WO2021075496A1 - Ultraviolet ray irradiation device, ultraviolet ray irradiation system, ultraviolet ray irradiation method, and simulation method - Google Patents

Ultraviolet ray irradiation device, ultraviolet ray irradiation system, ultraviolet ray irradiation method, and simulation method Download PDF

Info

Publication number
WO2021075496A1
WO2021075496A1 PCT/JP2020/038913 JP2020038913W WO2021075496A1 WO 2021075496 A1 WO2021075496 A1 WO 2021075496A1 JP 2020038913 W JP2020038913 W JP 2020038913W WO 2021075496 A1 WO2021075496 A1 WO 2021075496A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultraviolet
ultraviolet irradiation
target area
light emitting
irradiation device
Prior art date
Application number
PCT/JP2020/038913
Other languages
French (fr)
Japanese (ja)
Inventor
謹秀 五関
弘和 梅景
淳史 長尾
川端 隆司
敦司 大霜
Original Assignee
サンエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンエナジー株式会社 filed Critical サンエナジー株式会社
Priority to JP2021552429A priority Critical patent/JPWO2021075496A1/ja
Publication of WO2021075496A1 publication Critical patent/WO2021075496A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation

Definitions

  • the present invention relates to an ultraviolet irradiation device, an ultraviolet irradiation system, an ultraviolet irradiation method, and a simulation method for sterilizing and sterilizing indoors and the like.
  • UVC region ultraviolet region
  • ultraviolet lamps capable of outputting light (ultraviolet rays) with wavelengths in the UVC range have been developed and commercialized, and manufacturing plants mainly in the medical / nursing care sites, water and sewage purification, and food fields. It has been used as a method for simply and effectively preventing infection, improving the environment such as water and air, and ensuring food safety.
  • an ultraviolet light source light that can be easily installed on a wall or ceiling and outputs ultraviolet rays with a wavelength in the UVC range, and a portable air purifier. Products with a similar ultraviolet light source built into the machine unit are commercially available.
  • the ultraviolet light source light In sterilization with an ultraviolet light source light, the ultraviolet light source light is generally turned on at the timing of the sterilization process and turned off when the sterilization process is not performed (in the case of a manned person). Is switching.
  • the ultraviolet light source lamp When the ultraviolet light source lamp is a low-pressure mercury lamp, it takes a certain amount of time (about several minutes) from the off (off) state to output light having sufficient energy to be sterilized. Needs. For example, in a hospital, etc., when another patient uses the same space after examining and treating a patient infected with a (strongly infectious) virus in a doctor's office or operating room, the hospital staff such as the other patient or doctor Sterilization of the space is desired to prevent secondary infection with. However, if it takes a long time to start sterilization with an ultraviolet light source lamp, there is a problem that the waiting time of the patient becomes long.
  • a temporary sterilization target area for example, a temporary medical tent
  • a temporary sterilization target area for example, a temporary medical tent
  • the conventional portable air purifier unit only purifies the air that has passed through the unit, and cannot efficiently irradiate an unmanned room with ultraviolet rays. Further, when the air purifier unit is carried into a temporary tent for medical use, for example, even if the air inside the temporary tent can be purified to some extent, the contaminated air leaking to the outside of the temporary tent There is no countermeasure and there is a problem in terms of safety.
  • the present invention enables efficient sterilization treatment in a short time while giving priority to safety, and also enables irradiation of ultraviolet rays in an arbitrary sterilization target area at an arbitrary timing. It is intended to provide an irradiation device, an ultraviolet irradiation system, an ultraviolet irradiation method, and a simulation method.
  • the present invention has an ultraviolet light emitting means capable of outputting ultraviolet rays including a predetermined main wavelength, and a blocking means in which at least a part thereof is arranged to face the ultraviolet light emitting means to block at least a part of the ultraviolet rays.
  • the present invention relates to an ultraviolet irradiation device characterized in that the ultraviolet blocking state can be switched between a blocking state and a non-blocking state by the blocking means.
  • the present invention is an ultraviolet irradiation system having the above-mentioned ultraviolet irradiation device and irradiating the target area with the ultraviolet rays, wherein the target area is a region partitioned by the partitioning means. It depends on the irradiation system.
  • the present invention is provided separately from the ultraviolet light emitting means capable of outputting ultraviolet rays containing a predetermined main wavelength with respect to the target region, the flow path through which the air in the target region passes, and the ultraviolet light emitting means.
  • the present invention relates to an ultraviolet irradiation system, which comprises other ultraviolet light emitting means capable of outputting ultraviolet rays including a predetermined main wavelength to the air passing through the flow path.
  • the present invention is based on the ultraviolet light emitting means capable of outputting ultraviolet rays containing a predetermined main wavelength to the target area and the irradiation state of the ultraviolet rays output from the ultraviolet light emitting means, and the degree of cleaning in the target area.
  • the present invention relates to an ultraviolet irradiation system characterized by having an estimation means for estimating irradiation conditions necessary for cleaning the target area.
  • the present invention is an ultraviolet irradiation method for irradiating a target region with ultraviolet rays having a main wavelength of a sterilization region, the step of arranging an ultraviolet irradiation device capable of outputting the ultraviolet rays in the target region, and the ultraviolet irradiation device.
  • the present invention relates to an ultraviolet irradiation method characterized by having a step of switching between a blocked state and a non-blocked state of ultraviolet rays by a blocking means.
  • the present invention comprises the step of outputting ultraviolet rays containing a predetermined main wavelength to the target region from the ultraviolet light emitting means, and the other ultraviolet light emitting means provided in the flow path through which the air in the target region passes.
  • the present invention relates to an ultraviolet irradiation method characterized by having a step of outputting ultraviolet rays containing a predetermined main wavelength to air passing through the flow path.
  • the present invention based on the step of outputting ultraviolet rays including a predetermined main wavelength from the ultraviolet light emitting means to the target area and the irradiation state of the output ultraviolet rays, the degree of cleanliness in the target area or the degree of cleanliness in the target area is determined by the estimation means.
  • the present invention relates to an ultraviolet irradiation method, which comprises a step of estimating an ultraviolet irradiation condition necessary for cleaning the target area.
  • the present invention is a simulation method in the case of outputting ultraviolet rays containing a predetermined main wavelength to a target region from an ultraviolet light emitting means, the step of accepting an input of a condition, and the simulation means based on the above conditions. It relates to a simulation method characterized by having a step of simulating the irradiation conditions of ultraviolet rays necessary for cleaning the target area.
  • an ultraviolet irradiation device / ultraviolet rays that enables efficient sterilization treatment in a short time while giving priority to safety and can irradiate ultraviolet rays in an arbitrary sterilization target area at an arbitrary timing. It can exert an excellent effect that it can provide an irradiation system, an ultraviolet irradiation method, and a simulation method.
  • (A) It is a graph which shows the relationship between the output wavelength distribution of the UV lamp provided in the ultraviolet irradiation system which concerns on embodiment of this invention, and the UV absorption rate of DNA, and (B) the relationship between the UV absorption rate of DNA and the sterilization rate by UV. It is a graph which shows. It is a table which shows the list of the amount of light energy required for inactivation by UV for each bacterial species. It is a schematic diagram which shows the switching of the blocking state and the non-blocking state in the ultraviolet irradiation system which concerns on embodiment of this invention. It is a schematic diagram which shows the switching of the blocking state and the non-blocking state in the ultraviolet irradiation system which concerns on embodiment of this invention.
  • FIG. 1 It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) schematic diagram, (B) top view of the ultraviolet irradiation apparatus. It is a figure which shows the outline of the ultraviolet irradiation apparatus which concerns on embodiment of this invention, is (A) front view, (B) top view. It is a perspective view which shows the outline of the ultraviolet irradiation apparatus which concerns on embodiment of this invention. It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) top view, (B) perspective view.
  • FIG. 1 It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A)-(C) side view, (D) top view. It is a side view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. It is a side view which shows the outline of the structure of the ultraviolet irradiation system which concerns on embodiment of this invention. It is a top view which shows the outline of the structure of the ultraviolet irradiation system which concerns on embodiment of this invention. It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) top view, (B) perspective view.
  • FIG. 1 It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) top view, (B) side view, (C) side view. It is a top view which shows the outline of the structure of the ultraviolet irradiation system which concerns on embodiment of this invention. It is a top view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. It is a side view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. It is a side view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. It is a side view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. It is a side view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention.
  • FIG. 1 It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) front view, (B) perspective view. It is a perspective view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. It is a perspective view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. It is a side view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) perspective view, (B) perspective view, (C) perspective view, (D) side view, (E) side view.
  • FIG. 1 It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) block diagram, (B) plan view, (C) plan view, (D) plan view. It is a perspective view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) side view, (B) side view, (C) block diagram, (D) schematic view.
  • FIGS. 1 to 31 embodiments of the ultraviolet irradiation system 200 and the ultraviolet irradiation device 100 according to the present invention will be described with reference to FIGS. 1 to 31.
  • some configurations will be omitted as appropriate to simplify the drawings.
  • the size, shape, thickness, etc. of the member are exaggerated as appropriate.
  • each component constituting the ultraviolet irradiation system 200 and the ultraviolet irradiation device 100 the same component is indicated by the same reference numeral in each embodiment, and detailed description thereof will be omitted.
  • FIG. 1 is a top view (plan view) showing an outline of the ultraviolet irradiation system 200 of the embodiment.
  • the ultraviolet irradiation system 200 of the present embodiment is a system in which an ultraviolet irradiation device 100 is arranged in a target area S and the target area S is irradiated with ultraviolet rays including a predetermined main wavelength.
  • the details of the ultraviolet irradiation device 100 will be described later, but here, as an example, it is a portable type (structure having portability) and can output (irradiate) ultraviolet rays having a wavelength in the sterilization region.
  • the target area S refers to an area to be sterilized / purified by the ultraviolet irradiation device 100, and as an example, refers to an area at least partially partitioned from another area by the partitioning means 150.
  • the partitioning means 150 is, for example, a means for subsequently partitioning at least a part of a certain space (for example, outdoors, shelter, etc.), and is a (medical) tent, a dome (air dome), a partition, or a partition. ) And so on. That is, as an example, the target area S refers to an inner area in which a part of a certain space (for example, outdoors, shelter, etc.) is subsequently partitioned by the partitioning means 150.
  • the partitioning means 150 is arranged in a place (corridor, lobby, etc.) other than the room (operating room) to partition the target area S.
  • the target area S of the present embodiment is a specific or unspecified one or more human beings (victims, people requiring rescue, treatment target persons (patients), etc., medical workers who deal with them, treatments, etc.) Hereinafter, these persons may be collectively referred to as “target persons”).
  • the ultraviolet irradiation device 100 is arranged inside the target area S partitioned by the partition means 150.
  • the target area S is partitioned at an arbitrary timing and an arbitrary range (shape) as needed, and the ultraviolet irradiation device 100 is carried into the target area S from the outside.
  • it is stored (installed) in advance in the target area S (for example, indoors), and is moved / installed at a predetermined position as needed.
  • the ultraviolet irradiation device 100 may form a part of the partition means 150.
  • the ultraviolet irradiation device 100 is installed as a part thereof.
  • the ultraviolet irradiation device 100 irradiates the target area S with ultraviolet rays having a wavelength of the sterilization region to sterilize and purify the air in the target area S and / or to the target area S. Sterilizes and purifies the surface of existing articles and the human body of the target person.
  • the "section” by the section means 150 is continuously surrounded by the section means 150 as shown in FIGS. (A) and (B), and there is no portion communicating with the outside of the target area S (completely). It may be in a closed state (or almost completely), or a part (a part such as a top surface or a side surface) is opened, and the target area S is shown in FIGS. There may be a part that communicates with the outside of the.
  • the partitioning means 150 may be an existing wall, and the target area S may be indoors or the like.
  • one ultraviolet irradiation device 100 is arranged in one target area S, but a plurality of ultraviolet irradiation devices 100 may be arranged in one target area S (in each of the following figures). Is the same).
  • FIGS. 2 (A) and 3 (D) show the state of the ultraviolet irradiation device 100 in a manned state.
  • 2 (B) and 2 (C) are side schematic views showing a state of the ultraviolet irradiation device 100 in an unmanned state.
  • FIG. 3 (A) is a top schematic view corresponding to FIGS.
  • FIG. 2 (A) and 2 (D) showing the state of the ultraviolet irradiation device 100 in a manned state
  • FIGS. 3 (B) and 3 (C) Is a top view showing a state of the ultraviolet irradiation device 100 in an unmanned state.
  • FIG. 3B corresponds to FIG. 2B
  • FIG. 3C corresponds to FIG. 2C.
  • FIG. 4 is a block diagram showing an example of a circuit configuration for driving and controlling the ultraviolet irradiation device 100.
  • the ultraviolet irradiation device 100 of the present embodiment is portable (has portable) as an example, and has an ultraviolet light emitting means 101, a blocking means 105, and a covering means 103. .. That is, the ultraviolet irradiation device 100 is not fixed so as not to be movable in the target region S, but the ultraviolet light emitting means 101, the cover means 103, and the blocking means 105 are unitized and integrally (independently) movable. To.
  • the ultraviolet irradiation device 100 is configured to be able to switch between a blocking state and a non-blocking state of ultraviolet rays by physically moving the blocking means 105 and / or selecting the blocking means 105 by controlling the material. Material control here refers to physical control and / or chemical control.
  • the ultraviolet irradiation device 100 has a leg portion 123 as an example, and exhibits a stand-alone (partition, partition) type that can stand alone and move to an arbitrary position.
  • the ultraviolet irradiation device 100 is not limited to the striking type, and may be, for example, a hanging type or a leaning type on a wall surface or the like. Further, the ultraviolet irradiation device 100 is not limited to the portable type, and may have a configuration (installation type) of being mounted and fixed in the target area S (for example, a wall surface or the like).
  • the blocking means 105 of this example is configured to be movable relative to the ultraviolet light emitting means 101, for example. Specifically, as shown in FIGS. 2 (A) and 2 (D), at least a part of the ultraviolet light can be moved so as to face the ultraviolet light emitting means 101, and the ultraviolet rays (shown by a broken line in the same figure for convenience). ) Can be blocked (this state is called "blocked state"). Further, as shown in FIGS. 2B and 2C, the blocking means 105 can be moved to a state of retracting from the front of the ultraviolet light emitting means 101, and the blocking means 105 is said to be movable without blocking at least a part of the ultraviolet rays.
  • the target area S is configured to be able to irradiate ultraviolet rays (this state is referred to as a "non-blocking state"), and in the non-blocking state of ultraviolet rays, the space, equipment, etc. in the target area S are sterilized.
  • the cover means 103 can be arranged to face the ultraviolet light emitting means 101 and form an air flow path 107 (see FIG. 2D) with the ultraviolet light emitting means 101. That is, in the ultraviolet irradiation device 100 of this example, the ultraviolet light emitting means 101 and the cover means 103 are unitized and integrally movable.
  • the first direction H is the horizontal direction
  • the second direction V is the vertical direction
  • the third direction D is the horizontal direction and the direction perpendicular to the vertical direction.
  • the first direction H is the width direction of the wall surface
  • the second direction V is the height of the wall surface
  • the third direction D is a direction parallel to the floor surface.
  • the "bacteria” to be sterilized is a general term for bacteria (bacteria, microorganisms, virus cells) that are mainly harmful to the human body (animal), and "sterilization” by ultraviolet rays is light energy.
  • bacteria bacteria, microorganisms, virus cells
  • sterilization by ultraviolet rays is light energy.
  • the ultraviolet light emitting means 101 is a means capable of outputting ultraviolet rays (UV: ultraviolet) having a predetermined main wavelength. More specifically, it is possible to output light with a short wavelength (near ultraviolet light) in ultraviolet light (ultraviolet light), especially light with a wavelength in the UVC region, and this light energy directly destroys the deoxyribonucleic acid (DNA) of bacteria (bacteria). It has a UV light source that has the ability to inactivate bacteria by doing so.
  • UV ultraviolet rays
  • the ultraviolet light emitting means 101 of the present embodiment has, for example, a third direction D (in which the UV light source is at least substantially perpendicular to the surface of the base material B on the surface of the surface of the surface base material B such as a wall surface, a panel material, or a plate material).
  • a plurality of ultraviolet rays are provided so as to be able to output (exit) ultraviolet light in the direction of the broken line in the figure), and each of them is arranged at a predetermined interval.
  • the UV light source is, for example, a straight tube type low-pressure mercury lamp (low-pressure UV lamp) LP, and a discharge lamp (metal) that utilizes the light emission of arc discharge in mercury vapor whose internal pressure (mercury vapor pressure) during lighting is 100 Pa or less. Steam discharge lamp).
  • the main wavelength of the light output by the low-pressure mercury lamp (low-pressure UV lamp) LP is, for example, 250 nm to 260 nm, preferably 253 nm to 255 nm, and more preferably 253.5 nm to 254 nm (for example, 253. 7 nm).
  • the low-pressure mercury lamp LP is provided with an inhibitory means (not shown) that inhibits the production of ozone at least in front of the emission direction of ultraviolet rays.
  • the inhibiting means is, for example, a lamp bulb of a low-pressure mercury lamp LP made of ozoneless quartz glass that blocks light having a wavelength of 200 nm or less (a part thereof, an optical component).
  • far ultraviolet rays having a wavelength of 184.9 nm cause a reaction between oxygen in the air and generate ozone.
  • the low-pressure mercury lamp LP of the present embodiment cuts light (light component) having a wavelength of 184.9 nm, which produces ozone, among the ultraviolet rays emitted by transmitting the blocking means (a lamp valve made of quartz glass).
  • a condensing means (not shown) for condensing the irradiation direction of ultraviolet rays in a predetermined direction may be provided around or in the vicinity of the low-pressure mercury lamp LP.
  • the light collecting means is a member having a light focusing (focusing) function, such as a reflector, a screen, or a lens.
  • the ultraviolet light emitting means 101 of the present embodiment is light in the UVC region whose output wavelength is a short wavelength of ultraviolet light, and inactivates bacteria by directly destroying the DNA of the bacteria by the light energy.
  • Any UV light source having the ability to emit light may be used, and for example, instead of the low-pressure mercury lamp LP, a UV lamp of an LED (light emerging diode) may be used.
  • a typical light source that can output ultraviolet rays other than mercury lamps is a UV-LED that can obtain light in the ultraviolet region without mercury.
  • the UV-LED light source which has a emission line from the UVC region to the UVB region, particularly 260 nm to 285 nm and can output light of a single wavelength, has good luminous efficiency and is difficult to reduce the illuminance, and has a long life. It is designed and matches the output of light having a wavelength in the UVC region, which is the sterilization wavelength region.
  • a UV-LED may be used instead of the low-pressure mercury lamp LP as a light source for outputting light having a wavelength in the sterilization wavelength region. good.
  • the individual UV-LEDs may be arranged linearly so as to be a linear light source, or the individual UV-LEDs may be arranged in a matrix so as to be a surface light source. Good.
  • the ultraviolet light emitting means 101 in this example secures a sufficient area so that the area of irradiation of the target area S with ultraviolet rays is as large as possible.
  • the second direction (height direction) V is the partitioning means. It is desirable that the height is close to 150.
  • one ultraviolet light emitting means 101 may have a large length in the width direction, or a plurality of ultraviolet light emitting means 101 (ultraviolet irradiation device 100). May be arranged in the width direction.
  • the UV lamp LPs such as the low-pressure mercury lamp and the UV-LED are arranged evenly (as uniformly and evenly as possible) on the base material B.
  • the blocking means 105 is a means for blocking at least a part of the ultraviolet rays output by the ultraviolet light emitting means 101 that are harmful to the human body, and at least a part of the blocking means 105 can be arranged to face the ultraviolet emitting means 101.
  • the blocking means 105 of the present embodiment blocks at least ultraviolet rays in the sterilization wavelength region (UVC region), and more specifically, for example, UVC region and UVB region (wavelengths other than the allowable reference value for the human body). Blocks ultraviolet rays in the region) (hereinafter, the same applies to all the blocking means 105 including the blocking means 105 described simply as "blocking the ultraviolet rays (of the wavelength) in the UVC region" in the present embodiment).
  • the cover means 103 is a transparent member (glass, resin, etc.) capable of transmitting light (ultraviolet rays) having a wavelength of at least the sterilization wavelength region (UVC region), as shown in FIG. 2 (A). Further, the cover means 103 of this example is provided so as to superimpose the blocking means 105 for blocking ultraviolet rays in the sterilization wavelength region (UVC region).
  • the blocking means 105 in this case is, for example, a plate-shaped panel or filter that cuts light (ultraviolet rays) having a wavelength in at least the UVC region.
  • the blocking means 105 of the present embodiment may be included in the covering means 103, for example, being integrally configured with the covering means 103.
  • the cover means 103 is, for example, a transparent member (for example, UV cut glass) such as glass containing a UV cut material (blocking means 105) that blocks ultraviolet rays in the sterilization wavelength region (UVC region), or a UV cut film. It is a transparent member that has been pasted.
  • the ultraviolet light emitting means 101 of the ultraviolet irradiation device 100 of the present embodiment continuously irradiates ultraviolet rays forward (in the direction of ultraviolet emission) during normal operation (during operation, after the power is turned on). Then, the blocking means 105 emits light having a wavelength in the sterilization wavelength region (UVC region) in front of the covering means 103 (in the ultraviolet emitting direction) among the ultraviolet rays emitted (output) by the ultraviolet emitting means 101. It is configured to be able to switch between a blocking state for blocking and a non-blocking state for emitting light in front of the cover means 103.
  • the switching between the blocking state and the non-blocking state of ultraviolet rays has a wavelength in the UVC region by moving the blocking means 105 relative to the ultraviolet emitting means 101 (for example, the physical relative movement of the blocking means 105).
  • Switch between UV blocking and non-blocking states are at least ultraviolet rays having a wavelength in the sterilization wavelength region (UVC region), more specifically, a wavelength in the UVC region and a wavelength in the UVB region. Of these, it shall mean ultraviolet rays with wavelengths that are harmful to the human body.
  • the cover means 103 transmits ultraviolet rays having a wavelength in the UVC region and is provided with a blocking means (such as a UV cut film) 105 that blocks ultraviolet rays having a wavelength in the UVC region
  • the blocking state is provided.
  • the cover means 103 and the blocking means 105 are arranged in front of the ultraviolet light emitting means 101 (in the direction of emitting ultraviolet rays), and the ultraviolet rays pass through the cover means 103 and are in front (target area). Blocks the irradiation of S).
  • the blocking means 105 is moved relative to the ultraviolet emitting means 101 so as to retract from the front of the ultraviolet emitting means 101, and the ultraviolet rays (cover). It is allowed to be directly irradiated in front of the cover means 103 (target area S) (through the means 103).
  • the cover means 103 is a UV cut glass or the like that cuts ultraviolet rays having a wavelength in the UVC region (including the blocking means 105), in the blocking state, as shown in FIG. ) Is arranged in front of the ultraviolet light emitting means 101 (in the direction of emitting ultraviolet rays) to block ultraviolet rays from passing through the cover means 103 and being irradiated to the front (target region S).
  • the ultraviolet irradiation device 100 of the present embodiment is configured so that the blocking means 105 can switch between the blocking state and the non-blocking state while the ultraviolet light emitting means 101 outputs the ultraviolet rays.
  • the target area S can be sterilized efficiently in a short time.
  • the UV lamp LP switches between operation and non-operation of the sterilization process depending on whether it is on (lit) or off (off). However, it takes a predetermined time from the state in which the UV lamp LP is off (turned off) to reach the output for obtaining a sufficient sterilizing ability, and this time becomes longer as the off state is longer.
  • the UV lamp LP when the UV lamp LP is a low-pressure mercury lamp, it depends on the lighting (temperature) environment in which the UV lamp LP is used, but as an example, dozens of UV lamp LPs have been turned off (turned off) last time. If about a minute has passed, it takes about 1 minute to reach the output (peak output) where sufficient sterilization ability can be obtained after the UV lamp LP is turned on (lit), and the previous UV lamp LP is turned off (turned off). If about 24 hours have passed since the UV lamp was turned on, it takes about 2 to 3 minutes to reach the output (peak output) at which sufficient sterilization ability can be obtained after the UV lamp LP is turned on (lights up).
  • the UV lamp LP is a low-pressure mercury lamp in particular, its luminous efficiency depends on the vapor pressure of mercury (evaporation temperature 48 ° C.) enclosed inside, so that the vapor pressure is not stable or in a high temperature environment. In such cases, there is a problem that the output characteristics are not stable, such as variations in the time required to reach a predetermined output.
  • the ultraviolet light emitting means 101 may take time to reach a predetermined output or the time may vary when the sterilization treatment is desired. become.
  • a predetermined output or the time may vary when the sterilization treatment is desired.
  • the other patient In order to prevent secondary infection to hospital staff such as doctors and doctors, it is desirable to sterilize the target area S (space) every time the patient's treatment is completed.
  • it takes a long time to start sterilization with an ultraviolet light source lamp the time is not stable
  • the ultraviolet light emitting means 101 is started to emit light in advance (for example, before the start of use of the target area S) before the target area S is sterilized (FIG. 2 (A)) and sterilized.
  • treatment is not necessary (when sterilization cannot be performed, such as when manned)
  • ultraviolet rays harmful to the human body are blocked by the blocking means 105 (FIG. 2 (A)).
  • the blocking means 105 coversing means 103
  • the ultraviolet light emitting means 101 is retracted from the front to instantly switch from the blocking state to the non-blocking state (FIG. B), Fig. (C)).
  • the ultraviolet light emitting means 101 In this case, a sufficient time has passed since the ultraviolet light emitting means 101 was turned on (lit), and a sufficient output for the sterilization process was obtained. Further, in the ultraviolet light emitting means 101, the UV lamp LP is (evenly) arranged in a large area such as the same as the wall surface. Therefore, as soon as the blocking means 105 (covering means 103) is opened, the entire target region S can be directly irradiated with ultraviolet rays.
  • the UV lamp is a UV-LED
  • the output can be reached to 100% immediately when the lamp is lit, so it is possible to control immediate lighting and immediate extinguishing, which is different from the low mercury lamp.
  • the cover means 103 is arranged to face the ultraviolet light emitting means 101, and preferably at least a part of the cover means 103 has an opening.
  • at least a part of the cover means 103 is arranged to face the ultraviolet light emitting means 101, and an air flow path 107 can be formed between the cover means 103 and the ultraviolet light emitting means 101. That is, the cover means 103 has openings at one end and the other end (in this example, the upper end and the lower end of the second direction (height (vertical) direction) V) to be open ends, whereby the height direction V The air flow path 107 is formed in the air.
  • the cover means 103 has a front cover portion 103F and a side cover portion 103S continuous thereto so as to have a U shape in a top view as shown in FIG.
  • the ultraviolet light emitting means 101 is arranged in a substantially vertical surface (for example, a surface substantially perpendicular to the floor surface) in the target area S, and the front cover portion 103F is the ultraviolet light emitting means 101 and the first. They are separated by a predetermined distance D1 in the three directions D, and are arranged to face each other in a substantially vertical plane different from this.
  • the distance D1 between the ultraviolet light emitting means 101 and the front cover portion 103F is such that natural convection of air generated by the heat generated by the ultraviolet light emitting means 101 is possible (necessary and sufficient), and is about 100 mm to 200 mm as an example.
  • the side cover portion 103S is continuously provided at both ends of the front cover portion 103F in the first direction (width direction) H so as to integrally cover the ultraviolet light emitting means 101 with the front cover portion 103F.
  • the cover means 103 (front cover portion 103F and side cover portion 103S) forms a substantially rectangular parallelepiped shape together with the ultraviolet light emitting means 101, and the upper end portion and the lower end portion thereof are open, so that the ultraviolet light emitting means 101 and the cover means 103 In the region partitioned by the above (the region between the cover means 103 and the ultraviolet light emitting means 101), a flow path 107 through which air can flow is formed. Then, the ultraviolet irradiation device 100 continuously emits ultraviolet rays from the ultraviolet light emitting means 101 during operation (during operation).
  • the air in the flow path 107 is heated by the light emitted from the ultraviolet light emitting means 101 and rises.
  • the distance D1 between the ultraviolet light emitting means 101 and the front cover portion 103F is such that natural convection of air generated by the heat generated by the ultraviolet light emitting means 101 is possible (a degree that does not hinder natural convection and a degree necessary and sufficient for natural convection).
  • ultraviolet rays are emitted into the air flowing in from the lower end side thereof. Is irradiated and can flow out from the upper end side of the flow path 107, and due to natural convection, indoor (contaminated) air enters the flow path 107 from the lower end of the flow path 107 and is sterilized by the ultraviolet light emitting means 101. The generated air flows out from the upper end of the flow path 107 to the target region S.
  • the ultraviolet irradiation device 100 takes in the air in the target region S, irradiates it with ultraviolet rays, sterilizes it, and discharges it without using a separate driving means for artificial and mechanical air circulation.
  • Clean air after sterilization can be circulated in the target area S.
  • the process of circulating clean air by sterilizing the air taken in by the ultraviolet irradiation device 100 and releasing it by natural convection is referred to as "circulation sterilization (treatment)".
  • the cover means 103 is configured to constantly cover the ultraviolet light emitting means 101 and the blocking state and the non-blocking state are switched by opening and closing the blocking means 105, the UV emitting state can be in the non-blocking state. Can also be circulated and sterilized.
  • FIGS. 2 and 3 A specific operation example of the ultraviolet irradiation device 100 and the ultraviolet irradiation system 200 will be further described with reference to FIGS. 2 and 3.
  • the blocking means 105 is opened so as to cover the front surface of the ultraviolet light emitting means 101 along the surface direction of the front cover portion 103F (FIGS. 2 (A), 2 (D), 3 (A)). It is assumed that the state (FIG. 2 (B), FIG. 2 (C), FIG. 3 (B), FIG. 3 (C)) can be moved (opened and closed).
  • the ultraviolet irradiation device 100 is driven by the drive control means 109 as an example.
  • the drive control means 109 is, for example, a drive power supply and a control unit, and controls the irradiation / non-irradiation of ultraviolet rays by the ultraviolet light emitting means 101, and the ultraviolet ray blocking state and the non-blocking state by the blocking means 105 (covering means 103). Controls switching, etc. Further, the drive control means 109 also includes an operation control breaker, a lighting control timer, a sensor related to drive control, a signal processing means from the sensor, and the like.
  • the drive power supply is connected to the power supply of the target area S, etc., and a plurality of low-voltage mercury lamp LPs are synchronized, or each of them is efficiently turned on / off individually.
  • the control unit includes a control circuit composed of a CPU, RAM, ROM, and the like, and executes various controls.
  • the CPU is a so-called central processing unit, and various programs including a control program for turning on / off the low-pressure mercury lamp LP are executed to realize various functions.
  • the RAM is used as a work area of the CPU.
  • the ROM stores the basic OS and programs executed by the CPU.
  • the ultraviolet light emitting means 101 manually controls the irradiation / non-irradiation of ultraviolet rays, and the blocking means 105 (covering means 103) controls switching between the blocking state and the non-blocking state of ultraviolet rays. Etc. can also be performed. Further, at least a part of the drive by the drive control means 109 (for example, control of ultraviolet irradiation / non-irradiation by the ultraviolet light emitting means 101, and switching between the ultraviolet blocking state and the non-blocking state by the blocking means 105 (covering means 103)). At least a part of control etc.) may be performed manually.
  • the ultraviolet rays output from the ultraviolet light emitting means 101 do not pass through the cover means 103 (front cover portion 103F), and are in a blocking state in which they do not progress (reach) to the front (target region S).
  • the blocking means 105 is moved (opened) so that the ultraviolet light emitting means 101 appears (or is exposed).
  • the ultraviolet rays (ultraviolet rays in the sterilization wavelength region (UVC region)) output from the ultraviolet light emitting means 101 are in front of the front cover portion 103F (target region S).
  • the cover means 103 is fixed to the ultraviolet light emitting means 101 (it does not move relatively) and can transmit ultraviolet rays.
  • the blocking means 105 is configured to be movable relative to not only the ultraviolet light emitting means 101 but also the covering means 103, so that the blocking state and the non-blocking state can be switched.
  • the front cover portion 103F and the blocking means 105 are integrally provided, and the front cover portion 103F itself also serves as the blocking means 105.
  • a panel-shaped blocking means 105 may be integrally provided so as to be superimposed on at least the front cover portion 103F of the cover means 103, or at least the inside of the front cover portion 103F of the cover means 103.
  • a panel-shaped blocking means 105 may be provided (built-in).
  • the material of the front cover portion 103F may contain (mix) or apply a blocking means 105 such as an ultraviolet ray blocking material.
  • the front cover portion 103F (blocking means 105) is configured to be movable (open / close) between a state of covering the front surface of the ultraviolet light emitting means 101 and a state of opening.
  • Irradiation of ultraviolet rays (wavelengths in the UVC region) that can be sterilized is generally harmful to the human body.
  • the ultraviolet rays are blocked by the blocking means 105, and harmful ultraviolet rays proceed (reach) to the target area S (manned area). To prevent.
  • the blocking means 105 is opened, the target area S is irradiated with ultraviolet rays in a non-blocking state, and the entire target area S is sterilized.
  • this sterilization treatment not only objects such as furniture, walls, floors and ceilings existing in the target area S, but also the air in the target area S can be sterilized.
  • the air in the flow path 107 is sterilized and the clean air (sterilized air) is circulated by natural convection (circulation sterilization). Is possible.
  • At least the front cover portion 103F (which can transmit ultraviolet rays) is In the configuration that always covers the ultraviolet light emitting means 101, since the flow path 107 is formed even in the non-blocking state in which the target area S is unmanned and the blocking means 105 is opened, the target area S is directly irradiated with ultraviolet rays. As a result, the air in the target region S can be sterilized, and at the same time, the air in the flow path 107 can be sterilized and clean air can be circulated in the target region S.
  • the blocking means 105 When the blocking means 105 is closed when the target region S is manned or the like, the target region S is blocked from being irradiated with ultraviolet rays, but the air in the flow path 107 is sterilized and the target region S is sterilized. Clean air can be circulated in S.
  • the flow path is in the non-blocking state in which the target area S is unmanned and the blocking means 105 is opened.
  • the air in the target region S can be sterilized by directly irradiating the target region S with ultraviolet rays.
  • the blocking means 105 front cover portion 103F
  • the irradiation of ultraviolet rays to the target region S is blocked, but the air in the flow path 107 is blocked. Can be sterilized and clean air can be circulated in the target area S.
  • the target area S can be appropriately partitioned by the partitioning means 150, and the portable ultraviolet irradiation device 100 can be arranged (carried in) in the target area S. That is, even in the target area S where the sterilization device or the like is not provided, the ultraviolet irradiation device 100 can be arranged as needed and can be moved as appropriate, and the layout can be easily changed.
  • the ultraviolet rays from the ultraviolet light emitting means 101 to the target area S are instantly unblocked, and the target area S is directly irradiated with the ultraviolet rays over a wide range ( Further, the inside of the target region S can be efficiently sterilized (by circulating the sterilized air through the flow path 107).
  • the blocking means 105 is closed to block the ultraviolet rays from the ultraviolet light emitting means 101 to the target area S (while maintaining the light emission), while avoiding the influence of the ultraviolet rays on the human body.
  • the sterilized air can be circulated through the flow path 107 to safely sterilize the inside of the target region S. That is, even in the state where ultraviolet rays are blocked, the air sucked into the flow path 107 is sterilized by the ultraviolet light emitting means 101, the temperature rises due to heat generation, and the air flows out from the upper part by natural convection to circulate clean air. (Circulation sterilization is possible).
  • no mechanical or artificial air circulation means is used, the air is continuously sterilized without disturbing the air flow even during use (working) in the target area S (indoors, etc.). The number of bacteria in the target area S can be reduced.
  • the portable type is not limited to the illustrated configuration, and may be, for example, a stationary type on the floor or the like, or a hanging type from the ceiling or a wall.
  • FIG. 4 is a block diagram showing an example of a circuit included in the drive control means 109 of the ultraviolet irradiation device 100 according to the embodiment of the present invention.
  • the case where six UV lamps (for example, low-pressure mercury lamps) LP1 to LP6 are made to emit light is illustrated as an example, but the number is not limited to this.
  • the ultraviolet irradiation device 100 is provided with an AC power plug capable of supplying electricity from a power source in the target area S (for example, a household or commercial power source), and has a circuit configuration capable of supplying power to the regulated power supply unit 210.
  • the stabilized power supply unit 210 includes ballasts EB1 to EB6 capable of constantly and stably lighting the UV lamps LP1 to LP6, and UV lamps LP1 to LP6 are connected to the ballasts EB1 to EB6, respectively. Further, the wiring is arranged by the most suitable cable connectors for the UV lamps LP1 to LP6, and the circuit configuration is such that the power supply can be efficiently supplied to the ballasts EB1 to EB6.
  • the drive control means 109 may be able to individually control the lighting / extinguishing of a plurality of UV lamps LP (for each lamp).
  • the plurality of UV lamps LP can be turned on, blinked, and turned off by an arbitrarily set method, for example, the plurality of UV lamps LP are turned on sequentially, rotated in a circle, or individually randomly turned on. By doing so, it is possible to irradiate the target region S with no shadow (non-irradiated portion) evenly when irradiating with ultraviolet rays (it is possible to minimize the shadow blocking the ultraviolet rays).
  • the radiation of light with a wavelength shorter than 380 nm is regarded as ultraviolet radiation, and it is known that it exerts various actions on substances and living things.
  • the characteristic of light is that the shorter the wavelength, the stronger the light energy (kJ / mol), and especially in the UVC region (100 nm to 280 nm) of ultraviolet rays, it becomes possible to decompose nucleic acid molecules and proteins of living organisms.
  • RNA DNA and ribonucleic acid
  • UV lamps that can output light in the ultraviolet short wavelength UVC region are used for sterilization (inactivation of bacterial and viral cells) to improve hygiene management mainly in food and medical industry applications.
  • a light source that can efficiently perform
  • food, packaging, film, water treatment and space adhering bacteria bacteria adhering to walls, floors, doors, installation equipment, etc.
  • floating bacteria floating with bacteria floating in space
  • the ultraviolet light emitting means 101 of the present embodiment uses a mercury lamp (low pressure mercury lamp LP) containing mercury in a discharge tube as an example of an ultraviolet lamp capable of outputting light in the UVC region.
  • a mercury lamp low pressure mercury lamp LP
  • LP low pressure mercury lamp
  • FIG. 5 is a diagram showing a state of DNA inactivation by ultraviolet rays
  • FIG. 5 (A) is a diagram in which an ultraviolet (UV) absorption curve of DNA is superimposed on an output wavelength (spectral spectrum) distribution of a low-pressure mercury lamp LP. is there.
  • the UV absorption curve is a relative value of the UV absorption rate of DNA according to the UV wavelength when the absorption rate (spectral sensitivity) of DNA at a UV wavelength of 260 nm is 100, and the vertical axis of FIG. It is a relative value of the rate, and the horizontal axis is the UV wavelength.
  • FIG. 3B is a UV absorption curve (solid line) of DNA and a bactericidal action curve (broken line) by UV.
  • the bactericidal action curve is a relative value of the sterilization rate of DNA according to the UV wavelength when the sterilization (inactivation) rate of DNA at a UV wavelength of 260 nm is 100, and the vertical axis of FIG. It is a relative value, and the horizontal axis is the UV wavelength [nm].
  • the low-pressure mercury lamp LP can obtain light having a emission line of 253.7 nm emitted when an electron is collided with mercury in a discharge tube as a main wavelength. Then, it spans a wavelength region centered on a spectrum of 260 nm, which is absorbed by biological DNA (as well as RNA). Further, as already described, the bactericidal action by ultraviolet radiation is caused by damaging the DNA, but as shown in FIG. 3B, the bactericidal action curve showing the bactericidal action is the UV absorption curve of DNA. Almost match. This is because the pyrimidine groups that are continuous in the DNA are dimerized by absorbing light in this wavelength region, the genetic code is impaired, and the cells lose their differentiation performance and are inactivated.
  • advanced disinfection (cell inactivation) treatment can be performed by efficiently irradiating the target bacteria with light having a wavelength of 253.7 nm output from the low-pressure mercury lamp LP.
  • Fluorescent lamps use this 253.7 nm wavelength light by applying it to a phosphor coated on the inner wall of the arc tube glass to convert it into visible light and use it as illumination, but in the case of germicidal lamps, it has a short wavelength of ultraviolet rays.
  • UV-transmissive glass capable of efficiently transmitting light and quartz glass having higher transparency are used.
  • the low-pressure mercury lamp LP of the present embodiment cuts light (light component) having a wavelength of 184.9 nm.
  • the inhibiting means is a quartz glass lamp bulb.
  • the sterilization (inactivation) treatment of bacteria by UV has the disadvantage that it cannot be treated unless it is exposed to a specified amount of light, but on the other hand, it does not generate resistant bacteria that are problematic in sterilization treatment methods such as chemicals and heat. It has the advantage of being able to effectively treat bacteria.
  • the low-pressure mercury lamp LP also outputs a small amount of light (light component) having a wavelength of 310 nm or more, but the absorption rate of DNA of any wavelength of light is about 5% or less. Therefore, it can be almost ignored from the viewpoint of bactericidal action.
  • the UV irradiation amount required for inactivating the bacteria is the integrated light amount (integrated irradiation amount, exposure amount) of the light in the sterilization wavelength band given to the DNA of the bacteria (cells) [J / cm. 2 ] (Determined by the following (Equation 1).
  • UV radiation intensity is expressed as UV illuminance per fixed area. Although W / m 2 is used as the unit, mW / cm 2 or ⁇ W / cm 2 is practically used because the unit becomes large.
  • the value obtained by multiplying the radiation intensity (UV illuminance) of this UV by the irradiation time (for example, several seconds) is the integrated light amount (exposure amount) [J / cm 2 (mJ / cm 2, ⁇ J / cm 2 )].
  • the sterilization treatment with ultraviolet rays is effective against all bacteria, but since the resistance (susceptibility) of ultraviolet rays differs depending on the bacterial species, the required amount of ultraviolet irradiation is determined for each sterilization target bacterium based on the sterilization treatment index. ..
  • FIG. 6 is a table showing an example of the integrated light amount required to inactivate 99.9% or more when irradiated with UV of 267 nm to 287 nm for each type of bacteria (Source: International Illuminating Engineering Institute of Lighting (IES) Writing Handbook). Is.
  • the cumulative amount of light (cumulative ultraviolet irradiation amount) required to sterilize influenza virus by 99.9% or more is 10500 [ ⁇ J / cm 2 ], which is a food sterilization standard index of Bacillus subtilis.
  • the cumulative amount of light required to sterilize the mycelial spores by 99.9% or more is 33200 [ ⁇ J / cm 2 ]. That is, based on these index values, the integrated light amount of the low-pressure mercury lamp LP is set according to the bacteria to be sterilized.
  • ultraviolet rays in the sterilization wavelength region are directly irradiated from the ultraviolet light emitting means 101 to the airborne bacteria and adherent bacteria in the target region S (via the cover means 103), and therefore in the target region S. Can be efficiently sterilized and purified.
  • FIGS. 7 and 8 are schematic views showing an example of a method of switching the blocking means 105, and are perspective views showing the ultraviolet light emitting means 101 and the blocking means 105 portion extracted.
  • the blocking means 105 may be a separate body from the covering means 103, or may be integrated with the covering means 103. Further, the cover means 103 may not be provided, and the flow path 107 may not be formed.
  • the ultraviolet irradiation device 100 of the present embodiment moves (retracts) the blocking means 105 relative to the ultraviolet emitting means 101, and is in a state of blocking ultraviolet rays (FIG. 7A).
  • the non-blocking state ((B) in the figure) can be switched.
  • the blocking means 105 is a means for cutting ultraviolet light (light having a wavelength in at least the UVC region) and transmitting visible light. In this example, the case where the blocking means 105 is formed in the form of one panel is shown.
  • ultraviolet light (light having a wavelength in at least the UVC region) is blocked by the blocking means 105.
  • other light (ultraviolet light having little influence on the human body (light having a wavelength other than the UVC region (a part of the UVB region)) is transmitted through the blocking means 105.
  • FIG. 8 is a perspective view showing another example of switching between the blocked state and the non-blocked state by the blocking means 105.
  • the blocking means 105 is not limited to a single panel shape as shown in FIG. 6, and may be composed of a combination of parts 105P that are divided into a plurality of parts and can be individually moved.
  • the part 105P is configured to be capable of parallel (slide) movement as shown in FIG. (B) and rotation (swing) as shown in FIG. 3C, for example, with respect to the ultraviolet light emitting means 101.
  • the blocking means 105 is divided into a plurality of parts in the vertical direction (height direction) V, and the strip-shaped parts 105P in the vertical direction are horizontally (width direction) H. It can be slid to.
  • the front surface of the ultraviolet light emitting means 101 is covered, and in the non-blocked state, as shown in FIG. It can be opened to the left and right.
  • the parts 105P that slide to the left and right may be one each, but by dividing each of the left and right into a plurality of parts, the blocking means 105 can be compactly stacked even in the open state.
  • the blocking means 105 is divided into a plurality of pieces in the horizontal direction (width direction) H, and the angle of the strip-shaped part (louver) 105P can be changed in the horizontal direction.
  • the plurality of parts 105P can be rotated (swinged) in a blind shape (grating shape) around a rotation shaft RR provided along the width direction, for example.
  • the front surface of the ultraviolet light emitting means 101 is covered, and in the non-blocked state, as shown in FIG. it can.
  • the blocking means 105 it is desirable to irradiate a wide area without blocking ultraviolet rays when the blocking means 105 is opened.
  • a part of the ultraviolet rays may be blocked by the part 105P, so it is desirable to have a configuration in which the front in the irradiation direction is fully opened as shown in FIG.
  • the blocking means 105 may be divided in the vertical direction as shown in FIG. 3C, or may be divided in a matrix. Further, the blocking means 105 may be configured in a curtain shape so that it can be opened and closed.
  • the movement (opening / closing) of the blocking means 105 may be automatically controlled by, for example, a drive control means 109 (not shown), or may be manually controlled.
  • FIG. 9 is a diagram showing an example of an ultraviolet irradiation system 200 using an ultraviolet irradiation device 100.
  • FIG. 9A is a schematic view of the ultraviolet irradiation system 200
  • FIG. 9B is a top view showing the ultraviolet irradiation device 100.
  • the ultraviolet irradiation system 200 can arrange the ultraviolet irradiation device 100 (100A) at an arbitrary place in the target area S, and here, it is arranged in the target area S.
  • a plurality of beds BDs are arranged so as to partition each other.
  • the ultraviolet irradiation device 100 can also be used as a partition. That is, when the target area S is partitioned by the partitioning means 150 and used for, for example, a temporary medical / nursing room, the air can be circulated and sterilized while protecting the privacy of the simultaneous residents of the target area S.
  • the ultraviolet irradiation device 100 is moved near the place of concern where bacteria or viruses are generated in the room, and the blocking means 105 is opened to expose the ultraviolet emitting means 101 (in a non-blocking state). Therefore, the light from the UV lamp LP can be directly and evenly irradiated to the irradiated portion in an instant and wide range to perform the sterilization treatment.
  • a support frame (frame body) 121 is provided on the outer periphery, and a base material B provided with the ultraviolet light emitting means 101 is fixed to the support frame 121.
  • the ultraviolet light emitting means 101 arranges low-pressure mercury lamps LP on both sides of the panel (plate) -shaped base material B, and blocks the blocking means 105 and the covering means 103 on both sides so as to cover the ultraviolet light emitting means 101, respectively. It is provided. That is, a plurality of UV lamp LPs are provided on the first surface Sf1 of the base material B, and the blocking means 105 and the covering means 103 are arranged so as to face and cover the first surface Sf1.
  • the ultraviolet irradiation device 100 can irradiate ultraviolet rays from both the first surface Sf1 side and the second surface Sf2 side.
  • the blocking means 105 is configured to be movable (open / close) relative to the ultraviolet light emitting means 101, for example, as shown in FIG. Since the ultraviolet light emitting means 101 is the same as the above example, the description thereof will be omitted, but the ultraviolet light emitting means 101 is constantly emitting light during normal operation, and the ultraviolet light is not blocked by opening and closing the blocking means 105. The cutoff state can be switched.
  • the UV lamp LP is not arranged on the first surface Sf1 and the second surface Sf2 of the base material B, respectively, but is shared by the frame-shaped base material B on the first surface Sf1 and the second surface Sf2.
  • the structure may be such that the UV lamp LP is arranged. For example, in the case where a plurality of UV lamp LPs are hung on the frame-shaped base material B in a ladder shape, each UV lamp LP is shared by the first surface Sf1 and the second surface Sf2 of the base material B. Can be done.
  • the upper end and the lower end of the base material B are opened, and an air inlet IN and an air outlet OUT are arranged, respectively.
  • An air flow path 107 is formed in a region partitioned by the cover means 103 and the base material B (ultraviolet light emitting means 101).
  • the cover means 103 is configured to be immovable with respect to the ultraviolet light emitting means 101, and the air flow path 107 by the cover means 103 and the ultraviolet light emitting means 101 is always formed. That is, the air flow path 107 is always formed on both the first surface Sf1 side and the second surface Sf2 side of the base material B, regardless of whether it is in a blocked state or a non-blocked state.
  • a leg portion 123 is provided at the lower end portion.
  • the leg portion 123 supports the ultraviolet irradiation device 100 on the floor surface or the like so as to be self-supporting, and prevents the flow path 107 (air inlet IN) on the lower end side from being blocked by the floor surface (flow path 107). It is provided to allow the inflow of air from the lower end side), and is not limited to the shape shown in the figure.
  • the legs 123 may be provided with a lock mechanism (not shown) that can be fixed / movable.
  • the ultraviolet rays harmful to the human body are blocked by the blocking means 105 in the blocking state.
  • indoor air is always taken into the flow path 107 from the air inlet IN at the lower end of the cover means 103 (whether in a blocked state or a non-blocked state).
  • the air is sterilized by irradiating it with ultraviolet rays by the ultraviolet light emitting means 101.
  • the air in the flow path 107 is heated by the heat of the ultraviolet light emitting means 101, which causes natural convection, and is returned to the room as sterilized air from the outlet OUT at the upper end of the cover means 103, and this is repeated. (Circulation sterilization).
  • the ultraviolet irradiation device 100 is arranged at a position away from the inside of the target area S (partitioning means 150), which also serves as a partition as shown in the figure, sterilization by ultraviolet irradiation and sterilization by ultraviolet irradiation can be performed efficiently. Air circulation sterilization can be performed.
  • the blocking means 105 is composed of a single plate-like body (film, curtain) or the like on each of the first surface Sf1 side and the second surface Sf2 side, and is removable from the cover means 103. You may.
  • the cover means 103 and the blocking means 105 may be integrally configured so that the cover means 103 can be moved (opened and closed) relative to the ultraviolet light emitting means 101. In that case, air circulation sterilization can be performed only in the blocked state, and in the non-blocked state, ultraviolet rays can be instantaneously and widely irradiated toward the target region S.
  • FIG. 10 is a view showing a modified example of the ultraviolet irradiation device 100 shown in FIG. 9, where FIG. 10 (A) is a front view and FIG. 10 (B) is a top view.
  • the ultraviolet irradiation device 100 of the present invention circulates clean air in the flow path 107 by utilizing natural convection of air. Therefore, as shown in FIG. 6A, the UV lamp LPs arranged linearly (or straight tube type) may be arranged so that the longitudinal direction faces substantially the vertical direction (height direction) V. This makes it possible to further promote the rise of air in the flow path 107.
  • the arrangement of the UV lamp LP is not limited to the ultraviolet irradiation device 100 of this example, and can be applied to all the ultraviolet irradiation devices 100 described in the present embodiment.
  • the ultraviolet irradiation device 100 further includes an engaging means 161 capable of engaging with other members.
  • the other member is a partitioning means 150 or another ultraviolet irradiation device 100.
  • FIG. 9 illustrates a case where two ultraviolet irradiation devices 100 are engaged by the engaging means 161.
  • the engaging means 161 is provided at both ends of the support frame 121 (or the base material B), and other members (partition means 150, another ultraviolet irradiation device 100, or other members) can be detachably engaged with each other.
  • engagement refers to any state in which the two parties can be detached (disengaged) and temporarily and integrally fastened, such as fixing, supporting, connecting, connecting, fixing, and hooking.
  • the engaging means 161 is composed of, for example, a magnet, and is connected to a metal portion of another member or an engaging means 161 (for example, a magnet) provided on the other member.
  • the engaging means 161 is not limited to a magnet, but is a means for engaging by a physical uneven shape or the like, a means for hooking a hook such as a string-like member on a fastener such as a hook, and the like for engaging. May be good.
  • the engaging means 161 not only engages the two on the same surface, but also enables engagement in a bent state, for example, the two can be arranged in a substantially L shape in a top view. ..
  • FIG. 1 is a perspective view which shows another example of an ultraviolet irradiation apparatus 100.
  • the ultraviolet irradiation device 100 covers both surfaces (first surface Sf1, second surface Sf2) of the base material B (frame body 121 in this case), respectively.
  • 103 and a blocking means 105 separate from the 103 are provided.
  • the cover means 103 is fixed to, for example, the base material B, and only the blocking means 105 is configured to be movable relative to the base material B (cover means 103).
  • the base material B (frame body 121) is hollow and has ultraviolet light emitting means 101 in which a plurality of UV lamp LPs are fixed. That is, the cover means 103 is fixed to both surfaces (first surface Sf1, second surface Sf2) of one (common) ultraviolet light emitting means 101, and the blocking means 105 is provided so as to cover the cover means 103. There is.
  • the blocking means 105 is configured to be open to the base material B (covering means 103) or removable from the base material B, for example.
  • Air inlet IN and air outlet OUT are provided at the upper end and the lower end of the base material B (frame body 121), respectively, and are partitioned by the cover means 103 and the base material B (ultraviolet light emitting means 101) of the frame body.
  • An air flow path 107 is formed in the region.
  • the base material B is provided with an operation control breaker 109A, a lighting control timer 109B, and the like as a part of the drive control means 109.
  • the target region S can be directly irradiated with ultraviolet rays by opening the blocking means 105 or separating and removing the blocking means 105 while performing circulation sterilization.
  • the engaging means 161 is provided on both sides of the base material B (frame body 121), and for example, the ultraviolet irradiation device 100 having the same shape can be connected in the width direction H.
  • the blocking means 105 may be engaged with the engaging means 161 so that the blocking means 105 can be opened to the base material B (opening in a double door shape) with the engaging means 161 as an axis.
  • a take-in means (fan or the like) 170 for taking air into the flow path 107 may be provided at the lower end of the base material B as an auxiliary.
  • cover means 103 and the blocking means 105 may be integrally provided (in that case, the cover means 103 is also configured to be openable (removable) with respect to the base material B).
  • FIG. 12 and 13 are views showing another example of the ultraviolet irradiation system 200 of the present invention, and is an example in which the ultraviolet irradiation device 100 constitutes a part of the partition means 150.
  • FIG. 12A is a top view of the ultraviolet irradiation system 200
  • FIG. 12B is a perspective view of the ultraviolet irradiation system 200.
  • 13 (A) to 13 (C) are side schematic views of the ultraviolet irradiation system 200
  • FIG. 13 (D) is an upper surface.
  • the ultraviolet irradiation system 200 has a portable ultraviolet irradiation device 100 that irradiates the target area S partitioned by the partition means 150 with ultraviolet rays.
  • the partition means 150 includes an ultraviolet irradiation device 100 (ultraviolet irradiation unit 150B) that is independently movablely unitized. That is, the partition means 150 is configured to include at least the ultraviolet irradiation unit 150B, and in this example, includes the partition unit 150A and the ultraviolet irradiation unit 150B.
  • the partition unit 150A simply has a function of a partition, and for example, the frame body is provided with the above-mentioned engaging means 161.
  • the ultraviolet irradiation unit 150B has the same configuration as the above-mentioned ultraviolet irradiation device 100, but is configured to be engageable with the partition unit 150A by the engaging means 161. Further, the partition unit 150A and the ultraviolet irradiation unit 150B have, for example, the same size or the length (shape) in the width direction H and / or the height direction V as shown in FIGS. (A) and (B). It is preferable that it is composed of a uniform unified standard.
  • the ultraviolet irradiation device 100 which can be engaged with the partition unit 150A by the engaging means 161 and whose shape and size are configured in the same standard (unified size) as the partition unit 150A is particularly referred to as an ultraviolet irradiation unit 150B.
  • each of the above-mentioned ultraviolet irradiation devices 100 and the ultraviolet irradiation unit 150B has the same configuration, and may be replaced for the sake of description in the present specification.
  • the partition unit 150A also has the same engaging means 161 as the ultraviolet irradiation unit 150B.
  • the same members (partition means 150), that is, the partition units 150A and the ultraviolet irradiation units 150B can be engaged with each other by the engaging means 161. That is, the target area S is defined by continuously connecting (engaging) them.
  • the partition unit 150A and the ultraviolet irradiation unit 150B function as a part of the partition means 150.
  • the engaging position of the ultraviolet irradiation unit 150B and the number of partition units 150A are not limited to those shown in the figure and can be arbitrarily selected.
  • one or more ultraviolet irradiation units 150B and a plurality of partition units can be selected. It is also possible to partition the target area S by 150A.
  • a door unit 150C (also included in the partition means 150) having a door function for entering and exiting may be partially engaged.
  • the door unit 150C also has an engaging means 161 to engage with it.
  • each partition means 150 partition unit 150A or ultraviolet irradiation unit 150B.
  • the movable plate 151 is a plate-like body that is also erected along the erection direction (height direction V) of the partition means 150, and is configured to be expandable and contractible in the height direction V as shown by an arrow a.
  • the movable plate 151 may be configured to be rotatable about the rotation shaft 152 provided along the upper side of each partition means 150 as shown by an arrow b.
  • the movable plate 151 may be configured to be rotatable around a rotation shaft 153 provided along the side side of each partition means 150 as shown by an arrow c.
  • the movable mode of the movable plate 151 is at least one of arrows a to c, and these may be combined. By arbitrarily moving the movable plate 151, the upper surface of the target area S can be covered to some extent, and the degree of shielding between the target area S where bacteria increase and the outside of the target area S can be increased.
  • the movable mode of the movable plate 151 is not limited to any of the arrows a to c, and may be a configuration that can move relative to the partition means 150.
  • the movable plate 151 may be provided at the lower end of each partition means 150.
  • the ultraviolet irradiation system 200 is composed of a set (assembly) of a partition unit 150A and an ultraviolet irradiation unit 150B (and a door unit 150C) whose shape and the like are standardized and which can be connected by a common engaging means 161.
  • the target area S can be easily and simply sterilized and washed by simply introducing one set of the ultraviolet irradiation system 200.
  • the partition unit 150A itself has a shielding effect on bacteria, the bactericidal effect of the target area S of the ultraviolet irradiation system 200 will be maintained for a while. Therefore, it can be an effective means to temporarily isolate infected persons and those suspected of being infected, and to prevent the spread of infection by simply setting up a temporary room for medical examination. Further, the partition unit 150A may be subjected to antibacterial treatment or the like in advance.
  • all the partitioning means 150 may be configured by the ultraviolet irradiation unit 150B.
  • FIG. 13 a sheet material (cover material) 155 capable of covering all the partitioning means 150 in a state where the target area S is partitioned after the partitioning means 150 is engaged may be provided. .. Specifically, FIG. 13A shows a sheet material 155, which has a substantially cubic shape with an open bottom surface BT. The size of the sheet material 155 is slightly larger than the size of the partition means 150 for partitioning the target area S. Then, as shown in FIG. 13 (B), by covering the partition means 150 with the sheet material 155 from above, the target area S and the target area S as shown in FIGS. The degree of shielding from the outside (sealing degree) can be further increased.
  • the sheet material 155 may have a substantially rectangular shape that can cover only the upper surface portion of the open target area S.
  • FIG. 200 is a side view of the ultraviolet irradiation system 200.
  • the ultraviolet irradiation system 200 may include an exhaust means 181 that discharges at least a part of the air flowing out from the flow path 107 of the ultraviolet irradiation device 100 (ultraviolet irradiation unit 150B) to the outside of the target region S.
  • the air supply (intake) means 182 for introducing the air outside the target area S into the target area S.
  • FIG. (A) is a side schematic view conceptually showing the same ultraviolet irradiation system 200 as in FIG. 12, but in this case, the target area S is covered with the partition means 150 or the ceiling portion is also shown in the figure. As shown in 13, it is assumed that the space is covered with the sheet material 155 and is partitioned as a substantially closed space. The same applies when the target area S is partitioned by the partitioning means 150 (partitioning unit 150A) and the ultraviolet irradiation device 100 is arranged inside the target area S.
  • the ultraviolet irradiation system 200 includes, for example, an independent exhaust means 181 and an air supply means 182 for each target area S.
  • the exhaust means 181 is an exhaust passage 181A, an exhaust fan 181B, or the like, and is connected to the outlet (upper end portion in this example) of the flow path 107 of the ultraviolet irradiation unit 150B.
  • the exhaust means 181 may include an air conditioner (not shown), an appropriate filter such as HEPA, a duct, or the like.
  • the air supply means 182 is an air supply (intake) path 182A or the like, and may include an exhaust fan (not shown) or an appropriate filter.
  • the target area S and the outside thereof are controlled so as to have different pressures.
  • the target area S is managed so as to have a negative pressure and the outside thereof has a negative pressure (negative pressure is managed inside the target area S).
  • negative pressure is managed inside the target area S.
  • the target area S is isolated by applying negative pressure to contain pathogens (infectious bacteria, viruses), etc. The spread of pollution can be effectively prevented.
  • the contaminated air in the target area S is sterilized and purified by passing through the flow path 107 of the ultraviolet irradiation unit 150B as shown by the alternate long and short dash line, and is discharged into the target area S and circulated (circulated sterilized). Ru).
  • the blocking means 105 of the ultraviolet irradiation unit 150B is opened to directly irradiate the target area S with ultraviolet rays (indicated by a broken line) to create a space or the like. Sterilize adherent bacteria, floating bacteria (including falling bacteria), etc.
  • the connecting portion between the exhaust means 181 and the ultraviolet irradiation unit 150B is provided with appropriate measures to ensure that only clean air CA can pass through the exhaust means 181 (in the figure below).
  • Appropriate measures include, for example, installation of a known tubular air sterilizer.
  • the tubular air sterilizer is equipped with a fan for sending air of about 1? / Hr on one side of the cylinder, and has a structure in which one straight UV lamp is lit inside the cylinder.
  • the air that has passed through can be almost completely sterilized. As a result, it is possible to suppress the leakage of bacteria (contaminated air) in the target area S to the outside.
  • the figure (B) and the figure (C) exemplify the case where the partition means 150 is an air dome. That is, in the ultraviolet irradiation system 200, the ultraviolet irradiation device 100 is arranged in the target area S partitioned by the air dome (partitioning means) 150, and external air is taken into the target area S in the same manner as in FIG.
  • the air supply means 182 and the exhaust means 181 that passes through the flow path 107 and discharges clean air CA to the outside are provided.
  • the air dome 150 constitutes a ceiling and a wall (and a floor) by, for example, a double wall structure of an inner wall 150D and an outer wall 150E. Then, by keeping the gap space GS between the inner wall 150D and the outer wall 150E under the condition of positive pressure rather than the target area S, the target area S is managed by negative pressure.
  • the air flow and the mechanism of sterilization / purification (circulation sterilization) are the same as in Fig. (A).
  • a gap space GS is secured between the inner wall 150D and the outer wall 150E by, for example, supporting means (not shown) at predetermined intervals, and the pressure in the gap space GS is secured by the air supply / exhaust (intake / exhaust) means 183 for the air dome 150. Is controlled and managed. Further, by adopting the double wall structure, even if either the inner wall 150D or the outer wall 150E is damaged, the risk that the contaminated air in the target area S is immediately scattered to the outside can be reduced. ..
  • the figure (C) is an example of a single wall structure of the air dome 150.
  • the ultraviolet irradiation device 100 is arranged in the target area S partitioned by the air dome 150, and the air supply means 182 that takes in the external air into the target area S and the flow path 107 are the same as in FIG. 181 is provided with an exhaust means 181 for discharging clean air CA to the outside through the above.
  • the inside of the target area S can be positively pressured and used as a sterile hospital room in order to protect (reversely isolate) the patient from contamination outside the target area S.
  • the pressure in the hospital room environment room is controlled and managed (negative pressure control, positive pressure control) according to the medical condition, but the ultraviolet irradiation system 200 of the present embodiment has both negative pressure control and positive pressure control. It is possible.
  • control of sterilization / purification treatment (degree of sterilization / purification), pressure control, etc. (environmental control) are performed by exhaust means 181, air supply means 182, and air supply / exhaust (intake / exhaust) means.
  • 183 and other sensors such as pressure and temperature (not shown) are controlled by a drive control means (not shown) for environmental control.
  • some manual control may be performed.
  • ⁇ Ultraviolet irradiation method> An example of the ultraviolet irradiation method (flow of sterilization / purification treatment) by the ultraviolet irradiation system 200 shown in FIG. 14 will be described.
  • the target area S is partitioned by the partitioning means 150 (tent, air dome, partition, etc.), and the ultraviolet irradiation device 100 is arranged in the target area S.
  • the target area S is partitioned by the partitioning means 150 including at least the partition unit 150A and the ultraviolet irradiation unit 150B.
  • the ultraviolet irradiation device 100 is carried (arranged) into a predetermined room (area partitioned by the partitioning means 150 such as a wall) that can be the target area S.
  • the blocking means 105 of the ultraviolet irradiation device 100 (ultraviolet irradiation unit 150B, the same applies hereinafter) is closed, and the power of the ultraviolet light emitting means 101 is turned on (lighted). Although light is emitted from the ultraviolet light emitting means 101, the ultraviolet rays are blocked by closing the blocking means 105, and the ultraviolet rays are prevented from being directly irradiated to the target region S (human body).
  • the air flowing through the flow path 107 provided inside the ultraviolet irradiation device 100 is irradiated with ultraviolet rays to sterilize and purify the air, and the air (clean air) CA sterilized and purified by natural convection. Is discharged from the ultraviolet irradiation device 100 to the target area S.
  • the target area S is continuously taken in the outside air by the air supply means 182, and a part of the purified and sterilized air (clean air) CA that has passed through the flow path 107 is exhausted by the exhaust means 181. It is discharged to the outside through.
  • the purified and sterilized air (clean air) CA that has passed through the flow path 107 is exhausted by the exhaust means 181. It is discharged to the outside through.
  • the blocking means 105 is opened to put the ultraviolet rays in a non-blocking state.
  • the ultraviolet light emitting means 101 has been continuously lit (without turning off) from the start of operation in a state where the ultraviolet irradiation system 200 is operating (operating) normally, in order to obtain sufficient sterilizing ability.
  • the output has been reached. That is, at the same time as opening the blocking means 105, the target region S can be directly irradiated with ultraviolet rays having a sufficient bactericidal ability. As a result, the inside of the target area S can be efficiently sterilized and cleaned.
  • the blocking means 105 is closed while the ultraviolet light emitting means 101 continues to emit light, and the irradiation of the target area S of ultraviolet rays is blocked.
  • the blocking state / non-blocking state is controlled by the blocking means 105 automatically by the drive control means 109 and / or manually by the person in charge by operating a predetermined operating means (not shown) or the like.
  • the clean air after sterilization is constantly circulated even when the target area S is manned (even when unmanned) by circulation sterilization.
  • it since it is a portable type, it can be easily installed and removed at any timing and layout, and can also be used as a partition. Therefore, for example, when it is desired to clean the air at an arbitrary timing in a room where a plurality of people are accommodated (target area S), or when there is a patient with strong infectivity in a hospital, a temporary tent, or other facility, it is appropriate.
  • the survival rate of bacteria (the number of surviving bacteria / the number of initial bacteria) can be reduced to 1/10 (the killing rate of bacteria is, for example, 99.9%) in a few minutes.
  • the room can be returned to a clean area before contamination, which is highly effective in suppressing infection.
  • FIG. 15 to 21 are views for explaining an example of the second embodiment of the ultraviolet irradiation system 200.
  • FIG. 15 is a side view showing an outline of another example of the ultraviolet irradiation system 200 of the present embodiment.
  • 15 (A) and 15 (D) are side schematic views showing the state of the ultraviolet irradiation system 200 in the blocked state
  • FIGS. 15 (B) and 15 (C) are the ultraviolet irradiation system 200 in the non-blocked state. It is a side view which shows the state.
  • the ultraviolet irradiation system 200 of the present embodiment may include the ultraviolet reflecting means 250.
  • the ultraviolet reflecting means 250 is a means having a mirror surface (mirror surface) 250A that reflects the ultraviolet rays emitted (emitting) by the ultraviolet emitting means 101.
  • the entire surface of the surface facing the target region S is a mirror surface 250A.
  • at least the mirror surface 250A is movable relative to the ultraviolet emitting means 101.
  • the ultraviolet reflecting means 250 is a portable type (for example, a self-supporting strut type) like the ultraviolet irradiation device 100 will be described.
  • the ultraviolet reflecting means 250 can be moved to an arbitrary place, that is, can be moved relative to the ultraviolet light emitting means 101.
  • the ultraviolet reflecting means 250 has a substantially rectangular frame body 250C and leg portions 250D that support the frame body 250C so as to stand upright, and one surface of the frame body 250C (a surface facing the target area S). Is provided with a mirror surface 250A that is relatively movable with respect to the frame body 250C.
  • the ultraviolet reflecting means 250 is arranged at a position where the mirror surface 250A faces the target region S and can reflect the ultraviolet rays emitted by the ultraviolet emitting means 101 (in the example of FIG. 15, the position faces the ultraviolet emitting means 101). ..
  • the ultraviolet irradiation system 200 is in a non-blocking state when the target area S is unmanned.
  • the blocking means 105 is opened, the target region S is irradiated with ultraviolet rays, and the entire target region S is sterilized.
  • this sterilization treatment not only objects such as furniture, walls, floors and ceilings existing in the target area S, but also the air in the target area S can be sterilized.
