transfected with 100 ng of reporter vector and 1 ng of pSV-Renilla expression vector. Luciferase and Renilla activities were measured 48 hours after transfection using a dual luciferase reporter system kit (Promega) and normalized through Renilla activity. The experimental results were averaged by three experiments.
  • ATP levels were analyzed using an ATP assay kit (K354, BioVision) based on an ELISA detection system according to the manufacturer's method.
  • mice Female BALB/c nude mice (6 weeks old, purchased from Nara Biotech) were injected subcutaneously and used for orthotopic xenograft analysis.
  • SW480 cells of the control or experimental group were trypsinized, harvested, and injected into subcutaneous tissue (1 ⁇ 10 6 cells per 0.1 ml PBS).
  • niclosamide 200mg/kg, PO
  • metformin 2mg/mL, PO
  • niclosamide 200mg/kg, PO
  • metformin 2mg/mL, PO
  • mice were applied 5 times for 4 weeks from the day after the tumor cells were injected. Tumor growth and body weight were monitored twice a week with a Vernier caliper, and the tumor volume was calculated according to the formula below.
  • V (mm3) (a X b 2 )/2: a, longest diameter; b, the shortest diameter.
  • APC min mice were prepared by crossing C57BL/6J wild-type female mice with C57BL/6J-APC min +/- (APC min, The Jackson Laboratory strain 002020) male mice.
  • the genotyping work proceeded as follows. 200-300 ⁇ l of direct PCR lysis reagent (Viagen, 102-T) containing 0.4 mg/ml proteinase K was added to the tail of a 0.5 cm mouse. Incubate for 5-6 hours at 55°C in a water bath until no tissue clumps were observed. Thereafter, the crude lysate was incubated in a water bath at 85° C. for 45 minutes. Hair was precipitated by centrifugation for 10 seconds at 13200 rpm before genotyping.
  • APC primer (APCmin WT; GCCATCCCTTCACGTTAG (SEQ ID NO: 20); APCmin Com; TTCCACTTTGGCATAAGGC (SEQ ID NO: 21); APCmin Mut; TTCTGAGAAAGACAGAAGTTA (SEQ ID NO: 22)) and 1 ⁇ l of lysate in 20 ⁇ l polymerase chain reaction (PCR) were used to perform genotyping.
  • APC min mice were housed in Yonsei University School of Dentistry. When APC min mice reached 6 weeks of age, chemical treatment was started.
  • mice were treated with vehicle or niclosamide (50 mg/kg, PO) alone or metformin (2 mg/mL, PO) alone, or niclosamide (50 mg/kg, PO) and It was treated with metformin (2mg/mL, PO) for 14 weeks. After 14 weeks of treatment, mice were sacrificed and the entire intestine was dissected. The tissue was fixed in 4% formaldehyde for 24 hours and then washed twice with 70% ethanol. The number of polyps in the small intestine was calculated using a stereomicroscope. The size of polyps less than 1 mm was small, between 1 mm and 3 mm was medium, and those larger than 3 mm were considered to be large.
  • the tissue collected by endoscopic biopsy from the colon of the FAP patient was washed with PBS (100 ⁇ g/ml primocin mixture) and cut into 0.5mm pieces, and in 37°C digestion buffer (DMEM, 2.5% FBS, 6.25mg/ml collagenase type IX). Let it sit for 30 minutes. Then, the separated cells are mixed with 20 ⁇ L Matrigel and dispensed into 48 wells.
  • PBS 100 ⁇ g/ml primocin mixture
  • DMEM 2.5% FBS, 6.25mg/ml collagenase type IX
  • Polyp organoid culture (advanced DMEM/F12 with 1% penicillin/streptomycin, Glutamax, 1 ⁇ N2, 1 ⁇ B27 without retinoic acid, 2 mM L-glutamine, 50 ng/ml EGF, 1 mM N-Acetyl-L-cysteine , 10mM Nicotinamide, 10nM Gastrin I, 10 ⁇ M SB202190, 500 nM A-83-01, 2.5 ⁇ M PGE2 and 100 ng/ml Noggin) are replaced every 2 days. Dispense into other wells and culture and proliferate in the same way. Proliferated FAP organoids are stored frozen in liquid nitrogen, dissolved when necessary, and cultured in the same manner to be used in experiments.
  • Example 1 Axin2 is related to YAP activity induced by mutant APC
  • Axin2 and Snail are often found in invasive lesions, and the regulatory axis of the canonical Wnt dependent Axin2 plays an important role in the regulation of Snail-mediated EMT in cancer.
  • Axin2 is a typical downstream target of the TCF/LEF transcription factor, and is highly abundant in CRC due to loss of APC function. This was consistent with the APC mutation in cell lines that confirmed high Axin2 levels. On the other hand, Axin1 expression was observed in all cell lines regardless of the APC mutation type.
  • YAP has several phosphorylation sites that regulate protein stability or participate in cytoplasmic retention. Ser127 phosphorylation is required for cytoplasmic translocation of YAP.
  • protein-rich pSer127-YAP, mobility shift of YAP (Fig. 1c), CTGF transcript and TEAD reporter activity (Fig. 1d) were examined through Axin2 knockdown.
  • FIG. 1 The content disclosed in FIG. 1 is specifically as follows.
  • APC mutant cell lines are DLD-1, SW480, SW620, Caco-2 and HT-29, while HEK293, MCF7, MDA-MB-231, HCC1954, HCT116 and RKO cell lines are APC wild type.
  • Example 2 Niclosamide modulates YAP nuclear location and TEAD transcriptional activity
  • Niclosamide attenuates Wnt activity and Snail-mediated EMT program, and it was shown that Axin2, Snail protein abundance, Axin2 transcription level, and TCF/LEF activity were inhibited when niclosamide was treated on CRC cells (Fig. 2a, b).
  • Nuclear YAP is overexpressed by regulating YAP phosphorylation in CRC cells, and YAP induces EMT, causing cancer invasion and metastasis.
  • a pattern of expression of YAP in the nucleus appeared.
  • Niclosamide increased nuclear YAP levels by reducing the abundance of pSer127-YAP and the mobility shift of YAP in the force-tagged gel (FIG. 2C). Consistent with immunoblot analysis, CTGF transcription and TEAD reporter activity were increased by niclosamide (FIG. 2D ). To determine if the translocation of YAP by niclosamide is due to p53 upstream of the Lats/YAP axis, HCL116 (p53 wild type), HCT116 p53 -/-, DLD-1 and SW480 (p53 mutant) were combined with niclosamide. Were processed together.
  • YAP phosphorylation was decreased in all cell lines (Fig. 2e). This indicates that the action of niclosamide involved in YAP phosphorylation is an independent function of p53. And immunofluorescence analysis by endogenous YAP revealed that these proteins are mainly located in the nucleus of CRC cells.
  • Figure 2f is a measurement of the relative fluorescence intensity in the entire nuclear region.
  • FIG. 2 The content disclosed in FIG. 2 is specifically as follows.
  • Statistical significance compared to the control group was *, P ⁇ 0.05; **, P ⁇ 0.01; ***, P ⁇ 0.001.
  • YAP phosphorylation status in the cytoplasmic and nuclear fractions was determined by mobility shift on p-S127-YAP antibody and force-tag gel A.
  • Relative CTGF transcription levels (left) and relative TEAD reporter activity (right) were measured through reporter analysis and qPT-PCR. Statistical significance compared to the control group was *, P ⁇ 0.05; **, P ⁇ 0.01; ***, P ⁇ 0.001.
  • HCT116 wild type, HCT116 p53 null (p53 -/-), DLD-1 and SW480 cells were treated with 0.25 ⁇ M of niclosamide, and phosphorylation of YAP was observed with a migratory shift force-tag.
  • CRC cells were deficient in serum and glucose and were treated with niclosamide for 6 hours before the experiment.
  • CRC cells were cultured at 80-90% density and treated with niclosamide. Then, the intracellular location of endogenous YAP was measured using a confocal microscope. DAPI nuclear staining; Scale bar, 5 ⁇ m. Image J was used to quantify the intracellular location of YAP. Statistical significance compared to the control group was expressed as ***, P ⁇ 0.001 through the two-sided Student t-test.
  • Example 3 Metformin affects the maintenance of YAP in the cytoplasm
  • Metformin regulates the Hippo pathway by increasing YAP phosphorylation and reduces the nuclear localization of YAP.
  • the regulation of metformin-mediated YAP in CRC cells was shown to decrease the mobility shift of YAP on immunoblot analysis, force-tag gel, CTGF transcript and TEAD reporter activity (Fig. 3a, b). Metformin is less potent than niclosamide, but metformin has been shown to inhibit the protein abundance of Axin2 and Snail. In addition, phosphorylation of mTOR substrate liposome protein S6 was found (Fig. 3c). Similar to the results of the blot analysis, the transcription level of metformin and the TCF/LEF reporter activity were decreased in CRC cells (FIG. 3D ).
  • the content disclosed in FIG. 3 is specifically as follows.
  • Example 4 Combination effect of niclosamide and metformin through modulation of phosphorylation-dependent YAP
  • CRC cells were treated with 0.25 ⁇ M of closamide, 10 mM of metformin, or 0.25 ⁇ M of niclosamide + 10 mM of metformin for 16 hours.
  • the content disclosed in FIG. 4 is specifically as follows.
  • (a-c) Each cell was treated with 0.25 ⁇ M niclosamide, 10 mM metformin, or 0.25 ⁇ M niclosamide + metformin 10 mM.
  • Immunoblot analysis of YAP phosphorylation status in the cytoplasmic and nuclear fractions was measured using the p-S127-YAP antibody.
  • (a) Relative CTGF transcription levels (left) and relative TEAD reporter activity (right). Statistical significance compared to the control group was **, P ⁇ 0.01; ***, P ⁇ 0.001.
  • (b) and immunofluorescence (c) were measured after treatment. Statistical significance compared to the control group was **, P ⁇ 0.01; ***, P ⁇ 0.001.
  • Example 5 Niclosamide and metformin inhibit mTOR-AMPK pathway
  • AMPK is activated by AMP, which is increased by various metabolic stresses such as energy depletion and hypoxia, and plays an important role in maintaining energy homeostasis by inhibiting ATP use.
  • Metformin which induces the activation of AMPK, inhibits tumors through the LKB1-AMPK-mTOR pathway.
  • Activated LKB1 exhibits anticancer effects by promoting phosphorylation of AMPK and inhibiting mTORC1 through TSC2 (Tuberous Sclerosis Complex 2).
  • the content disclosed in FIG. 5 is specifically as follows.
  • Example 6 Niclosamide and metformin inhibit Snail-mediated EMT with inhibition of typical Wnt signaling
  • the content disclosed in FIG. 6 is specifically as follows.
  • Example 7 Niclosamide and metformin inhibit tumorigenicity in xenograft models
  • SW480 cells were injected subcutaneously into mice administered orally with a combination of niclosamide, metformin, niclosamide and metformin.
  • a combination of niclosamide, metformin, niclosamide and metformin In the course of drug administration, no obvious side effects were observed in mouse body weight (Fig. 7A).
  • Administration of niclosamide or metformin alone inhibited tumor formation, and the combination of both drugs suppressed the tumorigenic potential (Fig. 7b-d).
  • mice were subjected to vehicle, niclosamide alone (200 mg/kg, PO), metformin alone (2 mg/mL) daily after subcutaneous injection of SW480 (1 ⁇ 10 6) cells. , PO) or niclosamide (200mg/kg, PO) and metformin (2mg/mL, PO) combination. Body weight (a) and tumor growth (b, c) were observed twice a week. After the end of the experiment, all tumors were isolated from mice (d). Statistical significance compared to the control group was expressed as *, P ⁇ 0.05 through the two-sided Student's t-test.
  • Example 8 Niclosamide and metformin inhibit adenoma formation in APC-min mice
  • the content disclosed in FIG. 8 is specifically as follows.
  • APC mice were used with vehicle, niclosamide alone (50 mg/kg, PO), metformin alone (2 mg/mL, PO) or niclosamide ( It was treated daily with a combination of 50 mg/kg, PO) and metformin (2 mg/mL, PO).
  • Body weight (a) and total number of polyps (b). Small intestine polyp observed after the end of the experiment (c).
  • Statistical significance compared to the control group was *, P ⁇ 0.05; **, P ⁇ 0.01.

Abstract

The present invention relates to a pharmaceutical composition for treating familial adenomatous polyposis by concomitantly administering niclosamide or a pharmaceutically acceptable salt thereof, and metformin or a pharmaceutically acceptable salt thereof. The pharmaceutical composition of the present invention shows a significant synergy effect for preventing or treating familial adenomatous polyposis, due to the concomitant administration of niclosamide or a pharmaceutically acceptable salt thereof, and metformin or a pharmaceutically acceptable salt thereof.