  • the ultraviolet rays emitted from the ultraviolet light emitting means 101 to the target area S are reflected by the ultraviolet reflecting means 250 (mirror surface 250A) and are irradiated to the target area S again.
  • the amount of ultraviolet rays irradiated into the target area S increases.
  • the area where ultraviolet rays do not reach can be reduced, and the bactericidal effect can be enhanced.
  • the ultraviolet rays that can be used for sterilization are electromagnetic waves, and the directivity is only straight in the direction of irradiation. Therefore, for example, as shown by a thick broken line arrow (arrow from right to left) in FIGS. 15 (B) and 15 (C), there is an obstacle (such as a chair in this example) in the target area S. As a result, ultraviolet rays are blocked, and on the opposite side (back side of the obstacle), there is a region behind the obstacle where the ultraviolet rays do not reach (hereinafter, this region is referred to as an "ultraviolet non-reachable region"). Conventionally, there has been a problem that a sufficient bactericidal effect cannot be obtained in such a region where ultraviolet rays do not reach.
  • ultraviolet rays can be reflected by the ultraviolet reflecting means 250. More specifically, in the example shown in FIG. 15, the mirror surface 250A is arranged to face the light emitting surface of the ultraviolet light emitting means 101, but in reality, the mirror surface 250A is arranged with respect to the light emitting surface of the ultraviolet light emitting means 101. By arranging them at an angle (rather than parallel), it is possible to reflect ultraviolet rays in different (arbitrary) directions. That is, even if there is a region where the ultraviolet rays emitted from the ultraviolet light emitting means 101 do not reach (ultraviolet non-reachable region), the mirror surface 250A is appropriately moved so as to reflect the ultraviolet rays to the ultraviolet non-reachable region in advance.
  • Ultraviolet rays can also be applied to non-ultraviolet areas (for example, as shown by the thick dashed arrow from left to right). Therefore, it is possible to irradiate ultraviolet rays from substantially multiple directions, and the sterilization ability can be greatly enhanced.
  • the ultraviolet reflecting means 250 can reflect the ultraviolet rays in an arbitrary direction, the target region S can be irradiated with the ultraviolet rays from multiple directions, and the ultraviolet non-reachable region is formed. It can be significantly reduced and the bactericidal effect can be enhanced.
  • the flow path 107 is formed by the cover means 103 and the ultraviolet light emitting means 101, the air in the flow path 107 is sterilized and the clean air (sterilized air) by natural convection is used. Circulation (circulation sterilization) is possible.
  • the ultraviolet irradiation device 100 and / or the ultraviolet reflecting means 250 is a portable type, the configuration is not limited to the one shown in the figure, and for example, it is a stationary type on a floor or the like, or is hung from a ceiling or a wall. It may be a mold or the like.
  • the ultraviolet irradiation device 100 may be installed on a wall or the like in the target area S (indoor), for example.
  • the ultraviolet reflecting means 250 may be installed on a wall or the like in the target area S (indoor), and the mirror surface 250A may be configured to be movable relative to the ultraviolet light emitting means 101.
  • FIG. 16 is a top view showing an outline of the ultraviolet irradiation system 200.
  • the target area S of the ultraviolet irradiation system 200 is the same as that of the first embodiment, and may be an existing area such as an indoor area, or an area partitioned from another area by the partitioning means 150 as needed. It may be.
  • the ultraviolet irradiation device 100 is arranged inside the target area S partitioned by the partition means 150. Further, the ultraviolet reflecting means 250 is also carried into the target area S from the outside. Alternatively, it is stored (installed) in advance in the target area S, and is moved / installed at a predetermined position as needed. That is, in the case of the ultraviolet irradiation system 200 shown in the figure, it is desirable that both the ultraviolet irradiation device 100 and the ultraviolet reflecting means 250 are not a wall-mounted type but a portable type (a configuration having portability).
  • the ultraviolet irradiation device 100 and / or the ultraviolet reflecting means 250 may form a part of the partition means 150.
  • the ultraviolet irradiation device 100 and / or the ultraviolet reflecting means 250 is installed as a part thereof.
  • the partitioning means 150 is the same as that in the first embodiment.
  • the ultraviolet irradiation device 100 irradiates the target area S with ultraviolet rays having a wavelength of the sterilization region to sterilize and purify the air in the target area S and / or to the target area S. Sterilizes and purifies the surface of existing articles and the human body of the target person. Further, when the ultraviolet irradiation device 100 irradiates the target region S with ultraviolet rays, the ultraviolet reflecting means 250 reflects the ultraviolet rays.
  • one ultraviolet irradiation device 100 / and / or ultraviolet reflection means 250 are arranged in one target area S, but a plurality of ultraviolet irradiation devices 100 / and / or ultraviolet irradiation devices 100 / and are arranged in one target area S.
  • the ultraviolet reflecting means 250 may be arranged (the same applies to each of the following figures). By arranging the plurality of ultraviolet reflecting means 250 at appropriate distances, it is possible to reflect ultraviolet rays in more directions. Further, the number of the ultraviolet irradiation device 100 and the ultraviolet reflecting means 250 does not have to be the same.
  • FIG. 17 is a diagram showing a specific example of the ultraviolet irradiation system 200 shown in FIG. 16, exemplifying a case where the ultraviolet irradiation device 100 constitutes a part of the partition means 150.
  • FIG. 17A is a top view of the ultraviolet irradiation system 200
  • FIG. 17B is a perspective view of the ultraviolet irradiation system 200.
  • the ultraviolet irradiation system 200 includes an ultraviolet irradiation device 100 that irradiates the target area S partitioned by the partition means 150 with ultraviolet rays, and an ultraviolet reflecting means 250 that reflects the ultraviolet rays.
  • the ultraviolet irradiation device 100 is not fixed so as not to be movable in the target area S, but can be moved integrally (independently) by unitizing the ultraviolet light emitting means 101, the covering means 103, and the blocking means 105. It is configured as a portable type.
  • the ultraviolet reflecting means 250 has, for example, at least a mirror surface 250A, and is configured to be a portable type that can move independently (alone).
  • the partition means 150 is an ultraviolet irradiation device 100 (ultraviolet irradiation unit 150B) that is independently movable and unitized, and an ultraviolet reflection means 250 that is independently movable and unitized (ultraviolet irradiation unit 150B). UV reflection unit 150M) and included. That is, the partition means 150 includes at least an ultraviolet irradiation unit 150B and an ultraviolet reflection unit 150M, and in this example, includes a partition unit 150A, an ultraviolet irradiation unit 150B, and an ultraviolet reflection unit 150M.
  • the ultraviolet irradiation unit 150B has the same configuration as the above-mentioned ultraviolet irradiation device 100 (100A), but further includes an engaging means 161 capable of engaging with other members.
  • the other members are a partitioning means 150, another ultraviolet irradiation unit 150B (ultraviolet irradiation device 100), an ultraviolet reflection unit 150M (ultraviolet reflection means 250), and further other members.
  • the engaging means 161 of the ultraviolet irradiation unit 150B is provided at both ends of the support frame 121 (or the base material B), and other members are detachably engaged with each other.
  • the ultraviolet reflecting unit 150M has the same configuration as the above-mentioned ultraviolet reflecting means 250, but includes an engaging means 161 capable of engaging with other members.
  • the engaging means 161 of the ultraviolet reflection unit 150M is provided at both ends of the frame body 250C, for example.
  • the partition unit 150A, the ultraviolet irradiation unit 150B, and the ultraviolet reflection unit 150M are configured to be engaged with each other or with other members by the engaging means 161.
  • each partition means 150 has, for example, the same size or width direction H and / or as shown in FIGS. (A) and (B). It is preferable that it is configured by a unified standard in which the length (shape) of V in the height direction is uniform.
  • the ultraviolet irradiation device 100 which can be engaged with the partition unit 150A by the engaging means 161 and whose shape and size are configured in the same standard (unified size) as the partition unit 150A is particularly the ultraviolet irradiation unit 150B and the ultraviolet rays.
  • each of the above-mentioned ultraviolet irradiation devices 100 and the ultraviolet irradiation unit 150B has the same configuration, and the ultraviolet reflecting means 250 and the ultraviolet reflecting unit 150M have the same configuration. Therefore, for the sake of description in the present specification, the ultraviolet irradiation device 100 and the ultraviolet irradiation unit 150B may be replaced, and the ultraviolet reflecting means 250 may be replaced with the ultraviolet reflecting unit 150M.
  • partition means 150 that is, partition units 150A, ultraviolet irradiation units 150B, and ultraviolet reflection units 150M can be engaged with each other by the engaging means 161. That is, the target area S is defined by continuously connecting (engaging) them.
  • the partition unit 150A, the ultraviolet irradiation unit 150B and the ultraviolet reflection unit 150M function as a part of the partition means 150.
  • the ultraviolet reflection unit 150M is engaged with the opposite position of the ultraviolet irradiation unit 150B, but the engagement positions and the number of engagements including the partition unit 150A are not limited to those shown in the figure. It can be arbitrarily selected, and for example, the target area S can be partitioned by one or a plurality of ultraviolet irradiation units 150B, a plurality of ultraviolet reflection units 150M, and the like.
  • a door unit 150C (also included in the partition means 150) having a door function for entering and exiting may be partially engaged.
  • the movable plate 151 shown in FIG. 6B may be provided at the upper end of each partition means 150 (partition unit 150A, ultraviolet irradiation unit 150B, ultraviolet reflection unit 150M, (and door unit 150C)). ..
  • the movable mode of the movable plate 151 is at least one of arrows a to c, and these may be combined. Although not shown, the movable plate 151 may be provided at the lower end of each partition means 150.
  • At least one of the movable plates 151 (for example, the movable plate 151 such as the partition unit 150A and the ultraviolet reflecting unit 150M) is provided with a mirror surface 250A on the surface facing the target region S (the movable plate 151 is also an ultraviolet reflecting means). 250) is even more desirable.
  • the ultraviolet irradiation system 200 is set (assembled) of a partition unit 150A, an ultraviolet irradiation unit 150B, and an ultraviolet reflection unit 150M (and a door unit 150C) whose shape and the like are standardized and can be connected by a common engaging means 161. ),
  • the target area S can be appropriately partitioned by the partitioning means 150 only by introducing one set of the ultraviolet irradiation system 200, and the target area S can be easily and simply sterilized and washed.
  • the layout of the target area S and the layout of the ultraviolet irradiation unit 150B and the ultraviolet reflection unit 150M can be easily changed.
  • the plurality of ultraviolet irradiation units 150B and the ultraviolet reflection unit 150M at arbitrary positions, it is possible to irradiate the target region S with ultraviolet rays from multiple directions, so that the effect of irradiating ultraviolet rays can be enhanced. it can.
  • a sheet material (cover material) 155 capable of covering 150 may be provided.
  • the surface of the sheet material 155 facing the target region S may be a mirror surface 250A (for example, in the form of a film) (the sheet material 155 may also be the ultraviolet reflecting means 250).
  • 18 and 19 are still diagrams showing other examples of the present embodiment.
  • 18A and 18B are schematic views of the inside of the target area S, where FIG. 18A is a top view and FIGS. 18B and 18C are side views. Further, FIG. 19 is a schematic top view of the target area S.
  • the ultraviolet irradiation system 200 of the present embodiment may include a plurality of ultraviolet reflecting means 250 in one target area S.
  • FIG. 18 is an example of a configuration in which ultraviolet rays are efficiently reflected and the target area S can be irradiated with ultraviolet rays from multiple directions.
  • the ultraviolet reflecting means 250 is, for example, a portable type (for example, an imposition type) like the ultraviolet irradiation device 100, in which the entire surface of the surface facing the target region S is a (one) mirror surface 250A. is there.
  • the plurality of ultraviolet reflecting means 250 by arranging the plurality of ultraviolet reflecting means 250 so that their mirror surfaces 250A are not parallel to the light emitting surface of the ultraviolet light emitting means 101 (the surface of the base material B) but at a certain angle. , It is possible to reflect ultraviolet rays in different (arbitrary) directions. That is, even if an ultraviolet non-reachable region of ultraviolet rays emitted from the ultraviolet light emitting means 101 is generated, by appropriately moving the mirror surface 250A so as to reflect the ultraviolet rays to the ultraviolet non-reachable region in advance, the ultraviolet non-reachable region is reached. Can also reflect (irradiate) ultraviolet rays. Therefore, it is possible to irradiate ultraviolet rays from substantially multiple directions, and it is possible to efficiently sterilize a wide area.
  • FIG. 3B is an example of the ultraviolet reflecting means 250 provided with mirror surfaces 250A and 250B that can move relative to the ultraviolet emitting means 101.
  • the ultraviolet reflecting means 250 has a substantially rectangular frame body 250C and legs 250D that support the frame body 250C so as to stand upright, and the frame body 250C is on one surface of the frame body 250C (the surface facing the target area S).
  • Mirror surfaces 250A and 250B that can move relative to each other are provided.
  • the mirror surface 250A has a plurality of strip-shaped parts (louvers) along the width direction, and each louver is independent about the rotation axis RR provided along the width direction. It can be arbitrarily moved (swinged) and can be changed to an arbitrary angle with respect to the surface of the frame body 250C.
  • the configuration and movable mode of the mirror surface 250A the same configuration and movable mode as the blocking means 105 described with reference to FIG. 8 can be applied.
  • the figure (B) illustrates a configuration in which the mirror surface 250A is divided into strips in the horizontal direction, but the configuration may be divided into strips in the vertical direction or a configuration in which the mirror surface 250A is divided into a matrix.
  • a plate-shaped mirror surface 250B may be provided above the frame body 250C.
  • the mirror surface 250B is movable in the same manner as the movable plate 151 shown in FIG. 17, for example. In these cases, the movement (opening and closing) of the ultraviolet reflecting means 250 (mirror surfaces 250A, 250B) is performed, for example, by electrical (electronic) control or manual operation by a drive control means 109 (not shown here). Thereby, the reflection direction can be easily changed as appropriate.
  • the upper mirror surface 250B may have a curved structure.
  • the case where the mirror surface 250A divided into one frame body 250C is provided is illustrated, but one movable (plane) mirror surface 250A may be provided on one frame body 250C. ..
  • the planar mirror surface 250A is attached so as to be rotatable (swinging) around a rotation axis along at least one side of the substantially rectangular frame body 250C, for example. Thereby, the reflection direction can be easily changed as appropriate.
  • the range of the mirror surface 250A can be appropriately adjusted. It may be configured to be changeable.
  • the ultraviolet reflecting means 250 may be fixed to the wall surface of the target area S or the like, or may be a portable type.
  • the ultraviolet reflecting means 250 may be portable and may be configured to be movable relative to the ultraviolet emitting means 101 (regardless of whether the ultraviolet reflecting means 250 is portable or stationary).
  • At least the mirror surface 250A may be configured to be relatively movable with respect to the ultraviolet light emitting means 101 as shown in FIG.
  • the mirror surface 250A is not limited to the configuration of opening and closing by the louver shown in FIG. 8B, but is configured to move (open and close) in the same manner as the blocking means 105 described with reference to FIG. May be good.
  • FIG. 19 is another example of the case where a plurality of ultraviolet reflecting means 250 (ultraviolet reflecting unit 150M) are arranged in one target area S.
  • the ultraviolet reflecting means 250 is, for example, a portable type (for example, an imposition type) like the ultraviolet irradiation device 100, in which the entire surface of the surface facing the target region S is a (one) mirror surface 250A. is there. The same applies even if the ultraviolet irradiation device 100 in the figure is replaced with the ultraviolet irradiation unit 150B, the ultraviolet reflecting means 250 is replaced with the ultraviolet reflecting unit 150M, and the partitioning means 150 is replaced with the partition unit 150A.
  • the configuration of the ultraviolet reflecting means 250 (ultraviolet reflecting unit 150M, the same applies hereinafter) is the same as any of the above.
  • the ultraviolet irradiation device 100 and the ultraviolet reflecting means 250 are configured to be engaged with each other by the engaging means 161.
  • one ultraviolet irradiation device 100 is arranged along one side wall (side surface) of the target area S partitioned by the partitioning means 150 (partitioning unit 150A), and the ultraviolet reflecting means are respectively on both sides thereof.
  • the target region S can be irradiated with ultraviolet rays to be sterilized and purified.
  • FIG. 3B is an example in which the ultraviolet irradiation unit 150B and the ultraviolet reflection unit 150M are engaged with each other to partition the target area S.
  • the partition unit 150A (and / or the door unit 150C) may be included in a part thereof.
  • FIG. 3C is an example in which one ultraviolet irradiation device 100 is arranged near the center of the target area S, and two ultraviolet reflecting means 250 are engaged with each of the two ultraviolet irradiation devices 100.
  • the ultraviolet irradiation device 100 has a configuration capable of irradiating both sides of the ultraviolet rays as shown in FIGS. 9 to 11, for example.
  • the target region S can be irradiated with ultraviolet rays to be sterilized and purified.
  • the ultraviolet irradiation device 100 and the ultraviolet reflecting means 250 also function as partitions that further partition the inside of the target area S.
  • one ultraviolet irradiation device 100 is arranged along one side wall (side surface) of the target area S partitioned by the partition means 150 and one side wall (side surface) facing the side wall (side surface).
  • each side of each ultraviolet irradiation device 100 so as to be openable and closable in a double-sided manner is shown, but only one side of the ultraviolet irradiation device 100 is shown. It may be configured to engage with.
  • the ultraviolet reflecting means 250 by arranging the ultraviolet reflecting means 250 at an appropriate position where the ultraviolet rays output from the ultraviolet irradiation device 100 can be reflected, the ultraviolet rays are efficiently reflected and the target region S is irradiated with the ultraviolet rays from multiple directions. It will be possible. Further, by arranging a plurality of ultraviolet reflecting means 250, it is possible to irradiate ultraviolet rays from substantially all directions.
  • the ultraviolet reflection means 250 is not limited to the state shown in the figure, and the reflection angle of the ultraviolet rays emitted from the ultraviolet irradiation device 100 can be arbitrarily changed.
  • FIG. 20 is a top view showing another example of the ultraviolet irradiation device 100 and the ultraviolet reflecting means 250.
  • the ultraviolet reflecting means 250 may be provided integrally with the ultraviolet irradiation device 100, for example.
  • the ultraviolet irradiation device 100 (100B) of this example has a door 180 that can be opened and closed so as to cover or open the front surface of the ultraviolet light emitting means 101, and the door 180 is provided with the ultraviolet reflecting means 250 (mirror surface 250A). ..
  • the support frame 121 (base material B) supports the UV lamp LP
  • the cover means 103 is fixed to the support frame 121 so as to cover the front surface thereof.
  • the door 180 is provided so as to further cover the cover means 103. That is, the rotating shafts 167 are arranged at both ends of the support frame 121 in the width direction H, and one end of the connecting member 168 is rotatably connected around the rotating shaft 167A. Further, a rotating shaft 167B is also provided at the other end of the connecting member 168, and one end of the door 180 is rotatably connected around the rotating shaft.
  • the door 180 is configured to be rotatable around the rotation shafts 167A and 167B (so-called double door opening is possible) as shown by the solid arrow in FIG.
  • the door 180 has a two-layer structure in which the ultraviolet reflecting means 250 (or the mirror surface 250A, hereinafter the same in the figure) and the blocking means 105 are superimposed.
  • the ultraviolet reflecting means 250 is provided on the surface (inside) facing the target area S with the door 180 open, and the blocking means 105 is provided on the back side (outside) thereof. That is, the ultraviolet reflecting means 250 is provided integrally with the ultraviolet irradiating device 100, and more specifically, the blocking means 105.
  • the ultraviolet rays emitted by the ultraviolet light emitting means 101 are emitted in an arbitrary direction as shown in FIG. Can be reflected.
  • the ultraviolet reflecting means 250 provided inside the door 180 faces the ultraviolet light emitting means 101. That is, since the ultraviolet rays emitted from the ultraviolet light emitting means 101 are reflected, the amount of ultraviolet rays irradiated to the flow path 107 can be improved (doubled). Therefore, the efficiency of circulation sterilization can be significantly improved.
  • a wide range of motion of the door 180 can be secured by rotatably supporting the connecting member 168 with the rotating shaft 167A, but the connecting member 168 is fixed (non-rotatably) to the support frame (frame body) 121. You may be.
  • the door 180 is not limited to the configuration in which the door 180 is connected to the frame 121 by the (dedicated) connecting member 168.
  • the door 180 is configured separately from the frame 121, that is, is connected to the above-mentioned ultraviolet irradiation device 100 (ultraviolet irradiation unit 150B) (shown in FIGS. 1 to 19) by the engaging means 161. There may be.
  • the engagement is not limited to the engagement by the engaging means 161.
  • One or a plurality of the above-mentioned ultraviolet irradiation devices 100 may be configured by the ultraviolet irradiation device 100B shown in FIG.
  • the blocking means 105 and the ultraviolet reflecting means 250 may be provided in an overlapping manner, or both may be integrally movable relative to the ultraviolet emitting means 101. ..
  • the shape of the door 180 is not limited, and for example, it may be configured so that it can be wound and stored above or below the frame body 121, and can be opened and closed in the vertical direction in a shutter shape or a roll (curtain) shape.
  • the blocking means 105 and the ultraviolet reflecting means 250 may be individually movable relative to the ultraviolet emitting means 101. .. Further, at least one of the blocking means 105 and the ultraviolet reflecting means 250 may be configured in a plurality of divided shapes (for example, a louver) as shown in FIGS. 8 (C) and / or 18 (B). ..
  • FIG. 21 is a diagram showing another example of the ultraviolet irradiation system 200 using the ultraviolet irradiation device 100, and is a schematic view of an example in which the ultraviolet reflecting means 250 are arranged in the ultraviolet irradiation system 200 described with reference to FIG. Is.
  • FIG. 21 (A) is an example of a case where the ultraviolet irradiation system 200 includes an exhaust means 181 and an air supply means 182.
  • FIG. 3B is an example of a case where the partitioning means 150 is a double-walled air dome
  • FIG. 3C is an example of a case where the partitioning means 150 is a single-walled air dome.
  • the ultraviolet reflecting means 250 is the inner surface (target area S) of the partitioning means 150 (tent, air dome, etc.). It may be provided on at least a part of the inner wall surface facing the surface). In that case, for example, a plate-shaped or sheet-shaped mirror surface 250A may be suspended or attached (movably relative to the ultraviolet light emitting means 101). Further, at least a part of the inner surface of the partition means 150 (for example, a part of the material of the tent or the air dome) may be processed so as to have a mirror surface 250A.
  • the ultraviolet reflecting means 250 can move at least the mirror surface 250A relative to the ultraviolet emitting means 101.
  • the ultraviolet reflecting means 250 is fixedly arranged (in the partition means 150 or the like) and the ultraviolet irradiating device.
  • the configuration may be such that the 100 is portable and movable.
  • An example of the ultraviolet irradiation method (flow of sterilization / purification treatment) in the ultraviolet irradiation system 200 shown in FIG. 21 is the same as the method described with reference to FIG. 14, but according to the present embodiment, the ultraviolet light emitting means 101 The emitted ultraviolet rays can be reflected in any direction by the ultraviolet reflecting means 250. As a result, the inside of the target area S can be efficiently sterilized and cleaned.
  • the blocking / non-blocking state control by the blocking means 105 and / or the movement control of the ultraviolet reflecting means 250 (mirror surface 250A) are automatically performed by the drive control means 109 and / or a predetermined operating means by the person in charge. It is manually performed by an operation (not shown) or the like.
  • the ultraviolet reflecting means 250 capable of reflecting ultraviolet rays can be arranged in the target area S. In these cases, a plurality of ultraviolet rays are reflected so that the ultraviolet rays can be reflected on both sides (first surface Sf1 side and second surface Sf2 side) of the ultraviolet irradiation device 100 corresponding to the ultraviolet light emitting means 101. It is preferable to arrange the means 250.
  • FIG. 22 is a side view conceptually showing still another example of the ultraviolet irradiation device 100.
  • the blocking means 105 shows a configuration in which a physical member is moved relative to the ultraviolet emitting means 101 to switch between a blocking state and a non-blocking state.
  • the present invention is not limited to this, and the blocking means 105 is a physicochemical material, and may be configured to switch between a blocking state and a non-blocking state by electrically controlling the material.
  • the blocking means 105 may be a certain material, and may be configured to switch between a blocking state and a non-blocking state of ultraviolet rays by physical control and / or chemical control of the material.
  • the selection means 171 capable of selecting the transmission / non-transmission of ultraviolet rays (in a predetermined pattern) on the front surface of the ultraviolet light emitting means 101 in which the ultraviolet light source LP of the sterilization region is arranged on the base material B.
  • the selection means 171 is, for example, an electronic (electrical) shutter in which an electrode, a polarizing plate (layer), a light distribution layer, a liquid crystal, and the like are combined like a liquid crystal panel.
  • a switching means 173A in which the material of the blocking means 105 is selectively arranged (in a predetermined pattern) is arranged.
  • the ultraviolet ray blocking state and the non-blocking state may be controlled.
  • the blocking means 105 can be repeatedly generated (appeared) / extinguished (evacuated) by, for example, physical control of the material (for example, ejection or suction) or chemical control (chemical reaction). It may be a form of means.
  • the generation (appearance) of the gaseous blocking means 105 causes the ultraviolet rays to be blocked, and the extinction (evacuation) causes the non-blocking state.
  • leg portion 123 (leg portion 250D, caster 125) may be configured to be movable or foldable in order to improve the ease of storage.
  • At least one of the movable plates 151 may be provided with a mirror surface 250A on the surface facing the target region S (the movable plate 151 is ultraviolet rays). Reflective means 250).
  • the drive control means 109 detects a manned person by the motion sensor, the drive control means 109 automatically stops (turns off) the light emission of the ultraviolet light emitting means 101.
  • the motion sensor for example, a sensor capable of detecting a 240 ° region that largely covers the ultraviolet irradiation region can be used.
  • the motion sensor constantly detects whether the room is manned or unmanned, and transmits the detection result to the drive control means 109.
  • the ultraviolet irradiation device 100 controls the power supply, the lighting / extinguishing of the ultraviolet light emitting means 101 (selective lighting / extinguishing of an arbitrary UV lamp LP), the ultraviolet irradiation intensity control, and the covering means 103. It has a controller (not shown) that can manually input signals such as opening / closing control of UV rays.
  • the drive control means 109 controls the lighting / extinguishing of the power supply, the ultraviolet light emitting means 101, the ultraviolet irradiation intensity control, the cover means 103 and / or the blocking means based on the signal from the motion sensor and the controller of the ultraviolet irradiation device 100.
  • the opening / closing control of 105 is performed.
  • the ultraviolet light emitting means 101 always lights the UV lamp LP during normal operation, and the blocking means 105 blocks and does not block the ultraviolet rays to the target region S. Can be switched.
  • the drive control means 109 detects a manned person with a motion sensor or the like, the UV lamp LP is turned off (and / or the irradiation intensity of ultraviolet rays is reduced, or the blocking means 105 is turned off, giving the highest priority to safety. It is configured to be closed).
  • a timer or the like that can set the evacuation time from the time when the operation time of the UV lamp LP is set to the start of lighting to an arbitrary time.
  • an emergency stop button that instantly stops the light emission of the UV lamp LP by a simple operation of the operation means manually by the worker (for example, one push of a button).
  • the cover means 103 may be manually opened and closed, in which case it is preferable to provide an open / close detection sensor for detecting the open / close of the cover means 103.
  • the open / close detection sensor is interlocked with the motion sensor, for example, and when the open / close detection sensor detects the opening of the cover means 103, the detection signal of the motion sensor is transmitted to the drive control means 109 and the output of the ultraviolet light emitting means 101 is stopped. (Turns off).
  • the ultraviolet light emitting means 101 is provided on a substantially vertical surface as an example, but it may be provided on an inclined surface or a horizontal surface. That is, the openings serving as the air inlet IN and the air outlet OUT are not limited to above and below the vertical direction V of the ultraviolet irradiation device 100, but may be provided on the left and right.
  • an airflow control means (circulator or the like) that promotes the uptake of air in the target region S and the discharge of air after sterilization may be provided.
  • the area partitioned by the partitioning means 150 has been described as an example of the target area S, but the partitioning means 150 may not be arranged. That is, for example, in the event of a disaster or the like, the ultraviolet irradiation device 100 of the present embodiment may be installed as needed in the outdoors where the partition means 150 does not partition. In this case, the reachable range of the ultraviolet rays emitted from the ultraviolet irradiation device 100 is the target area S of the present embodiment.
  • the ultraviolet reflecting means 250 may be installed on a wall of the target area S or the like, and the mirror surface 250A may be configured to be movable relative to the ultraviolet light emitting means 101.
  • the ultraviolet irradiation device 100 may have means (conversion means, not shown) for converting the wavelength of the light output by the ultraviolet light emitting means 101.
  • the conversion means is, for example, a means for converting ultraviolet light into visible light, or a means for cutting at least all the light in the sterilization region (UVC wavelength region) and at the same time transmitting only visible light to the surface.
  • the conversion means is, for example, a means for adhering or containing a phosphor
  • the phosphor is, for example, a material having high stability over time capable of converting ultraviolet rays into visible light. It is a kind of material such as certain calcium halophosphate and rare earth phosphors.
  • the conversion means for example, a filter in which the fluorescent material is dispersed as a coating liquid and applied (coated) to the plate material is adopted so that the fluorescent material can be coated uniformly and without gaps so that it is mainly used as a coating material on the inner surface of the fluorescent lamp bulb. it can.
  • the visible light transmitted through the conversion means and the cover means 103 can be used as illumination in the target area S. Further, the conversion means may also use the blocking means 105.
  • the above-mentioned ultraviolet irradiation device 100 may be configured so that the cover means 103 is not provided (circulation sterilization is not performed) and only the blocking state and the non-blocking state can be switched by the blocking means 105.
  • the ultraviolet irradiation device 100 (ultraviolet irradiation unit 150B) constituting the ultraviolet irradiation system 200 shown in FIGS. 12, 14, 17, 19, 19 and the like is irradiated with ultraviolet rays having the door 180 shown in FIG. 20. It may be configured by the device 100B.
  • the ultraviolet light emitting means 101 (always) irradiates ultraviolet rays during normal operation, and in the case of a manned person, the blocking means 105 moves (opens and closes) the manned area. Switch between the non-blocking state and the blocking state of ultraviolet rays to.
  • the effective ultraviolet shielding area of the ultraviolet blocking surface is minimized in a very short time. While minimizing the ultraviolet non-reachable area, the entire area of the target area S can be irradiated with ultraviolet rays, and the number of bacteria in the target area S can be reduced within the permissible standard in a short time.
  • the ultraviolet irradiation region can be totally collectively irradiated to the target region S without being limited to, for example, an unmanned region, and is also effective for the sterilization treatment. It is possible to irradiate instantly with a peak output of light energy. With such a configuration, the infection source of the target area S can be efficiently treated in a short time.
  • the target region S is irradiated with ultraviolet rays having a sterilizing wavelength over the entire surface (irradiation with most UV lamp LPs exposed), and the bacteria are killed all at once in a short time (1 to 2 minutes). be able to. After the bacteria (source of infection) are killed by this sterilization treatment, a clean state can be maintained for 1 to 2 hours (without continuing the sterilization treatment).
  • the permissible number of bacteria in the target area S to be used is exceeded, the number of bacteria in the target area S can be quickly reduced within the permissible number. Further, when there is a possibility that a bacterial species that should not be mixed in the target area S to be used is mixed, the bacterial species can be sterilized quickly.
  • the air passing through the flow path 107 is sterilized by irradiating the air with ultraviolet rays, and by natural convection.
  • Clean air can be slowly raised to the vicinity of the ceiling as an updraft without power and discharged.
  • clean air spreads to the target area S as a downward flow without significantly disturbing the laminar flow of the target area S (room).
  • Even when the sterilization treatment by full-scale irradiation is not performed, the effect of suppressing the number of bacteria can be obtained.
  • the waiting time when the sterilization treatment is performed (the waiting time until the UV lamp LP becomes an effective output for the sterilization treatment) can be reduced, the bacteria in the target area S are particularly when the sterilization treatment is frequently performed. It is possible to minimize the resource input and the decrease in turnover rate for the number control work.
  • the ultraviolet irradiation system 200 of the present embodiment does not only purify only the taken-in air, but also circulates the purified air to the target area S and circulates the purified air to the outside of the target area S. Can be discharged.
  • Ultraviolet rays that can be used for sterilization are electromagnetic waves, and since the directivity is only straight in the direction of irradiation, the sterilization back surface cannot obtain a sterilization effect if there is an obstacle, but in this embodiment, portable ultraviolet rays. Since the irradiation device is used, it is possible to move to an arbitrary place (a place without obstacles) as appropriate.
  • the ultraviolet reflecting means 250 that reflects ultraviolet rays at an appropriate position, it is possible to irradiate the target region S with ultraviolet rays from substantially all directions. That is, the ultraviolet non-reachable region is reduced as much as possible, and efficient sterilization and purification treatment becomes possible.
  • the ultraviolet irradiation device 10 is a self-supporting opposition type is illustrated, but the ultraviolet irradiation device 10 is attached and fixed to the wall surface of the target area S (for example, a partitioned space such as a room). It may be configured to be.
  • the above-mentioned (portable) partitioning means 150 is not indispensable, and the target area S is a predetermined space partitioned by a wall or a partition, or a space (indoor) in a building such as a medical facility or a commercial complex. Alternatively, it may be a tent provided outdoors, a space inside a booth, or a space in a predetermined area outdoors.
  • FIG. 23 is a schematic view showing a side surface of the ultraviolet irradiation device 100 (100D) of the third embodiment when it is installed in the target area S.
  • the target area S is a room partitioned by a wall or the like, and shows a case where the ultraviolet irradiation device 100 (100D) is attached to a wall surface (partitioning means) or the like.
  • the ultraviolet irradiation device 100 (100D) of the third embodiment includes an ultraviolet light emitting means 101, a cover means 103, and a conversion means 131.
  • the cover means 103 is arranged to face the ultraviolet light emitting means 101 so as to form an air flow path 107 with the ultraviolet light emitting means 101. Further, as an example, as in the first embodiment, the cover means 103 includes a blocking means 105 that blocks at least a part of the ultraviolet rays (light having a wavelength in the UVC region) emitted by the ultraviolet emitting means 101.
  • the ultraviolet irradiation device 100D of the third embodiment has a conversion means 131 in addition to this.
  • the conversion means 131 is a means for converting the wavelength of light output by the ultraviolet light emitting means 101, and specifically, a means for converting ultraviolet light into visible light, or at least light in a sterilization region (UVC wavelength region) (UVC wavelength region).
  • UVC wavelength region UVC wavelength region
  • Light of 400 nm or less is a means for cutting all and at the same time transmitting only visible light.
  • the conversion means 131 is configured so that its valid state and invalid state can be switched.
  • the conversion means 131 is, for example, a means for adhering or containing a phosphor
  • the phosphor is, for example, a material having a high stability over time capable of converting ultraviolet rays into visible light. It is a material of the kind such as calcium halophosphate and rare earth phosphors.
  • the conversion means 131 is, for example, a filter in which the phosphor material is dispersed as a coating liquid and coated (coated) on a plate material so that the fluorescent lamp material can be coated uniformly and without gaps so that it is mainly used as a coating material on the inner surface of a fluorescent lamp bulb. Can be adopted.
  • the conversion means 131 may also serve as the blocking means 105.
  • at least light in the sterilization region (UVC wavelength region) (light having a wavelength of 400 nm or less, which is an ultraviolet wavelength region harmful to the human body). ) Can be applied to the surface of a UV cut filter that cuts all, or a filter (visible light conversion filter) containing a fluorescent substance in the UV cut filter can be adopted.
  • the covering means 103 may not include the blocking means 105.
  • the cover means 103 is configured to include the above-mentioned blocking means 105.
  • the cover means 103 is a transparent member capable of transmitting visible light, and the visible light transmitted through the conversion means 131 is also transmitted through the cover means 103 and used as illumination in the target area S. be able to.
  • the blocking means 105 and the converting means 131 are integrally configured with, for example, the covering means 103.
  • the cover means 103 is configured to be movable relative to the ultraviolet light emitting means 101, and the state can be changed between the effective state and the invalid state of the cover means 103.
  • the ultraviolet irradiation device 100 (100D) of this example is configured so that the ultraviolet blocking state and the non-blocking state can be switched, and the conversion means 131 is effective in the blocking state.
  • FIG. 3A shows a state in which the cover means 103 is in an effective state, that is, a state in which ultraviolet rays are blocked.
  • the cover means 103 is closed so as to cover the front surface of the ultraviolet light emitting means 101, and the conversion means 131 is closed with the ultraviolet rays (small) of the ultraviolet light emitting means 101. It is arranged in the light emitting direction (front) in the light emitting direction (broken line) (the front of the ultraviolet light emitting means 101 is covered with the converting means 131).
  • the ultraviolet light emitted by the ultraviolet light emitting means 101 (light having a wavelength in at least the UVC region) is converted into visible light (large broken line) by the converting means 131, and the target region S is irradiated with visible light (shown by the large broken line). .. Further, ultraviolet rays effective for the human body are blocked by the blocking means 105.
  • the conversion means 131 As an example of the conversion means 131, a visible light conversion filter coated with a material for converting ultraviolet light into visible light is adopted. Further, the blocking means 105 has a configuration included (also used) in the cover means 103, but it does not have to be used in combination.
  • the ultraviolet rays output from the ultraviolet light emitting means 101 come into contact with the converting means 131 and are transmitted, so that only visible light can be transmitted. Further, all the light in the ultraviolet wavelength region harmful to the human body is cut by the blocking means 105, and the covering means 103 can radiate only visible light. That is, the ultraviolet irradiation device 100 can function as an illumination or a shining wall, and can provide a bright work environment with a high interior quality without a sense of discomfort even indoors.
  • FIG. 3B is a diagram showing an invalid state of the cover means 103, that is, a non-blocking state of ultraviolet rays.
  • the conversion means 131 is retracted from the ultraviolet light emitting direction (front) of the ultraviolet light emitting means 101 (opening the front of the ultraviolet light emitting means 101) as shown in FIG. Then, the irradiation of the target area S with visible light is stopped.
  • the cover means 103 always covers the front of the ultraviolet light emitting means 101, and even when the irradiation of visible light is stopped due to the evacuation of the conversion means 131, the ultraviolet rays harmful to the human body are covered by the cover means 103.
  • the target is in the invalid state (retracted state) of the conversion means 131 shown in FIG. Since the region S is irradiated with harmful ultraviolet rays, for example, it is advisable to provide a motion sensor or the like to stop the light emission of the ultraviolet light emitting means 101 when a manned person is detected.
  • the ultraviolet light emitting means 101 keeps the UV lamp LP lit at all times in normal operation, and the blocking means 105 can switch between the blocking state and the non-blocking state of the ultraviolet rays to the target region S.
  • the UV lamp LP is turned off with the highest priority given to safety.
  • the opening / closing switching method of the conversion means 131 the same configuration as the opening / closing switching method of the blocking means 105 described in the first embodiment can be adopted. Further, the conversion means 131 may be always arranged in front of the ultraviolet light emitting means 101 without switching the opening and closing, and may be configured to always convert the ultraviolet light into visible light during the light emission of the ultraviolet light emitting means 101.
  • the switching of opening and closing of the conversion means 131 may be automatically controlled by, for example, a switching means (not shown), or may be manually controlled.
  • the ultraviolet irradiation device 100D sterilizes the air in the flow path composed of the cover means 103 and the ultraviolet light emitting means 101, and repeatedly takes in, sterilizes, and releases the air by natural convection. It can also be used as a flat lighting device that irradiates the room (target area S) with visible light that has become harmless to the human body while performing circulation sterilization.
  • the ultraviolet irradiation device 100D is immovably fixed to the wall surface or the like in the room is shown, but the present invention is not limited to this, and the ultraviolet light emitting means 101 is similar to the second embodiment.
  • the cover means 103 may be configured as a portable type that is integrally movable. Since the portable configuration is the same as that of the first embodiment, the description thereof will be omitted.
  • the conversion means 131 is configured to also serve as the blocking means 105, the cover means 103 is integrally fixed to the ultraviolet light emitting means 101 and always covers the cover means 103, and the conversion means 131 is the cover means 103 (ultraviolet light emitting means 101). It may be configured to be relatively movable with respect to the opening and closing.
  • FIG. 23 shows a state in which the cover means 103 and the ultraviolet light emitting means 101 are separated from each other to form the flow path 107.
  • circulation sterilization is also possible via the flow path 107 in the state of blocking ultraviolet rays shown in FIG.
  • the configuration may be such that the flow path 107 (a flow path capable of natural convection) is not formed. That is, the cover means 103 may not be provided, and the conversion means 131 and the blocking means 105 may be arranged to face the ultraviolet light emitting means 101.
  • the conversion means 131 and the blocking means 105 may be arranged so as to always face the ultraviolet light emitting means 101 (relative movement is not possible), or the conversion means 131 and the blocking means 105 may be arranged so as to face the ultraviolet light emitting means 101. It may be configured to be relatively movable with respect to.
  • FIG. 23 shows a state in which the ultraviolet irradiation device 100D is fixed to the wall surface or the like of the target area S (indoor), but the present invention is not limited to this, and the ultraviolet light emitting means 101 and the cover means 103 as in the second embodiment. And may be a portable type that can be moved integrally.
  • FIG. 24 and 25 are schematic views showing an example of the case where the ultraviolet irradiation device 100 of the present embodiment is provided on the wall surface of the room (target area S).
  • FIG. 24 (A) is a front view
  • FIG. 24 (B) is a perspective view in a blocked state
  • FIG. 25 is a perspective view in a non-blocked state.
  • the ultraviolet irradiation device 100 of this example is arranged on the entire wall surface of one room (target area S), and for example, the ultraviolet light emitting means 101, the cover means 103, and the upper louver (feathers). Plate) 111A, lower louver 111B, motion sensor 113, drive control means 119, and the like.
  • the ultraviolet light emitting means 101 is provided so as to be embedded in the wall surface, and the cover means 103 (front cover portion 103F) is arranged in front of the ultraviolet light emitting means 101 at a predetermined distance.
  • the front cover portion 103F is provided, for example, in a sliding door (shoji) type that covers the ultraviolet light emitting means 101.
  • two ultraviolet irradiation devices 100 are arranged side by side, and each ultraviolet irradiation device 100 is provided with two sliding door type cover means 103.
  • the cover means 103 front cover portion 103F) is configured to be slidable in the width direction H (left-right direction in the drawing) relative to the ultraviolet light emitting means 101.
  • the air flow path 107 may be configured by the cover means 103 and the ultraviolet light emitting means 101, and the side cover portion 103S in this example may also be used as a wall surface.
  • the cover means 103 and the conversion means 131 are integrally provided, and the conversion means 131 also serves as the blocking means 105. That is, the conversion means 131 and the blocking means 105 are configured to be integrally openable and closable as the cover means 103 is opened and closed.
  • the conversion means 131 is, for example, a plate-shaped filter, and for example, the back surface of the UV cut filter (the surface irradiated with the ultraviolet rays emitted from the ultraviolet light emitting means 101) is converted into visible light. It is a visible light conversion filter coated with a material (fluorescent paint) for this purpose.
  • the cover means (front cover portion 103F) is configured to be capable of transmitting visible light, and the ultraviolet rays output from the ultraviolet light emitting means 101 come into contact with the conversion means 131 and are transmitted to the ultraviolet wavelength region harmful to the human body. All the light having a wavelength of 400 nm or less is cut by this filter plate and at the same time converted into visible light, and is irradiated to the front (indoor) as visible light only from the covering means 103. That is, the ultraviolet irradiation device 100 can function as an illumination or a shining wall, and can provide a bright work environment with a high interior quality without a sense of discomfort even indoors.
  • the blocking means 105 and the converting means 131 may be configured separately.
  • the two sliding door type covering means 103 (and the converting means 131) are closed to cover the front of the ultraviolet emitting means 101, and the ultraviolet rays are emitted.
  • the light emitting means 101 is not exposed.
  • the irradiation of the target region S (indoor) with the ultraviolet rays is blocked while the light emission from the ultraviolet light emitting means 101 is continued.
  • one of the sliding door type cover means 103 (and the conversion means 131) is opened so as to overlap the other, and the ultraviolet light emitting means 101 is exposed. It will be in the state of.
  • the cover means 103 stacked on top of each other covers the front of a part of the ultraviolet light emitting means 101 even in the non-blocking state, but in the non-blocking state, the ultraviolet light emitting means 101 Almost the entire surface may be exposed.
  • the cover means 103 by providing storage areas for the cover means 103 on both outer sides (inside the wall surface, etc.) of the ultraviolet irradiation device 100 in the width direction H, or by making the cover means 103 foldable, substantially the entire surface of the ultraviolet light emitting means 101 can be covered. Can be exposed.
  • An air inlet IN is opened between the lower end of the front cover portion 103F and the floor surface, and the lower louver 111B is arranged in front of the air inlet IN.
  • an air outlet OUT is opened between the upper end portion of the front cover portion 103F and the ceiling, and the upper louver 111A is arranged in front of the air outlet OUT.
  • the upper louver 111A and the lower louver 111B can be configured so that the angle of each louver (wing) can be changed (adjusted).
  • the upper louver 111A and the lower louver 111B may not be provided, and only the air inlet IN and the air outlet OUT may be provided.
  • the motion sensor 113 constantly detects whether the room is manned or unmanned, and transmits the detection result to the drive control means 109.
  • the ultraviolet irradiation device 100 controls the power supply, the lighting / extinguishing of the ultraviolet light emitting means 101 (selective lighting / extinguishing of an arbitrary UV lamp LP), the ultraviolet irradiation intensity control, and the covering means 103. It has a controller (not shown) that can manually input signals such as opening / closing control of UV rays.
  • the drive control means 109 controls the power supply, the lighting / extinguishing of the ultraviolet light emitting means 101, the ultraviolet irradiation intensity control, the covering means 103 and / or cutoff based on the signals from the motion sensor 113 and the controller of the ultraviolet irradiation device 100.
  • the opening / closing control of the means 105 is performed.
  • the ultraviolet light emitting means 101 keeps the UV lamp LP lit at all times in normal operation, and the blocking means 105 can switch between the blocking state and the non-blocking state of the ultraviolet rays to the target region S.
  • the drive control means 109 detects a manned person by the motion sensor 113 or the like, the UV lamp LP is turned off (and / or the irradiation intensity of ultraviolet rays is reduced, or the blocking means 105 is given the highest priority on safety. Is closed).
  • the ultraviolet irradiation device 100 continues to emit light from the ultraviolet emitting means 101, but is harmful to the human body by the covering means 103 (blocking means 105). Irradiation of the target region S of ultraviolet rays is blocked.
  • the indoor air is taken into the flow path 107 from the lower louver 111B and irradiated with light by the ultraviolet light emitting means 101 to sterilize the air.
  • the air in the flow path 107 is heated by the heat of the ultraviolet light emitting means 101 to generate natural convection, which is returned to the room as sterilized air from the upper louver 111A, and this is repeated (circulation sterilization). ..
  • the conversion means 131 provided on the cover means 103 cuts at least a part of the ultraviolet wavelength (sterilization wavelength) output from the ultraviolet light emitting means 101 and converts it into visible light.
  • the entire surface of the cover means 103 when viewed from the outside (indoor) of the ultraviolet irradiation device 100, the entire surface of the cover means 103 (front cover portion 103F) can be used as illumination that emits visible light.
  • the ultraviolet light in the sterilization wavelength region from the ultraviolet light emitting means 101 is in a state of peak output effective for sterilization by opening the cover means 103 (conversion means 131).
  • the front (indoor) is instantly and widely irradiated.
  • the light from the UV lamp LP which has a high bactericidal effect, can be instantly and directly irradiated directly to the place where the adherent bacteria / airborne bacteria are present in the room to efficiently sterilize and purify.
  • the drive control means 109 when the motion sensor 113 detects a manned person in a non-blocking state, the drive control means 109 emits light from the ultraviolet light emitting means 101 or operates the ultraviolet irradiation device 100. To stop.
  • the drive control means 109 shifts to the blocking state in which the cover means 103 covers the ultraviolet light emitting means 101. As a result, it is possible to avoid irradiation with ultraviolet rays harmful to the human body.
  • the cover means 103 may be manually opened and closed, in which case it is preferable to provide an open / close detection sensor for detecting the open / close of the cover means 103.
  • the open / close detection sensor is interlocked with, for example, the motion sensor 113, and when the open / close detection sensor detects the opening of the cover means 103, the detection signal of the motion sensor 113 is transmitted to the drive control means 109, and the output of the ultraviolet light emitting means 101 is output. It is good to stop (turn off).
  • the cover means 103 may be fixed in front of the ultraviolet light emitting means 101 so as not to be movable, the conversion means 131 may be configured as a sliding door type, and the cover means 103 and the ultraviolet light emitting means 101 may be slidably movable. In this case, since the flow path 107 is formed in both the blocked state and the non-blocked state, circulation sterilization can be performed at all times.
  • cover means 103 front cover portion 103F or the conversion means 131 may be configured to slide up and down or to switch between opening and closing as in the blocking means 105 of the first embodiment.
  • the power is stopped when the operation is performed for an arbitrarily set time, the arbitrary UV lamp LP is selectively turned on / off, or when the operation becomes unmanned after the operation for a predetermined time (after sterilization treatment). It is possible to automate the operation, and it can be used for sterilizing the indoor space with ultraviolet rays and for lighting at the required place and at the required time.
  • a filter having a design (picture or pattern) rich in design may be laminated on the surface of the conversion means (visible light conversion filter) 131. This makes it possible to provide a lighting device that provides healing and leisure while performing space sterilization in medical and nursing facilities, commercial facilities, and the like.
  • FIG. 26 is a schematic view showing another example of the case where the ultraviolet irradiation device 100D of the present embodiment is configured to be self-supporting and portable.
  • FIG. 26 (A) is a perspective view in a blocked state
  • FIGS. (B) and FIG. 26 (C) are perspective views in a non-blocked state.
  • the ultraviolet irradiation device 10 is an impulsive type (self-supporting type) similar to the ultraviolet irradiation device 10 described with reference to FIG. 9, but for example, the cover means 103 is configured to include the blocking means 105, and the cover means 103 ( And the blocking means 105) is configured to be movable (open / close) relative to the ultraviolet emitting means 101. Further, the conversion means 131 may be provided in this configuration. Further, the conversion means 131 may also serve as the blocking means 105.
  • the ultraviolet irradiation device 100 is subjected to circulation sterilization that sterilizes the air in the flow path 107 as in the first embodiment.
  • the cover means 103 front cover portion 103F
  • the conversion means 131 the light having the ultraviolet wavelength output from the ultraviolet light emitting means 101 is converted into visible light.
  • the entire surface of the cover means 103 front cover portion 103F
  • the entire surface of the cover means 103 can be used as illumination that emits visible light.
  • the cover means 103 slides to the left and right in the width direction H, and the ultraviolet light emitting means 101 is exposed.
  • the ultraviolet light emitting means 101 irradiates the front (indoor) with ultraviolet rays in the sterilization wavelength region.
  • the cover means 103 may be fixed to the ultraviolet light emitting means 101 to cover the cover means 103 in the non-blocking state. Further, the blocking means 105 (converting means 131) may be configured to slide left and right (or up and down) relative to the ultraviolet light emitting means 101 and the cover means 103.
  • the method of switching between the blocked state and the non-blocked state is not limited to the one shown in the drawing, and various aspects described above can be adopted.
  • a motion sensor 113 is provided to detect manned and unmanned, and when manned is detected, the drive control means 109 stops the light emission of the ultraviolet light emitting means 101 ( It should be turned off). Alternatively, when the motion sensor 113 detects a manned person in the non-blocking state, the drive control means 109 may shift to the blocking state in which the cover means 103 covers the ultraviolet light emitting means 101.
  • the cover means 103 may be manually opened and closed, in which case it is preferable to provide an open / close detection sensor for detecting the open / close of the cover means 103. That is, when the open / close detection sensor detects the opening of the cover means 103, the signal is transmitted to the drive control means 109, and the output of the ultraviolet light emitting means 101 may be stopped (turned off).
  • FIG. 27 (A) is a side view showing an outline of the ultraviolet irradiation system 200 of the fourth embodiment
  • FIG. 27 (B) is a side view showing an outline of the ultraviolet irradiation device 100 (100E).
  • the ultraviolet irradiation device 100 is, for example, an imposition type similar to that of the first embodiment, but here, as an example, a configuration without a cover means 103 and a blocking means 105 is shown. That is, the ultraviolet irradiation device 100 in this case can switch between irradiation of ultraviolet rays and non-irradiation (non-irradiation by extinguishing the ultraviolet light emitting means 101), and particularly when the target area S is unmanned, it is directly directed to the target area S. It is a UV direct irradiation type device that irradiates ultraviolet rays. The timing and irradiation time of ultraviolet irradiation and non-irradiation are controlled by, for example, a drive control means 109 or a motion sensor (not shown).
  • the ultraviolet irradiation system 200 of this example includes a bug filter 300 that is separate from the UV direct irradiation type ultraviolet irradiation device 100.
  • the bug filter 300 is provided, for example, near the ceiling of the target area (inside the room) S, and is provided at one end (outlet end) of a flow path (duct) 130 through which air can flow in and out.
  • a fan circulator
  • the bug filter removes at least physical particles contained in the air flowing into the duct 130 and discharges them to the target region S.
  • the physical particles are, for example, suspended particles, dead bacteria and pyrogens adsorbed on the suspended particles, and other dust and dirt, and the bug filter 300 of the present embodiment captures and removes these.
  • the bug filter 300 it is assumed that it has a performance higher than that of a medium-performance air filter capable of capturing about 95% of particles larger than 1 ⁇ m.
  • the target area S is sterilized by ultraviolet light from the ultraviolet irradiation device 100, especially when there is no person. Further, the air in the target area S mainly circulates in the target area S, and the physical bug is removed by the bug filter 300. Thereby, for example, it can be realized in a simpler and lower cost than the system including the exhaust means 181 (and the air supply (intake) means 182) described with reference to FIG. For example, it is suitable when it is desired to temporarily and urgently clean the target area S (for example, a rescue tent) without a sterilization (purification) system. Further, since the air circulates in the target area S, the risk of contaminated air leaking to the outside can be minimized.
  • the ultraviolet irradiation device 100 may have a cover means 103 that is arranged to face the ultraviolet light emitting means 101 and forms a flow path 107 with the ultraviolet light emitting means 101.
  • the cover means 103 may not have the blocking means 105, and may be configured to allow circulation sterilization in the flow path 107 of the ultraviolet irradiation device 100 in addition to the direct irradiation of ultraviolet rays.
  • FIG. 3B is a side view showing another example of the ultraviolet irradiation device 100 (100E).
  • the ultraviolet irradiation device 100E is, for example, an imposition type, and may be integrally provided with a bug filter 300.
  • the ultraviolet irradiation device 100 includes a cover means 103 that forms a flow path 107 with the ultraviolet light emitting means 101, and the bag filter 300 is attached to the outlet of the flow path 107, that is, at the upper part of the ultraviolet irradiation device 100, for example. Be done.
  • the bag filter 300 can be accommodated on, for example, the back surface (the back surface of the ultraviolet light emitting means 101) as shown by the broken line, and when the ultraviolet irradiation device 100E is operating. , The sterilized air passing through the flow path 107 is sucked in, the physical bug is removed, and the clean air is discharged to the target region S.
  • the ultraviolet irradiation device 100E is, for example, a UV direct irradiation type device that has a covering means 103 but no blocking means 105, and particularly irradiates the target area S with ultraviolet rays directly when the target area S is unmanned. is there. It is not necessary to provide the cover means 103.
  • a fan (circulator or the like) 302 that further promotes the intake or discharge of air into the flow path 107.
  • the ultraviolet irradiation device 100 (100E) shown in FIG. 27 does not include the blocking means 105, a state switching means (not shown) capable of changing the emission state of the ultraviolet light emitting means 101 may be provided.
  • the state switching means is, for example, a direction changing means capable of changing the irradiation direction and irradiation amount of ultraviolet rays in front of the ultraviolet light emitting means 101.
  • the direction changing means is, for example, a louver or an opening / closing window.
  • the state switching means may have a configuration capable of blocking at least a part of ultraviolet rays, and in that sense, the blocking means 105 is also included in the state switching means.
  • the ultraviolet irradiation device 100 is not limited to the stationary type (self-supporting type), but may be a tower type or a self-propelled type.
  • FIG. 28 is a schematic view of the ultraviolet irradiation system 200 (200F).
  • FIG. (A) is an overall schematic view of the ultraviolet irradiation system 200 (200F)
  • FIG. (B) is an external view showing an example of the configuration of the first ultraviolet irradiation device 100F
  • FIG. FIG. (D) is an external view showing an example of the configuration of the second ultraviolet irradiation device 100G
  • FIG. (E) is an external view showing a modified example of the second ultraviolet irradiation device 100G.
  • the ultraviolet irradiation system 200 includes a first ultraviolet irradiation device 100F capable of outputting ultraviolet rays including a predetermined main wavelength with respect to the target region S, and air in the target region S. It has a flow path 107G through which the ultraviolet rays pass, and a second ultraviolet irradiation device 100G provided separately from the first ultraviolet irradiation device 100F.
  • the first ultraviolet irradiation device 100F has a first ultraviolet light emitting means 101F.
  • the first ultraviolet light emitting means 101F is, for example, a straight tube type low-pressure mercury lamp LP similar to the first embodiment, and is attached to the base material B (support portion) so as to be in an upright state in the longitudinal direction.
  • the base material B has, for example, a substantially semi-cylindrical shape that covers from the back surface portion to the side surface portion of the first ultraviolet light emitting means 101F, and the leg portion 123 is attached to the base material B. That is, the first ultraviolet irradiation device 100F is configured to be self-supporting and movable.
  • the first ultraviolet irradiation device 100F has a state switching means 225 that can change the emission state of ultraviolet rays by covering at least a part of the first ultraviolet light emitting means 101F.
  • the state switching means 225 is a movable body that can move relative to the first ultraviolet light emitting means 101F. Specifically, for example, a door member that can be opened and closed, a shade (louver) that can adjust the angle, and the like. is there.
  • the state switching means (movable body) 225 can adjust the emission direction and emission angle (angle of the emission region) of ultraviolet rays by moving (opening and closing) with respect to the first ultraviolet light emitting means 101F.
  • the state switching means 225 By closing the state switching means 225, for example, the first ultraviolet light emitting means 101F, the side surface portion and the front surface portion thereof are covered with, for example, a substantially semi-cylindrical shape. Further, by opening (opening) the state switching means 225, the side surface portion and the front surface portion of the first ultraviolet light emitting means 101F are partially exposed according to the degree (opening angle). In the portion covered with the state switching means 225, the emission direction and the emission amount of ultraviolet rays are regulated, and ultraviolet rays are emitted from the opening (open) portion.
  • the state switching means 225 is not limited to the illustrated example as long as the state of emitting ultraviolet rays can be changed.
  • the first ultraviolet irradiation device 100F of the present embodiment operates, for example, when the target area S is unmanned, and after the power is turned on, the first ultraviolet light emitting means 101F constantly emits light, and the target area S.
  • Ultraviolet rays can be directly irradiated to S.
  • the irradiation direction and irradiation amount of ultraviolet rays can be controlled by the state switching means 225. That is, the state switching means 225 can be said to be the blocking means 105 in the direction in which the emission of ultraviolet rays is restricted.
  • the state switching means 225 is configured so that the irradiation direction and / or irradiation angle of ultraviolet rays can be arbitrarily set and adjusted.
  • the state switching means 225 is provided with an ultraviolet reflecting means 250 on its inner surface (the inner surface is a mirror surface 250A).
  • the first ultraviolet irradiation device 100F is configured to independently irradiate ultraviolet rays only in a specific direction of the target area S, and the ultraviolet irradiation system 200F has at least one first ultraviolet irradiation device 100F in a certain target area S. Deploy. More preferably, the ultraviolet irradiation system 200F arranges a plurality of first ultraviolet irradiation devices 100F in a certain target area S in a dispersed manner (separated from each other).
  • each ultraviolet ray is not blocked by obstacles, and the target area S from multiple directions, particularly the area where the ultraviolet ray is to be irradiated (for example, the position of the patient's bed). Etc.), and the position of the first ultraviolet irradiation device 100F and the mode of each state switching means 225 are appropriately adjusted.
  • first ultraviolet irradiation devices 100F are arranged at four corners of a substantially rectangular target area S (for example, indoors).
  • the first ultraviolet irradiation device 100F has a slim and lightweight configuration in which, for example, one straight tube type low-pressure mercury lamp LP is supported in an upright state (vertical type). Therefore, the arrangement can be easily changed, and even when a plurality of units are distributed and arranged, they can be arranged in a small space without getting in the way. Further, it is preferable to provide a handle 129 or the like because the handleability is improved. It is even better to provide a fall prevention means.
  • the first ultraviolet light emitting means 101F is composed of one low-pressure mercury lamp LP is illustrated.
  • a plurality of low-pressure mercury lamp LPs are arranged so that their longitudinal directions are aligned on a straight line. You may.
  • UV-LED which is a point light source
  • a plurality of (point light sources) may be arranged linearly.
  • the first ultraviolet irradiation device 100F has a communication means 126 and various sensors.
  • the various sensors include a motion sensor 128 that detects that the target area S is manned, and the state of another first ultraviolet irradiation device 100F arranged in the same target area S (for example, the emission direction of ultraviolet rays). At least the state detection sensor 127 to detect is included.
  • the first ultraviolet irradiation device 100F is also provided with operating means (touch panel, operation buttons, etc.), a timer, and the like. Further, a fan or the like for circulating air may be provided. Further, the first ultraviolet irradiation device 100 is not limited to the stationary type as shown in the figure, and may be a self-propelled type.
  • the ultraviolet irradiation system 200F further has a second ultraviolet irradiation device 100G (Fig. (A)).
  • the second ultraviolet irradiation device 100G is provided separately from the flow path 137 through which the air in the target region S passes and the first ultraviolet light emitting means 101F. It has a second ultraviolet light emitting means 101G capable of outputting ultraviolet rays including a predetermined main wavelength to air passing through the flow path 137.
  • the second ultraviolet light emitting means 101G is, for example, a straight tube type low pressure mercury lamp LP similar to the first embodiment. That is, the second ultraviolet irradiation device 100G is separate from the first ultraviolet irradiation device 100F, and in this example, it is installed near the ceiling of the target area S.
  • the second ultraviolet irradiation device 100G has a tubular flow path 137 containing (for example, one) second ultraviolet light emitting means 101G.
  • the second ultraviolet light emitting means 101G constantly irradiates ultraviolet rays when the second ultraviolet irradiation device 100G is in operation (when the power is turned on).
  • the flow path 137 is made of, for example, a material that blocks the ultraviolet rays from leaking to the outside at all times.
  • a fan 302 is provided at one end (inflow port IN) of the flow path 137, and a bug filter 300 is provided at the other end (outlet outlet). Air in the target region S flows in the flow path 137 from the inflow port IN to the outflow port OUT in the direction of the arrow in the figure (D). Then, in the middle of the distribution, the bacteria contained in the air are inactivated by irradiating the ultraviolet rays from the second ultraviolet light emitting means 101G. In addition, the bug filter 300 captures physical particles and expels clean air.
  • the second ultraviolet irradiation device 100G functions in the same manner as the flow path 107 of the first embodiment, and performs circulation sterilization that sucks contaminated air, purifies it, and discharges it.
  • the bug filter 300 is the same as that described in the fourth embodiment, and has a performance higher than that of the medium performance air filter.
  • circulation sterilization is performed in which the airborne bacteria are inactivated by ultraviolet rays while passing air through the flow path 137. Therefore, in order to efficiently perform circulation sterilization, it is desirable that the filter has a mesh size that does not hinder the flow of air (low pressure loss), and is appropriately selected in balance with cleanliness.
  • the filter material may be mixed with, adhered to or filled with a material having a catalytic effect of decomposition of organic substances by light (for example, copper, silver, titanium oxide, etc.).
  • one end (inlet end) of the flow path 137 is connected to, for example, one end of the duct 130.
  • the second ultraviolet irradiation device 100G is provided near the ceiling in the center of the target area S, for example, because clean air is supplied to the entire target area S.
  • the air pollution degree is highest around the patient (for example, near the bed), and the polluted air is not diffused so much. Therefore, for example, an intake port 132 with a fan is provided near the patient (for example, near the head of the bed), and the intake port 132 and the second ultraviolet irradiation device 100G are connected by a duct 130.
  • the contaminated air in the vicinity of the patient is sucked in through the intake port 132 and the duct 130, and is cleaned and discharged in the second ultraviolet irradiation device 100G near the ceiling.
  • normal air can be evenly diffused in the target region S, and circulation sterilization can be performed efficiently.
  • the ultraviolet irradiation system 200F of the present embodiment has the first ultraviolet irradiation device 100F that directly irradiates the target region S with ultraviolet rays, and the (contaminated) air passing through the flow path 137. It is used in combination with a second ultraviolet irradiation device 100G that irradiates and purifies ultraviolet rays.
  • a device that directly irradiates the target area S with ultraviolet rays here, the first ultraviolet irradiation device 100F
  • a direct irradiation type direct sterilization type ultraviolet irradiation device
  • An indirect irradiation type (joint sterilization type) ultraviolet irradiation device may be used to refer to a device that takes in (the) air, irradiates it with ultraviolet rays, purifies it, and discharges it, that is, circulates sterilization (here, the second ultraviolet irradiation device 100G). is there.
  • the first ultraviolet irradiation device (direct irradiation type ultraviolet irradiation device) 100F operates in principle when the target area S is unmanned, and efficiently sterilizes the target area S. For example, if the target area S is a room in a ward, it is possible to directly irradiate ultraviolet rays after discharge, or if it is an operating room, before and after surgery (for example, 30 minutes in time). Efficient sterilization in a short time.
  • the first ultraviolet irradiation device 100F stops its operation when the presence of a person is detected by the motion sensor 128. Further, each first ultraviolet irradiation device 100F has at least an ultraviolet light receiving sensor as a state detection sensor 127.
  • the light receiving sensor 127 detects the state of ultraviolet rays reaching itself from the first ultraviolet irradiation device 100F other than itself, and feeds it back to the drive control means 109 via the communication means 126 or the like.
  • the first ultraviolet irradiation device 100F of this example does not have the flow path 107
  • the flow path 107 may be formed by the cover means 103 as in the first embodiment (also used as an indirect irradiation type ultraviolet irradiation device). May be).
  • the first ultraviolet irradiation device 100F of the present embodiment can be easily moved to an arbitrary position by having a lightweight, slim, and simple configuration. Therefore, the first ultraviolet irradiation device 100F may not be provided with the covering means 103 or the like, and may have the minimum necessary configuration as a direct irradiation type ultraviolet irradiation device as shown in FIG.
  • One first ultraviolet irradiation device 100F has, for example, a weight and size that can be easily carried even by a weak adult (for example, an old man or a woman) and a handle 129 that facilitates handling. desirable.
  • the second ultraviolet irradiation device (indirect irradiation type ultraviolet irradiation device) 100G is not limited to the unmanned / manned target area S, and always operates independently of the first ultraviolet irradiation device 100F to purify the air in the target area S. Perform circulation sterilization. That is, at the same time as the operation of the first ultraviolet irradiation device 100F is started, the second ultraviolet irradiation device 100G is also started to operate, the cumulative illuminance from the first ultraviolet irradiation device 100F reaches a predetermined value, and the first ultraviolet irradiation device 100F operates. Even after the stop, the operation of the second ultraviolet irradiation device 100G is continued.
  • the patient can be affected by the second ultraviolet irradiation device 100G. It is possible to efficiently remove the bacteria contained in the exhaled breath, the bacteria adsorbed on the mist generated by the surgeon, and the airborne bacteria attached to the workers who enter and leave the room.
  • the flow path 137 of the second ultraviolet irradiation device 100G may be configured so that the surface facing the target area S can be opened, and in the case of an unmanned person, the target area S may be directly irradiated with ultraviolet rays.
  • the bug filter 300 of the second ultraviolet irradiation device 100G can be accommodated between the second ultraviolet irradiation device 100G and the ceiling (especially when not in use), as shown by a broken line in FIG. 27 (B). May be good. Further, although it is not necessary to provide the bug filter 300, it is preferable to provide the bug filter 300 because the sterilizing ability is enhanced.
  • the second ultraviolet irradiation device 100G may be configured so that its installation position can be moved by, for example, expansion and contraction or deformation of the duct 130. Further, a plurality of second ultraviolet irradiation devices 100G may be provided.
  • the positions of the second ultraviolet irradiation device 100G and / or the intake port 132 may be changed by expanding / contracting or deforming the duct 130. By doing so, it is possible to create a desirable circulation sterilization air flow in the target region S by expanding and contracting and deforming the duct 130.
  • the second ultraviolet irradiation device 100G is configured to be self-supporting (portable) by providing a leg portion 223 like the first ultraviolet irradiation device 100F, and the intake port 132 and the like. Contaminated air may be sucked in directly from the inlet IN and discharged from the outlet OUT through the bag filter 300 without passing through the duct 130. By doing so, it can be placed and moved on a floor surface or the like near the patient. Further, the second ultraviolet irradiation device 100G may be self-propelled.
  • a second ultraviolet irradiation device 100G may be provided instead of (or in addition to) the flow path (duct) 130 (and the bug filter 300) shown in FIG. 27 (A) of the fourth embodiment.
  • FIG. (A) is a schematic block diagram showing a part of the system configuration of the ultraviolet irradiation system 200F (mainly the irradiation state estimation means 202) extracted
  • FIG. 3B is a schematic top view of the ultraviolet irradiation system 200F.
  • FIG. 3B is an example of displaying the estimation result of the irradiation state estimation means 202.
  • the ultraviolet irradiation system 200F has an information processing device 201 that controls the system in an integrated manner.
  • the information processing device 201 is, for example, a personal computer (PC) or a mobile terminal (smartphone, tablet terminal, etc.).
  • the drive control means 109 controls the drive of the first ultraviolet irradiation device 100F and the second ultraviolet irradiation device 100G via the communication means 126 or the like. Further, the detection results of the motion sensor 128 and the state detection sensor 127 of the first ultraviolet irradiation device 100F are fed back to various controls by the drive control means 109.
  • the drive control means 109 may have a part or all of the functions of the drive control means 109 built in each ultraviolet irradiation device 100F, which illustrates the case where the drive control means 109 is included in the information processing device 201.
  • the ultraviolet irradiation system 200F includes an irradiation state estimation means 202 that estimates the degree of cleanliness in the target area S based on the irradiation state of ultraviolet rays output from the first ultraviolet irradiation device 100F.
  • the irradiation state estimation means 202 cooperates with the state detection sensor (light receiving sensor) 127 and the drive control means 109 to objectively recognize (visually recognize) the irradiation state of invisible ultraviolet light, for example, ultraviolet rays. This is a function built into the information processing device 201 of the irradiation system 200F in terms of hardware and / or software.
  • a plurality of (for example, at least three) first ultraviolet light emitting devices (direct irradiation type ultraviolet irradiation devices) 100F are arranged in one target area S.
  • Each of the plurality of first ultraviolet light emitting devices 100F is a state detection sensor capable of detecting ultraviolet rays (for example, detecting illuminance) emitted by at least one other (corresponding) other first ultraviolet light emitting device 100F. It has (light receiving sensor) 127 and communication means 126 capable of transmitting and receiving the detection result of the light receiving sensor 127. It also has an illuminometer (not shown).
  • the detection result of the light receiving sensor 127 is transmitted to the drive control means 109 (irradiation state estimation means 202) via the communication means 126 means. From the detection result of each first ultraviolet light emitting device 100F by the irradiation state estimation means 202, the drive control means 109 has the highest degree of contamination in the target area S and is required to have a reliable and high level of sterilization (area of interest). The illuminance of ultraviolet rays with respect to S0) is estimated, visualized (visualized), and output to the output means 203 of the information processing apparatus 201.
  • the output means 203 is a display means as an example.
  • a certain first ultraviolet irradiation device 100F and another first ultraviolet irradiation device 100F are arranged on the diagonal line of the target region S, and ultraviolet rays are emitted in their own directions.
  • the other first ultraviolet irradiation device 100F is not irradiated or is not irradiated. It is suspected that the irradiation direction is extremely inappropriate, or that an ultraviolet non-reachable region is generated due to the presence of obstacles or the like.
  • the irradiation state estimation means 202 appropriately grasps (monitors) the ultraviolet irradiation state of each first ultraviolet irradiation device 100F from the detection result of the light receiving sensor 127, and estimates the current irradiation state.
  • the irradiation state estimation means 202 also visualizes the estimation result as shown in FIG. 3C, for example, and outputs the estimation result to the display means 203.
  • an output (notification) by voice or the like may be used (instead of).
  • the irradiation state estimation means 202 records the estimation result in the predetermined storage means 204.
  • FIGS. (C) and (D) are examples of the current irradiation state estimated by the irradiation state estimation means 202 and displayed on the display means 203.
  • it is an estimation example of the irradiation state when four first ultraviolet irradiation devices 100F are arranged at the four corners of the rectangular target area S.
  • each of the first ultraviolet irradiation devices 100F is a first ultraviolet light emitting means. It is assumed that the irradiation is set at an irradiation angle of 90 degrees around 101F.
  • the hatching shows the area irradiated with ultraviolet rays, which is an effective area.
  • the overlapping portion of the hatching (here, the central region) is the region where the illuminance is estimated to be the highest due to the overlapping of ultraviolet rays.
  • the irradiation state estimating means 202 displays, for example, a region estimated to have the highest illuminance due to the overlap of ultraviolet rays (a region where hatching overlaps) by changing the display mode thereof from the effective area.
  • the effective area and the ultraviolet non-reachable area such as behind the equipment EQ as different display modes.
  • the effective area is indicated by a broken line
  • the ultraviolet non-reachable area is indicated by a cross as a "check area required”.
  • the irradiation state estimating means 202 can detect the illuminance (intensity) of the ultraviolet rays emitted from three or more points (at least three units), the degree of attenuation due to the distance of the ultraviolet rays and the spread of irradiation (state switching means).
  • the illuminance (irradiation intensity) can be estimated from the degree of attenuation (spreading due to the opening angle of 225).
  • the irradiation state estimation means 202 calculates the irradiation conditions (irradiation angle, irradiation direction (irradiation position), illuminance, etc.) of the first ultraviolet irradiation device 100F, respectively, so that appropriate irradiation is performed according to the estimation result.
  • the drive control means 109 controls to automatically adjust the ultraviolet irradiation state of each first ultraviolet irradiation device 100F based on the calculated irradiation conditions.
  • the first ultraviolet irradiation device 100F that strongly directly irradiates the target region S with ultraviolet rays is made smaller and lighter, and a plurality of first ultraviolet irradiation devices 100F can be dispersed and arranged at arbitrary positions.
  • the degree of freedom can be increased.
  • the plurality of first ultraviolet irradiation devices 100F can mutually detect the irradiation state of ultraviolet rays and feed back to the drive control means 109 to control the irradiation state, the region not irradiated with ultraviolet rays can be reduced as much as possible. , It becomes possible to irradiate the region (region of interest S0) with the highest pollution state in the target region S with ultraviolet rays from substantially all directions.
  • the drive control means 109 has a configuration in which the irradiation conditions of ultraviolet rays by the plurality of first ultraviolet irradiation devices 100F can be individually (independently) controlled. It is good to set it to.
  • the irradiation state since the irradiation state can be visualized, it becomes easy to grasp the degree of irradiation in the target area S (particularly the area of interest S0).
  • the illuminance at least in the region of interest S0 satisfies the reference value (value required for sterilization management) capable of effective sterilization (and (Estimated) etc. can be easily grasped. This makes it possible to increase the reliability of the ultraviolet irradiation system 200F.
  • the position itself of the first ultraviolet irradiation device 100F becomes unfavorable due to the occurrence of an unintended obstacle, and the improvement is insufficient by the automatic control of the irradiation state by the drive control means 109. It is also possible to manually move the first ultraviolet irradiation device 100F to an appropriate position based on the irradiation state (the operation of the first ultraviolet irradiation device 100F is stopped).
  • FIG. 30 is a schematic diagram illustrating another example of the fifth embodiment.
  • the surrounding means 260 may be arranged in the target area S.
  • the surrounding means 260 is, for example, a booth, a tent, a capsule, or the like, and is configured to be able to three-dimensionally cover a predetermined space except for the intake unit 260I and the exhaust unit 260O.
  • the intake unit 260I is provided at the lower end of the surrounding means 260.
  • the intake port 132 connected to the second ultraviolet irradiation device 100G and a part of the duct 130 connected to the intake port 132 are inside the surrounding means 260, and the rest of the duct 130 and the second ultraviolet irradiation device 100G are outside the surrounding means 260. It is in. That is, in this example, the intake port 132, the duct 130, and the second ultraviolet irradiation device 100G serve as an exhaust unit 260O that discharges the contaminated air in the surrounding means 260 to the outside of the surrounding means 260.
  • the inside of the surrounding means 260 can be controlled to a negative pressure or a positive pressure.
  • the siege means 260 may be composed of a material that blocks ultraviolet rays radiated from the first ultraviolet irradiation device 100F toward the siege means 260 so as not to pass through the inside of the siege means 260.
  • the patient needs to be managed under negative or positive pressure, it is housed inside the siege means 260.
  • the air in the surrounding means 260 is taken in from the intake unit 260I, sterilized and purified through the intake port 132, the duct 130, and the second ultraviolet irradiation device 100G, and discharged to the outside.
  • the area outside the siege means 260 which is the flow line of the medical staff, also needs to be sterilized, but in general, the unmanned time is longer than the manned time. That is, the patient is housed inside the siege means 260 by forming the siege means 260 with an ultraviolet blocking material or by superimposing the siege means 260 on the blocking means 105 of the above-described embodiment (for example, a blocking means that constantly blocks ultraviolet rays).
  • the outside of the siege means 260 which is a movement line during unmanned hours, can be efficiently sterilized by direct irradiation of ultraviolet rays from the first ultraviolet irradiation device 100F.
  • the surrounding means 260 may be provided with a blocking means 105 capable of switching between a blocking state and a non-blocking state of ultraviolet rays (overlapping).
  • a blocking means 105 capable of switching between a blocking state and a non-blocking state of ultraviolet rays (overlapping).
  • the ultraviolet rays are blocked, and when the patient is replaced, the ultraviolet rays are not blocked.
  • the ultraviolet rays directly irradiated from the first ultraviolet irradiation device 100F can be transmitted to the inside of the surrounding means 260, and the inside of the surrounding means 260 can also be sterilized more efficiently.
  • the first ultraviolet irradiation device 100F may be moved inside the siege means 260 to sterilize it.
  • Negative pressure or positive pressure of the target area S may be controlled without providing the siege means 260. That is, when the target area S is indoors or the like, the intake unit 260I is provided in a part of the target area S. The intake port 132 and a part of the duct 130 connected to the intake port 132 are arranged in the target area S, and the rest of the duct 130 and the second ultraviolet irradiation device 100G are arranged outside the target area S. By controlling the inflow amount of air from the intake unit 260I and the exhaust amount from the second ultraviolet irradiation device 100G serving as the exhaust unit 260O, the entire target region S can be controlled to negative pressure or positive pressure.
  • the direct irradiation type ultraviolet device when the amount of air taken in is increased in the ultraviolet irradiation device device in which the direct irradiation type ultraviolet irradiation device and the indirect irradiation type ultraviolet irradiation device are integrated, for example, as described in the first embodiment, the direct irradiation type ultraviolet device The size of the product is also simply increased.
  • the direction of direct irradiation is limited to substantially one direction (direction perpendicular to the surface of the opposition). That is, in order to eliminate the region not irradiated with ultraviolet rays as much as possible, irradiation from multiple directions is desirable, and the efficiency is deteriorated as direct irradiation.
  • the direct irradiation type ultraviolet irradiation device and the indirect irradiation type ultraviolet irradiation device are separated, and the configuration is suitable for each irradiation method.
  • first ultraviolet irradiation device 100F direct irradiation type ultraviolet irradiation devices
  • the flow rate of air for circulation sterilization can be increased particularly in the second ultraviolet irradiation device 100G. That is, since the flow rate of the circulating air can be increased without the restriction of the direct irradiation type ultraviolet irradiation device (first ultraviolet irradiation device 100F), the effect of circulation sterilization can be enhanced, and the ability to suppress airborne bacteria is enhanced. be able to.
  • the second ultraviolet irradiation device 100G provided with the duct 130 can easily manage the positive pressure or the negative pressure in the target area S or the surrounding means 260.
  • the second ultraviolet light emitting means 101G may be provided in the duct 130. Long-term sterilization is possible in the long air flow path 137.
  • FIG. 31 is a schematic diagram showing an example of the ultraviolet irradiation system 200 (200H)
  • FIG. 31A is a schematic diagram of the entire ultraviolet irradiation system 200 (200H)
  • FIG. 31B is an ultraviolet irradiation device 100 (B).
  • FIG. 6C is a block diagram of an ultraviolet irradiation system 200 (200H)
  • FIG. 6D is a schematic diagram illustrating a part of the functions of the sixth embodiment.
  • the sixth embodiment is also an ultraviolet irradiation system 200 (200H) in which a direct irradiation type ultraviolet irradiation device (first ultraviolet irradiation device 100H) and an indirect irradiation type ultraviolet irradiation device (second ultraviolet irradiation device 100G) are used in combination.
  • first ultraviolet irradiation device 100H which is a direct irradiation type ultraviolet irradiation device
  • the first ultraviolet irradiation device 100H which is a direct irradiation type ultraviolet irradiation device
  • the target area S for example, the top surface (ceiling) SR of the target area S (indoor) or the upper part of the wall surface.
  • the first ultraviolet irradiation device 100H By providing the first ultraviolet irradiation device 100H above the target area S, it is possible to further reduce the area not irradiated with ultraviolet rays as compared with the case where the first ultraviolet irradiation device 100H is arranged below the target area S (for example, the floor surface or the like).
  • the parts different from the fifth embodiment will be mainly described, and the other configurations will be the same as those of the fifth embodiment.
  • At least one unit, preferably a plurality of units, of the first ultraviolet irradiation device 100H are attached to, for example, the top surface SR of one target area S.
  • the first ultraviolet light emitting means 101H of the first ultraviolet irradiation device 100H even one lamp can irradiate in multiple directions, and as a light source having a shape similar to a point light source, for example, a spiral low-pressure mercury lamp LP is adopted. ..
  • a spiral low-pressure mercury lamp LP will be described, but a straight tube type low-pressure mercury lamp LP may be used.
  • the first ultraviolet light emitting means 101H may be a UV-LED.
  • the low-pressure mercury lamp LP and UV-LED emit ultraviolet rays having a predetermined main wavelength, as in the case of the first embodiment.
  • the support frame (support) 121 is an umbrella type (bowl type) that covers the side surface and the back surface except for a part of the spiral low-pressure mercury lamp LP (for example, the surface side facing the target area S), and is a lamp shade. Also serves as. Further, in this example, it is preferable that the support 121 also serves as an ultraviolet reflecting plate, and an ultraviolet reflecting means 250 is provided on the inner surface thereof (the mirror surface is 250A).
  • a part of the low-pressure mercury lamp LP (for example, the surface side facing the target region S) has a state switching means 225 capable of changing the emission state of ultraviolet rays.
  • the state switching means (movable body) 225 is the same as that of the fifth embodiment except that the support 121 is not provided and is configured to cover the surface facing the target area S.
  • a louver or the like is attached to the support 121 and is configured to be movable (open / close) with respect to the first ultraviolet light emitting means 101H.
  • the portion covered with the support 121 and the state switching means 225 is restricted in the emission direction and the amount of ultraviolet rays emitted, and the ultraviolet rays are emitted from the opening (open) portion of the state switching means 225.
  • At least one unit, preferably a plurality of units of the first ultraviolet irradiation device 100H, is configured to be movable to an appropriate position.
  • a rail 501 is attached to the top surface SR of the target region S
  • a slider 502 is fixed to the support 121 of the first ultraviolet irradiation device 100H
  • the slider 502 is movably engaged with the rail 501.
  • the first ultraviolet irradiation device 100H is configured to be movable at an arbitrary position along the rail 501. It is desirable that the movement of the first ultraviolet irradiation device 100H is controlled by the remote controller 270 by an infrared method, a wireless method, or the like.
  • the first ultraviolet irradiation device 100H for direct irradiation is provided on the top surface SR and is movable, so that the sterilization efficiency at the time of direct irradiation can be improved.
  • the movement of the first ultraviolet irradiation device 100H is not limited to the movement of sliding on the rail 501, and as shown in FIG. 3B, the support 121 (low pressure mercury) with respect to the rail 501 (top surface SR of the target region S). It also includes movement (swing) that changes the angle of the lamp LP).
  • the irradiation direction and irradiation amount of ultraviolet rays can be easily controlled by changing (adjusting) the angle of the support 121 with respect to the rail 501 (top surface SR of the target area S). is there.
  • the operation (opening / closing) of the state switching means 225 may be controlled by the remote controller 270.
  • the angle may be changed stepwise by a predetermined amount (for example, in increments of 15 °), or may be arbitrarily changed.
  • the second ultraviolet irradiation device 100G is, for example, the self-supporting second ultraviolet irradiation device 100G shown in FIG. 28 (E) in the fifth embodiment.
  • at least one, preferably a plurality (for example, four) second ultraviolet irradiation devices 100G are arranged in one target area S. Since the second ultraviolet irradiation device 100G is constantly operated (operated), it is not expected to move as frequently as the first ultraviolet irradiation device 100H, but for example, the weight is reduced to such that an adult can easily move by one person. Is preferable.
  • the ultraviolet irradiation system 200H of the present embodiment provides an irradiation state estimation means 202 for estimating the irradiation conditions of ultraviolet rays required for cleaning by the first ultraviolet irradiation device 100 in the target area S.
  • an illuminance meter 350 (see FIG. 3A) is arranged in the target area S, and a measurement point P having the target area S (for example, a measurement point in the area of interest S0 shown by a broken line).
  • Illuminance (sometimes referred to as ultraviolet intensity or ultraviolet irradiation intensity) can be measured.
  • the irradiation state estimation means 202 is sterilized by the first ultraviolet irradiation device 100H based on, for example, the measurement result of the ilometer 350 (measured value of the ultraviolet irradiation intensity) and the cleanliness (required sterilization level) required for the target area S.
  • the ultraviolet irradiation time (required irradiation time) required for the above is estimated and output (displayed on the display means 203 or the like).
  • a specific example of the estimation method by the irradiation state estimation means 202 will be described later.
  • the estimation result is fed back to, for example, the drive control means 109, whereby the irradiation state (including the position and angle) of each first ultraviolet irradiation device 100H can be controlled.
  • the user of the ultraviolet irradiation system 200H controls the remote controller 270 based on the output (displayed) estimation result or arbitrarily as appropriate, and the irradiation state (including the position and angle) of each first ultraviolet irradiation device 100H.
  • the operation of the second ultraviolet irradiation device 100G can be controlled.
  • the ultraviolet irradiation system 200H estimates the ultraviolet irradiation conditions required for cleaning by the first ultraviolet irradiation device 100 in the target area S based on the input conditions, and objectively visualizes (visually approves) the simulation. It has means 205.
  • the simulation means 205 is, for example, a function incorporated in the information processing device 201 of the ultraviolet irradiation system 200H in terms of hardware and / or software.
  • the simulation means 205 is described from, for example, ultraviolet irradiation conditions (capacity of the first ultraviolet light emitting means 101H (specifically, ultraviolet irradiation intensity at a reference position, reference UV intensity (illumination)), and the first ultraviolet light emitting means 101H.
  • the ultraviolet intensity of the measurement point P is estimated based on the distance to the measurement point, etc.), and the required irradiation time is estimated according to the estimated ultraviolet intensity and the required sterilization level of the target area S. Since the required irradiation time varies depending on the irradiation conditions of ultraviolet rays and the required sterilization level, it is possible to simulate the cleanliness due to these fluctuations.
  • the estimation (simulation) method of the simulation means 205 will be described.
  • the first ultraviolet light emitting means 101H (101H_A, 101H_B) is, for example, a low-pressure mercury lamp LP.
  • the measurement point P is vertically below the first ultraviolet light emitting means 101H_A, and the two are separated by a distance L1. Further, the first ultraviolet light emitting means 101H_A and the first ultraviolet light emitting means 101H_B are separated by a distance LH in the horizontal direction. Further, the reference UV illuminance of the first ultraviolet light emitting means 101H_A (low pressure mercury lamp LP) and the first ultraviolet light emitting means 101H_B (low pressure mercury lamp LP) is set to X.
  • the reference UV irradiance here is, for example, the illuminance (ultraviolet irradiation intensity) [ ⁇ W / cm 2 ] at one point 1 m away from the light source (low-pressure mercury lamp LP) in the ultraviolet emission direction. Then, the ultraviolet irradiation intensity at a certain measurement point P is inversely proportional to the square of the distance from the light source.
  • E A ' X / L1 2 (Equation 2) here, X: Reference UV illuminance of the first ultraviolet light emitting means 101H_A [ ⁇ W / cm 2 ] L1: Distance [m] between the first ultraviolet light emitting means 101H_A and the measurement point P.
  • the illuminance E B theoretical first ultraviolet light emitting means 101H_B at the measurement point P '[ ⁇ W / cm 2] is represented by the following equation (3).
  • the actual ultraviolet irradiation intensity changes depending on the shape of the reflector (here, the support 121) and the secondary reflection in the target region S, it is corrected by each correction coefficient. That is, the illuminance E A of the first ultraviolet light emitting means 101H_A at the measurement point P [ ⁇ W / cm 2] the following equation (4) is illuminance E B of the first ultraviolet light emitting means 101H_B at the measurement point P [ ⁇ W / cm 2] Is represented by the following (Equation 5).
  • E A E A ' ⁇ C ⁇ K (Equation 4)
  • E B E B ' ⁇ C ⁇ K ( Equation 5)
  • E A ' illuminance theoretical first ultraviolet light emitting means 101H_A [ ⁇ W / cm 2]
  • E B ' illuminance theoretical first ultraviolet light emitting means 101H_B [ ⁇ W / cm 2]
  • C Correction coefficient based on the shape of the reflector
  • K Correction coefficient based on secondary reflection
  • the total (total illuminance) E [ ⁇ W / cm 2 ] of the illuminance (ultraviolet irradiation intensity) by the two first ultraviolet light emitting means 101H_A and 101H_B at the measurement point P is represented by the following (Equation 6).
  • E E A + E B (Equation 6) here, E A: intensity of first ultraviolet light emitting means 101H_A at the measurement point P [ ⁇ W / cm 2] E B: intensity of first ultraviolet light emitting means 101H_B at the measurement point P [ ⁇ W / cm 2]
  • T W / E (Equation 7) here, W: Ultraviolet irradiation amount required to inactivate the bacteria to be sterilized [ ⁇ W ⁇ sec / cm 2 ] E: Illuminance by all first ultraviolet light emitting means 101H at the measurement point P [ ⁇ W / cm 2 ]
  • the "required sterilization level" of the target area S described above is the degree of cleanliness required for the target area S, that is, the degree of inactivating the bacteria to be sterilized (degree of decrease in survival rate, sterilization rate). Degree.
  • the cumulative amount of ultraviolet rays [ ⁇ J / cm 2 ] and the sterilization rate [%] (or survival rate [N] of a certain bacterium. / N 0 ]) has a predetermined correlation. For example, FIG.
  • FIG. 6 shows an example in which the cumulative ultraviolet irradiation amount (light energy amount) required for 99.9% inactivation (inactivation) of each of the major bacterial species was extracted from the correlation.
  • light energy cumulative ultraviolet irradiation amount
  • the required cumulative UV irradiation dose varies depending on the degree of inactivation (99.9%, 99.99%, 99.999% ).
  • the simulation means 205 (and the irradiation state estimation means 202) of the present embodiment has an equation (ultraviolet ray amount-sterilization rate relational expression) showing the correlation for each target bacterial species, and is required to be a bacterial species.
  • the above-mentioned ultraviolet irradiation amount W is estimated based on the input of the degree of activation (sterilization rate) and the relational expression.
  • the simulation means 205 calculates (estimates) the required irradiation time T from the total illuminance E (Equation 6) and the ultraviolet irradiation amount W based on the input required sterilization level by (Equation 7), and outputs the output means (for example, , Display means) Output (display) to 203 or the like.
  • the simulation procedure by the simulation means 205 is as follows.
  • the simulation means 205 accepts the input of the ultraviolet irradiation condition and the required sterilization level by the user. Specifically, the user inputs, for example, via an input means (such as a controller 270 or a touch display of a mobile terminal (not shown)).
  • the simulation means 205 has the reference UV intensity X of each first ultraviolet light emitting means 101H and the distances L1, L2, L3 ... (Or) from the reference UV intensity X of each first ultraviolet light emitting means 101H to the measurement point P.
  • the user inputs, for example, the bacterial species to be sterilized and the required sterilization rate as the required sterilization level.
  • the simulation means 205 calculates the ultraviolet irradiation amount W (for example, 33,200 ⁇ J / cm 2 ) based on the above-mentioned ultraviolet amount-sterilization rate relational expression.
  • the sterilization rate may be roughly classified into levels 1, 2, 3, ..., And the sterilization rate may be displayed together with the bacterial species on the display means 203 or the like so that the user can select and input them.
  • the simulation means 205 that has received the selection input calculates the ultraviolet irradiation amount W according to the level based on the ultraviolet amount-sterilization rate relational expression. Further, for example, when the required ultraviolet irradiation amount W (here, for example, 33,200 ⁇ J / cm 2 ) is known, this may be directly input.
  • the simulation means 205 calculates the illuminance (total illuminance) E by all the first ultraviolet light emitting means 101H at the measurement point P based on (Equation 6).
  • the correction coefficient C based on the shape of the reflector and the correction coefficient K based on the secondary reflection are based on the size and shape of the first ultraviolet irradiation device 100H and the target area S (indoor) adopted at the time of designing the ultraviolet irradiation system 200. The value is set in advance.
  • the simulation means 205 calculates (estimates) the required irradiation time T from the result of (Equation 6) and the ultraviolet irradiation amount W based on the input required sterilization level by (Equation 7), and outputs the output means (for example, for example).
  • Display means Output (display) to 203 or the like.
  • the user refers to the required irradiation time T of the estimation result, and appropriately changes the irradiation conditions of ultraviolet rays, the required sterilization level, and the like.
  • the simulation means 205 estimates the required irradiation time T again based on the changed input.
  • the user can also change the correction coefficient C and / or the correction coefficient K based on the secondary reflection based on the shape of the reflector, and the simulation means 205 renews based on the changed correction coefficient C and / or the correction coefficient K.
  • the required irradiation time T is estimated. In this way, the cleanliness of the target area S can be managed according to the required irradiation time T.
  • simulation means 205 may enable validation (validation processing of the estimation result).
  • the simulation is performed by the above method. Then, the illuminance is actually measured by the illuminometer 350 at the measurement point P, and the error between the measured value (measured illuminance) and the total illuminance E (Equation 6) at the measurement point P calculated (estimated) by the simulation means 205 is calculated. Calculate and obtain the error coefficient M. Then, the required irradiation time T [sec] is corrected based on the error coefficient M.
  • the corrected required irradiation time Tc [sec] is represented by the following (Equation 8).
  • Tc W / E ⁇ M (Equation 8) here, W: Ultraviolet irradiation amount required to inactivate the bacteria to be sterilized [ ⁇ W ⁇ sec / cm 2 ] E: Illuminance by all first ultraviolet light emitting means 101H at the measurement point P [ ⁇ W / cm 2 ] M: Error coefficient
  • the irradiation state estimation means 202 estimates the required irradiation time based on the irradiation conditions in the actual target area S. That is, for example, in a certain existing target region S, the actual illuminance of the target measurement point P is measured by the illuminometer 350.
  • the irradiation state estimation means 202 uses this measured value as the total illuminance E of the above (Equation 6), and calculates (estimates) the required irradiation time T in the same manner as the simulation means 205.
  • the estimation procedure by the irradiation state estimation means 202 is as follows.
  • the irradiation state estimation means 202 accepts the input of the required sterilization level by the user.
  • the required sterilization level (and its input method are the same as in the case of the simulation means 205.
  • the irradiation state estimating means 202 that has received the input of the required sterilization level sets the ultraviolet irradiation amount W according to the level as the ultraviolet amount-sterilization rate. Calculate based on the relational expression.
  • the irradiation state estimating means 202 sets the measured value (measured value) by the illuminometer 350 as the total illuminance E of (Equation 6), and from this and the ultraviolet irradiation amount W based on the input required sterilization level, (Equation).
  • the required irradiation time T is calculated (estimated) according to 7) and output (displayed) to the output means (for example, display means) 203 or the like.
  • the achievement rate until the required irradiation time T is reached may be calculated (estimated) and output based on the accumulation of the ultraviolet irradiation time from the start of the operation of the latest first ultraviolet irradiation device 100H. ..
  • the user can refer to the required irradiation time T of the estimation result and grasp the time until the target area S reaches the required sterilization level.
  • the irradiation state estimation means 202 and / or the simulation means 205 may estimate (calculate) the required irradiation time T (Tc) by a method other than the above.
  • the degree of cleaning by the second ultraviolet irradiation device 100G may be controlled.
  • the degree of cleaning by the second ultraviolet irradiation device 100G is controlled, for example, in the second ultraviolet irradiation device 100G (for example, the bag filter 300), on the upstream side of the bag filter 300, or in the target area S, particularly in the region S of interest and This is performed based on the measurement results of the particle counter 351 (particle number measuring device) provided in the vicinity or the like (see FIG. 31 (A)).
  • the particles that become suspended particles in the target area S and the sources of bacteria adhering to the particles are mainly medical personnel such as doctors and nurses who are active in the target area S and devices brought into the target area S. .. Bacteria attached to suspended particles move randomly in the air as suspended bacteria by Brownian motion. When the target area S is irradiated with ultraviolet rays, such floating bacteria are less likely to be blocked by equipment or the like, and are often exposed to ultraviolet rays in a place close to the light source, so that they are much more than adherent bacteria. It loses the activity of the bacterium in a short time and dies.
  • the debris of the dead bacteria may cause a patient or the like to generate heat as a pyrogen (pyrogeneous substance) and fall into a serious situation. Therefore, in an environment where cleanliness is controlled, such as an operating room or a bioclean room, the number of suspended particles is often controlled by a particle counter 351 as a means for preventing the generation of pyrogen. That is, it is considered that the degree of increase or decrease of the airborne bacteria in the target region S can be grasped by measuring the number of airborne particles (including the debris of the suspended bacteria). Therefore, the number of particles in the target area S is measured by the particle counter 351 and the possibility of invasion of workers and devices into the target area S is managed according to the number of particles.
  • the target region S is safely ready for use for the purpose work such as diagnosis and treatment. Further, for example, when the number of particles exceeds a predetermined threshold value corresponding to the required sterilization level, the invasion into the target area S of the worker or the device which causes the derivation of the suspended particles is restricted.
  • the ultraviolet irradiation system 200H of the present embodiment is configured to be able to manage the cleanliness (cleaning state) of the target area S at any time. That is, the sterilized state of adherent bacteria by the direct irradiation type ultraviolet irradiation device (first ultraviolet irradiation device 100H) is managed by using the estimation result of the estimation means based on the ultraviolet irradiation conditions and the cumulative irradiation time (cumulative intensity) of the ultraviolet rays. ..
  • the sterilization state of airborne bacteria (degree of reduction of airborne bacteria) by the indirect irradiation type ultraviolet irradiation device (second ultraviolet irradiation device 100G) is managed.
  • the degree of reduction of airborne bacteria is estimated from, for example, the measurement result of the particle counter 351 that counts the number of particles in the air.
  • the bacteria to be sterilized in the present embodiment often adhere to particles in the air and float. Therefore, the approximate number of bacteria is predicted by measuring the number of particles with the particle counter 351.
  • the airborne bacteria are sterilized by circulation sterilization in the second ultraviolet irradiation device 100G, and the particles to which the airborne bacteria (after sterilization) adhere are captured by the bag filter 300. That is, if the amount of particles recovered by the bug filter 300 exceeds the inflow of airborne bacteria (particles) into the target area S, it is considered that the number of particles in the target area S decreases and the airborne bacteria also decrease.
  • the sterilized state of adherent bacteria by the direct irradiation type ultraviolet irradiation device (first ultraviolet irradiation device 100H) and the sterilized state of airborne bacteria by the indirect irradiation type ultraviolet irradiation device (second ultraviolet irradiation device 100G) (of the floating bacteria).
  • the degree of decrease is also managed to manage the cleanliness of the target area S.
  • the ultraviolet irradiation system 200H of this embodiment will be described in more detail.
  • the ultraviolet rays in the first ultraviolet irradiation device 100H by the simulation means 205 and / or the irradiation state estimation means first, before using the target area S (before entering the room of a medical worker or patient in the target area S, in the case of no person), the ultraviolet rays in the first ultraviolet irradiation device 100H by the simulation means 205 and / or the irradiation state estimation means.
  • the irradiation time of direct irradiation specifically, the required irradiation time T (Tc) capable of sterilizing the required sterilization level of a predetermined adherent bacterium is estimated, and the room is managed so as not to be able to enter the room before the completion of sterilization.
  • the state of cleaning by the second ultraviolet irradiation device 100G is managed. Specifically, the particle counter 351 is managed, and when the number of particles in the air (which has a correlation with the number of airborne bacteria) falls below a predetermined threshold value according to the required sterilization level, sterilization is completed (collection of airborne bacteria is completed). ) Information (output).
  • the target area S can be used (entry permission).
  • the operation of the first ultraviolet irradiation device 100H is stopped, only the second ultraviolet irradiation device 100G is operated, and circulation sterilization (indirect irradiation of ultraviolet rays in the flow path is performed).
  • the particle counter 351 is managed, and if the number of particles in the air (which has a correlation with the number of suspended bacteria) exceeds a predetermined threshold value according to the required sterilization level, that fact (that the contamination has progressed). It is desirable to notify (output) the information (alarm) of.
  • the degree of particle counting (how fine particles are counted) of the particle counter 351 is appropriately selected and adjusted according to the dust collection performance of the bug filter 300.
  • the fifth embodiment A second ultraviolet irradiation device 100G provided with a duct 130 for creating a desired flow path as shown in FIGS. 28 and 30
  • the second ultraviolet irradiation device 100G with the duct 130 has a configuration in which both the air inlet IN (intake port 132) and the outlet OUT (near the bug filter 300) are arranged in the target region S. May be good.
  • the inflow port IN (intake port 132) is arranged in the target area S
  • the outlet OUT (near the bug filter 300) is arranged outside the target area S
  • the inflow amount and the outflow amount are controlled in the target area S.
  • the pressure may be controllable (negative pressure and positive pressure can be controlled).
  • the particle counter 351 be installed at all times. For example, when the second ultraviolet irradiation device 100G provided with the duct 130 is adopted, it is desirable to install the particle counter 351 inside the second ultraviolet irradiation device 100G which is an air flow path (inside the duct 130 or the second ultraviolet irradiation device 100G). ..
  • the first ultraviolet irradiation device 100H since the first ultraviolet irradiation device 100H is arranged on the top surface, the distance from, for example, a certain first ultraviolet irradiation device 100H to a predetermined position of the target area S (for example, a predetermined position on the floor surface) is relatively easy. Moreover, it can be calculated accurately, and the illuminance of the first ultraviolet irradiation device 100H can be calculated relatively easily and accurately (for example, as compared with the configuration of the fifth embodiment). That is, in the present embodiment, the simulation result by the simulation means 205 is also highly accurate.
  • the bactericidal effect (cleanliness) of the target area S when the irradiation conditions of the first ultraviolet irradiation device 100H are changed can be easily grasped without actually unmanning the target area S. Direct irradiation by the first ultraviolet irradiation device 100H (in an unmanned state) can be efficiently performed.
  • the irradiation state estimation means 202 and the simulation means 205 can further increase the reliability of the ultraviolet irradiation system 200H, and enable safe and highly efficient sterilization treatment by simple operation.
  • the ultraviolet irradiation system 200F of the fifth embodiment may also be configured to include the simulation means 205.
  • the direct irradiation type ultraviolet irradiation device and the indirect irradiation type ultraviolet irradiation device are separated and have an appropriate configuration for each irradiation method.
  • first ultraviolet irradiation device 100H direct irradiation type ultraviolet irradiation devices
  • the area where the ultraviolet rays are not irradiated is further than the case where the direct irradiation type ultraviolet irradiation device (first ultraviolet irradiation device 100H) is arranged on the floor surface, for example. Can be reduced.
  • the first ultraviolet irradiation device 100H can be easily increased or decreased. Further, unlike the case where the first ultraviolet irradiation device 100H is installed on the floor surface or the like, it can be said that there is almost no hindrance to daily work (life) due to the large number of installations. That is, it is also possible to install a large number of devices on the top surface of the target area S and directly irradiate by selecting only the required number of devices (the required number and the required position) during operation.
  • the second ultraviolet irradiation device 100G which is an indirect irradiation type ultraviolet irradiation device, can be configured to obtain a desired air flow rate (the flow rate of the circulating air can be increased without the limitation of the direct irradiation type ultraviolet irradiation device). , The effect of circulation sterilization can also be enhanced.
  • the first ultraviolet light emitting means 101H may be a planar light emitting body.
  • the ultraviolet irradiation system 200H of the present embodiment can obtain a high bactericidal effect even though it has a simple configuration. Further, the irradiation state estimation means 202 and the simulation means 205 can further improve the reliability of the ultraviolet irradiation system 200H, and enable effective and safe sterilization processing by a simple operation (for example, operation by a remote controller). .. That is, it is possible to introduce the ultraviolet irradiation system 200 inexpensively and safely even in a general household or a public facility other than a medical facility.
  • ⁇ Use of simulation means as a user interface> since the bactericidal effect can be easily visualized by the simulation means 205, it is possible to make a highly convincing proposal even in the spread (sales, etc.) of the ultraviolet irradiation system 200, for example.
  • the simulation means 205 since the bactericidal effect can be easily visualized by the simulation means 205, it is possible to make a highly convincing proposal even in the spread (sales, etc.) of the ultraviolet irradiation system 200, for example.
  • the understanding and expectation of the user can be increased, and the ultraviolet irradiation system 200 becomes widespread (sales). Etc.).
  • Each configuration (detailed configuration) of the ultraviolet irradiation device 100 of each embodiment described so far can be appropriately selected and combined. Further, the ultraviolet irradiation system 200 can be constructed by appropriately selecting and combining the ultraviolet irradiation devices 100 of each embodiment.
  • the ultraviolet irradiation device 100 is either a portable type (self-supporting type, a striking type, a hanging type), a mounting type (wall or top surface, partly movable), or a self-propelled type.
  • the cover means 103 may be provided integrally with the ultraviolet light emitting means 101 and may be configured so as not to move (open or close) relative to the ultraviolet light emitting means 101.
  • the blocking means 105 and the converting means 131 may be integrally configured with, for example, the covering means 103. Further, the cover means 103 may also have a configuration in which the blocking means 105 is also used.
  • the ultraviolet irradiation device 100 has air flow paths 107 and 137 in the device, and may or may not have flow paths 107 and 137.
  • the ultraviolet irradiation device 100 may directly irradiate the target region S without blocking UV (without blocking means 105). In this case, the irradiation direction may be changed by the state switching means 225 (louver) or the like.
  • the ultraviolet irradiation device 100 may be capable of switching between a blocked state and a non-blocked state by the blocking means 105.
  • the ultraviolet irradiation device 100 may or may not have a flow path 130 with a bug filter 300.
  • the ultraviolet irradiation device 100 may or may not have an integrated bug filter 300.
  • the ultraviolet irradiation device 100 may or may not have the ultraviolet reflecting means 250 integrally.
  • the ultraviolet irradiation system 200 may or may not include a flow path 130 with a bug filter 300.
  • the bug filter 300 may be provided integrally with the ultraviolet irradiation device 100, or may be a separate body.
  • the target region S may be provided separately from the ultraviolet irradiation device capable of directly irradiating the ultraviolet rays, and may have another ultraviolet irradiation device capable of irradiating the air in the flow path 137 and the flow path 137 with the ultraviolet rays. It does not have to be present.
  • the ultraviolet irradiation system 200 of the present invention can be freely set up in any space, such as a medical institution, a general home, a company, etc., and can be set up immediately and intensively. Can be sterilized and purified.
  • effective ultraviolet irradiation treatment sterilization treatment, circulation sterilization treatment
  • safe and effective airborne bacteria, adherent bacteria, and viruses can be suppressed and sterilized. Infection can be prevented.
  • the ultraviolet irradiation system of the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention.
  • the ultraviolet irradiation device 100 of the present invention can be used in the fields of industries related to medical treatment, health maintenance, and the like.
  • UV irradiation device 101 Ultraviolet light emitting means 103 Cover means 103F Front cover part 103S Side cover part 105 Blocking means 107 Flow path 109 Drive control means 121 Support frame (support body, frame body) 123 Leg 130 Duct (flow path) 131 Conversion means 132 Intake port 137 Flow path 150 Partitioning means 150M Ultraviolet reflecting means 161 Engagement means 180 Door 181A Exhaust passage 181B Exhaust fan 182A Air supply passage 200 Ultraviolet irradiation system 201 Information processing device 202 Irradiation state estimation means 205 Simulation means 225 State switching means 250 Ultraviolet reflection means 260 Envelopment means 300 Bug filter 350 Illuminance meter 351 Particle counter 501 Rail 502 Slider S Target area S0 Area of interest SR Top surface (ceiling) LP low pressure mercury lamp

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

Provided are an ultraviolet ray irradiation system and an ultraviolet ray irradiation method that enable an efficient disinfection process in a short time period while safety is prioritized and that enable ultraviolet ray irradiation at an arbitrarily defined timing in an arbitrarily defined disinfection target region. An ultraviolet ray irradiation device 100 has: an ultraviolet ray emission means 101 capable of outputting an ultraviolet ray including a predetermined main wavelength; and a cutoff means 105 that has at least a part thereof disposed to oppose the ultraviolet ray emission means 101 and that cuts off at least a part of the ultraviolet ray, wherein the cutoff means 105 is configured to be switchable between a cutoff state of the ultraviolet ray and a non-cutoff state thereof.

Description

紫外線照射装置・紫外線照射システム・紫外線照射方法及びシミュレーション方法Ultraviolet irradiation device, ultraviolet irradiation system, ultraviolet irradiation method and simulation method
 本発明は、室内等の殺菌・除菌を行なうための紫外線照射装置・紫外線照射システム・紫外線照射方法及びシミュレーション方法に関する。 The present invention relates to an ultraviolet irradiation device, an ultraviolet irradiation system, an ultraviolet irradiation method, and a simulation method for sterilizing and sterilizing indoors and the like.
 医療施設や複合商業施設等において、感染予防のための菌やウィルスへの対処法としては、各種薬液消毒剤散布や払拭方法を中心とした対策が行われているが、菌やウィルスの対策としては、人や薬剤散布機に頼る他なく、作業に要する時間や薬剤管理などの手間を要する反面、例年感染による事故は多く報告されるため、代替えの簡便且つ容易な技術が求められている。 In medical facilities and commercial complexes, as measures against bacteria and viruses to prevent infection, measures centered on spraying various chemical disinfectants and wiping methods are being taken, but as measures against bacteria and viruses. There is no choice but to rely on people and drug sprayers, and while it takes time to work and labor such as drug management, many accidents due to infection are reported every year, so a simple and easy alternative technology is required.
 紫外線(紫外光)の内の短波長(近紫外線)領域(UVC領域)の波長の光は、そのエネルギー(光エネルギー)によって菌(細菌)のデオキシリボ核酸(DNA)を直接破壊することで菌を不活化する能力を有し、耐性菌を生まない高い殺菌効果があることが知られている。 Light with a wavelength in the short wavelength (near ultraviolet) region (UVC region) of ultraviolet rays (ultraviolet light) destroys bacteria by directly destroying the deoxyribonucleic acid (DNA) of the bacteria (bacteria) by the energy (light energy). It is known to have the ability to inactivate and have a high bactericidal effect that does not produce resistant bacteria.
 このため、UVC領域の波長の光(紫外線)を出力可能な紫外線ランプ(殺菌用ランプ)が開発・商用化されるとともに、医療・介護現場や上下水道の浄化、食品分野を中心とした製造工場に於いて簡便且つ効果的に感染を予防し、用水や空気などの環境を向上させ、食品の安全性を確保する手法として活用が進められてきた。 For this reason, ultraviolet lamps (sterilization lamps) capable of outputting light (ultraviolet rays) with wavelengths in the UVC range have been developed and commercialized, and manufacturing plants mainly in the medical / nursing care sites, water and sewage purification, and food fields. It has been used as a method for simply and effectively preventing infection, improving the environment such as water and air, and ensuring food safety.
 具体的には、従来では、室内の浮遊し落下した菌やウィルスの対策として、簡単に壁や天井に設置可能な、UVC領域の波長の紫外線を出力する紫外線光源灯や、持ち運び可能な空気清浄機ユニットに同様の紫外線光源が内蔵された商品が市販化されている。 Specifically, in the past, as a countermeasure against bacteria and viruses that floated and fell indoors, an ultraviolet light source light that can be easily installed on a wall or ceiling and outputs ultraviolet rays with a wavelength in the UVC range, and a portable air purifier. Products with a similar ultraviolet light source built into the machine unit are commercially available.
 ところで、特にUVC領域の波長の紫外線は人体に照射された場合には危険である。このため従来の装置(殺菌のための紫外線光源)では、無人状態で照射して殺菌処理を行うもの(例えば、特許文献1参照)、有人状態で照射する場合は人体を避けるように間接的に照射して殺菌処理を行うもの(例えば、特許文献2参照)が一般的である。 By the way, ultraviolet rays with wavelengths in the UVC region are especially dangerous when they are applied to the human body. For this reason, conventional devices (ultraviolet light sources for sterilization) perform sterilization treatment by irradiating in an unmanned state (see, for example, Patent Document 1), and indirectly so as to avoid the human body when irradiating in a manned state. Those that are irradiated and sterilized (see, for example, Patent Document 2) are generally used.
 また、紫外線光源灯による殺菌では、一般的に殺菌処理を行うタイミングで紫外線光源灯を点灯し、殺菌処理を行わない場合(有人の場合には)消灯するといった方法によって殺菌処理の作動と非作動を切り替えている。 In sterilization with an ultraviolet light source light, the ultraviolet light source light is generally turned on at the timing of the sterilization process and turned off when the sterilization process is not performed (in the case of a manned person). Is switching.
特開平10-248759号公報Japanese Unexamined Patent Publication No. 10-248759 実開平5-20717号公報Jikkenhei 5-20717
 しかしながら、従来の装置ではいずれも有人の空間内の効率的な殺菌処理には限界がある。具体的には、無人状態で紫外線を照射して殺菌処理を行う装置では、有人の期間には動作させることができない。また、間接的に紫外線を照射して殺菌処理を行う装置では、仮に無人の期間には所定範囲に紫外線を照射可能な構成であったとしても、有人の場合には紫外線の照射範囲が無人の方向に限定されるため、有人の空間内(例えば室内)の空気を常時、全体的に殺菌することは困難であるといった問題があった。 However, there is a limit to efficient sterilization in a manned space with all conventional devices. Specifically, an apparatus that irradiates ultraviolet rays in an unmanned state to perform sterilization treatment cannot be operated during a manned period. Further, in a device that indirectly irradiates ultraviolet rays to perform sterilization treatment, even if the device is capable of irradiating ultraviolet rays within a predetermined range during an unmanned period, the ultraviolet irradiation range is unmanned in the case of manned. Since the direction is limited, there is a problem that it is difficult to sterilize the air in a manned space (for example, indoors) at all times.
 また、紫外線光源灯が低圧水銀ランプの場合、当該光源灯がオフ(消灯)の状態から殺菌可能な程度に十分なエネルギーを有する光を出力するまでには或る程度(数分程度)の時間を要する。例えば、病院等においては(感染力の強い)ウィルスに感染した患者を診察室または手術室等で診察・処置した後に別の患者が同じ空間を利用する際、当該別の患者や医師等病院スタッフへの二次感染を防止するために当該空間の殺菌が望まれる。しかしながら、紫外線光源灯による殺菌の開始に時間が掛かると、患者の待機時間も長くなってしまう問題がある。 When the ultraviolet light source lamp is a low-pressure mercury lamp, it takes a certain amount of time (about several minutes) from the off (off) state to output light having sufficient energy to be sterilized. Needs. For example, in a hospital, etc., when another patient uses the same space after examining and treating a patient infected with a (strongly infectious) virus in a doctor's office or operating room, the hospital staff such as the other patient or doctor Sterilization of the space is desired to prevent secondary infection with. However, if it takes a long time to start sterilization with an ultraviolet light source lamp, there is a problem that the waiting time of the patient becomes long.
 更に、例えば災害時等において一時的な殺菌対象領域(例えば、医療用仮設テントなど)が必要になった場合など、意図せず任意の場所に設けられる殺菌対象領域に対しては即時に適用することが大変困難(略不可能)であった。 Furthermore, for example, when a temporary sterilization target area (for example, a temporary medical tent) is required in the event of a disaster, etc., it is immediately applied to the sterilization target area unintentionally provided at an arbitrary location. It was very difficult (almost impossible).
 また、従来の持ち運び可能な空気清浄機ユニットは、ユニット内を通過した空気を清浄化するのみであり、無人の室内に対して効率よく紫外線を照射することはできない。また、当該空気清浄機ユニットを例えば医療用の仮設テント等に搬入して使用する場合、仮設テント内の空気は或る程度清浄化可能であっても、仮設テント外に漏れ出す汚染空気についての対策がなく、安全面において問題がある。 In addition, the conventional portable air purifier unit only purifies the air that has passed through the unit, and cannot efficiently irradiate an unmanned room with ultraviolet rays. Further, when the air purifier unit is carried into a temporary tent for medical use, for example, even if the air inside the temporary tent can be purified to some extent, the contaminated air leaking to the outside of the temporary tent There is no countermeasure and there is a problem in terms of safety.
 本発明は、斯かる実情に鑑み、安全性を優先しつつも、短時間で効率的な殺菌処理を可能にするとともに、任意の殺菌対象領域において任意のタイミングで紫外線の照射が可能となる紫外線照射装置・紫外線照射システム・紫外線照射方法及びシミュレーション方法を提供しようとするものである。 In view of such circumstances, the present invention enables efficient sterilization treatment in a short time while giving priority to safety, and also enables irradiation of ultraviolet rays in an arbitrary sterilization target area at an arbitrary timing. It is intended to provide an irradiation device, an ultraviolet irradiation system, an ultraviolet irradiation method, and a simulation method.
 本発明は、所定の主波長を含む紫外線を出力可能な紫外線発光手段と、少なくとも一部が前記紫外線発光手段に対向配置されて前記紫外線の少なくとも一部を遮断する遮断手段と、を有し、前記遮断手段により前記紫外線の遮断状態と、非遮断状態とを切替可能に構成されている、ことを特徴とする紫外線照射装置にかかるものである。 The present invention has an ultraviolet light emitting means capable of outputting ultraviolet rays including a predetermined main wavelength, and a blocking means in which at least a part thereof is arranged to face the ultraviolet light emitting means to block at least a part of the ultraviolet rays. The present invention relates to an ultraviolet irradiation device characterized in that the ultraviolet blocking state can be switched between a blocking state and a non-blocking state by the blocking means.
 また、本発明は、上記の紫外線照射装置を有し、対象領域に前記紫外線を照射する紫外線照射システムであって、前記対象領域は区画手段により区画される領域である、ことを特徴とする紫外線照射システムにかかるものである。 Further, the present invention is an ultraviolet irradiation system having the above-mentioned ultraviolet irradiation device and irradiating the target area with the ultraviolet rays, wherein the target area is a region partitioned by the partitioning means. It depends on the irradiation system.
 また、本発明は、対象領域に対して所定の主波長を含む紫外線を出力可能な紫外線発光手段と、前記対象領域内の空気が通過する流路と、前記紫外線発光手段とは別体に設けられ、前記流路内を通過する空気に対して所定の主波長を含む紫外線を出力可能な他の紫外線発光手段と、を有する、ことを特徴とする紫外線照射システムにかかるものである。 Further, the present invention is provided separately from the ultraviolet light emitting means capable of outputting ultraviolet rays containing a predetermined main wavelength with respect to the target region, the flow path through which the air in the target region passes, and the ultraviolet light emitting means. The present invention relates to an ultraviolet irradiation system, which comprises other ultraviolet light emitting means capable of outputting ultraviolet rays including a predetermined main wavelength to the air passing through the flow path.
 また、本発明は、対象領域に対して所定の主波長を含む紫外線を出力可能な紫外線発光手段と、前記紫外線発光手段から出力された紫外線の照射状態に基づき、前記対象領域内の清浄の程度または該対象領域内の清浄に必要な照射条件を推定する推定手段を有する、ことを特徴とする紫外線照射システムにかかるものである。 Further, the present invention is based on the ultraviolet light emitting means capable of outputting ultraviolet rays containing a predetermined main wavelength to the target area and the irradiation state of the ultraviolet rays output from the ultraviolet light emitting means, and the degree of cleaning in the target area. Alternatively, the present invention relates to an ultraviolet irradiation system characterized by having an estimation means for estimating irradiation conditions necessary for cleaning the target area.
 また、本発明は、対象領域に殺菌領域の主波長の紫外線を照射する紫外線照射方法であって、前記対象領域に前記紫外線を出力可能な紫外線照射装置を配置するステップと、前記紫外線照射装置の遮断手段により、前記紫外線の遮断状態と非遮断状態とを切り替えるステップと、を有する、ことを特徴とする紫外線照射方法にかかるものである。 Further, the present invention is an ultraviolet irradiation method for irradiating a target region with ultraviolet rays having a main wavelength of a sterilization region, the step of arranging an ultraviolet irradiation device capable of outputting the ultraviolet rays in the target region, and the ultraviolet irradiation device. The present invention relates to an ultraviolet irradiation method characterized by having a step of switching between a blocked state and a non-blocked state of ultraviolet rays by a blocking means.
 また、本発明は、対象領域に対して紫外線発光手段から所定の主波長を含む紫外線を出力するステップと、前記対象領域内の空気が通過する流路に設けられた他の紫外線発光手段から該流路内を通過する空気に対して所定の主波長を含む紫外線を出力するステップと、を有することを特徴とする紫外線照射方法にかかるものである。 Further, the present invention comprises the step of outputting ultraviolet rays containing a predetermined main wavelength to the target region from the ultraviolet light emitting means, and the other ultraviolet light emitting means provided in the flow path through which the air in the target region passes. The present invention relates to an ultraviolet irradiation method characterized by having a step of outputting ultraviolet rays containing a predetermined main wavelength to air passing through the flow path.
 また、本発明は、対象領域に対して紫外線発光手段から所定の主波長を含む紫外線を出力するステップと、出力された紫外線の照射状態に基づき、推定手段により前記対象領域内の清浄の程度または該対象領域の清浄に必要な紫外線の照射条件を推定するステップと、を有する、ことを特徴とする紫外線照射方法に係るものである。 Further, in the present invention, based on the step of outputting ultraviolet rays including a predetermined main wavelength from the ultraviolet light emitting means to the target area and the irradiation state of the output ultraviolet rays, the degree of cleanliness in the target area or the degree of cleanliness in the target area is determined by the estimation means. The present invention relates to an ultraviolet irradiation method, which comprises a step of estimating an ultraviolet irradiation condition necessary for cleaning the target area.
 また、本発明は、紫外線発光手段から対象領域に対して所定の主波長を含む紫外線を出力する場合におけるシミュレーション方法であって、条件の入力を受け付けるステップと、前記条件に基づき、シミュレーション手段により前記対象領域内の清浄に必要な紫外線の照射条件をシミュレーションするステップと、を有する、ことを特徴とするシミュレーション方法にかかるものである。 Further, the present invention is a simulation method in the case of outputting ultraviolet rays containing a predetermined main wavelength to a target region from an ultraviolet light emitting means, the step of accepting an input of a condition, and the simulation means based on the above conditions. It relates to a simulation method characterized by having a step of simulating the irradiation conditions of ultraviolet rays necessary for cleaning the target area.
 本発明によれば、安全性を優先しつつも、短時間で効率的な殺菌処理を可能にするとともに、任意の殺菌対象領域において任意のタイミングで紫外線の照射が可能となる紫外線照射装置・紫外線照射システム・紫外線照射方法及びシミュレーション方法を提供できる、という優れた効果を奏し得る。 According to the present invention, an ultraviolet irradiation device / ultraviolet rays that enables efficient sterilization treatment in a short time while giving priority to safety and can irradiate ultraviolet rays in an arbitrary sterilization target area at an arbitrary timing. It can exert an excellent effect that it can provide an irradiation system, an ultraviolet irradiation method, and a simulation method.
本発明の実施形態に係る紫外線照射システムの構成の概略を示す上面図である。It is a top view which shows the outline of the structure of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの構成の概略を示す側面図である。It is a side view which shows the outline of the structure of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの構成の概略を示す上面図である。It is a top view which shows the outline of the structure of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの駆動制御を行う回路の一例を示すブロック図である。It is a block diagram which shows an example of the circuit which performs the drive control of the ultraviolet irradiation system which concerns on embodiment of this invention. (A)本発明の実施形態に係る紫外線照射システムが備えるUVランプの出力波長分布とDNAのUV吸収率の関係を示すグラフであり、(B)DNAのUV吸収率とUVによる殺菌率の関係を示すグラフである。(A) It is a graph which shows the relationship between the output wavelength distribution of the UV lamp provided in the ultraviolet irradiation system which concerns on embodiment of this invention, and the UV absorption rate of DNA, and (B) the relationship between the UV absorption rate of DNA and the sterilization rate by UV. It is a graph which shows. 菌種ごとのUVによる不活化に必要な光エネルギー量の一覧を示す表である。It is a table which shows the list of the amount of light energy required for inactivation by UV for each bacterial species. 本発明の実施形態に係る紫外線照射システムにおける遮断状態と非遮断状態の切り替えについて示す概要図である。It is a schematic diagram which shows the switching of the blocking state and the non-blocking state in the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムにおける遮断状態と非遮断状態の切り替えについて示す概要図である。It is a schematic diagram which shows the switching of the blocking state and the non-blocking state in the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの概要を示す図であり(A)概要図、(B)紫外線照射装置の上面図である。It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) schematic diagram, (B) top view of the ultraviolet irradiation apparatus. 本発明の実施形態に係る紫外線照射装置の概要を示す図であり、(A)正面図、(B)上面図である。It is a figure which shows the outline of the ultraviolet irradiation apparatus which concerns on embodiment of this invention, is (A) front view, (B) top view. 本発明の実施形態に係る紫外線照射装置の概要を示す斜視図である。It is a perspective view which shows the outline of the ultraviolet irradiation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの概要を示す図であり、(A)上面図、(B)斜視図である。It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) top view, (B) perspective view. 本発明の実施形態に係る紫外線照射システムの概要を示す図であり、(A)~(C)側面図、(D)上面図である。It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A)-(C) side view, (D) top view. 本発明の実施形態に係る紫外線照射システムの概要を示す側面図である。It is a side view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの構成の概略を示す側面図である。It is a side view which shows the outline of the structure of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの構成の概略を示す上面図である。It is a top view which shows the outline of the structure of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの概要を示す図であり、(A)上面図、(B)斜視図である。It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) top view, (B) perspective view. 本発明の実施形態に係る紫外線照射システムの概要を示す図であり、(A)上面図、(B)側面図、(C)側面図である。It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) top view, (B) side view, (C) side view. 本発明の実施形態に係る紫外線照射システムの構成の概略を示す上面図である。It is a top view which shows the outline of the structure of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの概要を示す上面図である。It is a top view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの概要を示す側面図である。It is a side view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの概要を示す側面図である。It is a side view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの概要を示す側面図である。It is a side view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの概要を示す図であり、(A)正面図、(B)斜視図である。It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) front view, (B) perspective view. 本発明の実施形態に係る紫外線照射システムの概要を示す斜視図である。It is a perspective view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの概要を示す斜視図である。It is a perspective view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの概要を示す側面図である。It is a side view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの概要を示す図であり(A)斜視図、(B)斜視図、(C)斜視図、(D)側面図、(E)側面図である。It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) perspective view, (B) perspective view, (C) perspective view, (D) side view, (E) side view. 本発明の実施形態に係る紫外線照射システムの概要を示す図であり(A)ブロック図、(B)平面図、(C)平面図、(D)平面図である。It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) block diagram, (B) plan view, (C) plan view, (D) plan view. 本発明の実施形態に係る紫外線照射システムの概要を示す斜視図である。It is a perspective view which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention. 本発明の実施形態に係る紫外線照射システムの概要を示す図であり(A)側面図、(B)側面図、(C)ブロック図、(D)概要図である。It is a figure which shows the outline of the ultraviolet irradiation system which concerns on embodiment of this invention, is (A) side view, (B) side view, (C) block diagram, (D) schematic view.
 以下、本発明にかかる紫外線照射システム200および紫外線照射装置100の実施の形態について図1~図31を参照して説明する。なお、本図及び以降の各図において、一部の構成を適宜省略して、図面を簡略化する。また、本図及び以降の各図において、部材の大きさ、形状、厚み等を適宜誇張して表現する。また、紫外線照射システム200および紫外線照射装置100をそれぞれ構成する各構成要素について、各実施形態において同一の構成要素は同一の符号で示し、その詳細な説明は省略する。 Hereinafter, embodiments of the ultraviolet irradiation system 200 and the ultraviolet irradiation device 100 according to the present invention will be described with reference to FIGS. 1 to 31. In this drawing and each of the following drawings, some configurations will be omitted as appropriate to simplify the drawings. Further, in this figure and each subsequent drawing, the size, shape, thickness, etc. of the member are exaggerated as appropriate. Further, regarding each component constituting the ultraviolet irradiation system 200 and the ultraviolet irradiation device 100, the same component is indicated by the same reference numeral in each embodiment, and detailed description thereof will be omitted.
 <紫外線照射装置および紫外線照射システム>
 <第1実施形態>
 図1は、実施形態の紫外線照射システム200の概要を示す上面図(平面図)である。本実施形態の紫外線照射システム200は、対象領域Sに紫外線照射装置100を配置し、該対象領域Sに所定の主波長を含む紫外線を照射するシステムである。
<Ultraviolet irradiation device and ultraviolet irradiation system>
<First Embodiment>
FIG. 1 is a top view (plan view) showing an outline of the ultraviolet irradiation system 200 of the embodiment. The ultraviolet irradiation system 200 of the present embodiment is a system in which an ultraviolet irradiation device 100 is arranged in a target area S and the target area S is irradiated with ultraviolet rays including a predetermined main wavelength.
 紫外線照射装置100の詳細は後述するが、ここでは一例として可搬型(可搬性を有する構造)であり、殺菌領域の波長の紫外線を出力(照射)可能である。 The details of the ultraviolet irradiation device 100 will be described later, but here, as an example, it is a portable type (structure having portability) and can output (irradiate) ultraviolet rays having a wavelength in the sterilization region.
 対象領域Sは、紫外線照射装置100による殺菌・浄化の対象となる領域をいい、一例として、区画手段150によって少なくとも一部が他の領域と区画される領域をいう。ここで区画手段150は、例えばある空間(例えば、屋外や避難所等)の少なくとも一部を後発的に区画する手段であり、(医療用の)テント、ドーム(エアドーム)、間仕切りや衝立(パーティション)などである。つまり対象領域Sは一例として、ある空間(例えば、屋外や避難所等)の一部を後発的に区画手段150によって区画した内側の領域をいう。 The target area S refers to an area to be sterilized / purified by the ultraviolet irradiation device 100, and as an example, refers to an area at least partially partitioned from another area by the partitioning means 150. Here, the partitioning means 150 is, for example, a means for subsequently partitioning at least a part of a certain space (for example, outdoors, shelter, etc.), and is a (medical) tent, a dome (air dome), a partition, or a partition. ) And so on. That is, as an example, the target area S refers to an inner area in which a part of a certain space (for example, outdoors, shelter, etc.) is subsequently partitioned by the partitioning means 150.
 具体的に一例を挙げると、災害などの非常時において被災者、要救護者、治療対象者(患者)等の対処や治療等に当たるため、屋外等(医療施設以外の場所)や医療施設の治療室(手術室)以外の場所(廊下、ロビーなど)に必要に応じて区画手段150を配置し、対象領域Sを区画する。 To give a specific example, in the event of an emergency such as a disaster, in order to deal with and treat victims, people requiring rescue, people to be treated (patients), etc., treatment outdoors (places other than medical facilities) and medical facilities If necessary, the partitioning means 150 is arranged in a place (corridor, lobby, etc.) other than the room (operating room) to partition the target area S.
 そして本実施形態の対象領域Sは、特定の、あるいは不特定の一または複数の人間(被災者、要救護者、治療対象者(患者)等や、その対処や治療等に当たる医療従事者等(以下、これらの者を総称して「対象者」という場合がある。)が存在し得る領域である。 The target area S of the present embodiment is a specific or unspecified one or more human beings (victims, people requiring rescue, treatment target persons (patients), etc., medical workers who deal with them, treatments, etc.) Hereinafter, these persons may be collectively referred to as “target persons”).
 同図(A)に示すように、本実施形態の紫外線照射システム200は、区画手段150で区画された対象領域Sの内側に紫外線照射装置100を配置する。例えば、対象領域Sが必要に応じて任意のタイミング、任意の範囲(形状)で区画され、紫外線照射装置100は対象領域Sの外部からその内部に搬入される。あるいは、対象領域S内(例えば、室内など)に予め収納(設置)され、必要に応じて所定位置に移動・設置される。 As shown in FIG. 3A, in the ultraviolet irradiation system 200 of the present embodiment, the ultraviolet irradiation device 100 is arranged inside the target area S partitioned by the partition means 150. For example, the target area S is partitioned at an arbitrary timing and an arbitrary range (shape) as needed, and the ultraviolet irradiation device 100 is carried into the target area S from the outside. Alternatively, it is stored (installed) in advance in the target area S (for example, indoors), and is moved / installed at a predetermined position as needed.
 また、同図(B)に示すように、本実施形態の紫外線照射システム200は、紫外線照射装置100が区画手段150の一部を構成してもよい。区画手段150によって対象領域Sを区画する際、紫外線照射装置100はその一部として設置される。 Further, as shown in FIG. 6B, in the ultraviolet irradiation system 200 of the present embodiment, the ultraviolet irradiation device 100 may form a part of the partition means 150. When the target area S is partitioned by the partitioning means 150, the ultraviolet irradiation device 100 is installed as a part thereof.
 このようにして、紫外線照射システム200では紫外線照射装置100が対象領域Sに殺菌領域の波長の紫外線を照射することにより、当該対象領域S内の空気の殺菌・浄化および/または当該対象領域Sに存在する物品、対象者の人体などの表面を殺菌・浄化する。 In this way, in the ultraviolet irradiation system 200, the ultraviolet irradiation device 100 irradiates the target area S with ultraviolet rays having a wavelength of the sterilization region to sterilize and purify the air in the target area S and / or to the target area S. Sterilizes and purifies the surface of existing articles and the human body of the target person.
 なお、区画手段150による「区画」とは、同図(A),同図(B)に示すように区画手段150によって連続的に囲まれ、対象領域Sの外部と連通する部分がなく(完全にまたは略完全に)閉じた状態であってもよいし、一部(天面や側面などの一部)が開放され、同図(C),同図(D)に示すように対象領域Sの外部と連通する部分がある状態であってもよい。 The "section" by the section means 150 is continuously surrounded by the section means 150 as shown in FIGS. (A) and (B), and there is no portion communicating with the outside of the target area S (completely). It may be in a closed state (or almost completely), or a part (a part such as a top surface or a side surface) is opened, and the target area S is shown in FIGS. There may be a part that communicates with the outside of the.
 また、区画手段150は、既設の壁であってもよく、対象領域Sは室内等であってもよい。 Further, the partitioning means 150 may be an existing wall, and the target area S may be indoors or the like.
 また、図1の例では一の対象領域Sにおいて一の紫外線照射装置100を配置しているが、一の対象領域Sにおいて複数の紫外線照射装置100を配置してもよい(以下の各図においても同様である)。 Further, in the example of FIG. 1, one ultraviolet irradiation device 100 is arranged in one target area S, but a plurality of ultraviolet irradiation devices 100 may be arranged in one target area S (in each of the following figures). Is the same).
 <紫外線照射装置>
 図2および図3は、本実施形態の紫外線照射システム200における紫外線照射装置100(100A)の概要を示す図である。図2および図3は、対象領域S内に紫外線照射装置100を配置した状態を示す概略図であり、図2(A)、同図(D)が有人の状態における紫外線照射装置100の状態を示す側面概要図であり、図2(B)、同図(C)が無人の状態における紫外線照射装置100の状態を示す側面概要図である。また図3(A)が有人の状態における紫外線照射装置100の状態を示す図2(A)、同図(D)に対応する上面概要図であり、図3(B)および同図(C)が無人の状態における紫外線照射装置100の状態を示す上面概要図である。図3(B)は図2(B)に対応し、図3(C)は図2(C)に対応している。また、図4は、紫外線照射装置100の駆動制御を行う回路構成の一例を示すブロック図である。
<Ultraviolet irradiation device>
2 and 3 are diagrams showing an outline of the ultraviolet irradiation device 100 (100A) in the ultraviolet irradiation system 200 of the present embodiment. 2 and 3 are schematic views showing a state in which the ultraviolet irradiation device 100 is arranged in the target area S, and FIGS. 2 (A) and 3 (D) show the state of the ultraviolet irradiation device 100 in a manned state. 2 (B) and 2 (C) are side schematic views showing a state of the ultraviolet irradiation device 100 in an unmanned state. Further, FIG. 3 (A) is a top schematic view corresponding to FIGS. 2 (A) and 2 (D) showing the state of the ultraviolet irradiation device 100 in a manned state, and FIGS. 3 (B) and 3 (C). Is a top view showing a state of the ultraviolet irradiation device 100 in an unmanned state. FIG. 3B corresponds to FIG. 2B, and FIG. 3C corresponds to FIG. 2C. Further, FIG. 4 is a block diagram showing an example of a circuit configuration for driving and controlling the ultraviolet irradiation device 100.
 図2および図3を参照して、本実施形態の紫外線照射装置100は、一例として可搬型であり(可搬性を有し)、紫外線発光手段101と、遮断手段105と、カバー手段103を有する。すなわち紫外線照射装置100は、対象領域Sにおいて移動不可に固定されるものではなく、紫外線発光手段101とカバー手段103と遮断手段105とをユニット化し、一体的に(単独で)移動可能に構成される。そして紫外線照射装置100は、遮断手段105の物理的な移動、および/または材料の制御による遮断手段105の選択により紫外線の遮断状態と非遮断状態とを切り替え可能に構成される。ここでの材料の制御とは物理的制および/または化学的制御をいう。 With reference to FIGS. 2 and 3, the ultraviolet irradiation device 100 of the present embodiment is portable (has portable) as an example, and has an ultraviolet light emitting means 101, a blocking means 105, and a covering means 103. .. That is, the ultraviolet irradiation device 100 is not fixed so as not to be movable in the target region S, but the ultraviolet light emitting means 101, the cover means 103, and the blocking means 105 are unitized and integrally (independently) movable. To. The ultraviolet irradiation device 100 is configured to be able to switch between a blocking state and a non-blocking state of ultraviolet rays by physically moving the blocking means 105 and / or selecting the blocking means 105 by controlling the material. Material control here refers to physical control and / or chemical control.
 紫外線照射装置100は、一例として脚部123を有し、単独で自立し且つ任意の位置に移動可能な衝立(仕切り、パーティション)型を呈している。なお、紫外線照射装置100は衝立型に限らず、例えば吊り下げ式や、壁面などへの立て掛け型であってもよい。また、紫外線照射装置100は、可搬型に限らず、対象領域S内(例えば、壁面等)に取り付け・固定される(据付型の)構成であってもよい。 The ultraviolet irradiation device 100 has a leg portion 123 as an example, and exhibits a stand-alone (partition, partition) type that can stand alone and move to an arbitrary position. The ultraviolet irradiation device 100 is not limited to the striking type, and may be, for example, a hanging type or a leaning type on a wall surface or the like. Further, the ultraviolet irradiation device 100 is not limited to the portable type, and may have a configuration (installation type) of being mounted and fixed in the target area S (for example, a wall surface or the like).