Description

니클로사미드 및 메트포르민을 포함하는 가족성 선종성 용종증 예방 또는 치료용 약학적 조성물Pharmaceutical composition for the prevention or treatment of familial adenomatous polyposis containing niclosamide and metformin
본 출원은 2019년 10월 16일 출원된 대한민국출원 제10-2019-0128674호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Application No. 10-2019-0128674 filed on October 16, 2019, and all contents disclosed in the specification and drawings of the application are incorporated herein by reference.
본 발명은 가족성 선종성 용종증(familial adenomatous polyposis, FAP)을 치료 또는 예방하기 위한 약학적 조성물에 관한 것이다. 본 발명은 또한 가족성 선종성 용종증을 치료 또는 예방하는 방법에 관한 것이다.The present invention relates to a pharmaceutical composition for treating or preventing familial adenomatous polyposis (FAP). The invention also relates to a method of treating or preventing familial adenomatous polyposis.
가족성 선종성 용종증은 5번 염색체에 위치하는 선종성 용종증균 (Adenomatous Polyposis Coli, APC) 유전자의 돌연변이로 인해 발생하는 상염색체 우성 질환이다. APC 유전자의 돌연변이로 인해 선종-암 연속체의 진행이 일찍 진행되어, 10-20대의 젊은 환자들에서도 무수히 많은 용종(선종, 샘종)이 발생할 수 있다. 또한 선종성 용종증은 상부위장관에서도 발생할 수 있는데, 특히 십이지장에서 잘 생길 수 있으므로 상부내시경을 통한 주기적인 감시가 필요하다. Familial adenomatous polyposis is an autosomal dominant disease caused by mutations in the gene of Adenomatous Polyposis Coli (APC) located on chromosome 5. Due to the mutation of the APC gene, the progression of the adenoma-cancer continuum proceeds early, and a myriad of polyps (adenomas, adenomas) can occur even in young patients in their 10s and 20s. In addition, adenomatous polyposis can also occur in the upper gastrointestinal tract, especially in the duodenum, so periodic monitoring through an upper endoscope is required.
상피간엽이행(EMT, Epithelial-mesenchymal transition)은 상피 기원 암세포가 세포-세포 부착 변화, 세포 극성 및 전이성, 침습성, 및 증가된 이동성과 같은 고유한 상피 특성을 상실하는 생물학적 메커니즘이다. 대부분의 고형 종양은 상피 세포로부터 유래된 암종이다. 암종 세포는 이동성을 획득하고 인접 세포에 대한 세포-세포 유착을 감소시킴으로써 원발성 종양 근처의 침습, 혈관 침투 및 순환에 관여하고, 이들은 먼 기관으로 이동 및 콜로니화되어 거시적 전이를 형성한다. 암 환자의 90%는 원발성 종양이 아닌 전이 및 재발로 인해 사망하기 때문에, 암 전이의 예방은 암 치료에 매우 중요하다. EMT는 Wnt 의존 Snail 발현에 의해 투여되는 침투 및 전이와 관련된다. Snail, 징크-핑거 전사 인자는 종양 형성 및 발달에서 E-카드헤린의 전사 인자 억제제로서 작용하고 EMT를 유도한다. 따라서, E-카드헤린의 발현 감소는 악성 종양의 예측인자이다. MCF7 세포가 Snail로 과발현된 경우, 세포 침습이 증가하고 E-카드헤린의 발현은 감소하며, Wnt가 과발현된 경우에도 Snail은 E-카드헤린의 발현을 증가시킨다. 이러한 결과는 Snail이 EMT에서 유도제 역할을 수행함을 나타낸다.Epithelial-mesenchymal transition (EMT) is a biological mechanism by which cancer cells of epithelial origin lose intrinsic epithelial properties such as cell-cell adhesion changes, cell polarity and metastaticity, invasiveness, and increased mobility. Most solid tumors are carcinomas derived from epithelial cells. Carcinoma cells are involved in invasion, vascular invasion and circulation near the primary tumor by acquiring mobility and reducing cell-cell adhesion to adjacent cells, which migrate and colonize distant organs to form macroscopic metastases. Since 90% of cancer patients die from metastasis and recurrence, not primary tumors, prevention of cancer metastasis is very important for cancer treatment. EMT is associated with penetration and metastasis administered by Wnt dependent Snail expression. Snail, a zinc-finger transcription factor, acts as a transcription factor inhibitor of E-cadherin in tumor formation and development and induces EMT. Thus, decreased expression of E-cadherin is a predictor of malignant tumors. When MCF7 cells are overexpressed with Snail, cell invasion increases and the expression of E-cadherin decreases. Even when Wnt is overexpressed, Snail increases the expression of E-cadherin. These results indicate that Snail plays the role of an inducer in EMT.
Axin2는 Wnt 경로를 통해 Snail-매개 EMT 과정에서 중요한 역할을 수행한다. Snail의 분해를 유도하는 GSK3β는 핵으로부터 나와서, 핵을 안정화시키고 EMT를 유도한다. GSK3β는 Axin2에 의해 세포질에서 발견되며, Snail의 핵 내 발현을 증가시킨다. 핵 내 안정화된 Snail은 E-카드헤린의 전사 억제제로 작용하며 EMT를 유도한다. 따라서, Axin2는 Wnt 신호전달을 통한 Snail-매개 EMT를 조절하는데 매우 중요한 역할을 수행한다. 한편, Hippo 경로는 장기 크기, 항상성, 암 발달을 조절하는 고도로 보존된 경로이며, 포유동물에서 매우 보존되어 있다. 포유동물에서 Hippo 경로는 Mammalian sterile 20-유사 1/2(MST1/2), Salvador(SAV1), 큰 종양 억제제 유사체 1/2(Large tumor suppressor homolog 1/2, LATS1/2), 및 yes-관련 단백질(YAP), PDZ 결합 모티프를 갖는 전사 공동-활성자(transcriptional co-activator with PDZ binding motif, TAZ), TEA 도메인 패밀리 멤버(TEAD)로 구성된다.Axin2 plays an important role in the Snail-mediated EMT process via the Wnt pathway. GSK3β, which induces the degradation of Snail, emerges from the nucleus, stabilizes the nucleus and induces EMT. GSK3β is found in the cytoplasm by Axin2 and increases the intranuclear expression of Snail. Snail stabilized in the nucleus acts as an inhibitor of transcription of E-cadherin and induces EMT. Therefore, Axin2 plays a very important role in regulating Snail-mediated EMT through Wnt signaling. On the other hand, the Hippo pathway is a highly conserved pathway that regulates organ size, homeostasis, and cancer development, and is highly conserved in mammals. In mammals, the Hippo pathway is Mammalian sterile 20-like 1/2 (MST1/2), Salvador (SAV1), large tumor suppressor homolog 1/2 (LATS1/2), and yes-related. It consists of a protein (YAP), a transcriptional co-activator with PDZ binding motif (TAZ), and a TEA domain family member (TEAD).
Hippo 경로가 활성화되면, MST1/2 키나제는 SAV1에 결합하여 LATS1/2를 인산화하여 LATS1/2를 활성화시킨다. 활성화된 LATS1/2는 YAP를 인산화시키고, 이후 YAP을 활성화시켜 세포질 격리 및 분해를 유도한다. Hippo 경로가 활성화될 때, YAP의 인산화는 감소되며 핵 내에 남아있으며, YAP은 핵 내로 이동하여 TEAD의 전사 인헨서 인자(TEF) 패밀리에 결합하여 표적 유전자를 발현한다. 일반 세포에서, 세포간 접촉 세포의 증식은 Hippo 경로에 의해 제한된다. 그러나 암 세포와 같은 접촉 억제 이상의 경우, Hippo 경로가 억제되고 개인 및 세포 성장의 크기가 제어될 수 없고, 과도한 세포 증식 및 세포 사멸의 억제를 초래하여 종양 형성에 기여한다.When the Hippo pathway is activated, the MST1/2 kinase binds to SAV1 and phosphorylates LATS1/2 to activate LATS1/2. Activated LATS1/2 phosphorylates YAP and then activates YAP to induce cytoplasmic sequestration and degradation. When the Hippo pathway is activated, phosphorylation of YAP is reduced and remains in the nucleus, and YAP migrates into the nucleus and binds to the transcriptional enhancer factor (TEF) family of TEAD to express the target gene. In normal cells, the proliferation of intercellular contact cells is limited by the Hippo pathway. However, in the case of more than contact inhibition such as cancer cells, the Hippo pathway is inhibited and the size of individual and cell growth cannot be controlled, resulting in inhibition of excessive cell proliferation and cell death, thereby contributing to tumor formation.
암이 진행되는 동안 Hippo-YAP 경로와 함께 Wnt 경로와 관련된 종래의 연구에서 Hippo-YAP 신호전달이 Wnt 신호전달을 억제하는 것으로 보고되었다. 그러나, 최근 연구에서 Wnt 신호전달은 Dishevelled (DVL)를 통해 YAP을 조절하는데 중요한 인자인 것으로 보고되었다. DVL은 Wnt 신호전달의 활성제로써, 인산화된 YAP에 결합하며, 이후 YAP의 활성화를 억제하기 위해 세포질로 YAP을 수송한다. 종양 억제제 p53 또는 LKB1 축이 정상일 때, Wnt 신호의 활성화제인 DVL은 YAP의 세포외 수송을 억제할 수 있으나, p53 또는 LKB1 축이 결함될 때, Wnt 및 Hippo-YAP 경로는 동시에 성장 및 크기를 모두 조절한다. 유방암 환자의 20년 생존률을 분석할 때, YAP 표적 유전자, 결합 조직 성장 인자(CTGF), 및 Wnt 신호 표적 유전자 Axin2가 동시에 발현될 때, p53 유전자의 돌연변이는 돌연변이가 없는 경우에 비해 예후가 좋지 않았다. 암 진행중 Wnt 및 Hippo-YAP 신호전달의 비정상적인 활성화는 암 예후 예측 암에서 중요한 바이오마커일 수 있다.In previous studies involving the Wnt pathway along with the Hippo-YAP pathway during cancer progression, it has been reported that Hippo-YAP signaling inhibits Wnt signaling. However, in a recent study, Wnt signaling was reported to be an important factor in regulating YAP through Dishevelled (DVL). DVL is an activator of Wnt signaling, binds to phosphorylated YAP, and then transports YAP to the cytoplasm to inhibit YAP activation. When the tumor suppressor p53 or LKB1 axis is normal, DVL, an activator of Wnt signaling, can inhibit the extracellular transport of YAP, but when the p53 or LKB1 axis is defective, the Wnt and Hippo-YAP pathways simultaneously grow and grow in size. Adjust. When analyzing the 20-year survival rate of breast cancer patients, when the YAP target gene, connective tissue growth factor (CTGF), and the Wnt signaling target gene Axin2 were simultaneously expressed, the mutation of the p53 gene had a poorer prognosis compared to the case without the mutation. . Abnormal activation of Wnt and Hippo-YAP signaling during cancer progression may be an important biomarker in cancer predicting cancer prognosis.
화학예방요법(chemoprevention)이란 약물이나 자연물을 이용해 암 또는 전암병변의 발생을 예방하거나 연장시키는 것을 말한다. FAP 환자는 많은 수의 용종이 발생하기 때문에 화학예방요법의 좋은 타겟 질환이 될 수 있다. FAP 환자에게 화학예방요법을 수행할 때, 결장 또는 직장에서 선종성 용종의 발생 및 증식을 억제하고, 대장 외의 다른 장기(예를 들어 십이지장 등)에서 선종성 용종의 발생을 예방하는 효과를 기대할 수 있다.Chemoprevention refers to preventing or prolonging the occurrence of cancer or precancerous lesions by using drugs or natural substances. Because FAP patients develop a large number of polyps, they can be good targets for chemoprophylaxis. When chemoprophylaxis is performed on FAP patients, the effect of inhibiting the occurrence and proliferation of adenomas in the colon or rectum and preventing the occurrence of adenomas in other organs (eg, duodenum, etc.) can be expected. have.
현재까지 FAP 환자에서 주로 연구된 화학예방요법 약제는 비스테로이드 항염증제(Non-steroidal anti-inflammatory drugs, NSAIDs)이다. NSAIDs는 아라키돈산(arachidonic acid)을 프로스타글란딘(prostaglandin)으로 전환하는 사이클로옥시게나제(cyclooxygenase)를 억제한다. 프로스타글란딘은 선종-암화 과정에서 주요한 역할을 담당하는데 세포접착 변화, 세포사멸 억제, 또는 신생혈관 생성을 촉진한다. 사이클로옥시게나제는 COX-1 및 COX-2가 있으며 선종의 발생과 진행과정에는 주로 COX-2가 관여한다. 22명의 FAP 환자를 대상으로 한 무작위 이중맹검 위약 대조군 연구에서 설린닥(sulindac) 150mg을 9개월간 하루에 두번(bid) 투약하였을 때 용종의 개수 및 너비에 유의한 감소가 있었다. 수술 받지 않은 환자 18명을 분석하였을 때 약을 중단한 이후에도 9개월까지 효과가 지속되었다. 설린닥은 수술 후 직장이 남아 있는 환자에서도 직장 선종의 재발을 유의하게 억제하였으나, 최종적으로 암의 진행을 예방하는 효과에 대해서는 아직 입증되지 않았다. 설린닥에 의한 소화기계 부작용을 예방하고자 선택적 Cox-2 억제제가 화학예방요법으로 이용되었다. 77명의 FAP 환자를 대상으로 진행된 이중맹검 위약 대조군 연구에서 6개월간 세레콕시브(celecoxib) 100mg 또는 400mg bid 또는 위약을 투약하였을 때, 위약군과 비교하여 세레콕시브 400mg을 투약받은 환자에서 용종의 개수가 28% 감소하였으며(p=0.003), 용종의 크기는 30.7% 감소하였다(p=0.001). 선택적 Cox-2 억제제는 소화기계 부작용 없이 뚜렷한 효과를 보였지만, 용량에 비례하여 심장 및 뇌혈관 독성이 발생하여 사용이 제한적이다. 또한 최근에 기존의 설린닥 150mg bid와 항암제로 사용되어 온 엘로티닙(erlotinib) (EGFR 티로신 키나제 억제제) 75mg의 6개월 병합 투약이 위약군에 비해 대장 용종을 69.4% 감소시키는 효과를 보였다. 그러나, 엘로티닙의 투약은 피부병변, 구강점막염, 또는 설사 등의 부작용이 발생하여, 용량 조절 및 장기투약 효과에 대한 추가 연구가 필요한 상태이다.To date, the chemoprophylactic drugs mainly studied in FAP patients are non-steroidal anti-inflammatory drugs (NSAIDs). NSAIDs inhibit cyclooxygenase, which converts arachidonic acid to prostaglandin. Prostaglandins play a major role in the adenoma-cancer process, which changes cell adhesion, inhibits apoptosis, or promotes angiogenesis. Cyclooxygenases include COX-1 and COX-2, and COX-2 is mainly involved in the development and progression of adenomas. In a randomized, double-blind, placebo-controlled study of 22 FAP patients, there was a significant decrease in the number and width of polyps when 150 mg of sulindac was administered twice a day (bid) for 9 months. When 18 patients who did not undergo surgery were analyzed, the effect persisted for up to 9 months even after stopping the drug. Sullindac significantly inhibited the recurrence of rectal adenoma even in patients with rectal left after surgery, but the effect of preventing the progression of cancer in the end has not been proven. Selective Cox-2 inhibitors were used as chemoprophylaxis to prevent side effects of the digestive system caused by sulindak. In a double-blind, placebo-controlled study of 77 FAP patients, when celecoxib 100mg or 400mg bid or placebo was administered for 6 months, the number of polyps in patients receiving celecoxib 400mg was compared to placebo group. It decreased by 28% (p=0.003), and the size of the polyp decreased by 30.7% (p=0.001). The selective Cox-2 inhibitor showed a clear effect without side effects of the digestive system, but its use was limited due to the occurrence of cardiac and cerebrovascular toxicity in proportion to the dose. In addition, a 6-month combination of 150mg bid and 75mg of erlotinib (EGFR tyrosine kinase inhibitor), which has been used as an anticancer drug, reduced colon polyps by 69.4% compared to the placebo group. However, the administration of erlotinib causes side effects such as skin lesions, oral mucositis, or diarrhea, and further studies on the effect of dose adjustment and long-term administration are required.
한편, 메트포르민(Metformin)은 비구아니드 유도체로 제2형 당뇨병 치료제로 널리 사용되고 있다. 메트포르민은 간내 포도당 생성을 억제하고 말초조직에서 인슐린 저항성을 호전시킨다. 메트포르민은 인슐린 분비를 직접 자극하지 않기 때문에 저혈당의 부작용이 낮고, 정상인에서는 혈당 저하 효과가 없다. 혈당이 상승되어 있거나 당내불인성이 있는 환자에서 당뇨병 발생을 예방하기 위해 진행한 당뇨병 예방 프로그램(Diabetes Prevention Program, DPP)에서, 메트포르민을 7-8년간 투약하였을 때 중증의 부작용은 발생하지 않았다. 가장 흔한 부작용은 오심, 상복부 불쾌감, 설사, 또는 변비 등의 위장관계증상이며 약 4%의 환자에서 부작용으로 약물 복용을 중단하였다. 그러나 대부분의 위장관계 부작용 증상은 1개월 정도의 적응 기간을 거쳐 회복된다. 그 외 메트포르민은 투약군에서 약간의 체중감소를 보일 수 있다. 또한 metformin은 직접적으로 인슐린 분비를 자극하지 않기 때문에 비당뇨병 성인에서 저혈당을 일으키지 않는다.Meanwhile, metformin is a biguanide derivative and is widely used as a therapeutic agent for type 2 diabetes. Metformin inhibits the production of glucose in the liver and improves insulin resistance in peripheral tissues. Because metformin does not directly stimulate insulin secretion, the side effects of hypoglycemia are low, and there is no effect of lowering blood sugar in normal people. In the Diabetes Prevention Program (DPP), which was developed to prevent the occurrence of diabetes in patients with elevated blood sugar or glucose tolerance, no serious side effects occurred when metformin was administered for 7-8 years. The most common side effects are gastrointestinal symptoms such as nausea, epigastric discomfort, diarrhea, or constipation. About 4% of patients stopped taking the drug due to side effects. However, most of the symptoms of gastrointestinal side effects recover through an adaptation period of about 1 month. In addition, metformin may show slight weight loss in the dose group. Also, because metformin does not directly stimulate insulin secretion, it does not cause hypoglycemia in non-diabetic adults.
또한, 니클로사미드(Niclosamide)는 1958년에 개발되어 현재까지 오랫동안 촌충 치료제로 사용되는 구충제의 하나이며, 세계 보건기구(World Health Organization, WHO)의 필수 의약품 목록에 가장 효과적이고 안전한 의약품으로 등록되어 있다. 기생충 감염 치료에서 권고한 바에 따르면 다양한 기생충에 따라 어른의 경우 2g의 단일 투여량으로 최대 2주간 투여를 권장한다. 니클로사미드는 전세계적으로 광범위하게 사용되어 왔으며, 경구 투여에 따른 부작용은 매우 적은 것으로 알려져 있다(1-4%). 예측 가능한 부작용으로는 오심, 복통, 변비, 두통, 식욕부진, 설사, 현기증, 또는 가려움증 등이 있으며, 심각한 부작용은 보고되어 있지 않다. 그리고 이러한 증상의 대부분은 소화기계와 관련한 부작용으로 약물 투여 중단으로 가역적인 회복이 가능하다. 또한 전세계적으로 가장 많이 사용하는 약리학교과서(Goodman and Gilman's, 8 th ed)에는 매우 안전한 약물로(quite free of undesirable effects) 소개되어 있다. 2002년 세계 보건기구의 'WHO Specifications and Evaluation for Public Health Pesticides' 보고서에서 니클로사미드에 대한 장기 섭취시킨 후 독성 검사를 시행한 결과를 공개하였는데, 랫(rat)에 24개월 섭취시켰을 때의 NOAEL(No-Observed-Adverse-Effect-Level)의 용량은 2000 ppm (2000 mg/kg)에 해당하였고, 마우스에 104주간 섭취시켰을 때의 NOAEL은 200 ppm (200 mg/kg)에 해당하였다. 랫 또는 마우스와 인간의 수명을 비교해 볼 때, 랫의 24개월은 인간 수명의 60년에 해당하며 마우스의 104 주는 인간 수명의 약 70년에 해당한다. 상기 임상연구에서 사용된 니클로사미드는 650mg으로 대략 10.8 mg/kg(인체 평균 체중기준 60kg 가정 시)에 해당하므로 인체에서 10.8 mg/kg/day로 6개월 섭취에 따른 독성의 문제는 극히 미미할 것으로 판단할 수 있다. 또한 상기 WHO 자료 및 다른 다양한 독성 자료에 따르면 니클로사미드에 의한 유전 독성이나 암 유발 가능성(carinogenecity)는 전혀 없다고 알려져 있다. 예를 들면 마우스 및 랫에서 5000 ppm (5000 mg/kg), 104 주간 처리에서 암유발 가능성에 대한 증거가 발견되지 않았다. 토끼의 다양한 임신 주기에 대한 니클로사미드의 대용량 투여 (1000 mg/kg)에서 배아독성(embrotoxic)이나 기형 유발(teratogenic effects) 가능성도 없었다.In addition, niclosamide was developed in 1958 and is one of the most effective and safe medicines on the list of essential medicines of the World Health Organization (WHO). have. As recommended in the treatment of parasite infections, according to various parasites, a single dose of 2g for adults is recommended for up to 2 weeks. Niclosamide has been widely used all over the world, and it is known that the side effects of oral administration are very small (1-4%). Predictable side effects include nausea, abdominal pain, constipation, headache, loss of appetite, diarrhea, dizziness, or itching, and no serious side effects have been reported. And most of these symptoms are side effects related to the digestive system, and reversible recovery is possible by stopping drug administration. It is also introduced as a very safe drug (quite free of undesirable effects) in the world's most widely used pharmacology school textbook (Goodman and Gilman's, 8 th ed). In 2002, the World Health Organization's'WHO Specifications and Evaluation for Public Health Pesticides' report revealed the results of a toxicity test after long-term ingestion of niclosamide. The dose of No-Observed-Adverse-Effect-Level) corresponded to 2000 ppm (2000 mg/kg), and the NOAEL when ingested into mice for 104 weeks was 200 ppm (200 mg/kg). When comparing the lifespan of rats or mice and humans, 24 months of rats correspond to 60 years of human lifespan, and 104 weeks of mice correspond to about 70 years of human lifespan. Niclosamide used in the above clinical study is 650 mg, which corresponds to approximately 10.8 mg/kg (assuming 60 kg based on the average body weight), so the problem of toxicity after 6 months intake at 10.8 mg/kg/day in the human body is expected to be very slight. I can judge. In addition, according to the WHO data and various other toxicity data, it is known that there is no genotoxicity or carinogenecity caused by niclosamide. For example, no evidence of cancer incidence was found at 5000 ppm (5000 mg/kg), 104 weeks treatment in mice and rats. There was no possibility of embrotoxic or teratogenic effects with large doses of niclosamide (1000 mg/kg) for various gestational cycles in rabbits.
즉, 메트포르민 및 니클로사미드는 현재까지 상대적으로 매우 안전한 약제로 알려져 있으며, 화학예방요법의 안전성에서 기존 약제보다 적합할 것으로 기대된다. 그러나 아직까지 FAP 환자에서 화학예방요법으로 메트포르민 또는 니클로사미드의 효과에 대한 연구는 없다.That is, metformin and niclosamide are known to be relatively safe drugs to date, and are expected to be more suitable than conventional drugs in terms of the safety of chemoprevention therapy. However, there are no studies on the effects of metformin or niclosamide as chemoprophylaxis in patients with FAP.
결론적으로, 현재까지 FAP의 치료에 일부 약제의 효과가 증명되었으나, 앞에서 언급한 부작용 등으로 전세계적으로 승인된 약제가 없는 상태이며, 일부 매우 제한적으로 설린닥 또는 세레콕시브 등이 이용되고 있다. 따라서 FAP를 치료하기 위해, 안전하고 효과가 뚜렷한 새로운 화학예방요법 약제가 필요하다.In conclusion, although the effectiveness of some drugs in the treatment of FAP has been proven to date, there is no globally approved drug due to the aforementioned side effects, and some very limited sulindac or celecoxib are used. Therefore, in order to treat FAP, new chemoprophylactic drugs that are safe and effective are needed.
본 발명이 해결하고자 하는 과제는 가족성 선종성 용종증(Familial adenomatous polyposis)에 대한 예방 또는 치료 효과가 우수한 약학적 조성물을 제공하는 것이다.The problem to be solved by the present invention is to provide a pharmaceutical composition having an excellent preventive or therapeutic effect for familial adenomatous polyposis.
본 발명이 해결하고자 하는 다른 과제는 가족성 선종성 용종증(Familial adenomatous polyposis)에 대해 효과적인 예방 또는 치료 방법을 제공하는 것이다.Another problem to be solved by the present invention is to provide an effective prevention or treatment method for familial adenomatous polyposis.