 この例の遮断手段105は、紫外線発光手段101に対して例えば相対移動可能に構成される。具体的には、図2(A),同図(D)に示すように、少なくとも一部が紫外線発光手段101に対向配置される状態に移動可能であり、紫外線(便宜上同図に破線で示す)の少なくとも一部を遮断可能に構成される(この状態を「遮断状態」という)。また、遮断手段105は、図2(B),同図(C)に示すように、紫外線発光手段101の前方から退避する状態に移動可能であり、紫外線の少なくとも一部を遮断せずに当該対象領域S内に紫外線を照射可能に構成され(この状態を「非遮断状態」という。)、紫外線の非遮断状態では、対象領域S内の空間、設備等を殺菌する。 The blocking means 105 of this example is configured to be movable relative to the ultraviolet light emitting means 101, for example. Specifically, as shown in FIGS. 2 (A) and 2 (D), at least a part of the ultraviolet light can be moved so as to face the ultraviolet light emitting means 101, and the ultraviolet rays (shown by a broken line in the same figure for convenience). ) Can be blocked (this state is called "blocked state"). Further, as shown in FIGS. 2B and 2C, the blocking means 105 can be moved to a state of retracting from the front of the ultraviolet light emitting means 101, and the blocking means 105 is said to be movable without blocking at least a part of the ultraviolet rays. The target area S is configured to be able to irradiate ultraviolet rays (this state is referred to as a "non-blocking state"), and in the non-blocking state of ultraviolet rays, the space, equipment, etc. in the target area S are sterilized.
 また、カバー手段103は、紫外線発光手段101に対向配置されて該紫外線発光手段101との間で空気の流路107(図2(D)参照)を形成可能である。つまり、この例の紫外線照射装置100は、紫外線発光手段101とカバー手段103とがをユニット化され、一体的に移動可能に構成される。 Further, the cover means 103 can be arranged to face the ultraviolet light emitting means 101 and form an air flow path 107 (see FIG. 2D) with the ultraviolet light emitting means 101. That is, in the ultraviolet irradiation device 100 of this example, the ultraviolet light emitting means 101 and the cover means 103 are unitized and integrally movable.
 ここで、本実施形態における方向の定義として、第一の方向Hは水平方向、第二の方向Vは鉛直方向、第三の方向Dは水平方向および鉛直方向に垂直な方向とする。例えば、壁面を構成するように床(地面)に対して鉛直方向に区画手段150を立設した場合、第一の方向Hは壁面の幅方向であり、第二の方向Vは、壁面の高さ方向であり、第三の方向Dは床面と平行な方向である。 Here, as the definition of the direction in the present embodiment, the first direction H is the horizontal direction, the second direction V is the vertical direction, and the third direction D is the horizontal direction and the direction perpendicular to the vertical direction. For example, when the partition means 150 is erected in the vertical direction with respect to the floor (ground) so as to form a wall surface, the first direction H is the width direction of the wall surface, and the second direction V is the height of the wall surface. It is a vertical direction, and the third direction D is a direction parallel to the floor surface.
 本実施形態の説明における殺菌対象の「菌」とは、主に人体(動物)に有害な菌(細菌、微生物類、ウィルスの細胞)の総称であり、紫外線による「殺菌」とは、光エネルギーにより菌のデオキシリボ核酸(deoxyribonucleic acid、以下「DNA」)そのものに作用することで、菌をそれ以上増殖させない不活化な状態にすることと定義し、滅菌10-6未満の処理をいうものとする。 In the description of this embodiment, the "bacteria" to be sterilized is a general term for bacteria (bacteria, microorganisms, virus cells) that are mainly harmful to the human body (animal), and "sterilization" by ultraviolet rays is light energy. By acting on the deoxyribonucleic acid (hereinafter referred to as "DNA") itself of the bacterium, it is defined as an inactivated state in which the bacterium does not grow any further, and is defined as a sterilization treatment of less than 10-6. ..
 紫外線発光手段101は、所定の主波長の紫外線(UV:ultraviolet)を出力可能な手段である。より詳細には、紫外線(紫外光)の内の短波長(近紫外線)、特にUVC領域の波長の光を出力可能であり、この光エネルギーによって菌(細菌)のデオキシリボ核酸(DNA)を直接破壊することで菌を不活化する能力を有するUV光源を有している。 The ultraviolet light emitting means 101 is a means capable of outputting ultraviolet rays (UV: ultraviolet) having a predetermined main wavelength. More specifically, it is possible to output light with a short wavelength (near ultraviolet light) in ultraviolet light (ultraviolet light), especially light with a wavelength in the UVC region, and this light energy directly destroys the deoxyribonucleic acid (DNA) of bacteria (bacteria). It has a UV light source that has the ability to inactivate bacteria by doing so.
 本実施形態の紫外線発光手段101は例えば、壁面、パネル材、板材などの面状の基材Bの表面に、上記のUV光源が少なくとも基材Bの面に略垂直な第三の方向D(図示の破線の方向)に紫外光を出力(出射)可能となるように複数設けられており、それぞれは所定間隔で離間して配置されている。 The ultraviolet light emitting means 101 of the present embodiment has, for example, a third direction D (in which the UV light source is at least substantially perpendicular to the surface of the base material B on the surface of the surface of the surface base material B such as a wall surface, a panel material, or a plate material). A plurality of ultraviolet rays are provided so as to be able to output (exit) ultraviolet light in the direction of the broken line in the figure), and each of them is arranged at a predetermined interval.
 UV光源は、例えば直管型の低圧水銀ランプ(低圧UVランプ)LPであり、点灯中の内部圧力(水銀蒸気圧)が100Pa以下の水銀蒸気中のアーク放電の発光を利用する放電ランプ(金属蒸気放電ランプ)である。低圧水銀ランプ(低圧UVランプ)LPが出力する光の主波長は、例えば、250nm~260nmであり、好適には253nm~255nmであり、より好適には、253.5nm~254nm(例えば、253.7nm)である。 The UV light source is, for example, a straight tube type low-pressure mercury lamp (low-pressure UV lamp) LP, and a discharge lamp (metal) that utilizes the light emission of arc discharge in mercury vapor whose internal pressure (mercury vapor pressure) during lighting is 100 Pa or less. Steam discharge lamp). The main wavelength of the light output by the low-pressure mercury lamp (low-pressure UV lamp) LP is, for example, 250 nm to 260 nm, preferably 253 nm to 255 nm, and more preferably 253.5 nm to 254 nm (for example, 253. 7 nm).
 また、低圧水銀ランプLPは、紫外線の少なくとも出射方向前方にオゾンの生成を阻害する阻害手段(不図示)が設けられる。阻害手段は、例えば、200nm以下の波長の光(その一部、光成分)をカットするオゾンレス石英ガラスで構成された低圧水銀ランプLPのランプバルブである。紫外線のうち波長184.9nmの遠紫外線は、空気中の酸素同士の反応を引き起こし、オゾンを発生する。本実施形態の低圧水銀ランプLPは、阻害手段(石英ガラスのランプバルブ)を透過させることによって出射する紫外線のうちオゾンを生成する184.9nmの波長の光(光成分)をカットしている。 Further, the low-pressure mercury lamp LP is provided with an inhibitory means (not shown) that inhibits the production of ozone at least in front of the emission direction of ultraviolet rays. The inhibiting means is, for example, a lamp bulb of a low-pressure mercury lamp LP made of ozoneless quartz glass that blocks light having a wavelength of 200 nm or less (a part thereof, an optical component). Of the ultraviolet rays, far ultraviolet rays having a wavelength of 184.9 nm cause a reaction between oxygen in the air and generate ozone. The low-pressure mercury lamp LP of the present embodiment cuts light (light component) having a wavelength of 184.9 nm, which produces ozone, among the ultraviolet rays emitted by transmitting the blocking means (a lamp valve made of quartz glass).
 また、低圧水銀ランプLPの周囲またその近傍には、紫外線の照射方向を所定方向に集光させる集光手段(不図示)を設けても良い。集光手段は例えばリフレクター、スクリーンまたはレンズなど、光の絞込み(集束)機能を有する部材である。 Further, a condensing means (not shown) for condensing the irradiation direction of ultraviolet rays in a predetermined direction may be provided around or in the vicinity of the low-pressure mercury lamp LP. The light collecting means is a member having a light focusing (focusing) function, such as a reflector, a screen, or a lens.
 なお本実施形態の紫外線発光手段101は、出力波長が、紫外光の内の短波長であるUVC領域の光であって、その光エネルギーにより細菌のDNAを直接破壊することで細菌類を不活化する能力を有するUV光源であればよく、例えば、低圧水銀ランプLPに代えて、LED(light emitting diode)のUVランプであってもよい。 The ultraviolet light emitting means 101 of the present embodiment is light in the UVC region whose output wavelength is a short wavelength of ultraviolet light, and inactivates bacteria by directly destroying the DNA of the bacteria by the light energy. Any UV light source having the ability to emit light may be used, and for example, instead of the low-pressure mercury lamp LP, a UV lamp of an LED (light emerging diode) may be used.
 水銀灯以外の紫外線を出力することが出来る光源として代表的なものに水銀レスで紫外領域の光を得ることが可能なUV-LEDがある。このUV-LEDの中でUVC領域からUVB領域、特に260nmから285nmに輝線を持ち単一波長の光を出力出来るUV-LED光源は、発光効率がよく照度低下がし難い特性と長寿命化が図られており、殺菌波長領域であるUVC領域の波長の光の出力にも合致している。すなわち、UV-LED光源においても高い殺菌効果が得られることから、本発明の実施形態として殺菌波長領域の波長の光を出力する光源として、低圧水銀ランプLPに変えてUV-LEDを用いても良い。そして、UV-LEDの場合は、線光源となるように個々のUV-LEDを線状に配置してもよいし、面光源となるように個々のUV-LEDをマトリクス状に配置してもよい。 A typical light source that can output ultraviolet rays other than mercury lamps is a UV-LED that can obtain light in the ultraviolet region without mercury. Among these UV-LEDs, the UV-LED light source, which has a emission line from the UVC region to the UVB region, particularly 260 nm to 285 nm and can output light of a single wavelength, has good luminous efficiency and is difficult to reduce the illuminance, and has a long life. It is designed and matches the output of light having a wavelength in the UVC region, which is the sterilization wavelength region. That is, since a high bactericidal effect can be obtained even with a UV-LED light source, as an embodiment of the present invention, a UV-LED may be used instead of the low-pressure mercury lamp LP as a light source for outputting light having a wavelength in the sterilization wavelength region. good. In the case of UV-LEDs, the individual UV-LEDs may be arranged linearly so as to be a linear light source, or the individual UV-LEDs may be arranged in a matrix so as to be a surface light source. Good.
 この例における紫外線発光手段101は、対象領域Sへの紫外線の照射面積がなるべく大きくなるよう、十分な面積を確保することが望ましく、例えば、第二の方向(高さ方向)Vは、区画手段150の高さに近い高さにすると望ましい。第一の方向(幅方向)Hにおいては、例えば、一の紫外線発光手段101の幅方向の長さを大きく確保するものであってもよいし、複数の紫外線発光手段101(紫外線照射装置100)を幅方向に並べる構成としてもよい。また、低圧水銀ランプやUV-LEDなどのUVランプLPは、基材B上に偏りなく(なるべく均一、均等に)配置することが望ましい。 It is desirable that the ultraviolet light emitting means 101 in this example secures a sufficient area so that the area of irradiation of the target area S with ultraviolet rays is as large as possible. For example, the second direction (height direction) V is the partitioning means. It is desirable that the height is close to 150. In the first direction (width direction) H, for example, one ultraviolet light emitting means 101 may have a large length in the width direction, or a plurality of ultraviolet light emitting means 101 (ultraviolet irradiation device 100). May be arranged in the width direction. Further, it is desirable that the UV lamp LPs such as the low-pressure mercury lamp and the UV-LED are arranged evenly (as uniformly and evenly as possible) on the base material B.
 遮断手段105は、紫外線発光手段101が出力した人体に有害な紫外線の少なくとも一部を遮断する手段であり、その少なくとも一部が紫外線発光手段101に対向配置可能に構成される。具体的に、本実施形態の遮断手段105は、少なくとも殺菌波長領域(UVC領域)の紫外線を遮断し、より具体的には、例えば、UVC領域およびUVB領域(人体への許容基準値以外の波長領域)の紫外線を遮断する(以下、本実施形態において単に「UVC領域の(波長の)紫外線を遮断する」と記載している遮断手段105含め、全ての遮断手段105において同様)。 The blocking means 105 is a means for blocking at least a part of the ultraviolet rays output by the ultraviolet light emitting means 101 that are harmful to the human body, and at least a part of the blocking means 105 can be arranged to face the ultraviolet emitting means 101. Specifically, the blocking means 105 of the present embodiment blocks at least ultraviolet rays in the sterilization wavelength region (UVC region), and more specifically, for example, UVC region and UVB region (wavelengths other than the allowable reference value for the human body). Blocks ultraviolet rays in the region) (hereinafter, the same applies to all the blocking means 105 including the blocking means 105 described simply as "blocking the ultraviolet rays (of the wavelength) in the UVC region" in the present embodiment).
 カバー手段103は一例として、図2(A)に示すように、少なくとも殺菌波長領域(UVC領域)の波長の光(紫外線)を透過可能な透明部材(ガラスや樹脂など)である。またこの例のカバー手段103には殺菌波長領域(UVC領域)の紫外線を遮断する遮断手段105が重畳するように設けられる。この場合の遮断手段105は、例えば、少なくともUVC領域の波長の光(紫外線)をカットする板状のパネルまたはフィルタである。 As an example, the cover means 103 is a transparent member (glass, resin, etc.) capable of transmitting light (ultraviolet rays) having a wavelength of at least the sterilization wavelength region (UVC region), as shown in FIG. 2 (A). Further, the cover means 103 of this example is provided so as to superimpose the blocking means 105 for blocking ultraviolet rays in the sterilization wavelength region (UVC region). The blocking means 105 in this case is, for example, a plate-shaped panel or filter that cuts light (ultraviolet rays) having a wavelength in at least the UVC region.
 また、本実施形態の遮断手段105は、例えばカバー手段103と一体的に構成されるなどし、カバー手段103に含まれるものであってもよい。この場合、カバー手段103は、例えば、殺菌波長領域(UVC領域)の紫外線を遮断するUVカット材料(遮断手段105)を含むガラス等の透明部材(例えば、UVカットガラス)、またはUVカットフィルムが貼り付けられるなどされた透明部材である。 Further, the blocking means 105 of the present embodiment may be included in the covering means 103, for example, being integrally configured with the covering means 103. In this case, the cover means 103 is, for example, a transparent member (for example, UV cut glass) such as glass containing a UV cut material (blocking means 105) that blocks ultraviolet rays in the sterilization wavelength region (UVC region), or a UV cut film. It is a transparent member that has been pasted.
 本実施形態の紫外線照射装置100の紫外線発光手段101は、通常の運転時(作動時、電源投入後)には、連続して紫外線を前方(紫外線出射方向)に照射する。そして、遮断手段105は、紫外線発光手段101が発光(出力)する紫外線のうち、少なくとも殺菌波長領域(UVC領域)の波長の光について、カバー手段103よりも前方(紫外線出射方向)への出射を遮断する遮断状態と、カバー手段103よりも前方に出射する非遮断状態とを切替可能に構成されている。 The ultraviolet light emitting means 101 of the ultraviolet irradiation device 100 of the present embodiment continuously irradiates ultraviolet rays forward (in the direction of ultraviolet emission) during normal operation (during operation, after the power is turned on). Then, the blocking means 105 emits light having a wavelength in the sterilization wavelength region (UVC region) in front of the covering means 103 (in the ultraviolet emitting direction) among the ultraviolet rays emitted (output) by the ultraviolet emitting means 101. It is configured to be able to switch between a blocking state for blocking and a non-blocking state for emitting light in front of the cover means 103.
 この紫外線の遮断状態と非遮断状態の切替は、遮断手段105を紫外線発光手段101に対して相対的に移動(例えば、遮断手段105の物理的な相対移動)させることでUVC領域の波長を有する紫外線の遮断状態と非遮断状態とを切り替える。以下、「遮断手段105(カバー手段103)によって遮断(カット)する紫外線」とは、少なくとも殺菌波長領域(UVC領域)の波長の紫外線、より具体的にはUVC領域の波長と、UVB領域の波長のうち人体に有害な波長の紫外線を意味するものとする。 The switching between the blocking state and the non-blocking state of ultraviolet rays has a wavelength in the UVC region by moving the blocking means 105 relative to the ultraviolet emitting means 101 (for example, the physical relative movement of the blocking means 105). Switch between UV blocking and non-blocking states. Hereinafter, the "ultraviolet rays blocked (cut) by the blocking means 105 (covering means 103)" are at least ultraviolet rays having a wavelength in the sterilization wavelength region (UVC region), more specifically, a wavelength in the UVC region and a wavelength in the UVB region. Of these, it shall mean ultraviolet rays with wavelengths that are harmful to the human body.
 具体的に、カバー手段103がUVC領域の波長の紫外線を透過するものであり、これにUVC領域の波長の紫外線を遮断する遮断手段(UVカットフィルムなど)105が設けられている場合、遮断状態では、同図(A)に示すように、カバー手段103と遮断手段105を紫外線発光手段101の前方(紫外線の出射方向)に配置して、紫外線がカバー手段103を透過して前方(対象領域S)に照射されることを遮断する。 Specifically, when the cover means 103 transmits ultraviolet rays having a wavelength in the UVC region and is provided with a blocking means (such as a UV cut film) 105 that blocks ultraviolet rays having a wavelength in the UVC region, the blocking state is provided. Then, as shown in FIG. 6A, the cover means 103 and the blocking means 105 are arranged in front of the ultraviolet light emitting means 101 (in the direction of emitting ultraviolet rays), and the ultraviolet rays pass through the cover means 103 and are in front (target area). Blocks the irradiation of S).
 一方、非遮断状態では、同図(B)に示すように、少なくとも遮断手段105を紫外線発光手段101の前方から退避させるように紫外線発光手段101に対して相対的に移動させ、紫外線が(カバー手段103を透過して)直接的にカバー手段103より前方(対象領域S)に照射されることを許容する。 On the other hand, in the non-blocking state, as shown in FIG. 3B, at least the blocking means 105 is moved relative to the ultraviolet emitting means 101 so as to retract from the front of the ultraviolet emitting means 101, and the ultraviolet rays (cover). It is allowed to be directly irradiated in front of the cover means 103 (target area S) (through the means 103).
 また、カバー手段103がUVC領域の波長の紫外線をカットする(遮断手段105を含む)UVカットガラス等の場合、遮断状態では、同図(A)に示すように、カバー手段103(遮断手段105)を紫外線発光手段101の前方(紫外線の出射方向)に配置して、紫外線がカバー手段103を透過して前方(対象領域S)に照射されることを遮断する。 Further, when the cover means 103 is a UV cut glass or the like that cuts ultraviolet rays having a wavelength in the UVC region (including the blocking means 105), in the blocking state, as shown in FIG. ) Is arranged in front of the ultraviolet light emitting means 101 (in the direction of emitting ultraviolet rays) to block ultraviolet rays from passing through the cover means 103 and being irradiated to the front (target region S).
 一方、非遮断状態では、同図(C)に示すように、カバー手段103の少なくとも一部を紫外線発光手段101の前方から退避させるように紫外線発光手段101に対して相対的に移動させ、紫外線が対象領域Sに照射されることを許容する。 On the other hand, in the non-blocking state, as shown in FIG. 3C, at least a part of the cover means 103 is moved relative to the ultraviolet light emitting means 101 so as to be retracted from the front of the ultraviolet light emitting means 101, and the ultraviolet rays are emitted. Allows the target area S to be irradiated with.
 このように、本実施形態の紫外線照射装置100は、紫外線発光手段101によって紫外線を出力した状態で、遮断手段105によって、遮断状態と非遮断状態を切り替え可能に構成されている。このような構成により、短時間で効率的に対象領域Sの殺菌が行える。 As described above, the ultraviolet irradiation device 100 of the present embodiment is configured so that the blocking means 105 can switch between the blocking state and the non-blocking state while the ultraviolet light emitting means 101 outputs the ultraviolet rays. With such a configuration, the target area S can be sterilized efficiently in a short time.
 UVランプLPは、そのオン(点灯)、オフ(消灯)によって殺菌処理の作動と非作動を切り替える。しかしながら、UVランプLPがオフ(消灯)の状態から、十分な殺菌能力を得るための出力に達するまでには所定の時間が必要であり、この時間はオフの状態が長いほど長くなる。 The UV lamp LP switches between operation and non-operation of the sterilization process depending on whether it is on (lit) or off (off). However, it takes a predetermined time from the state in which the UV lamp LP is off (turned off) to reach the output for obtaining a sufficient sterilizing ability, and this time becomes longer as the off state is longer.
 具体的には、UVランプLPが特に低圧水銀ランプである場合、UVランプLPを使用する点灯(温度)環境にも依るが、一例として、前回UVランプLPをオフ(消灯)した状態から数十分程度経過している場合は、UVランプLPのオン(点灯)後、十分な殺菌能力が得られる出力(ピーク出力)に達するまでに1分程度要し、前回UVランプLPをオフ(消灯)した状態から24時間程度経過している場合は、UVランプLPのオン(点灯)後、十分な殺菌能力が得られる出力(ピーク出力)に達するまでに2分~3分程度要し、UVランプLPが完全に冷却している場合(例えば、前回UVランプLPをオフ(消灯)した状態から数時間~24時間以上が経過している場合など)には、UVランプLPのオン(点灯)後、十分な殺菌能力が得られる出力(ピーク出力)に達するまでに5分程度の時間を要する。 Specifically, when the UV lamp LP is a low-pressure mercury lamp, it depends on the lighting (temperature) environment in which the UV lamp LP is used, but as an example, dozens of UV lamp LPs have been turned off (turned off) last time. If about a minute has passed, it takes about 1 minute to reach the output (peak output) where sufficient sterilization ability can be obtained after the UV lamp LP is turned on (lit), and the previous UV lamp LP is turned off (turned off). If about 24 hours have passed since the UV lamp was turned on, it takes about 2 to 3 minutes to reach the output (peak output) at which sufficient sterilization ability can be obtained after the UV lamp LP is turned on (lights up). When the LP is completely cooled (for example, when several hours to 24 hours or more have passed since the last time the UV lamp LP was turned off (turned off)), after the UV lamp LP is turned on (lit). It takes about 5 minutes to reach the output (peak output) at which sufficient sterilizing ability can be obtained.
 また、UVランプLPが特に低圧水銀ランプである場合、その発光効率は、内部に封入された水銀(蒸発温度48℃)の蒸気圧に依存するので、蒸気圧が安定しない環境あるいは、高温環境下などでは所定の出力になるまでの時間にばらつきが出るなど出力特性が安定しない問題もある。 Further, when the UV lamp LP is a low-pressure mercury lamp in particular, its luminous efficiency depends on the vapor pressure of mercury (evaporation temperature 48 ° C.) enclosed inside, so that the vapor pressure is not stable or in a high temperature environment. In such cases, there is a problem that the output characteristics are not stable, such as variations in the time required to reach a predetermined output.
 つまり、殺菌処理を行わない期間に紫外線発光手段101をオフ(消灯)してしまうと、殺菌処理を行いたい場合、所定の出力に達するまでに時間を要したり、その時間にばらつきが生じることになる。具体的には、例えば、病院等においては(感染力の強い)ウィルスに感染した患者を対象領域Sにて診察・処置した後に別の患者が同じ対象領域Sを利用する際、当該別の患者や医師等病院スタッフへの二次感染を防止するために患者の処置が終了する毎に当該対象領域S内(空間)の殺菌が望まれる。しかしながら、紫外線光源灯による殺菌の開始に時間が掛かる(時間が安定しない)と、次の患者が入室するまでの待機時間も長くなるなどの問題がある。 That is, if the ultraviolet light emitting means 101 is turned off (turned off) during the period when the sterilization treatment is not performed, it may take time to reach a predetermined output or the time may vary when the sterilization treatment is desired. become. Specifically, for example, in a hospital or the like, when a patient infected with a (strongly infectious) virus is examined and treated in the target area S and then another patient uses the same target area S, the other patient. In order to prevent secondary infection to hospital staff such as doctors and doctors, it is desirable to sterilize the target area S (space) every time the patient's treatment is completed. However, if it takes a long time to start sterilization with an ultraviolet light source lamp (the time is not stable), there is a problem that the waiting time until the next patient enters the room becomes long.
 そこで本実施形態では、対象領域Sの殺菌処理を行う前から(例えば、対象領域Sの使用開始前などから)予め紫外線発光手段101の発光を開始しておき(図2(A))、殺菌処理が必要ない場合(有人の場合など殺菌が行えない場合)には、遮断手段105によって人体に有害な紫外線を遮断する(図2(A))。そして、殺菌処理が必要な場合(無人の場合)に遮断手段105(カバー手段103)を開放するなど紫外線発光手段101の前方から退避させて瞬時に遮断状態から非遮断状態に切り替える(同図(B),同図(C))。この場合、紫外線発光手段101はオン(点灯)から十分な時間が経過しており、殺菌処理に十分な出力が得られている。また、紫外線発光手段101は、例えば壁面と同程度などの大きな面積にUVランプLPが(万遍なく)配置されている。このため、遮断手段105(カバー手段103)を開放すると即座に、対象領域S全体に直接的に紫外線を照射することができる。 Therefore, in the present embodiment, the ultraviolet light emitting means 101 is started to emit light in advance (for example, before the start of use of the target area S) before the target area S is sterilized (FIG. 2 (A)) and sterilized. When treatment is not necessary (when sterilization cannot be performed, such as when manned), ultraviolet rays harmful to the human body are blocked by the blocking means 105 (FIG. 2 (A)). Then, when sterilization treatment is required (unmanned), the blocking means 105 (covering means 103) is opened, and the ultraviolet light emitting means 101 is retracted from the front to instantly switch from the blocking state to the non-blocking state (FIG. B), Fig. (C)). In this case, a sufficient time has passed since the ultraviolet light emitting means 101 was turned on (lit), and a sufficient output for the sterilization process was obtained. Further, in the ultraviolet light emitting means 101, the UV lamp LP is (evenly) arranged in a large area such as the same as the wall surface. Therefore, as soon as the blocking means 105 (covering means 103) is opened, the entire target region S can be directly irradiated with ultraviolet rays.
 なお、UVランプがUV-LEDの場合は、ランプ点灯時即座に出力100%に至らせることができるため、低水銀ランプとは異なる即時点灯、即時消灯の制御が行える。 If the UV lamp is a UV-LED, the output can be reached to 100% immediately when the lamp is lit, so it is possible to control immediate lighting and immediate extinguishing, which is different from the low mercury lamp.
 ここで、カバー手段103は、少なくとも一部が紫外線発光手段101に対向配置され、好適には少なくとも一部に開口を有するように構成すると好適である。例えば図2(D)に示すように、カバー手段103はその少なくとも一部が紫外線発光手段101に対向配置され、紫外線発光手段101との間で空気の流路107を形成可能に構成される。すなわちカバー手段103は、一端と他端(この例では第二方向(高さ(鉛直)方向)Vの上端および下端)に開口が設けられて開放端となっており、これにより高さ方向Vに空気の流路107が形成される。 Here, it is preferable that at least a part of the cover means 103 is arranged to face the ultraviolet light emitting means 101, and preferably at least a part of the cover means 103 has an opening. For example, as shown in FIG. 2D, at least a part of the cover means 103 is arranged to face the ultraviolet light emitting means 101, and an air flow path 107 can be formed between the cover means 103 and the ultraviolet light emitting means 101. That is, the cover means 103 has openings at one end and the other end (in this example, the upper end and the lower end of the second direction (height (vertical) direction) V) to be open ends, whereby the height direction V The air flow path 107 is formed in the air.
 例えば、カバー手段103は図3に示すように上面視においてコの字状となるように、前面カバー部103Fとこれに連続する側面カバー部103Sとを有する。より具体的には、紫外線発光手段101は、対象領域S内の或る略鉛直面(例えば、床面に略垂直な面)内に配置され、前面カバー部103Fは、紫外線発光手段101と第三の方向Dにおける所定の距離D1で離間し、これとは異なる略鉛直面内に対向配置される。紫外線発光手段101と前面カバー部103Fの距離D1は、紫外線発光手段101の発熱によって生じる空気の自然対流が可能(必要十分)な程度であり、一例として100mm~200mm程度である。 For example, the cover means 103 has a front cover portion 103F and a side cover portion 103S continuous thereto so as to have a U shape in a top view as shown in FIG. More specifically, the ultraviolet light emitting means 101 is arranged in a substantially vertical surface (for example, a surface substantially perpendicular to the floor surface) in the target area S, and the front cover portion 103F is the ultraviolet light emitting means 101 and the first. They are separated by a predetermined distance D1 in the three directions D, and are arranged to face each other in a substantially vertical plane different from this. The distance D1 between the ultraviolet light emitting means 101 and the front cover portion 103F is such that natural convection of air generated by the heat generated by the ultraviolet light emitting means 101 is possible (necessary and sufficient), and is about 100 mm to 200 mm as an example.
 側面カバー部103Sは、前面カバー部103Fと一体的に紫外線発光手段101を覆うように、前面カバー部103Fの第一の方向(幅方向)Hにおける両端部に連続して設けられる。 The side cover portion 103S is continuously provided at both ends of the front cover portion 103F in the first direction (width direction) H so as to integrally cover the ultraviolet light emitting means 101 with the front cover portion 103F.
 つまり、カバー手段103(前面カバー部103Fと側面カバー部103S)は、紫外線発光手段101とともに略直方体形状を成し、その上端部と下端部が開放されおり、紫外線発光手段101と、カバー手段103とによって区画された領域(カバー手段103と紫外線発光手段101との間の領域)は、空気が流通可能な流路107が形成される。そして、紫外線照射装置100は、運転(作動時)には、連続して紫外線発光手段101から紫外線を発光している。 That is, the cover means 103 (front cover portion 103F and side cover portion 103S) forms a substantially rectangular parallelepiped shape together with the ultraviolet light emitting means 101, and the upper end portion and the lower end portion thereof are open, so that the ultraviolet light emitting means 101 and the cover means 103 In the region partitioned by the above (the region between the cover means 103 and the ultraviolet light emitting means 101), a flow path 107 through which air can flow is formed. Then, the ultraviolet irradiation device 100 continuously emits ultraviolet rays from the ultraviolet light emitting means 101 during operation (during operation).
 図2(D)に示すように、流路107内の空気は、紫外線発光手段101からの発光で熱せられて上昇する。紫外線発光手段101と前面カバー部103Fの距離D1は、紫外線発光手段101の発熱によって生じる空気の自然対流が可能な程度(自然対流を阻害しない程度、自然対流に必要十分な程度)である。 As shown in FIG. 2D, the air in the flow path 107 is heated by the light emitted from the ultraviolet light emitting means 101 and rises. The distance D1 between the ultraviolet light emitting means 101 and the front cover portion 103F is such that natural convection of air generated by the heat generated by the ultraviolet light emitting means 101 is possible (a degree that does not hinder natural convection and a degree necessary and sufficient for natural convection).
 つまり、カバー手段103と紫外線発光手段101で区画された流路107が形成されている状態(カバー手段103で紫外線発光手段101が覆われている状態)では、その下端側から流入した空気に紫外線が照射され、流路107の上端側から流出可能となっており、自然対流によって、室内の(汚染された)空気が流路107の下端から流路107に進入し、紫外線発光手段101によって殺菌された空気が流路107の上端から対象領域Sに流出する。 That is, in a state where the flow path 107 partitioned by the cover means 103 and the ultraviolet light emitting means 101 is formed (the state in which the ultraviolet light emitting means 101 is covered by the cover means 103), ultraviolet rays are emitted into the air flowing in from the lower end side thereof. Is irradiated and can flow out from the upper end side of the flow path 107, and due to natural convection, indoor (contaminated) air enters the flow path 107 from the lower end of the flow path 107 and is sterilized by the ultraviolet light emitting means 101. The generated air flows out from the upper end of the flow path 107 to the target region S.
 このようにして、紫外線照射装置100は、別途の人為的、機械的な空気循環用の駆動手段を用いることなく、対象領域S内の空気を取り込んで紫外線を照射して殺菌し排出することで、殺菌後の清浄な空気を対象領域S内で循環させることができる。以下、紫外線照射装置100によって取り込んだ空気を殺菌し自然対流によって放出させることで清浄な空気を循環させる当該処理を「循環殺菌(処理)」と称する。 In this way, the ultraviolet irradiation device 100 takes in the air in the target region S, irradiates it with ultraviolet rays, sterilizes it, and discharges it without using a separate driving means for artificial and mechanical air circulation. , Clean air after sterilization can be circulated in the target area S. Hereinafter, the process of circulating clean air by sterilizing the air taken in by the ultraviolet irradiation device 100 and releasing it by natural convection is referred to as "circulation sterilization (treatment)".
 なお、カバー手段103は、常時紫外線発光手段101を覆う構成とし、遮断手段105の開閉によって遮断状態と非遮断状態を切り替えるようにすれば、紫外線の遮断状態であっても非遮断状態であっても循環殺菌が行える。 If the cover means 103 is configured to constantly cover the ultraviolet light emitting means 101 and the blocking state and the non-blocking state are switched by opening and closing the blocking means 105, the UV emitting state can be in the non-blocking state. Can also be circulated and sterilized.
 一方、遮断手段105を含むカバー手段103の開閉によって紫外線の遮断状態と非遮断状態を切り替える構成の場合は、遮断状態の場合に循環殺菌が行える。 On the other hand, in the case of a configuration in which the ultraviolet ray blocking state and the non-blocking state are switched by opening and closing the cover means 103 including the blocking means 105, circulation sterilization can be performed in the blocking state.
 <紫外線照射装置および紫外線照射システムの動作例>
 図2および図3を参照して紫外線照射装置100および紫外線照射システム200の具体的な動作例ついて更に説明する。一例として、遮断手段105は、前面カバー部103Fの面方向に沿って、紫外線発光手段101の前面を覆う状態(図2(A),図2(D)、図3(A))と開放する状態(図2(B)、図2(C)、図3(B),図3(C))とに移動(開閉)可能に構成されているとする。
<Operation example of UV irradiation device and UV irradiation system>
A specific operation example of the ultraviolet irradiation device 100 and the ultraviolet irradiation system 200 will be further described with reference to FIGS. 2 and 3. As an example, the blocking means 105 is opened so as to cover the front surface of the ultraviolet light emitting means 101 along the surface direction of the front cover portion 103F (FIGS. 2 (A), 2 (D), 3 (A)). It is assumed that the state (FIG. 2 (B), FIG. 2 (C), FIG. 3 (B), FIG. 3 (C)) can be moved (opened and closed).
 紫外線照射装置100は、一例として駆動制御手段109によって駆動される。駆動制御手段109は、例えば、駆動電源と制御ユニットなどであり、紫外線発光手段101による紫外線の照射/非照射の制御、および遮断手段105(カバー手段103)による紫外線の遮断状態と非遮断状態の切替の制御等を行う。また、駆動制御手段109には運転制御ブレーカーや点灯制御タイマーその他、駆動制御に関わるセンサおよび当該センサからの信号の処理手段なども含む。 The ultraviolet irradiation device 100 is driven by the drive control means 109 as an example. The drive control means 109 is, for example, a drive power supply and a control unit, and controls the irradiation / non-irradiation of ultraviolet rays by the ultraviolet light emitting means 101, and the ultraviolet ray blocking state and the non-blocking state by the blocking means 105 (covering means 103). Controls switching, etc. Further, the drive control means 109 also includes an operation control breaker, a lighting control timer, a sensor related to drive control, a signal processing means from the sensor, and the like.
 駆動電源は、対象領域Sの電源等と接続し、複数の低圧水銀ランプLPを同期させ、あるいはそれぞれを個別に効率よく点灯/消灯させる。また制御ユニットは、CPU、RAM、及びROM等から構成される制御回路を含み、各種制御を実行する。CPUは、いわゆる中央演算処理装置であり、低圧水銀ランプLPの点灯/消灯の制御プログラムを含む各種プログラムが実行されて各種機能を実現する。RAMは、CPUの作業領域として使用される。ROMは、CPUで実行される基本OSやプログラムを記憶する。 The drive power supply is connected to the power supply of the target area S, etc., and a plurality of low-voltage mercury lamp LPs are synchronized, or each of them is efficiently turned on / off individually. Further, the control unit includes a control circuit composed of a CPU, RAM, ROM, and the like, and executes various controls. The CPU is a so-called central processing unit, and various programs including a control program for turning on / off the low-pressure mercury lamp LP are executed to realize various functions. The RAM is used as a work area of the CPU. The ROM stores the basic OS and programs executed by the CPU.
 なお、駆動制御手段109による駆動に加えて、手動で紫外線発光手段101による紫外線の照射/非照射の制御、および遮断手段105(カバー手段103)による紫外線の遮断状態と非遮断状態の切替の制御等を行うこともできる。また、駆動制御手段109による駆動の少なくとも一部(例えば、紫外線発光手段101による紫外線の照射/非照射の制御、および遮断手段105(カバー手段103)による紫外線の遮断状態と非遮断状態の切替の制御等の少なくとも一部)を手動により行なってもよい。 In addition to being driven by the drive control means 109, the ultraviolet light emitting means 101 manually controls the irradiation / non-irradiation of ultraviolet rays, and the blocking means 105 (covering means 103) controls switching between the blocking state and the non-blocking state of ultraviolet rays. Etc. can also be performed. Further, at least a part of the drive by the drive control means 109 (for example, control of ultraviolet irradiation / non-irradiation by the ultraviolet light emitting means 101, and switching between the ultraviolet blocking state and the non-blocking state by the blocking means 105 (covering means 103)). At least a part of control etc.) may be performed manually.
 図2(A)、同図(D),図3(A)に示すように紫外線発光手段101を覆うように遮断手段105を移動(閉鎖)させると、紫外線発光手段101から出力された紫外線(殺菌波長領域(UVC領域)の紫外線、破線で示す)はカバー手段103(前面カバー部103F)を透過せず、前方(対象領域S)へも進行(到達)しない遮断状態となる。 When the blocking means 105 is moved (closed) so as to cover the ultraviolet light emitting means 101 as shown in FIGS. 2 (A), 2 (D), and 3 (A), the ultraviolet rays output from the ultraviolet light emitting means 101 ( Ultraviolet rays in the sterilization wavelength region (UVC region) (indicated by a broken line) do not pass through the cover means 103 (front cover portion 103F), and are in a blocking state in which they do not progress (reach) to the front (target region S).
 一方、図2(B)、同図(C)、図3(B)または図3(C)に示すように、紫外線発光手段101が現れる(又は露出する)ように遮断手段105を移動(開放)させると、紫外線発光手段101から出力された紫外線(殺菌波長領域(UVC領域)の紫外線)が(カバー手段103(前面カバー部103F)を透過して)前面カバー部103Fの前方(対象領域S)へ進行(到達)する非遮断状態となる。 On the other hand, as shown in FIGS. 2 (B), 3 (C), 3 (B) or 3 (C), the blocking means 105 is moved (opened) so that the ultraviolet light emitting means 101 appears (or is exposed). ), The ultraviolet rays (ultraviolet rays in the sterilization wavelength region (UVC region)) output from the ultraviolet light emitting means 101 (transmitted through the cover means 103 (front cover portion 103F)) are in front of the front cover portion 103F (target region S). ) Will be in a non-blocking state.
 ここで、図2(B),図3(B)に示す構成では、カバー手段103は紫外線発光手段101に対して固定され(相対的に移動せず)紫外線の透過が可能であるとする。そして遮断手段105は、紫外線発光手段101のみならず、カバー手段103に対しても相対的に移動可能に構成されることにより遮断状態と非遮断状態の切替が可能となっている。 Here, in the configurations shown in FIGS. 2 (B) and 3 (B), it is assumed that the cover means 103 is fixed to the ultraviolet light emitting means 101 (it does not move relatively) and can transmit ultraviolet rays. The blocking means 105 is configured to be movable relative to not only the ultraviolet light emitting means 101 but also the covering means 103, so that the blocking state and the non-blocking state can be switched.
 一方、図2(C)、図3(C)は、前面カバー部103Fと遮断手段105が一体的に設けられて、前面カバー部103F自体が遮断手段105を兼ねる構成である。具体的には、カバー手段103の少なくとも前面カバー部103Fに重畳して一体的に例えばパネル状の遮断手段105が設けられる構成であってもよいし、カバー手段103の少なくとも前面カバー部103Fの内部に例えばパネル状の遮断手段105が設けられ(内蔵され)る構成であってもよい。あるいは、前面カバー部103Fの材料に紫外線カット材などの遮断手段105が含有(混在)され、あるいは塗布される構成であってもよい。この場合、前面カバー部103F(遮断手段105)が、紫外線発光手段101の前面を覆う状態と開放する状態とに移動(開閉)可能に構成される。 On the other hand, in FIGS. 2C and 3C, the front cover portion 103F and the blocking means 105 are integrally provided, and the front cover portion 103F itself also serves as the blocking means 105. Specifically, for example, a panel-shaped blocking means 105 may be integrally provided so as to be superimposed on at least the front cover portion 103F of the cover means 103, or at least the inside of the front cover portion 103F of the cover means 103. For example, a panel-shaped blocking means 105 may be provided (built-in). Alternatively, the material of the front cover portion 103F may contain (mix) or apply a blocking means 105 such as an ultraviolet ray blocking material. In this case, the front cover portion 103F (blocking means 105) is configured to be movable (open / close) between a state of covering the front surface of the ultraviolet light emitting means 101 and a state of opening.
 図2(C)、図3(C)に示す構成では、紫外線発光手段101が現れる(又は露出する)ように前面カバー部103F(遮断手段105)を移動(開放)させると、紫外線発光手段101から出力された紫外線が前方(対象領域S)へ進行(到達)する非遮断状態となる。一方、図2(A)、図3(A)に示すように紫外線発光手段101を覆うように前面カバー部103F(遮断手段105)を移動(閉鎖)させると、紫外線発光手段101から出力された紫外線は前面カバー部103Fを透過せず、前方(対象領域S)へも進行(到達)しない遮断状態となる。 In the configurations shown in FIGS. 2 (C) and 3 (C), when the front cover portion 103F (blocking means 105) is moved (opened) so that the ultraviolet light emitting means 101 appears (or is exposed), the ultraviolet light emitting means 101 The ultraviolet rays output from the above are in a non-blocking state in which they travel (reach) forward (target area S). On the other hand, when the front cover portion 103F (blocking means 105) is moved (closed) so as to cover the ultraviolet light emitting means 101 as shown in FIGS. 2 (A) and 3 (A), the output is output from the ultraviolet light emitting means 101. Ultraviolet rays do not pass through the front cover portion 103F and do not travel (reach) to the front (target area S), resulting in a blocking state.
 殺菌が可能な程度の(UVC領域の波長の)紫外線照射は、一般的には人体に有害である。本実施形態の紫外線照射装置100は、対象領域Sが有人の場合には、遮断手段105によって紫外線を遮断して、有害な紫外線が対象領域S(有人の領域)に進行(到達)することを防止する。 Irradiation of ultraviolet rays (wavelengths in the UVC region) that can be sterilized is generally harmful to the human body. In the ultraviolet irradiation device 100 of the present embodiment, when the target area S is manned, the ultraviolet rays are blocked by the blocking means 105, and harmful ultraviolet rays proceed (reach) to the target area S (manned area). To prevent.
 一方、対象領域Sが無人の場合には、遮断手段105を開放し、紫外線を非遮断状態として対象領域Sに照射し、対象領域S全体の殺菌処理を行う。この殺菌処理では、対象領域Sに存在する家具や壁、床および天井などの物(物体)のみならず、対象領域S内の空気も殺菌可能である。 On the other hand, when the target area S is unmanned, the blocking means 105 is opened, the target area S is irradiated with ultraviolet rays in a non-blocking state, and the entire target area S is sterilized. In this sterilization treatment, not only objects such as furniture, walls, floors and ceilings existing in the target area S, but also the air in the target area S can be sterilized.
 更に、カバー手段103と紫外線発光手段101によって流路107が形成される場合には、流路107内の空気の殺菌処理と自然対流による清浄な空気(殺菌された空気)の循環(循環殺菌)が可能である。 Further, when the flow path 107 is formed by the cover means 103 and the ultraviolet light emitting means 101, the air in the flow path 107 is sterilized and the clean air (sterilized air) is circulated by natural convection (circulation sterilization). Is possible.
 つまり、図2(A),同図(B),同図(D)および図3(A)、同図(B)に示すように、少なくとも前面カバー部103F(紫外線を透過可能である)が常時、紫外線発光手段101を覆う構成では、対象領域S内が無人で遮断手段105を開放した非遮断状態であっても流路107が形成されているため、対象領域Sに直接紫外線を照射することで、対象領域Sの空気を殺菌することができ、また同時に流路107内の空気を殺菌し、対象領域Sに清浄な空気を循環させることができる。そして、対象領域S内が有人の場合などに遮断手段105を閉鎖した遮断状態の場合には、対象領域Sへの紫外線の照射は遮断するものの、流路107内の空気を殺菌し、対象領域Sに清浄な空気を循環させることができる。 That is, as shown in FIGS. 2 (A), 2 (B), 3 (D), 3 (A), and 3 (B), at least the front cover portion 103F (which can transmit ultraviolet rays) is In the configuration that always covers the ultraviolet light emitting means 101, since the flow path 107 is formed even in the non-blocking state in which the target area S is unmanned and the blocking means 105 is opened, the target area S is directly irradiated with ultraviolet rays. As a result, the air in the target region S can be sterilized, and at the same time, the air in the flow path 107 can be sterilized and clean air can be circulated in the target region S. When the blocking means 105 is closed when the target region S is manned or the like, the target region S is blocked from being irradiated with ultraviolet rays, but the air in the flow path 107 is sterilized and the target region S is sterilized. Clean air can be circulated in S.
 一方、図2(C)、図3(C)に示すように、カバー手段103が遮断手段105を兼用する構成では、対象領域S内が無人で遮断手段105を開放した非遮断状態では流路107は形成されないが、対象領域Sに直接紫外線を照射することで、対象領域Sの空気を殺菌することができる。そして、対象領域S内が有人の場合などに遮断手段105(前面カバー部103F)を閉鎖した遮断状態の場合には、対象領域Sへの紫外線の照射は遮断するものの、流路107内の空気を殺菌し、対象領域Sに清浄な空気を循環させることができる。 On the other hand, as shown in FIGS. 2C and 3C, in the configuration in which the cover means 103 also serves as the blocking means 105, the flow path is in the non-blocking state in which the target area S is unmanned and the blocking means 105 is opened. Although 107 is not formed, the air in the target region S can be sterilized by directly irradiating the target region S with ultraviolet rays. When the blocking means 105 (front cover portion 103F) is closed when the target region S is manned, the irradiation of ultraviolet rays to the target region S is blocked, but the air in the flow path 107 is blocked. Can be sterilized and clean air can be circulated in the target area S.
 このように本実施形態の紫外線照射システム200は、区画手段150によって適宜、対象領域Sを区画し、対象領域S内に可搬型の紫外線照射装置100を配置(搬入)することができる。つまり、除菌装置等が整備されていない対象領域Sであっても、紫外線照射装置100を必要に応じて配置し、また、適宜移動させることができ、レイアウトも容易に変更可能となる。 As described above, in the ultraviolet irradiation system 200 of the present embodiment, the target area S can be appropriately partitioned by the partitioning means 150, and the portable ultraviolet irradiation device 100 can be arranged (carried in) in the target area S. That is, even in the target area S where the sterilization device or the like is not provided, the ultraviolet irradiation device 100 can be arranged as needed and can be moved as appropriate, and the layout can be easily changed.
 そして、遮断手段105の開放によって対象領域Sが無人の場合には紫外線発光手段101から対象領域Sへの紫外線を瞬時に非遮断状態とし、直接、対象領域Sに紫外線を広範囲に照射して(また、流路107を介して殺菌後の空気を循環させて)対象領域S内を効率よく殺菌処理することができる。 Then, when the target area S is unmanned due to the opening of the blocking means 105, the ultraviolet rays from the ultraviolet light emitting means 101 to the target area S are instantly unblocked, and the target area S is directly irradiated with the ultraviolet rays over a wide range ( Further, the inside of the target region S can be efficiently sterilized (by circulating the sterilized air through the flow path 107).
 また、対象領域Sが有人の場合には、遮断手段105の閉鎖によって紫外線発光手段101から対象領域Sへの紫外線を(発光は維持したまま)遮断状態とし、人体への紫外線の影響を避けつつも、流路107を介して殺菌後の空気を循環させて、対象領域S内を安全に殺菌処理することができる。つまり紫外線の遮断状態であっても、流路107に吸入された空気が、紫外線発光手段101により殺菌されるとともに、発熱により温度上昇し、自然対流で上部から流出することで清浄な空気を循環させることができる(循環殺菌が可能である)。また、機械的・人為的な空気の循環手段を用いないため、対象領域S(室内など)の使用中(作業中)であっても、気流を乱すことなく、持続的に空気を殺菌し、対象領域S内の菌数を減らすことができる。 When the target area S is manned, the blocking means 105 is closed to block the ultraviolet rays from the ultraviolet light emitting means 101 to the target area S (while maintaining the light emission), while avoiding the influence of the ultraviolet rays on the human body. Also, the sterilized air can be circulated through the flow path 107 to safely sterilize the inside of the target region S. That is, even in the state where ultraviolet rays are blocked, the air sucked into the flow path 107 is sterilized by the ultraviolet light emitting means 101, the temperature rises due to heat generation, and the air flows out from the upper part by natural convection to circulate clean air. (Circulation sterilization is possible). In addition, since no mechanical or artificial air circulation means is used, the air is continuously sterilized without disturbing the air flow even during use (working) in the target area S (indoors, etc.). The number of bacteria in the target area S can be reduced.
 なお、可搬型であれば、図示の構成に限らず、例えば、床面等への据え置き型や、天井や壁などからの吊り下げ(掛け下げ)型などであってもよい。 The portable type is not limited to the illustrated configuration, and may be, for example, a stationary type on the floor or the like, or a hanging type from the ceiling or a wall.
 図4は、本発明の実施形態にかかる紫外線照射装置100の駆動制御手段109に含まれる回路の一例を示すブロック図である。この例では、一例として6本のUVランプ(例えば、低圧水銀ランプ)LP1~LP6を発光させる場合を例示しているが、この数に限らない。 FIG. 4 is a block diagram showing an example of a circuit included in the drive control means 109 of the ultraviolet irradiation device 100 according to the embodiment of the present invention. In this example, the case where six UV lamps (for example, low-pressure mercury lamps) LP1 to LP6 are made to emit light is illustrated as an example, but the number is not limited to this.
 紫外線照射装置100は、対象領域Sの電源(例えば、家庭用及び商業用電源)から電気を供給できるAC電源プラグを付帯させており、安定化電源部210に電源を供給できる回路構成を備えている。安定化電源部210は、UVランプLP1~LP6を常時安定的に点灯させることのできる安定器EB1~EB6からなり、安定器EB1~EB6にはそれぞれUVランプLP1~LP6が接続されている。また、UVランプLP1~LP6に最適なケーブルコネクター類で結線が配設され、効率よく供給電源を安定器EB1~EB6に供給できる回路構成となっている。 The ultraviolet irradiation device 100 is provided with an AC power plug capable of supplying electricity from a power source in the target area S (for example, a household or commercial power source), and has a circuit configuration capable of supplying power to the regulated power supply unit 210. There is. The stabilized power supply unit 210 includes ballasts EB1 to EB6 capable of constantly and stably lighting the UV lamps LP1 to LP6, and UV lamps LP1 to LP6 are connected to the ballasts EB1 to EB6, respectively. Further, the wiring is arranged by the most suitable cable connectors for the UV lamps LP1 to LP6, and the circuit configuration is such that the power supply can be efficiently supplied to the ballasts EB1 to EB6.
 また、駆動制御手段109は、複数のUVランプLPの点灯/消灯を(1灯毎)個別に制御可能としてもよい。これにより、複数のUVランプLPを例えば順次点灯させ、または円を描くように回転させ、あるいは個別にランダムで点灯させるなど、任意に設定した方法で点灯、点滅、消灯させることができる。このようにすることで、紫外線照射時に対象領域Sに対して影(非照射の部分)が生じないよう、すなわち満遍なく紫外線を照射可能(紫外線を遮る影を極小化することが可能)となる。 Further, the drive control means 109 may be able to individually control the lighting / extinguishing of a plurality of UV lamps LP (for each lamp). Thereby, the plurality of UV lamps LP can be turned on, blinked, and turned off by an arbitrarily set method, for example, the plurality of UV lamps LP are turned on sequentially, rotated in a circle, or individually randomly turned on. By doing so, it is possible to irradiate the target region S with no shadow (non-irradiated portion) evenly when irradiating with ultraviolet rays (it is possible to minimize the shadow blocking the ultraviolet rays).
 <紫外線照射による菌の不活化処理>
 ここで、図5および図6を参照して紫外線照射による菌の不活化について説明する。
<Bacterial inactivation treatment by UV irradiation>
Here, inactivation of bacteria by ultraviolet irradiation will be described with reference to FIGS. 5 and 6.
 光放射の内380nmより短い波長の光の放射は紫外放射とされ、物質や生物に対して様々な作用を及ぼすことが知られている。光の特徴は短波長になるほど光エネルギー(kJ/mol)が強まり、特に紫外線のUVC領域(100nm~280nm)になると生物の核酸分子やたんぱく質を分解することが可能となる。 Of the light radiation, the radiation of light with a wavelength shorter than 380 nm is regarded as ultraviolet radiation, and it is known that it exerts various actions on substances and living things. The characteristic of light is that the shorter the wavelength, the stronger the light energy (kJ / mol), and especially in the UVC region (100 nm to 280 nm) of ultraviolet rays, it becomes possible to decompose nucleic acid molecules and proteins of living organisms.
 一方、炭素同士の単結合は、230nmより長波長の光を吸収せず、化学変化が得られないとされ、核酸の変化は核酸に含まれる二重結合への光子の吸収が必要である。微生物の不活化の原理としては、260nmの波長の光をピークにした光エネルギーが、生物の細胞核内の遺伝情報を司るDNAとリボ核酸(ribonucleic acid、以下「RNA」)の塩基に吸収される事で、チミン等が二量体化し、細胞分裂の際にそれ以上の複製を行えなくなることで起こる。 On the other hand, it is said that a single bond between carbons does not absorb light having a wavelength longer than 230 nm and a chemical change cannot be obtained, and a change in nucleic acid requires absorption of photons into a double bond contained in the nucleic acid. The principle of microbial inactivation is that light energy peaked at a wavelength of 260 nm is absorbed by DNA and ribonucleic acid (hereinafter "RNA") bases that control genetic information in the cell nucleus of living organisms. This occurs when thymine and the like dimerize and cannot replicate further during cell division.
 このようなことから、紫外線短波長UVC領域の光の出力が可能な紫外線(UV)ランプが、食品や医療産業用途を中心に衛生管理を向上するための殺菌(菌、ウィルスの細胞の不活化)を効率よく行える光源として、食品やパッケージ・フイルム、水処理及び空間の付着菌(壁・床・ドア・設置機器などに付着している菌)・浮遊菌(空間中に浮遊する菌で落下中の菌(落下菌)含む)の殺菌処理等の分野に於いて幅広く利用されている。 For this reason, ultraviolet (UV) lamps that can output light in the ultraviolet short wavelength UVC region are used for sterilization (inactivation of bacterial and viral cells) to improve hygiene management mainly in food and medical industry applications. ) As a light source that can efficiently perform), food, packaging, film, water treatment and space adhering bacteria (bacteria adhering to walls, floors, doors, installation equipment, etc.), floating bacteria (falling with bacteria floating in space) It is widely used in fields such as sterilization of bacteria (including falling bacteria) inside.
 本実施形態の紫外線発光手段101は、UVC領域の光を出力することのできる紫外線ランプの一例として、放電管の中に水銀を含有させた水銀ランプ(低圧水銀ランプLP)を用いる。 The ultraviolet light emitting means 101 of the present embodiment uses a mercury lamp (low pressure mercury lamp LP) containing mercury in a discharge tube as an example of an ultraviolet lamp capable of outputting light in the UVC region.
 図5は、紫外線によるDNAの不活化の状態を示す図であり、同図(A)が低圧水銀ランプLPの出力波長(分光スペクトル)分布にDNAの紫外線(UV)吸収曲線を重ねた図である。UV吸収曲線とはUV波長260nmにおけるDNAの吸収率(分光感度)を100とした場合のUV波長に応じたDNAのUV吸収率の相対値であり、同図(A)の縦軸がUV吸収率の相対値であり、横軸がUV波長である。また、同図(B)はDNAのUV吸収曲線(実線)とUVによる殺菌作用曲線(破線)である。殺菌作用曲線とはUV波長260nmにおけるDNAの殺菌(不活化)率を100とした場合のUV波長に応じたDNAの殺菌率の相対値であり、同図(B)の縦軸が殺菌率の相対値であり、横軸がUV波長[nm]である。 FIG. 5 is a diagram showing a state of DNA inactivation by ultraviolet rays, and FIG. 5 (A) is a diagram in which an ultraviolet (UV) absorption curve of DNA is superimposed on an output wavelength (spectral spectrum) distribution of a low-pressure mercury lamp LP. is there. The UV absorption curve is a relative value of the UV absorption rate of DNA according to the UV wavelength when the absorption rate (spectral sensitivity) of DNA at a UV wavelength of 260 nm is 100, and the vertical axis of FIG. It is a relative value of the rate, and the horizontal axis is the UV wavelength. Further, FIG. 3B is a UV absorption curve (solid line) of DNA and a bactericidal action curve (broken line) by UV. The bactericidal action curve is a relative value of the sterilization rate of DNA according to the UV wavelength when the sterilization (inactivation) rate of DNA at a UV wavelength of 260 nm is 100, and the vertical axis of FIG. It is a relative value, and the horizontal axis is the UV wavelength [nm].
 同図(A)に示すように、低圧水銀ランプLPでは、放電管内で電子を水銀に衝突されるときに放射される輝線253.7nmを主波長とした光を得ることが出来る。そして、生物のDNA(RNAも同様)に吸収されるスペクトル260nmを中心とした波長領域に跨っている。また、既に述べたように、紫外放射による殺菌作用はDNAに損傷を与えることによって生じるが、同図(B)に示すように、その殺菌効果を示す殺菌作用曲線は、DNAのUV吸収曲線とほぼ一致する。これはDNA内に連続してあるピリミジン基が、この波長領域の光を吸収をすることで二量体化して遺伝コードが損なわれ、細胞が分化性能を失い不活化するものである。 As shown in FIG. 3A, the low-pressure mercury lamp LP can obtain light having a emission line of 253.7 nm emitted when an electron is collided with mercury in a discharge tube as a main wavelength. Then, it spans a wavelength region centered on a spectrum of 260 nm, which is absorbed by biological DNA (as well as RNA). Further, as already described, the bactericidal action by ultraviolet radiation is caused by damaging the DNA, but as shown in FIG. 3B, the bactericidal action curve showing the bactericidal action is the UV absorption curve of DNA. Almost match. This is because the pyrimidine groups that are continuous in the DNA are dimerized by absorbing light in this wavelength region, the genetic code is impaired, and the cells lose their differentiation performance and are inactivated.
 つまり、低圧水銀ランプLPから出力する253.7nmの波長の光を対象菌に効率良く照射することで高度な消毒(細胞の不活化)処理を行うことが可能となる。 That is, advanced disinfection (cell inactivation) treatment can be performed by efficiently irradiating the target bacteria with light having a wavelength of 253.7 nm output from the low-pressure mercury lamp LP.
 なお、この253.7nmの波長の光を発光管ガラス内壁に塗布した蛍光体に当て可視光に変換し、照明として利用するのが蛍光灯であるが、殺菌灯の場合は紫外線の短波長の光を効率良く透過することの出来るUV透過ガラスと更に透過性の高い石英ガラスが用いられる。同種の水銀灯に高輝度が得られ街路灯として主に用いられる高圧水銀灯(時に産業利用として中圧水銀灯と呼ばれる)があるが同時に熱線を多く発する。このため、本実施形態では、熱線を抑えることができるとともに、253.7nmの波長の光を効率良くえることが可能な低圧水銀ランプLPを紫外線発光手段101の光源として採用する。 Fluorescent lamps use this 253.7 nm wavelength light by applying it to a phosphor coated on the inner wall of the arc tube glass to convert it into visible light and use it as illumination, but in the case of germicidal lamps, it has a short wavelength of ultraviolet rays. UV-transmissive glass capable of efficiently transmitting light and quartz glass having higher transparency are used. There is a high-pressure mercury lamp (sometimes called a medium-pressure mercury lamp for industrial use) that is mainly used as a street lamp because it has high brightness in the same type of mercury lamp, but at the same time it emits a lot of heat rays. Therefore, in the present embodiment, a low-pressure mercury lamp LP capable of suppressing heat rays and efficiently obtaining light having a wavelength of 253.7 nm is adopted as the light source of the ultraviolet light emitting means 101.
 また、184.9nmの波長のUV光は酸素同士の反応を引き起こしてオゾンを生成し、部材の劣化や人体への悪影響を与える恐れがある。このため、低圧水銀ランプLPから空気中に照射された紫外線によるオゾンの生成を阻害するため、本実施形態の低圧水銀ランプLPは、184.9nmの波長の光(光成分)をカットすることのできる阻害手段を備える。具体的には当該阻害手段は、石英ガラスのランプバルブである。 In addition, UV light with a wavelength of 184.9 nm causes a reaction between oxygen to generate ozone, which may cause deterioration of members and adverse effects on the human body. Therefore, in order to inhibit the generation of ozone due to the ultraviolet rays irradiated into the air from the low-pressure mercury lamp LP, the low-pressure mercury lamp LP of the present embodiment cuts light (light component) having a wavelength of 184.9 nm. Provide a means of inhibiting that can be achieved. Specifically, the inhibiting means is a quartz glass lamp bulb.
 UVによる菌の殺菌(不活化)処理は、光が規定量当たらないと処理が行えないデメリットがある反面、薬剤や熱等の殺菌処理方法で問題となる耐性菌は生じさせないため、どの様な菌に対しても効果的な処理が行えるメリットがある。 The sterilization (inactivation) treatment of bacteria by UV has the disadvantage that it cannot be treated unless it is exposed to a specified amount of light, but on the other hand, it does not generate resistant bacteria that are problematic in sterilization treatment methods such as chemicals and heat. It has the advantage of being able to effectively treat bacteria.
 なお、同図(A)では、低圧水銀ランプLPは310nm以上の波長の光(光成分)も僅かに出力しているが、いずれの波長の光もDNAの吸収率は5%程度以下であるため、殺菌作用の観点においては略無視できる。 In the figure (A), the low-pressure mercury lamp LP also outputs a small amount of light (light component) having a wavelength of 310 nm or more, but the absorption rate of DNA of any wavelength of light is about 5% or less. Therefore, it can be almost ignored from the viewpoint of bactericidal action.
 ここで、菌の不活化(紫外線による殺菌作用)に必要なUV照射量は、菌(細胞)のDNAに与えられる殺菌波長帯の光の積算光量(積算照射量、露光量)[J/cm](以下の(式1)で決定する。 Here, the UV irradiation amount required for inactivating the bacteria (bactericidal action by ultraviolet rays) is the integrated light amount (integrated irradiation amount, exposure amount) of the light in the sterilization wavelength band given to the DNA of the bacteria (cells) [J / cm. 2 ] (Determined by the following (Equation 1).
  積算光量[J/cm2]=UV照度[W/cm2]×照射時間[sec] (式1) Integrated light intensity [J / cm 2 ] = UV illuminance [W / cm 2 ] x irradiation time [sec] (Equation 1)
 UVの放射強度(UV強度)は一定の面積あたりのUV照度で表す。単位としてはW/m2を用いるが、単位が大きくなるため実用的には、mW/cm2やμW/cm2を使用する。このUVの放射強度(UV照度)に照射時間(例えば、秒数sec)を掛けた値が積算光量(露光量)[J/cm2(mJ/cm2、μJ/cm2)]となる。 UV radiation intensity (UV intensity) is expressed as UV illuminance per fixed area. Although W / m 2 is used as the unit, mW / cm 2 or μW / cm 2 is practically used because the unit becomes large. The value obtained by multiplying the radiation intensity (UV illuminance) of this UV by the irradiation time (for example, several seconds) is the integrated light amount (exposure amount) [J / cm 2 (mJ / cm 2, μJ / cm 2 )].
 紫外線による殺菌処理は、全ての菌に対して有効であるが、菌種によって紫外線の耐性(感受性)が異なるため、殺菌対象の菌毎にそれぞれ殺菌処理の指標に基づき必要な紫外線照射量を定める。 The sterilization treatment with ultraviolet rays is effective against all bacteria, but since the resistance (susceptibility) of ultraviolet rays differs depending on the bacterial species, the required amount of ultraviolet irradiation is determined for each sterilization target bacterium based on the sterilization treatment index. ..
 図6は、菌の種類毎に267nm~287nmのUVを照射した場合に99.9%以上不活化するために必要な積算光量の一例を示す表(出典:国際照明学会(IES)ライティングハンドブック)である。 FIG. 6 is a table showing an example of the integrated light amount required to inactivate 99.9% or more when irradiated with UV of 267 nm to 287 nm for each type of bacteria (Source: International Illuminating Engineering Institute of Lighting (IES) Writing Handbook). Is.
 同図を参照して、例えば、インフルエンザウイルスを99.9%以上殺菌するために必要な積算光量(累積紫外線照射量)は10500[μJ/cm]であり、食品の殺菌基準指標である枯草菌芽胞を99.9%以上殺菌するために必要な積算光量は33200[μJ/cm]である。つまり、これらの指標値に基づき、殺菌対象の菌に応じて低圧水銀ランプLPの積算光量が設定される。 With reference to the figure, for example, the cumulative amount of light (cumulative ultraviolet irradiation amount) required to sterilize influenza virus by 99.9% or more is 10500 [μJ / cm 2 ], which is a food sterilization standard index of Bacillus subtilis. The cumulative amount of light required to sterilize the mycelial spores by 99.9% or more is 33200 [μJ / cm 2 ]. That is, based on these index values, the integrated light amount of the low-pressure mercury lamp LP is set according to the bacteria to be sterilized.
 本実施形態では、非遮断状態において紫外線発光手段101から殺菌波長領域の紫外線が対象領域Sの浮遊菌や付着菌に対して(カバー手段103を介して)直接照射されるので、対象領域S内を効率よく殺菌浄化することができる。 In the present embodiment, in the non-blocking state, ultraviolet rays in the sterilization wavelength region are directly irradiated from the ultraviolet light emitting means 101 to the airborne bacteria and adherent bacteria in the target region S (via the cover means 103), and therefore in the target region S. Can be efficiently sterilized and purified.
 <遮断手段の切替方法>
 次に、図7および図8を参照して遮断手段105の切替方法について説明する。図7および図8は、遮断手段105の切替方法の一例を示す概要図であり、紫外線発光手段101と遮断手段105部分を抜き出して示す斜視図である。なお、既に述べているように遮断手段105は、カバー手段103とは別体であってもよいし、カバー手段103と一体的であってもよい。またカバー手段103は設けなくても良く、流路107が形成されなくてもよい。
<How to switch the blocking means>
Next, a method of switching the blocking means 105 will be described with reference to FIGS. 7 and 8. 7 and 8 are schematic views showing an example of a method of switching the blocking means 105, and are perspective views showing the ultraviolet light emitting means 101 and the blocking means 105 portion extracted. As already described, the blocking means 105 may be a separate body from the covering means 103, or may be integrated with the covering means 103. Further, the cover means 103 may not be provided, and the flow path 107 may not be formed.
 図7に示すように、本実施形態の紫外線照射装置100は、紫外線発光手段101に対して遮断手段105を相対的に移動(退避)させて、紫外線の遮断状態(同図(A))と、非遮断状態(同図(B))とを切替可能に構成されている。遮断手段105は、紫外光(少なくともUVC領域の波長の光)をカットし、可視光を透過する手段である。この例では、遮断手段105を1枚のパネル状に形成した場合を示している。 As shown in FIG. 7, the ultraviolet irradiation device 100 of the present embodiment moves (retracts) the blocking means 105 relative to the ultraviolet emitting means 101, and is in a state of blocking ultraviolet rays (FIG. 7A). , The non-blocking state ((B) in the figure) can be switched. The blocking means 105 is a means for cutting ultraviolet light (light having a wavelength in at least the UVC region) and transmitting visible light. In this example, the case where the blocking means 105 is formed in the form of one panel is shown.
 すなわち、同図(A)に示すように、遮断手段105を閉止して紫外線発光手段101の前面を覆うようにした場合は、紫外光(少なくともUVC領域の波長の光)は遮断手段105によって遮断されるがそれ以外の光(人体への影響が少ない紫外光(UVC領域(一部のUVB領域)以外の波長の光)は遮断手段105を透過する。 That is, as shown in FIG. 3A, when the blocking means 105 is closed to cover the front surface of the ultraviolet light emitting means 101, ultraviolet light (light having a wavelength in at least the UVC region) is blocked by the blocking means 105. However, other light (ultraviolet light having little influence on the human body (light having a wavelength other than the UVC region (a part of the UVB region)) is transmitted through the blocking means 105.
 一方、同図(B)に示すように、遮断手段105を開放して(退避させて)紫外線発光手段101の前面が露出する(現れる)ようにした場合は、紫外光(少なくともUVC領域の波長の光)が前方に放射される。 On the other hand, as shown in FIG. 3B, when the blocking means 105 is opened (retracted) so that the front surface of the ultraviolet light emitting means 101 is exposed (appearing), ultraviolet light (at least the wavelength in the UVC region) is exposed. Light) is emitted forward.
 図8は、遮断手段105による遮断状態と非遮断状態の切り替えの他の例を示す斜視図である。遮断手段105は、図6に示すような1枚のパネル状に限らず、複数に分割されて個々に移動可能なパーツ105Pの組合せで構成されてもよい。パーツ105Pは、例えば紫外線発光手段101に対して、同図(B)に示すような平行(スライド)移動や、同図(C)に示す回動(揺動)などが可能に構成される。 FIG. 8 is a perspective view showing another example of switching between the blocked state and the non-blocked state by the blocking means 105. The blocking means 105 is not limited to a single panel shape as shown in FIG. 6, and may be composed of a combination of parts 105P that are divided into a plurality of parts and can be individually moved. The part 105P is configured to be capable of parallel (slide) movement as shown in FIG. (B) and rotation (swing) as shown in FIG. 3C, for example, with respect to the ultraviolet light emitting means 101.
 具体的には、同図(B)に示すように、遮断手段105を鉛直方向(高さ方向)Vに複数に分割し、これらの鉛直方向に帯状のパーツ105Pを水平方向(幅方向)Hにスライド可能とする。この場合、同図(A)に示す遮断状態では紫外線発光手段101の前面を覆い、非遮断状態では、同図(B)に示すように、幅方向Hにスライドして引き戸(障子)状に左右に開放することができる。左右にスライドするパーツ105Pはそれぞれ1枚であってもよいが、左右それぞれを複数枚に分割することで開放状態であっても遮断手段105をコンパクトに重ねることができる。 Specifically, as shown in FIG. 3B, the blocking means 105 is divided into a plurality of parts in the vertical direction (height direction) V, and the strip-shaped parts 105P in the vertical direction are horizontally (width direction) H. It can be slid to. In this case, in the blocked state shown in FIG. (A), the front surface of the ultraviolet light emitting means 101 is covered, and in the non-blocked state, as shown in FIG. It can be opened to the left and right. The parts 105P that slide to the left and right may be one each, but by dividing each of the left and right into a plurality of parts, the blocking means 105 can be compactly stacked even in the open state.
 また、同図(C)に示すように、遮断手段105を水平方向(幅方向)Hに複数に分割し、これらの水平方向に帯状のパーツ(ルーバー)105Pの角度を変化可能とする。複数のパーツ105Pは例えば、幅方向に沿って設けられた回転軸RRを中心にブラインド状(グレーティング状)に回動(揺動)可能とする。この場合、同図(A)に示す遮断状態では紫外線発光手段101の前面を覆い、非遮断状態では、同図(C)に示すように、回動させることで隙間を生じさせ開放することができる。 Further, as shown in FIG. 6C, the blocking means 105 is divided into a plurality of pieces in the horizontal direction (width direction) H, and the angle of the strip-shaped part (louver) 105P can be changed in the horizontal direction. The plurality of parts 105P can be rotated (swinged) in a blind shape (grating shape) around a rotation shaft RR provided along the width direction, for example. In this case, in the blocked state shown in FIG. (A), the front surface of the ultraviolet light emitting means 101 is covered, and in the non-blocked state, as shown in FIG. it can.
 本実施形態では、遮断手段105の開放時には紫外線を遮ることなく広範囲に照射することが望ましい。この場合同図(C)のようなブラインド状の場合は紫外線の一部がパーツ105Pによって遮られる恐れもあるため、同図(B)に示すように照射方向の前方が全開する構成が望ましい。 In the present embodiment, it is desirable to irradiate a wide area without blocking ultraviolet rays when the blocking means 105 is opened. In this case, in the case of a blind shape as shown in FIG. 3C, a part of the ultraviolet rays may be blocked by the part 105P, so it is desirable to have a configuration in which the front in the irradiation direction is fully opened as shown in FIG.
 なお、この例に限らず例えば、遮断手段105は例えば同図(C)に示す分割方向を縦方向にするものであってもよいし、マトリクス状に分割するものであってもよい。さらに、遮断手段105をカーテン状に構成し、開閉可能としてもよい。 Not limited to this example, for example, the blocking means 105 may be divided in the vertical direction as shown in FIG. 3C, or may be divided in a matrix. Further, the blocking means 105 may be configured in a curtain shape so that it can be opened and closed.
 なお、遮断手段105の移動(開閉)の切替は、例えば、不図示の駆動制御手段109などによって自動で制御するようにしてもよいし、手動で制御するようにしてもよい。 The movement (opening / closing) of the blocking means 105 may be automatically controlled by, for example, a drive control means 109 (not shown), or may be manually controlled.
 図9は、紫外線照射装置100を用いた紫外線照射システム200の一例を示す図である。図9(A)は紫外線照射システム200の概要図であり、同図(B)は紫外線照射装置100を示す上面図である。 FIG. 9 is a diagram showing an example of an ultraviolet irradiation system 200 using an ultraviolet irradiation device 100. FIG. 9A is a schematic view of the ultraviolet irradiation system 200, and FIG. 9B is a top view showing the ultraviolet irradiation device 100.
 同図(A)に示すように、紫外線照射システム200は例えば、対象領域S内の任意の場所に紫外線照射装置100(100A)を配置可能であり、ここでは、対象領域S内に配置される複数のベッドBDを互いに仕切るように配置している。このように、紫外線照射装置100は間仕切り(パーティション)としても利用できる。つまり、区画手段150により対象領域Sを区画して例えば臨時の医療看護室等に利用する場合、対象領域Sの同時入居者同士のプライバシーを守りながら、空気を循環殺菌することができる。 As shown in FIG. 6A, for example, the ultraviolet irradiation system 200 can arrange the ultraviolet irradiation device 100 (100A) at an arbitrary place in the target area S, and here, it is arranged in the target area S. A plurality of beds BDs are arranged so as to partition each other. In this way, the ultraviolet irradiation device 100 can also be used as a partition. That is, when the target area S is partitioned by the partitioning means 150 and used for, for example, a temporary medical / nursing room, the air can be circulated and sterilized while protecting the privacy of the simultaneous residents of the target area S.
 また、その場合、室内の菌やウィルスが発生している懸念箇所近くに当該紫外線照射装置100を移動させ、遮断手段105を開放して紫外線発光手段101を露出させる(非遮断状態とする)ことで、瞬時且つ広範囲に被照射対象箇所に対してUVランプLPからの光を直接、満遍なく照射し、殺菌処理を行うことができる。 Further, in that case, the ultraviolet irradiation device 100 is moved near the place of concern where bacteria or viruses are generated in the room, and the blocking means 105 is opened to expose the ultraviolet emitting means 101 (in a non-blocking state). Therefore, the light from the UV lamp LP can be directly and evenly irradiated to the irradiated portion in an instant and wide range to perform the sterilization treatment.
 同図(B)を参照して、紫外線照射装置100は、例えば、外周に支持枠(枠体)121が設けられ、支持枠121に紫外線発光手段101を備えた基材Bが固定される。具体的には、紫外線発光手段101はパネル(板)状の基材Bの両面に低圧水銀ランプLPを配置し、当該紫外線発光手段101を覆うように両面にそれぞれ遮断手段105とカバー手段103を設けている。すなわち、基材Bの第一の面Sf1に複数のUVランプLPを設け、第一の面Sf1に対向してこれを覆うように遮断手段105およびカバー手段103を配置する。また基材Bの第二の面Sf2に複数の低圧水銀ランプLPを設け、第二の面Sf2に対向してこれを覆うように遮断手段105およびカバー手段103を配置する。このような構成により、紫外線照射装置100は、第一の面Sf1側および第二の面Sf2側のいずれからも紫外線を照射することができる。 With reference to FIG. 3B, in the ultraviolet irradiation device 100, for example, a support frame (frame body) 121 is provided on the outer periphery, and a base material B provided with the ultraviolet light emitting means 101 is fixed to the support frame 121. Specifically, the ultraviolet light emitting means 101 arranges low-pressure mercury lamps LP on both sides of the panel (plate) -shaped base material B, and blocks the blocking means 105 and the covering means 103 on both sides so as to cover the ultraviolet light emitting means 101, respectively. It is provided. That is, a plurality of UV lamp LPs are provided on the first surface Sf1 of the base material B, and the blocking means 105 and the covering means 103 are arranged so as to face and cover the first surface Sf1. Further, a plurality of low-pressure mercury lamps LPs are provided on the second surface Sf2 of the base material B, and the blocking means 105 and the covering means 103 are arranged so as to face and cover the second surface Sf2. With such a configuration, the ultraviolet irradiation device 100 can irradiate ultraviolet rays from both the first surface Sf1 side and the second surface Sf2 side.
 図示は省略するが、遮断手段105は例えば図7に示すように、紫外線発光手段101に対して相対的に移動(開閉)可能に構成される。紫外線発光手段101は、上記の例と同様であるので説明は省略するが、紫外線発光手段101は、通常の動作時には常時発光を継続しており、遮断手段105の開閉によって紫外線の非遮断状態と遮断状態とが切り替えられる。 Although not shown, the blocking means 105 is configured to be movable (open / close) relative to the ultraviolet light emitting means 101, for example, as shown in FIG. Since the ultraviolet light emitting means 101 is the same as the above example, the description thereof will be omitted, but the ultraviolet light emitting means 101 is constantly emitting light during normal operation, and the ultraviolet light is not blocked by opening and closing the blocking means 105. The cutoff state can be switched.
 なお、基材Bの第一の面Sf1と第2の面Sf2にそれぞれUVランプLPを配置するのではなく、枠状の基材Bに第一の面Sf1と第2の面Sf2に共用のUVランプLPを配置する構成であってもよい。例えば、枠状の基材Bにはしご状に複数のUVランプLPを掛け渡す構成であれば、それぞれのUVランプLPを基材Bの第一の面Sf1と第2の面Sf2で共用することができる。 The UV lamp LP is not arranged on the first surface Sf1 and the second surface Sf2 of the base material B, respectively, but is shared by the frame-shaped base material B on the first surface Sf1 and the second surface Sf2. The structure may be such that the UV lamp LP is arranged. For example, in the case where a plurality of UV lamp LPs are hung on the frame-shaped base material B in a ladder shape, each UV lamp LP is shared by the first surface Sf1 and the second surface Sf2 of the base material B. Can be done.
 基材Bの上端部および下端部は開口され、それぞれ空気の流入口IN,流出口OUTが配置される。カバー手段103と基材B(紫外線発光手段101)で区画された領域に、空気の流路107が形成される。この例では、カバー手段103は紫外線発光手段101に対して移動不可に構成されており、常時、カバー手段103と紫外線発光手段101による空気の流路107が形成される。つまり、遮断状態、非遮断状態に限らず、常時、基材Bの第一の面Sf1側および第二の面Sf2側のいずれにも、空気の流路107が形成される。 The upper end and the lower end of the base material B are opened, and an air inlet IN and an air outlet OUT are arranged, respectively. An air flow path 107 is formed in a region partitioned by the cover means 103 and the base material B (ultraviolet light emitting means 101). In this example, the cover means 103 is configured to be immovable with respect to the ultraviolet light emitting means 101, and the air flow path 107 by the cover means 103 and the ultraviolet light emitting means 101 is always formed. That is, the air flow path 107 is always formed on both the first surface Sf1 side and the second surface Sf2 side of the base material B, regardless of whether it is in a blocked state or a non-blocked state.
 また、下端部には脚部123が設けられる。脚部123は、紫外線照射装置100を床面等に自立可能に支持するとともに、床面によって下端側の流路107(空気の流入口IN)が塞がれることを防止する(流路107の下端側からの空気の流入を許容する)ために設けられるものであり、図示の形状に限らない。 In addition, a leg portion 123 is provided at the lower end portion. The leg portion 123 supports the ultraviolet irradiation device 100 on the floor surface or the like so as to be self-supporting, and prevents the flow path 107 (air inlet IN) on the lower end side from being blocked by the floor surface (flow path 107). It is provided to allow the inflow of air from the lower end side), and is not limited to the shape shown in the figure.
 さらに脚部123には、移動を容易にするためキャスター125などを設けると好ましい。また、脚部123またはキャスター125には、固定/可動切り替えできるロック機構(不図示)を設けると良い。 Further, it is preferable to provide casters 125 or the like on the legs 123 in order to facilitate movement. Further, the legs 123 or casters 125 may be provided with a lock mechanism (not shown) that can be fixed / movable.
 この紫外線照射装置100は、遮断状態では、遮断手段105によって人体に有害な紫外線は遮断される。 In the ultraviolet irradiation device 100, the ultraviolet rays harmful to the human body are blocked by the blocking means 105 in the blocking state.
 また、紫外線が発光される通常の運転時には常時(遮断状態であっても非遮断状態であっても)、室内空気をカバー手段103の下端部の空気の流入口INから流路107に取り込み、紫外線発光手段101によって紫外線を照射して当該空気を殺菌処理する。流路107内の空気は、紫外線発光手段101の熱により昇温されてこれにより自然対流が生じ、カバー手段103の上端部の流出口OUTから無菌化された空気として室内へ還流され、これが繰り返される(循環殺菌される)。 Further, during normal operation in which ultraviolet rays are emitted, indoor air is always taken into the flow path 107 from the air inlet IN at the lower end of the cover means 103 (whether in a blocked state or a non-blocked state). The air is sterilized by irradiating it with ultraviolet rays by the ultraviolet light emitting means 101. The air in the flow path 107 is heated by the heat of the ultraviolet light emitting means 101, which causes natural convection, and is returned to the room as sterilized air from the outlet OUT at the upper end of the cover means 103, and this is repeated. (Circulation sterilization).
 従って、例えば、図示のように間仕切りを兼ねて対象領域Sの内部(区画手段150)などから離れた位置に紫外線照射装置100を配置した場合であっても、効率的に紫外線照射による殺菌および、空気の循環殺菌を行なうことができる。 Therefore, for example, even when the ultraviolet irradiation device 100 is arranged at a position away from the inside of the target area S (partitioning means 150), which also serves as a partition as shown in the figure, sterilization by ultraviolet irradiation and sterilization by ultraviolet irradiation can be performed efficiently. Air circulation sterilization can be performed.
 なお、遮断手段105は、第一の面Sf1側および第二の面Sf2側のそれぞれにおいて一枚の板状体(フィルム、カーテン)等で構成され、カバー手段103に対して着脱可能に構成されてもよい。 The blocking means 105 is composed of a single plate-like body (film, curtain) or the like on each of the first surface Sf1 side and the second surface Sf2 side, and is removable from the cover means 103. You may.
 また、この例においても、カバー手段103と遮断手段105とを一体的に構成し、カバー手段103を紫外線発光手段101に対して相対移動(開閉)可能に構成してもよい。その場合には、遮断状態の場合にのみ空気の循環殺菌を行なうことができ、非遮断状態では対象領域Sに向けて瞬時且つ広範囲に紫外線を照射することができる。 Further, also in this example, the cover means 103 and the blocking means 105 may be integrally configured so that the cover means 103 can be moved (opened and closed) relative to the ultraviolet light emitting means 101. In that case, air circulation sterilization can be performed only in the blocked state, and in the non-blocked state, ultraviolet rays can be instantaneously and widely irradiated toward the target region S.
 図10は、図9に示す紫外線照射装置100の変形例を示す図であり、図10(A)が正面図、同図(B)が上面図である。本発明の紫外線照射装置100は、流路107内において空気の自然対流を利用して清浄な空気を循環させるものである。従って、同図(A)に示すように、線状に配置する(あるいは直管型の)UVランプLPは、長手方向が略鉛直方向(高さ方向)Vに向くように配置するとよい。これにより、流路107内の空気の上昇をより促すことができる。なお、このUVランプLPの配置は、この例の紫外線照射装置100に限らず、本実施形態で説明した全ての紫外線照射装置100に適用可能である。 10 is a view showing a modified example of the ultraviolet irradiation device 100 shown in FIG. 9, where FIG. 10 (A) is a front view and FIG. 10 (B) is a top view. The ultraviolet irradiation device 100 of the present invention circulates clean air in the flow path 107 by utilizing natural convection of air. Therefore, as shown in FIG. 6A, the UV lamp LPs arranged linearly (or straight tube type) may be arranged so that the longitudinal direction faces substantially the vertical direction (height direction) V. This makes it possible to further promote the rise of air in the flow path 107. The arrangement of the UV lamp LP is not limited to the ultraviolet irradiation device 100 of this example, and can be applied to all the ultraviolet irradiation devices 100 described in the present embodiment.
 再び図9を参照して、紫外線照射装置100は、更に、他の部材と係合可能な係合手段161を備える。ここで他の部材とは、区画手段150や、他の紫外線照射装置100である。図9では、係合手段161によって2つの紫外線照射装置100を係合している場合を例示している。 With reference to FIG. 9 again, the ultraviolet irradiation device 100 further includes an engaging means 161 capable of engaging with other members. Here, the other member is a partitioning means 150 or another ultraviolet irradiation device 100. FIG. 9 illustrates a case where two ultraviolet irradiation devices 100 are engaged by the engaging means 161.
 係合手段161は例えば、支持枠121(または基材B)の両端部に設けられ、他の部材(区画手段150や他の紫外線照射装置100、またはそれ以外の部材)を着脱可能に係合する。ここでの「係合」とは、固定、支持、接続、連結、固着、引き掛けなど、二者を着脱(離脱)可能に、一時的に一体的に留め置くあらゆる状態をいう。 For example, the engaging means 161 is provided at both ends of the support frame 121 (or the base material B), and other members (partition means 150, another ultraviolet irradiation device 100, or other members) can be detachably engaged with each other. To do. The term "engagement" as used herein refers to any state in which the two parties can be detached (disengaged) and temporarily and integrally fastened, such as fixing, supporting, connecting, connecting, fixing, and hooking.
 係合手段161は例えば磁石などで構成され、他の部材の金属部分あるいは、他の部材に設けられた係合手段161(例えば磁石など)と連結する。 The engaging means 161 is composed of, for example, a magnet, and is connected to a metal portion of another member or an engaging means 161 (for example, a magnet) provided on the other member.
 なお係合手段161は、磁石に限らず、物理的な凹凸形状などにより係合する手段や、フックなどの留め具に紐状部材などの掛け具を引き掛けて係合する手段などであってもよい。 The engaging means 161 is not limited to a magnet, but is a means for engaging by a physical uneven shape or the like, a means for hooking a hook such as a string-like member on a fastener such as a hook, and the like for engaging. May be good.
 また、係合手段161は、単に同一面状に両者を係合するだけでなく、例えば上面視において両者が略L字状に配置可能となるなど、曲折した状態での係合も可能とする。 Further, the engaging means 161 not only engages the two on the same surface, but also enables engagement in a bent state, for example, the two can be arranged in a substantially L shape in a top view. ..
 図11を参照して本実施形態の紫外線照射装置100の他の例について説明する。同図は、紫外線照射装置100の他の例を示す斜視図である。 Another example of the ultraviolet irradiation device 100 of the present embodiment will be described with reference to FIG. The figure is a perspective view which shows another example of an ultraviolet irradiation apparatus 100.
 図11(A)に示すように、紫外線照射装置100(100A)は、基材B(この場合は枠体121)の両面(第一の面Sf1,第二の面Sf2)にそれぞれ、カバー手段103およびこれと別体の遮断手段105を設ける。カバー手段103は例えば基材Bに固定され、遮断手段105のみが基材B(カバー手段103)に対して相対移動可能に構成される。 As shown in FIG. 11A, the ultraviolet irradiation device 100 (100A) covers both surfaces (first surface Sf1, second surface Sf2) of the base material B (frame body 121 in this case), respectively. 103 and a blocking means 105 separate from the 103 are provided. The cover means 103 is fixed to, for example, the base material B, and only the blocking means 105 is configured to be movable relative to the base material B (cover means 103).
 同図(B)に示すように基材B(枠体121)は中空でありその内側に、複数のUVランプLPを固定した紫外線発光手段101を有する。つまり、一つの(共通の)紫外線発光手段101の両面(第一の面Sf1,第二の面Sf2)に、カバー手段103が固定され、カバー手段103を覆うように遮断手段105が備えられている。遮断手段105は、例えば、基材B(カバー手段103)に対して開放、あるいは基材Bから取り外し可能に構成されている。 As shown in FIG. 3B, the base material B (frame body 121) is hollow and has ultraviolet light emitting means 101 in which a plurality of UV lamp LPs are fixed. That is, the cover means 103 is fixed to both surfaces (first surface Sf1, second surface Sf2) of one (common) ultraviolet light emitting means 101, and the blocking means 105 is provided so as to cover the cover means 103. There is. The blocking means 105 is configured to be open to the base material B (covering means 103) or removable from the base material B, for example.
 基材B(枠体121)の上端部および下端部には、それぞれ空気の流入口IN,流出口OUTが設けられ、カバー手段103と枠体の基材B(紫外線発光手段101)で区画された領域に、空気の流路107が形成される。 Air inlet IN and air outlet OUT are provided at the upper end and the lower end of the base material B (frame body 121), respectively, and are partitioned by the cover means 103 and the base material B (ultraviolet light emitting means 101) of the frame body. An air flow path 107 is formed in the region.
 また、基材Bには、駆動制御手段109の一部として、運転制御ブレーカー109Aや点灯制御タイマー109Bなどが設けられる。 Further, the base material B is provided with an operation control breaker 109A, a lighting control timer 109B, and the like as a part of the drive control means 109.
 これにより遮断状態(同図(A))では、流入口INから空気を吸い込み、紫外線を照射して殺菌し、流出口OUTから排出させる。またこれを繰り返し、循環殺菌が行なえる。一方で、人体に有害な紫外線はカットする。また非遮断状態(同図(B))では、循環殺菌を行いつつ、遮断手段105を開放し、あるいは基材Bから分離して取り外すことで対象領域Sに直接的に紫外線を照射できる。 As a result, in the blocked state ((A) in the figure), air is sucked in from the inlet IN, sterilized by irradiating with ultraviolet rays, and discharged from the outlet OUT. By repeating this, circulation sterilization can be performed. On the other hand, it blocks ultraviolet rays that are harmful to the human body. Further, in the non-blocking state (FIG. (B)), the target region S can be directly irradiated with ultraviolet rays by opening the blocking means 105 or separating and removing the blocking means 105 while performing circulation sterilization.
 この例でも基材B(枠体121)の両側辺に係合手段161が設けられており、例えば、同じ形状の紫外線照射装置100を幅方向Hに連結することができる。なお、係合手段161に遮断手段105を係合し、係合手段161部分を軸として遮断手段105を基材Bに対して開放可能(観音開き状に開放可能)に構成してもよい。 In this example as well, the engaging means 161 is provided on both sides of the base material B (frame body 121), and for example, the ultraviolet irradiation device 100 having the same shape can be connected in the width direction H. The blocking means 105 may be engaged with the engaging means 161 so that the blocking means 105 can be opened to the base material B (opening in a double door shape) with the engaging means 161 as an axis.
 また、例えば基材Bの下端に補助的に空気を流路107に取り込む取り込み手段(ファンなど)170が設けられても良い。 Further, for example, a take-in means (fan or the like) 170 for taking air into the flow path 107 may be provided at the lower end of the base material B as an auxiliary.
 また、この例においてもカバー手段103と遮断手段105とが一体的に設けられていても良い(その場合カバー手段103も基材Bに対して開放(取り外し)可能に構成される)。 Further, also in this example, the cover means 103 and the blocking means 105 may be integrally provided (in that case, the cover means 103 is also configured to be openable (removable) with respect to the base material B).
 図12および図13は、本発明の紫外線照射システム200の他の例を示す図であり、紫外線照射装置100が区画手段150の一部を構成する例である。図12(A)が紫外線照射システム200の上面図、図12(B)が紫外線照射システム200の斜視図である。また図13(A)~同図(C)は紫外線照射システム200の側面概要図であり、同図(D)は上面である。 12 and 13 are views showing another example of the ultraviolet irradiation system 200 of the present invention, and is an example in which the ultraviolet irradiation device 100 constitutes a part of the partition means 150. FIG. 12A is a top view of the ultraviolet irradiation system 200, and FIG. 12B is a perspective view of the ultraviolet irradiation system 200. 13 (A) to 13 (C) are side schematic views of the ultraviolet irradiation system 200, and FIG. 13 (D) is an upper surface.
 紫外線照射システム200は、区画手段150によって区画された対象領域Sに紫外線を照射する可搬型の紫外線照射装置100を有する。同図に示すようにこの例では、区画手段150は、単独で移動可能にユニット化された紫外線照射装置100(紫外線照射ユニット150B)を含む。つまり区画手段150は、少なくとも紫外線照射ユニット150Bを含んで構成され、この例では仕切りユニット150Aと紫外線照射ユニット150Bを含む。 The ultraviolet irradiation system 200 has a portable ultraviolet irradiation device 100 that irradiates the target area S partitioned by the partition means 150 with ultraviolet rays. As shown in the figure, in this example, the partition means 150 includes an ultraviolet irradiation device 100 (ultraviolet irradiation unit 150B) that is independently movablely unitized. That is, the partition means 150 is configured to include at least the ultraviolet irradiation unit 150B, and in this example, includes the partition unit 150A and the ultraviolet irradiation unit 150B.
 仕切りユニット150Aは、単に間仕切り(パーティション)の機能を有するものであり、例えばその枠体には上述の係合手段161が設けられる。紫外線照射ユニット150Bは、上述の紫外線照射装置100と同様の構成であるが、仕切りユニット150Aと係合手段161により係合可能に構成される。また、仕切りユニット150Aと紫外線照射ユニット150Bは、例えば、同図(A),同図(B)に示すように同一サイズまたは、幅方向Hおよび/または高さ方向Vの長さ(形状)が揃った統一規格で構成されると好ましい。ここでは、仕切りユニット150Aと係合手段161により係合可能であって、形状、サイズが仕切りユニット150Aと統一規格(統一サイズ)で構成された紫外線照射装置100を特に紫外線照射ユニット150Bと別称するが、上述の各紫外線照射装置100と紫外線照射ユニット150Bは同様の構成であり、本明細書における説明上、入れ替えてもよい。 The partition unit 150A simply has a function of a partition, and for example, the frame body is provided with the above-mentioned engaging means 161. The ultraviolet irradiation unit 150B has the same configuration as the above-mentioned ultraviolet irradiation device 100, but is configured to be engageable with the partition unit 150A by the engaging means 161. Further, the partition unit 150A and the ultraviolet irradiation unit 150B have, for example, the same size or the length (shape) in the width direction H and / or the height direction V as shown in FIGS. (A) and (B). It is preferable that it is composed of a uniform unified standard. Here, the ultraviolet irradiation device 100 which can be engaged with the partition unit 150A by the engaging means 161 and whose shape and size are configured in the same standard (unified size) as the partition unit 150A is particularly referred to as an ultraviolet irradiation unit 150B. However, each of the above-mentioned ultraviolet irradiation devices 100 and the ultraviolet irradiation unit 150B has the same configuration, and may be replaced for the sake of description in the present specification.
 仕切りユニット150Aも紫外線照射ユニット150Bと同様の係合手段161を備えておいる。なお、同じ部材(区画手段150同士)、すなわち仕切りユニット150A同士、紫外線照射ユニット150B同士を互いに係合手段161によって係合可能である。つまり、これらを連続して繋ぎ合わせる(係合する)ことで対象領域Sが区画される。換言すれば、仕切りユニット150Aや紫外線照射ユニット150Bは区画手段150の一部として機能する。 The partition unit 150A also has the same engaging means 161 as the ultraviolet irradiation unit 150B. The same members (partition means 150), that is, the partition units 150A and the ultraviolet irradiation units 150B can be engaged with each other by the engaging means 161. That is, the target area S is defined by continuously connecting (engaging) them. In other words, the partition unit 150A and the ultraviolet irradiation unit 150B function as a part of the partition means 150.
 また、紫外線照射ユニット150Bの係合位置や、仕切りユニット150Aの数も同図に示すものに限らず任意に選択可能であり、例えば、1台または複数の紫外線照射ユニット150Bと、複数の仕切りユニット150Aで対象領域Sを区画することも可能である。 Further, the engaging position of the ultraviolet irradiation unit 150B and the number of partition units 150A are not limited to those shown in the figure and can be arbitrarily selected. For example, one or more ultraviolet irradiation units 150B and a plurality of partition units can be selected. It is also possible to partition the target area S by 150A.
 また、一部に出入りのためのドア機能を有するドアユニット150C(これも区画手段150に含まれる)を係合してもよい。ドアユニット150Cも係合手段161を有し、これによって係合する。 Further, a door unit 150C (also included in the partition means 150) having a door function for entering and exiting may be partially engaged. The door unit 150C also has an engaging means 161 to engage with it.
 このような場合、各区画手段150(仕切りユニット150Aや紫外線照射ユニット150B)の上端部には同図(B)に示す可動板151を設けるとよい。可動板151は、区画手段150の立設方向(高さ方向V)に沿って同じく立設された板状体であり、矢印aで示すように高さ方向Vに伸縮可能に構成される。 In such a case, it is preferable to provide the movable plate 151 shown in FIG. 6B at the upper end of each partition means 150 (partition unit 150A or ultraviolet irradiation unit 150B). The movable plate 151 is a plate-like body that is also erected along the erection direction (height direction V) of the partition means 150, and is configured to be expandable and contractible in the height direction V as shown by an arrow a.
 また、可動板151は、各区画手段150の上辺に沿って設けられた回動軸152を中心に矢印bで示すように回動可能に構成されてもよい。 Further, the movable plate 151 may be configured to be rotatable about the rotation shaft 152 provided along the upper side of each partition means 150 as shown by an arrow b.
 また、可動板151は、各区画手段150の側辺に沿って設けられた回動軸153を中心に矢印cで示すように回動可能に構成されてもよい。 Further, the movable plate 151 may be configured to be rotatable around a rotation shaft 153 provided along the side side of each partition means 150 as shown by an arrow c.
 可動板151の可動の態様は、矢印a~矢印cの少なくともいずれかであり、これらを組合わせてもよい。可動板151を任意に可動させることで、対象領域Sの上面も或る程度覆うことができ、菌が増加する対象領域Sと、対象領域Sの外部との遮蔽の程度を高めることができる。なお、可動板151の可動の態様は、矢印a~矢印cのいずれかに限らず、区画手段150に対して相対移動可能な構成であればよい。 The movable mode of the movable plate 151 is at least one of arrows a to c, and these may be combined. By arbitrarily moving the movable plate 151, the upper surface of the target area S can be covered to some extent, and the degree of shielding between the target area S where bacteria increase and the outside of the target area S can be increased. The movable mode of the movable plate 151 is not limited to any of the arrows a to c, and may be a configuration that can move relative to the partition means 150.
 また、図示は省略するが、可動板151は、各区画手段150の下端部に設けられても良い。 Although not shown, the movable plate 151 may be provided at the lower end of each partition means 150.
 このように、紫外線照射システム200を、形状等が規格化され、共通の係合手段161によって連結可能な仕切りユニット150Aおよび紫外線照射ユニット150B(およびドアユニット150C)のセット(組み)で構成することにより、当該紫外線照射システム200を1セット導入するのみで容易且つ簡潔に対象領域Sの殺菌・洗浄が可能となる。 In this way, the ultraviolet irradiation system 200 is composed of a set (assembly) of a partition unit 150A and an ultraviolet irradiation unit 150B (and a door unit 150C) whose shape and the like are standardized and which can be connected by a common engaging means 161. As a result, the target area S can be easily and simply sterilized and washed by simply introducing one set of the ultraviolet irradiation system 200.
 また、複数の紫外線照射ユニット150Bを任意の位置に連結することで、対象領域S内への紫外線の照射を多方向から行なうことができるため、紫外線の照射効果を高めることができる。 Further, by connecting a plurality of ultraviolet irradiation units 150B to arbitrary positions, it is possible to irradiate the target region S with ultraviolet rays from multiple directions, so that the ultraviolet irradiation effect can be enhanced.
 仕切りユニット150A自体も菌の遮蔽効果があるため、この紫外線照射システム200の対象領域Sの殺菌効果は暫く保たれることになる。このため、感染者やその疑いのあるものに対して暫定的な隔離を行ったり、診察を行う仮設部屋の簡単な設営による感染の蔓延を抑止するための有効な手立てとなりうる。また、仕切りユニット150Aには予め抗菌処理等が施されていても良い。 Since the partition unit 150A itself has a shielding effect on bacteria, the bactericidal effect of the target area S of the ultraviolet irradiation system 200 will be maintained for a while. Therefore, it can be an effective means to temporarily isolate infected persons and those suspected of being infected, and to prevent the spread of infection by simply setting up a temporary room for medical examination. Further, the partition unit 150A may be subjected to antibacterial treatment or the like in advance.
 なお、全ての区画手段150を紫外線照射ユニット150Bで構成してもよい。 Note that all the partitioning means 150 may be configured by the ultraviolet irradiation unit 150B.
 また、図13に示すように、区画手段150を係合後して対象領域Sを区画した状態で、全ての区画手段150を覆うことが可能なシート材(カバー材)155を備えても良い。具体的に、図13(A)は、シート材155であり、底面BTが開放された略立方体形状を有している。シート材155のサイズは、対象領域Sを区画する区画手段150のサイズよりやや大きい。そして、図13(B)に示すように、区画手段150の上方からシート材155にて覆うことで、同図(C),同図(D)に示すように対象領域Sと、対象領域Sの外部との遮蔽の程度(密閉度)を更に高めることができる。 Further, as shown in FIG. 13, a sheet material (cover material) 155 capable of covering all the partitioning means 150 in a state where the target area S is partitioned after the partitioning means 150 is engaged may be provided. .. Specifically, FIG. 13A shows a sheet material 155, which has a substantially cubic shape with an open bottom surface BT. The size of the sheet material 155 is slightly larger than the size of the partition means 150 for partitioning the target area S. Then, as shown in FIG. 13 (B), by covering the partition means 150 with the sheet material 155 from above, the target area S and the target area S as shown in FIGS. The degree of shielding from the outside (sealing degree) can be further increased.
 また、シート材155は、開放されている対象領域Sの上面部分のみを覆うことが可能な略矩形状であってもよい。 Further, the sheet material 155 may have a substantially rectangular shape that can cover only the upper surface portion of the open target area S.
 図14を参照して、本発明の紫外線照射システム200の他の例について説明する。同図は、紫外線照射システム200の側面概要図である。 Another example of the ultraviolet irradiation system 200 of the present invention will be described with reference to FIG. The figure is a side view of the ultraviolet irradiation system 200.
 紫外線照射システム200は、紫外線照射装置100(紫外線照射ユニット150B)の流路107から流出する空気の少なくとも一部を対象領域S外に排出する排気手段181を備えてもよい。 The ultraviolet irradiation system 200 may include an exhaust means 181 that discharges at least a part of the air flowing out from the flow path 107 of the ultraviolet irradiation device 100 (ultraviolet irradiation unit 150B) to the outside of the target region S.
 この場合さらに、対象領域S外の空気を、対象領域Sに導入する給気(吸気)手段182を有するとより好適である。 In this case, it is more preferable to have the air supply (intake) means 182 for introducing the air outside the target area S into the target area S.
 同図(A)は、図12と同様の紫外線照射システム200を概念的に示す側面概要図であるが、この場合の対象領域Sは、区画手段150で天井部分も覆われているか、あるいは図13に示すようにシート材155で覆われ、略閉空間として区画されているものとする。なお、区画手段150(仕切りユニット150A)で対象領域Sを区画し、その内部に紫外線照射装置100を配置した場合も同様である。 FIG. (A) is a side schematic view conceptually showing the same ultraviolet irradiation system 200 as in FIG. 12, but in this case, the target area S is covered with the partition means 150 or the ceiling portion is also shown in the figure. As shown in 13, it is assumed that the space is covered with the sheet material 155 and is partitioned as a substantially closed space. The same applies when the target area S is partitioned by the partitioning means 150 (partitioning unit 150A) and the ultraviolet irradiation device 100 is arranged inside the target area S.
 紫外線照射システム200は、例えば、対象領域S単位で独立の排気手段181と給気手段182を備える。排気手段181は、排気路181Aと排気ファン181Bなどであり、紫外線照射ユニット150Bの流路107の出口(この例では上端部)に連結される。排気手段181には、その他不図示の空調機やHEPA等の適宜のフィルタ、ダクトなどが含まれてもよい。給気手段182は、給気(吸気)路182Aなどであり、その他不図示の排気ファンや適宜のフィルタが含まれてもよい。 The ultraviolet irradiation system 200 includes, for example, an independent exhaust means 181 and an air supply means 182 for each target area S. The exhaust means 181 is an exhaust passage 181A, an exhaust fan 181B, or the like, and is connected to the outlet (upper end portion in this example) of the flow path 107 of the ultraviolet irradiation unit 150B. The exhaust means 181 may include an air conditioner (not shown), an appropriate filter such as HEPA, a duct, or the like. The air supply means 182 is an air supply (intake) path 182A or the like, and may include an exhaust fan (not shown) or an appropriate filter.
 また、対象領域Sとその外部とは、異なる圧力になるように制御されるとよい。ここでは一例として、対象領域Sが陰圧、その外部が陽圧となるように管理(対象領域S内を陰圧管理)する場合を示している。感染症などの保菌患者を対象領域Sに受け入れて治療等行なう場合、対象領域S内を陰圧にすることにより隔離し、病原菌(伝染性細菌、ウィルス)等を封じ込めて、外部への飛散や汚染の拡大を効果的に防止できる。また、外部の不要な汚染空気が侵入するのを防ぐことも可能となる。 Further, it is preferable that the target area S and the outside thereof are controlled so as to have different pressures. Here, as an example, a case is shown in which the target area S is managed so as to have a negative pressure and the outside thereof has a negative pressure (negative pressure is managed inside the target area S). When accepting a carrier patient such as an infectious disease in the target area S for treatment, etc., the target area S is isolated by applying negative pressure to contain pathogens (infectious bacteria, viruses), etc. The spread of pollution can be effectively prevented. In addition, it is possible to prevent unnecessary polluted air from entering from the outside.
 対象領域S内の汚染された空気は、一点鎖線で示すように紫外線照射ユニット150Bの流路107を通過することで殺菌・浄化され対象領域S内に排出されてこれが循環される(循環殺菌される)。また、患者や医療従事者等の対象者が不在となった場合には、紫外線照射ユニット150Bの遮断手段105を開放して紫外線(破線で示す)を対象領域Sに直接照射し、空間や、付着菌・浮遊菌(落下菌含む)等の殺菌を行なう。 The contaminated air in the target area S is sterilized and purified by passing through the flow path 107 of the ultraviolet irradiation unit 150B as shown by the alternate long and short dash line, and is discharged into the target area S and circulated (circulated sterilized). Ru). When the target person such as a patient or a medical worker is absent, the blocking means 105 of the ultraviolet irradiation unit 150B is opened to directly irradiate the target area S with ultraviolet rays (indicated by a broken line) to create a space or the like. Sterilize adherent bacteria, floating bacteria (including falling bacteria), etc.
 そして流路107を通過して浄化・殺菌された空気(清浄な空気)CAの一部が排気手段181を介して外部に排出される。なお、排気手段181と紫外線照射ユニット150Bの連結部分は、排気手段181に確実に(選択的に)清浄な空気CAのみが通過可能となる適宜の対策が施されている(以下の同図の例において同様)。適宜の対策とは例えば、既知の筒型空気殺菌装置の設置などである。筒型空気殺菌装置は例えば、筒の片側に1?/Hr程度の空気を送るためのファンを搭載し、筒内には直管のUVランプが1灯点灯する構造となっており、筒内を通り抜けた空気はほぼ完全に無菌化できるものである。これにより、対象領域S内の菌(汚染された空気)が外部へ漏出することを抑制することができる。 Then, a part of the purified and sterilized air (clean air) CA that has passed through the flow path 107 is discharged to the outside via the exhaust means 181. The connecting portion between the exhaust means 181 and the ultraviolet irradiation unit 150B is provided with appropriate measures to ensure that only clean air CA can pass through the exhaust means 181 (in the figure below). Same in the example). Appropriate measures include, for example, installation of a known tubular air sterilizer. For example, the tubular air sterilizer is equipped with a fan for sending air of about 1? / Hr on one side of the cylinder, and has a structure in which one straight UV lamp is lit inside the cylinder. The air that has passed through can be almost completely sterilized. As a result, it is possible to suppress the leakage of bacteria (contaminated air) in the target area S to the outside.
 同図(B)および同図(C)は、区画手段150がエアドームである場合を例示する。すなわち、紫外線照射システム200は、エアドーム(区画手段)150で区画された対象領域S内に紫外線照射装置100を配置してなり、同図(A)と同様に対象領域Sに外部の空気を取り込む給気手段182と、流路107を通過して清浄な空気CAを外部に排出する排気手段181を備える。 The figure (B) and the figure (C) exemplify the case where the partition means 150 is an air dome. That is, in the ultraviolet irradiation system 200, the ultraviolet irradiation device 100 is arranged in the target area S partitioned by the air dome (partitioning means) 150, and external air is taken into the target area S in the same manner as in FIG. The air supply means 182 and the exhaust means 181 that passes through the flow path 107 and discharges clean air CA to the outside are provided.
 同図(B)に示すように、エアドーム150は、たとえば内壁150Dと外壁150Eの2重壁の構造によって、天井および壁(および床)を構成する。そして内壁150Dと外壁150Eの隙間空間GSを、対象領域Sよりも陽圧の条件に保つことにより、対象領域Sを陰圧管理する。空気の流れ、殺菌・浄化(循環殺菌)の仕組みは同図(A)と同様である。 As shown in FIG. 3B, the air dome 150 constitutes a ceiling and a wall (and a floor) by, for example, a double wall structure of an inner wall 150D and an outer wall 150E. Then, by keeping the gap space GS between the inner wall 150D and the outer wall 150E under the condition of positive pressure rather than the target area S, the target area S is managed by negative pressure. The air flow and the mechanism of sterilization / purification (circulation sterilization) are the same as in Fig. (A).
 内壁150Dと外壁150Eの間は例えば、不図示の支持手段等で所定間隔で離間されて隙間空間GSが確保され、エアドーム150用の給排気(吸排気)手段183によって当該隙間空間GS内の圧力が制御・管理される。また、2重壁の構造にすることにより、内壁150Dと外壁150Eのいずれかが破損等した場合であっても、即時に対象領域S内の汚染空気が外部に飛散してしまうリスクを低減できる。 A gap space GS is secured between the inner wall 150D and the outer wall 150E by, for example, supporting means (not shown) at predetermined intervals, and the pressure in the gap space GS is secured by the air supply / exhaust (intake / exhaust) means 183 for the air dome 150. Is controlled and managed. Further, by adopting the double wall structure, even if either the inner wall 150D or the outer wall 150E is damaged, the risk that the contaminated air in the target area S is immediately scattered to the outside can be reduced. ..
 同図(C)は、エアドーム150が一重の壁構造の例である。この場合もエアドーム150で区画された対象領域S内に紫外線照射装置100を配置してなり、同図(A)と同様に対象領域Sに外部の空気を取り込む給気手段182と、流路107を通過して清浄な空気CAを外部に排出する排気手段181を備える。 The figure (C) is an example of a single wall structure of the air dome 150. In this case as well, the ultraviolet irradiation device 100 is arranged in the target area S partitioned by the air dome 150, and the air supply means 182 that takes in the external air into the target area S and the flow path 107 are the same as in FIG. 181 is provided with an exhaust means 181 for discharging clean air CA to the outside through the above.
 また、この場合は、対象領域Sを陽圧管理している例である。対象領域S内を陽圧管理することを除き、空気の流れ、殺菌・浄化(循環殺菌)の仕組みは同図(A)と同様である。 Also, in this case, it is an example of positive pressure management of the target area S. The mechanism of air flow and sterilization / purification (circulation sterilization) is the same as in FIG. 6A, except that the inside of the target area S is controlled by positive pressure.
 例えば、対象領域Sに抵抗力の弱い患者を収容する場合、対象領域S外の汚染から守る(逆隔離する)ため、対象領域S内を陽圧とし、無菌病室的に利用することもできる。病院内では、病状にあわせて病室環境室内の圧力を制御・管理(陰圧管理、陽圧管理)するが、本実施形態の紫外線照射システム200は、陰圧管理および、陽圧管理のいずれも可能である。 For example, when a patient with weak resistance is accommodated in the target area S, the inside of the target area S can be positively pressured and used as a sterile hospital room in order to protect (reversely isolate) the patient from contamination outside the target area S. In the hospital, the pressure in the hospital room environment room is controlled and managed (negative pressure control, positive pressure control) according to the medical condition, but the ultraviolet irradiation system 200 of the present embodiment has both negative pressure control and positive pressure control. It is possible.
 同図に示す空気の流れや、殺菌・浄化処理(殺菌・浄化の程度)の制御および、圧力の制御等(環境制御)は、排気手段181、給気手段182、給排気(吸排気)手段183、その他不図示の圧力、温度等の各センサ等を環境制御用の駆動制御手段(不図示)によって制御することにより行なう。また、一部手動制御してもよい。 The air flow shown in the figure, control of sterilization / purification treatment (degree of sterilization / purification), pressure control, etc. (environmental control) are performed by exhaust means 181, air supply means 182, and air supply / exhaust (intake / exhaust) means. 183 and other sensors such as pressure and temperature (not shown) are controlled by a drive control means (not shown) for environmental control. In addition, some manual control may be performed.
 <紫外線照射方法>
 図14に示す紫外線照射システム200による紫外線照射方法(殺菌・浄化処理の流れ)の一例について、説明する。
<Ultraviolet irradiation method>
An example of the ultraviolet irradiation method (flow of sterilization / purification treatment) by the ultraviolet irradiation system 200 shown in FIG. 14 will be described.
 災害時などにおいて既設の病院等の専門施設以外の場所等において、緊急的に被災者・負傷者・感染症などの保菌患者等に対し処置を行なう必要が生じた場合に、随時、任意の箇所において、区画手段150(テント、エアドーム、仕切りなど)にて対象領域Sを区画し、対象領域S内に紫外線照射装置100を配置する。あるいはまた仕切りユニット150Aと紫外線照射ユニット150Bを少なくとも含む区画手段150で対象領域Sを区画する。あるいはまた、対象領域Sとなりうる所定の室内(壁等の区画手段150で区画された領域)に紫外線照射装置100を搬入(配置)する。 In the event of a disaster, etc., when it becomes necessary to urgently treat victims, injured persons, carriers of infectious diseases, etc. at places other than specialized facilities such as existing hospitals, any location at any time In, the target area S is partitioned by the partitioning means 150 (tent, air dome, partition, etc.), and the ultraviolet irradiation device 100 is arranged in the target area S. Alternatively, the target area S is partitioned by the partitioning means 150 including at least the partition unit 150A and the ultraviolet irradiation unit 150B. Alternatively, the ultraviolet irradiation device 100 is carried (arranged) into a predetermined room (area partitioned by the partitioning means 150 such as a wall) that can be the target area S.
 対象領域Sが有人の場合には、紫外線照射装置100(紫外線照射ユニット150B、以下同様)の遮断手段105を閉止して、紫外線発光手段101の電源を投入(点灯)する。紫外線発光手段101からの発光は行われるが遮断手段105の閉止により紫外線は遮断状態となり、紫外線が直接的に対象領域S(人体)に照射されることを防ぐ。 When the target area S is manned, the blocking means 105 of the ultraviolet irradiation device 100 (ultraviolet irradiation unit 150B, the same applies hereinafter) is closed, and the power of the ultraviolet light emitting means 101 is turned on (lighted). Although light is emitted from the ultraviolet light emitting means 101, the ultraviolet rays are blocked by closing the blocking means 105, and the ultraviolet rays are prevented from being directly irradiated to the target region S (human body).
 一方、紫外線照射装置100の内部に設けられた流路107を流通する空気に紫外線を照射し、空気を殺菌・清浄化するとともに、自然対流によって殺菌・清浄化された空気(清浄な空気)CAを紫外線照射装置100から対象領域Sに排出する。 On the other hand, the air flowing through the flow path 107 provided inside the ultraviolet irradiation device 100 is irradiated with ultraviolet rays to sterilize and purify the air, and the air (clean air) CA sterilized and purified by natural convection. Is discharged from the ultraviolet irradiation device 100 to the target area S.
 また、対象領域Sには連続的に給気手段182によって外部の空気を取り込むとともに、流路107を通過して浄化・殺菌された空気(清浄な空気)CAの一部を、排気手段181を介して外部に排出する。 Further, the target area S is continuously taken in the outside air by the air supply means 182, and a part of the purified and sterilized air (clean air) CA that has passed through the flow path 107 is exhausted by the exhaust means 181. It is discharged to the outside through.
 そして対象領域S内が無人になった際には、遮断手段105を開放して紫外線の非遮断状態とする。紫外線発光手段101は、当該紫外線照射システム200が正常に動作(運転)している状態においては、運転開始時から(消灯することなく)点灯を継続しており、十分な殺菌能力を得るための出力に達している。つまり、遮断手段105を開放すると同時に十分な殺菌能力を有する紫外線を対象領域Sに直接的に照射できる。これにより、対象領域S内を効率的に殺菌・清浄化することができる。 Then, when the target area S becomes unmanned, the blocking means 105 is opened to put the ultraviolet rays in a non-blocking state. The ultraviolet light emitting means 101 has been continuously lit (without turning off) from the start of operation in a state where the ultraviolet irradiation system 200 is operating (operating) normally, in order to obtain sufficient sterilizing ability. The output has been reached. That is, at the same time as opening the blocking means 105, the target region S can be directly irradiated with ultraviolet rays having a sufficient bactericidal ability. As a result, the inside of the target area S can be efficiently sterilized and cleaned.
 再び、対象領域Sが有人になった場合には、紫外線発光手段101の発光を継続した状態で遮断手段105を閉止し、紫外線の対象領域Sへの照射を遮断する。 When the target area S becomes manned again, the blocking means 105 is closed while the ultraviolet light emitting means 101 continues to emit light, and the irradiation of the target area S of ultraviolet rays is blocked.
 遮断手段105による遮断状態/非遮断状態の制御は、駆動制御手段109によって自動で、および/または担当者による所定の操作手段(不図示)の操作などにより手動で、適宜行なわれる。 The blocking state / non-blocking state is controlled by the blocking means 105 automatically by the drive control means 109 and / or manually by the person in charge by operating a predetermined operating means (not shown) or the like.
 このように、本実施形態の紫外線照射装置100によれば、循環殺菌により対象領域Sが有人の場合であっても(無人の場合であっても)、常時、殺菌後の清浄な空気を循環させることができる。また、可搬型であるので、任意のタイミング、レイアウトで容易に設置および撤去が可能であり、間仕切りとしても使用できる。したがって例えば、複数人が収容される室内(対象領域S)などにおいて任意のタイミングで空気を清浄したい場合などや、病院、仮設テントその他の施設などで感染力の強い患者が存在する場合など、適宜、設置し、また不用の際には容易に撤去することができる。 As described above, according to the ultraviolet irradiation device 100 of the present embodiment, the clean air after sterilization is constantly circulated even when the target area S is manned (even when unmanned) by circulation sterilization. Can be made to. Moreover, since it is a portable type, it can be easily installed and removed at any timing and layout, and can also be used as a partition. Therefore, for example, when it is desired to clean the air at an arbitrary timing in a room where a plurality of people are accommodated (target area S), or when there is a patient with strong infectivity in a hospital, a temporary tent, or other facility, it is appropriate. , Can be installed and easily removed when not in use.
 必要時に非遮断状態とすることにより、紫外線発光手段101から、全方位へ、照射の影を発生させることなく、大量の紫外線を直接的に照射することができる。したがって、一例であるが、数分程度の時間で、菌の生存率(生存菌数/初発菌数)を10分の1(菌の死滅率を例えば99.9%)にすることができる。また、菌が(再び)増殖する以前に繰り返し殺菌することで、室内を汚染前の清潔領域に戻すことができ、感染抑制に高い効果が得られる。 By setting the non-blocking state when necessary, it is possible to directly irradiate a large amount of ultraviolet rays from the ultraviolet light emitting means 101 in all directions without generating a shadow of irradiation. Therefore, as an example, the survival rate of bacteria (the number of surviving bacteria / the number of initial bacteria) can be reduced to 1/10 (the killing rate of bacteria is, for example, 99.9%) in a few minutes. In addition, by repeatedly sterilizing the bacteria before they grow (again), the room can be returned to a clean area before contamination, which is highly effective in suppressing infection.
 <第2実施形態>
 図15から図21は、紫外線照射システム200の第2実施形態の一例を説明する図である。図15は本実施形態の紫外線照射システム200の他の例の概要を示す側面図である。図15(A)、同図(D)が遮断状態における紫外線照射システム200の状態を示す側面概要図であり、図15(B)、同図(C)が非遮断状態における紫外線照射システム200の状態を示す側面概要図である。
<Second Embodiment>
15 to 21 are views for explaining an example of the second embodiment of the ultraviolet irradiation system 200. FIG. 15 is a side view showing an outline of another example of the ultraviolet irradiation system 200 of the present embodiment. 15 (A) and 15 (D) are side schematic views showing the state of the ultraviolet irradiation system 200 in the blocked state, and FIGS. 15 (B) and 15 (C) are the ultraviolet irradiation system 200 in the non-blocked state. It is a side view which shows the state.
 図15に示すように、本実施形態の紫外線照射システム200は、紫外線反射手段250を備えてもよい。 As shown in FIG. 15, the ultraviolet irradiation system 200 of the present embodiment may include the ultraviolet reflecting means 250.
 紫外線反射手段250は、紫外線発光手段101が出射(発光)した紫外線を反射する鏡面(ミラー面)250Aを有する手段である。紫外線反射手段250は、例えば、対象領域Sに臨む側の面の全面が鏡面250Aとなっている。また、紫外線反射手段250は、少なくとも鏡面250Aが紫外線発光手段101に対して相対的に移動可能である。ここでは一例として、紫外線反射手段250が紫外線照射装置100と同様、可搬型(例えば、自立可能な衝立型など)である場合について説明する。この紫外線反射手段250は、任意の場所に移動可能であり、すなわち紫外線発光手段101に対して相対的に移動可能である。具体的に例えば、紫外線反射手段250は、略矩形状の枠体250Cとこれが立設するように支持する脚部250Dとを有し、枠体250Cの一方の面(対象領域Sに臨む面)に、枠体250Cに対して相対的に移動可能な鏡面250Aが設けられている。 The ultraviolet reflecting means 250 is a means having a mirror surface (mirror surface) 250A that reflects the ultraviolet rays emitted (emitting) by the ultraviolet emitting means 101. In the ultraviolet reflecting means 250, for example, the entire surface of the surface facing the target region S is a mirror surface 250A. Further, in the ultraviolet reflecting means 250, at least the mirror surface 250A is movable relative to the ultraviolet emitting means 101. Here, as an example, a case where the ultraviolet reflecting means 250 is a portable type (for example, a self-supporting strut type) like the ultraviolet irradiation device 100 will be described. The ultraviolet reflecting means 250 can be moved to an arbitrary place, that is, can be moved relative to the ultraviolet light emitting means 101. Specifically, for example, the ultraviolet reflecting means 250 has a substantially rectangular frame body 250C and leg portions 250D that support the frame body 250C so as to stand upright, and one surface of the frame body 250C (a surface facing the target area S). Is provided with a mirror surface 250A that is relatively movable with respect to the frame body 250C.
 紫外線反射手段250は例えば、その鏡面250Aが対象領域Sに臨み、紫外線発光手段101が出射する紫外線を反射可能な位置(図15の例では、紫外線発光手段101に対向する位置)に配置される。 For example, the ultraviolet reflecting means 250 is arranged at a position where the mirror surface 250A faces the target region S and can reflect the ultraviolet rays emitted by the ultraviolet emitting means 101 (in the example of FIG. 15, the position faces the ultraviolet emitting means 101). ..
 同図(B)、同図(C)に示すように、紫外線照射システム200は対象領域Sが無人の場合などに非遮断状態となる。非遮断状態では、遮断手段105を開放し、紫外線を対象領域Sに照射し、対象領域S全体の殺菌処理を行う。この殺菌処理では、対象領域Sに存在する家具や壁、床および天井などの物(物体)のみならず、対象領域S内の空気も殺菌可能である。 As shown in FIGS. (B) and (C), the ultraviolet irradiation system 200 is in a non-blocking state when the target area S is unmanned. In the non-blocking state, the blocking means 105 is opened, the target region S is irradiated with ultraviolet rays, and the entire target region S is sterilized. In this sterilization treatment, not only objects such as furniture, walls, floors and ceilings existing in the target area S, but also the air in the target area S can be sterilized.
 加えて、非遮断状態では、紫外線発光手段101から対象領域Sに出射された紫外線は、紫外線反射手段250(の鏡面250A)によって反射し、再び対象領域Sに照射される。
これにより対象領域S内への紫外線の照射量が増加する。また、紫外線が届かない領域を減少でき、殺菌効果を高めることができる。
In addition, in the non-blocking state, the ultraviolet rays emitted from the ultraviolet light emitting means 101 to the target area S are reflected by the ultraviolet reflecting means 250 (mirror surface 250A) and are irradiated to the target area S again.
As a result, the amount of ultraviolet rays irradiated into the target area S increases. In addition, the area where ultraviolet rays do not reach can be reduced, and the bactericidal effect can be enhanced.
 すなわち、殺菌に利用できる紫外線は電磁波であり、指向性としては照射した方向への直進性しかない。このため、例えば、図15(B)、同図(C)に太破線矢印(右から左への矢印)で示すように、対象領域S内に障害物など(この例では椅子など)があるとそれにより紫外線が遮られ、その逆側(障害物の裏面側)には、障害物の陰となり紫外線が届かない領域(以下、この領域を「紫外線非到達領域」と称する)が生じる。従来ではこのように紫外線非到達領域において殺菌効果が十分に得られない問題があった。 That is, the ultraviolet rays that can be used for sterilization are electromagnetic waves, and the directivity is only straight in the direction of irradiation. Therefore, for example, as shown by a thick broken line arrow (arrow from right to left) in FIGS. 15 (B) and 15 (C), there is an obstacle (such as a chair in this example) in the target area S. As a result, ultraviolet rays are blocked, and on the opposite side (back side of the obstacle), there is a region behind the obstacle where the ultraviolet rays do not reach (hereinafter, this region is referred to as an "ultraviolet non-reachable region"). Conventionally, there has been a problem that a sufficient bactericidal effect cannot be obtained in such a region where ultraviolet rays do not reach.
 しかしながら本実施形態では、紫外線反射手段250によって紫外線を反射できる。より詳細には、図15に示す例では、紫外線発光手段101の発光面に対して鏡面250Aを対向配置しているが、実際には、紫外線発光手段101の発光面に対して鏡面250Aが(平行ではなく)或る角度をなすように配置することで、異なる(任意の)方向に紫外線を反射することが可能となる。つまり、紫外線発光手段101から出射される紫外線が届かない領域(紫外線非到達領域)が生じていても、予め当該紫外線非到達領域に紫外線を反射させるように鏡面250Aを適宜移動させることで、当該紫外線非到達領域に(例えば、左から右への太破線矢印のように)も紫外線を照射することができる。従って、実質的に多方向からの紫外線の照射が可能となり、殺菌の能力を大幅に高めることができる。 However, in the present embodiment, ultraviolet rays can be reflected by the ultraviolet reflecting means 250. More specifically, in the example shown in FIG. 15, the mirror surface 250A is arranged to face the light emitting surface of the ultraviolet light emitting means 101, but in reality, the mirror surface 250A is arranged with respect to the light emitting surface of the ultraviolet light emitting means 101. By arranging them at an angle (rather than parallel), it is possible to reflect ultraviolet rays in different (arbitrary) directions. That is, even if there is a region where the ultraviolet rays emitted from the ultraviolet light emitting means 101 do not reach (ultraviolet non-reachable region), the mirror surface 250A is appropriately moved so as to reflect the ultraviolet rays to the ultraviolet non-reachable region in advance. Ultraviolet rays can also be applied to non-ultraviolet areas (for example, as shown by the thick dashed arrow from left to right). Therefore, it is possible to irradiate ultraviolet rays from substantially multiple directions, and the sterilization ability can be greatly enhanced.
 このように、第2実施形態によれば、紫外線反射手段250によって紫外線を任意の方向に反射することができるので対象領域Sに対して多方向からの紫外線の照射が可能となり紫外線非到達領域を大幅に低減でき、殺菌効果を高めることができる。 As described above, according to the second embodiment, since the ultraviolet reflecting means 250 can reflect the ultraviolet rays in an arbitrary direction, the target region S can be irradiated with the ultraviolet rays from multiple directions, and the ultraviolet non-reachable region is formed. It can be significantly reduced and the bactericidal effect can be enhanced.
 また第1実施形態と同様に、カバー手段103と紫外線発光手段101によって流路107が形成されるので、流路107内の空気の殺菌処理と自然対流による清浄な空気(殺菌された空気)の循環(循環殺菌)が可能である。 Further, as in the first embodiment, since the flow path 107 is formed by the cover means 103 and the ultraviolet light emitting means 101, the air in the flow path 107 is sterilized and the clean air (sterilized air) by natural convection is used. Circulation (circulation sterilization) is possible.
 なお、紫外線照射装置100および/または紫外線反射手段250は可搬型であれば、図示の構成に限らず、例えば、床面等への据え置き型や、天井や壁などからの吊り下げ(掛け下げ)型などであってもよい。 If the ultraviolet irradiation device 100 and / or the ultraviolet reflecting means 250 is a portable type, the configuration is not limited to the one shown in the figure, and for example, it is a stationary type on a floor or the like, or is hung from a ceiling or a wall. It may be a mold or the like.
 また、紫外線照射装置100は例えば、対象領域S(室内)の壁等に据付型であってもよい。また紫外線反射手段250は、たとえば対象領域S(室内)の壁等に据付型であって、鏡面250Aが紫外線発光手段101に対して相対移動可能に構成されていてもよい。 Further, the ultraviolet irradiation device 100 may be installed on a wall or the like in the target area S (indoor), for example. Further, the ultraviolet reflecting means 250 may be installed on a wall or the like in the target area S (indoor), and the mirror surface 250A may be configured to be movable relative to the ultraviolet light emitting means 101.
 図16を参照して、本実施形態の紫外線照射システム200の他の例について説明する。図16は紫外線照射システム200の概要を示す上面図である。 Another example of the ultraviolet irradiation system 200 of the present embodiment will be described with reference to FIG. FIG. 16 is a top view showing an outline of the ultraviolet irradiation system 200.
 紫外線照射システム200の対象領域Sは、第1実施形態と同様であり、例えば室内等既設の領域であってもよいし、必要に応じて随時、区画手段150によって他の領域から区画された領域であってもよい。 The target area S of the ultraviolet irradiation system 200 is the same as that of the first embodiment, and may be an existing area such as an indoor area, or an area partitioned from another area by the partitioning means 150 as needed. It may be.
 同図(A)に示すように、本実施形態の紫外線照射システム200は、区画手段150で区画された対象領域Sの内側に紫外線照射装置100を配置する。また、紫外線反射手段250も、同様に対象領域S内の外部からその内部に搬入される。あるいは、対象領域S内に予め収納(設置)され、必要に応じて所定位置に移動・設置される。つまり同図に示す紫外線照射システム200の場合、紫外線照射装置100および紫外線反射手段250のいずれも、壁等への据付型ではなく、可搬型(可搬性を有する構成)であることが望ましい。 As shown in FIG. 3A, in the ultraviolet irradiation system 200 of the present embodiment, the ultraviolet irradiation device 100 is arranged inside the target area S partitioned by the partition means 150. Further, the ultraviolet reflecting means 250 is also carried into the target area S from the outside. Alternatively, it is stored (installed) in advance in the target area S, and is moved / installed at a predetermined position as needed. That is, in the case of the ultraviolet irradiation system 200 shown in the figure, it is desirable that both the ultraviolet irradiation device 100 and the ultraviolet reflecting means 250 are not a wall-mounted type but a portable type (a configuration having portability).
 また、同図(B)に示すように、本実施形態の紫外線照射システム200は、紫外線照射装置100および/または紫外線反射手段250が区画手段150の一部を構成してもよい。区画手段150によって対象領域Sを区画する際、紫外線照射装置100および/または紫外線反射手段250はその一部として設置される。区画手段150についても第1実施形態と同様である。 Further, as shown in FIG. 6B, in the ultraviolet irradiation system 200 of the present embodiment, the ultraviolet irradiation device 100 and / or the ultraviolet reflecting means 250 may form a part of the partition means 150. When the target area S is partitioned by the partitioning means 150, the ultraviolet irradiation device 100 and / or the ultraviolet reflecting means 250 is installed as a part thereof. The partitioning means 150 is the same as that in the first embodiment.
 このようにして、紫外線照射システム200では紫外線照射装置100が対象領域Sに殺菌領域の波長の紫外線を照射することにより、当該対象領域S内の空気の殺菌・浄化および/または当該対象領域Sに存在する物品、対象者の人体などの表面を殺菌・浄化する。また、紫外線照射装置100が対象領域Sに紫外線を照射している場合に、紫外線反射手段250が当該紫外線を反射する。 In this way, in the ultraviolet irradiation system 200, the ultraviolet irradiation device 100 irradiates the target area S with ultraviolet rays having a wavelength of the sterilization region to sterilize and purify the air in the target area S and / or to the target area S. Sterilizes and purifies the surface of existing articles and the human body of the target person. Further, when the ultraviolet irradiation device 100 irradiates the target region S with ultraviolet rays, the ultraviolet reflecting means 250 reflects the ultraviolet rays.
 また、図15および図16の例では一の対象領域Sにおいて一の紫外線照射装置100/およびまたは紫外線反射手段250を配置しているが、一の対象領域Sにおいて複数の紫外線照射装置100/およびまたは紫外線反射手段250を配置してもよい(以下の各図においても同様である)。複数の紫外線反射手段250を適宜離間して配置することで、より多方面に紫外線を反射させることができる。また、紫外線照射装置100と紫外線反射手段250の数は同数でなくてもよい。 Further, in the examples of FIGS. 15 and 16, one ultraviolet irradiation device 100 / and / or ultraviolet reflection means 250 are arranged in one target area S, but a plurality of ultraviolet irradiation devices 100 / and / or ultraviolet irradiation devices 100 / and are arranged in one target area S. Alternatively, the ultraviolet reflecting means 250 may be arranged (the same applies to each of the following figures). By arranging the plurality of ultraviolet reflecting means 250 at appropriate distances, it is possible to reflect ultraviolet rays in more directions. Further, the number of the ultraviolet irradiation device 100 and the ultraviolet reflecting means 250 does not have to be the same.
 図17は、図16に示す紫外線照射システム200の具体例を示す図であり、紫外線照射装置100が区画手段150の一部を構成する場合を例示している。図17(A)が紫外線照射システム200の上面図、図17(B)が紫外線照射システム200の斜視図である。 FIG. 17 is a diagram showing a specific example of the ultraviolet irradiation system 200 shown in FIG. 16, exemplifying a case where the ultraviolet irradiation device 100 constitutes a part of the partition means 150. FIG. 17A is a top view of the ultraviolet irradiation system 200, and FIG. 17B is a perspective view of the ultraviolet irradiation system 200.
 紫外線照射システム200は、区画手段150によって区画された対象領域Sに紫外線を照射する紫外線照射装置100と、紫外線を反射する紫外線反射手段250を有する。紫外線照射装置100は、例えば、対象領域Sにおいて移動不可に固定されるものではなく、紫外線発光手段101とカバー手段103と遮断手段105とをユニット化し、一体的(単独で)に移動可能な可搬型に構成される。紫外線反射手段250は、例えば、少なくとも鏡面250Aを有し、(単独で)自立して移動可能な可搬型に構成される。 The ultraviolet irradiation system 200 includes an ultraviolet irradiation device 100 that irradiates the target area S partitioned by the partition means 150 with ultraviolet rays, and an ultraviolet reflecting means 250 that reflects the ultraviolet rays. For example, the ultraviolet irradiation device 100 is not fixed so as not to be movable in the target area S, but can be moved integrally (independently) by unitizing the ultraviolet light emitting means 101, the covering means 103, and the blocking means 105. It is configured as a portable type. The ultraviolet reflecting means 250 has, for example, at least a mirror surface 250A, and is configured to be a portable type that can move independently (alone).
 同図に示すように、この例では、区画手段150は、単独で移動可能にユニット化された紫外線照射装置100(紫外線照射ユニット150B)と単独で移動可能にユニット化された紫外線反射手段250(紫外線反射ユニット150M)とを含む。つまり区画手段150は、少なくとも紫外線照射ユニット150Bと紫外線反射ユニット150Mを含んで構成され、この例では仕切りユニット150Aと紫外線照射ユニット150Bと紫外線反射ユニット150Mを含む。 As shown in the figure, in this example, the partition means 150 is an ultraviolet irradiation device 100 (ultraviolet irradiation unit 150B) that is independently movable and unitized, and an ultraviolet reflection means 250 that is independently movable and unitized (ultraviolet irradiation unit 150B). UV reflection unit 150M) and included. That is, the partition means 150 includes at least an ultraviolet irradiation unit 150B and an ultraviolet reflection unit 150M, and in this example, includes a partition unit 150A, an ultraviolet irradiation unit 150B, and an ultraviolet reflection unit 150M.
 紫外線照射ユニット150Bは、上述の紫外線照射装置100(100A)と同様の構成であるが、更に、他の部材と係合可能な係合手段161を備える。ここで他の部材とは、区画手段150、他の紫外線照射ユニット150B(紫外線照射装置100)および紫外線反射ユニット150M(紫外線反射手段250)、更に他の部材である。 The ultraviolet irradiation unit 150B has the same configuration as the above-mentioned ultraviolet irradiation device 100 (100A), but further includes an engaging means 161 capable of engaging with other members. Here, the other members are a partitioning means 150, another ultraviolet irradiation unit 150B (ultraviolet irradiation device 100), an ultraviolet reflection unit 150M (ultraviolet reflection means 250), and further other members.
 紫外線照射ユニット150Bの係合手段161は例えば、支持枠121(または基材B)の両端部に設けられ、他の部材を着脱可能に係合する。 The engaging means 161 of the ultraviolet irradiation unit 150B is provided at both ends of the support frame 121 (or the base material B), and other members are detachably engaged with each other.