가족성 선종성 용종증의 발생과 진행에 있어서 세포 또는 종양 증식과 관련된 여러 신호전달체계들이 피드백 등의 복잡한 상호 작용을 통해 영향을 주게 되므로, 어느 한가지 신호전달 분자를 표적으로 하는 것은 종양 억제 효과가 없거나 미미하게 나타날 수 있다. 본 발명자들은 가족성 선종성 용종증의 치료법을 찾고자 예의 노력한 결과, (a) 니클로사미드 또는 이의 약학적으로 허용 가능한 염과 (b) 메트포르민 또는 이의 약학적으로 허용 가능한 염을 병용할 경우 FAP의 치료 또는 예방 효과가 현저히 높아진다는 놀라운 발견을 하였다.In the incidence and progression of familial adenomatous polyposis, since various signaling systems related to cell or tumor proliferation are affected through complex interactions such as feedback, targeting any one signaling molecule has no tumor suppression effect or It may appear insignificant. As a result of the present inventors' diligent efforts to find a treatment for familial adenomatous polyposis, (a) niclosamide or a pharmaceutically acceptable salt thereof and (b) metformin or a pharmaceutically acceptable salt thereof are used in combination to treat FAP. Or, it was surprisingly discovered that the preventive effect was significantly increased.
이러한 시너지 효과는, 후술하는 본 발명자들이 확인한 실험결과에 기초한 바와 같이, 니클로사미드의 Axin2-Wnt 신호전달 억제 효과와 메트포르민의 AMPK-mTOR 신호전달 억제 효과가 동시에 작용하여 선종성 용종의 증식에 관련된 대표적인 두가지 신호전달체계를 동시에 억제하고, 상기 두가지 신호전달체계와 Hipp-YAP 경로가 상호 작용할 수 있다는 점에 기인하는 것으로 추측되나, 여러 실험결과를 통해 확인된 이들 병용의 시너지 효과와 관련된 본 발명은 이러한 이론적 기전에 한정되는 것은 아니다. This synergistic effect is based on the experimental results confirmed by the present inventors to be described later, as the Axin2-Wnt signaling inhibitory effect of niclosamide and the AMPK-mTOR signaling inhibitory effect of metformin act simultaneously, and are related to the proliferation of adenomatic polyps. It is presumed to be due to the fact that the two representative signal transduction systems are simultaneously suppressed and the two signal transduction systems and the Hipp-YAP pathway can interact, but the present invention related to the synergistic effect of these combinations confirmed through various experimental results It is not limited to these theoretical mechanisms.
구체적으로, 본 발명자들은 APC의 돌연변이가 있는 경우 Wnt와 Hippo-YAP 신호가 활성화됨을 확인하고, Wnt 신호전달의 핵심 물질인 Axin2의 발현을 확인한 결과 APC 돌연변이가 있는 세포주에서 Axin2의 발현이 높음을 확인하였다. 그 중 DLD-1, SW480 세포주를 선택하여 Axin2을 발현을 억제하였을 때, YAP의 활성화가 증가함이 관찰되었으며, Axin2-GSK3 결합을 억제하는 니클로사미드를 처리하였을 때도 같은 결과가 나타났다. Axin2의 발현을 억제하면 핵 내 YAP의 발현이 높아지고 인산화된 YAP(S127)의 발현이 줄어들었다. Specifically, the present inventors confirmed that Wnt and Hippo-YAP signals are activated when there is a mutation of APC, and as a result of confirming the expression of Axin2, a key substance for Wnt signaling, the expression of Axin2 is high in cell lines with APC mutations. I did. Among them, when the DLD-1 and SW480 cell lines were selected to suppress Axin2 expression, the activation of YAP was observed to increase, and the same result was also observed when niclosamide, which inhibits Axin2-GSK3 binding, was treated. Inhibition of Axin2 expression increased the expression of YAP in the nucleus and decreased the expression of phosphorylated YAP (S127).
반면 메트포르민을 처리 하였을 때 YAP의 활성화가 억제되고 Snail 매개 EMT 관련 인자인 Axin2와 Snail의 발현 또한 감소되었다. 즉, 니클로사미드와 메트포르민을 병용 시 메트포르민이 니클로사미드의 YAP의 활성화 기능을 보완하고, 암세포 성장과 연관된 AMPK-mTOR 신호를 조절하며 Snail 매개 EMT를 효과적으로 억제하였다. 나아가, APC-min 마우스를 이용한 동물 임상 실험을 통해, 니클로사미드 및 메트포르민의 조합은 각각의 단독 투여에 비해 소장 용종의 수를 현저하게 감소시켜, 가족성 선종성 용종증의 예방 또는 치료에 시너지 효과를 발휘함을 확인하였다.On the other hand, when metformin was treated, the activation of YAP was inhibited and the expressions of Snail-mediated EMT-related factors, Axin2 and Snail, were also reduced. That is, when niclosamide and metformin were used in combination, metformin supplemented the YAP activation function of niclosamide, regulated AMPK-mTOR signal related to cancer cell growth, and effectively suppressed Snail-mediated EMT. Furthermore, through animal clinical trials using APC-min mice, the combination of niclosamide and metformin significantly reduced the number of small intestine polyps compared to each single administration, resulting in a synergistic effect in the prevention or treatment of familial adenomatic polyps. It was confirmed that it exerts.
본 발명은 (a) 니클로사마이드 또는 이의 약학적으로 허용 가능한 염 및 (b) 메트포르민 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 포함하는 가족성 선종성 용종증 예방 또는 치료용 약학적 조성물을 제공한다. The present invention provides a pharmaceutical composition for the prevention or treatment of familial adenomatous polyposis comprising (a) niclosamide or a pharmaceutically acceptable salt thereof and (b) metformin or a pharmaceutically acceptable salt thereof as an active ingredient do.
일 실시예에서, 본 발명의 약학적 조성물은 니클로사미드 또는 이의 약학적으로 허용 가능한 염, 및 메트포르민 또는 이의 약학적으로 허용 가능한 염을 포함할 수 있다. 상기 약학적으로 허용 가능한 염으로 적합한 염은 산 또는 염기 부가염과 같이, 본 발명이 속하는 기술분야에서 통상적으로 사용되는 것으로 특별히 제한되는 것은 아니다. In one embodiment, the pharmaceutical composition of the present invention may include niclosamide or a pharmaceutically acceptable salt thereof, and metformin or a pharmaceutically acceptable salt thereof. Salts suitable as the pharmaceutically acceptable salts are not particularly limited as those commonly used in the art to which the present invention pertains, such as acid or base addition salts.
일 실시예에서, 상기 니클로사미드의 약학적으로 허용가능한 염은 금속염, 유기 염기와의 염, 무기산과의 염, 유기산과의 염, 염기성, 또는 산성 아미노산과의 염 등이 포함될 수 있다. 적합한 금속염은 나트륨염, 칼륨염 등과 같은 알칼리 금속염; 칼슘염, 마그네슘염, 바륨염 등과 같은 알칼리 토금속염; 알루미늄염 등이 포함될 수 있다. 유기 염기와의 염은 트리메틸아민, 트리에틸아민, 피리딘, 피콜린, 2,6-루티딘, 에탄올아민, 디에탄올아민, 트리에탄올아민, 시클로헥실아민, 디시클로헥실아민, N,N-디벤질에틸렌디아민 등과의 염이 포함될 수 있다. 무기산과의 염은 염산, 브롬화수소산, 질산, 황산, 인산 등과의 염이 포함될 수 있다. 유기산과의 염은 포름산, 아세트산, 트리플루오로아세트산, 프탈산, 푸마르산, 옥살산, 타르타르산, 말레인산, 시트르산, 숙신산, 메탄술폰산, 벤젠술폰산, p-톨루엔술폰산 등과의 염이 포함될 수 있다. 염기성 아미노산과의 염은 알기닌, 라이신, 오르니틴 등과의 염이 포함될 수 있다. 산성 아미노산과의 염은 아스파르트산, 글루탐산 등과의 염이 포함될 수 있다.In one embodiment, the pharmaceutically acceptable salt of niclosamide may include a metal salt, a salt with an organic base, a salt with an inorganic acid, a salt with an organic acid, a salt with a basic or acidic amino acid, and the like. Suitable metal salts include alkali metal salts such as sodium salts, potassium salts and the like; Alkaline earth metal salts such as calcium salt, magnesium salt, and barium salt; Aluminum salts and the like may be included. Salts with organic bases include trimethylamine, triethylamine, pyridine, picoline, 2,6-lutidine, ethanolamine, diethanolamine, triethanolamine, cyclohexylamine, dicyclohexylamine, N,N-dibenzyl Salts such as ethylenediamine may be included. Salts with inorganic acids may include salts of hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid, and the like. Salts with organic acids may include salts of formic acid, acetic acid, trifluoroacetic acid, phthalic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and the like. Salts with basic amino acids may include salts with arginine, lysine, ornithine. Salts with acidic amino acids may include salts with aspartic acid, glutamic acid, and the like.
일 실시예에서, 상기 메트포르민의 약학적으로 허용가능한 염은 유기산, 무기산 또는 산성 아미노산과의 염 등이 포함될 수 있다. 유기산과의 염은 초산, 프로피온산, 이소부틸산, 옥살릭산, 말레익산, 말로닉산, 숙신산, 수버릭산, 푸마릭산, 만데릭산, 프탈릭, 벤젠설포닉, p-토릴설포닉, 구연산, 주석산, 메탄설포닉산 또는 그 유사체 등과의 염이 포함될 수 있다. 무기산과의 염은 염산, 브롬산, 질산, 탄산, 일수소탄산, 인산, 일수소인산, 이수소인산, 황산, 일수소황산, 요오드화수소 또는 아인산 및 그 유사체 등과의 염이 포함될 수 있다. 산성 아미노산과의 염은 아스파르트산, 글루탐산 등과의 염이 포함될 수 있다.In one embodiment, the pharmaceutically acceptable salt of metformin may include salts with organic acids, inorganic acids, or acidic amino acids. Salts with organic acids include acetic acid, propionic acid, isobutyl acid, oxalic acid, maleic acid, malonic acid, succinic acid, suberic acid, fumaric acid, manderic acid, phthalic acid, benzenesulphonic, p-tolylsulphonic, citric acid, tartaric acid. , A salt with methanesulphonic acid or an analog thereof, etc. may be included. Salts with inorganic acids may include salts with hydrochloric acid, bromic acid, nitric acid, carbonic acid, monohydrocarbon acid, phosphoric acid, monohydrogen phosphoric acid, dihydrogenphosphoric acid, sulfuric acid, monohydrogen sulfuric acid, hydrogen iodide or phosphorous acid, and analogs thereof. Salts with acidic amino acids may include salts with aspartic acid, glutamic acid, and the like.
일 실시예에서, 본 발명의 약학적 조성물의 니클로사미드 또는 이의 약학적으로 허용가능한 염; 및 메트포르민 또는 이의 약학적으로 허용가능한 염의 몰비는 1 : 10~10000, 바람직하게 1 : 100~7000, 더욱 바람직하게 1 : 2000~4000 (니클로사미드 또는 이의 약학적으로 허용가능한 염 : 메트포르민 또는 이의 약학적으로 허용가능한 염)일 수 있다. 본 발명의 약학적 조성물이 니클로사미드 및 메트포르민을 상기 특정한 몰비로 포함하는 경우, 가족성 선종성 용종증의 예방 또는 치료 효과가 현저하게 상승될 수 있다.In one embodiment, niclosamide or a pharmaceutically acceptable salt thereof of the pharmaceutical composition of the present invention; And the molar ratio of metformin or a pharmaceutically acceptable salt thereof is 1: 10 to 10000, preferably 1: 100 to 7000, more preferably 1: 2000 to 4000 (Niclosamide or a pharmaceutically acceptable salt thereof: metformin or its Pharmaceutically acceptable salt). When the pharmaceutical composition of the present invention contains niclosamide and metformin in the specific molar ratio, the effect of preventing or treating familial adenomatic polyposis may be remarkably increased.
다른 양태에서, 본 발명은 (a) 니클로사미드 또는 이의 약학적으로 허용가능한 염의 치료적으로 유효한 양, (b) 메트포르민 또는 이의 약학적으로 허용가능한 염의 치료적으로 유효한 양, 및 (c) 약학적으로 허용 가능한 담체를 포함하는 약학적 조성물을 제공한다.In another aspect, the present invention provides a therapeutically effective amount of (a) niclosamide or a pharmaceutically acceptable salt thereof, (b) a therapeutically effective amount of metformin or a pharmaceutically acceptable salt thereof, and (c) a pharmaceutical. It provides a pharmaceutical composition comprising an acceptable carrier.
본 명세서에서 사용된 "유효량"은 가족성 선종성 용종을 파괴, 변형, 통제 또는 제거하거나; 가족성 선종성 용종의 확장을 늦추거나 또는 최소화하거나; 또는 가족성 선종성 용종증의 치료 또는 관리에서 치료상 이점을 제공하기에 충분한 니클로사미드 및 메트포르민의 양을 말한다. "유효량" 은 또한 가족성 선종성 용종 세포의 사멸을 야기하기에 충분한 니클로사미드 및 메트포르민의 양을 말한다. "유효량"은 또한 생체외(in vitro) 또는 생체내(in vivo) 어떤 쪽이 든 가족성 선종성 용종의 활성을 억제 또는 줄이기에 충분한 양을 말한다"Effective amount" as used herein destroys, transforms, controls, or eliminates familial adenomatic polyps; Slowing down or minimizing the expansion of familial adenomatic polyps; Or it refers to the amount of niclosamide and metformin sufficient to provide a therapeutic benefit in the treatment or management of familial adenomatous polyposis. "Effective amount" also refers to the amount of niclosamide and metformin sufficient to cause the death of familial adenomatic polyp cells. "Effective amount" also refers to an amount sufficient to inhibit or reduce the activity of familial adenomatic polyps, either in vitro or in vivo.
또 다른 양태에서, 본 발명은 니클로사미드 또는 이의 약학적으로 허용가능한 염의 치료적으로 유효한 양, 및 메트포르민 또는 이의 약학적으로 허용가능한 염의 치료적으로 유효한 양을 이를 필요로 하는 개체에 투여하는 단계를 포함하는 가족성 선종성 용종증을 치료 또는 예방하는 방법을 제공한다. 또 다른 양태에서, 상기 개체는 인간이다. 또 다른 양태에서, 상기 방법은 Wnt/YAP/mTOR 신호전달 및 Snail 매개 상피간엽이행(EMT)의 억제를 통해 가족성 선종성 용종증 예방 또는 치료 효과를 나타낸다. 또 다른 양태에서, 상기 방법이 치료 또는 예방하는 가족성 선종성 용종증은 APC(adenomatous polyposis coli) 유전자의 돌연변이에 의해 발생하는 가족성 선종성 용종증이다.In another embodiment, the present invention provides a therapeutically effective amount of niclosamide or a pharmaceutically acceptable salt thereof, and a therapeutically effective amount of metformin or a pharmaceutically acceptable salt thereof, to an individual in need thereof. It provides a method of treating or preventing familial adenomatous polyposis comprising a. In another aspect, the subject is a human. In another embodiment, the method exhibits the effect of preventing or treating familial adenomatic polyposis through inhibition of Wnt/YAP/mTOR signaling and Snail-mediated epithelial mesenchymal transition (EMT). In another embodiment, the familial adenomatous polyposis treated or prevented by the method is a familial adenomatous polyposis caused by mutations in the APC (adenomatous polyposis coli) gene.
다른 양태에서, 본 발명은 니클로사미드 또는 이의 약학적으로 허용가능한 염; 및 메트포르민 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 가족성 선종성 용종증 예방 또는 치료용 키트를 제공한다. 또 다른 양태에서, 상기 키트는 가족성 선종성 용종증의 예방 또는 치료를 위해 필요한 조성물 및 부속품을 포함하는 세트를 의미한다. 또 다른 양태에서, 상기 키트에 포함되는 부속품은 가족성 선종성 용종증의 예방 또는 치료를 위해 본 발명이 속하는 기술분야에서 통상적으로 사용되는 도구 또는 장치 등이다. 또 다른 양태에서, 상기 키트에 포함되는 니클로사미드 또는 이의 약학적으로 허용가능한 염; 및 메트포르민 또는 이의 약학적으로 허용가능한 염은 동시에 또는 순차적으로 투여된다. 또 다른 양태에서, 상기 키트는 상기 유효성분들의 투여량, 투여 경로, 투여 횟수 및 적응증(가족성 선종성 용종증) 등으로 이루어진 군에서 선택된 어느 하나 이상을 개시한 복약지시서를 추가적으로 포함한다. In another aspect, the present invention provides niclosamide or a pharmaceutically acceptable salt thereof; And it provides a kit for the prevention or treatment of familial adenomatous polyposis comprising metformin or a pharmaceutically acceptable salt thereof as an active ingredient. In another embodiment, the kit refers to a set comprising a composition and accessories necessary for the prevention or treatment of familial adenomatous polyposis. In another embodiment, the accessory included in the kit is a tool or device commonly used in the art for the prevention or treatment of familial adenomatous polyposis. In another aspect, niclosamide or a pharmaceutically acceptable salt thereof included in the kit; And metformin or a pharmaceutically acceptable salt thereof are administered simultaneously or sequentially. In another embodiment, the kit additionally includes an instruction for taking any one or more selected from the group consisting of the amount of the active ingredients, the route of administration, the number of administrations, and indications (familial adenomatic polyposis).
또 다른 양태에서, 상기 키트는 Wnt/YAP/mTOR 신호전달 및 Snail 매개 상피간엽이행(EMT)의 억제를 통해 가족성 선종성 용종증 예방 또는 치료 효과를 나타낸다. 또 다른 양태에서, 상기 키트가 치료 또는 예방하는 가족성 선종성 용종증은 APC(adenomatous polyposis coli) 유전자의 돌연변이에 의해 발생하는 가족성 선종성 용종증이다.In another embodiment, the kit exhibits an effect of preventing or treating familial adenomatic polyposis through inhibition of Wnt/YAP/mTOR signaling and Snail-mediated epithelial mesenchymal transition (EMT). In another embodiment, the familial adenomatous polyposis treated or prevented by the kit is a familial adenomatous polyposis caused by mutations in the APC (adenomatous polyposis coli) gene.
즉, 본 발명은 니클로사미드 또는 이의 약학적으로 허용가능한 염, 및 메트포르민 또는 이의 약학적으로 허용가능한 염을 유효성분으로 이용하는 것을 특징으로 하는 의약 용도를 제공한다. 일 양태에서, 본 발명의 의약 용도는 본 명세서에서 설명된 가족성 선종성 용종증의 치료 또는 예방 용도이다. 다른 양태에서, 상기 의약 용도는 Wnt/YAP/mTOR 신호전달 및 Snail 매개 상피간엽이행(EMT)의 억제를 통해 가족성 선종성 용종증 예방 또는 치료 효과를 나타낸다. 또 다른 양태에서, 상기 의약 용도에서 가족성 선종성 용종증은 APC(adenomatous polyposis coli) 유전자의 돌연변이에 의해 발생하는 가족성 선종성 용종증이다.That is, the present invention provides a pharmaceutical use, characterized in that niclosamide or a pharmaceutically acceptable salt thereof, and metformin or a pharmaceutically acceptable salt thereof are used as active ingredients. In one aspect, the pharmaceutical use of the present invention is for the treatment or prophylaxis of familial adenomatous polyposis as described herein. In another embodiment, the pharmaceutical use shows the effect of preventing or treating familial adenomatous polyposis through inhibition of Wnt/YAP/mTOR signaling and Snail-mediated epithelial mesenchymal transition (EMT). In another embodiment, the familial adenomatous polyposis in the pharmaceutical use is a familial adenomatous polyposis caused by mutation of the APC (adenomatous polyposis coli) gene.
본 발명에서 "예방"은 본 발명의 조성물의 투여로 가족성 선종성 용종의 발생, 성장 및 증식의 진행을 지연시키는 모든 행위를 의미한다.In the present invention, "prevention" refers to any action that delays the development, growth, and proliferation of familial adenomatic polyps by administration of the composition of the present invention.
본 발명에서 "치료"는 본 발명의 조성물의 투여로 가족성 선종성 용종의 성장 및 증식을 억제하여 가족성 선종성 용종증을 호전 또는 이롭게 변경되는 모든 행위를 의미한다.In the present invention, "treatment" refers to any action that improves or beneficially alters familial adenomatic polyp by inhibiting the growth and proliferation of familial adenomatal polyp by administration of the composition of the present invention.
일 실시예에서, 본 발명의 니클로사미드 또는 이의 약학적으로 허용가능한 염, 및 메트포르민 또는 이의 약학적으로 허용가능한 염은 일반적으로 치료적으로 유효한 양이 투여된다. 본 발명의 니클로사미드 또는 이의 약학적으로 허용가능한 염, 및 메트포르민 또는 이의 약학적으로 허용가능한 염은 임의의 적합한 경로에 의하여 이러한 경로에 적당한 약학적 조성물의 형태, 그리고 의도된 치료를 위하여 효과적인 투여량으로 투여될 수 있다.In one embodiment, niclosamide of the present invention or a pharmaceutically acceptable salt thereof, and metformin or a pharmaceutically acceptable salt thereof are generally administered in a therapeutically effective amount. Niclosamide or a pharmaceutically acceptable salt thereof of the present invention, and metformin or a pharmaceutically acceptable salt thereof are in the form of a pharmaceutical composition suitable for this route by any suitable route, and effective administration for the intended treatment. It can be administered in amounts.
일 실시예에서, 니클로사미드 또는 이의 약학적으로 허용가능한 염의 효과적인 투여량은 단일 또는 분할 투여로 일반적으로 약 0.0001 내지 약 200 mg/체중kg/일이고, 바람직하게는 약 0.001 내지 약 100 mg/kg/일이다. 또한, 메트포르민 또는 이의 약학적으로 허용가능한 염의 효과적인 투여량은 단일 또는 분할 투여로 일반적으로 약 0.0001 내지 약 200 mg/체중kg/일이고, 바람직하게는 약 0.001 내지 약 100 mg/kg/일이다. 나이, 종, 및 치료될 질병 또는 상태(condition)에 따라 이 범위의 하한 미만의 투여량 수준이 적합할 수 있다. 다른 경우에는, 여전히 더 큰 투여량이 해로운 부작용없이 사용될 수 있다. 더 큰 투여량은 하루 동안 투여를 위하여, 여러 작은 투여량으로 분할될 수 있다. 적절한 투여량을 결정하기 위한 방법 들이 본 발명이 속한 분야에 잘 알려져 있다.In one embodiment, the effective dosage of niclosamide or a pharmaceutically acceptable salt thereof is generally about 0.0001 to about 200 mg/kg body weight/day, preferably about 0.001 to about 100 mg/day, in single or divided doses. kg/day. In addition, the effective dosage of metformin or a pharmaceutically acceptable salt thereof is generally about 0.0001 to about 200 mg/kg body weight/day, preferably about 0.001 to about 100 mg/kg/day, in single or divided doses. Depending on the age, species, and disease or condition being treated, dosage levels below the lower limit of this range may be suitable. In other cases, still larger dosages can be used without harmful side effects. Larger dosages can be divided into several smaller dosages, for administration throughout the day. Methods for determining the appropriate dosage are well known in the art.
가족성 선종성 용종증의 치료를 위하여, 본 명세서에서 설명된 상기 니클로사미드 및 메트포르민, 또는 이들의 약학적으로 허용가능한 염들은 다음과 같이 다양한 방법으로 투여될 수 있다For the treatment of familial adenomatous polyposis, the niclosamide and metformin described herein, or pharmaceutically acceptable salts thereof, may be administered in various ways as follows.
구강 투여(Oral administration)Oral administration
본 발명의 약학적 조성물은 구강으로 투여될 수 있으며, 구강은 연하(swallowing)를 포함하는 개념이다. 구강 투여에 의하여 본 발명의 약학적 조성물이 위장관(gastrointestinal tract)에 들어가거나, 예를 들어, 구강(buccal) 또는 설하(sublingual) 투여와 같이, 입으로부터 혈류로 직접적으로 흡수될 수 있다. The pharmaceutical composition of the present invention can be administered orally, and the oral cavity is a concept including swallowing. By oral administration, the pharmaceutical composition of the present invention enters the gastrointestinal tract, or can be absorbed directly from the mouth into the bloodstream, for example, buccal or sublingual administration.
구강 투여를 위한 적합한 조성물은 고형상, 액상, 겔(gel), 또는 파우더 형상일 수 있으며, 정제(tablet), 로젠지(lozenge), 캡슐(capsule), 과립제, 산제 등의 제형을 가질 수 있다. Suitable compositions for oral administration may be in the form of solid, liquid, gel, or powder, and may have formulations such as tablets, lozenges, capsules, granules, powders, etc. .
구강 투여를 위한 조성물은 선택적으로 장용 코팅(enteric coating)될 수 있으며, 장용 코팅을 통하여 지연된(delayed) 또는 지속된(sustained) 방출을 나타낼 수 있다. 즉, 본 발명에 따른 구강 투여를 위한 조성물은 즉시 또는 변형된(modified) 방출 패턴을 가진 제형일 수 있다. Compositions for oral administration may optionally be enteric coated and exhibit delayed or sustained release through enteric coating. That is, the composition for oral administration according to the present invention may be a formulation having an immediate or modified release pattern.
액체 제형은 용액, 시럽 및 현탁액을 포함할 수 있으며, 이러한 액상 조성물은 연질 또는 경질 캡슐 내에 함유된 형태일 수 있다. 이러한 제형은 약학적으로 허용 가능한 담체, 예를 들어, 물, 에탄올, 폴리에틸렌글리콜, 셀룰로오스, 또는 오일(oil)을 포함할 수 있다. 상기 제형은 또한 하나 이상의 유화제 및/또는 현탁제를 포함할 수 있다.Liquid formulations may include solutions, syrups and suspensions, and such liquid compositions may be contained within soft or hard capsules. Such formulations may contain a pharmaceutically acceptable carrier, such as water, ethanol, polyethylene glycol, cellulose, or oil. The formulation may also contain one or more emulsifying and/or suspending agents.
정제(tablet) 제형에서, 활성 성분인 약물의 양은 정제 총 중량 대비 약 0.05 중량% 내지 약 95 중량%, 더욱 일반적으로 제형의 약 2 중량% 내지 약 50 중량%로 존재할 수 있다. 또한, 정제는 약 0.5 중량% 내지 약 35 중량%, 더욱 일반적으로 제형의 약 2 중량% 내지 약 25 중량%를 포함하는 붕해제를 함유할 수 있다. 붕해제의 예로는 유당, 전분, 소디움스타치글리콜레이트, 크로스포비돈, 크로스카멜로스소디움(croscarmellose sodium), 말토덱스트린 또는 이들의 혼합물이 사용될 수 있으나 이에 한정되는 것은 아니다.In tablet formulations, the amount of the active ingredient drug may be present in about 0.05% to about 95% by weight, more generally from about 2% to about 50% by weight of the formulation, based on the total weight of the tablet. Further, the tablet may contain a disintegrant comprising from about 0.5% to about 35% by weight, more generally from about 2% to about 25% by weight of the formulation. Examples of the disintegrant may include lactose, starch, sodium starch glycolate, crospovidone, croscarmellose sodium, maltodextrin, or a mixture thereof, but is not limited thereto.
정제로 제조하기 위해 포함되는 적합한 활택제는 약 0.1 중량% 내지 약 5 중량% 양으로 존재할 수 있고, 탈크(talc), 이산화규소, 스테아린산, 칼슘, 아연 또는 마그네슘 스테아레이트, 소듐 스테아릴 푸마레이트 등이 활택제로 사용될 수 있으나, 본 발명은 이러한 첨가제들의 종류에 한정되는 것은 아니다. Suitable lubricants included to make tablets may be present in an amount of about 0.1% to about 5% by weight, such as talc, silicon dioxide, stearic acid, calcium, zinc or magnesium stearate, sodium stearyl fumarate, and the like. Although it can be used as a lubricant, the present invention is not limited to the types of these additives.
정제로 제조하기 위한 결합제(binder)로는 젤라틴, 폴리에틸렌글리콜, 당(sugar), 검(gum), 녹말(starch), 폴리비닐피롤리돈, 하이드록시프로필셀룰로오스, 하이드록시프로필메틸셀룰로오스 등이 사용될 수 있으며, 정제로 제조하기 위한 적합한 희석제로는 만니톨, 자일리톨, 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 녹말(starch), 미결정셀룰로오스 등이 사용될 수 있으나, 본 발명은 이러한 첨가제들의 종류에 한정되는 것은 아니다. Gelatin, polyethylene glycol, sugar, gum, starch, polyvinylpyrrolidone, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, etc. can be used as a binder for manufacturing into tablets. And, as a suitable diluent for preparing tablets, mannitol, xylitol, lactose, dextrose, sucrose, sorbitol, starch, microcrystalline cellulose, etc. may be used, but the present invention is not limited to the types of these additives. .
선택적으로 정제에 포함될 수 있는 가용화제는 정제 총 중량 대비 약 0.1 중량% 내지 약 3 중량% 양이 사용될 수 있고, 예를 들어, 폴리소르베이트, 소디움 라우릴설페이트, 소디움 도데실설페이트, 프로필렌 카보네이트, 디에틸렌글리콜모노에틸에테르, 디메틸이소소르비드, 폴리옥시에틸렌글리콜화된 천연 또는 수소화 피마자유, HCOR TM(Nikkol), 올레일에스테르, 젤루시어(Gelucire TM), 카프릴릭/카프릴산 모노/디글리세리드, 소르비탄지방산에스테르, 솔루톨HS TM 등이 본 발명에 따른 약학 조성물에 사용될 수 있으나, 본 발명은 이러한 가용화제의 구체적 종류에 한정되는 것은 아니다.Optionally, the solubilizing agent that may be included in the tablet may be used in an amount of about 0.1% to about 3% by weight based on the total weight of the tablet, for example, polysorbate, sodium lauryl sulfate, sodium dodecyl sulfate, propylene carbonate, Diethylene glycol monoethyl ether, dimethyl isosorbide, polyoxyethylene glycolated natural or hydrogenated castor oil, HCOR TM (Nikkol), oleyl ester, Gelucire TM , caprylic/caprylic acid mono/ Although diglyceride, sorbitan fatty acid ester, sorbitol HS TM and the like can be used in the pharmaceutical composition according to the present invention, the present invention is not limited to the specific types of such solubilizing agents.
비경구 투여(Parenteral Administration)Parenteral Administration
본 발명의 약학적 조성물은 혈류, 근육, 또는 내장 내로 직접 투여될 수 있다. 비경구 투여를 위한 적합한 방법은 정맥내(intravenous), 근육내(intra-muscular), 피하 동맥내(subcutaneous intraarterial), 복강내(intraperitoneal), 척추강내(intrathecal), 두개내(intracranial) 주사 등을 포함한다. 비경구 투여를 위한 적합한 장치는 (바늘 및 바늘 없는 주사기를 포함하는) 주사기(injector) 및 주입 방법(infusion method)을 포함한다.The pharmaceutical composition of the present invention can be administered directly into the bloodstream, muscle, or intestines. Suitable methods for parenteral administration include intravenous, intra-muscular, subcutaneous intraarterial, intraperitoneal, intrathecal, intracranial injection, etc. Includes. Suitable devices for parenteral administration include injectors (including needles and needleless syringes) and infusion methods.
비경구 투여를 위한 조성물은 즉시 또는 변형된 방출 패턴을 가진 제형일 수 있으며, 변형된 방출 패턴은 지연된(delayed) 또는 지속된(sustained) 방출 패턴일 수 있다. Compositions for parenteral administration may be formulations with immediate or modified release patterns, and modified release patterns may be delayed or sustained release patterns.
대부분의 비경구 제형은 액상 조성물이며, 이러한 액상 조성물은 본 발명에 따른 유효성분, 염, 완충제, 등장화제 등을 포함하는 수용액이다.Most parenteral formulations are liquid compositions, and such liquid compositions are aqueous solutions containing active ingredients, salts, buffers, isotonic agents, and the like according to the present invention.
비경구 제형은 또한 건조된 형태(예를 들어, 동결 건조) 또는 멸균 비-수용액으로서 제조될 수 있다. 이들 제형은 멸균수(sterile water)와 같은 적합한 비히클(vehicle)과 함께 사용될 수 있다. 용해도 증강제(solubility-enhancing agents) 또한 비경구 용액의 제조에 사용될 수 있다.Parenteral formulations can also be prepared in dried form (eg, lyophilized) or as sterile non-aqueous solutions. These formulations can be used with a suitable vehicle such as sterile water. Solubility-enhancing agents can also be used in the preparation of parenteral solutions.
국소 투여(Topical Administration)Topical Administration
본 발명의 약학적 조성물은 피부 또는 경피로 국소적으로 투여될 수 있다. 이 국소 투여를 위한 제형은 로션, 용액, 크림, 젤, 하이드로젤, 연고, 폼(foam), 임플란트(implant), 패치 등을 포함한다. 국소 투여 제형을 위한 약학적으로 허용 가능한 담체는 물, 알코올, 미네랄 오일, 글리세린, 폴리에틸렌글리콜 등을 포함할 수 있다. 국소 투여는 또한 전기천공법(electroporation), 이온도입법(iontophoresis), 음파영동(phonophoresis) 등에 의하여 수행될 수 있다.The pharmaceutical composition of the present invention can be administered topically to the skin or transdermally. Formulations for this topical administration include lotions, solutions, creams, gels, hydrogels, ointments, foams, implants, patches and the like. Pharmaceutically acceptable carriers for topical administration formulations may include water, alcohol, mineral oil, glycerin, polyethylene glycol, and the like. Topical administration can also be performed by electroporation, iontophoresis, phonophoresis, or the like.
국소 투여를 위한 조성물은 즉시 또는 변형된 방출 패턴을 가진 제형일 수 있으며, 변형된 방출 패턴은 지연된(delayed) 또는 지속된(sustained) 방출 패턴일 수 있다.Compositions for topical administration may be formulations with immediate or modified release patterns, and modified release patterns may be delayed or sustained release patterns.
본 발명의 약학적 조성물은 니클로사미드 및 메트포르민의 병용을 통해 가족성 선종성 용종증에 대한 치료 또는 예방에 현저한 시너지 효과를 발휘한다. 본 발명의 치료 또는 예방 방법은 니클로사미드 및 메트포르민의 병용을 통해 가족성 선종성 용종증에 대한 치료 또는 예방에 현저한 시너지 효과를 발휘한다.The pharmaceutical composition of the present invention exhibits a remarkable synergistic effect in the treatment or prevention of familial adenomatic polyposis through the combination of niclosamide and metformin. The treatment or prevention method of the present invention exerts a remarkable synergistic effect in the treatment or prevention of familial adenomatic polyposis through the combination of niclosamide and metformin.
도 1a, b는 돌연변이 APC를 293 세포에 형질주입시킨 후 TCF/LEF 및 TEAD 리포터 활성을 측정한 결과이다. 도 1c는 단백질 풍부 pSer127-YAP, YAP의 이동성 쉬프트, 도 1d는 CTGF 전사체 및 TEAD 리포터 활성을 Axin2 녹다운을 통해 평가한 것이다.1a and b show the results of measuring TCF/LEF and TEAD reporter activity after transfecting 293 cells with mutant APC. Figure 1c is a protein-rich pSer127-YAP, the mobility shift of YAP, Figure 1d is the evaluation of CTGF transcript and TEAD reporter activity through Axin2 knockdown.
도 2a, b는 니클로사미드가 CRC 세포에 처리될 때 Axin2, Snail 단백질 풍부도, Axin2 전사 수준, TCF/LEF 활성을 평가한 것이다. 도 2c는 니클로사미드에 따른 pSer127-YAP 풍부도, 포스-태그 겔에서 YAP의 이동성 쉬프트, 핵 YAP 수준을 평가한 것이다. 도 2d는 니클로사미드에 따른 CTGF 전사 및 TEAD 리포터 활성을 평가한 것이다. 도 2e는 모든 세포주에서의 YAP의 인산화를 측정한 것이며, 도 2f는 전체 핵 영역에서 상대적인 형광 강도를 측정한 것이다.Figures 2a and b show the evaluation of Axin2, Snail protein abundance, Axin2 transcription level, and TCF/LEF activity when niclosamide is treated on CRC cells. FIG. 2C is an evaluation of pSer127-YAP abundance according to niclosamide, mobility shift of YAP in a force-tag gel, and nuclear YAP levels. 2D is an evaluation of CTGF transcription and TEAD reporter activity according to niclosamide. FIG. 2E is a measurement of YAP phosphorylation in all cell lines, and FIG. 2F is a measurement of relative fluorescence intensity in the entire nuclear region.
도 3a, b는 면역블롯 분석, 포스-태그 겔상에서 CRC 세포에서 메트포르민 매개 YAP의 조절이 YAP의 이동성 쉬프트, CTGF 전사체 및 TEAD 리포터 활성에 미치는 영향을 평가한 것이다. 도 3c는 mTOR 기질 리포좀 단백질 S6의 인산화를 평가한 것이며, 도 3d는 CRC 세포에서 메트포르민의 전사 수준 및 TCF/LEF 리포터 활성을 평가한 것이다.3A and 3B are immunoblot analysis, evaluation of the effect of metformin-mediated YAP regulation on YAP mobility shift, CTGF transcript and TEAD reporter activity in CRC cells on a force-tag gel. Figure 3c is to evaluate the phosphorylation of mTOR substrate liposome protein S6, Figure 3d is to evaluate the transcription level and TCF / LEF reporter activity of metformin in CRC cells.
도 4a는 면역블롯 분석을 통해 니클로사미드 및 메트포르민의 병용 투여시 핵 YAP 및 p-Ser127-YAP의 발현을 평가한 것이다. 도 4b는 CTGF 전사 수준 및 TEAD 리포터 활성을 평가한 것이다. 도 4c는 면역형광분석을 통해 니클로사미드 및 메트포르민의 병용 투여 그룹에서 핵 YAP를 평가한 것이다.4A is an evaluation of the expression of nuclear YAP and p-Ser127-YAP when niclosamide and metformin are administered in combination through immunoblot analysis. 4B is an evaluation of CTGF transcription level and TEAD reporter activity. 4C is an evaluation of nuclear YAP in a group administered with a combination of niclosamide and metformin through immunofluorescence analysis.
도 5a는 니클로사미드 및/또는 메트포르민의 투여시 AMPK 활성화를 평가한 것이며, 도 5b는 인산화된 AMPK에 의한 ATP 수준을 평가한 것이다. 도 5c는 mTOR 이펙터로서 작용하는 S6의 활성화를 평가한 것이다.5A is an evaluation of AMPK activation upon administration of niclosamide and/or metformin, and FIG. 5B is an evaluation of ATP levels by phosphorylated AMPK. 5C is an evaluation of the activation of S6 acting as an mTOR effector.
도 6a, b는 면역블롯 분석을 통해 Wnt 신호전달(도 6a), Axin2 전사 수준(도 6b 왼쪽), 및 TCF/LEF 리포터 활성(도 6b 오른쪽)을 평가한 것이다. 도 6c는 상피 마커 및 중간엽 마커의 증가 또는 감소를 확인한 것이며, 도 6d는 CRC 세포의 이동을 평가한 것이다.Figure 6a, b shows the evaluation of Wnt signaling (Figure 6a), Axin2 transcription level (Figure 6b left), and TCF/LEF reporter activity (Figure 6b right) through immunoblot analysis. Figure 6c confirms the increase or decrease of epithelial markers and mesenchymal markers, Figure 6d is to evaluate the migration of CRC cells.
도 7a는 약물 투여에 따른 마우스의 체중 변화이며, 도 7b-d는 약물 투여에 따른 종양원성 잠재력이 억제됨을 확인한 것이다.Figure 7a is a change in the weight of the mouse according to the drug administration, Figure 7b-d confirms that the tumorigenic potential according to the drug administration is suppressed.
도 8a는 약물 투여에 따른 마우스의 체중 변화이며, 도 8b는 약물 투여 14주 후 소장 용종의 수를 측정한 것이며, 도 8c는 입체 현미경을 통해 소장의 용종을 관찰한 결과이다.8A is a change in body weight of a mouse according to drug administration, FIG. 8B is a measurement of the number of small intestine polyps 14 weeks after drug administration, and FIG. 8C is a result of observing small intestine polyps through a stereoscopic microscope.
도 9는 면역형광분석을 통해 FAP 오르가노이드에 니클로사미드 및 메트포르민의 병용 치료 효과를 평가한 것이다.9 is an evaluation of the combined treatment effect of niclosamide and metformin on FAP organoids through immunofluorescence analysis.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, examples, etc. will be described in detail to aid understanding of the present invention. However, the embodiments according to the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the following examples. The embodiments of the present invention are provided to more completely describe the present invention to those of ordinary skill in the art.
실험 재료 및 방법Experimental materials and methods
1. 세포 배양, 형질주입(transfection) 및 시약1. Cell culture, transfection and reagents
둘베코 수정 이글 배지(Dullbecco's Modified Eagle's Medium, DMEM, Lonza, 12-604F)에서 배양된 DLD-1 (ATCC, CCL-221) 및 인간 배아 신장 293 세포 및 SW480(한국 세포주 은행, KCLB No. 10228)를 10% 태아 소혈청 (FBS, Life technologies) 및 100 IU / ml 페니실린/스트렙토 마이신을 사용하여 Roswell Park Memorial 연구소 1640(RPMI 1640, Lonza, 12-702F)에서 성장시켰다. SW480 및 DLD-1 세포는 절단된 APC 유전자를 보유하는 세포이다. 모든 세포를 37℃ 및 5% CO 2의 가습 인큐베이터에서 배양하였다. Tet-pLKO-puro 벡터(Addgene으로부터 수득한 #21915)를 유도성 shRNA 녹다운에 사용하였다. Axin2에 대한 shRNA의 표적 서열은 5'-ACCACCACTACATCCACCA-3'(서열번호: 1)이었다. 돌연변이 APC 발현 벡터 pCMV-neo-Bam APC 1-1309(# 16508) 및 pCMV-neo-Bam APC 1-1941(# 16510)을 Addgene으로부터 수득하였다. 마이코플라즈마 감염 테스트는 PCR 기반 키트(시그마, MP0040)로 수행되었다. 형질주입은 제조사의 프로토콜(Invitrogen, 11668-019)에 따라 Lipofectamine 2000에 의해 수행되었다. 니클로사미드(2 ', 5-dichloro-4'-nitrosalicylanilide)는 CAYMAN에서 구입했으며, 메트포르민은 TCI America(TCI, M2009)에서 수득하였다. 니클로사미드 및 메트포르민을 인비트로(in vitro) 실험에서 DMSO 및 증류수에 용해시켰다.DLD-1 (ATCC, CCL-221) and human embryonic kidney 293 cells cultured in Dullbecco's Modified Eagle's Medium (DMEM, Lonza, 12-604F) and SW480 (Korea Cell Line Bank, KCLB No. 10228) Were grown in Roswell Park Memorial Laboratory 1640 (RPMI 1640, Lonza, 12-702F) using 10% fetal bovine serum (FBS, Life technologies) and 100 IU/ml penicillin/streptomycin. SW480 and DLD-1 cells are cells carrying the truncated APC gene. All cells were cultured in a humidified incubator at 37° C. and 5% CO 2. The Tet-pLKO-puro vector (#21915 obtained from Addgene) was used for inducible shRNA knockdown. The target sequence of shRNA for Axin2 was 5'-ACCACCACTACATCCACCA-3' (SEQ ID NO: 1). Mutant APC expression vectors pCMV-neo-Bam APC 1-1309 (# 16508) and pCMV-neo-Bam APC 1-1941 (# 16510) were obtained from Addgene. Mycoplasma infection test was performed with a PCR-based kit (Sigma, MP0040). Transfection was performed by Lipofectamine 2000 according to the manufacturer's protocol (Invitrogen, 11668-019). Niclosamide (2', 5-dichloro-4'-nitrosalicylanilide) was purchased from CAYMAN, and metformin was obtained from TCI America (TCI, M2009). Niclosamide and metformin were dissolved in DMSO and distilled water in an in vitro experiment.
2. 세포 이동 분석2. Cell migration assay
니클로사미드 및 메트포르민에 관한 이동 분석을 위해, DLD-1, SW480 세포 (5 Х 10 4)를 트랜스웰 삽입물 (5.0 μm 구멍(pore), BD Biosciences)에 시딩하였다. 세포에 1 x PBS 및 면직물을 첨가하기 전에 필터 삽입물을 미리 적셨다. 하부 챔버에 1mL의 배지를 첨가했다. 삽입물 상단의 배지에 5 Х 10 4/100ul의 세포를 추가하였다. 48시간 배양 후 0.5 μM 니클로사미드 및 5mM 메트포르민을 함유하는 배지를 하단에 첨가한 후, 1xPBS로 18시간 동안 2 회 세척하고 4 % 포름알데히드로 고정시켰다. 위쪽 부분은 면으로 닦고, 아래쪽 부분의 셀은 0.25% 크리스탈 바이올렛으로 염색하였다. 5개의 무작위 필드에서 세포 수를 측정하였다.For migration analysis for niclosamide and metformin, DLD-1, SW480 cells (5 x 10 4 ) were seeded into transwell inserts (5.0 μm pores, BD Biosciences). The filter insert was pre-wetted before adding 1 x PBS and cotton cloth to the cells. 1 mL of medium was added to the lower chamber. 5 Х 10 4 /100 ul of cells were added to the medium on the top of the insert. After incubation for 48 hours, a medium containing 0.5 μM niclosamide and 5 mM metformin was added to the bottom, washed twice for 18 hours with 1×PBS, and fixed with 4% formaldehyde. The upper part was wiped with cotton, and the lower part was stained with 0.25% crystal violet. Cell counts were measured in 5 random fields.
3. 면역블롯 분석3. Immunoblot Analysis
니클로사미드 및 메트포르민을 16시간 동안 처리 한 다음, PBS로 2회 세척하고 1% 트리톤 X-100 용해 완충액(50 mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 % triton X-100)과 함께 배양하였다. 세포를 스크래퍼를 통해 수집하고 4℃에서 15분 동안 13,200rpm으로 원심 분리 하였다. 핵 단백질 분획의 분리를 위해, 10% Nonidet NP-40이 첨가된 버퍼A(10mM HEPES[pH7.9], 10mM KCl, 0.1mM EDTA, 1mM DTT) 및 버퍼C(20mM HEPES[pH7.9], 0.4M NaCl, 1mM EDTA, 1mM DTT)로 5분(버퍼A) 및 15분(버퍼C) 동안 얼음상에서 용해시켰다. 제조자의 지침에 따라 전체 및 핵 추출이 사용되었다. 상청액을 수집하고 새로운 튜브로 옮겨 단백질 용출액을 추출하였다. BCA 단백질 분석(Thermo)을 사용하여 단백질을 정량하고, 5x 샘플 완충제를 첨가하고 10 분 동안 끓인 후 얼음에 저장하였다. SDS-폴리아크릴아미드를 전기영동에 의해 분리하고 니트로셀룰로스 막(Whatman)으로 옮겼다. 이송 후, 막을 5% 탈지유(BD bioscience)로 1시간 동안 차단하고, 실온에서 3시간 동안 또는 4℃에서 12시간 이상 동안 배양하였다. 로딩 제어 HDAC1과 비교한 상대적 YAP 풍부도는 NIH (https://imagej.nih.gov/ij/)에서 다운로드한 ImageJ 프로그램을 통해 결정하였다. Snail (Cell Signaling, #3895S), Axin1 (Cell signaling, #2087S), Axin2 (Cell Signaling, #2151S), YAP (Sanatacruz, sc-101199), p-YAP(S127) (Cell Signaling, #4911S), S6 (Cell Signaling, #2217S), p-S6(S235/236) (Cell Signaling, #4858S), α-Tubulin (Ab frontier, LF-PA0146A), HDAC1 (Santacruz, sc-81598)에 대한 항체는 상용 업체로부터 얻었다. 포스-태그 겔(Phos-tag gel)은 WAKO Chemicals (AAL-107)로부터 구입하였다. WEST SAVE(Ab frontier, LF-QC0101) CP-BU MEDICAL X-RAY FILM BLUE (AGFA)을 사용하여 검출을 수행하였다.Niclosamide and metformin were treated for 16 hours, then washed twice with PBS, and 1% Triton X-100 lysis buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% triton X-100) and Incubated together. The cells were collected through a scraper and centrifuged at 13,200 rpm for 15 minutes at 4°C. For the separation of the nuclear protein fraction, buffer A (10mM HEPES[pH7.9], 10mM KCl, 0.1mM EDTA, 1mM DTT) and buffer C (20mM HEPES[pH7.9], added with 10% Nonidet NP-40), 0.4M NaCl, 1mM EDTA, 1mM DTT) was dissolved on ice for 5 minutes (buffer A) and 15 minutes (buffer C). Total and nuclear extraction were used according to the manufacturer's instructions. The supernatant was collected and transferred to a new tube to extract the protein eluate. Protein was quantified using BCA protein analysis (Thermo), 5x sample buffer was added, boiled for 10 minutes, and then stored on ice. SDS-polyacrylamide was separated by electrophoresis and transferred to a nitrocellulose membrane (Whatman). After transfer, the membrane was blocked with 5% skim milk (BD bioscience) for 1 hour, and incubated at room temperature for 3 hours or at 4°C for 12 hours or more. Relative YAP abundance compared to loading control HDAC1 was determined through the ImageJ program downloaded from NIH (https://imagej.nih.gov/ij/). Snail (Cell Signaling, #3895S), Axin1 (Cell signaling, #2087S), Axin2 (Cell Signaling, #2151S), YAP (Sanatacruz, sc-101199), p-YAP(S127) (Cell Signaling, #4911S), Antibodies against S6 (Cell Signaling, #2217S), p-S6(S235/236) (Cell Signaling, #4858S), α-Tubulin (Ab frontier, LF-PA0146A), HDAC1 (Santacruz, sc-81598) are commercially available. I got it from the company. Phos-tag gel was purchased from WAKO Chemicals (AAL-107). Detection was performed using WEST SAVE (Ab frontier, LF-QC0101) CP-BU MEDICAL X-RAY FILM BLUE (AGFA).
4. 정량적 실시간-PCR 및 리포터 분석 4. Quantitative real-time-PCR and reporter analysis