 紫外線反射ユニット150Mも上述の紫外線反射手段250と同様の構成であるが、他の部材と係合可能な係合手段161を備える。紫外線反射ユニット150Mの係合手段161は例えば、枠体250Cの両端部に設けられる。 The ultraviolet reflecting unit 150M has the same configuration as the above-mentioned ultraviolet reflecting means 250, but includes an engaging means 161 capable of engaging with other members. The engaging means 161 of the ultraviolet reflection unit 150M is provided at both ends of the frame body 250C, for example.
 このような構成により、仕切りユニット150A,紫外線照射ユニット150Bおよび紫外線反射ユニット150Mは、互いに、または他の部材と係合手段161により係合可能に構成されている。 With such a configuration, the partition unit 150A, the ultraviolet irradiation unit 150B, and the ultraviolet reflection unit 150M are configured to be engaged with each other or with other members by the engaging means 161.
 また、各区画手段150(仕切りユニット150A、紫外線照射ユニット150Bおよび紫外線反射ユニット150M)は、例えば、同図(A),同図(B)に示すように同一サイズまたは、幅方向Hおよび/または高さ方向Vの長さ(形状)が揃った統一規格で構成されると好ましい。ここでは、仕切りユニット150Aと係合手段161により係合可能であって、形状、サイズが仕切りユニット150Aと統一規格(統一サイズ)で構成された紫外線照射装置100を特に紫外線照射ユニット150Bと、紫外線反射手段250を紫外線反射ユニット150Mとそれぞれ別称するが、上述の各紫外線照射装置100と紫外線照射ユニット150Bは同様の構成であり、また紫外線反射手段250と紫外線反射ユニット150Mは同様の構成である。従って、本明細書における説明上、紫外線照射装置100と紫外線照射ユニット150Bを入れ替えても良く、紫外線反射手段250を紫外線反射ユニット150Mとを入れ替えてもよい。 Further, each partition means 150 (partition unit 150A, ultraviolet irradiation unit 150B, and ultraviolet reflection unit 150M) has, for example, the same size or width direction H and / or as shown in FIGS. (A) and (B). It is preferable that it is configured by a unified standard in which the length (shape) of V in the height direction is uniform. Here, the ultraviolet irradiation device 100 which can be engaged with the partition unit 150A by the engaging means 161 and whose shape and size are configured in the same standard (unified size) as the partition unit 150A is particularly the ultraviolet irradiation unit 150B and the ultraviolet rays. Although the reflecting means 250 is separately referred to as an ultraviolet reflecting unit 150M, each of the above-mentioned ultraviolet irradiation devices 100 and the ultraviolet irradiation unit 150B has the same configuration, and the ultraviolet reflecting means 250 and the ultraviolet reflecting unit 150M have the same configuration. Therefore, for the sake of description in the present specification, the ultraviolet irradiation device 100 and the ultraviolet irradiation unit 150B may be replaced, and the ultraviolet reflecting means 250 may be replaced with the ultraviolet reflecting unit 150M.
 なお、同じ部材(区画手段150同士)、すなわち仕切りユニット150A同士、紫外線照射ユニット150B同士、紫外線反射ユニット150M同士を互いに係合手段161によって係合可能である。つまり、これらを連続して繋ぎ合わせる(係合する)ことで対象領域Sが区画される。換言すれば、仕切りユニット150A、紫外線照射ユニット150Bおよび紫外線反射ユニット150Mは区画手段150の一部として機能する。 The same members (partition means 150), that is, partition units 150A, ultraviolet irradiation units 150B, and ultraviolet reflection units 150M can be engaged with each other by the engaging means 161. That is, the target area S is defined by continuously connecting (engaging) them. In other words, the partition unit 150A, the ultraviolet irradiation unit 150B and the ultraviolet reflection unit 150M function as a part of the partition means 150.
 この例では、紫外線照射ユニット150Bの対向位置に紫外線反射ユニット150Mを係合しているが、仕切りユニット150Aも含め、これらの係合位置や、係合する数も同図に示すものに限らず任意に選択可能であり、例えば、1台または複数の紫外線照射ユニット150Bと、複数の紫外線反射ユニット150M等で対象領域Sを区画することも可能である。 In this example, the ultraviolet reflection unit 150M is engaged with the opposite position of the ultraviolet irradiation unit 150B, but the engagement positions and the number of engagements including the partition unit 150A are not limited to those shown in the figure. It can be arbitrarily selected, and for example, the target area S can be partitioned by one or a plurality of ultraviolet irradiation units 150B, a plurality of ultraviolet reflection units 150M, and the like.
 また、同図に示すように一部に出入りのためのドア機能を有するドアユニット150C(これも区画手段150に含まれる)を係合してもよい。 Further, as shown in the figure, a door unit 150C (also included in the partition means 150) having a door function for entering and exiting may be partially engaged.
 このような場合、各区画手段150(仕切りユニット150A、紫外線照射ユニット150B、紫外線反射ユニット150M,(及びドアユニット150C))の上端部には同図(B)に示す可動板151を設けるとよい。 In such a case, the movable plate 151 shown in FIG. 6B may be provided at the upper end of each partition means 150 (partition unit 150A, ultraviolet irradiation unit 150B, ultraviolet reflection unit 150M, (and door unit 150C)). ..
 可動板151の可動の態様は、矢印a~矢印cの少なくともいずれかであり、これらを組合わせてもよい。また、図示は省略するが、可動板151は、各区画手段150の下端部に設けられても良い。 The movable mode of the movable plate 151 is at least one of arrows a to c, and these may be combined. Although not shown, the movable plate 151 may be provided at the lower end of each partition means 150.
 さらに、可動板151の少なくとも何れか(例えば、仕切りユニット150Aや紫外線反射ユニット150Mなどの可動板151)は、対象領域Sに臨む面に鏡面250Aが設けれている(可動板151も紫外線反射手段250である)と更に望ましい。 Further, at least one of the movable plates 151 (for example, the movable plate 151 such as the partition unit 150A and the ultraviolet reflecting unit 150M) is provided with a mirror surface 250A on the surface facing the target region S (the movable plate 151 is also an ultraviolet reflecting means). 250) is even more desirable.
 このように、紫外線照射システム200を、形状等が規格化され、共通の係合手段161によって連結可能な仕切りユニット150A、紫外線照射ユニット150B及び紫外線反射ユニット150M(およびドアユニット150C)のセット(組み)で構成することにより、当該紫外線照射システム200を1セット導入するのみで区画手段150によって適宜、対象領域Sを区画し、容易且つ簡潔に対象領域Sの殺菌・洗浄が可能となる。 In this way, the ultraviolet irradiation system 200 is set (assembled) of a partition unit 150A, an ultraviolet irradiation unit 150B, and an ultraviolet reflection unit 150M (and a door unit 150C) whose shape and the like are standardized and can be connected by a common engaging means 161. ), The target area S can be appropriately partitioned by the partitioning means 150 only by introducing one set of the ultraviolet irradiation system 200, and the target area S can be easily and simply sterilized and washed.
 また、対象領域Sのレイアウトや紫外線照射ユニット150Bや紫外線反射ユニット150Mのレイアウトも容易に変更可能となる。 In addition, the layout of the target area S and the layout of the ultraviolet irradiation unit 150B and the ultraviolet reflection unit 150M can be easily changed.
 また、複数の紫外線照射ユニット150B及び紫外線反射ユニット150Mを任意の位置に連結することで、対象領域S内への紫外線の照射を多方向から行なうことができるため、紫外線の照射効果を高めることができる。 Further, by connecting the plurality of ultraviolet irradiation units 150B and the ultraviolet reflection unit 150M at arbitrary positions, it is possible to irradiate the target region S with ultraviolet rays from multiple directions, so that the effect of irradiating ultraviolet rays can be enhanced. it can.
 また、図示は省略するが、図17に示すような対象領域Sを構成した場合も、図13と同様に区画手段150を係合後して対象領域Sを区画した状態で、全ての区画手段150を覆うことが可能なシート材(カバー材)155を備えても良い。この場合、シート材155の対象領域Sに臨む面を、(例えば、フィルム状などの)鏡面250Aにしてもよい(シート材155も紫外線反射手段250としてもよい)。 Further, although not shown, when the target area S as shown in FIG. 17 is configured, all the partitioning means are in a state where the target area S is partitioned after engaging the partitioning means 150 as in FIG. A sheet material (cover material) 155 capable of covering 150 may be provided. In this case, the surface of the sheet material 155 facing the target region S may be a mirror surface 250A (for example, in the form of a film) (the sheet material 155 may also be the ultraviolet reflecting means 250).
 図18および19は、さらに本実施形態の他の例を示す図である。図18は、対象領域Sの内部の概略図であり、同図(A)が上面図、同図(B)、(C)が側面図である。また、図19は、対象領域Sの上面概要図である。 18 and 19 are still diagrams showing other examples of the present embodiment. 18A and 18B are schematic views of the inside of the target area S, where FIG. 18A is a top view and FIGS. 18B and 18C are side views. Further, FIG. 19 is a schematic top view of the target area S.
 本実施形態の紫外線照射システム200は、一の対象領域Sに複数の紫外線反射手段250を含んでいてもよい。 The ultraviolet irradiation system 200 of the present embodiment may include a plurality of ultraviolet reflecting means 250 in one target area S.
 図18は、紫外線を効率良く反射させ、対象領域Sに対して多方位から紫外線を照射可能とした構成の一例である。同図(A)に示すように紫外線反射手段250を複数配置することで、略全方位から紫外線を照射することも可能となる。ここで、紫外線反射手段250は、例えば、対象領域Sに臨む側の面の全面が(一つの)鏡面250Aとなっており、紫外線照射装置100と同様、可搬型(例えば、衝立型など)である。より詳細には、複数の紫外線反射手段250をそれらの鏡面250Aが、紫外線発光手段101の発光面(基材Bの面)に対して、平行ではなく或る角度をなすように配置することで、異なる(任意の)方向に紫外線を反射することが可能となる。つまり、紫外線発光手段101から出射される紫外線の紫外線非到達領域が生じていても、予め当該紫外線非到達領域に紫外線を反射させるように鏡面250Aを適宜移動させることで、当該紫外線非到達領域にも紫外線を反射(照射)することができる。従って、実質的に多方向からの紫外線の照射が可能となり、効率良く広範囲に対して殺菌処理することが可能となる。 FIG. 18 is an example of a configuration in which ultraviolet rays are efficiently reflected and the target area S can be irradiated with ultraviolet rays from multiple directions. By arranging a plurality of ultraviolet reflecting means 250 as shown in FIG. 3A, it is possible to irradiate ultraviolet rays from substantially all directions. Here, the ultraviolet reflecting means 250 is, for example, a portable type (for example, an imposition type) like the ultraviolet irradiation device 100, in which the entire surface of the surface facing the target region S is a (one) mirror surface 250A. is there. More specifically, by arranging the plurality of ultraviolet reflecting means 250 so that their mirror surfaces 250A are not parallel to the light emitting surface of the ultraviolet light emitting means 101 (the surface of the base material B) but at a certain angle. , It is possible to reflect ultraviolet rays in different (arbitrary) directions. That is, even if an ultraviolet non-reachable region of ultraviolet rays emitted from the ultraviolet light emitting means 101 is generated, by appropriately moving the mirror surface 250A so as to reflect the ultraviolet rays to the ultraviolet non-reachable region in advance, the ultraviolet non-reachable region is reached. Can also reflect (irradiate) ultraviolet rays. Therefore, it is possible to irradiate ultraviolet rays from substantially multiple directions, and it is possible to efficiently sterilize a wide area.
 同図(B)は、紫外線発光手段101に対して相対移動可能な鏡面250A、250Bを備えた紫外線反射手段250の一例である。紫外線反射手段250は、略矩形状の枠体250Cとこれが立設するように支持する脚部250Dとを有し、枠体250Cの一方の面(対象領域Sに臨む面)に、枠体250Cに対して相対的に移動可能な鏡面250A、250Bが設けられている。ここでは一例として、鏡面250Aは、幅方向に沿って複数の短冊状に分割されたパーツ(ルーバー)を有し、それぞれのルーバーが幅方向に沿って設けられた回転軸RRを中心に独立して任意に可動(揺動)し、枠体250Cの面に対して任意の角度に変更可能となっている。鏡面250Aの構成および可動態様は、図8を用いて説明した遮断手段105と同様の構成、可動態様が適用できる。 FIG. 3B is an example of the ultraviolet reflecting means 250 provided with mirror surfaces 250A and 250B that can move relative to the ultraviolet emitting means 101. The ultraviolet reflecting means 250 has a substantially rectangular frame body 250C and legs 250D that support the frame body 250C so as to stand upright, and the frame body 250C is on one surface of the frame body 250C (the surface facing the target area S). Mirror surfaces 250A and 250B that can move relative to each other are provided. Here, as an example, the mirror surface 250A has a plurality of strip-shaped parts (louvers) along the width direction, and each louver is independent about the rotation axis RR provided along the width direction. It can be arbitrarily moved (swinged) and can be changed to an arbitrary angle with respect to the surface of the frame body 250C. As the configuration and movable mode of the mirror surface 250A, the same configuration and movable mode as the blocking means 105 described with reference to FIG. 8 can be applied.
 同図(B)では鏡面250Aが水平方向の短冊として分割された構成を例示しているが垂直方向の短冊として分割される構成や、マトリクス状に分割される構成であってもよい。また、枠体250Cの上方には板状の鏡面250Bを有してもよい。鏡面250Bは、例えば、図17に示した可動板151と同様に可動する。これらの場合、紫外線反射手段250(鏡面250A、250B)の移動(開閉)は、例えば、ここでは不図示の駆動制御手段109による電気的(電子的)制御あるいは手動により行う。これにより、反射方向を適宜、容易に変更することができる。 The figure (B) illustrates a configuration in which the mirror surface 250A is divided into strips in the horizontal direction, but the configuration may be divided into strips in the vertical direction or a configuration in which the mirror surface 250A is divided into a matrix. Further, a plate-shaped mirror surface 250B may be provided above the frame body 250C. The mirror surface 250B is movable in the same manner as the movable plate 151 shown in FIG. 17, for example. In these cases, the movement (opening and closing) of the ultraviolet reflecting means 250 (mirror surfaces 250A, 250B) is performed, for example, by electrical (electronic) control or manual operation by a drive control means 109 (not shown here). Thereby, the reflection direction can be easily changed as appropriate.
 さらに同図(C)に示すように、上方の鏡面250Bは、湾曲構造を有していていてもよい。 Further, as shown in FIG. 6C, the upper mirror surface 250B may have a curved structure.
 なおこの例では、1つの枠体250Cに分割された鏡面250Aが設けられた場合を例示しているが、1つの枠体250Cに可動する1つの(面状の)鏡面250Aを設けてもよい。面状の鏡面250Aは、例えば、略矩形状の枠体250Cの少なくとも一辺に沿う回動軸の周りに回動(揺動)可能に取り付けられる。これにより、反射方向を適宜、容易に変更することができる。 In this example, the case where the mirror surface 250A divided into one frame body 250C is provided is illustrated, but one movable (plane) mirror surface 250A may be provided on one frame body 250C. .. The planar mirror surface 250A is attached so as to be rotatable (swinging) around a rotation axis along at least one side of the substantially rectangular frame body 250C, for example. Thereby, the reflection direction can be easily changed as appropriate.
 あるいは、例えば、枠体250Cの上辺付近または一方の側辺付近に巻き取り可能な鏡面250Aを設けて、下方または他の側辺方向への引き出し量を調整することで、鏡面250Aの範囲を適宜変更可能に構成してもよい。 Alternatively, for example, by providing a windable mirror surface 250A near the upper side or one side side of the frame body 250C and adjusting the pull-out amount in the downward or other side side direction, the range of the mirror surface 250A can be appropriately adjusted. It may be configured to be changeable.
 また、同図(B)において紫外線反射手段250は、対象領域Sの壁面等に固定されていてもよいし、可搬型であってもよい。例えば、紫外線反射手段250が可搬型であってそれ自体を紫外線発光手段101に対して相対的に移動可能な構成であってもよいし、(紫外線反射手段250が可搬型、据付型によらず)少なくとも鏡面250Aが、同図(B)に示すように紫外線発光手段101に対して相対的に移動可能な構成であってもよい。 Further, in the figure (B), the ultraviolet reflecting means 250 may be fixed to the wall surface of the target area S or the like, or may be a portable type. For example, the ultraviolet reflecting means 250 may be portable and may be configured to be movable relative to the ultraviolet emitting means 101 (regardless of whether the ultraviolet reflecting means 250 is portable or stationary). ) At least the mirror surface 250A may be configured to be relatively movable with respect to the ultraviolet light emitting means 101 as shown in FIG.
 なお、鏡面250Aは、同図(B)に示すルーバーにより開閉する構成に限らず、図8を参照して説明した遮断手段105と同様に移動(開閉)するように構成されるものであってもよい。 The mirror surface 250A is not limited to the configuration of opening and closing by the louver shown in FIG. 8B, but is configured to move (open and close) in the same manner as the blocking means 105 described with reference to FIG. May be good.
 図19は、一の対象領域Sに複数の紫外線反射手段250(紫外線反射ユニット150M)を配置する場合の他の一例である。ここで、紫外線反射手段250は、例えば、対象領域Sに臨む側の面の全面が(一つの)鏡面250Aとなっており、紫外線照射装置100と同様、可搬型(例えば、衝立型など)である。なお、同図の紫外線照射装置100は紫外線照射ユニット150Bと、紫外線反射手段250は紫外線反射ユニット150M、区画手段150は仕切りユニット150A、とそれぞれ入れ替えても同様である。紫外線反射手段250(紫外線反射ユニット150M,以下同様)の構成は、上述のいずれかと同様である。 FIG. 19 is another example of the case where a plurality of ultraviolet reflecting means 250 (ultraviolet reflecting unit 150M) are arranged in one target area S. Here, the ultraviolet reflecting means 250 is, for example, a portable type (for example, an imposition type) like the ultraviolet irradiation device 100, in which the entire surface of the surface facing the target region S is a (one) mirror surface 250A. is there. The same applies even if the ultraviolet irradiation device 100 in the figure is replaced with the ultraviolet irradiation unit 150B, the ultraviolet reflecting means 250 is replaced with the ultraviolet reflecting unit 150M, and the partitioning means 150 is replaced with the partition unit 150A. The configuration of the ultraviolet reflecting means 250 (ultraviolet reflecting unit 150M, the same applies hereinafter) is the same as any of the above.
 紫外線照射装置100と、紫外線反射手段250とは係合手段161でそれぞれ係合可能に構成される。 The ultraviolet irradiation device 100 and the ultraviolet reflecting means 250 are configured to be engaged with each other by the engaging means 161.
 同図(A)は、区画手段150(仕切りユニット150A)によって区画された対象領域Sの一の側壁(側面)に沿って1台の紫外線照射装置100を配置し、その両側にそれぞれ紫外線反射手段250を係合させた例である。紫外線反射手段250の鏡面250Aによる紫外線の反射の角度を適宜変更することで、対象領域Sに対して紫外線を照射し、殺菌・浄化することができる。 In FIG. 6A, one ultraviolet irradiation device 100 is arranged along one side wall (side surface) of the target area S partitioned by the partitioning means 150 (partitioning unit 150A), and the ultraviolet reflecting means are respectively on both sides thereof. This is an example in which 250 is engaged. By appropriately changing the angle of reflection of ultraviolet rays by the mirror surface 250A of the ultraviolet reflection means 250, the target region S can be irradiated with ultraviolet rays to be sterilized and purified.
 同図(B)は、紫外線照射ユニット150Bと紫外線反射ユニット150Mを互いに係合し、対象領域Sを区画した例である。なお一部に仕切りユニット150A(および/またはドアユニット150C)が含まれてもよい。紫外線反射ユニット150Mの鏡面250Aによる紫外線の反射の角度を適宜変更することで、対象領域Sに対して紫外線を照射し、殺菌・浄化することができる。 FIG. 3B is an example in which the ultraviolet irradiation unit 150B and the ultraviolet reflection unit 150M are engaged with each other to partition the target area S. The partition unit 150A (and / or the door unit 150C) may be included in a part thereof. By appropriately changing the angle of reflection of ultraviolet rays by the mirror surface 250A of the ultraviolet reflection unit 150M, the target region S can be irradiated with ultraviolet rays to be sterilized and purified.
 同図(C)は、対象領域Sの中央付近に1台の紫外線照射装置100を配置し、その両側にそれぞれ2台ずつ紫外線反射手段250を係合させた例である。この場合の紫外線照射装置100は、例えば図9~図11に示すような両面側に紫外線を照射可能な構成とする。紫外線反射手段250の鏡面250Aによる紫外線の反射の角度を適宜変更することで、対象領域Sに対して紫外線を照射し、殺菌・浄化することができる。 FIG. 3C is an example in which one ultraviolet irradiation device 100 is arranged near the center of the target area S, and two ultraviolet reflecting means 250 are engaged with each of the two ultraviolet irradiation devices 100. In this case, the ultraviolet irradiation device 100 has a configuration capable of irradiating both sides of the ultraviolet rays as shown in FIGS. 9 to 11, for example. By appropriately changing the angle of reflection of ultraviolet rays by the mirror surface 250A of the ultraviolet reflection means 250, the target region S can be irradiated with ultraviolet rays to be sterilized and purified.
 紫外線照射装置100と紫外線反射手段250は、対象領域Sの内部を更に区画するパーティションとしても機能する。 The ultraviolet irradiation device 100 and the ultraviolet reflecting means 250 also function as partitions that further partition the inside of the target area S.
 同図(D)は、区画手段150によって区画された対象領域Sの一の側壁(側面)と、これと対向する側壁(側面)とに沿ってそれぞれ1台の紫外線照射装置100を配置し、その両側にそれぞれ紫外線反射手段250を係合させた例である。紫外線反射手段250の鏡面250Aによる紫外線の反射の角度を適宜変更することで、対象領域Sに対して紫外線を照射し、殺菌・浄化することができる。 In FIG. 3D, one ultraviolet irradiation device 100 is arranged along one side wall (side surface) of the target area S partitioned by the partition means 150 and one side wall (side surface) facing the side wall (side surface). This is an example in which the ultraviolet reflecting means 250 are engaged on both sides thereof. By appropriately changing the angle of reflection of ultraviolet rays by the mirror surface 250A of the ultraviolet reflection means 250, the target region S can be irradiated with ultraviolet rays to be sterilized and purified.
 なお、この例では、各紫外線照射装置100の両側辺にそれぞれ紫外線反射手段250を係合して観音開き式に開閉可能に構成した場合を示しているが、紫外線照射装置100の一方の側辺のみに係合する構成であってもよい。 In this example, the case where the ultraviolet reflecting means 250 is engaged with each side of each ultraviolet irradiation device 100 so as to be openable and closable in a double-sided manner is shown, but only one side of the ultraviolet irradiation device 100 is shown. It may be configured to engage with.
 このように、紫外線照射装置100から出力される紫外線を反射可能な適宜の位置に紫外線反射手段250を配置することで、紫外線を効率良く反射させ、対象領域Sに対して多方位から紫外線を照射可能となる。さらに紫外線反射手段250を複数配置することで、略全方位から紫外線を照射することも可能となる。 In this way, by arranging the ultraviolet reflecting means 250 at an appropriate position where the ultraviolet rays output from the ultraviolet irradiation device 100 can be reflected, the ultraviolet rays are efficiently reflected and the target region S is irradiated with the ultraviolet rays from multiple directions. It will be possible. Further, by arranging a plurality of ultraviolet reflecting means 250, it is possible to irradiate ultraviolet rays from substantially all directions.
 また、紫外線反射手段250は図示の状態に限らず、紫外線照射装置100から出射される紫外線の反射角度を任意に変更可能である。 Further, the ultraviolet reflection means 250 is not limited to the state shown in the figure, and the reflection angle of the ultraviolet rays emitted from the ultraviolet irradiation device 100 can be arbitrarily changed.
 図20は、紫外線照射装置100および紫外線反射手段250の他の例を示す上面図である。紫外線反射手段250は、例えば、紫外線照射装置100と一体的に設けられてもよい。この例の紫外線照射装置100(100B)は、紫外線発光手段101の前面を覆い、または開放するように開閉可能な扉180を有し、当該扉180に紫外線反射手段250(鏡面250A)が設けられる。 FIG. 20 is a top view showing another example of the ultraviolet irradiation device 100 and the ultraviolet reflecting means 250. The ultraviolet reflecting means 250 may be provided integrally with the ultraviolet irradiation device 100, for example. The ultraviolet irradiation device 100 (100B) of this example has a door 180 that can be opened and closed so as to cover or open the front surface of the ultraviolet light emitting means 101, and the door 180 is provided with the ultraviolet reflecting means 250 (mirror surface 250A). ..
 例えば、支持枠121(基材B)はUVランプLPを支持し、その前面を覆ってカバー手段103が支持枠121に固定される。扉180はカバー手段103を更に覆うように設けられる。すなわち、支持枠121の幅方向Hの両端に回転軸167を配置し、当該回転軸167Aの周りに回動可能に連結部材168の一端を連結する。また連結部材168の他端にも回動軸167Bを設け、当該回動軸の周りに回動可能に扉180の一端を連結する。これにより扉180は、同図(A)の実線矢印で示すように回転軸167A、167Bを中心に回動可能(所謂観音開きが可能)に構成される。 For example, the support frame 121 (base material B) supports the UV lamp LP, and the cover means 103 is fixed to the support frame 121 so as to cover the front surface thereof. The door 180 is provided so as to further cover the cover means 103. That is, the rotating shafts 167 are arranged at both ends of the support frame 121 in the width direction H, and one end of the connecting member 168 is rotatably connected around the rotating shaft 167A. Further, a rotating shaft 167B is also provided at the other end of the connecting member 168, and one end of the door 180 is rotatably connected around the rotating shaft. As a result, the door 180 is configured to be rotatable around the rotation shafts 167A and 167B (so-called double door opening is possible) as shown by the solid arrow in FIG.
 そして扉180は同図に示すように、紫外線反射手段250(または、鏡面250A、以下同図において同様)と、遮断手段105を重畳させた2層構造となっている。紫外線反射手段250は、扉180を開いた状態で対象領域Sに臨む面(内側)に設けられ、遮断手段105はその裏側(外側)に設けられる。つまり紫外線反射手段250は、紫外線照射装置100、より詳細には遮断手段105と一体的に設けられる。 And, as shown in the figure, the door 180 has a two-layer structure in which the ultraviolet reflecting means 250 (or the mirror surface 250A, hereinafter the same in the figure) and the blocking means 105 are superimposed. The ultraviolet reflecting means 250 is provided on the surface (inside) facing the target area S with the door 180 open, and the blocking means 105 is provided on the back side (outside) thereof. That is, the ultraviolet reflecting means 250 is provided integrally with the ultraviolet irradiating device 100, and more specifically, the blocking means 105.
 このような構成によれば、対象領域Sが無人の場合に、扉180を任意の角度に開くことで、同図(A)に示すように紫外線発光手段101が発光する紫外線を任意の方向に反射させることができる。 According to such a configuration, when the target area S is unmanned, by opening the door 180 at an arbitrary angle, the ultraviolet rays emitted by the ultraviolet light emitting means 101 are emitted in an arbitrary direction as shown in FIG. Can be reflected.
 一方、同図(B)に示すように、扉180を閉止した状態では、紫外線発光手段101は、扉180によって完全にその前方が覆われ、扉180に設けられた遮断手段105によって、対象領域Sへの紫外線の照射が遮断される。 On the other hand, as shown in FIG. 3B, when the door 180 is closed, the front of the ultraviolet light emitting means 101 is completely covered by the door 180, and the target area is covered by the blocking means 105 provided on the door 180. Irradiation of ultraviolet rays to S is blocked.
 さらに、閉止状態では扉180の内側に設けた紫外線反射手段250が紫外線発光手段101と対向する。つまり紫外線発光手段101から発光される紫外線を反射するので、流路107に照射される紫外線の量を向上(倍増)させることができる。従って、循環殺菌の効率を大幅に向上させることができる。 Further, in the closed state, the ultraviolet reflecting means 250 provided inside the door 180 faces the ultraviolet light emitting means 101. That is, since the ultraviolet rays emitted from the ultraviolet light emitting means 101 are reflected, the amount of ultraviolet rays irradiated to the flow path 107 can be improved (doubled). Therefore, the efficiency of circulation sterilization can be significantly improved.
 なお、回動軸167Aで連結部材168を回動可能に支持することで扉180の可動域を広く確保できるが、連結部材168は支持枠(枠体)121に(回動不可に)固定されていてもよい。 A wide range of motion of the door 180 can be secured by rotatably supporting the connecting member 168 with the rotating shaft 167A, but the connecting member 168 is fixed (non-rotatably) to the support frame (frame body) 121. You may be.
 また、扉180は(専用の)連結部材168で枠体121に連結する構成に限らない。例えば、扉180は枠体121とは別体に構成され、すなわち上述の(図1~図19に示した)紫外線照射装置100(紫外線照射ユニット150B)と、係合手段161によって連結する構成であってもよい。 Further, the door 180 is not limited to the configuration in which the door 180 is connected to the frame 121 by the (dedicated) connecting member 168. For example, the door 180 is configured separately from the frame 121, that is, is connected to the above-mentioned ultraviolet irradiation device 100 (ultraviolet irradiation unit 150B) (shown in FIGS. 1 to 19) by the engaging means 161. There may be.
 また、係合手段161による係合に限らず、上述の紫外線照射装置100(紫外線照射ユニット150B)の1または複数を図20に示す紫外線照射装置100Bで構成してもよい。 Further, the engagement is not limited to the engagement by the engaging means 161. One or a plurality of the above-mentioned ultraviolet irradiation devices 100 (ultraviolet irradiation unit 150B) may be configured by the ultraviolet irradiation device 100B shown in FIG.
 この例のように、遮断手段105と、紫外線反射手段250(鏡面250A)とは重畳させて設けるものであってもよく、両者を一体的に紫外線発光手段101に対して相対移動可能としてもよい。その場合、扉180の形状に限らず、例えば枠体121の上方または下方に巻き取り収納可能に構成し、シャッター状あるいはロール(カーテン)状に上下方向に開閉可能としてもよい。 As in this example, the blocking means 105 and the ultraviolet reflecting means 250 (mirror surface 250A) may be provided in an overlapping manner, or both may be integrally movable relative to the ultraviolet emitting means 101. .. In that case, the shape of the door 180 is not limited, and for example, it may be configured so that it can be wound and stored above or below the frame body 121, and can be opened and closed in the vertical direction in a shutter shape or a roll (curtain) shape.
 また、遮断手段105と、紫外線反射手段250(鏡面250A)を重畳させて設ける構成において、遮断手段105と紫外線反射手段250とをそれぞれ個別に、紫外線発光手段101に対して相対移動可能としてもよい。また、遮断手段105と紫外線反射手段250の少なくとも一方は、図8(C)および/または図18(B)に示すように複数に分割された形状(例えば、ルーバーなど)に構成されてもよい。 Further, in the configuration in which the blocking means 105 and the ultraviolet reflecting means 250 (mirror surface 250A) are superposed, the blocking means 105 and the ultraviolet reflecting means 250 may be individually movable relative to the ultraviolet emitting means 101. .. Further, at least one of the blocking means 105 and the ultraviolet reflecting means 250 may be configured in a plurality of divided shapes (for example, a louver) as shown in FIGS. 8 (C) and / or 18 (B). ..
 図21は、紫外線照射装置100を用いた紫外線照射システム200の他の一例を示す図であり、図14を用いて説明した紫外線照射システム200において、それぞれ紫外線反射手段250を配置した一例の概要図である。 FIG. 21 is a diagram showing another example of the ultraviolet irradiation system 200 using the ultraviolet irradiation device 100, and is a schematic view of an example in which the ultraviolet reflecting means 250 are arranged in the ultraviolet irradiation system 200 described with reference to FIG. Is.
 図21(A)は、紫外線照射システム200が排気手段181と給気手段182を備える場合の一例である。同図(B)は、区画手段150が2重壁のエアドームである場合の一例であり、同図(C)は、区画手段150が1重壁のエアドームである場合の一例である。 FIG. 21 (A) is an example of a case where the ultraviolet irradiation system 200 includes an exhaust means 181 and an air supply means 182. FIG. 3B is an example of a case where the partitioning means 150 is a double-walled air dome, and FIG. 3C is an example of a case where the partitioning means 150 is a single-walled air dome.
 同図においては、一例として衝立状の紫外線反射手段250を対象領域S内に配置する構成を示したが、紫外線反射手段250は、区画手段150(テントやエアドームなど)の内側面(対象領域Sに臨む内壁面)の少なくとも一部に設けても良い。その場合例えば、プレート状あるいはシート状の鏡面250Aを(紫外線発光手段101に対して相対移動可能に)吊り下げたり、貼り付ける構成であってもよい。また、区画手段150の内面の少なくとも一部(例えば、テントやエアドームの材質の一部)を鏡面250Aとなるように加工したものであってもよい。なお、紫外線反射手段250は少なくとも鏡面250Aが紫外線発光手段101に対して相対移動可能であれば好ましいが、その場合、例えば紫外線反射手段250が(区画手段150などに)固定配置され、紫外線照射装置100が可搬型などで移動可能となっている構成であってもよい。 In the figure, as an example, a configuration in which the opposition-shaped ultraviolet reflecting means 250 is arranged in the target area S is shown, but the ultraviolet reflecting means 250 is the inner surface (target area S) of the partitioning means 150 (tent, air dome, etc.). It may be provided on at least a part of the inner wall surface facing the surface). In that case, for example, a plate-shaped or sheet-shaped mirror surface 250A may be suspended or attached (movably relative to the ultraviolet light emitting means 101). Further, at least a part of the inner surface of the partition means 150 (for example, a part of the material of the tent or the air dome) may be processed so as to have a mirror surface 250A. It is preferable that the ultraviolet reflecting means 250 can move at least the mirror surface 250A relative to the ultraviolet emitting means 101. In that case, for example, the ultraviolet reflecting means 250 is fixedly arranged (in the partition means 150 or the like) and the ultraviolet irradiating device. The configuration may be such that the 100 is portable and movable.
 図21に示す紫外線照射システム200における紫外線照射方法(殺菌・浄化処理の流れ)の一例は、図14を用いて説明した方法と同様であるが、本実施形態によれば、紫外線発光手段101から発光された紫外線は、紫外線反射手段250によって任意の方向に反射可能である。これにより、対象領域S内を効率的に殺菌・清浄化することができる。 An example of the ultraviolet irradiation method (flow of sterilization / purification treatment) in the ultraviolet irradiation system 200 shown in FIG. 21 is the same as the method described with reference to FIG. 14, but according to the present embodiment, the ultraviolet light emitting means 101 The emitted ultraviolet rays can be reflected in any direction by the ultraviolet reflecting means 250. As a result, the inside of the target area S can be efficiently sterilized and cleaned.
 遮断手段105による遮断状態/非遮断状態の制御、および/または紫外線反射手段250(の鏡面250A)の移動の制御等は、駆動制御手段109によって自動で、および/または担当者による所定の操作手段(不図示)の操作などにより手動で、適宜行なわれる。 The blocking / non-blocking state control by the blocking means 105 and / or the movement control of the ultraviolet reflecting means 250 (mirror surface 250A) are automatically performed by the drive control means 109 and / or a predetermined operating means by the person in charge. It is manually performed by an operation (not shown) or the like.
 なお、紫外線照射システム200として図9から図11に示した紫外線照射装置100を用いる場合にも対象領域S内に紫外線を反射可能な紫外線反射手段250を配置することができる。これらの場合、紫外線発光手段101に対応して、紫外線照射装置100の両側(第一の面Sf1側および第二の面Sf2側)のいずれにおいても紫外線を反射可能なように、複数の紫外線反射手段250を配置すると好ましい。 Even when the ultraviolet irradiation device 100 shown in FIGS. 9 to 11 is used as the ultraviolet irradiation system 200, the ultraviolet reflecting means 250 capable of reflecting ultraviolet rays can be arranged in the target area S. In these cases, a plurality of ultraviolet rays are reflected so that the ultraviolet rays can be reflected on both sides (first surface Sf1 side and second surface Sf2 side) of the ultraviolet irradiation device 100 corresponding to the ultraviolet light emitting means 101. It is preferable to arrange the means 250.
 <紫外線照射装置の他の例>
 図22は、紫外線照射装置100の更に他の例を概念的に示す側面図である。上述の紫外線照射装置100(100C)においては、遮断手段105は、物理的な部材を紫外線発光手段101に対して相対的に移動させて遮断状態と非遮断状態とを切り替える構成について示した。しかしこれに限らず、遮断手段105は物理化学的な材料であり、これを電気制御するなどして遮断状態と非遮断状態とを切り替える構成であってもよい。
<Other examples of UV irradiation equipment>
FIG. 22 is a side view conceptually showing still another example of the ultraviolet irradiation device 100. In the above-mentioned ultraviolet irradiation device 100 (100C), the blocking means 105 shows a configuration in which a physical member is moved relative to the ultraviolet emitting means 101 to switch between a blocking state and a non-blocking state. However, the present invention is not limited to this, and the blocking means 105 is a physicochemical material, and may be configured to switch between a blocking state and a non-blocking state by electrically controlling the material.
 あるいは、遮断手段105とは或る材料であり、当該材料の物理的制御および/または化学的制御により紫外線の遮断状態と非遮断状態とを切り替える構成であってもよい。 Alternatively, the blocking means 105 may be a certain material, and may be configured to switch between a blocking state and a non-blocking state of ultraviolet rays by physical control and / or chemical control of the material.
 例えば、同図に示すように、基材Bに殺菌領域の紫外線の光源LPを配置した紫外線発光手段101の前面に、紫外線の透過・非透過を(所定のパターンで)選択可能な選択手段171を配置する。選択手段171は例えば、液晶パネルのように電極、偏光板(層)、配光層、液晶、などを組合せた電子(電気)的シャッターである。 For example, as shown in the figure, the selection means 171 capable of selecting the transmission / non-transmission of ultraviolet rays (in a predetermined pattern) on the front surface of the ultraviolet light emitting means 101 in which the ultraviolet light source LP of the sterilization region is arranged on the base material B. To place. The selection means 171 is, for example, an electronic (electrical) shutter in which an electrode, a polarizing plate (layer), a light distribution layer, a liquid crystal, and the like are combined like a liquid crystal panel.
 また、選択手段171の前方には、遮断手段105の材料を選択的に(所定のパターンで)配置した切替手段173Aを配置する。 Further, in front of the selection means 171, a switching means 173A in which the material of the blocking means 105 is selectively arranged (in a predetermined pattern) is arranged.
 そして選択手段171を電気(電子)制御することによって、紫外線の遮断状態と非遮断状態の制御を行うようにしてもよい。 Then, by electrically (electronically) controlling the selection means 171, the ultraviolet ray blocking state and the non-blocking state may be controlled.
 また、例えば、遮断手段105は例えば、材料の物理的な制御(例えば、噴出や吸引など)や、化学的制御(化学反応)などによって繰り返し発生(出現)/消滅(退避)が可能な例えばガス状の手段であってもよい。ガス状の遮断手段105の発生(出現)によって紫外線の遮断状態となり、消滅(退避)によって非遮断状態となる。 Further, for example, the blocking means 105 can be repeatedly generated (appeared) / extinguished (evacuated) by, for example, physical control of the material (for example, ejection or suction) or chemical control (chemical reaction). It may be a form of means. The generation (appearance) of the gaseous blocking means 105 causes the ultraviolet rays to be blocked, and the extinction (evacuation) causes the non-blocking state.
 上述の全ての実施形態において、脚部123(脚部250D,キャスター125)は、収納の容易性を高めるため、可動式又は折り畳み式に構成するとよい。 In all the above-described embodiments, the leg portion 123 (leg portion 250D, caster 125) may be configured to be movable or foldable in order to improve the ease of storage.
 また、可動板151の少なくとも何れか(例えば、仕切りユニット150Aや紫外線反射ユニット150Mなどの可動板151)は、対象領域Sに臨む面に鏡面250Aが設けられていてもよい(可動板151が紫外線反射手段250であってもよい)。 Further, at least one of the movable plates 151 (for example, the movable plate 151 such as the partition unit 150A and the ultraviolet reflection unit 150M) may be provided with a mirror surface 250A on the surface facing the target region S (the movable plate 151 is ultraviolet rays). Reflective means 250).
 また、対象領域Sが有人の際などに、人体に有害な紫外線が誤って照射させることを防止するために、人感センサを設けるとよい。駆動制御手段109は、人感センサによって有人を検知すると、自動的に、紫外線発光手段101の発光を停止(消灯)する。人感センサは例えば、紫外線照射領域を大きくカバーする240°域を感知可能なセンサなどが利用できる。 Further, when the target area S is manned, it is advisable to provide a motion sensor in order to prevent accidentally irradiating ultraviolet rays harmful to the human body. When the drive control means 109 detects a manned person by the motion sensor, the drive control means 109 automatically stops (turns off) the light emission of the ultraviolet light emitting means 101. As the motion sensor, for example, a sensor capable of detecting a 240 ° region that largely covers the ultraviolet irradiation region can be used.
 人感センサは、常時、室内が有人であるか無人であるかを検知し、検知結果を駆動制御手段109に送信する。また、図示は省略するが、紫外線照射装置100は、電源、紫外線発光手段101の点灯/消灯(任意のUVランプLPの選択的な点灯/消灯)の制御、紫外線の照射強度制御、カバー手段103の開閉制御などの信号を手動で入力可能なコントローラ(不図示)を有している。 The motion sensor constantly detects whether the room is manned or unmanned, and transmits the detection result to the drive control means 109. Further, although not shown, the ultraviolet irradiation device 100 controls the power supply, the lighting / extinguishing of the ultraviolet light emitting means 101 (selective lighting / extinguishing of an arbitrary UV lamp LP), the ultraviolet irradiation intensity control, and the covering means 103. It has a controller (not shown) that can manually input signals such as opening / closing control of UV rays.
 駆動制御手段109は、人感センサおよび、紫外線照射装置100のコントローラからの信号に基づき、電源、紫外線発光手段101の点灯/消灯の制御、紫外線の照射強度制御、カバー手段103および/または遮断手段105の開閉制御などを行う。既に述べているように、例えば、駆動制御手段109は、通常の運転時には紫外線発光手段101が常時UVランプLPを点灯状態とし、遮断手段105によって対象領域Sへの紫外線の遮断状態と非遮断状態を切り替え可能としている。しかしながら、駆動制御手段109は、人感センサなどで有人を検知した場合には安全性を最優先してUVランプLPを消灯(および/又は紫外線の照射強度を低下する、あるいは、遮断手段105を閉鎖する)ように構成する。 The drive control means 109 controls the lighting / extinguishing of the power supply, the ultraviolet light emitting means 101, the ultraviolet irradiation intensity control, the cover means 103 and / or the blocking means based on the signal from the motion sensor and the controller of the ultraviolet irradiation device 100. The opening / closing control of 105 is performed. As described above, for example, in the drive control means 109, the ultraviolet light emitting means 101 always lights the UV lamp LP during normal operation, and the blocking means 105 blocks and does not block the ultraviolet rays to the target region S. Can be switched. However, when the drive control means 109 detects a manned person with a motion sensor or the like, the UV lamp LP is turned off (and / or the irradiation intensity of ultraviolet rays is reduced, or the blocking means 105 is turned off, giving the highest priority to safety. It is configured to be closed).
 また、例えば、紫外線の遮断状態から非遮断状態に移行する場合、対象領域S内の人員を対象領域S外に退避させる必要がある。このため、UVランプLPの運転時間等を設定した時点から点灯開始までの間の退避時間を任意の時間に設定できるタイマー等を設けるとよい。 Further, for example, when shifting from the ultraviolet ray blocking state to the non-blocking state, it is necessary to evacuate the personnel in the target area S to the outside of the target area S. Therefore, it is preferable to provide a timer or the like that can set the evacuation time from the time when the operation time of the UV lamp LP is set to the start of lighting to an arbitrary time.
 また、作業員の手動による操作手段の簡易な操作(例えばボタンのワンプッシュなど)で瞬時に、UVランプLPの発光を停止する非常停止ボタンを設けるとよい。 In addition, it is preferable to provide an emergency stop button that instantly stops the light emission of the UV lamp LP by a simple operation of the operation means manually by the worker (for example, one push of a button).
 また、カバー手段103は手動で開閉が可能であってもよく、その場合カバー手段103の開閉を検知する開閉検知センサを設けるとよい。開閉検知センサは例えば人感センサに連動し、開閉検知センサがカバー手段103の開放を検知した場合、人感センサの検知信号が駆動制御手段109に送信され、紫外線発光手段101の出力を停止する(消灯する)とよい。 Further, the cover means 103 may be manually opened and closed, in which case it is preferable to provide an open / close detection sensor for detecting the open / close of the cover means 103. The open / close detection sensor is interlocked with the motion sensor, for example, and when the open / close detection sensor detects the opening of the cover means 103, the detection signal of the motion sensor is transmitted to the drive control means 109 and the output of the ultraviolet light emitting means 101 is stopped. (Turns off).
 以上、上述の本実施形態では、紫外線発光手段101が略鉛直面に設けられる場合を例に説明したが、傾斜面や水平面に設ける構成であってもよい。つまり、空気の流入口IN,流出口OUTとなる開口は、紫外線照射装置100の鉛直方向Vの上下に限らず、左右に設けられていてもよい。紫外線発光手段101を水平面に設ける場合、対象領域S内の空気の取り込みおよび殺菌後の空気の排出を促す気流制御手段(サーキュレータなど)を設けてもよい。 As described above, in the above-described embodiment, the case where the ultraviolet light emitting means 101 is provided on a substantially vertical surface has been described as an example, but it may be provided on an inclined surface or a horizontal surface. That is, the openings serving as the air inlet IN and the air outlet OUT are not limited to above and below the vertical direction V of the ultraviolet irradiation device 100, but may be provided on the left and right. When the ultraviolet light emitting means 101 is provided on a horizontal surface, an airflow control means (circulator or the like) that promotes the uptake of air in the target region S and the discharge of air after sterilization may be provided.
 また、上述の本実施形態では、対象領域Sとして区画手段150により区画される領域を例に説明したが、区画手段150が配置されなくてもよい。すなわち、例えば災害時などに、区画手段150によって区画されない屋外などにおいて、必要に応じて本実施形態の紫外線照射装置100を設置してもよい。この場合、当該紫外線照射装置100から照射される紫外線の到達可能範囲は、本実施形態の対象領域Sとなる。 Further, in the above-described embodiment, the area partitioned by the partitioning means 150 has been described as an example of the target area S, but the partitioning means 150 may not be arranged. That is, for example, in the event of a disaster or the like, the ultraviolet irradiation device 100 of the present embodiment may be installed as needed in the outdoors where the partition means 150 does not partition. In this case, the reachable range of the ultraviolet rays emitted from the ultraviolet irradiation device 100 is the target area S of the present embodiment.
 また、紫外線反射手段250は、たとえば対象領域Sの壁等に据付型であって、鏡面250Aが紫外線発光手段101に対して相対移動可能に構成されていてもよい。 Further, the ultraviolet reflecting means 250 may be installed on a wall of the target area S or the like, and the mirror surface 250A may be configured to be movable relative to the ultraviolet light emitting means 101.
 また、紫外線照射装置100は、紫外線発光手段101が出力する光の波長を変換する手段(変換手段、不図示)を有していても良い。変換手段は例えば、紫外光を可視光に変換する手段、あるいは、少なくとも殺菌領域(UVC波長領域)の光は全てカットすると同時に表面には可視光のみを透過させる手段である。 Further, the ultraviolet irradiation device 100 may have means (conversion means, not shown) for converting the wavelength of the light output by the ultraviolet light emitting means 101. The conversion means is, for example, a means for converting ultraviolet light into visible light, or a means for cutting at least all the light in the sterilization region (UVC wavelength region) and at the same time transmitting only visible light to the surface.
 具体的には、変換手段は例えば、蛍光体を付着または含有する手段であり、蛍光体とは、より詳細には例えば、紫外線を可視光に変換することのできる経時安定性に富んだ材料であるハロりん酸カルシウムや希土類蛍光体等の類の材料である。変換手段は例えば、主に蛍光灯バルブ内面のコート材料として用いられるように、均一且つ隙間なくコーティングできるように当該蛍光体材料を塗布液として分散させて板材に塗布(コーティングした)フィルタなどが採用できる。 Specifically, the conversion means is, for example, a means for adhering or containing a phosphor, and the phosphor is, for example, a material having high stability over time capable of converting ultraviolet rays into visible light. It is a kind of material such as certain calcium halophosphate and rare earth phosphors. As the conversion means, for example, a filter in which the fluorescent material is dispersed as a coating liquid and applied (coated) to the plate material is adopted so that the fluorescent material can be coated uniformly and without gaps so that it is mainly used as a coating material on the inner surface of the fluorescent lamp bulb. it can.
 このような変換手段を設けることにより、当該変換手段およびカバー手段103(可視光を透過可能な透明部材)を透過した可視光は、対象領域S内の照明として利用することができる。また、変換手段は、遮断手段105を兼用してもよい。 By providing such a conversion means, the visible light transmitted through the conversion means and the cover means 103 (a transparent member capable of transmitting visible light) can be used as illumination in the target area S. Further, the conversion means may also use the blocking means 105.
 なお、上述の紫外線照射装置100においてカバー手段103は設けず(循環殺菌を行わず)、遮断手段105による遮断状態と非遮断状態の切替のみ可能である構成としてもよい。 Note that the above-mentioned ultraviolet irradiation device 100 may be configured so that the cover means 103 is not provided (circulation sterilization is not performed) and only the blocking state and the non-blocking state can be switched by the blocking means 105.
 以上説明した本発明の実施形態の紫外線照射システム200の構成は、適宜組合わせて実施することができる。一例を挙げると、図12、図14、図17、図19等に示した紫外線照射システム200を構成する紫外線照射装置100(紫外線照射ユニット150B)を、図20に示した扉180を有する紫外線照射装置100Bで構成してもよい。 The configuration of the ultraviolet irradiation system 200 according to the embodiment of the present invention described above can be implemented in appropriate combinations. As an example, the ultraviolet irradiation device 100 (ultraviolet irradiation unit 150B) constituting the ultraviolet irradiation system 200 shown in FIGS. 12, 14, 17, 19, 19 and the like is irradiated with ultraviolet rays having the door 180 shown in FIG. 20. It may be configured by the device 100B.
 従来の紫外線照射による殺菌装置では、人体への安全配慮のため配光性を重視し、UV照射エリアを部屋の部分箇所に限定しており、未照射エリアを生じさせ、部屋全般への殺菌処理が不完全となる恐れがあった。また、有人の場合には紫外線の照射を停止(UVランプの消灯)し、必要時にUVランプを点灯する制御を行っていた。この場合、殺菌処理に必要な光エネルギーを有する紫外線が出力されるまでには所定の時間を要するため、殺菌が必要な場合に瞬時に対応することができず、殺菌対象空間への人体の立ち入りの制限時間が長くなる(例えば、診察室等の殺菌の場合、患者の入室待機時間が長くなる)など、運用面において不十分であった。 In the conventional sterilization device using ultraviolet irradiation, light distribution is emphasized in consideration of safety to the human body, and the UV irradiation area is limited to a part of the room, causing an unirradiated area and sterilizing the entire room. Was incomplete. Further, in the case of a manned person, the irradiation of ultraviolet rays was stopped (the UV lamp was turned off), and the UV lamp was turned on when necessary. In this case, since it takes a predetermined time to output ultraviolet rays having the light energy required for the sterilization process, it is not possible to respond instantly when sterilization is required, and the human body enters the sterilization target space. (For example, in the case of sterilization in a doctor's office or the like, the patient's waiting time for entering the room becomes long), which is insufficient in terms of operation.
 これに対し、本発明の紫外線照射システム200では、紫外線発光手段101が通常の運転時には(常時)紫外線を照射しており、有人の場合などには遮断手段105の移動(開閉)によって、有人領域への紫外線の非遮断状態と遮断状態とを切り替える。 On the other hand, in the ultraviolet irradiation system 200 of the present invention, the ultraviolet light emitting means 101 (always) irradiates ultraviolet rays during normal operation, and in the case of a manned person, the blocking means 105 moves (opens and closes) the manned area. Switch between the non-blocking state and the blocking state of ultraviolet rays to.
 さらに、通常の運転時においては紫外線発光手段101からの出力(UVランプの点灯)は維持しつつ、殺菌処理を行う場合には、紫外線遮断面の有効紫外線遮蔽面積をごく短時間で極小化し、紫外線非到達領域を極小にしつつ、対象領域Sの可能な限り広い面積に、紫外線を全面照射し、短時間で対象領域Sの菌数を許容規格内に低減することできる。 Further, when the sterilization treatment is performed while maintaining the output from the ultraviolet light emitting means 101 (lighting of the UV lamp) during normal operation, the effective ultraviolet shielding area of the ultraviolet blocking surface is minimized in a very short time. While minimizing the ultraviolet non-reachable area, the entire area of the target area S can be irradiated with ultraviolet rays, and the number of bacteria in the target area S can be reduced within the permissible standard in a short time.
 つまり、殺菌処理を行う場合には、紫外線の照射領域を、例えば無人の領域などに限定することなく対象領域Sに対して全面的に一括して照射することができ、また、殺菌処理に有効な光エネルギーのピーク出力の状態で瞬時に照射することができる。このような構成により、対象領域Sの感染源を短時間で効率よく、処理することできる。 That is, when the sterilization treatment is performed, the ultraviolet irradiation region can be totally collectively irradiated to the target region S without being limited to, for example, an unmanned region, and is also effective for the sterilization treatment. It is possible to irradiate instantly with a peak output of light energy. With such a configuration, the infection source of the target area S can be efficiently treated in a short time.
 具体的には、対象領域Sに対して殺菌波長の紫外線を全面照射(ほとんどのUVランプLPが露出した状態での照射)し、短時間(1~2分間)で一括的に菌を死滅させることができる。この殺菌処理により菌(感染源)が死滅した後は、(特に殺菌処理を継続しなくても)清浄な状態が1~2時間は継続可能である。 Specifically, the target region S is irradiated with ultraviolet rays having a sterilizing wavelength over the entire surface (irradiation with most UV lamp LPs exposed), and the bacteria are killed all at once in a short time (1 to 2 minutes). be able to. After the bacteria (source of infection) are killed by this sterilization treatment, a clean state can be maintained for 1 to 2 hours (without continuing the sterilization treatment).
 これにより、使用する対象領域Sにおいてその許容菌数を超えた場合、迅速にその対象領域Sの菌数を許容菌数以内に低下させることができる。また、使用する対象領域Sに混入してはならない菌種が混入した可能性がある場合、迅速にその菌種を殺菌することができる。 As a result, when the permissible number of bacteria in the target area S to be used is exceeded, the number of bacteria in the target area S can be quickly reduced within the permissible number. Further, when there is a possibility that a bacterial species that should not be mixed in the target area S to be used is mixed, the bacterial species can be sterilized quickly.
 これに加えて、カバー手段103と紫外線発光手段101で流路107を形成することにより有人の場合であっても、流路107を通過する空気に紫外線を照射して殺菌するとともに、自然対流によって、清浄な空気を上昇気流として天井付近まで、動力なくゆっくりと上昇させて排出することができる。これにより、対象領域S(部屋)の層流を大きく乱すことなく、清浄な空気が対象領域Sに下降流として行き渡る。このため、菌の温床となる粒子などが溜まりにくく、対象領域S内の作業者(術者等)から発塵、発生する菌に相当する程度の菌であれば、菌数低下させることができ、全面照射による殺菌処理を行っていない場合にも、菌数抑制効果が得られる。 In addition to this, even in the case of manned by forming the flow path 107 with the cover means 103 and the ultraviolet light emitting means 101, the air passing through the flow path 107 is sterilized by irradiating the air with ultraviolet rays, and by natural convection. , Clean air can be slowly raised to the vicinity of the ceiling as an updraft without power and discharged. As a result, clean air spreads to the target area S as a downward flow without significantly disturbing the laminar flow of the target area S (room). For this reason, it is difficult for particles and the like that serve as a hotbed of bacteria to accumulate, and the number of bacteria can be reduced as long as the bacteria correspond to the bacteria that are dusted and generated from workers (operators, etc.) in the target area S. Even when the sterilization treatment by full-scale irradiation is not performed, the effect of suppressing the number of bacteria can be obtained.
 また、殺菌処理を行う場合の待機時間(UVランプLPが殺菌処理に有効な出力となるまでの待機時間)を低減させることができるので、特に殺菌処理を頻繁に行う場合、対象領域Sの菌数抑制作業に対する資源投入、回転率の低下を極小化することができる。 Further, since the waiting time when the sterilization treatment is performed (the waiting time until the UV lamp LP becomes an effective output for the sterilization treatment) can be reduced, the bacteria in the target area S are particularly when the sterilization treatment is frequently performed. It is possible to minimize the resource input and the decrease in turnover rate for the number control work.
 また、本実施形態の紫外線照射システム200は、取り込んだ空気のみを対象として清浄化するのみに限らず、清浄化した空気を対象領域Sに循環するとともに、清浄化した空気を対象領域S外に排出することができる。 Further, the ultraviolet irradiation system 200 of the present embodiment does not only purify only the taken-in air, but also circulates the purified air to the target area S and circulates the purified air to the outside of the target area S. Can be discharged.
 殺菌に利用できる紫外線は電磁波であり、指向性としては照射した方向への直進性しかないため、障害物などがあると殺菌裏面は殺菌効果が得られないが、本実施形態では可搬型の紫外線照射装置を用いるため任意の場所(障害物のない場所)に適宜移動が可能である。 Ultraviolet rays that can be used for sterilization are electromagnetic waves, and since the directivity is only straight in the direction of irradiation, the sterilization back surface cannot obtain a sterilization effect if there is an obstacle, but in this embodiment, portable ultraviolet rays. Since the irradiation device is used, it is possible to move to an arbitrary place (a place without obstacles) as appropriate.
 また、複数の紫外線照射装置100を係合手段によって係合することで、他方向からの紫外線の照射が可能となる。 Further, by engaging the plurality of ultraviolet irradiation devices 100 with the engaging means, it is possible to irradiate ultraviolet rays from other directions.
 さらに、紫外線を反射する紫外線反射手段250を適宜の位置に設けることで、対象領域Sに対して略全方向から紫外線を照射することが可能となる。つまり、紫外線非到達領域を極力低減し、効率的な殺菌、浄化処理が可能となる。 Further, by providing the ultraviolet reflecting means 250 that reflects ultraviolet rays at an appropriate position, it is possible to irradiate the target region S with ultraviolet rays from substantially all directions. That is, the ultraviolet non-reachable region is reduced as much as possible, and efficient sterilization and purification treatment becomes possible.
 上記の実施形態では、紫外線照射装置10が自立可能な衝立型の場合を例示したが、紫外線照射装置10は、対象領域S(例えば、室内などの区画された空間)の壁面などに取り付け・固定される構成であってもよい。 In the above embodiment, the case where the ultraviolet irradiation device 10 is a self-supporting opposition type is illustrated, but the ultraviolet irradiation device 10 is attached and fixed to the wall surface of the target area S (for example, a partitioned space such as a room). It may be configured to be.
 また、上記の(可搬型の)区画手段150は必須ではなく、対象領域Sは、壁や仕切りなどで区画された所定の空間や、医療施設や複合商業施設等の建物内の空間(室内)や、屋外に設けられたテント、ブース内の空間、さらには屋外の所定領域の空間であってもよい。 Further, the above-mentioned (portable) partitioning means 150 is not indispensable, and the target area S is a predetermined space partitioned by a wall or a partition, or a space (indoor) in a building such as a medical facility or a commercial complex. Alternatively, it may be a tent provided outdoors, a space inside a booth, or a space in a predetermined area outdoors.
 <第3実施形態>
 図23を参照して、本発明の第3実施形態の紫外線照射装置100(100D)について説明する。図23は、第3実施形態の紫外線照射装置100(100D)を対象領域Sに設置した場合の、装置の側面を示す概要図である。この例では、対象領域Sは、壁などに仕切られた室内であり、紫外線照射装置100(100D)を壁面(区画手段)などに取り付けた場合を示している。
<Third Embodiment>
The ultraviolet irradiation device 100 (100D) of the third embodiment of the present invention will be described with reference to FIG. 23. FIG. 23 is a schematic view showing a side surface of the ultraviolet irradiation device 100 (100D) of the third embodiment when it is installed in the target area S. In this example, the target area S is a room partitioned by a wall or the like, and shows a case where the ultraviolet irradiation device 100 (100D) is attached to a wall surface (partitioning means) or the like.
 第3実施形態の紫外線照射装置100(100D)は、紫外線発光手段101と、カバー手段103と、変換手段131とを有する。 The ultraviolet irradiation device 100 (100D) of the third embodiment includes an ultraviolet light emitting means 101, a cover means 103, and a conversion means 131.
 紫外線発光手段101は、上記第1実施形態と同様であるので説明は省略する。また、カバー手段103は、紫外線発光手段101との間で空気の流路107を形成するように紫外線発光手段101に対向配置される。また、一例として第1実施形態と同様にカバー手段103は紫外線発光手段101が発光する紫外線の少なくとも一部(UVC領域の波長の光)を遮断する遮断手段105を含んでいる。 Since the ultraviolet light emitting means 101 is the same as that of the first embodiment, the description thereof will be omitted. Further, the cover means 103 is arranged to face the ultraviolet light emitting means 101 so as to form an air flow path 107 with the ultraviolet light emitting means 101. Further, as an example, as in the first embodiment, the cover means 103 includes a blocking means 105 that blocks at least a part of the ultraviolet rays (light having a wavelength in the UVC region) emitted by the ultraviolet emitting means 101.
 そして第3実施形態の紫外線照射装置100Dはこれに加えて、変換手段131を有している。変換手段131は、紫外線発光手段101が出力する光の波長を変換する手段であり、具体的には、紫外光を可視光に変換する手段、あるいは、少なくとも殺菌領域(UVC波長領域)の光(400nm以下の光)は全てカットすると同時に可視光のみを透過させる手段である。変換手段131はその有効状態と無効状態を切り替え可能に構成される。 And the ultraviolet irradiation device 100D of the third embodiment has a conversion means 131 in addition to this. The conversion means 131 is a means for converting the wavelength of light output by the ultraviolet light emitting means 101, and specifically, a means for converting ultraviolet light into visible light, or at least light in a sterilization region (UVC wavelength region) (UVC wavelength region). Light of 400 nm or less) is a means for cutting all and at the same time transmitting only visible light. The conversion means 131 is configured so that its valid state and invalid state can be switched.
 具体的には、変換手段131は例えば、蛍光体を付着または含有する手段であり、蛍光体とは、より詳細には例えば、紫外線を可視光に変換することのできる経時安定性に富んだ材料であるハロりん酸カルシウムや希土類蛍光体等の類の材料である。変換手段131は例えば、主に蛍光灯バルブ内面のコート材料として用いられるように、均一且つ隙間なくコーティングできるように当該蛍光体材料を塗布液として分散させて板材に塗布(コーティングした)フィルタなどが採用できる。 Specifically, the conversion means 131 is, for example, a means for adhering or containing a phosphor, and the phosphor is, for example, a material having a high stability over time capable of converting ultraviolet rays into visible light. It is a material of the kind such as calcium halophosphate and rare earth phosphors. The conversion means 131 is, for example, a filter in which the phosphor material is dispersed as a coating liquid and coated (coated) on a plate material so that the fluorescent lamp material can be coated uniformly and without gaps so that it is mainly used as a coating material on the inner surface of a fluorescent lamp bulb. Can be adopted.
 また、変換手段131は、遮断手段105を兼用してもよく、その場合には、例えば、少なくとも殺菌領域(UVC波長領域)の光(人体に有害な紫外線波長領域である400nm以下の波長の光)は全てカットするUVカットフィルタの表面に蛍光体が塗布、または当該UVカットフィルタに蛍光体が含有されたフィルタ(可視光変換フィルタ)などが採用できる。変換手段131が遮断手段105を兼用する場合、カバー手段103に遮断手段105が含まれなくても良い。一方、変換手段131が、紫外線の400nm以下の光をカットするには十分でない場合、カバー手段103は、上述の遮断手段105を含む構成とする。 Further, the conversion means 131 may also serve as the blocking means 105. In that case, for example, at least light in the sterilization region (UVC wavelength region) (light having a wavelength of 400 nm or less, which is an ultraviolet wavelength region harmful to the human body). ) Can be applied to the surface of a UV cut filter that cuts all, or a filter (visible light conversion filter) containing a fluorescent substance in the UV cut filter can be adopted. When the conversion means 131 also serves as the blocking means 105, the covering means 103 may not include the blocking means 105. On the other hand, when the conversion means 131 is not sufficient to block the ultraviolet light of 400 nm or less, the cover means 103 is configured to include the above-mentioned blocking means 105.
 また、カバー手段103は既に述べているように、可視光を透過可能な透明部材であり、変換手段131を透過した可視光は、カバー手段103も透過し、対象領域S内の照明として利用することができる。 Further, as already described, the cover means 103 is a transparent member capable of transmitting visible light, and the visible light transmitted through the conversion means 131 is also transmitted through the cover means 103 and used as illumination in the target area S. be able to.
 ここでは一例として、遮断手段105と変換手段131は、例えば、カバー手段103と一体的に構成されている。一方、カバー手段103は、紫外線発光手段101に対して相対的に移動可能に構成され、カバー手段103の有効状態と無効状態とに状態の変化が可能である。 Here, as an example, the blocking means 105 and the converting means 131 are integrally configured with, for example, the covering means 103. On the other hand, the cover means 103 is configured to be movable relative to the ultraviolet light emitting means 101, and the state can be changed between the effective state and the invalid state of the cover means 103.
 すなわちこの例の紫外線照射装置100(100D)は、紫外線の遮断状態と非遮断状態を切替可能であるとともに、遮断状態においは変換手段131が有効となるように構成されている。 That is, the ultraviolet irradiation device 100 (100D) of this example is configured so that the ultraviolet blocking state and the non-blocking state can be switched, and the conversion means 131 is effective in the blocking state.
 具体的に、同図(A)は、カバー手段103が有効状態、すなわち紫外線の遮断状態を示している。例えば、室内Sが有人の場合には、同図(A)に示すように、カバー手段103が紫外線発光手段101の前面を覆うように閉鎖し、変換手段131を紫外線発光手段101の紫外線(小破線)の発光方向(前方)に配置する(紫外線発光手段101の前方を変換手段131で覆う)。これにより紫外線発光手段101が発光した紫外線(少なくともUVC領域の波長の光)は変換手段131によって可視光(大破線)に変換され、対象領域Sに可視光(大破線で示す)が照射される。また、人体に有効な紫外線は遮断手段105によって遮断される。 Specifically, FIG. 3A shows a state in which the cover means 103 is in an effective state, that is, a state in which ultraviolet rays are blocked. For example, when the room S is manned, as shown in FIG. 6A, the cover means 103 is closed so as to cover the front surface of the ultraviolet light emitting means 101, and the conversion means 131 is closed with the ultraviolet rays (small) of the ultraviolet light emitting means 101. It is arranged in the light emitting direction (front) in the light emitting direction (broken line) (the front of the ultraviolet light emitting means 101 is covered with the converting means 131). As a result, the ultraviolet light emitted by the ultraviolet light emitting means 101 (light having a wavelength in at least the UVC region) is converted into visible light (large broken line) by the converting means 131, and the target region S is irradiated with visible light (shown by the large broken line). .. Further, ultraviolet rays effective for the human body are blocked by the blocking means 105.
 本実施形態では一例として、変換手段131の一例して、紫外線の光を可視光に変換するための材料がコーティングされた可視光変換フィルタを採用する。また、遮断手段105は、カバー手段103に含まれる(兼用する)構成とするが、兼用しなくてもよい。 In this embodiment, as an example of the conversion means 131, a visible light conversion filter coated with a material for converting ultraviolet light into visible light is adopted. Further, the blocking means 105 has a configuration included (also used) in the cover means 103, but it does not have to be used in combination.
 紫外線発光手段101から出力される紫外線は、この変換手段131に接触し透過することで、可視光のみを透過させることができる。また、人体に有害な紫外線波長領域の光は全て遮断手段105によりカットされ、カバー手段103からは、可視光のみとして放射させることができる。つまり紫外線照射装置100を、照明、あるいは、光る壁として機能させることができ、室内であっても違和感がなく、インテリア性の高い、明るい作業環境を提供できる。 The ultraviolet rays output from the ultraviolet light emitting means 101 come into contact with the converting means 131 and are transmitted, so that only visible light can be transmitted. Further, all the light in the ultraviolet wavelength region harmful to the human body is cut by the blocking means 105, and the covering means 103 can radiate only visible light. That is, the ultraviolet irradiation device 100 can function as an illumination or a shining wall, and can provide a bright work environment with a high interior quality without a sense of discomfort even indoors.
 同図(B)はカバー手段103の無効状態、すなわち紫外線の非遮断状態を示す図である。室内Sが無人などの場合には、同図(B)に示すように変換手段131を紫外線発光手段101の紫外線の発光方向(前方)から退避させる(紫外線発光手段101の前方を開放する)などし、対象領域Sへの可視光の照射を停止する。この例では、カバー手段103は常時、紫外線発光手段101の前方を覆っており、変換手段131の退避によって可視光の照射が停止された場合であっても、人体に有害な紫外線はカバー手段103(遮断手段105)により遮断され、対象領域Sには照射されない。この場合のカバー手段103を開閉させる切替方法は、第1実施形態の遮断手段105の開閉の切替方法と同様の構成が採用できる。 FIG. 3B is a diagram showing an invalid state of the cover means 103, that is, a non-blocking state of ultraviolet rays. When the room S is unmanned, the conversion means 131 is retracted from the ultraviolet light emitting direction (front) of the ultraviolet light emitting means 101 (opening the front of the ultraviolet light emitting means 101) as shown in FIG. Then, the irradiation of the target area S with visible light is stopped. In this example, the cover means 103 always covers the front of the ultraviolet light emitting means 101, and even when the irradiation of visible light is stopped due to the evacuation of the conversion means 131, the ultraviolet rays harmful to the human body are covered by the cover means 103. It is blocked by (blocking means 105), and the target area S is not irradiated. As the switching method for opening and closing the cover means 103 in this case, the same configuration as the switching method for opening and closing the blocking means 105 of the first embodiment can be adopted.
 なお、遮断手段105がカバー手段103に含まれず、変換手段131と遮断手段105とを兼用する場合には、同図(B)に示す変換手段131の無効状態(退避させた状態)では、対象領域Sに有害な紫外線が照射されることになるので、例えば人感センサなどを設けて、有人を検知した場合に紫外線発光手段101の発光を停止するなどするとよい。既に述べているように、紫外線発光手段101は通常の運転では常時UVランプLPを点灯状態とし、遮断手段105によって対象領域Sへの紫外線の遮断状態と非遮断状態を切り替え可能としているが、人感センサなどで有人を検知した場合には安全性を最優先してUVランプLPを消灯するように構成する。 When the blocking means 105 is not included in the covering means 103 and the conversion means 131 and the blocking means 105 are also used, the target is in the invalid state (retracted state) of the conversion means 131 shown in FIG. Since the region S is irradiated with harmful ultraviolet rays, for example, it is advisable to provide a motion sensor or the like to stop the light emission of the ultraviolet light emitting means 101 when a manned person is detected. As already described, the ultraviolet light emitting means 101 keeps the UV lamp LP lit at all times in normal operation, and the blocking means 105 can switch between the blocking state and the non-blocking state of the ultraviolet rays to the target region S. When a manned person is detected by a motion sensor or the like, the UV lamp LP is turned off with the highest priority given to safety.
 この変換手段131の開閉の切替方法は、第1実施形態で説明した遮断手段105の開閉の切替方法と同様の構成を採用することができる。また、開閉の切替をすることなく変換手段131を常時、紫外線発光手段101の前面に配置して、紫外線発光手段101の発光中は常に紫外線を可視光に変換するように構成してもよい。 As the opening / closing switching method of the conversion means 131, the same configuration as the opening / closing switching method of the blocking means 105 described in the first embodiment can be adopted. Further, the conversion means 131 may be always arranged in front of the ultraviolet light emitting means 101 without switching the opening and closing, and may be configured to always convert the ultraviolet light into visible light during the light emission of the ultraviolet light emitting means 101.
 なお、変換手段131の開閉の切替は、例えば、切替手段(不図示)などによって自動で制御するようにしてもよいし、手動で制御するようにしてもよい。 The switching of opening and closing of the conversion means 131 may be automatically controlled by, for example, a switching means (not shown), or may be manually controlled.
 このように、第3実施形態に係る紫外線照射装置100Dは、カバー手段103と紫外線発光手段101で構成される流路内の空気を殺菌し、自然対流によって空気の取り込み、殺菌、放出を繰り返して循環殺菌を行いながら、変換手段131を介して室内(対象領域S)内へ、人体にとって無害化した可視光を照射する平面状の照明装置としても利用することができる。 As described above, the ultraviolet irradiation device 100D according to the third embodiment sterilizes the air in the flow path composed of the cover means 103 and the ultraviolet light emitting means 101, and repeatedly takes in, sterilizes, and releases the air by natural convection. It can also be used as a flat lighting device that irradiates the room (target area S) with visible light that has become harmless to the human body while performing circulation sterilization.
 この例では、図23に示すように、紫外線照射装置100Dを室内の壁面等に移動不可に固定した場合を示しているが、これに限らず、第2実施形態と同様に、紫外線発光手段101とカバー手段103とが一体的に移動可能に構成された可搬型に構成されてもよい。可搬型の構成については、第1実施形態と同様であるので説明は省略する。 In this example, as shown in FIG. 23, the case where the ultraviolet irradiation device 100D is immovably fixed to the wall surface or the like in the room is shown, but the present invention is not limited to this, and the ultraviolet light emitting means 101 is similar to the second embodiment. And the cover means 103 may be configured as a portable type that is integrally movable. Since the portable configuration is the same as that of the first embodiment, the description thereof will be omitted.
 また、変換手段131が遮断手段105を兼用する構成とし、カバー手段103は紫外線発光手段101に一体的に固定されて常時これを覆う構成として、変換手段131がカバー手段103(紫外線発光手段101)に対して相対的に移動可能に構成されて開閉可能となってもよい。 Further, the conversion means 131 is configured to also serve as the blocking means 105, the cover means 103 is integrally fixed to the ultraviolet light emitting means 101 and always covers the cover means 103, and the conversion means 131 is the cover means 103 (ultraviolet light emitting means 101). It may be configured to be relatively movable with respect to the opening and closing.
 なお、図23では、カバー手段103と紫外線発光手段101が離間して流路107が形成された状態を示している。この場合、同図(A)に示す紫外線の遮断状態において、流路107を介して循環殺菌も可能である。しかしながら、流路107(自然対流が可能な程度の流路)が形成されない構成であってもよい。すなわち、カバー手段103を設けず、変換手段131と遮断手段105とを紫外線発光手段101に対向配置する構成であってもよい。この場合、変換手段131と遮断手段105とを紫外線発光手段101に対して常時対向配置する(相対移動不可な)構成であってもよいし、変換手段131と遮断手段105とを紫外線発光手段101に対して相対移動可能に構成してもよい。 Note that FIG. 23 shows a state in which the cover means 103 and the ultraviolet light emitting means 101 are separated from each other to form the flow path 107. In this case, circulation sterilization is also possible via the flow path 107 in the state of blocking ultraviolet rays shown in FIG. However, the configuration may be such that the flow path 107 (a flow path capable of natural convection) is not formed. That is, the cover means 103 may not be provided, and the conversion means 131 and the blocking means 105 may be arranged to face the ultraviolet light emitting means 101. In this case, the conversion means 131 and the blocking means 105 may be arranged so as to always face the ultraviolet light emitting means 101 (relative movement is not possible), or the conversion means 131 and the blocking means 105 may be arranged so as to face the ultraviolet light emitting means 101. It may be configured to be relatively movable with respect to.
 また、図23では、紫外線照射装置100Dを対象領域S(室内)の壁面等に固定した状態を示しているが、これに限らず、第2実施形態のように紫外線発光手段101とカバー手段103とは、一体的に移動可能な可搬型としてもよい。 Further, FIG. 23 shows a state in which the ultraviolet irradiation device 100D is fixed to the wall surface or the like of the target area S (indoor), but the present invention is not limited to this, and the ultraviolet light emitting means 101 and the cover means 103 as in the second embodiment. And may be a portable type that can be moved integrally.
 以下、本実施形態の紫外線照射システム200の一例について説明する。 Hereinafter, an example of the ultraviolet irradiation system 200 of the present embodiment will be described.
 図24および図25は、本実施形態の紫外線照射装置100を室内(対象領域S)の壁面に設けた場合の一例を示す概要図である。図24(A)が正面図、図24(B)が遮断状態の斜視図であり、図25が非遮断状態の斜視図である。 24 and 25 are schematic views showing an example of the case where the ultraviolet irradiation device 100 of the present embodiment is provided on the wall surface of the room (target area S). FIG. 24 (A) is a front view, FIG. 24 (B) is a perspective view in a blocked state, and FIG. 25 is a perspective view in a non-blocked state.
 図24(A)に示すように、この例の紫外線照射装置100は室内(対象領域S)の一つの壁面全体に配置されており、例えば、紫外線発光手段101、カバー手段103、上方ルーバー(羽板)111A、下方ルーバー111B、人感センサ113、駆動制御手段119などを有する。 As shown in FIG. 24 (A), the ultraviolet irradiation device 100 of this example is arranged on the entire wall surface of one room (target area S), and for example, the ultraviolet light emitting means 101, the cover means 103, and the upper louver (feathers). Plate) 111A, lower louver 111B, motion sensor 113, drive control means 119, and the like.
 紫外線発光手段101は壁面に埋め込まれるように設けられ、紫外線発光手段101から所定距離で離間した前方に、カバー手段103(前面カバー部103F)が配置されている。前面カバー部103Fは例えば、紫外線発光手段101を覆う引き戸(障子)型に設けられる。この例では、2台の紫外線照射装置100を並べて配置しており、それぞれの紫外線照射装置100に、2枚の引き戸型のカバー手段103が設けられている。カバー手段103(前面カバー部103F)は紫外線発光手段101に対して相対的に幅方向H(図示の左右方向)にスライド移動可能に構成される。 The ultraviolet light emitting means 101 is provided so as to be embedded in the wall surface, and the cover means 103 (front cover portion 103F) is arranged in front of the ultraviolet light emitting means 101 at a predetermined distance. The front cover portion 103F is provided, for example, in a sliding door (shoji) type that covers the ultraviolet light emitting means 101. In this example, two ultraviolet irradiation devices 100 are arranged side by side, and each ultraviolet irradiation device 100 is provided with two sliding door type cover means 103. The cover means 103 (front cover portion 103F) is configured to be slidable in the width direction H (left-right direction in the drawing) relative to the ultraviolet light emitting means 101.
 なお、紫外線照射装置100は、カバー手段103と紫外線発光手段101とで空気の流路107が構成されればよく、この例の側面カバー部103Sは壁面と兼用されていてもよい。 In the ultraviolet irradiation device 100, the air flow path 107 may be configured by the cover means 103 and the ultraviolet light emitting means 101, and the side cover portion 103S in this example may also be used as a wall surface.
 また、この例ではカバー手段103と変換手段131とが一体的に設けられ、変換手段131は遮断手段105を兼用する。すなわち、カバー手段103の開閉に伴って一体的に、変換手段131および遮断手段105が開閉可能となるように構成されている。 Further, in this example, the cover means 103 and the conversion means 131 are integrally provided, and the conversion means 131 also serves as the blocking means 105. That is, the conversion means 131 and the blocking means 105 are configured to be integrally openable and closable as the cover means 103 is opened and closed.
 変換手段は131は、例えば、板状のフィルタであり、例えば、UVカットフィルタの裏面(紫外線発光手段101から発光された紫外線が照射される面)に、当該紫外線の光を可視光に変換するための材料(蛍光塗料)をコーティングした可視光変換フィルタである。 The conversion means 131 is, for example, a plate-shaped filter, and for example, the back surface of the UV cut filter (the surface irradiated with the ultraviolet rays emitted from the ultraviolet light emitting means 101) is converted into visible light. It is a visible light conversion filter coated with a material (fluorescent paint) for this purpose.
 カバー手段(前面カバー部103F)は、可視光を透過可能に構成されており、紫外線発光手段101から出力される紫外線は、変換手段131に接触し透過することで、人体に有害な紫外線波長領域である400nm以下の光は全てこのフィルタ板でカットされると同時に可視光に変換され、カバー手段103からは、可視光のみとして前方(室内)に照射される。つまり紫外線照射装置100を、照明、あるいは、光る壁として機能させることができ、室内であっても違和感がなく、インテリア性の高い、明るい作業環境を提供できる。なお、遮断手段105と変換手段131は別体に構成されていてもよい。 The cover means (front cover portion 103F) is configured to be capable of transmitting visible light, and the ultraviolet rays output from the ultraviolet light emitting means 101 come into contact with the conversion means 131 and are transmitted to the ultraviolet wavelength region harmful to the human body. All the light having a wavelength of 400 nm or less is cut by this filter plate and at the same time converted into visible light, and is irradiated to the front (indoor) as visible light only from the covering means 103. That is, the ultraviolet irradiation device 100 can function as an illumination or a shining wall, and can provide a bright work environment with a high interior quality without a sense of discomfort even indoors. The blocking means 105 and the converting means 131 may be configured separately.
 この場合、紫外線の遮断状態では、同図(A)の左側に示すように、2枚の引き戸型のカバー手段103(および変換手段131)が閉鎖されて紫外線発光手段101の前方を覆い、紫外線発光手段101が露出しない状態となる。これにより、紫外線発光手段101からの発光は継続した状態で、対象領域S(室内)への紫外線の照射が遮断される。 In this case, in the ultraviolet blocking state, as shown on the left side of the figure (A), the two sliding door type covering means 103 (and the converting means 131) are closed to cover the front of the ultraviolet emitting means 101, and the ultraviolet rays are emitted. The light emitting means 101 is not exposed. As a result, the irradiation of the target region S (indoor) with the ultraviolet rays is blocked while the light emission from the ultraviolet light emitting means 101 is continued.
 一方、紫外線の非遮断状態では、同図(A)の右側に示すように、引き戸型のカバー手段103(および変換手段131)の一方を他方に重ねるように開放されて紫外線発光手段101が露出した状態となる。 On the other hand, in the non-blocking state of ultraviolet rays, as shown on the right side of the figure (A), one of the sliding door type cover means 103 (and the conversion means 131) is opened so as to overlap the other, and the ultraviolet light emitting means 101 is exposed. It will be in the state of.
 なおこの例では、非遮断状態であっても2枚に重ねられたカバー手段103が紫外線発光手段101の一部の前方を覆った状態を示しているが、非遮断状態では紫外線発光手段101の略全面が露出可能としてもよい。例えば、当該紫外線照射装置100の幅方向Hの両外側(の壁面内など)にカバー手段103の収納領域を設けたり、カバー手段103を折り畳み可能にするなどによって、紫外線発光手段101の略全面を露出させることができる。 In this example, the cover means 103 stacked on top of each other covers the front of a part of the ultraviolet light emitting means 101 even in the non-blocking state, but in the non-blocking state, the ultraviolet light emitting means 101 Almost the entire surface may be exposed. For example, by providing storage areas for the cover means 103 on both outer sides (inside the wall surface, etc.) of the ultraviolet irradiation device 100 in the width direction H, or by making the cover means 103 foldable, substantially the entire surface of the ultraviolet light emitting means 101 can be covered. Can be exposed.
 前面カバー部103Fの下端部と床面の間には空気の流入口INが開口しており、その前面に下方ルーバー111Bが配置される。同様に、前面カバー部103Fの上端部と天井の間には空気の流出口OUTが開口しており、その前面に上方ルーバー111Aが配置される。上方ルーバー111Aと下方ルーバー111Bはそれぞれに各ルーバー(羽部)の角度を変更(調節)可能に構成されえていると好適である。 An air inlet IN is opened between the lower end of the front cover portion 103F and the floor surface, and the lower louver 111B is arranged in front of the air inlet IN. Similarly, an air outlet OUT is opened between the upper end portion of the front cover portion 103F and the ceiling, and the upper louver 111A is arranged in front of the air outlet OUT. It is preferable that the upper louver 111A and the lower louver 111B can be configured so that the angle of each louver (wing) can be changed (adjusted).
 なお、この例において上方ルーバー111Aと下方ルーバー111Bを設けず、空気の流入口INおよび流出口OUTのみが設けられる構成であってもよい。 In this example, the upper louver 111A and the lower louver 111B may not be provided, and only the air inlet IN and the air outlet OUT may be provided.
 人感センサ113は、常時、室内が有人であるか無人であるかを検知し、検知結果を駆動制御手段109に送信する。また、図示は省略するが、紫外線照射装置100は、電源、紫外線発光手段101の点灯/消灯(任意のUVランプLPの選択的な点灯/消灯)の制御、紫外線の照射強度制御、カバー手段103の開閉制御などの信号を手動で入力可能なコントローラ(不図示)を有している。 The motion sensor 113 constantly detects whether the room is manned or unmanned, and transmits the detection result to the drive control means 109. Further, although not shown, the ultraviolet irradiation device 100 controls the power supply, the lighting / extinguishing of the ultraviolet light emitting means 101 (selective lighting / extinguishing of an arbitrary UV lamp LP), the ultraviolet irradiation intensity control, and the covering means 103. It has a controller (not shown) that can manually input signals such as opening / closing control of UV rays.
 駆動制御手段109は、人感センサ113および、紫外線照射装置100のコントローラからの信号に基づき、電源、紫外線発光手段101の点灯/消灯の制御、紫外線の照射強度制御、カバー手段103および/または遮断手段105の開閉制御などを行う。既に述べているように、紫外線発光手段101は通常の運転では常時UVランプLPを点灯状態とし、遮断手段105によって対象領域Sへの紫外線の遮断状態と非遮断状態を切り替え可能としている。しかしながら、駆動制御手段109は、人感センサ113などで有人を検知した場合には安全性を最優先してUVランプLPを消灯(および/又は紫外線の照射強度を低下する、あるいは、遮断手段105を閉鎖する)ように構成する。 The drive control means 109 controls the power supply, the lighting / extinguishing of the ultraviolet light emitting means 101, the ultraviolet irradiation intensity control, the covering means 103 and / or cutoff based on the signals from the motion sensor 113 and the controller of the ultraviolet irradiation device 100. The opening / closing control of the means 105 is performed. As already described, the ultraviolet light emitting means 101 keeps the UV lamp LP lit at all times in normal operation, and the blocking means 105 can switch between the blocking state and the non-blocking state of the ultraviolet rays to the target region S. However, when the drive control means 109 detects a manned person by the motion sensor 113 or the like, the UV lamp LP is turned off (and / or the irradiation intensity of ultraviolet rays is reduced, or the blocking means 105 is given the highest priority on safety. Is closed).
 この紫外線照射装置100は、同図(A)左側、同図(B)に示す遮断状態では、紫外線発光手段101からの発光は継続するものの、カバー手段103(遮断手段105)によって人体に有害な紫外線の対象領域Sへの照射は遮断される。同時に、室内空気を下方ルーバー111Bから流路107に取り込み、紫外線発光手段101によって光を照射して当該空気を殺菌処理する。流路107内の空気は、紫外線発光手段101の熱により昇温されてこれにより自然対流が生じ、上方ルーバー111Aから無菌化された空気として室内へ還流され、これが繰り返される(循環殺菌される)。 In the blocking state shown on the left side of FIG. (A) and FIG. (B), the ultraviolet irradiation device 100 continues to emit light from the ultraviolet emitting means 101, but is harmful to the human body by the covering means 103 (blocking means 105). Irradiation of the target region S of ultraviolet rays is blocked. At the same time, the indoor air is taken into the flow path 107 from the lower louver 111B and irradiated with light by the ultraviolet light emitting means 101 to sterilize the air. The air in the flow path 107 is heated by the heat of the ultraviolet light emitting means 101 to generate natural convection, which is returned to the room as sterilized air from the upper louver 111A, and this is repeated (circulation sterilization). ..
 さらに、カバー手段103(前面カバー部103F)に設けられた変換手段131によって、紫外線発光手段101から出力される紫外線波長の少なくとも一部(殺菌波長)の光がカットされるともに可視光に変換される。これにより、紫外線照射装置100の外部(室内)から見た場合には、カバー手段103(前面カバー部103F)の表面全体が可視光を発する照明として利用できる。 Further, the conversion means 131 provided on the cover means 103 (front cover portion 103F) cuts at least a part of the ultraviolet wavelength (sterilization wavelength) output from the ultraviolet light emitting means 101 and converts it into visible light. To. As a result, when viewed from the outside (indoor) of the ultraviolet irradiation device 100, the entire surface of the cover means 103 (front cover portion 103F) can be used as illumination that emits visible light.
 一方、図25に示すように、紫外線照射装置100の非遮断状態では、カバー手段103(変換手段131)の開放によって紫外線発光手段101から殺菌波長領域の紫外線が殺菌に有効なピーク出力の状態で前方(室内)に瞬時且つ広範囲に照射される。これにより、UVランプLPからの殺菌効果の高い光を室内の付着菌・浮遊菌の存在する箇所に対して瞬時に直接照射して効率よく殺菌浄化することができる。 On the other hand, as shown in FIG. 25, in the non-blocking state of the ultraviolet irradiation device 100, the ultraviolet light in the sterilization wavelength region from the ultraviolet light emitting means 101 is in a state of peak output effective for sterilization by opening the cover means 103 (conversion means 131). The front (indoor) is instantly and widely irradiated. As a result, the light from the UV lamp LP, which has a high bactericidal effect, can be instantly and directly irradiated directly to the place where the adherent bacteria / airborne bacteria are present in the room to efficiently sterilize and purify.
 また、例えば、同図(B)に示すように、非遮断状態において人感センサ113が有人を検知した場合には、駆動制御手段109によって紫外線発光手段101の発光あるいは、紫外線照射装置100の運転を停止する。あるいは、非遮断状態において人感センサ113が有人を検知した場合には、駆動制御手段109によってカバー手段103で紫外線発光手段101を覆う遮断状態に移行する。これにより、人体に有害な紫外線が照射されることを回避できる。 Further, for example, as shown in FIG. 3B, when the motion sensor 113 detects a manned person in a non-blocking state, the drive control means 109 emits light from the ultraviolet light emitting means 101 or operates the ultraviolet irradiation device 100. To stop. Alternatively, when the motion sensor 113 detects a manned person in the non-blocking state, the drive control means 109 shifts to the blocking state in which the cover means 103 covers the ultraviolet light emitting means 101. As a result, it is possible to avoid irradiation with ultraviolet rays harmful to the human body.
 また、カバー手段103は手動で開閉が可能であってもよく、その場合カバー手段103の開閉を検知する開閉検知センサを設けるとよい。開閉検知センサは例えば人感センサ113に連動し、開閉検知センサがカバー手段103の開放を検知した場合、人感センサ113の検知信号が駆動制御手段109に送信され、紫外線発光手段101の出力を停止する(消灯する)とよい。 Further, the cover means 103 may be manually opened and closed, in which case it is preferable to provide an open / close detection sensor for detecting the open / close of the cover means 103. The open / close detection sensor is interlocked with, for example, the motion sensor 113, and when the open / close detection sensor detects the opening of the cover means 103, the detection signal of the motion sensor 113 is transmitted to the drive control means 109, and the output of the ultraviolet light emitting means 101 is output. It is good to stop (turn off).
 なお、カバー手段103を紫外線発光手段101の前方に移動不可に固定され、変換手段131を引き戸型に構成し、カバー手段103と紫外線発光手段101に対して相対的にスライド移動可能としてもよい。この場合、遮断状態であっても非遮断状態であっても流路107が形成されるので、常時、循環殺菌を行なうことができる。 The cover means 103 may be fixed in front of the ultraviolet light emitting means 101 so as not to be movable, the conversion means 131 may be configured as a sliding door type, and the cover means 103 and the ultraviolet light emitting means 101 may be slidably movable. In this case, since the flow path 107 is formed in both the blocked state and the non-blocked state, circulation sterilization can be performed at all times.
 また、カバー手段103(前面カバー部103F)あるいは変換手段131は、上下にスライド移動したり、第1実施形態の遮断手段105のように開閉を切り替える構成であってもよい。 Further, the cover means 103 (front cover portion 103F) or the conversion means 131 may be configured to slide up and down or to switch between opening and closing as in the blocking means 105 of the first embodiment.
 さらに、駆動制御手段109のUVランプ点灯回路上には点灯制御タイマーを組み込むとよい。これにより、任意で設定した時間運転を行ったり、任意のUVランプLPを選択的に点灯/消灯させたり、あるいは所定時間運転後(殺菌処理後)に無人となった場合には電源を停止するなど、運転の自動化が可能となり、必要な場所で必要な時間に紫外線による室内空間の殺菌、および照明として利用することができる。 Further, it is advisable to incorporate a lighting control timer on the UV lamp lighting circuit of the drive control means 109. As a result, the power is stopped when the operation is performed for an arbitrarily set time, the arbitrary UV lamp LP is selectively turned on / off, or when the operation becomes unmanned after the operation for a predetermined time (after sterilization treatment). It is possible to automate the operation, and it can be used for sterilizing the indoor space with ultraviolet rays and for lighting at the required place and at the required time.
 また、変換手段(可視光変換フィルタ)131の表面には、例えば、意匠性に富むデザイン(絵や模様)を施したフィルタを積層させるなどしてもよい。これにより、医療看護施設や商業施設等において空間殺菌を行いながら、同時に癒しやレジャー性をもたらす照明装置を提供することもできる。 Further, for example, a filter having a design (picture or pattern) rich in design may be laminated on the surface of the conversion means (visible light conversion filter) 131. This makes it possible to provide a lighting device that provides healing and leisure while performing space sterilization in medical and nursing facilities, commercial facilities, and the like.
 図26は、本実施形態の紫外線照射装置100Dを自立・可搬型に構成した場合の他の一例を示す概要図である。図26(A)は遮断状態の斜視図、同図(B)および同図(C)は非遮断状態の斜視図である。 FIG. 26 is a schematic view showing another example of the case where the ultraviolet irradiation device 100D of the present embodiment is configured to be self-supporting and portable. FIG. 26 (A) is a perspective view in a blocked state, and FIGS. (B) and FIG. 26 (C) are perspective views in a non-blocked state.
 この紫外線照射装置10は、図9等を用いて説明した紫外線照射装置10と同様の衝立型(自立型)であるが、例えばカバー手段103は遮断手段105を含んで構成され、カバー手段103(および遮断手段105)が紫外線発光手段101に対して相対的に移動(開閉)可能に構成されている。また、この構成において変換手段131を備えていても良い。また、変換手段131が遮断手段105を兼用するものであってもよい。 The ultraviolet irradiation device 10 is an impulsive type (self-supporting type) similar to the ultraviolet irradiation device 10 described with reference to FIG. 9, but for example, the cover means 103 is configured to include the blocking means 105, and the cover means 103 ( And the blocking means 105) is configured to be movable (open / close) relative to the ultraviolet emitting means 101. Further, the conversion means 131 may be provided in this configuration. Further, the conversion means 131 may also serve as the blocking means 105.
 この紫外線照射装置100は、同図(A)に示す遮断状態では、第1実施形態と同様に流路107内の空気を殺菌する循環殺菌が行われる。 In the cutoff state shown in FIG. 3A, the ultraviolet irradiation device 100 is subjected to circulation sterilization that sterilizes the air in the flow path 107 as in the first embodiment.
 さらに、カバー手段103(前面カバー部103F)に変換手段131が設けられている場合には、紫外線発光手段101から出力される紫外線波長の光が可視光に変換される。これにより、紫外線照射装置100の外部(室内)から見た場合には、カバー手段103(前面カバー部103F)の表面全体が可視光を発する照明として利用できる。 Further, when the cover means 103 (front cover portion 103F) is provided with the conversion means 131, the light having the ultraviolet wavelength output from the ultraviolet light emitting means 101 is converted into visible light. As a result, when viewed from the outside (indoor) of the ultraviolet irradiation device 100, the entire surface of the cover means 103 (front cover portion 103F) can be used as illumination that emits visible light.
 一方、同図(B)に示すように、紫外線照射装置100の非遮断状態では、カバー手段103が幅方向Hの左右にスライド移動して、紫外線発光手段101が露出する。これにより、紫外線発光手段101から殺菌波長領域の紫外線が前方(室内)に照射される。 On the other hand, as shown in FIG. 3B, in the non-blocking state of the ultraviolet irradiation device 100, the cover means 103 slides to the left and right in the width direction H, and the ultraviolet light emitting means 101 is exposed. As a result, the ultraviolet light emitting means 101 irradiates the front (indoor) with ultraviolet rays in the sterilization wavelength region.
 なお、非遮断状態においてカバー手段103は紫外線発光手段101に固定されてこれを覆う構成であってもよい。また、遮断手段105(変換手段131)が紫外線発光手段101およびカバー手段103に対して相対的に左右(または上下)にスライド移動する構成であってもよい。遮断状態と非遮断状態との切替方法(カバー手段103(遮断手段105、変換手段131)の移動方法)については図示のものに限らず、上記に説明した種々の態様を採用できる。 The cover means 103 may be fixed to the ultraviolet light emitting means 101 to cover the cover means 103 in the non-blocking state. Further, the blocking means 105 (converting means 131) may be configured to slide left and right (or up and down) relative to the ultraviolet light emitting means 101 and the cover means 103. The method of switching between the blocked state and the non-blocked state (the method of moving the cover means 103 (blocking means 105, conversion means 131)) is not limited to the one shown in the drawing, and various aspects described above can be adopted.
 また、この場合も同図(C)に示すように人感センサ113を備え、有人と無人を検知し、有人を検知した場合には、駆動制御手段109によって紫外線発光手段101の発光を停止(消灯)するとよい。あるいは、非遮断状態において人感センサ113が有人を検知した場合には、駆動制御手段109によってカバー手段103で紫外線発光手段101を覆う遮断状態に移行してもよい。 Further, also in this case, as shown in FIG. 6C, a motion sensor 113 is provided to detect manned and unmanned, and when manned is detected, the drive control means 109 stops the light emission of the ultraviolet light emitting means 101 ( It should be turned off). Alternatively, when the motion sensor 113 detects a manned person in the non-blocking state, the drive control means 109 may shift to the blocking state in which the cover means 103 covers the ultraviolet light emitting means 101.
 また、カバー手段103は手動で開閉が可能であってもよく、その場合カバー手段103の開閉を検知する開閉検知センサを設けるとよい。つまり、開閉検知センサがカバー手段103の開放を検知した場合、当該信号が駆動制御手段109に送信され、紫外線発光手段101の出力を停止する(消灯する)とよい。 Further, the cover means 103 may be manually opened and closed, in which case it is preferable to provide an open / close detection sensor for detecting the open / close of the cover means 103. That is, when the open / close detection sensor detects the opening of the cover means 103, the signal is transmitted to the drive control means 109, and the output of the ultraviolet light emitting means 101 may be stopped (turned off).
 <第4実施形態>
 図27を参照して本発明の第4実施形態について説明する。図27(A)は第4実施形態の紫外線照射システム200の概略を示す側面図であり、同図(B)は紫外線照射装置100(100E)の概略を示す側面図である。
<Fourth Embodiment>
A fourth embodiment of the present invention will be described with reference to FIG. 27. FIG. 27 (A) is a side view showing an outline of the ultraviolet irradiation system 200 of the fourth embodiment, and FIG. 27 (B) is a side view showing an outline of the ultraviolet irradiation device 100 (100E).
 紫外線照射装置100は例えば、第1実施形態と同様の衝立型であるが、ここでは一例としてカバー手段103および遮断手段105を備えていない構成を示す。つまりこの場合の紫外線照射装置100は、紫外線の照射と非照射(紫外線発光手段101の消灯による非照射)の切替が可能であり、特に対象領域Sが無人の場合に、対象領域Sに直接的に紫外線を照射するUV直接照射型の装置である。紫外線の照射と非照射のタイミングおよび照射時間は例えば、駆動制御手段109や不図示の人感センサなどにより制御される。 The ultraviolet irradiation device 100 is, for example, an imposition type similar to that of the first embodiment, but here, as an example, a configuration without a cover means 103 and a blocking means 105 is shown. That is, the ultraviolet irradiation device 100 in this case can switch between irradiation of ultraviolet rays and non-irradiation (non-irradiation by extinguishing the ultraviolet light emitting means 101), and particularly when the target area S is unmanned, it is directly directed to the target area S. It is a UV direct irradiation type device that irradiates ultraviolet rays. The timing and irradiation time of ultraviolet irradiation and non-irradiation are controlled by, for example, a drive control means 109 or a motion sensor (not shown).
  この例の紫外線照射システム200は、UV直接照射型の紫外線照射装置100とは別体のバグフィルタ300を備える。バグフィルタ300は例えば対象領域(ここでは室内)Sの天井付近などに設けられ、空気の流入および流出が可能な流路(ダクト)130などの一端(出口端)に設けられる。ダクト130の例えば入口端には不図示のファン(サーキュレータ)を設けるなどし、対象領域S(室内)の空気が流入するように構成されている。バグフィルタは、少なくともダクト130に流入する空気中に含まれる物理的な粒子を除去し、対象領域Sに排出する。また、物理的な粒子とは例えば、浮遊粒子、および浮遊粒子に吸着する菌の死骸や発熱物質(パイロジェン)、その他塵やほこりなどであり、本実施形態のバグフィルタ300はこれらを捕捉、除去可能な程度の性能を有するものを採用する。より具体的には、バグフィルタ300の一例としては、1μmより大きな粒子を95%程度補足できる中性能エアフィルタ以上の性能を有するものとする。 The ultraviolet irradiation system 200 of this example includes a bug filter 300 that is separate from the UV direct irradiation type ultraviolet irradiation device 100. The bug filter 300 is provided, for example, near the ceiling of the target area (inside the room) S, and is provided at one end (outlet end) of a flow path (duct) 130 through which air can flow in and out. For example, a fan (circulator) (not shown) is provided at the inlet end of the duct 130 so that air in the target area S (indoor) flows in. The bug filter removes at least physical particles contained in the air flowing into the duct 130 and discharges them to the target region S. Further, the physical particles are, for example, suspended particles, dead bacteria and pyrogens adsorbed on the suspended particles, and other dust and dirt, and the bug filter 300 of the present embodiment captures and removes these. Use one that has the possible level of performance. More specifically, as an example of the bug filter 300, it is assumed that it has a performance higher than that of a medium-performance air filter capable of capturing about 95% of particles larger than 1 μm.
 この紫外線照射システム200では、特に無人の場合に紫外線照射装置100からの紫外光により対象領域Sの殺菌が行われる。また対象領域Sの空気は、主に対象領域S内で循環し、バグフィルタ300により物理的なバグが除去される。これにより例えば、図14を用いて説明した排気手段181(および給気(吸気)手段182)を備えるシステムよりも簡素且つ低コストに実現できる。例えば、殺菌(浄化)システムのない対象領域S(例えば、救護用テントなど)について臨時かつ緊急に対象領域Sを清浄化したい場合などに好適である。また、対象領域S内で空気が循環するので、汚染空気が外部に漏れる危険を最小限に抑えられる。 In this ultraviolet irradiation system 200, the target area S is sterilized by ultraviolet light from the ultraviolet irradiation device 100, especially when there is no person. Further, the air in the target area S mainly circulates in the target area S, and the physical bug is removed by the bug filter 300. Thereby, for example, it can be realized in a simpler and lower cost than the system including the exhaust means 181 (and the air supply (intake) means 182) described with reference to FIG. For example, it is suitable when it is desired to temporarily and urgently clean the target area S (for example, a rescue tent) without a sterilization (purification) system. Further, since the air circulates in the target area S, the risk of contaminated air leaking to the outside can be minimized.
 同図(A)において、紫外線照射装置100は、紫外線発光手段101に対向配置されてこれとの間に流路107を形成するカバー手段103を有してもよい。この場合例えばカバー手段103は遮断手段105を有さず、紫外線の直接照射に加えて紫外線照射装置100の流路107においても循環殺菌が可能な構成としてもよい。 In the figure (A), the ultraviolet irradiation device 100 may have a cover means 103 that is arranged to face the ultraviolet light emitting means 101 and forms a flow path 107 with the ultraviolet light emitting means 101. In this case, for example, the cover means 103 may not have the blocking means 105, and may be configured to allow circulation sterilization in the flow path 107 of the ultraviolet irradiation device 100 in addition to the direct irradiation of ultraviolet rays.
 同図(B)は、紫外線照射装置100(100E)の他の例を示す側面図である。紫外線照射装置100Eは、例えば衝立型であり、バグフィルタ300を一体的に備えたものであってもよい。この例では紫外線照射装置100は、紫外線発光手段101との間に流路107を形成するカバー手段103を備え、バグフィルタ300は、流路107の出口、すなわち紫外線照射装置100の例えば上部に取り付けられる。 FIG. 3B is a side view showing another example of the ultraviolet irradiation device 100 (100E). The ultraviolet irradiation device 100E is, for example, an imposition type, and may be integrally provided with a bug filter 300. In this example, the ultraviolet irradiation device 100 includes a cover means 103 that forms a flow path 107 with the ultraviolet light emitting means 101, and the bag filter 300 is attached to the outlet of the flow path 107, that is, at the upper part of the ultraviolet irradiation device 100, for example. Be done.
 バグフィルタ300は、紫外線照射装置100Eの未使用時(オフ時)には、破線で示すように例えばその背面(紫外線発光手段101の背面)などに収容可能であり、紫外線照射装置100Eの動作時には、流路107を通過する殺菌済みの空気を吸い込み、物理的なバグを除去して清浄な空気を対象領域Sに排出する。 When the ultraviolet irradiation device 100E is not in use (when it is off), the bag filter 300 can be accommodated on, for example, the back surface (the back surface of the ultraviolet light emitting means 101) as shown by the broken line, and when the ultraviolet irradiation device 100E is operating. , The sterilized air passing through the flow path 107 is sucked in, the physical bug is removed, and the clean air is discharged to the target region S.
 紫外線照射装置100Eは、例えば、カバー手段103を有するが遮断手段105は有さず、特に対象領域Sが無人の場合に、対象領域Sに直接的に紫外線を照射するUV直接照射型の装置である。なお、カバー手段103を設けなくてもよい。 The ultraviolet irradiation device 100E is, for example, a UV direct irradiation type device that has a covering means 103 but no blocking means 105, and particularly irradiates the target area S with ultraviolet rays directly when the target area S is unmanned. is there. It is not necessary to provide the cover means 103.
 また、例えば流路107への空気を取り込みまたは排出をより促すファン(サーキュレータ等)302を設けると好適である。 Further, for example, it is preferable to provide a fan (circulator or the like) 302 that further promotes the intake or discharge of air into the flow path 107.
 なお、図27に示す紫外線照射装置100(100E)は遮断手段105を備えないが、紫外線発光手段101の出射状態を変更可能な状態切替手段(不図示)を設けてもよい。状態切替手段は例えば、紫外線発光手段101の前方に紫外線の照射方向や照射量を変更可能な方向変換手段である。方向変換手段は例えば、ルーバーや開閉窓などである。 Although the ultraviolet irradiation device 100 (100E) shown in FIG. 27 does not include the blocking means 105, a state switching means (not shown) capable of changing the emission state of the ultraviolet light emitting means 101 may be provided. The state switching means is, for example, a direction changing means capable of changing the irradiation direction and irradiation amount of ultraviolet rays in front of the ultraviolet light emitting means 101. The direction changing means is, for example, a louver or an opening / closing window.
 なお、状態切替手段(方向変換手段)は、紫外線の少なくとも一部を遮断可能な構成であってもよく、その意味では、遮断手段105も状態切替手段に含まれる。 The state switching means (direction changing means) may have a configuration capable of blocking at least a part of ultraviolet rays, and in that sense, the blocking means 105 is also included in the state switching means.
 また、紫外線照射装置100は据え置き式の衝立型(自立型)に限らず、タワー型であってもよく、自走式であってもよい。 Further, the ultraviolet irradiation device 100 is not limited to the stationary type (self-supporting type), but may be a tower type or a self-propelled type.
 <第5実施形態>
 図28および図29を参照して、本発明の第5実施形態の紫外線照射装置100(100F、100G)および紫外線照射システム200(200F)について説明する。
<Fifth Embodiment>
The ultraviolet irradiation device 100 (100F, 100G) and the ultraviolet irradiation system 200 (200F) according to the fifth embodiment of the present invention will be described with reference to FIGS. 28 and 29.
 図28は、紫外線照射システム200(200F)の概要図である。同図(A)は、紫外線照射システム200(200F)の全体の概要図であり、同図(B)は、第1紫外線照射装置100Fの構成の一例を示す外観図、同図(C)および同図(D)は、第2紫外線照射装置100Gの構成の一例を示す外観図であり、同図(E)は、第2紫外線照射装置100Gの変形例を示す外観図である。 FIG. 28 is a schematic view of the ultraviolet irradiation system 200 (200F). FIG. (A) is an overall schematic view of the ultraviolet irradiation system 200 (200F), and FIG. (B) is an external view showing an example of the configuration of the first ultraviolet irradiation device 100F, FIG. FIG. (D) is an external view showing an example of the configuration of the second ultraviolet irradiation device 100G, and FIG. (E) is an external view showing a modified example of the second ultraviolet irradiation device 100G.
 同図(A)に示すように、紫外線照射システム200(200F)は、対象領域Sに対して所定の主波長を含む紫外線を出力可能な第1紫外線照射装置100Fと、対象領域S内の空気が通過する流路107Gと、第1紫外線照射装置100Fとは別体に設けられた第2紫外線照射装置100Gを有する。 As shown in FIG. 6A, the ultraviolet irradiation system 200 (200F) includes a first ultraviolet irradiation device 100F capable of outputting ultraviolet rays including a predetermined main wavelength with respect to the target region S, and air in the target region S. It has a flow path 107G through which the ultraviolet rays pass, and a second ultraviolet irradiation device 100G provided separately from the first ultraviolet irradiation device 100F.
 同図(B)に示すように、第1紫外線照射装置100Fは、第1紫外線発光手段101Fを有する。第1紫外線発光手段101Fは、例えば第1実施形態と同様の直管型の低圧水銀ランプLPであり、長手方向が起立状態となるように基材B(支持部)に取り付けられる。基材Bは例えば、第1紫外線発光手段101Fの背面部から側面部までを覆う略半円筒形状であり、脚部123が取り付けられる。すなわち第1紫外線照射装置100Fは、自立且つ移動可能に構成される。 As shown in FIG. 3B, the first ultraviolet irradiation device 100F has a first ultraviolet light emitting means 101F. The first ultraviolet light emitting means 101F is, for example, a straight tube type low-pressure mercury lamp LP similar to the first embodiment, and is attached to the base material B (support portion) so as to be in an upright state in the longitudinal direction. The base material B has, for example, a substantially semi-cylindrical shape that covers from the back surface portion to the side surface portion of the first ultraviolet light emitting means 101F, and the leg portion 123 is attached to the base material B. That is, the first ultraviolet irradiation device 100F is configured to be self-supporting and movable.
 第1紫外線照射装置100Fは、第1紫外線発光手段101Fの少なくとも一部を覆って紫外線の出射状態を変更可能な状態切替手段225を有する。状態切替手段225はこの例では、第1紫外線発光手段101Fに対して相対移動可能な可動体であり、具体的には例えば、開閉自在な扉部材や、角度調整可能なシェード(ルーバー)などである。状態切替手段(可動体)225は、第1紫外線発光手段101Fに対して可動(開閉)することで紫外線の出射方向や出射角度(出射領域の角度)を調整可能である。状態切替手段225を例えば全閉するとことで第1紫外線発光手段101Fその側面部および前面部が例えば略半円筒形状に覆われる。また状態切替手段225を開放(開口)することでその程度(開口角)に応じて第1紫外線発光手段101Fの側面部および前面部が部分的に露出する。状態切替手段225で覆われた部分は、紫外線の出射方向および出射量が規制され、開口(開放)部分から紫外線が発光される。なお、状態切替手段225は紫外線の出射状態を変更可能な構成であれば、図示の例に限らない。 The first ultraviolet irradiation device 100F has a state switching means 225 that can change the emission state of ultraviolet rays by covering at least a part of the first ultraviolet light emitting means 101F. In this example, the state switching means 225 is a movable body that can move relative to the first ultraviolet light emitting means 101F. Specifically, for example, a door member that can be opened and closed, a shade (louver) that can adjust the angle, and the like. is there. The state switching means (movable body) 225 can adjust the emission direction and emission angle (angle of the emission region) of ultraviolet rays by moving (opening and closing) with respect to the first ultraviolet light emitting means 101F. By closing the state switching means 225, for example, the first ultraviolet light emitting means 101F, the side surface portion and the front surface portion thereof are covered with, for example, a substantially semi-cylindrical shape. Further, by opening (opening) the state switching means 225, the side surface portion and the front surface portion of the first ultraviolet light emitting means 101F are partially exposed according to the degree (opening angle). In the portion covered with the state switching means 225, the emission direction and the emission amount of ultraviolet rays are regulated, and ultraviolet rays are emitted from the opening (open) portion. The state switching means 225 is not limited to the illustrated example as long as the state of emitting ultraviolet rays can be changed.
 本実施形態の第1紫外線照射装置100Fは、例えば、対象領域Sが無人の場合に(限り)動作するものであり、電源投入後は常時第1紫外線発光手段101Fの発光が継続し、対象領域Sに対して直接、紫外線を照射可能となる。そして、紫外線の照射方向および照射量は、状態切替手段225によりを制御可能である。つまり状態切替手段225は、紫外線の出射が規制される方向においては遮断手段105ともいえる。この例では、状態切替手段225は、紫外線の照射方向および/または照射角度を任意に設定・調整可能に構成される。状態切替手段225は一例としてその内面には紫外線反射手段250が設けられている(内面が鏡面250Aとなっている)。 The first ultraviolet irradiation device 100F of the present embodiment operates, for example, when the target area S is unmanned, and after the power is turned on, the first ultraviolet light emitting means 101F constantly emits light, and the target area S. Ultraviolet rays can be directly irradiated to S. The irradiation direction and irradiation amount of ultraviolet rays can be controlled by the state switching means 225. That is, the state switching means 225 can be said to be the blocking means 105 in the direction in which the emission of ultraviolet rays is restricted. In this example, the state switching means 225 is configured so that the irradiation direction and / or irradiation angle of ultraviolet rays can be arbitrarily set and adjusted. As an example, the state switching means 225 is provided with an ultraviolet reflecting means 250 on its inner surface (the inner surface is a mirror surface 250A).
 この第1紫外線照射装置100Fは、単独で対象領域Sの特定方向のみに紫外線を照射するように構成され、紫外線照射システム200Fはある1つの対象領域Sにおいて第1紫外線照射装置100Fを少なくとも1台配置する。より好適には、紫外線照射システム200Fはある1つの対象領域Sにおいて第1紫外線照射装置100Fを複数台、分散して(互いに離間して)配置する。複数の第1紫外線照射装置100Fを配置する場合、それぞれの紫外線の照射が障害物で遮られることがなく、多方向から対象領域Sの特に紫外線の照射をしたい領域(例えば、患者のベッドの位置など)に照射可能となるように、第1紫外線照射装置100Fの位置、およびそれぞれの状態切替手段225の態様が適宜調整される。 The first ultraviolet irradiation device 100F is configured to independently irradiate ultraviolet rays only in a specific direction of the target area S, and the ultraviolet irradiation system 200F has at least one first ultraviolet irradiation device 100F in a certain target area S. Deploy. More preferably, the ultraviolet irradiation system 200F arranges a plurality of first ultraviolet irradiation devices 100F in a certain target area S in a dispersed manner (separated from each other). When a plurality of first ultraviolet irradiation devices 100F are arranged, the irradiation of each ultraviolet ray is not blocked by obstacles, and the target area S from multiple directions, particularly the area where the ultraviolet ray is to be irradiated (for example, the position of the patient's bed). Etc.), and the position of the first ultraviolet irradiation device 100F and the mode of each state switching means 225 are appropriately adjusted.
 同図(A)では一例として、略矩形状の一の対象領域S(例えば室内)の四隅に、4台の第1紫外線照射装置100Fを配置している。第1紫外線照射装置100Fは、それぞれ例えば1本の直管型の低圧水銀ランプLPが起立状態(縦型)で支持され、スリム且つ軽量な構成である。したがって、配置の変更が容易であり、また複数台を分散して配置した場合であっても、邪魔にならずに小さいスペースに配置できる。また持ち手129などを設けるとハンドリング性が向上して好ましい。さらに転倒防止手段を設けるとさらによい。 In the figure (A), as an example, four first ultraviolet irradiation devices 100F are arranged at four corners of a substantially rectangular target area S (for example, indoors). The first ultraviolet irradiation device 100F has a slim and lightweight configuration in which, for example, one straight tube type low-pressure mercury lamp LP is supported in an upright state (vertical type). Therefore, the arrangement can be easily changed, and even when a plurality of units are distributed and arranged, they can be arranged in a small space without getting in the way. Further, it is preferable to provide a handle 129 or the like because the handleability is improved. It is even better to provide a fall prevention means.
 なお、この例では、第1紫外線発光手段101Fが1本の低圧水銀ランプLPで構成される場合を例示するが、例えば複数本の低圧水銀ランプLPをその長手方向が直線上に揃うように配置してもよい。また、点光源であるUV-LEDの場合には、複数個(の点光源)を線状に配置してもよい。 In this example, the case where the first ultraviolet light emitting means 101F is composed of one low-pressure mercury lamp LP is illustrated. For example, a plurality of low-pressure mercury lamp LPs are arranged so that their longitudinal directions are aligned on a straight line. You may. Further, in the case of UV-LED which is a point light source, a plurality of (point light sources) may be arranged linearly.
 また、第1紫外線照射装置100Fは通信手段126と各種センサを有する。各種センサには、対象領域Sが有人であることを検知する人感センサ128、および同一対象領域Sに配置される他の第1紫外線照射装置100Fの状態(例えば、紫外線の出射方向など)を検知する状態検出センサ127が少なくとも含まれる。 Further, the first ultraviolet irradiation device 100F has a communication means 126 and various sensors. The various sensors include a motion sensor 128 that detects that the target area S is manned, and the state of another first ultraviolet irradiation device 100F arranged in the same target area S (for example, the emission direction of ultraviolet rays). At least the state detection sensor 127 to detect is included.
 さらに、図示は省略するが、第1紫外線照射装置100Fには操作手段(タッチパネル、操作ボタンなど)や、タイマーなども設けられる。さらに空気を循環させるファンなどが設けられてもよい。さらに、第1紫外線照射装置100は、図示のような据え置き方式に限らず、自走式であってもよい。 Further, although not shown, the first ultraviolet irradiation device 100F is also provided with operating means (touch panel, operation buttons, etc.), a timer, and the like. Further, a fan or the like for circulating air may be provided. Further, the first ultraviolet irradiation device 100 is not limited to the stationary type as shown in the figure, and may be a self-propelled type.
 紫外線照射システム200Fは、さらに第2紫外線照射装置100Gを有する(同図(A))。同図(C)および同図(D)を参照して、第2紫外線照射装置100Gは、対象領域S内の空気が通過する流路137と、第1紫外線発光手段101Fとは別体に設けられて流路137内を通過する空気に対して所定の主波長を含む紫外線を出力可能な第2紫外線発光手段101Gを有する。第2紫外線発光手段101Gは、例えば、第1実施形態と同様の直管型の低圧水銀ランプLPである。すなわち、第2紫外線照射装置100Gは、第1紫外線照射装置100Fとは別体であり、この例では対象領域Sの天井付近に設置される。 The ultraviolet irradiation system 200F further has a second ultraviolet irradiation device 100G (Fig. (A)). With reference to FIGS. (C) and (D), the second ultraviolet irradiation device 100G is provided separately from the flow path 137 through which the air in the target region S passes and the first ultraviolet light emitting means 101F. It has a second ultraviolet light emitting means 101G capable of outputting ultraviolet rays including a predetermined main wavelength to air passing through the flow path 137. The second ultraviolet light emitting means 101G is, for example, a straight tube type low pressure mercury lamp LP similar to the first embodiment. That is, the second ultraviolet irradiation device 100G is separate from the first ultraviolet irradiation device 100F, and in this example, it is installed near the ceiling of the target area S.
 一例として、第2紫外線照射装置100Gは、第2紫外線発光手段101Gを(例えば、1本)内蔵する筒状の流路137を有する。第2紫外線発光手段101Gは例えば、第2紫外線照射装置100Gの動作時(電源投入時)には常時紫外線を照射する。流路137は例えば常時、当該紫外線が外部に漏れないように遮断する材質により構成される。 As an example, the second ultraviolet irradiation device 100G has a tubular flow path 137 containing (for example, one) second ultraviolet light emitting means 101G. For example, the second ultraviolet light emitting means 101G constantly irradiates ultraviolet rays when the second ultraviolet irradiation device 100G is in operation (when the power is turned on). The flow path 137 is made of, for example, a material that blocks the ultraviolet rays from leaking to the outside at all times.
 流路137の一端(流入口IN)には例えばファン302が設けられ、他端(流出口OUT)にはバグフィルタ300が設けられる。流路137内には流入口INから流出口OUTに向かい同図(D)の矢印の方向に対象領域S中の空気が流通する。そしてその流通途中において、第2紫外線発光手段101Gから紫外線を照射することで、当該空気に含まれる菌を不活性化する。さらに、バグフィルタ300によって物理的な粒子を捕捉し、清浄な空気を排出する。つまり、第2紫外線照射装置100Gは、第1実施形態の流路107と同様に機能し、汚染空気を吸引し、清浄化して排出する循環殺菌を行う。バグフィルタ300は、第4実施形態で説明したものと同様であり、中性能エアフィルタ以上の性能を有するものとする。ただし、本実施形態では流路137に空気を通過させながら浮遊菌を紫外線によって不活性化する循環殺菌を行う。したがって、循環殺菌を効率よく行うために、フィルタは空気の流通が阻害されない程度(低圧損失)のメッシュサイズとすることが望ましく、清浄度とのバランスで適宜選択する。また、フィルタの材料に光による有機物分解の触媒効果を持つ材料(例えば、銅、銀、酸化チタンなど)が混在又は付着・充填する構成としてもよい。 For example, a fan 302 is provided at one end (inflow port IN) of the flow path 137, and a bug filter 300 is provided at the other end (outlet outlet). Air in the target region S flows in the flow path 137 from the inflow port IN to the outflow port OUT in the direction of the arrow in the figure (D). Then, in the middle of the distribution, the bacteria contained in the air are inactivated by irradiating the ultraviolet rays from the second ultraviolet light emitting means 101G. In addition, the bug filter 300 captures physical particles and expels clean air. That is, the second ultraviolet irradiation device 100G functions in the same manner as the flow path 107 of the first embodiment, and performs circulation sterilization that sucks contaminated air, purifies it, and discharges it. The bug filter 300 is the same as that described in the fourth embodiment, and has a performance higher than that of the medium performance air filter. However, in the present embodiment, circulation sterilization is performed in which the airborne bacteria are inactivated by ultraviolet rays while passing air through the flow path 137. Therefore, in order to efficiently perform circulation sterilization, it is desirable that the filter has a mesh size that does not hinder the flow of air (low pressure loss), and is appropriately selected in balance with cleanliness. Further, the filter material may be mixed with, adhered to or filled with a material having a catalytic effect of decomposition of organic substances by light (for example, copper, silver, titanium oxide, etc.).
 同図(C)に示すように、流路137の一端(入口端)は、例えば、ダクト130の一端に接続される。第2紫外線照射装置100Gはは例えば、対象領域S中央の天井付近に設けると、清浄な空気が対象領域S全体に供給されるので好ましい。これに対し、患者の周囲(例えば、ベッドなどの付近)は、空気の汚染度が最も高く、汚染された空気はあまり拡散しないようにすることが望ましい。そこで、患者の近傍(例えばベッドの頭部付近)に例えばファン付きの吸気口132を設け、吸気口132と第2紫外線照射装置100Gとをダクト130により接続する。これにより、患者付近の汚染空気を吸気口132およびダクト130を介して吸い込み、天井付近において第2紫外線照射装置100G内で清浄化して排出する。これにより、正常な空気を対象領域Sに満遍なく拡散することができ、効率よく循環殺菌を行うことができる。 As shown in FIG. 6C, one end (inlet end) of the flow path 137 is connected to, for example, one end of the duct 130. It is preferable that the second ultraviolet irradiation device 100G is provided near the ceiling in the center of the target area S, for example, because clean air is supplied to the entire target area S. On the other hand, it is desirable that the air pollution degree is highest around the patient (for example, near the bed), and the polluted air is not diffused so much. Therefore, for example, an intake port 132 with a fan is provided near the patient (for example, near the head of the bed), and the intake port 132 and the second ultraviolet irradiation device 100G are connected by a duct 130. As a result, the contaminated air in the vicinity of the patient is sucked in through the intake port 132 and the duct 130, and is cleaned and discharged in the second ultraviolet irradiation device 100G near the ceiling. As a result, normal air can be evenly diffused in the target region S, and circulation sterilization can be performed efficiently.
 このように本実施形態の紫外線照射システム200Fは、対象領域Sに対して直接的に紫外線を照射する第1紫外線照射装置100Fと、流路137内を通過する(汚染された)空気に対して紫外線を照射し清浄化する第2紫外線照射装置100Gとを併用するものである。以下、対象領域Sに対して直接的に紫外線を照射する装置(ここでは第1紫外線照射装置100F)を、直接照射型(直接殺菌型)の紫外線照射装置といい、流路137内に(汚染された)空気を取り込み、紫外線を照射し清浄化して排出する、すなわち循環殺菌を行う装置(ここでは、第2紫外線照射装置100G)を間接照射型(関節殺菌型)の紫外線照射装置という場合がある。 As described above, the ultraviolet irradiation system 200F of the present embodiment has the first ultraviolet irradiation device 100F that directly irradiates the target region S with ultraviolet rays, and the (contaminated) air passing through the flow path 137. It is used in combination with a second ultraviolet irradiation device 100G that irradiates and purifies ultraviolet rays. Hereinafter, a device that directly irradiates the target area S with ultraviolet rays (here, the first ultraviolet irradiation device 100F) is referred to as a direct irradiation type (direct sterilization type) ultraviolet irradiation device, and is contained in the flow path 137 (contamination). An indirect irradiation type (joint sterilization type) ultraviolet irradiation device may be used to refer to a device that takes in (the) air, irradiates it with ultraviolet rays, purifies it, and discharges it, that is, circulates sterilization (here, the second ultraviolet irradiation device 100G). is there.
 紫外線照射システム200Fの動作の一例を説明する。第1紫外線照射装置(直接照射型紫外線照射装置)100Fは、原則、対象領域Sが無人の場合に動作し、対象領域Sを効率的に殺菌する。例えば、対象領域Sが病棟の部屋の場合には退院後などに、あるいは手術室の場合には手術前後などに集中的に(例えば、時間にして30分間など)紫外線を直接照射することで、短時間で効率的に殺菌を行う。対象領域S内の菌(付着菌、浮遊菌など)の殺菌効果(生存率を示すカーブ)と紫外線の照度(累積照度)の間には所定の相関があり、対象領域S内の菌が所定のレベルまで低下する累積照度に達した場合に直接照射を停止する。 An example of the operation of the ultraviolet irradiation system 200F will be described. The first ultraviolet irradiation device (direct irradiation type ultraviolet irradiation device) 100F operates in principle when the target area S is unmanned, and efficiently sterilizes the target area S. For example, if the target area S is a room in a ward, it is possible to directly irradiate ultraviolet rays after discharge, or if it is an operating room, before and after surgery (for example, 30 minutes in time). Efficient sterilization in a short time. There is a predetermined correlation between the bactericidal effect (curve showing survival rate) of bacteria (adherent bacteria, airborne bacteria, etc.) in the target area S and the illuminance of ultraviolet rays (cumulative illuminance), and the bacteria in the target area S are predetermined. Direct irradiation is stopped when the cumulative illuminance drops to the level of.
 第1紫外線照射装置100Fは、人感センサ128により人の存在を検知した場合にその動作を停止する。また、それぞれの第1紫外線照射装置100Fは、状態検出センサ127として少なくとも紫外線の受光センサを有する。この受光センサ127により、自身以外の他の第1紫外線照射装置100Fから自身に到達する紫外線の状態を検知し、通信手段126を介するなどして駆動制御手段109にフィードバックする。 The first ultraviolet irradiation device 100F stops its operation when the presence of a person is detected by the motion sensor 128. Further, each first ultraviolet irradiation device 100F has at least an ultraviolet light receiving sensor as a state detection sensor 127. The light receiving sensor 127 detects the state of ultraviolet rays reaching itself from the first ultraviolet irradiation device 100F other than itself, and feeds it back to the drive control means 109 via the communication means 126 or the like.
 なお、この例の第1紫外線照射装置100Fは流路107を有さないが、第1実施形態と同様にカバー手段103によって流路107を形成可能としてもよい(間接照射型紫外線照射装置を兼用してもよい)。しかしながら、本実施形態の第1紫外線照射装置100Fは、軽量・スリム・簡素な構成とすることで任意の位置に容易に移動が可能になる。したがって、第1紫外線照射装置100Fは、カバー手段103などを備えず、同図(B)に示すような直接照射型紫外線照射装置として必要最低限の構成にするとよい。1台の第1紫外線照射装置100Fは例えば、力の弱い成人(例えば老人や女性など)であっても容易に持ち運びが可能な重量、寸法としまたハンドリングを容易にする持ち手129などを有すると望ましい。 Although the first ultraviolet irradiation device 100F of this example does not have the flow path 107, the flow path 107 may be formed by the cover means 103 as in the first embodiment (also used as an indirect irradiation type ultraviolet irradiation device). May be). However, the first ultraviolet irradiation device 100F of the present embodiment can be easily moved to an arbitrary position by having a lightweight, slim, and simple configuration. Therefore, the first ultraviolet irradiation device 100F may not be provided with the covering means 103 or the like, and may have the minimum necessary configuration as a direct irradiation type ultraviolet irradiation device as shown in FIG. One first ultraviolet irradiation device 100F has, for example, a weight and size that can be easily carried even by a weak adult (for example, an old man or a woman) and a handle 129 that facilitates handling. desirable.
 第2紫外線照射装置(間接照射型紫外線照射装置)100Gは、対象領域Sが無人/有人に限らず、第1紫外線照射装置100Fとは独立して常時動作し、対象領域Sの空気を浄化する循環殺菌を行う。つまり第1紫外線照射装置100Fの動作開始と同時に第2紫外線照射装置100Gも動作を開始させ、第1紫外線照射装置100Fからの累積照度が所定の値に達して第1紫外線照射装置100Fが動作を停止した後も引き続き、第2紫外線照射装置100Gの動作を継続する。 The second ultraviolet irradiation device (indirect irradiation type ultraviolet irradiation device) 100G is not limited to the unmanned / manned target area S, and always operates independently of the first ultraviolet irradiation device 100F to purify the air in the target area S. Perform circulation sterilization. That is, at the same time as the operation of the first ultraviolet irradiation device 100F is started, the second ultraviolet irradiation device 100G is also started to operate, the cumulative illuminance from the first ultraviolet irradiation device 100F reaches a predetermined value, and the first ultraviolet irradiation device 100F operates. Even after the stop, the operation of the second ultraviolet irradiation device 100G is continued.
 例えば、病棟などに入院患者が存在する場合、あるいは手術中の手術室内等など対象領域Sが有人で、第1紫外線照射装置100Fが非動作であっても、第2紫外線照射装置100Gにより、患者の呼気に含まれる菌や、術者から発生するミストに吸着した菌あるいは、部屋に出入りする作業従事者に付随する浮遊菌を効率的に除去することができる。 For example, if there is an inpatient in a ward or the like, or if the target area S is manned such as in an operating room during surgery and the first ultraviolet irradiation device 100F is inoperable, the patient can be affected by the second ultraviolet irradiation device 100G. It is possible to efficiently remove the bacteria contained in the exhaled breath, the bacteria adsorbed on the mist generated by the surgeon, and the airborne bacteria attached to the workers who enter and leave the room.
 なお、第2紫外線照射装置100Gの流路137は例えば対象領域Sに臨む面を開放可能に構成し、無人の場合などには対象領域Sに対して紫外線を直接照射可能にしてもよい。 Note that the flow path 137 of the second ultraviolet irradiation device 100G may be configured so that the surface facing the target area S can be opened, and in the case of an unmanned person, the target area S may be directly irradiated with ultraviolet rays.
 また、第2紫外線照射装置100Gのバグフィルタ300は、例えば、図27(B)に破線で示すように、(特に未使用時において)第2紫外線照射装置100Gと天井の間などに収容可能としてもよい。また、バグフィルタ300を設けなくてもよいが、バグフィルタ300を備えた方が殺菌能力が高まり、望ましい。第2紫外線照射装置100Gは例えばダクト130の伸縮、変形により、その設置位置を移動可能に構成してもよい。また、第2紫外線照射装置100Gを複数設けてもよい。またダクト130の伸縮、変形により第2紫外線照射装置100Gおよび/または吸気口132の位置を変更可能としてもよい。このようにすることで、ダクト130の伸縮、変形により対象領域S内で望ましい循環殺菌の気流を創出可能となる。 Further, the bug filter 300 of the second ultraviolet irradiation device 100G can be accommodated between the second ultraviolet irradiation device 100G and the ceiling (especially when not in use), as shown by a broken line in FIG. 27 (B). May be good. Further, although it is not necessary to provide the bug filter 300, it is preferable to provide the bug filter 300 because the sterilizing ability is enhanced. The second ultraviolet irradiation device 100G may be configured so that its installation position can be moved by, for example, expansion and contraction or deformation of the duct 130. Further, a plurality of second ultraviolet irradiation devices 100G may be provided. Further, the positions of the second ultraviolet irradiation device 100G and / or the intake port 132 may be changed by expanding / contracting or deforming the duct 130. By doing so, it is possible to create a desirable circulation sterilization air flow in the target region S by expanding and contracting and deforming the duct 130.
 また、同図(E)に示すように第2紫外線照射装置100Gは、第1紫外線照射装置100Fと同様に脚部223を設けるなどして自立可能(可搬型)に構成し、吸気口132やダクト130を介さず、直接流入口INから汚染空気を吸い込み、流出口OUTからバグフィルタ300を介して清浄化された空気を排出するようにしてもよい。このようにすることで患者近傍の例えば床面等に載置・移動可能となる。また第2紫外線照射装置100Gを自走式にしてもよい。 Further, as shown in FIG. 3E, the second ultraviolet irradiation device 100G is configured to be self-supporting (portable) by providing a leg portion 223 like the first ultraviolet irradiation device 100F, and the intake port 132 and the like. Contaminated air may be sucked in directly from the inlet IN and discharged from the outlet OUT through the bag filter 300 without passing through the duct 130. By doing so, it can be placed and moved on a floor surface or the like near the patient. Further, the second ultraviolet irradiation device 100G may be self-propelled.
 なお、第4実施形態の図27(A)に示した流路(ダクト)130(およびバグフィルタ300)に代えて(または加えて)、第2紫外線照射装置100Gを設けてもよい。 A second ultraviolet irradiation device 100G may be provided instead of (or in addition to) the flow path (duct) 130 (and the bug filter 300) shown in FIG. 27 (A) of the fourth embodiment.
 図29を参照して、紫外線照射システム200Fにおける照射状態推定手段202について説明する。同図(A)は、紫外線照射システム200Fのシステム構成の一部(主に照射状態推定手段202)を抜き出して示す概略ブロック図であり、同図(B)は紫外線照射システム200Fの上面概略図、同図(B)は、照射状態推定手段202の推定結果の表示の一例である。 The irradiation state estimation means 202 in the ultraviolet irradiation system 200F will be described with reference to FIG. 29. FIG. (A) is a schematic block diagram showing a part of the system configuration of the ultraviolet irradiation system 200F (mainly the irradiation state estimation means 202) extracted, and FIG. 3B is a schematic top view of the ultraviolet irradiation system 200F. , FIG. 3B is an example of displaying the estimation result of the irradiation state estimation means 202.
 同図(A)を参照して、紫外線照射システム200Fは、システムを統括して制御する情報処理装置201を有する。情報処理装置201は一例として、パーソナルコンピュータ(PC)や携帯端末(スマートフォンやタブレット端末など)である。情報処理装置201は、駆動制御手段109は、通信手段126を介するなどして第1紫外線照射装置100Fおよび第2紫外線照射装置100Gの駆動制御を行う。また、第1紫外線照射装置100Fの人感センサ128および状態検出センサ127の検知結果は駆動制御手段109による各種制御にフィードバックされる。なお、ここでは駆動制御手段109は、情報処理装置201に含まれる場合を例示している、駆動制御手段109の一部または全部の機能が各紫外線照射装置100Fに内蔵されてもよい。 With reference to FIG. 6A, the ultraviolet irradiation system 200F has an information processing device 201 that controls the system in an integrated manner. The information processing device 201 is, for example, a personal computer (PC) or a mobile terminal (smartphone, tablet terminal, etc.). In the information processing device 201, the drive control means 109 controls the drive of the first ultraviolet irradiation device 100F and the second ultraviolet irradiation device 100G via the communication means 126 or the like. Further, the detection results of the motion sensor 128 and the state detection sensor 127 of the first ultraviolet irradiation device 100F are fed back to various controls by the drive control means 109. Here, the drive control means 109 may have a part or all of the functions of the drive control means 109 built in each ultraviolet irradiation device 100F, which illustrates the case where the drive control means 109 is included in the information processing device 201.
 紫外線照射システム200Fは、第1紫外線照射装置100Fから出力された紫外線の照射状態に基づき、対象領域S内の清浄の程度を推定する照射状態推定手段202を備える。照射状態推定手段202は、状態検出センサ(受光センサ)127や駆動制御手段109と協動し、可視できない紫外光の照射状態を客観的に認識(視認)可能にする手段であり、例えば、紫外線照射システム200Fの情報処理装置201にハードウェア的および/またはソフトウエア的に内蔵された機能である。 The ultraviolet irradiation system 200F includes an irradiation state estimation means 202 that estimates the degree of cleanliness in the target area S based on the irradiation state of ultraviolet rays output from the first ultraviolet irradiation device 100F. The irradiation state estimation means 202 cooperates with the state detection sensor (light receiving sensor) 127 and the drive control means 109 to objectively recognize (visually recognize) the irradiation state of invisible ultraviolet light, for example, ultraviolet rays. This is a function built into the information processing device 201 of the irradiation system 200F in terms of hardware and / or software.
 既に述べたが紫外線照射システム200Fは一の対象領域S内に複数台(例えば、少なくとも3台)の第1紫外線発光装置(直接照射型紫外線照射装置)100Fを配置する。そして複数の第1紫外線発光装置100Fはいずれも、相対する(対応する)少なくとも1台の他の第1紫外線発光装置100Fが照射する紫外線の検知(例えば、照度の検知)が可能な状態検出センサ(受光センサ)127と、受光センサ127の検知結果を送受信可能な通信手段126を有する。また、不図示の照度計も備える。 As already described, in the ultraviolet irradiation system 200F, a plurality of (for example, at least three) first ultraviolet light emitting devices (direct irradiation type ultraviolet irradiation devices) 100F are arranged in one target area S. Each of the plurality of first ultraviolet light emitting devices 100F is a state detection sensor capable of detecting ultraviolet rays (for example, detecting illuminance) emitted by at least one other (corresponding) other first ultraviolet light emitting device 100F. It has (light receiving sensor) 127 and communication means 126 capable of transmitting and receiving the detection result of the light receiving sensor 127. It also has an illuminometer (not shown).