전체 RNA를 제조사의 프로토콜에 따라 TRIzol 시약(Invitrogen)으로 추출하였다. cDNA는 SuperScript III 합성 키트(Invitrogen)를 사용하여 제조하였다. SYBR 그린 믹스 프로토콜(n = 3)에 따라 ABI-7300 기기로 실시간 정량적 PCR(qPCR) 분석을 수행하였다. GAPDH로 표준화하여 각 샘플로부터의 각각의 ΔCt 값을 계산하였다. qPCR 반응 후 해리 곡선으로 프라이머 특이성을 확인하였다. 실시간 qPCR에 사용되는 프라이머 서열은 하기 표 1에 나타내었다. TEAD 또는 TCF/LEF의 경우, 세포를 100ng의 리포터 벡터 및 1ng의 pSV- 레닐라(pSV-Renilla) 발현 벡터로 형질주입하였다. 루시퍼라제 및 레닐라 활성은 형질주입 48시간 후 이중 루시퍼라제 리포터 시스템 키트(Promega)를 사용하여 측정하였고 레닐라 활성을 통해 표준화하였다. 실험 결과는 3 회 실험에 의해 평균화되었다.Total RNA was extracted with TRIzol reagent (Invitrogen) according to the manufacturer's protocol. cDNA was prepared using the SuperScript III synthesis kit (Invitrogen). Real-time quantitative PCR (qPCR) analysis was performed with an ABI-7300 instrument according to the SYBR green mix protocol (n = 3). Each ΔCt value from each sample was calculated by normalizing to GAPDH. After qPCR reaction, the specificity of the primer was confirmed by a dissociation curve. Primer sequences used for real-time qPCR are shown in Table 1 below. For TEAD or TCF/LEF, cells were transfected with 100 ng of reporter vector and 1 ng of pSV-Renilla expression vector. Luciferase and Renilla activities were measured 48 hours after transfection using a dual luciferase reporter system kit (Promega) and normalized through Renilla activity. The experimental results were averaged by three experiments.
실시간 정량적 PCR에 사용된 프라이머 서열Primer sequence used in real-time quantitative PCR
유전자gene 정방향Forward direction 역방향Reverse
E-cadherinE-cadherin TGAGTGTCCCCCGGTATCCTC (서열번호: 2)TGAGTGTCCCCCGGTATCCTC (SEQ ID NO: 2) CAGTATCAGCCGCTTTCAGATTTT (서열번호: 3)CAGTATCAGCCGCTTTCAGATTTT (SEQ ID NO: 3)
ClaudinClaudin GGCTGCTTTGCTGCAACTGTC (서열번호: 4)GGCTGCTTTGCTGCAACTGTC (SEQ ID NO: 4) GAGCCGTGGCACCTTACACG (서열번호: 5)GAGCCGTGGCACCTTACACG (SEQ ID NO: 5)
OccludinOccludin CGGTCTAGGACGCAGCAGAT (서열번호: 6)CGGTCTAGGACGCAGCAGAT (SEQ ID NO: 6) AAGAGGCCTGGATGACATGG (서열번호: 7)AAGAGGCCTGGATGACATGG (SEQ ID NO: 7)
SnailSnail TCTCTGAGGCCAAGGATCTC (서열번호: 8)TCTCTGAGGCCAAGGATCTC (SEQ ID NO: 8) CTTCGGATGTGCATCTTGAG (서열번호: 9)CTTCGGATGTGCATCTTGAG (SEQ ID NO: 9)
Zeb1Zeb1 GCACCTGAAGAAGACCAGAG (서열번호: 10)GCACCTGAAGAAGACCAGAG (SEQ ID NO: 10) TGCATCTGGTGTTCCATTTT (서열번호: 11)TGCATCTGGTGTTCCATTTT (SEQ ID NO: 11)
FibronectinFibronectin CAGGATCACTTACGGAGAAACAG (서열번호: 12)CAGGATCACTTACGGAGAAACAG (SEQ ID NO: 12) GCCAGTGACAGCATACACAGTG (서열번호: 13)GCCAGTGACAGCATACACAGTG (SEQ ID NO: 13)
Axin2Axin2 AAGGGCCAGGTCACCAAAC (서열번호: 14)AAGGGCCAGGTCACCAAAC (SEQ ID NO: 14) CCCCCAACCCATCTTCGT (서열번호: 15)CCCCCAACCCATCTTCGT (SEQ ID NO: 15)
CTGFCTGF CAAAATCTCCAAGCCTATCAAGTT (서열번호: 16)CAAAATCTCCAAGCCTATCAAGTT (SEQ ID NO: 16) CTCCACAGAATTTAGCTCGGTAT (서열번호: 17)CTCCACAGAATTTAGCTCGGTAT (SEQ ID NO: 17)
GAPDHGAPDH TCCGCGGCTATATGAAAACAG (서열번호: 18)TCCGCGGCTATATGAAAACAG (SEQ ID NO: 18) TCGTAGTGGGCTTGCTGAA (서열번호: 19)TCGTAGTGGGCTTGCTGAA (SEQ ID NO: 19)
5. 면역형광 분석5. Immunofluorescence analysis
면역 형광 연구를 위해, 세포를 빙냉 PBS로 2 회 세척하고 실온에서 15분 동안 4% 포름알데히드로 배양하였다. 염색을 위해, 세포를 45분 동안 0.5% Triton X-100으로 투과시키고, 1시간 동안 3% 소 혈청 알부민을 함유하는 PBS로 차단한 다음, 1차 항체와 함께 4℃에서 밤새 배양하였다. 이후 세포를 0.1% 트윈 20을 함유하는 PBS로 3회 세척 한 후, 항-마우스-Alexa Fluor-594 (Invitrogen, A11005) 2차 항체와 함께 배양하였다. 세포는 4',6-디아미디노-2-페닐인돌 (DAPI)와 함께 Vectorshield(Vector)로 고정되었다. 공초점 현미경(Zeiss LSM780)을 사용하여 세포 형광을 모니터링하였다. 이미지는 Image J 소프트웨어(Media Cybernetics, Inc., USA)를 사용하여 분석하였다. 전체 핵 영역에서 상대 형광 강도를 측정하였다.For immunofluorescence studies, cells were washed twice with ice-cold PBS and incubated with 4% formaldehyde for 15 minutes at room temperature. For staining, cells were permeabilized with 0.5% Triton X-100 for 45 minutes, blocked with PBS containing 3% bovine serum albumin for 1 hour, and incubated overnight at 4° C. with primary antibody. Thereafter, the cells were washed 3 times with PBS containing 0.1% Tween 20, and then incubated with anti-mouse-Alexa Fluor-594 (Invitrogen, A11005) secondary antibody. Cells were fixed with Vectorshield (Vector) with 4',6-diamidino-2-phenylindole (DAPI). Cell fluorescence was monitored using a confocal microscope (Zeiss LSM780). Images were analyzed using Image J software (Media Cybernetics, Inc., USA). Relative fluorescence intensity was measured in the entire nuclear area.
6. ATP 검출 분석6. ATP detection analysis
상대적인 ATP 수준을 결정하기 위해, 세포를 1x10 6 세포/웰로 6-웰 플레이트에 플레이팅하였다. ATP 수준을 측정하기 전에 포도당을 함유한 배지의 존재 또는 부재하에 시드된 세포를 6시간 동안 제조 하였다. ATP 수준은 제조사의 방법에 따라 ELISA 검출 시스템에 기초한 ATP 분석 키트(K354, BioVision)를 사용하여 분석되었다.To determine relative ATP levels, cells were plated in 6-well plates at 1 ×10 6 cells/well. Cells seeded in the presence or absence of a medium containing glucose were prepared for 6 hours before measuring ATP levels. ATP levels were analyzed using an ATP assay kit (K354, BioVision) based on an ELISA detection system according to the manufacturer's method.
7. 인비보 이종이식 분석(In vivo xenograft assay)7. In vivo xenograft assay
모든 동물 실험은 연세대학교의 동물실험윤리위원회 규정에 따라 수행되었으며, 연세대학교 치과 과학 대학의 동물 관리 위원회 및 국립 암 센터 연구소의 승인을 받았다. 암컷 BALB / c 누드 마우스(6 주령, 나라 바이오테크 (Nara Biotech)로부터 구입)를 피하 주사하여 동소(orthotopic) 이종이식(xenograft) 분석에 사용하였다. 니클로사미드 및 메트포르민 조합의 항 종양 효과를 연구하기 위해, 대조군 또는 실험군의 SW480 세포를 트립신 처리하고 수확하여 피하 조직(0.1ml PBS 당 1X10 6 세포)에 주사하였다. 인비보(in vivo) 니클로사미드 및 메트포르민의 병용 치료를 위해, 마우스에 SW480 세포의 피하 주사 후, 비히클, 니클로사미드(200mg/kg, P.O), 또는 메트포르민(2mg / mL, P.O)으로만, 또는 니클로사미드(200mg / kg, P.O) 및 메트포르민(2mg/mL, P.O)을 함께 처리하였다. (2mg / mL, PO). 마우스에 종양 세포를 주사한 다음날로부터 4주 동안 5회 적용하였다. 버니어(Vernier) 캘리퍼로 종양 성장 및 체중을 일주일에 2 회 모니터링하고, 종양 부피를 아래 식에 따라 계산하였다.All animal experiments were conducted in accordance with the regulations of Yonsei University's Animal Experimental Ethics Committee, and approved by the Animal Care Committee of Yonsei University's College of Dental Science and the National Cancer Center Research Institute. Female BALB/c nude mice (6 weeks old, purchased from Nara Biotech) were injected subcutaneously and used for orthotopic xenograft analysis. To study the antitumor effect of the combination of niclosamide and metformin, SW480 cells of the control or experimental group were trypsinized, harvested, and injected into subcutaneous tissue (1×10 6 cells per 0.1 ml PBS). For the combination treatment of in vivo niclosamide and metformin, after subcutaneous injection of SW480 cells into mice, only with vehicle, niclosamide (200mg/kg, PO), or metformin (2mg/mL, PO) , Or niclosamide (200mg/kg, PO) and metformin (2mg/mL, PO) were treated together. (2mg/mL, PO). The mice were applied 5 times for 4 weeks from the day after the tumor cells were injected. Tumor growth and body weight were monitored twice a week with a Vernier caliper, and the tumor volume was calculated according to the formula below.
V (mm3) = (a X b 2)/2: a, 가장 긴 직경; b, 가장 짧은 직경.V (mm3) = (a X b 2 )/2: a, longest diameter; b, the shortest diameter.
8. APC min 마우스 실험8. APC min mouse experiment
C57BL/6J 야생형 암컷 마우스를 C57BL/6J-APC min +/- (APC min, The Jackson Laboratory strain 002020) 수컷 마우스와 교배시킴으로써 APC min 마우스를 제조 하였다. 유전자형 분석 작업은 다음과 같이 진행되었다. 0.4 mg/ml 프로테나제 K를 함유하는 200-300 μl의 직접 PCR 용해 시약 (Viagen, 102-T)을 0.5 cm 마우스 꼬리에 추가하였다. 조직 덩어리가 관찰되지 않을 때까지 수조에서 55°C에서 5-6 시간 동안 배양하였다. 이후 조(crude) 용해물을 85℃ 수조에서 45분 동안 배양하였다. 유전자형 분석 전에 13200rpm에서 10초 동안 원심분리하여 모발을 침전시켰다. Taq 폴리머라제 PCR 프리-믹스(bioneer, K-2012)를 사용하여 APC 프라이머 (APCmin WT; GCCATCCCTTCACGTTAG (서열번호: 20); APCmin Com; TTCCACTTTGGCATAAGGC (서열번호: 21); APCmin Mut; TTCTGAGAAAGACAGAAGTTA (서열번호: 22))와 함께 20 μl 중합효소 연쇄반응 (PCR)에서 1 μl의 용해물을 사용하여 유전자형 분석을 수행하였다. APC min 마우스는 연세대학교 치과 대학에 수용되었다. APC min 마우스가 6 주령에 도달했을 때, 화학 처리를 시작하였다. 니클로사미드 및 메트포르민의 병용 치료를 위해, 마우스를 비히클 또는 니클로사미드(50mg/kg, P.O) 단독 또는 메트포르민(2mg/mL, P.O) 단독으로, 또는 니클로사미드(50mg/kg, P.O) 및 메트포르민(2mg/mL, P.O)으로 14주 동안 처리하였다. 14주 처리 후, 마우스를 희생시키고 전체 내장을 해부하였다. 조직을 24시간 동안 4% 포름알데히드에 고정시킨 다음, 70% 에탄올로 2회 세척하였다. 소장 내 용종의 수는 입체현미경을 사용하여 계산하였다. 1mm 미만 용종의 크기는 작은 크기, 1mm 내지 3mm 사이는 중간 크기였으며, 3mm 초과는 큰 것으로 간주하였다.APC min mice were prepared by crossing C57BL/6J wild-type female mice with C57BL/6J-APC min +/- (APC min, The Jackson Laboratory strain 002020) male mice. The genotyping work proceeded as follows. 200-300 μl of direct PCR lysis reagent (Viagen, 102-T) containing 0.4 mg/ml proteinase K was added to the tail of a 0.5 cm mouse. Incubate for 5-6 hours at 55°C in a water bath until no tissue clumps were observed. Thereafter, the crude lysate was incubated in a water bath at 85° C. for 45 minutes. Hair was precipitated by centrifugation for 10 seconds at 13200 rpm before genotyping. APC primer (APCmin WT; GCCATCCCTTCACGTTAG (SEQ ID NO: 20); APCmin Com; TTCCACTTTGGCATAAGGC (SEQ ID NO: 21); APCmin Mut; TTCTGAGAAAGACAGAAGTTA (SEQ ID NO: 22)) and 1 μl of lysate in 20 μl polymerase chain reaction (PCR) were used to perform genotyping. APC min mice were housed in Yonsei University School of Dentistry. When APC min mice reached 6 weeks of age, chemical treatment was started. For the combination treatment of niclosamide and metformin, mice were treated with vehicle or niclosamide (50 mg/kg, PO) alone or metformin (2 mg/mL, PO) alone, or niclosamide (50 mg/kg, PO) and It was treated with metformin (2mg/mL, PO) for 14 weeks. After 14 weeks of treatment, mice were sacrificed and the entire intestine was dissected. The tissue was fixed in 4% formaldehyde for 24 hours and then washed twice with 70% ethanol. The number of polyps in the small intestine was calculated using a stereomicroscope. The size of polyps less than 1 mm was small, between 1 mm and 3 mm was medium, and those larger than 3 mm were considered to be large.
9. 환자 유래 FAP 오가노이드 배양9. Patient-derived FAP organoid culture
FAP 환자의 대장에서 내시경적 생검으로 채취한 조직을 PBS (100μg/ml primocin 혼합) 로 세척후 0.5mm 조각으로 자르고, 37℃ digestion buffer (DMEM, 2.5% FBS, 6.25mg/ml collagenase type IX)에서 30분간 둔다. 그 후 분리된 세포를 20 μL 매트리젤에 혼합하여 48 well에 분주한다. 폴립 오가노이드 배양액 (advanced DMEM/F12 with 1% penicillin/streptomycin, Glutamax, 1×N2, 1×B27 without retinoic acid, 2 mM L-glutamine, 50 ng/ml EGF, 1 mM N-Acetyl-L-cysteine, 10mM Nicotinamide, 10nM Gastrin I, 10μM SB202190, 500 nM A-83-01, 2.5μM PGE2 및 100 ng/ml Noggin)을 2일 마다 교체해 주고, 적당한 크기로 자라면 trypsin/EDTA로 오가노이드를 분리하여 다른 well에 분주하여 동일한 방법으로 배양 및 증식시킨다. 증식된 FAP 오가노이드는 액화질소에 동결 보관한 후 필요할 때 녹여서 동일한 방법으로 배양하여 실험에 이용한다. The tissue collected by endoscopic biopsy from the colon of the FAP patient was washed with PBS (100μg/ml primocin mixture) and cut into 0.5mm pieces, and in 37℃ digestion buffer (DMEM, 2.5% FBS, 6.25mg/ml collagenase type IX). Let it sit for 30 minutes. Then, the separated cells are mixed with 20 μL Matrigel and dispensed into 48 wells. Polyp organoid culture (advanced DMEM/F12 with 1% penicillin/streptomycin, Glutamax, 1×N2, 1×B27 without retinoic acid, 2 mM L-glutamine, 50 ng/ml EGF, 1 mM N-Acetyl-L-cysteine , 10mM Nicotinamide, 10nM Gastrin I, 10μM SB202190, 500 nM A-83-01, 2.5μM PGE2 and 100 ng/ml Noggin) are replaced every 2 days. Dispense into other wells and culture and proliferate in the same way. Proliferated FAP organoids are stored frozen in liquid nitrogen, dissolved when necessary, and cultured in the same manner to be used in experiments.
10. 통계 분석10. Statistical Analysis
세포 생존력, 세포 이동 및 리포터 분석에 대한 모든 통계적 분석은 양측 스튜던트 t- 테스트(two-tailed Student's t-tests)로 수행하였다; 데이터는 평균 및 s.d로 표시하였다. 이중 별표는 P<0.01를 나타내며, 하나의 별표는 P<0.05를 나타낸다. 동물 실험의 통계적 유의성은 Mann-Whitney 테스트를 사용하여 결정하였다. 데이터는 종양 부피에 대한 평균 및 s.e.m으로 표시되었다. 표본 크기를 미리 결정하기 위해 통계적 방법을 사용하지 않았다.All statistical analyzes for cell viability, cell migration and reporter analysis were performed with two-tailed Student's t-tests; Data are expressed as mean and s.d. Double asterisk indicates P<0.01, and one asterisk indicates P<0.05. Statistical significance of animal experiments was determined using the Mann-Whitney test. Data are presented as mean and s.e.m for tumor volume. No statistical method was used to predetermine the sample size.
실험 결과Experiment result
실시예 1: Axin2는 돌연변이 APC에 의해 유도된 YAP 활성과 관련됨Example 1: Axin2 is related to YAP activity induced by mutant APC
대부분의 CRC에서, Wnt 신호 전달은 APC 유전자의 돌연변이에 의해 과활성화되며, 이는 종양 형성을 개시할 수 있다. YAP는 APC-결함 선종 발달에 필수적이며, Hippo-YAP 신호전달은 APC로부터 다운스트림에 중요한 이펙터 경로이다. 이를 확인하기 위해, 돌연변이 APC를 293 세포에 형질주입시키고, TCF/LEF 및 TEAD 리포터 활성을 측정 하였다. TEAD 및 TCF/LEF의 활성은 APC 돌연변이에 의해 증가되었다(도 1a, b).In most CRCs, Wnt signaling is overactivated by mutations in the APC gene, which can initiate tumorigenesis. YAP is essential for APC-deficient adenoma development, and Hippo-YAP signaling is an important effector pathway downstream from APC. To confirm this, mutant APC was transfected into 293 cells, and TCF/LEF and TEAD reporter activities were measured. The activities of TEAD and TCF/LEF were increased by the APC mutation (Fig. 1a, b).
APC 돌연변이를 갖는 결장 암종에서, Axin2 및 Snail은 종종 침습성 병변에서 발견되며, 전형적(canonical) Wnt 의존성 Axin2의 조절 축은 암에서 Snail 매개 EMT의 조절에 중요한 역할을 한다. 또한 Axin2는 TCF/LEF 전사 인자의 전형적인 다운스트림 표적이며, APC 기능 상실로 인해 CRC에 매우 풍부하다. 이는 높은 Axin2 수준을 확인한 세포주에서 APC 돌연변이와 일치하였다. 한편, Axin1 발현은 APC 돌연변이 유형에 관계없이 모든 세포주에서 관찰되었다.In colon carcinomas with APC mutations, Axin2 and Snail are often found in invasive lesions, and the regulatory axis of the canonical Wnt dependent Axin2 plays an important role in the regulation of Snail-mediated EMT in cancer. In addition, Axin2 is a typical downstream target of the TCF/LEF transcription factor, and is highly abundant in CRC due to loss of APC function. This was consistent with the APC mutation in cell lines that confirmed high Axin2 levels. On the other hand, Axin1 expression was observed in all cell lines regardless of the APC mutation type.
이들 중에서 유도성 Axin2 녹다운 세포주를 생성하기 위해 2 개의 세포주 (DLD-1, SW480)가 선택되었다. 유도성 Axin2 녹다운 세포에서 YAP의 발현이 니클로사미드 처리에 따라 변화하는지 조사하였다. YAP에는 단백질 안정성을 조절하거나 세포질 보유에 참여하는 여러 인산화 부위가 있다. Ser127 인산화는 YAP의 세포질 전좌에 필요하다. 결과적으로, 단백질 풍부 pSer127-YAP, YAP의 이동성 쉬프트(도 1c), CTGF 전사체 및 TEAD 리포터 활성(도 1d)을 Axin2 녹다운을 통해 검사 하였다.Among these, two cell lines (DLD-1, SW480) were selected to generate an inducible Axin2 knockdown cell line. In inducible Axin2 knockdown cells, it was investigated whether the expression of YAP changes with niclosamide treatment. YAP has several phosphorylation sites that regulate protein stability or participate in cytoplasmic retention. Ser127 phosphorylation is required for cytoplasmic translocation of YAP. As a result, protein-rich pSer127-YAP, mobility shift of YAP (Fig. 1c), CTGF transcript and TEAD reporter activity (Fig. 1d) were examined through Axin2 knockdown.
도 1에 개시된 내용은 구체적으로 다음과 같다. (a) Renilla와 함께 Hop 및 Top flash로 일시적으로 형질주입된 HEK 293 세포에서 상대적인 TCF/LEF 리포터 (탑 플래쉬) 활성(왼쪽) 및 상대적인 TEAD 리포터 활성(오른쪽). (b) 각각 30μg의 전체 세포 용해물(WCL)은 Axin1, Axin2에 대한 면역블롯 분석에 사용되었다. APC 돌연변이 세포주는 DLD-1, SW480, SW620, Caco-2 및 HT-29이며, 한편 HEK293, MCF7, MDA-MB-231, HCC1954, HCT116 및 RKO 세포주는 APC 야생형이다. (c) 유도성 Axin2 세포주의 발현은 전-세포 용해물(WCL)에 의한 내인성 YAP 및 Axin2 단백질 풍부도를 보여주었다. YAP 인산화 수준은 p-S127-YAP 항체 및 48 시간 동안 독시사이클린(Dox) 3μg / mL를 처리한 Axin2 CRC 세포주의 유도성 녹다운에서 포스-태그 겔상의 이동성 쉬프트에 의해 결정되었다. (d) Axin2의 상대적 전사체 풍부도는 Axin2의 shRNA를 발현하는 세포에서의 정량적 PCR 분석에 의해 결정되었다(왼쪽). Axin2의 shRNA를 발현하는 세포의 상대적 CTGF 리포터 활성(Dox +)(오른쪽). 양측 스튜던트 t- 테스트를 통해 대조군과 비교하여 통계적 유의성을 **, P <0.01; ***, P <0.001로 나타내었다. (e) CTGF 의 상대적 전사체 풍부도는 Axin2의 shRNA를 발현하는 세포에서의 정량적 PCR 분석에 의해 결정되었다(왼쪽). Axin2의 shRNA를 발현하는 세포의 상대적 TEAD 리포터 활성(Dox +)(오른쪽). 대조군과 비교한 통계적 유의성은 양측 스튜던트 t- 테스트를 통해 **, P <0.01; ***, P <0.001로 나타내었다.The content disclosed in FIG. 1 is specifically as follows. (a) Relative TCF/LEF reporter (top flash) activity (left) and relative TEAD reporter activity (right) in HEK 293 cells transiently transfected with Hop and Top flash with Renilla. (b) 30 μg of each total cell lysate (WCL) was used for immunoblot analysis for Axin1 and Axin2. APC mutant cell lines are DLD-1, SW480, SW620, Caco-2 and HT-29, while HEK293, MCF7, MDA-MB-231, HCC1954, HCT116 and RKO cell lines are APC wild type. (c) Expression of the inducible Axin2 cell line showed endogenous YAP and Axin2 protein abundance by whole-cell lysate (WCL). The level of YAP phosphorylation was determined by mobility shift on a force-tag gel in an induced knockdown of an Axin2 CRC cell line treated with p-S127-YAP antibody and 3 μg/mL of doxycycline (Dox) for 48 hours. (d) The relative transcript abundance of Axin2 was determined by quantitative PCR analysis in cells expressing Axin2 shRNA (left). Relative CTGF reporter activity (Dox +) in cells expressing shRNA of Axin2 (right). Statistical significance compared to the control group through the two-sided Student's t-test **, P <0.01; ***, P <0.001. (e) The relative transcript abundance of CTGF was determined by quantitative PCR analysis in cells expressing Axin2 shRNA (left). Relative TEAD reporter activity (Dox +) in cells expressing shRNA of Axin2 (right). Statistical significance compared to the control group was **, P <0.01; ***, P <0.001.
실시예 2: 니클로사미드는 YAP 핵 위치 및 TEAD 전사 활성을 조절함Example 2: Niclosamide modulates YAP nuclear location and TEAD transcriptional activity
니클로사미드는 Wnt 활성 및 Snail 매개 EMT 프로그램을 약화시키며, 니클로사미드가 CRC 세포에 처리될 때 Axin2, Snail 단백질 풍부도, Axin2 전사 수준, TCF/LEF 활성이 억제되는 것으로 나타났다(도 2 a, b). 핵 YAP는 CRC 세포에서 YAP의 인산화를 조절함으로써 과발현되고, YAP는 EMT를 유도하여 암 침습 및 전이를 유발한다. 니클로사미드를 처리하는 동안 YAP 발현이 어떻게 조절되는지를 조사할 때, 흥미롭게도 핵에서 YAP의 발현 패턴이 나타났다. 니클로사미드는 pSer127-YAP 풍부도, 포스-태그 겔에서 YAP의 이동성 쉬프트를 감소시켜 핵 YAP 수준을 증가시켰다(도 2c). 면역블롯 분석과 일관되게, CTGF 전사 및 TEAD 리포터 활성은 니클로사미드에 의해 증가되었다(도 2d). 니클로사미드에 의한 YAP의 전위가 Lats/YAP 축의 p53 업스트림에 기인한 것인지 결정하기 위해, HCL116 (p53 야생형), HCT116 p53 -/-, DLD-1 및 SW480 (p53 돌연변이형)이 니클로사미드와 함께 처리되었다.Niclosamide attenuates Wnt activity and Snail-mediated EMT program, and it was shown that Axin2, Snail protein abundance, Axin2 transcription level, and TCF/LEF activity were inhibited when niclosamide was treated on CRC cells (Fig. 2a, b). Nuclear YAP is overexpressed by regulating YAP phosphorylation in CRC cells, and YAP induces EMT, causing cancer invasion and metastasis. When investigating how YAP expression is regulated during niclosamide treatment, interestingly, a pattern of expression of YAP in the nucleus appeared. Niclosamide increased nuclear YAP levels by reducing the abundance of pSer127-YAP and the mobility shift of YAP in the force-tagged gel (FIG. 2C). Consistent with immunoblot analysis, CTGF transcription and TEAD reporter activity were increased by niclosamide (FIG. 2D ). To determine if the translocation of YAP by niclosamide is due to p53 upstream of the Lats/YAP axis, HCL116 (p53 wild type), HCT116 p53 -/-, DLD-1 and SW480 (p53 mutant) were combined with niclosamide. Were processed together.
결과적으로, 모든 세포주에서 YAP의 인산화가 감소되었다(도 2e). 이것은 YAP의 인산화에 관여하는 니클로사미드의 작용이 p53의 독립적인 기능임을 가리킨다. 그리고 내인성 YAP에 의한 면역형광분석은 이들 단백질이 주로 CRC 세포의 핵에 위치한다는 것을 밝혀냈다. 도 2f는 전체 핵 영역에서 상대적인 형광 강도를 측정한 것이다.As a result, YAP phosphorylation was decreased in all cell lines (Fig. 2e). This indicates that the action of niclosamide involved in YAP phosphorylation is an independent function of p53. And immunofluorescence analysis by endogenous YAP revealed that these proteins are mainly located in the nucleus of CRC cells. Figure 2f is a measurement of the relative fluorescence intensity in the entire nuclear region.
도 2에 개시된 내용은 구체적으로 다음과 같다. (a) 면역 블롯은 세포가 16 시간 동안 니클로사미드 0.5μM로 처리될 때 내인성 Axin2, Snail 단백질 풍부를 나타낸다. (b) Renilla 루시퍼라제와 함께 탑 플래쉬로 일시적으로 형질주입시키고 16 시간 동안 니클로사미드 0.5μM로 처리된 세포에서의 상대적 Axin2 전사체 풍부도(왼쪽) 및 TCF/LEF 리포터 (탑 플래쉬) 활성(오른쪽). 대조군과 비교한 통계적 유의성은 양측 스튜던트 t- 테스트를 통해 *, P <0.05; **, P <0.01; ***, P <0.001로 나타냈다. (c) 세포질 및 핵 분획에서의 YAP 인산화 상태는 p-S127-YAP 항체 및 포스-태그 겔 A상의 이동성 쉬프트에 의해 결정되었다. (d) 상대적인 CTGF 전사 수준(왼쪽) 및 상대적인 TEAD 리포터 활성(오른쪽)은 리포터 분석 및 qPT-PCR을 통해 측정되었다. 대조군과 비교한 통계적 유의성은 양측 스튜던트 t-테스트를 통해 *, P < 0.05; **, P < 0.01; ***, P < 0.001로 나타냈다. (e) HCT116 야생형, HCT116 p53 null (p53 -/-), DLD-1 및 SW480 세포를 0.25 μM의 니클로사미드로 처리하였고, YAP의 인산화는 이동성 쉬프트 포스-태그로 관찰되었다. 세포는 혈청 및 포도당이 부족하며 실험전 6시간 동안 니클로사미드로 처리되었다. (f) CRC 세포는 80~90% 밀도 조건에서 배양되었고 니클로사미드로 처리되었다. 그리고 이후 내인성 YAP의 세포내 위치는 공초점 현미경을 통해 측정되었다. DAPI 핵 염색; 스케일 바, 5μm. 이미지 J를 사용하여 YAP의 세포 내 위치를 정량하였다. 대조군과 비교한 통계적 유의성은 양측 스튜던트 t-테스트를 통해 ***, P < 0.001로 표시되었다.The content disclosed in FIG. 2 is specifically as follows. (a) Immunoblot shows endogenous Axin2, Snail protein abundance when cells are treated with 0.5 μM niclosamide for 16 hours. (b) Relative Axin2 transcript abundance (left) and TCF/LEF reporter (top flash) activity in cells transiently transfected with Renilla luciferase with top flash and treated with 0.5 μM niclosamide for 16 hours ( Right side). Statistical significance compared to the control group was *, P <0.05; **, P <0.01; ***, P<0.001. (c) YAP phosphorylation status in the cytoplasmic and nuclear fractions was determined by mobility shift on p-S127-YAP antibody and force-tag gel A. (d) Relative CTGF transcription levels (left) and relative TEAD reporter activity (right) were measured through reporter analysis and qPT-PCR. Statistical significance compared to the control group was *, P <0.05; **, P <0.01; ***, P <0.001. (e) HCT116 wild type, HCT116 p53 null (p53 -/-), DLD-1 and SW480 cells were treated with 0.25 μM of niclosamide, and phosphorylation of YAP was observed with a migratory shift force-tag. Cells were deficient in serum and glucose and were treated with niclosamide for 6 hours before the experiment. (f) CRC cells were cultured at 80-90% density and treated with niclosamide. Then, the intracellular location of endogenous YAP was measured using a confocal microscope. DAPI nuclear staining; Scale bar, 5 μm. Image J was used to quantify the intracellular location of YAP. Statistical significance compared to the control group was expressed as ***, P <0.001 through the two-sided Student t-test.
실시예 3: 메트포르민은 세포질 내 YAP의 유지에 영향을 줌Example 3: Metformin affects the maintenance of YAP in the cytoplasm
메트포르민은 YAP의 인산화를 증가시킴으로써 Hippo 경로를 조절하고 YAP의 핵 위치화(localization)를 감소시킨다. CRC 세포에서 메트포르민 매개 YAP의 조절은 면역블롯 분석, 포스-태그 겔상에서 YAP의 이동성 쉬프트, CTGF 전사체 및 TEAD 리포터 활성을 감소시키는 것으로 나타났다(도 3a, b). 메트포르민은 니클로사미드보다 덜 강력하지만, 메트포르민은 Axin2 및 Snail의 단백질 풍부도를 억제하는 것으로 나타났다. 또한, mTOR 기질 리포좀 단백질 S6의 인산화가 발견되었다(도 3c). 블롯분석 결과와 유사하게, 메트포르민의 전사 수준 및 TCF/LEF 리포터 활성은 CRC 세포에서 감소되었다(도 3d).Metformin regulates the Hippo pathway by increasing YAP phosphorylation and reduces the nuclear localization of YAP. The regulation of metformin-mediated YAP in CRC cells was shown to decrease the mobility shift of YAP on immunoblot analysis, force-tag gel, CTGF transcript and TEAD reporter activity (Fig. 3a, b). Metformin is less potent than niclosamide, but metformin has been shown to inhibit the protein abundance of Axin2 and Snail. In addition, phosphorylation of mTOR substrate liposome protein S6 was found (Fig. 3c). Similar to the results of the blot analysis, the transcription level of metformin and the TCF/LEF reporter activity were decreased in CRC cells (FIG. 3D ).
도 3에 개시된 내용은 구체적으로 다음과 같다. (a) 세포질 및 핵 분획 내 YAP 인산화 상태는 p-S127-YAP 항체 및 포스-태그 겔상 이동성 쉬프트를 통해 결정된다. (b) 상대적인 CTGF 전사 수준(왼쪽) 및 상대적인 TEAD 리포터 활성(오른쪽)은 리포터 분석 및 qPT-PCR을 통해 결정되었다. CRC 세포들은 메트포르민 10mM로 처리되었다. 통계적 유의성은 양측 스튜던트 t-테스트를 통해 **, P<0.01로 나타내었다. (c) 면역블롯은 CRC 세포가 16시간 동안 메트포르민 10mM로 처리될 때 내인성 Axin2, Snail, p-S235/236-리보좀 단백질 S6 단백질 풍부도를 나타낸다. (d) Renilla 루시퍼라제와 함께 탑 플래쉬로 일시적으로 형질주입되고 16시간 동안 메트포르민 10mM로 처리된 세포에서 상대적인 Axin2 전사 풍부도(왼쪽) 및 TCF/LEF 리포터(탑 플래쉬) 활성(오른쪽). 대조군과 비교한 통계적 유의성은 양측 스튜던트 t-테스트를 통해 *, P < 0.05; **, P < 0.01로 나타냈다.The content disclosed in FIG. 3 is specifically as follows. (a) The YAP phosphorylation status in the cytoplasmic and nuclear fractions is determined through the mobility shift on the p-S127-YAP antibody and the force-tag gel. (b) Relative CTGF transcription levels (left) and relative TEAD reporter activity (right) were determined through reporter analysis and qPT-PCR. CRC cells were treated with metformin 10mM. Statistical significance was expressed as **, P<0.01 through the two-sided Student's t-test. (c) Immunoblot shows the endogenous Axin2, Snail, p-S235/236-ribosomal protein S6 protein abundance when CRC cells were treated with metformin 10mM for 16 hours. (d) Relative Axin2 transcriptional abundance (left) and TCF/LEF reporter (top flash) activity (right) in cells transiently transfected with Renilla luciferase with top flash and treated with metformin 10 mM for 16 hours. Statistical significance compared to the control group was *, P <0.05; **, P <0.01.
실시예 4: 인산화 의존성 YAP의 조절을 통한 니클로사미드 및 메트포르민의 조합 효과Example 4: Combination effect of niclosamide and metformin through modulation of phosphorylation-dependent YAP
상기 결과들은 니클로사미드가 핵 내 YAP를 증가시키며 메트포르민이 핵 내 YAP의 발현을 감소시킴을 확인하였다. 니클로사미드 및 메트포르민의 조합 변화를 관측하기 위해, CRC 세포에 클로사미드 0.25μM, 메트포르민 10mM, 또는 니클로사미드 0.25μM + 메트포르민 10mM을 16시간 동안 처리하였다.The above results confirmed that niclosamide increased YAP in the nucleus and metformin decreased the expression of YAP in the nucleus. In order to observe the change in the combination of niclosamide and metformin, CRC cells were treated with 0.25 μM of closamide, 10 mM of metformin, or 0.25 μM of niclosamide + 10 mM of metformin for 16 hours.
결과적으로 면역블롯 분석을 통해, 니클로사미드 단독에 비해 니클로사미드 및 메트포르민이 함께 투여될 때 핵 YAP 및 p-Ser127-YAP의 발현이 감소되는 것으로 확인되었다(도 4a). 그리고 CTGF 전사 수준 및 TEAD 리포터 활성 또한 동일한 결과를 나타내었다(도 4b). 그리고 면역형광분석에서 니클로사미드 단독으로 처리된 그룹에 비해 니클로사미드 및 메트포르민 조합 그룹에서 핵 YAP가 감소되는 것으로 나타났다(도 4c). 상대적인 형광 강도는 전체 핵 영역에서 측정되었다.As a result, through immunoblot analysis, it was confirmed that the expression of nuclear YAP and p-Ser127-YAP decreased when niclosamide and metformin were administered together compared to niclosamide alone (FIG. 4A). And CTGF transcription level and TEAD reporter activity also showed the same results (Fig. 4b). In addition, in immunofluorescence analysis, it was found that nuclear YAP was decreased in the combination group of niclosamide and metformin compared to the group treated with niclosamide alone (Fig. 4c). Relative fluorescence intensity was measured over the entire nuclear area.
도 4에 개시된 내용은 구체적으로 다음과 같다. (a-c) 각각의 세포는 니클로사미드 0.25μM, 메트포르민 10mM, 또는 니클로사미드 0.25μM + 메트포르민 10mM로 처리되었다. 세포질 및 핵 분획 내 YAP 인산화 상태에 대한 면역블롯 분석은 p-S127-YAP 항체를 통해 측정되었다. (a) 상대적인 CTGF 전사 수준(왼쪽) 및 상대적인 TEAD 리포터 활성(오른쪽). 대조군과 비교한 통계적 유의성은 양측 스튜던트 t-테스트를 통해 **, P < 0.01; ***, P < 0.001로 나타내었다. (b), 면역형광 (c)는 처리 후 측정하였다. 대조군과 비교한 통계적 유의성은 양측 스튜던트 t-테스트를 통해 **, P < 0.01; ***, P < 0.001로 나타내었다.The content disclosed in FIG. 4 is specifically as follows. (a-c) Each cell was treated with 0.25 μM niclosamide, 10 mM metformin, or 0.25 μM niclosamide + metformin 10 mM. Immunoblot analysis of YAP phosphorylation status in the cytoplasmic and nuclear fractions was measured using the p-S127-YAP antibody. (a) Relative CTGF transcription levels (left) and relative TEAD reporter activity (right). Statistical significance compared to the control group was **, P <0.01; ***, P <0.001. (b) and immunofluorescence (c) were measured after treatment. Statistical significance compared to the control group was **, P <0.01; ***, P <0.001.
실시예 5: 니클로사미드 및 메트포르민은 mTOR-AMPK 경로를 억제함Example 5: Niclosamide and metformin inhibit mTOR-AMPK pathway
AMPK는 에너지 고갈 및 저산소 상태와 같은 다양한 대사 스트레스에 의해 증가하는 AMP에 의해 활성화되며, ATP 사용을 억제하여 에너지 항상성을 유지하는 데 중요한 역할을 한다. AMPK의 활성화를 유도하는 메트포르민은 LKB1-AMPK-mTOR 경로를 통해 종양을 억제한다. 활성화 된 LKB1은 AMPK의 인산화를 촉진하고 TSC2 (Tuberous Sclerosis Complex 2)를 통해 mTORC1을 억제함으로써 항암 효과를 나타낸다.AMPK is activated by AMP, which is increased by various metabolic stresses such as energy depletion and hypoxia, and plays an important role in maintaining energy homeostasis by inhibiting ATP use. Metformin, which induces the activation of AMPK, inhibits tumors through the LKB1-AMPK-mTOR pathway. Activated LKB1 exhibits anticancer effects by promoting phosphorylation of AMPK and inhibiting mTORC1 through TSC2 (Tuberous Sclerosis Complex 2).
니클로사미드와 함께 처리된 메트포르민의 시간에 따른 효과의 변화를 관찰하기 위해, 에너지 스트레스에서 AMPK의 활성화를 관찰하였다. 그 결과, 단백질 발현을 통해 AMPK 활성화가 증가되었으며(도 5a), 인산화된 AMPK에 의해 ATP 수준을 낮춤으로써 암세포 성장이 억제되었다(도 5b).In order to observe the change in the effect of metformin treated with niclosamide over time, the activation of AMPK was observed under energy stress. As a result, AMPK activation was increased through protein expression (FIG. 5A), and cancer cell growth was suppressed by lowering ATP levels by phosphorylated AMPK (FIG. 5B).
또한, mTOR 경로의 억제는 두 약물로의 단일 처리와 비교할 때 mTOR 이펙터로서 작용하는 S6의 활성화를 억제함으로써 확인되었다(도 5C). 이러한 결과는 니클로사미드 및 메트포르민의 조합이 AMPK-mTOR 경로를 조절함을 가리킨다.In addition, inhibition of the mTOR pathway was confirmed by inhibiting the activation of S6 acting as an mTOR effector when compared to single treatment with two drugs (Fig. 5C). These results indicate that the combination of niclosamide and metformin regulates the AMPK-mTOR pathway.
도 5에 개시된 내용은 구체적으로 다음과 같다. (a) 각각의 세포는 16시간 동안 5.5mM 글루코스 배지에서 니클로사미드 0.5μM, 메트포르민 5mM, 또는 니클로사미드 0.5μM + 메트포르민 5mM로 처리되었다. 내인성 AMPK, p-AMPK 단백질 풍부도는 면역블롯 분석을 통해 측정되었다. (b) 세포에 6시간 동안 니클로사미드 및 메트포르민을 처리하면서 글루코스가 없이 배양한 이후에 ATP 수준을 측정하였다. (c) 면역블롯은 세포를 16시간 동안 니클로사미드 0.25μM, 메트포르민 10mM, 또는 니클로사미드 0.25μM + 메트포르민 10mM로 처리할 때 내인성 Axin2, Snail 단백질 풍부도를 나타낸다.The content disclosed in FIG. 5 is specifically as follows. (a) Each cell was treated with 0.5 μM niclosamide, 5 mM metformin, or 0.5 μM niclosamide + metformin 5 mM in 5.5 mM glucose medium for 16 hours. Endogenous AMPK, p-AMPK protein abundance was measured through immunoblot analysis. (b) Cells were cultured without glucose while being treated with niclosamide and metformin for 6 hours, and then ATP levels were measured. (c) Immunoblot shows endogenous Axin2, Snail protein abundance when cells are treated with niclosamide 0.25 μM, metformin 10 mM, or niclosamide 0.25 μM + metformin 10 mM for 16 hours.
실시예 6: 니클로사미드 및 메트포르민은 전형적 Wnt 신호전달의 억제와 함께 Snail 매개 EMT를 억제함Example 6: Niclosamide and metformin inhibit Snail-mediated EMT with inhibition of typical Wnt signaling
니클로사미드 및 메트포르민의 조합은 니클로사미드에 의한 핵에서의 YAP의 발현을 완화시키는 것으로 나타났다. 그 다음, 니클로사미드 및 메트클로민 조합의 Wnt 신호전달의 억제 효과를 실험하였다. 니클로사미드는 Axin2 및 Snail을 효과적으로 감소시킴을 확인하여, 이는 Wnt 신호전달에서 EMT와 관련된 주요 단백질임을 알 수 있으며, 또한 메트포르민도 미세하게 감소시킴을 확인하였다. 두 약물의 조합은 내인성 Axin2 및 Snail을 현저하게 감소시키며, 면역블롯 분석을 통해 Wnt 신호전달(도 6a), Axin2 전사 수준(도 6b 왼쪽), 및 TCF/LEF 리포터 활성(도 6b 오른쪽)을 효과적으로 억제한다. 이에 기초하여, 두 약물 조합의 전사 수준을 qPCR을 통해 확인하였다. 결과적으로, 니클로사미드 및 메트포르민의 처리는 상피 마커를 현저하게 증가시키고 중간엽 마커를 감소시켰다(도 6c). 트랜스 웰 분석을 수행하여 두 약물의 이동 능력을 확인 하였다. 이는 CRC 세포가 니클로사미드 및 메트포르민 조합으로 처리 될 때, 니클로사미드 또는 메트포르민으로만 처리 될 때보다 이동이 상당히 감소된 결과와 일치하였다(도 6d).The combination of niclosamide and metformin has been shown to attenuate the expression of YAP in the nucleus by niclosamide. Then, the inhibitory effect of the combination of niclosamide and metclomine on Wnt signaling was tested. By confirming that niclosamide effectively reduces Axin2 and Snail, it can be seen that it is a major protein related to EMT in Wnt signaling, and it was also confirmed that metformin was also subtly reduced. The combination of the two drugs significantly reduced endogenous Axin2 and Snail, and effectively reduced Wnt signaling (Figure 6a), Axin2 transcription level (Figure 6b left), and TCF/LEF reporter activity (Figure 6b right) through immunoblot analysis. Suppress. Based on this, the transcription levels of the two drug combinations were confirmed through qPCR. Consequently, treatment with niclosamide and metformin significantly increased epithelial markers and decreased mesenchymal markers (FIG. 6C ). Transwell analysis was performed to confirm the mobility of both drugs. This was consistent with the result of significantly reduced migration when CRC cells were treated with a combination of niclosamide and metformin, compared to when treated with only niclosamide or metformin (FIG. 6D).
도 6에 개시된 내용은 구체적으로 다음과 같다. (a) 세포를 16시간 동안 니클로사미드 0.5μM, 메트포르민 5mM, 또는 니클로사미드 0.5μM 및 메트포르민 5mM로 처리하였다. 내인성 Axin2, Snail 단백질 풍부도는 면역블롯 분석을 통해 측정되었다. (b) Renilla 루시퍼라제와 함께 탑 플래쉬로 일시적으로 형질주입된 세포에서 상대적인 Axin2 전사 풍부도(왼쪽) 및 TCF/LEF 리포터(탑 플래쉬) 활성(오른쪽). 대조군과 비교한 통계적 유의성은 양측 스튜던트 t-테스트를 통해 *, P < 0.05; **, P < 0.01; ***, P < 0.001로 나타냈다. (c) 니클로사미드 0.25μM, 메트포르민 10mM, 또는 니클로사미드 0.25μM + 메트포르민 10mM을 16시간 동안 처리한 CRC 세포에서 qRT-PCR을 통해 측정된 상대적인 상피 마커(왼쪽) 및 중간엽 마커(오른쪽) 전사 수준. 대조군과 비교한 통계적 유의성은 양측 스튜던트 t-테스트를 통해 *, P < 0.05; **, P < 0.01; ***, P < 0.001로 나타냈다. (d) 니클로사미드 0.5μM, 메트포르민 10mM, 또는 니클로사미드 0.5μM + 메트포르민 5mM로 처리된 세포의 이동성은 트랜스 웰 이동 분석을 통해 측정되었다. 대조군과 비교한 통계적 유의성은 양측 스튜던트 t-테스트를 통해 *, P < 0.05; ***, P < 0.001로 나타냈다.The content disclosed in FIG. 6 is specifically as follows. (a) Cells were treated with niclosamide 0.5 μM, metformin 5 mM, or niclosamide 0.5 μM and metformin 5 mM for 16 hours. Endogenous Axin2, Snail protein abundance was measured through immunoblot analysis. (b) Relative Axin2 transcriptional abundance (left) and TCF/LEF reporter (top flash) activity in cells transiently transfected with top flash with Renilla luciferase (right). Statistical significance compared to the control group was *, P <0.05; **, P <0.01; ***, P <0.001. (c) Relative epithelial markers (left) and mesenchymal markers (right) measured by qRT-PCR in CRC cells treated with niclosamide 0.25 μM, metformin 10 mM, or niclosamide 0.25 μM + metformin 10 mM for 16 hours. Warrior level. Statistical significance compared to the control group was *, P <0.05; **, P <0.01; ***, P <0.001. (d) Mobility of cells treated with 0.5 μM of niclosamide, 10 mM of metformin, or 0.5 μM of niclosamide + metformin 5 mM was measured by transwell migration assay. Statistical significance compared to the control group was *, P <0.05; ***, P <0.001.
실시예 7: 니클로사미드 및 메트포르민은 이종이식 모델에서 종양원성을 억제함Example 7: Niclosamide and metformin inhibit tumorigenicity in xenograft models
약리학적 접근 방법으로 상기 약물 조합의 인비보(in vivo) 치료 가능성을 조사하기 위해, 니클로사미드, 메트포르민, 니클로사미드 및 메트포르민의 조합으로 경구 투여된 마우스에 SW480 세포를 피하 주사하였다. 약물 투여 과정에서, 마우스 체중에서 명백한 부작용이 관찰되지 않았다(도 7a). 니클로사미드 또는 메트포르민 단독 투여는 종양의 형성을 억제하였으며, 두 약물의 병용시 종양원성 잠재력이 억제되었다(그림 7b-d).To investigate the in vivo therapeutic potential of the drug combination by a pharmacological approach, SW480 cells were injected subcutaneously into mice administered orally with a combination of niclosamide, metformin, niclosamide and metformin. In the course of drug administration, no obvious side effects were observed in mouse body weight (Fig. 7A). Administration of niclosamide or metformin alone inhibited tumor formation, and the combination of both drugs suppressed the tumorigenic potential (Fig. 7b-d).
도 7에 개시된 내용은 구체적으로 다음과 같다. (a-d) 인비보에서 니클로사미드 및 메트포르민의 병용 치료를 위해, 마우스들은 SW480(1x10 6) 세포의 피하 주사 이후 매일 비히클, 니클로사미드 단독(200mg/kg, P.O.), 메트포르민 단독(2mg/mL, P.O.) 또는 니클로사미드(200mg/kg, P.O.) 및 메트포르민(2mg/mL, P.O.) 조합으로 처리되었다. 체중(a) 및 종양 성장(b,c)는 일주일에 두번 관찰하였다. 실험 종결 이후, 모든 종양들을 마우스로부터 분리하였다 (d). 대조군과 비교한 통계적 유의성은 양측 스튜던트 t-테스트를 통해 *, P<0.05로 나타내었다.The content disclosed in FIG. 7 is specifically as follows. (ad) For the combination treatment of niclosamide and metformin in vivo, mice were subjected to vehicle, niclosamide alone (200 mg/kg, PO), metformin alone (2 mg/mL) daily after subcutaneous injection of SW480 (1×10 6) cells. , PO) or niclosamide (200mg/kg, PO) and metformin (2mg/mL, PO) combination. Body weight (a) and tumor growth (b, c) were observed twice a week. After the end of the experiment, all tumors were isolated from mice (d). Statistical significance compared to the control group was expressed as *, P<0.05 through the two-sided Student's t-test.
실시예 8: 니클로사미드 및 메트포르민은 APC-min 마우스에서 선종 형성을 억제함Example 8: Niclosamide and metformin inhibit adenoma formation in APC-min mice
APC min 마우스에서 니클로사미드 및 메트포르민의 조합시 용종 형성을 측정하기 위해, 6주령의 암컷 및 수컷 마우스들을 무작위로 그룹을 나누었다. APC min 마우스들에 14주 동안 비히클(n=8), 니클로사미드 50mg/kg(n=9), 메트포르민 2mg/ml, 니클로사미드 50mg/kg 및 메트포르민의 조합을 구강 투여하였다. 약물로 인한 체중 감소는 발견되지 않았다(도 8a). 약물 투여 14 주 후, 소장 용종의 수는 대조군, 니클로사미드 또는 메트포르민 단독 그룹과 비교하여 니클로사미드 및 메트포르민 조합 그룹에서 유의하게 감소하였다(도 8b). 그리고 APC min 마우스를 희생시키고 소장에서 입체현미경을 통해 용종을 관찰하였다(도 8c).To determine polyp formation upon combination of niclosamide and metformin in APC min mice, 6 week old female and male mice were randomly grouped. APC min mice were orally administered a combination of vehicle (n=8), niclosamide 50mg/kg (n=9), metformin 2mg/ml, niclosamide 50mg/kg and metformin for 14 weeks. No weight loss was found due to the drug (FIG. 8A ). 14 weeks after drug administration, the number of small intestine polyps was significantly reduced in the niclosamide and metformin combination group compared to the control group, niclosamide or metformin alone group (FIG. 8B). And the APC min mice were sacrificed and polyps were observed in the small intestine through a stereoscopic microscope (FIG. 8c).
도 8에 개시된 내용은 구체적으로 다음과 같다. (a-c) APC min 마우스에 니클로사미드 및 메트포르민 조합 요법을 실험하기 위해, APC 마우스들은 비히클, 니클로사미드 단독(50mg/kg, P.O.), 메트포르민 단독(2mg/mL, P.O.) 또는 니클로사미드(50mg/kg, P.O.) 및 메트포르민(2mg/mL, P.O.)의 조합으로 매일 처리되었다. 체중(a) 및 용종의 총 수(b). 실험 종결 이후 관찰된 소장 용종(c). 대조군과 비교한 통계적 유의성은 양측 스튜던트 t-테스트를 통해 *, P < 0.05; **, P < 0.01로 나타내었다.The content disclosed in FIG. 8 is specifically as follows. (ac) To test niclosamide and metformin combination therapy in APC min mice, APC mice were used with vehicle, niclosamide alone (50 mg/kg, PO), metformin alone (2 mg/mL, PO) or niclosamide ( It was treated daily with a combination of 50 mg/kg, PO) and metformin (2 mg/mL, PO). Body weight (a) and total number of polyps (b). Small intestine polyp observed after the end of the experiment (c). Statistical significance compared to the control group was *, P <0.05; **, P <0.01.
실시예 9: 환자유래 FAP 오르가노이드에 니클로사미드 및 메트포르민의 병용 치료 효과 확인Example 9: Confirmation of the effect of combined treatment of niclosamide and metformin on patient-derived FAP organoids
환자 FAP 조직 생검(biopsies)으로부터 FAP 오르가노이드를 준비하여 2μl 매트리젤에 시드(seeded)하고, 2일마다 폴립 오가노이드 배양액 (실험재료 및 방법)을 교환하였다. 니클로사미드(0.5 또는 1μM), 메트포르민(2mM) 또는 니클로사미드 및 메트포르민의 조합으로 8일 동안 처리한 후, 오르가노이드를 calcein AM으로 염색하여 관찰하였으며, 이를 도 9a에 나타내었다(배율, x40). ImageJ를 이용하여 FAP 오르가노이드 세포의 형광 강도에 대한 정량 분석을 수행하였으며, 이를 도 9b에 나타내었다 (3배수 실험, n=3). Means±SD. * P<0.05, ** P<0.01 (스튜던트 t-테스트).FAP organoids were prepared from patient FAP tissue biopsies, seeded in 2 μl Matrigel, and polyp organoid culture solution (experimental materials and methods) was exchanged every 2 days. After treatment with niclosamide (0.5 or 1 μM), metformin (2 mM), or a combination of niclosamide and metformin for 8 days, organoids were stained with calcein AM and observed, which is shown in FIG. 9A (magnification, x40 ). Quantitative analysis of the fluorescence intensity of the FAP organoid cells was performed using ImageJ, which is shown in FIG. 9B (three-fold experiment, n=3). Means±SD. * P <0.05, ** P <0.01 (Student t-test).

Claims (15)

  1. 니클로사미드 또는 이의 약학적으로 허용가능한 염; 및Niclosamide or a pharmaceutically acceptable salt thereof; And
    메트포르민 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 가족성 선종성 용종증 예방 또는 치료용 약학 조성물.A pharmaceutical composition for the prevention or treatment of familial adenomatous polyposis comprising metformin or a pharmaceutically acceptable salt thereof as an active ingredient.
  2. 제1항에 있어서, 상기 약학적 조성물은 Wnt/YAP/mTOR 신호전달 및 Snail 매개 상피간엽이행(EMT)의 억제를 통해 가족성 선종성 용종증 예방 또는 치료 효과를 나타내는, 약학 조성물.The pharmaceutical composition according to claim 1, wherein the pharmaceutical composition exhibits an effect of preventing or treating familial adenomatous polyposis through inhibition of Wnt/YAP/mTOR signaling and Snail-mediated epithelial mesenchymal transition (EMT).
  3. 제1항에 있어서, 상기 니클로사미드 또는 이의 약학적으로 허용가능한 염; 및 메트포르민 또는 이의 약학적으로 허용가능한 염의 몰비는 1 : 10~10000 (니클로사미드 또는 이의 약학적으로 허용가능한 염 : 메트포르민 또는 이의 약학적으로 허용가능한 염)인, 약학 조성물.The method of claim 1, wherein the niclosamide or a pharmaceutically acceptable salt thereof; And the molar ratio of metformin or a pharmaceutically acceptable salt thereof is 1: 10 to 10000 (Niclosamide or a pharmaceutically acceptable salt thereof: metformin or a pharmaceutically acceptable salt thereof), a pharmaceutical composition.
  4. 제1항에 있어서, 상기 가족성 선종성 용종증은 APC(adenomatous polyposis coli) 유전자의 돌연변이에 의해 발생하는 가족성 선종성 용종증인, 약학 조성물.The pharmaceutical composition according to claim 1, wherein the familial adenomatous polyposis is a familial adenomatous polyposis caused by mutation of an APC (adenomatous polyposis coli) gene.
  5. 니클로사미드 또는 이의 약학적으로 허용가능한 염의 치료적으로 유효한 양, 및 메트포르민 또는 이의 약학적으로 허용가능한 염의 치료적으로 유효한 양을 이를 필요로 하는 개체에 투여하는 단계를 포함하는 가족성 선종성 용종증을 치료 또는 예방하는 방법.Familial adenomatous polyposis comprising administering to an individual in need thereof a therapeutically effective amount of niclosamide or a pharmaceutically acceptable salt thereof, and a therapeutically effective amount of metformin or a pharmaceutically acceptable salt thereof. How to treat or prevent.
  6. 제5항에 있어서, 상기 방법은 Wnt/YAP/mTOR 신호전달 및 Snail 매개 상피간엽이행(EMT)의 억제를 통해 가족성 선종성 용종증 예방 또는 치료 효과를 나타내는, 방법.The method of claim 5, wherein the method shows the effect of preventing or treating familial adenomatic polyposis through inhibition of Wnt/YAP/mTOR signaling and Snail-mediated epithelial mesenchymal transition (EMT).
  7. 제5항에 있어서, 상기 가족성 선종성 용종증은 APC(adenomatous polyposis coli) 유전자의 돌연변이에 의해 발생하는 가족성 선종성 용종증인, 방법.The method of claim 5, wherein the familial adenomatous polyposis is a familial adenomatous polyposis caused by mutation of an APC (adenomatous polyposis coli) gene.
  8. 니클로사미드 또는 이의 약학적으로 허용가능한 염; 및Niclosamide or a pharmaceutically acceptable salt thereof; And
    메트포르민 또는 이의 약학적으로 허용가능한 염을 유효성분으로 포함하는 가족성 선종성 용종증 예방 또는 치료용 키트.A kit for the prevention or treatment of familial adenomatous polyposis comprising metformin or a pharmaceutically acceptable salt thereof as an active ingredient.
  9. 제8항에 있어서, 상기 키트는 Wnt/YAP/mTOR 신호전달 및 Snail 매개 상피간엽이행(EMT)의 억제를 통해 가족성 선종성 용종증 예방 또는 치료 효과를 나타내는, 키트.The kit of claim 8, wherein the kit exhibits an effect of preventing or treating familial adenomatic polyposis through inhibition of Wnt/YAP/mTOR signaling and Snail-mediated epithelial mesenchymal transition (EMT).
  10. 제8항에 있어서, 상기 가족성 선종성 용종증은 APC(adenomatous polyposis coli) 유전자의 돌연변이에 의해 발생하는 가족성 선종성 용종증인, 키트.The kit according to claim 8, wherein the familial adenomatous polyposis is a familial adenomatous polyposis caused by a mutation in an APC (adenomatous polyposis coli) gene.
  11. 제8항에 있어서, 상기 키트에 포함되는 니클로사미드 또는 이의 약학적으로 허용가능한 염; 및 메트포르민 또는 이의 약학적으로 허용가능한 염은 동시에 또는 순차적으로 투여되는, 키트.According to claim 8, Niclosamide contained in the kit or a pharmaceutically acceptable salt thereof; And metformin or a pharmaceutically acceptable salt thereof are administered simultaneously or sequentially.
  12. 제8항에 있어서, 상기 키트는 상기 유효성분들의 투여량, 투여 경로, 투여 횟수 및 적응증으로 이루어진 군에서 선택된 어느 하나 이상을 개시한 복약지시서를 추가적으로 포함하는, 키트The kit according to claim 8, wherein the kit additionally comprises a medication instruction sheet which discloses any one or more selected from the group consisting of the dosage, route of administration, number of administrations, and indications
  13. 니클로사미드 또는 이의 약학적으로 허용가능한 염, 및 메트포르민 또는 이의 약학적으로 허용가능한 염의 가족성 선종성 용종증을 치료 또는 예방하기 위한 용도.Use of niclosamide or a pharmaceutically acceptable salt thereof, and metformin or a pharmaceutically acceptable salt thereof for treating or preventing familial adenomatic polyposis.
  14. 제13항에 있어서, 상기 용도는 Wnt/YAP/mTOR 신호전달 및 Snail 매개 상피간엽이행(EMT)의 억제를 통해 가족성 선종성 용종증 예방 또는 치료 효과를 나타내는, 용도.The use according to claim 13, wherein the use shows the effect of preventing or treating familial adenomatic polyposis through inhibition of Wnt/YAP/mTOR signaling and Snail-mediated epithelial mesenchymal transition (EMT).
  15. 제13항에 있어서, 상기 가족성 선종성 용종증은 APC(adenomatous polyposis coli) 유전자의 돌연변이에 의해 발생하는 가족성 선종성 용종증인, 용도.The use according to claim 13, wherein the familial adenomatous polyposis is a familial adenomatous polyposis caused by a mutation in an APC (adenomatous polyposis coli) gene.
PCT/KR2020/002935 2019-10-16 2020-02-28 Pharmaceutical composition for preventing or treating familial adenomatous polyposis, comprising niclosamide and metformin WO2021075645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0128674 2019-10-16
KR1020190128674A KR102102993B1 (en) 2019-10-16 2019-10-16 Pharmaceutical composition for preventing or treating familial adenomatous polyposis comprising niclosamide and metformin

Publications (1)

Publication Number Publication Date
WO2021075645A1 true WO2021075645A1 (en) 2021-04-22

Family

ID=70456626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002935 WO2021075645A1 (en) 2019-10-16 2020-02-28 Pharmaceutical composition for preventing or treating familial adenomatous polyposis, comprising niclosamide and metformin

Country Status (2)

Country Link
KR (1) KR102102993B1 (en)
WO (1) WO2021075645A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140038898A (en) * 2012-09-21 2014-03-31 가톨릭대학교 산학협력단 Composition for preventing or treating inflammatory bowel disease comprising metformin as an active ingredient
KR20140096222A (en) * 2013-01-25 2014-08-05 한양대학교 산학협력단 Pharmaceutical composition for treating and preventing inflammatory bowel disease comprising metformin
KR20180081936A (en) * 2017-01-09 2018-07-18 연세대학교 산학협력단 Pharmaceutical Composition for Treating or Preventing Disease Concerining Axin-GSK3 Binding Containing Niclosamide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140038898A (en) * 2012-09-21 2014-03-31 가톨릭대학교 산학협력단 Composition for preventing or treating inflammatory bowel disease comprising metformin as an active ingredient
KR20140096222A (en) * 2013-01-25 2014-08-05 한양대학교 산학협력단 Pharmaceutical composition for treating and preventing inflammatory bowel disease comprising metformin
KR20180081936A (en) * 2017-01-09 2018-07-18 연세대학교 산학협력단 Pharmaceutical Composition for Treating or Preventing Disease Concerining Axin-GSK3 Binding Containing Niclosamide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AHN SUNG YONG, KIM NAM HEE, LEE KYUNGRO, CHA YONG HOON, YANG JI HYE, CHA SO YOUNG, CHO EUNAE SANDRA, LEE YOONMI, CHA JEONG SEOK, C: "Niclosamide is a potential therapeutic for familial adenomatos is polyposis by disrupting Axin-GSK3 interaction", ONCOTARGET, vol. 8, no. 19, 9 May 2017 (2017-05-09), pages 31842 - 31855, XP055818421 *
HIGURASHI, T. ET AL.: "Metformin efficacy and safety for colorectal polyps: a double-blind randomized controlled trial", BMC CANCE R, vol. 12, 2012, pages 118, XP021124917, DOI: 10.1186/1471-2407-12-118 *

Also Published As

Publication number Publication date
KR102102993B1 (en) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2014055634A1 (en) Identification of small molecule inhibitors of jumonji at-rich interactive domain 1a (jarid1a) and 1b (jarid1b) histone demethylase
WO2018128515A1 (en) Pharmaceutical composition containing niclosamide for treating axin-gsk3 protein bond-related diseases
US20120316203A1 (en) Compositions and Methods for Inhibition of Cancers
CZ303246B6 (en) Medicament for treating tumors exhibiting drug resistance
CN117159551A (en) Selective inhibitors of EGFR mutant at exon 18 and/or exon 21
WO2017078405A1 (en) Pharmaceutical composition for treatment of lung cancer comprising glucocorticoid-based compound
TW201713329A (en) Methods for treating cancer
WO2020141828A2 (en) Anticancer compositions comprising immune checkpoint inhibitors
KR20180120765A (en) Combination therapy for proliferative disorders
WO2024039164A1 (en) Composition for preventing, ameliorating, or treating cancer comprising steppogenin as active ingredient
WO2021075645A1 (en) Pharmaceutical composition for preventing or treating familial adenomatous polyposis, comprising niclosamide and metformin
JP2023540393A (en) Method for treating metastases with cathepsin C inhibitors
JP6918839B2 (en) Methods and pharmaceutical compositions for treating microbiome dysregulation associated with circadian clock disturbances
JP2010502644A (en) Treatment methods using WRN binding molecules
US20110046154A1 (en) Use of aminopeptidase inhibitors or azaindole compounds for preventing or treating cancerous metastases from epithelial origin
JP2019519573A (en) Methods for treating cancer
WO2021202822A1 (en) Compositions and methods for treating age-related diseases and premature aging disorders
AU2019381050B2 (en) Anticancer composition
WO2015111971A1 (en) Pharmaceutical composition containing gpr119 ligand as active ingredient for preventing or treating non-alcoholic fatty liver disease
WO2023059040A1 (en) Pharmaceutical composition comprising cdk inhibitor and id2 activator for prevention or treatment of bladder cancer
WO2023244026A1 (en) Pharmaceutical composition comprising foxm1 inhibitor and immune checkpoint inhibitor for preventing or treating cancer
KR102347516B1 (en) Compound for inhibiting PARP and medical use thereof
US20170143714A1 (en) Pharmaceutical composition for preventing or treating of cirrhosis of liver comprising G protein coupled receptor 119 ligand as an active ingredient
WO2021060944A1 (en) Pharmaceutical composition for preventing or treating cancer comprising yap-tead interaction inhibitor and hypoglycemic agent
WO2023075062A1 (en) Composition for preventing or treating melanoma, comprising ac_774

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877327

Country of ref document: EP

Kind code of ref document: A1