 受光センサ127の検知結果は通信手段126手段を介して駆動制御手段109(照射状態推定手段202)に送信される。駆動制御手段109は、照射状態推定手段202により、各第1紫外線発光装置100Fの検知結果から、対象領域S内において最も汚染度が高く、確実且つ高レベルの殺菌が要求される領域(関心領域S0)に対する紫外線の照度を推定し、可視化(視覚化)して情報処理装置201の出力手段203に出力する。出力手段203は一例として表示手段である。 The detection result of the light receiving sensor 127 is transmitted to the drive control means 109 (irradiation state estimation means 202) via the communication means 126 means. From the detection result of each first ultraviolet light emitting device 100F by the irradiation state estimation means 202, the drive control means 109 has the highest degree of contamination in the target area S and is required to have a reliable and high level of sterilization (area of interest). The illuminance of ultraviolet rays with respect to S0) is estimated, visualized (visualized), and output to the output means 203 of the information processing apparatus 201. The output means 203 is a display means as an example.
 例えば、同図(B)に示すように或る第1紫外線照射装置100Fと他の第1紫外線照射装置100Fとが対象領域Sの対角線上に配置されるなどし、互いに自身の方向に紫外線が照射されるように構成されている場合において、一方の第1紫外線照射装置100Fの受光センサ127が紫外線の照射を検知できない場合、他方の第1紫外線照射装置100Fの照射が行われていない、またはその照射方向が著しく不適切な方向になっている、あるいは障害物の存在等により紫外線非到達領域が生じている、などの可能性が疑われる。照射状態推定手段202は受光センサ127の検知結果により各第1紫外線照射装置100Fの紫外線の照射状態を適宜把握(モニタリング)し、現状の照射状態を推定する。照射状態推定手段202はまたその推定結果を例えば同図(C)に示すように可視化して表示手段203に出力する。表示手段203による表示に加えて(代えて)音声等による出力(報知)でもよい。また、照射状態推定手段202はこの推定結果を所定の記憶手段204に記録する。 For example, as shown in FIG. 3B, a certain first ultraviolet irradiation device 100F and another first ultraviolet irradiation device 100F are arranged on the diagonal line of the target region S, and ultraviolet rays are emitted in their own directions. In the case where it is configured to be irradiated, if the light receiving sensor 127 of one first ultraviolet irradiation device 100F cannot detect the irradiation of ultraviolet rays, the other first ultraviolet irradiation device 100F is not irradiated or is not irradiated. It is suspected that the irradiation direction is extremely inappropriate, or that an ultraviolet non-reachable region is generated due to the presence of obstacles or the like. The irradiation state estimation means 202 appropriately grasps (monitors) the ultraviolet irradiation state of each first ultraviolet irradiation device 100F from the detection result of the light receiving sensor 127, and estimates the current irradiation state. The irradiation state estimation means 202 also visualizes the estimation result as shown in FIG. 3C, for example, and outputs the estimation result to the display means 203. In addition to the display by the display means 203, an output (notification) by voice or the like may be used (instead of). Further, the irradiation state estimation means 202 records the estimation result in the predetermined storage means 204.
 同図(C)、同図(D)は、照射状態推定手段202によって推定され、表示手段203に表示された現状の照射状態の一例である。ここでは4台の第1紫外線照射装置100Fを、矩形状の対象領域Sの四隅に配置した場合の照射状態の推定例であり、例えば、第1紫外線照射装置100Fはそれぞれ、第1紫外線発光手段101Fを中心として90度の広がりの照射角度で照射するように設定されているとする。同図においてハッチングが紫外線の照射される領域を示しており有効エリアとなる。また、ハッチングの重なり部分(ここでは中央の領域)が紫外線の重なりにより照度が最も高いと推定される領域である。照射状態推定手段202は例えば、紫外線の重なりにより照度が最も高いと推定される領域(ハッチングの重なりの領域)は、有効エリアとはその表示態様を変更するなどして、表示する。 FIGS. (C) and (D) are examples of the current irradiation state estimated by the irradiation state estimation means 202 and displayed on the display means 203. Here, it is an estimation example of the irradiation state when four first ultraviolet irradiation devices 100F are arranged at the four corners of the rectangular target area S. For example, each of the first ultraviolet irradiation devices 100F is a first ultraviolet light emitting means. It is assumed that the irradiation is set at an irradiation angle of 90 degrees around 101F. In the figure, the hatching shows the area irradiated with ultraviolet rays, which is an effective area. Further, the overlapping portion of the hatching (here, the central region) is the region where the illuminance is estimated to be the highest due to the overlapping of ultraviolet rays. The irradiation state estimating means 202 displays, for example, a region estimated to have the highest illuminance due to the overlap of ultraviolet rays (a region where hatching overlaps) by changing the display mode thereof from the effective area.
 また、同図(D)に示すように、有効エリアと、例えば設備EQの背後などの紫外線非到達領域とを異なる表示態様として可視化すると望ましい。この例では有効エリアを破線で示し、紫外線非到達領域を「要チェックエリア」として×印で示している。 Further, as shown in FIG. 6D, it is desirable to visualize the effective area and the ultraviolet non-reachable area such as behind the equipment EQ as different display modes. In this example, the effective area is indicated by a broken line, and the ultraviolet non-reachable area is indicated by a cross as a "check area required".
 照射状態推定手段202は、この場合、3つ以上の点(少なくとも3台)から照射される紫外線の照度(強度)が感知できれば、紫外線の距離による減衰の程度、および照射の広がり(状態切替手段225の開口角による広がり)の減衰の程度から照度(照射強度)推定できる。 In this case, if the irradiation state estimating means 202 can detect the illuminance (intensity) of the ultraviolet rays emitted from three or more points (at least three units), the degree of attenuation due to the distance of the ultraviolet rays and the spread of irradiation (state switching means). The illuminance (irradiation intensity) can be estimated from the degree of attenuation (spreading due to the opening angle of 225).
 また、照射状態推定手段202は推定結果に応じて、適切な照射が行われるようにそれぞれ第1紫外線照射装置100Fの照射条件(照射角度、照射方向(照射位置)あるいは照度など)を算出する。駆動制御手段109は算出された照射条件に基づき各第1紫外線照射装置100Fの紫外線の照射状態を自動で調整するよう制御する。 Further, the irradiation state estimation means 202 calculates the irradiation conditions (irradiation angle, irradiation direction (irradiation position), illuminance, etc.) of the first ultraviolet irradiation device 100F, respectively, so that appropriate irradiation is performed according to the estimation result. The drive control means 109 controls to automatically adjust the ultraviolet irradiation state of each first ultraviolet irradiation device 100F based on the calculated irradiation conditions.
 本実施形態では、対象領域Sに対して強力に紫外線の直接照射を行う第1紫外線照射装置100Fを小型・軽量化するとともに複数、分散して任意の位置に配置できるので、紫外線の照射方向の自由度を高めることができる。また、複数の第1紫外線照射装置100Fが相互に、紫外線の照射状態を検知し、駆動制御手段109にフィードバックして照射状態を制御可能であるので、紫外線が照射されない領域を極力低減でき、また、対象領域Sのうち最も汚染の状態が高い領域(関心領域S0)への紫外線の照射を略全方向から行うことが可能になる。これにより効率的な殺菌処理が可能となる。なお、対象領域Sおよび関心領域S0として適切な状態を維持するために、駆動制御手段109は複数の第1紫外線照射装置100Fによる紫外線の照射条件をそれぞれ個別に(独立して)制御可能な構成にするとよい。 In the present embodiment, the first ultraviolet irradiation device 100F that strongly directly irradiates the target region S with ultraviolet rays is made smaller and lighter, and a plurality of first ultraviolet irradiation devices 100F can be dispersed and arranged at arbitrary positions. The degree of freedom can be increased. Further, since the plurality of first ultraviolet irradiation devices 100F can mutually detect the irradiation state of ultraviolet rays and feed back to the drive control means 109 to control the irradiation state, the region not irradiated with ultraviolet rays can be reduced as much as possible. , It becomes possible to irradiate the region (region of interest S0) with the highest pollution state in the target region S with ultraviolet rays from substantially all directions. This enables efficient sterilization treatment. In addition, in order to maintain an appropriate state as the target area S and the area of interest S0, the drive control means 109 has a configuration in which the irradiation conditions of ultraviolet rays by the plurality of first ultraviolet irradiation devices 100F can be individually (independently) controlled. It is good to set it to.
 また、照射状態を視覚化できるので、対象領域S(特に関心領域S0)の照射の程度の把握が容易となる。照射状態の視覚化により例えば、紫外線の照射領域の重なりの程度に基づき、少なくとも関心領域S0においては照度が効果的な殺菌が可能な基準値(殺菌管理に必要な値)を満たしている(と推定される)ことなどが容易に把握可能となる。これにより、紫外線照射システム200Fの信頼度を高めることができる。 Further, since the irradiation state can be visualized, it becomes easy to grasp the degree of irradiation in the target area S (particularly the area of interest S0). By visualizing the irradiation state, for example, based on the degree of overlap of the ultraviolet irradiation regions, the illuminance at least in the region of interest S0 satisfies the reference value (value required for sterilization management) capable of effective sterilization (and (Estimated) etc. can be easily grasped. This makes it possible to increase the reliability of the ultraviolet irradiation system 200F.
 また、例えば、意図しない障害物の発生などで第1紫外線照射装置100Fの位置自体が良好でなくなり、駆動制御手段109による照射状態の自動制御では改善が不十分な場合などにおいて、視覚化された照射状態に基づき、人手により適宜の位置に第1紫外線照射装置100Fの移動を行うことも可能となる(第1紫外線照射装置100Fの動作は停止して行う)。 Further, for example, the position itself of the first ultraviolet irradiation device 100F becomes unfavorable due to the occurrence of an unintended obstacle, and the improvement is insufficient by the automatic control of the irradiation state by the drive control means 109. It is also possible to manually move the first ultraviolet irradiation device 100F to an appropriate position based on the irradiation state (the operation of the first ultraviolet irradiation device 100F is stopped).
 図30は、第5実施形態の他の例を説明する概要図である。同図に示すように対象領域S内には、包囲手段260を配置してもよい。包囲手段260は例えば、ブース、テント、カプセルなどであり、吸気部260Iおよび排気部260Oを除き、所定空間を立体的に覆うことが可能に構成されている。この例では、包囲手段260の下端部に吸気部260Iが設けられている。また、第2紫外線照射装置100Gに接続する吸気口132とこれに接続するダクト130の一部は包囲手段260の内部にあり、ダクト130の残部と第2紫外線照射装置100Gは包囲手段260の外部にある。すなわち、この例では、吸気口132、ダクト130および第2紫外線照射装置100Gが、包囲手段260内の汚染空気を包囲手段260外に排出する排気部260Oとなる。吸気部260Iからの流入量と排気部260Oからの排出量を適宜調整することで、包囲手段260の内部を陰圧または陽圧に制御することができる。 FIG. 30 is a schematic diagram illustrating another example of the fifth embodiment. As shown in the figure, the surrounding means 260 may be arranged in the target area S. The surrounding means 260 is, for example, a booth, a tent, a capsule, or the like, and is configured to be able to three-dimensionally cover a predetermined space except for the intake unit 260I and the exhaust unit 260O. In this example, the intake unit 260I is provided at the lower end of the surrounding means 260. Further, the intake port 132 connected to the second ultraviolet irradiation device 100G and a part of the duct 130 connected to the intake port 132 are inside the surrounding means 260, and the rest of the duct 130 and the second ultraviolet irradiation device 100G are outside the surrounding means 260. It is in. That is, in this example, the intake port 132, the duct 130, and the second ultraviolet irradiation device 100G serve as an exhaust unit 260O that discharges the contaminated air in the surrounding means 260 to the outside of the surrounding means 260. By appropriately adjusting the inflow amount from the intake unit 260I and the exhaust amount from the exhaust unit 260O, the inside of the surrounding means 260 can be controlled to a negative pressure or a positive pressure.
 この構成では例えば、包囲手段260は、第1紫外線照射装置100Fから包囲手段260に向かって照射される紫外線を、包囲手段260の内部に透過しないように遮断する材料で構成するとよい。例えば、患者を陰圧下または陽圧下で管理する必要がある場合、包囲手段260の内部に収容する。包囲手段260内の空気は吸気部260Iから取り込み、吸気口132、ダクト130および第2紫外線照射装置100Gを介して殺菌および浄化して外部に排出する。一方で、医療従事者の動線となる包囲手段260の外部の領域についても殺菌が必要となるが、こちらは一般的に無人である時間の方が有人である時間よりも長い。つまり、包囲手段260を紫外線遮断材料で構成する、あるいは包囲手段260に重ねて上述の実施形態の遮断手段105(例えば常時紫外線を遮断する遮断手段)を設けることにより、その内部に収容された患者を保護しつつも、医療従事者が無人の時間帯に動線となる包囲手段260の外部を第1紫外線照射装置100Fからの紫外線の直接照射によって効率的に殺菌を行うことができる。 In this configuration, for example, the siege means 260 may be composed of a material that blocks ultraviolet rays radiated from the first ultraviolet irradiation device 100F toward the siege means 260 so as not to pass through the inside of the siege means 260. For example, if the patient needs to be managed under negative or positive pressure, it is housed inside the siege means 260. The air in the surrounding means 260 is taken in from the intake unit 260I, sterilized and purified through the intake port 132, the duct 130, and the second ultraviolet irradiation device 100G, and discharged to the outside. On the other hand, the area outside the siege means 260, which is the flow line of the medical staff, also needs to be sterilized, but in general, the unmanned time is longer than the manned time. That is, the patient is housed inside the siege means 260 by forming the siege means 260 with an ultraviolet blocking material or by superimposing the siege means 260 on the blocking means 105 of the above-described embodiment (for example, a blocking means that constantly blocks ultraviolet rays). The outside of the siege means 260, which is a movement line during unmanned hours, can be efficiently sterilized by direct irradiation of ultraviolet rays from the first ultraviolet irradiation device 100F.
 また、包囲手段260に(重ねて)紫外線の遮断状態と非遮断状態とを切り替え可能な遮断手段105を設けてもよい。患者を収容中は紫外線の遮断状態とし、患者の入れ替え時には、紫外線の非遮断状態とする。これにより非遮断状態では第1紫外線照射装置100Fから直接照射される紫外線を包囲手段260の内部に透過させることができ、包囲手段260の内部もより効率よく殺菌処理を行うことができる。 Further, the surrounding means 260 may be provided with a blocking means 105 capable of switching between a blocking state and a non-blocking state of ultraviolet rays (overlapping). When the patient is being accommodated, the ultraviolet rays are blocked, and when the patient is replaced, the ultraviolet rays are not blocked. As a result, in the non-blocking state, the ultraviolet rays directly irradiated from the first ultraviolet irradiation device 100F can be transmitted to the inside of the surrounding means 260, and the inside of the surrounding means 260 can also be sterilized more efficiently.
 なお、包囲手段260の内部が無人の場合には、包囲手段260内部に第1紫外線照射装置100Fを移動して殺菌してもよい。 If the inside of the siege means 260 is unmanned, the first ultraviolet irradiation device 100F may be moved inside the siege means 260 to sterilize it.
 なお、包囲手段260を設けることなく、対象領域Sの陰圧または陽圧管理をおこなってもよい。すなわち、対象領域Sが室内などの場合、対象領域Sの一部に吸気部260Iを設ける。吸気口132とこれに接続するダクト130の一部を対象領域S内に配置し、ダクト130の残部と第2紫外線照射装置100Gを対象領域Sの外部に配置する。吸気部260Iからの空気の流入量と、排気部260Oとなる第2紫外線照射装置100Gからの排出量を制御することで、対象領域S全体を陰圧または陽圧に管理することができる。 Negative pressure or positive pressure of the target area S may be controlled without providing the siege means 260. That is, when the target area S is indoors or the like, the intake unit 260I is provided in a part of the target area S. The intake port 132 and a part of the duct 130 connected to the intake port 132 are arranged in the target area S, and the rest of the duct 130 and the second ultraviolet irradiation device 100G are arranged outside the target area S. By controlling the inflow amount of air from the intake unit 260I and the exhaust amount from the second ultraviolet irradiation device 100G serving as the exhaust unit 260O, the entire target region S can be controlled to negative pressure or positive pressure.
 付着菌は移動しにくいため、紫外線が到達しない(非照射となる)領域さえ発生させなければ、直接照射により短時間で効率的に殺菌可能である。一方、浮遊菌は移動するため、従来既知の自走式(ロボット型)の直接照射型紫外線照射装置などでは殺菌が困難である。このような浮遊菌については本実施形態の間接照射による循環殺菌が効果的である。循環殺菌では、循環させる空気の流量が多いほどその殺菌効果は高まるため、間接照射型紫外線照射装置への空気の取り込み量をなるべく多くすることが望ましい。しかしながら、例えば第1実施形態に記載のような、直接照射型紫外線照射装置と間接照射型紫外線照射装置とが一体化した紫外線照射装置装置において空気の取り込み量を増加させると、直接照射型紫外線装置としてのサイズも単純に大型化する。また、第1実施形態のような例えば衝立型の紫外線照射装置100の場合、直接照射の方向はほぼ一方向(衝立の面に対して垂直な方向)に限られる。つまり、紫外線が照射されない領域を極力排除するために多方向からの照射が望ましい直接照射としては効率が悪くなる。 Since adherent bacteria are difficult to move, direct irradiation can be used for efficient sterilization in a short time as long as the area where ultraviolet rays do not reach (non-irradiation) is not generated. On the other hand, since airborne bacteria move, it is difficult to sterilize them with a conventionally known self-propelled (robot type) direct irradiation type ultraviolet irradiation device or the like. Circulation sterilization by indirect irradiation of the present embodiment is effective for such airborne bacteria. In circulation sterilization, the larger the flow rate of the circulating air, the higher the sterilization effect. Therefore, it is desirable to increase the amount of air taken into the indirect irradiation type ultraviolet irradiation device as much as possible. However, when the amount of air taken in is increased in the ultraviolet irradiation device device in which the direct irradiation type ultraviolet irradiation device and the indirect irradiation type ultraviolet irradiation device are integrated, for example, as described in the first embodiment, the direct irradiation type ultraviolet device The size of the product is also simply increased. Further, in the case of, for example, an imposition type ultraviolet irradiation device 100 as in the first embodiment, the direction of direct irradiation is limited to substantially one direction (direction perpendicular to the surface of the opposition). That is, in order to eliminate the region not irradiated with ultraviolet rays as much as possible, irradiation from multiple directions is desirable, and the efficiency is deteriorated as direct irradiation.
 そこで本実施形態では、直接照射型紫外線照射装置と間接照射型紫外線照射装置を別体とし、それぞれの照射方法に適切な構成とした。特に直接照射型紫外線照射装置(第1紫外線照射装置100F)は対象領域S内に分散させて複数配置することで、紫外線が照射されない領域を可能な限り低減することができる。 Therefore, in the present embodiment, the direct irradiation type ultraviolet irradiation device and the indirect irradiation type ultraviolet irradiation device are separated, and the configuration is suitable for each irradiation method. In particular, by arranging a plurality of direct irradiation type ultraviolet irradiation devices (first ultraviolet irradiation device 100F) dispersed in the target region S, the region not irradiated with ultraviolet rays can be reduced as much as possible.
 さらに、第1紫外線照射装置100Fと第2紫外線照射装置100Gを別体とすることで、特に第2紫外線照射装置100Gにおいては循環殺菌のための空気の流量を増加させることができる。つまり、循環させる空気の流量を、直接照射型紫外線照射装置(第1紫外線照射装置100F)の制約なく増大できるので、循環殺菌の効果も高めることができ、空気中の浮遊菌の抑制能力を高めることができる。 Further, by separating the first ultraviolet irradiation device 100F and the second ultraviolet irradiation device 100G, the flow rate of air for circulation sterilization can be increased particularly in the second ultraviolet irradiation device 100G. That is, since the flow rate of the circulating air can be increased without the restriction of the direct irradiation type ultraviolet irradiation device (first ultraviolet irradiation device 100F), the effect of circulation sterilization can be enhanced, and the ability to suppress airborne bacteria is enhanced. be able to.
 また、ダクト130を備える第2紫外線照射装置100Gにより、対象領域Sまたは包囲手段260内の陽圧または陰圧管理が容易に行える。 Further, the second ultraviolet irradiation device 100G provided with the duct 130 can easily manage the positive pressure or the negative pressure in the target area S or the surrounding means 260.
 なお、ダクト130を設ける構成の場合、ダクト130内に第2紫外線発光手段101Gを設けてもよい。長い空気の流路137において長時間の殺菌が可能となる。 In the case of a configuration in which the duct 130 is provided, the second ultraviolet light emitting means 101G may be provided in the duct 130. Long-term sterilization is possible in the long air flow path 137.
 <第6実施形態>
 図31を参照して、本発明の第6実施形態の紫外線照射装置100(100H、100g)および紫外線照射システム200(200H)について説明する。図31は、紫外線照射システム200(200H)の一例を示す概要図であり、同図(A)は、紫外線照射システム200(200H)全体の概要図、同図(B)は紫外線照射装置100(100H)の概要図、同図(C)は、紫外線照射システム200(200H)のブロック図、(D)第6実施形態の機能の一部を説明する概要図である。
<Sixth Embodiment>
The ultraviolet irradiation device 100 (100H, 100g) and the ultraviolet irradiation system 200 (200H) according to the sixth embodiment of the present invention will be described with reference to FIG. 31. FIG. 31 is a schematic diagram showing an example of the ultraviolet irradiation system 200 (200H), FIG. 31A is a schematic diagram of the entire ultraviolet irradiation system 200 (200H), and FIG. 31B is an ultraviolet irradiation device 100 (B). A schematic diagram of 100H), FIG. 6C is a block diagram of an ultraviolet irradiation system 200 (200H), and FIG. 6D is a schematic diagram illustrating a part of the functions of the sixth embodiment.
 第6実施形態も、直接照射型紫外線照射装置(第1紫外線照射装置100H)と、間接照射型紫外線照射装置(第2紫外線照射装置100G)を併用する紫外線照射システム200(200H)である。第5実施形態と異なる点は、直接照射型紫外線照射装置である第1紫外線照射装置100Hは、対象領域Sの上方(例えば、対象領域S(室内)の天面(天井)SRや壁面の上部など)に設置されることである。第1紫外線照射装置100Hを対象領域Sの上方に設けることで、対象領域Sの下方(例えば床面等)に配置した場合と比較して、紫外線が照射されない領域を更に低減できる。以下では、主に第5実施形態と異なる部分について説明し、それ以外の構成については第5実施形態と同様とする。 The sixth embodiment is also an ultraviolet irradiation system 200 (200H) in which a direct irradiation type ultraviolet irradiation device (first ultraviolet irradiation device 100H) and an indirect irradiation type ultraviolet irradiation device (second ultraviolet irradiation device 100G) are used in combination. The difference from the fifth embodiment is that the first ultraviolet irradiation device 100H, which is a direct irradiation type ultraviolet irradiation device, is above the target area S (for example, the top surface (ceiling) SR of the target area S (indoor) or the upper part of the wall surface). Etc.). By providing the first ultraviolet irradiation device 100H above the target area S, it is possible to further reduce the area not irradiated with ultraviolet rays as compared with the case where the first ultraviolet irradiation device 100H is arranged below the target area S (for example, the floor surface or the like). Hereinafter, the parts different from the fifth embodiment will be mainly described, and the other configurations will be the same as those of the fifth embodiment.
 第1紫外線照射装置100Hは、少なくとも1台、好適には複数台が一の対象領域Sの例えば、天面SRに取り付けられる。この例では第1紫外線照射装置100Hの第1紫外線発光手段101Hとして、1灯でも多方向に照射可能であり、点光源に近い形状の光源として、例えば、スパイラル状の低圧水銀ランプLPを採用する。この例ではスパイラル状の低圧水銀ランプLPの場合について説明するが、直管型の低圧水銀ランプLPであってもよい。また、第1紫外線発光手段101HはUV-LEDであってもよい。低圧水銀ランプLP、UV-LEDは第1実施形態のものと同様に所定の主波長の紫外線を発光するものである。 At least one unit, preferably a plurality of units, of the first ultraviolet irradiation device 100H are attached to, for example, the top surface SR of one target area S. In this example, as the first ultraviolet light emitting means 101H of the first ultraviolet irradiation device 100H, even one lamp can irradiate in multiple directions, and as a light source having a shape similar to a point light source, for example, a spiral low-pressure mercury lamp LP is adopted. .. In this example, the case of a spiral low-pressure mercury lamp LP will be described, but a straight tube type low-pressure mercury lamp LP may be used. Further, the first ultraviolet light emitting means 101H may be a UV-LED. The low-pressure mercury lamp LP and UV-LED emit ultraviolet rays having a predetermined main wavelength, as in the case of the first embodiment.
 また、支持枠(支持体)121は例えばスパイラル状の低圧水銀ランプLPの一部(例えば対象領域Sに臨む面側)を除いて側面および背面を覆う傘型(椀型)であり、ランプシェードも兼ねる。またこの例では支持体121は紫外線の反射板を兼ね、その内面には紫外線反射手段250が設けられる(鏡面250Aになっている)と好適である。 Further, the support frame (support) 121 is an umbrella type (bowl type) that covers the side surface and the back surface except for a part of the spiral low-pressure mercury lamp LP (for example, the surface side facing the target area S), and is a lamp shade. Also serves as. Further, in this example, it is preferable that the support 121 also serves as an ultraviolet reflecting plate, and an ultraviolet reflecting means 250 is provided on the inner surface thereof (the mirror surface is 250A).
 さらに、低圧水銀ランプLPの一部(例えば対象領域Sに臨む面側)には、紫外線の出射状態を変更可能な状態切替手段225を有する。状態切替手段(可動体)225はこの例では、支持体121が設けられない、対象領域Sに臨む面を覆うように構成される以外は、第5実施形態と同様であり、例えば扉、シェード(ルーバー)などが支持体121に取り付けられ、第1紫外線発光手段101Hに対して可動(開閉)するように構成される。支持体121と状態切替手段225で覆われた部分は、紫外線の出射方向および出射量が規制され、状態切替手段225の開口(開放)部分から紫外線が発光される。 Further, a part of the low-pressure mercury lamp LP (for example, the surface side facing the target region S) has a state switching means 225 capable of changing the emission state of ultraviolet rays. In this example, the state switching means (movable body) 225 is the same as that of the fifth embodiment except that the support 121 is not provided and is configured to cover the surface facing the target area S. For example, a door and a shade. A louver or the like is attached to the support 121 and is configured to be movable (open / close) with respect to the first ultraviolet light emitting means 101H. The portion covered with the support 121 and the state switching means 225 is restricted in the emission direction and the amount of ultraviolet rays emitted, and the ultraviolet rays are emitted from the opening (open) portion of the state switching means 225.
 また、第1紫外線照射装置100Hの少なくとも1台、好適には複数台は、適宜の位置に移動可能に構成される。具体的には、例えば対象領域Sの天面SRにはレール501が取り付けられ、第1紫外線照射装置100Hの支持体121にはスライダー502が固定されるとともにレール501に移動可能に係合する。これにより、第1紫外線照射装置100Hはレール501に沿って任意の位置に移動可能に構成される。第1紫外線照射装置100Hの移動の制御は、赤外線方式や無線方式などによるリモートコントローラ270よって行われると望ましい。 Further, at least one unit, preferably a plurality of units of the first ultraviolet irradiation device 100H, is configured to be movable to an appropriate position. Specifically, for example, a rail 501 is attached to the top surface SR of the target region S, a slider 502 is fixed to the support 121 of the first ultraviolet irradiation device 100H, and the slider 502 is movably engaged with the rail 501. As a result, the first ultraviolet irradiation device 100H is configured to be movable at an arbitrary position along the rail 501. It is desirable that the movement of the first ultraviolet irradiation device 100H is controlled by the remote controller 270 by an infrared method, a wireless method, or the like.
 対象領域Sに対して(特に破線で示す関心領域S0はもれなく)、紫外線照射を満遍なく(障害物などによる紫外線非到達領域の発生を回避して)照射するには、上方(天面SR)からの照射が最も効率的である。本実施形態では、直接照射を行う第1紫外線照射装置100Hを天面SRに設けるとともに、移動可能としたので、直接照射の際の殺菌効率を高めることができる。 To irradiate the target area S (particularly the area of interest S0 indicated by the broken line) evenly (avoiding the occurrence of non-ultraviolet areas due to obstacles) from above (top surface SR). Irradiation is the most efficient. In the present embodiment, the first ultraviolet irradiation device 100H for direct irradiation is provided on the top surface SR and is movable, so that the sterilization efficiency at the time of direct irradiation can be improved.
 なお、第1紫外線照射装置100Hの移動は、レール501上をスライドさせる移動に限らず、同図(B)に示すようにレール501(対象領域Sの天面SR)に対する支持体121(低圧水銀ランプLP)の角度を変更する移動(揺動)も含む。例えば、スパイラル状の低圧水銀ランプLPの場合、レール501(対象領域Sの天面SR)に対する支持体121の角度を変更(調整)することで紫外線の照射方向や照射量を容易に制御可能である。この場合例えば目視で支持体121の角度を確認可能とするために、支持体121の外表面には角度把握のガイド(目盛り)を設けるとよい。また、リモートコントローラ270により状態切替手段225の動作(開閉)の制御も行うようにするとよい。また、角度の変更を所定量ずつ(例えば、15°刻みなどで)段階的に変更可能としてもよいし、任意に変更可能としてもよい。 The movement of the first ultraviolet irradiation device 100H is not limited to the movement of sliding on the rail 501, and as shown in FIG. 3B, the support 121 (low pressure mercury) with respect to the rail 501 (top surface SR of the target region S). It also includes movement (swing) that changes the angle of the lamp LP). For example, in the case of a spiral low-pressure mercury lamp LP, the irradiation direction and irradiation amount of ultraviolet rays can be easily controlled by changing (adjusting) the angle of the support 121 with respect to the rail 501 (top surface SR of the target area S). is there. In this case, for example, in order to visually confirm the angle of the support 121, it is preferable to provide a guide (scale) for grasping the angle on the outer surface of the support 121. Further, the operation (opening / closing) of the state switching means 225 may be controlled by the remote controller 270. Further, the angle may be changed stepwise by a predetermined amount (for example, in increments of 15 °), or may be arbitrarily changed.
 第2紫外線照射装置100Gは、例えば、第5実施形態における図28(E)に示した自立型の第2紫外線照射装置100Gである。この場合、一の対象領域S内に少なくとも1台、好適には複数台(例えば、4台)の第2紫外線照射装置100Gを配置する。第2紫外線照射装置100Gは常時動作(運転)させるため、第1紫外線照射装置100Hほど頻繁な移動は想定していないが、例えば成人が1人で容易に移動可能な程度に軽量化されていると好ましい。 The second ultraviolet irradiation device 100G is, for example, the self-supporting second ultraviolet irradiation device 100G shown in FIG. 28 (E) in the fifth embodiment. In this case, at least one, preferably a plurality (for example, four) second ultraviolet irradiation devices 100G are arranged in one target area S. Since the second ultraviolet irradiation device 100G is constantly operated (operated), it is not expected to move as frequently as the first ultraviolet irradiation device 100H, but for example, the weight is reduced to such that an adult can easily move by one person. Is preferable.
 同図(C)を参照して、本実施形態の紫外線照射システム200Hは、対象領域S内の、第1紫外線照射装置100による清浄に必要な紫外線の照射条件を推定する照射状態推定手段202を有する。第6実施形態では、例えば対象領域S内に照度計350(同図(A)参照)を配置して対象領域Sのある測定点P(例えば、破線で示す関心領域S0内の測定点)の照度(紫外線強度または、紫外線照射強度という場合もある)を測定可能とする。そして、照射状態推定手段202は例えば照度計350の測定結果(紫外線照射強度の実測値)と、対象領域Sに要求される清浄度(要求殺菌レベル)に基づき、第1紫外線照射装置100Hによる殺菌に必要な紫外線の照射時間(必要照射時間)を推定し、出力(表示手段203等に表示)する。照射状態推定手段202による推定方法の具体例については後述する。 With reference to FIG. 3C, the ultraviolet irradiation system 200H of the present embodiment provides an irradiation state estimation means 202 for estimating the irradiation conditions of ultraviolet rays required for cleaning by the first ultraviolet irradiation device 100 in the target area S. Have. In the sixth embodiment, for example, an illuminance meter 350 (see FIG. 3A) is arranged in the target area S, and a measurement point P having the target area S (for example, a measurement point in the area of interest S0 shown by a broken line). Illuminance (sometimes referred to as ultraviolet intensity or ultraviolet irradiation intensity) can be measured. Then, the irradiation state estimation means 202 is sterilized by the first ultraviolet irradiation device 100H based on, for example, the measurement result of the ilometer 350 (measured value of the ultraviolet irradiation intensity) and the cleanliness (required sterilization level) required for the target area S. The ultraviolet irradiation time (required irradiation time) required for the above is estimated and output (displayed on the display means 203 or the like). A specific example of the estimation method by the irradiation state estimation means 202 will be described later.
 推定結果は例えば駆動制御手段109にフィードバックされ、これにより各第1紫外線照射装置100Hの照射状態(位置や角度も含む)を制御可能である。また、紫外線照射システム200Hのユーザは、出力(表示)された推定結果に基づき、あるいは任意に適宜リモートコントローラ270を制御し、各第1紫外線照射装置100Hの照射状態(位置や角度も含む)、第2紫外線照射装置100Gの動作を制御可能である。 The estimation result is fed back to, for example, the drive control means 109, whereby the irradiation state (including the position and angle) of each first ultraviolet irradiation device 100H can be controlled. Further, the user of the ultraviolet irradiation system 200H controls the remote controller 270 based on the output (displayed) estimation result or arbitrarily as appropriate, and the irradiation state (including the position and angle) of each first ultraviolet irradiation device 100H. The operation of the second ultraviolet irradiation device 100G can be controlled.
 さらに、紫外線照射システム200Hは、入力される条件に基づき、対象領域S内の第1紫外線照射装置100による清浄に必要な紫外線の照射条件を推定し、客観的に可視化(視認可に)するシミュレーション手段205を有する。シミュレーション手段205は、例えば、紫外線照射システム200Hの情報処理装置201にハードウェア的および/またはソフトウエア的に内蔵された機能である。 Further, the ultraviolet irradiation system 200H estimates the ultraviolet irradiation conditions required for cleaning by the first ultraviolet irradiation device 100 in the target area S based on the input conditions, and objectively visualizes (visually approves) the simulation. It has means 205. The simulation means 205 is, for example, a function incorporated in the information processing device 201 of the ultraviolet irradiation system 200H in terms of hardware and / or software.
 シミュレーション手段205は、例えば、紫外線の照射条件(第1紫外線発光手段101Hの能力(具体的には、基準となる位置における紫外線照射強度、基準UV強度(照度))、第1紫外線発光手段101Hから測定点までの距離など)に基づき測定点Pの紫外線強度を推定し、推定された紫外線強度と、対象領域Sの要求殺菌レベルに応じて必要照射時間を推定する。必要照射時間は、紫外線の照射条件や要求殺菌レベルにより変動するので、これらの変動による清浄度のシミュレーションを可能とする。 The simulation means 205 is described from, for example, ultraviolet irradiation conditions (capacity of the first ultraviolet light emitting means 101H (specifically, ultraviolet irradiation intensity at a reference position, reference UV intensity (illumination)), and the first ultraviolet light emitting means 101H. The ultraviolet intensity of the measurement point P is estimated based on the distance to the measurement point, etc.), and the required irradiation time is estimated according to the estimated ultraviolet intensity and the required sterilization level of the target area S. Since the required irradiation time varies depending on the irradiation conditions of ultraviolet rays and the required sterilization level, it is possible to simulate the cleanliness due to these fluctuations.
 図31(D)を参照して、照射状態推定手段202およびシミュレーション手段205による必要照射時間の推定方法の一例について説明する。なお、ここでの各数値は必要照射時間の推定方法を説明するための一例に過ぎない。 An example of a method of estimating the required irradiation time by the irradiation state estimation means 202 and the simulation means 205 will be described with reference to FIG. 31 (D). It should be noted that each numerical value here is only an example for explaining the method of estimating the required irradiation time.
 まず、シミュレーション手段205の推定(シミュレーション)方法について説明する。例えば、同図(A)に示すように、或る対象領域S(室内)の天面SRに2つの第1紫外線発光手段101H(101H_A、101H_B)が設けられている場合の、測定点Pにおける紫外線強度と、必要照射時間を推定する場合を例に説明する。第1紫外線発光手段101H(101H_A、101H_B)は、例えば低圧水銀ランプLPである。 First, the estimation (simulation) method of the simulation means 205 will be described. For example, as shown in FIG. 6A, at the measurement point P when two first ultraviolet light emitting means 101H (101H_A, 101H_B) are provided on the top surface SR of a certain target region S (indoor). An example of estimating the ultraviolet intensity and the required irradiation time will be described. The first ultraviolet light emitting means 101H (101H_A, 101H_B) is, for example, a low-pressure mercury lamp LP.
 例えば、測定点Pは、第1紫外線発光手段101H_Aの鉛直直下にあり、両者は距離L1で離間されている。また、第1紫外線発光手段101H_Aと第1紫外線発光手段101H_Bは水平方向に距離LHで離間されている。また、第1紫外線発光手段101H_A(低圧水銀ランプLP)、第1紫外線発光手段101H_B(低圧水銀ランプLP)の基準UV照度をいずれもXとする。ここでの基準UV照度とは例えば、光源(低圧水銀ランプLP)から紫外線出射方向に1m離れた一点の照度(紫外線照射強度)[μW/cm]である。そして、ある測定点Pにおける紫外線照射強度は、光源からの距離の2乗に反比例する。 For example, the measurement point P is vertically below the first ultraviolet light emitting means 101H_A, and the two are separated by a distance L1. Further, the first ultraviolet light emitting means 101H_A and the first ultraviolet light emitting means 101H_B are separated by a distance LH in the horizontal direction. Further, the reference UV illuminance of the first ultraviolet light emitting means 101H_A (low pressure mercury lamp LP) and the first ultraviolet light emitting means 101H_B (low pressure mercury lamp LP) is set to X. The reference UV irradiance here is, for example, the illuminance (ultraviolet irradiation intensity) [μW / cm 2 ] at one point 1 m away from the light source (low-pressure mercury lamp LP) in the ultraviolet emission direction. Then, the ultraviolet irradiation intensity at a certain measurement point P is inversely proportional to the square of the distance from the light source.
 すなわち、測定点Pにおける第1紫外線発光手段101H_Aの理論上の照度E´[μW/cm]は、以下の(式2)で示される。 That is, the theoretical illuminance E A ′ [μW / cm 2 ] of the first ultraviolet light emitting means 101H_A at the measurement point P is represented by the following (Equation 2).
   E´ = X/L1    (式2)
   ここで、
   X :第1紫外線発光手段101H_Aの基準UV照度[μW/cm
   L1:第1紫外線発光手段101H_Aと測定点Pの距離[m]
E A ' = X / L1 2 (Equation 2)
here,
X: Reference UV illuminance of the first ultraviolet light emitting means 101H_A [μW / cm 2 ]
L1: Distance [m] between the first ultraviolet light emitting means 101H_A and the measurement point P.
 また、測定点Pにおける第1紫外線発光手段101H_Bの理論上の照度E´[μW/cm]は、以下の(式3)で示される。 Further, the illuminance E B theoretical first ultraviolet light emitting means 101H_B at the measurement point P '[μW / cm 2] is represented by the following equation (3).
   E´= X/L2= X/(L1 + LH)    (式3)
   ここで、
   X :第1紫外線発光手段101H_Bの基準UV照度[μW/cm
   L2:第1紫外線発光手段101H_Bと測定点Pの距離[m]
   L1:第1紫外線発光手段101H_Aと測定点Pの距離[m]
   LH:第1紫外線発光手段101H_Aと101H_Bの距離[m]
E B '= X / L2 2 = X / (L1 2 + LH 2) ( Equation 3)
here,
X: Reference UV illuminance of the first ultraviolet light emitting means 101H_B [μW / cm 2 ]
L2: Distance [m] between the first ultraviolet light emitting means 101H_B and the measurement point P
L1: Distance [m] between the first ultraviolet light emitting means 101H_A and the measurement point P.
LH: Distance between the first ultraviolet light emitting means 101H_A and 101H_B [m]
 また、実際の紫外線照射強度は、反射板(ここでは支持体121)の形状や対象領域S内の二次反射で変化するため、それぞれの補正係数により、補正する。すなわち、測定点Pにおける第1紫外線発光手段101H_Aの照度E[μW/cm]は以下の(式4)、測定点Pにおける第1紫外線発光手段101H_Bの照度E[μW/cm]は、以下の(式5)で示される。 Further, since the actual ultraviolet irradiation intensity changes depending on the shape of the reflector (here, the support 121) and the secondary reflection in the target region S, it is corrected by each correction coefficient. That is, the illuminance E A of the first ultraviolet light emitting means 101H_A at the measurement point P [μW / cm 2] the following equation (4) is illuminance E B of the first ultraviolet light emitting means 101H_B at the measurement point P [μW / cm 2] Is represented by the following (Equation 5).
   EA =E´×C×K       (式4)
   EB =E´×C×K       (式5)
   ここで、
   E´:第1紫外線発光手段101H_Aの理論上の照度[μW/cm
   E´:第1紫外線発光手段101H_Bの理論上の照度[μW/cm
   C  :反射板の形状に基づく補正係数
   K  :二次反射に基づく補正係数
E A = E A '× C × K (Equation 4)
E B = E B '× C × K ( Equation 5)
here,
E A ': illuminance theoretical first ultraviolet light emitting means 101H_A [μW / cm 2]
E B ': illuminance theoretical first ultraviolet light emitting means 101H_B [μW / cm 2]
C: Correction coefficient based on the shape of the reflector K: Correction coefficient based on secondary reflection
 また、測定点Pにおける2つの第1紫外線発光手段101H_A,101H_Bによる照度(紫外線照射強度)の合算(合算照度)E[μW/cm]は、以下の(式6)で示される。 Further, the total (total illuminance) E [μW / cm 2 ] of the illuminance (ultraviolet irradiation intensity) by the two first ultraviolet light emitting means 101H_A and 101H_B at the measurement point P is represented by the following (Equation 6).
   E = E+E    (式6)
   ここで、
   E:測定点Pにおける第1紫外線発光手段101H_Aの照度[μW/cm
   E:測定点Pにおける第1紫外線発光手段101H_Bの照度[μW/cm
E = E A + E B (Equation 6)
here,
E A: intensity of first ultraviolet light emitting means 101H_A at the measurement point P [μW / cm 2]
E B: intensity of first ultraviolet light emitting means 101H_B at the measurement point P [μW / cm 2]
 この例では2つの第1紫外線発光手段101H(101H_A、101H_B)を用いた算出例を示したが、第1紫外線発光手段101Hの数が増えた場合(例えば、第1紫外線発光手段101H_C,101H_D…などが増加した場合)は、それぞれの第1紫外線発光手段101H_C,101H_D…から測定点Pまでの距離L3,L4…に応じて、(式3)により理論上の照度Ec´、E´…を算出し、(式4)および(式5)と同様に照度Ec、E…を算出して、(式6)により合算照度Eを算出する。 In this example, a calculation example using two first ultraviolet light emitting means 101H (101H_A, 101H_B) is shown, but when the number of the first ultraviolet light emitting means 101H increases (for example, the first ultraviolet light emitting means 101H_C, 101H_D ... If the like increases), each first ultraviolet light emitting means 101H_C, 101H_D ... in accordance with the distance L3, L4 ... to the measurement point P from (equation 3) by illuminance theoretical Ec', E D '... It is calculated, (equation 4) and (5) as well as calculated illuminance Ec, the E D ..., and calculates the sum illuminance E by (equation 6).
 そして、殺菌対象の菌を不活性化するのに必要な紫外線照射量をW[μW・sec/cm]とすると、上記の第1紫外線発光手段101H_Aと101H_Bによって測定点Pの対象の菌の不活性化に必要な紫外線の累積の照射時間(必要照射時間T[sec])は、以下の(式7)で示される。 Then, assuming that the amount of ultraviolet irradiation required to inactivate the bacteria to be sterilized is W [μW · sec / cm 2 ], the above-mentioned first ultraviolet light emitting means 101H_A and 101H_B of the bacteria to be measured at the measurement point P. The cumulative irradiation time of ultraviolet rays required for inactivation (required irradiation time T [sec]) is represented by the following (Equation 7).
   T = W/E    (式7)
   ここで、
   W:殺菌対象の菌を不活性化するのに必要な紫外線照射量[μW・sec/cm
   E:測定点Pにおける全ての第1紫外線発光手段101Hによる照度[μW/cm
T = W / E (Equation 7)
here,
W: Ultraviolet irradiation amount required to inactivate the bacteria to be sterilized [μW · sec / cm 2 ]
E: Illuminance by all first ultraviolet light emitting means 101H at the measurement point P [μW / cm 2 ]
 ここで、上述した対象領域Sの「要求殺菌レベル」とは、対象領域Sに要求される清浄度、すなわち、殺菌対象の菌を不活性化する程度(生存率低下の程度、殺菌率)の程度である。実在の第1紫外線発光手段101H(低圧水銀ランプLP)において、その累積の紫外線量(累積紫外線照射量)[μJ/cm]と、或る菌の殺菌率[%](または生存率[N/N])の間には所定の相関がある。例えば図6は、主要な菌種についてそれぞれ、99.9%不活性化(不活化)するために必要な累積紫外線照射量(光のエネルギー量)を、当該相関から抽出した一例である。図6によれば例えば、枯草菌(芽胞)を99.9%不活性化するには、33,200μJ/cmを入力の光のエネルギー(累積紫外線照射量)が必要である。そしてこの必要な累積紫外線照射量は、不活性化の程度(99.9%、99.99%、99.999%…)により変化する。本実施形態のシミュレーション手段205(および照射状態推定手段202)は、対象となる菌種毎に、当該相関を示す式(紫外線量-殺菌率関係式)を有し、菌種と要求される不活性化の程度(殺菌率)の入力と当該関係式に基づき、上述の紫外線照射量Wを推定する。 Here, the "required sterilization level" of the target area S described above is the degree of cleanliness required for the target area S, that is, the degree of inactivating the bacteria to be sterilized (degree of decrease in survival rate, sterilization rate). Degree. In the actual first ultraviolet light emitting means 101H (low pressure mercury lamp LP), the cumulative amount of ultraviolet rays (cumulative ultraviolet irradiation amount) [μJ / cm 2 ] and the sterilization rate [%] (or survival rate [N] of a certain bacterium. / N 0 ]) has a predetermined correlation. For example, FIG. 6 shows an example in which the cumulative ultraviolet irradiation amount (light energy amount) required for 99.9% inactivation (inactivation) of each of the major bacterial species was extracted from the correlation. According to FIG. 6, for example, in order to inactivate Bacillus subtilis (spores) by 99.9%, light energy (cumulative ultraviolet irradiation amount) of 33,200 μJ / cm 2 is required. The required cumulative UV irradiation dose varies depending on the degree of inactivation (99.9%, 99.99%, 99.999% ...). The simulation means 205 (and the irradiation state estimation means 202) of the present embodiment has an equation (ultraviolet ray amount-sterilization rate relational expression) showing the correlation for each target bacterial species, and is required to be a bacterial species. The above-mentioned ultraviolet irradiation amount W is estimated based on the input of the degree of activation (sterilization rate) and the relational expression.
 そしてシミュレーション手段205は、合算照度E(式6)と、入力された要求殺菌レベルに基づく紫外線照射量Wとから、(式7)により必要照射時間Tを算出(推定)し、出力手段(例えば、表示手段)203などに出力(表示)する。 Then, the simulation means 205 calculates (estimates) the required irradiation time T from the total illuminance E (Equation 6) and the ultraviolet irradiation amount W based on the input required sterilization level by (Equation 7), and outputs the output means (for example, , Display means) Output (display) to 203 or the like.
 シミュレーション手段205によるシミュレーション手順は以下の通りである。例えば、シミュレーション手段205は、ユーザによる紫外線の照射条件と要求殺菌レベルの入力を受け付ける。具体的に、ユーザは例えば、入力手段(コントローラ270や不図示の携帯端末のタッチディスプレイなど)を介して入力を行う。シミュレーション手段205は、上記の例では各第1紫外線発光手段101Hの基準UV強度X、および各第1紫外線発光手段101Hの基準UV強度Xから測定点Pまでの距離L1、L2、L3…(または、測定点P鉛直上方の第1紫外線発光手段101Hから各第1紫外線発光手段101Hまでの水平方向距離LH(LH1,LH2・・・))の入力を受け付ける。ユーザは、要求殺菌レベルとして例えば、殺菌対象の菌種と要求する殺菌率を入力する。 The simulation procedure by the simulation means 205 is as follows. For example, the simulation means 205 accepts the input of the ultraviolet irradiation condition and the required sterilization level by the user. Specifically, the user inputs, for example, via an input means (such as a controller 270 or a touch display of a mobile terminal (not shown)). In the above example, the simulation means 205 has the reference UV intensity X of each first ultraviolet light emitting means 101H and the distances L1, L2, L3 ... (Or) from the reference UV intensity X of each first ultraviolet light emitting means 101H to the measurement point P. , The input of the horizontal distance LH (LH1, LH2 ...) From the first ultraviolet light emitting means 101H vertically above the measurement point P to each first ultraviolet light emitting means 101H is accepted. The user inputs, for example, the bacterial species to be sterilized and the required sterilization rate as the required sterilization level.
 詳細には、例えば対象の菌種として「枯草菌(芽胞)」をまた、要求する殺菌の程度(例えば殺菌率として「99.9%」)を入力する。入力を受け付けたシミュレーション手段205は、上述した紫外線量-殺菌率関係式に基づき、紫外線照射量W(例えば、33,200μJ/cm)を算出する。あるいは、例えば、殺菌率をレベル1,2,3・・・など段階的に大別し、菌種とともに表示手段203などに表示させ、ユーザがそれらを選択入力可能としてもよい。選択入力を受け付けたシミュレーション手段205は、レベルに応じた紫外線照射量Wを、紫外線量-殺菌率関係式に基づき算出する。また例えば、必要な紫外線照射量W(ここでは例えば、33,200μJ/cm)が判明している場合には、これを直接入力可能としてもよい。 In detail, for example, "Bacillus subtilis (spore)" is input as the target bacterial species, and the required degree of sterilization (for example, "99.9%" as the sterilization rate) is input. The simulation means 205 that has received the input calculates the ultraviolet irradiation amount W (for example, 33,200 μJ / cm 2 ) based on the above-mentioned ultraviolet amount-sterilization rate relational expression. Alternatively, for example, the sterilization rate may be roughly classified into levels 1, 2, 3, ..., And the sterilization rate may be displayed together with the bacterial species on the display means 203 or the like so that the user can select and input them. The simulation means 205 that has received the selection input calculates the ultraviolet irradiation amount W according to the level based on the ultraviolet amount-sterilization rate relational expression. Further, for example, when the required ultraviolet irradiation amount W (here, for example, 33,200 μJ / cm 2 ) is known, this may be directly input.
 そして、シミュレーション手段205は、(式6)に基づき、測定点Pにおける全ての第1紫外線発光手段101Hによる照度(合算照度)Eを算出する。なお、反射板の形状に基づく補正係数Cおよび二次反射に基づく補正係数Kは紫外線照射システム200の設計時に採用される第1紫外線照射装置100Hや対象領域S(室内)のサイズ、形状に基づき予め設定された値とする。
 また、シミュレーション手段205は、(式6)の結果と、入力された要求殺菌レベルに基づく紫外線照射量Wから、(式7)により必要照射時間Tを算出(推定)し、出力手段(例えば、表示手段)203などに出力(表示)する。
Then, the simulation means 205 calculates the illuminance (total illuminance) E by all the first ultraviolet light emitting means 101H at the measurement point P based on (Equation 6). The correction coefficient C based on the shape of the reflector and the correction coefficient K based on the secondary reflection are based on the size and shape of the first ultraviolet irradiation device 100H and the target area S (indoor) adopted at the time of designing the ultraviolet irradiation system 200. The value is set in advance.
Further, the simulation means 205 calculates (estimates) the required irradiation time T from the result of (Equation 6) and the ultraviolet irradiation amount W based on the input required sterilization level by (Equation 7), and outputs the output means (for example, for example). Display means) Output (display) to 203 or the like.
 ユーザは、推定結果の必要照射時間Tを参照し、紫外線の照射条件、要求殺菌レベルなどを適宜変更する。シミュレーション手段205は変更された入力に基づき、改めて必要照射時間Tを推定する。ユーザは、反射板の形状に基づく補正係数Cおよび/または二次反射に基づく補正係数Kの変更も可能であり、シミュレーション手段205は変更された補正係数Cおよび/または補正係数Kに基づき、改めて必要照射時間Tを推定する。このようにして、必要照射時間Tに応じて、対象領域Sの清浄度の管理することができる。 The user refers to the required irradiation time T of the estimation result, and appropriately changes the irradiation conditions of ultraviolet rays, the required sterilization level, and the like. The simulation means 205 estimates the required irradiation time T again based on the changed input. The user can also change the correction coefficient C and / or the correction coefficient K based on the secondary reflection based on the shape of the reflector, and the simulation means 205 renews based on the changed correction coefficient C and / or the correction coefficient K. The required irradiation time T is estimated. In this way, the cleanliness of the target area S can be managed according to the required irradiation time T.
 また、シミュレーション手段205はバリデーション(推定結果の妥当性の検証処理)を可能としてもよい。 Further, the simulation means 205 may enable validation (validation processing of the estimation result).
 例えば、ある実在する対象領域Sにおいて、例えば、紫外線照射システム200Hの初回(導入後最初の)運転時などに上記の手法によりシミュレーションを行う。そして、測定点Pにおいて照度計350により照度を実測し、当該実測値(実測照度)と、シミュレーション手段205により算出(推定)された、測定点Pにおける合算照度E(式6)との誤差を算出し、誤差係数Mを取得する。そして誤差係数Mに基づき、必要照射時間T[sec]を補正する。補正後の必要照射時間Tc[sec]は、以下の(式8)で示される。 For example, in a certain existing target area S, for example, at the time of the first operation (first after introduction) of the ultraviolet irradiation system 200H, the simulation is performed by the above method. Then, the illuminance is actually measured by the illuminometer 350 at the measurement point P, and the error between the measured value (measured illuminance) and the total illuminance E (Equation 6) at the measurement point P calculated (estimated) by the simulation means 205 is calculated. Calculate and obtain the error coefficient M. Then, the required irradiation time T [sec] is corrected based on the error coefficient M. The corrected required irradiation time Tc [sec] is represented by the following (Equation 8).
   Tc = W/E×M    (式8)
   ここで、
   W:殺菌対象の菌を不活性化するのに必要な紫外線照射量[μW・sec/cm
   E:測定点Pにおける全ての第1紫外線発光手段101Hによる照度[μW/cm
   M:誤差係数
Tc = W / E × M (Equation 8)
here,
W: Ultraviolet irradiation amount required to inactivate the bacteria to be sterilized [μW · sec / cm 2 ]
E: Illuminance by all first ultraviolet light emitting means 101H at the measurement point P [μW / cm 2 ]
M: Error coefficient
 以降、バリデーションを行った対象領域Sにおいては、上記(式7)に代えて(式8)を用いて、必要照射時間のシミュレーションを行う。 After that, in the validated target area S, the required irradiation time is simulated by using (Equation 8) instead of the above (Equation 7).
 次に、照射状態推定手段202による必要照射時間の推定方法の一例について説明する。照射状態推定手段202は、実際の対象領域Sにおける照射条件に基づいて必要照射時間の推定を行う。すなわち、例えば、ある実在する対象領域Sにおいて、対象となる測定点Pの実際の照度を照度計350により照度を測定する。照射状態推定手段202は、この実測値を上記(式6)の合算照度Eとし、シミュレーション手段205と同様に必要照射時間Tを算出(推定)する。 Next, an example of a method of estimating the required irradiation time by the irradiation state estimation means 202 will be described. The irradiation state estimation means 202 estimates the required irradiation time based on the irradiation conditions in the actual target area S. That is, for example, in a certain existing target region S, the actual illuminance of the target measurement point P is measured by the illuminometer 350. The irradiation state estimation means 202 uses this measured value as the total illuminance E of the above (Equation 6), and calculates (estimates) the required irradiation time T in the same manner as the simulation means 205.
 照射状態推定手段202による推定手順は以下の通りである。例えば、照射状態推定手段202は、ユーザによる要求殺菌レベルの入力を受け付ける。要求殺菌レベル(およびその入力方法についてはシミュレーション手段205の場合と同様である。要求殺菌レベルの入力を受け付けた照射状態推定手段202は、レベルに応じた紫外線照射量Wを、紫外線量-殺菌率関係式に基づき算出する。 The estimation procedure by the irradiation state estimation means 202 is as follows. For example, the irradiation state estimation means 202 accepts the input of the required sterilization level by the user. The required sterilization level (and its input method are the same as in the case of the simulation means 205. The irradiation state estimating means 202 that has received the input of the required sterilization level sets the ultraviolet irradiation amount W according to the level as the ultraviolet amount-sterilization rate. Calculate based on the relational expression.
 そして、照射状態推定手段202は、照度計350による実測値(実測値)を(式6)の合算照度Eとし、これと、入力された要求殺菌レベルに基づく紫外線照射量Wとから、(式7)により必要照射時間Tを算出(推定)し、出力手段(例えば、表示手段)203などに出力(表示)する。あるいはまた、直近の第1紫外線照射装置100Hの運転開始時からの紫外線照射時間の累積などに基づき、必要照射時間Tに到達するまでの達成率などを算出(推定)して出力してもよい。 Then, the irradiation state estimating means 202 sets the measured value (measured value) by the illuminometer 350 as the total illuminance E of (Equation 6), and from this and the ultraviolet irradiation amount W based on the input required sterilization level, (Equation). The required irradiation time T is calculated (estimated) according to 7) and output (displayed) to the output means (for example, display means) 203 or the like. Alternatively, the achievement rate until the required irradiation time T is reached may be calculated (estimated) and output based on the accumulation of the ultraviolet irradiation time from the start of the operation of the latest first ultraviolet irradiation device 100H. ..
 ユーザは、推定結果の必要照射時間Tを参照し、対象領域Sが要求殺菌レベルに達するまでの時間を把握できる。 The user can refer to the required irradiation time T of the estimation result and grasp the time until the target area S reaches the required sterilization level.
 なお、上記の例は一例であり、照射状態推定手段202および/またはシミュレーション手段205は、上記以外の方法によって必要照射時間T(Tc)を推定(算出)してもよい。 The above example is an example, and the irradiation state estimation means 202 and / or the simulation means 205 may estimate (calculate) the required irradiation time T (Tc) by a method other than the above.
 また、第2紫外線照射装置100Gによる清浄化の程度を管理してもよい。第2紫外線照射装置100Gによる清浄化の程度を管理は、例えば、第2紫外線照射装置100G(の例えばバグフィルタ300)内やバグフィルタ300の上流側、あるいは対象領域S内の特に関心領域Sおよびその付近、などに設けられたパーティクルカウンタ351(粒子数測定器)の測定結果)に基づき行う(図31(A)参照)。 Further, the degree of cleaning by the second ultraviolet irradiation device 100G may be controlled. The degree of cleaning by the second ultraviolet irradiation device 100G is controlled, for example, in the second ultraviolet irradiation device 100G (for example, the bag filter 300), on the upstream side of the bag filter 300, or in the target area S, particularly in the region S of interest and This is performed based on the measurement results of the particle counter 351 (particle number measuring device) provided in the vicinity or the like (see FIG. 31 (A)).
 対象領域S内の浮遊粒子となる粒子や、そこに付着する菌の発生源は、主として、対象領域S内で活動する医師・看護師などの医療従事者や対象領域Sに持ち込まれる機器である。浮遊粒子に付着した菌は、浮遊菌としてブラウン運動によってランダムに空中を移動する。このような浮遊菌は、対象領域S内に紫外線照射がある場合は、設備等に遮られる可能性が少なく、また、光源に近い場所で紫外線にさらされることが多いため、付着菌より非常に短時間に菌の活性を失い死滅する。しかしながら、死滅した菌の残骸は、パイロジェン(発熱性物質)として、患者などを発熱させ、重篤な状況に陥れることがある。このため、手術室や、バイオクリーンルームなど、清浄度が管理される環境においては、パイロジェン発生予防の手段として、パーティクルカウンタ351により、浮遊粒子数を管理することが良く行われている。
 すなわち、対象領域Sの空気中の浮遊菌は、浮遊粒子数(浮遊菌の残骸を含む)の測定により増減の程度が把握できると考えられる。そこで、対象領域Sの内の粒子の数をパーティクルカウンタ351で測定し、粒子数に応じて対象領域S内への作業従事者等や機器の侵入の可否を管理する。具体的に、粒子数が要求殺菌レベルに対応した所定の閾値より低下した場合に、対象領域Sが、安全に診断や治療などの目的作業のために使用できる状態になったと判断する。また、例えば、粒子数が要求殺菌レベルに対応した所定の閾値を超えるような場合には、浮遊粒子の派生原因となる作業従事者や機器の対象領域S内への侵入を制限する。
The particles that become suspended particles in the target area S and the sources of bacteria adhering to the particles are mainly medical personnel such as doctors and nurses who are active in the target area S and devices brought into the target area S. .. Bacteria attached to suspended particles move randomly in the air as suspended bacteria by Brownian motion. When the target area S is irradiated with ultraviolet rays, such floating bacteria are less likely to be blocked by equipment or the like, and are often exposed to ultraviolet rays in a place close to the light source, so that they are much more than adherent bacteria. It loses the activity of the bacterium in a short time and dies. However, the debris of the dead bacteria may cause a patient or the like to generate heat as a pyrogen (pyrogeneous substance) and fall into a serious situation. Therefore, in an environment where cleanliness is controlled, such as an operating room or a bioclean room, the number of suspended particles is often controlled by a particle counter 351 as a means for preventing the generation of pyrogen.
That is, it is considered that the degree of increase or decrease of the airborne bacteria in the target region S can be grasped by measuring the number of airborne particles (including the debris of the suspended bacteria). Therefore, the number of particles in the target area S is measured by the particle counter 351 and the possibility of invasion of workers and devices into the target area S is managed according to the number of particles. Specifically, when the number of particles falls below a predetermined threshold value corresponding to the required sterilization level, it is determined that the target region S is safely ready for use for the purpose work such as diagnosis and treatment. Further, for example, when the number of particles exceeds a predetermined threshold value corresponding to the required sterilization level, the invasion into the target area S of the worker or the device which causes the derivation of the suspended particles is restricted.
 このように本実施形態の紫外線照射システム200Hは、対象領域Sの清浄度(清浄化の状態)を随時、管理可能に構成される。すなわち、直接照射型紫外線照射装置(第1紫外線照射装置100H)による付着菌の殺菌状態を、紫外線の照射条件、紫外線の累積照射時間(累積強度)に基づく推定手段の推定結果を用いて管理する。 As described above, the ultraviolet irradiation system 200H of the present embodiment is configured to be able to manage the cleanliness (cleaning state) of the target area S at any time. That is, the sterilized state of adherent bacteria by the direct irradiation type ultraviolet irradiation device (first ultraviolet irradiation device 100H) is managed by using the estimation result of the estimation means based on the ultraviolet irradiation conditions and the cumulative irradiation time (cumulative intensity) of the ultraviolet rays. ..
 また、間接照射型紫外線照射装置(第2紫外線照射装置100G)による浮遊菌の殺菌状態(浮遊菌の減少の程度)を管理する。ここで、浮遊菌の減少の程度は、例えば、空気中の粒子数をカウントするパーティクルカウンタ351の測定結果から推定する。本実施形態の殺菌対象の菌は一般的に、空気中の粒子に付着して浮遊する場合が多い。そこで、パーティクルカウンタ351により粒子数を測定することで、菌の概数を予測する。より詳細には、第2紫外線照射装置100Gにおいて循環殺菌により浮遊菌が殺菌され、当該(殺菌後の)浮遊菌が付着する粒子がバグフィルタ300により捕捉される。すなわち、対象領域Sへの浮遊菌(粒子)の流入よりもバグフィルタ300による粒子の回収量が上回れば、対象領域Sの粒子数は低下し、浮遊菌も低下すると考えられる。 In addition, the sterilization state of airborne bacteria (degree of reduction of airborne bacteria) by the indirect irradiation type ultraviolet irradiation device (second ultraviolet irradiation device 100G) is managed. Here, the degree of reduction of airborne bacteria is estimated from, for example, the measurement result of the particle counter 351 that counts the number of particles in the air. In general, the bacteria to be sterilized in the present embodiment often adhere to particles in the air and float. Therefore, the approximate number of bacteria is predicted by measuring the number of particles with the particle counter 351. More specifically, the airborne bacteria are sterilized by circulation sterilization in the second ultraviolet irradiation device 100G, and the particles to which the airborne bacteria (after sterilization) adhere are captured by the bag filter 300. That is, if the amount of particles recovered by the bug filter 300 exceeds the inflow of airborne bacteria (particles) into the target area S, it is considered that the number of particles in the target area S decreases and the airborne bacteria also decrease.
 このように、直接照射型紫外線照射装置(第1紫外線照射装置100H)による付着菌の殺菌状態と、間接照射型紫外線照射装置(第2紫外線照射装置100G)による浮遊菌の殺菌状態(浮遊菌の減少の程度)を、合わせて管理することで、対象領域Sの清浄度を管理する。 In this way, the sterilized state of adherent bacteria by the direct irradiation type ultraviolet irradiation device (first ultraviolet irradiation device 100H) and the sterilized state of airborne bacteria by the indirect irradiation type ultraviolet irradiation device (second ultraviolet irradiation device 100G) (of the floating bacteria). The degree of decrease) is also managed to manage the cleanliness of the target area S.
 本実施形態の紫外線照射システム200Hの運用について更に具体的に説明する。例えば、まず対象領域Sの使用前(対象領域Sへの医療従事者や患者の入室前、無人の場合)において、シミュレーション手段205および/または照射状態推定手段により、第1紫外線照射装置100Hにおける紫外線の直接照射の照射時間、具体的には所定の付着菌の要求殺菌レベルの殺菌が可能な必要照射時間T(Tc)を推定し、殺菌完了前の入室が不可となるよう管理する。そして、必要照射時間T(Tc)が経過した場合に、付着菌の殺菌が完了したとして、付着菌の殺菌完了の情報を報知(出力)する。また、第1紫外線照射装置100Hの運転を停止する。 The operation of the ultraviolet irradiation system 200H of this embodiment will be described in more detail. For example, first, before using the target area S (before entering the room of a medical worker or patient in the target area S, in the case of no person), the ultraviolet rays in the first ultraviolet irradiation device 100H by the simulation means 205 and / or the irradiation state estimation means. The irradiation time of direct irradiation, specifically, the required irradiation time T (Tc) capable of sterilizing the required sterilization level of a predetermined adherent bacterium is estimated, and the room is managed so as not to be able to enter the room before the completion of sterilization. Then, when the required irradiation time T (Tc) has elapsed, it is assumed that the sterilization of the attached bacteria is completed, and the information on the completion of the sterilization of the attached bacteria is notified (output). In addition, the operation of the first ultraviolet irradiation device 100H is stopped.
 さらに、第2紫外線照射装置100Gによる清浄化の状態を管理する。具体的には、パーティクルカウンタ351を管理し、空気中の粒子数(浮遊菌数と相関を有する)が要求殺菌レベルに応じた所定の閾値より低下した場合に、殺菌完了(浮遊菌の回収完了)の情報を報知(出力)する。 Furthermore, the state of cleaning by the second ultraviolet irradiation device 100G is managed. Specifically, the particle counter 351 is managed, and when the number of particles in the air (which has a correlation with the number of airborne bacteria) falls below a predetermined threshold value according to the required sterilization level, sterilization is completed (collection of airborne bacteria is completed). ) Information (output).
 そして、付着菌の殺菌完了、および浮遊菌の回収完了が達成された場合に、対象領域Sの使用を可能(入室許可)とする。 Then, when the sterilization of the adherent bacteria and the recovery of the airborne bacteria are completed, the target area S can be used (entry permission).
 また、対象領域Sの使用中(有人の場合)には、第1紫外線照射装置100Hの運転は停止し、第2紫外線照射装置100Gのみ運転させ、循環殺菌(流路における紫外線の間接照射を行う)。この場合もパーティクルカウンタ351を管理し、空気中の粒子数(浮遊菌数と相関を有する)が要求殺菌レベルに応じた所定の閾値を超えた場合には、その旨(汚染が進んだ旨)の情報(アラーム)を報知(出力)すると望ましい。 Further, while the target area S is in use (in the case of manned), the operation of the first ultraviolet irradiation device 100H is stopped, only the second ultraviolet irradiation device 100G is operated, and circulation sterilization (indirect irradiation of ultraviolet rays in the flow path is performed). ). In this case as well, the particle counter 351 is managed, and if the number of particles in the air (which has a correlation with the number of suspended bacteria) exceeds a predetermined threshold value according to the required sterilization level, that fact (that the contamination has progressed). It is desirable to notify (output) the information (alarm) of.
 なお、パーティクルカウンタ351の粒子のカウントの程度(どの程度細かい粒子までカウントするか)は、バグフィルタ300の集塵性能に応じて適宜選択、調整する。 The degree of particle counting (how fine particles are counted) of the particle counter 351 is appropriately selected and adjusted according to the dust collection performance of the bug filter 300.
 以上、第6実施形態(図31に示す例)では、間接照射型紫外線照射装置として自立型の第2紫外線照射装置100Gである場合を例示したが、第6実施形態において、第5実施形態(図28、図30)に示すような所望の流路を創出するダクト130を備える第2紫外線照射装置100Gを採用してもよい。この場合、ダクト130付の第2紫外線照射装置100Gは、空気の流入口IN(吸気口132)と流出口OUT(バグフィルタ300付近)がいずれも対象領域S内に配置される構成であってもよい。また、流入口IN(吸気口132)が対象領域S内に配置され、流出口OUT(バグフィルタ300付近)が対象領域S外に配置されて、流入量と流出量の制御により対象領域S内の圧力を制御可能(陰圧、陽圧制御可能)な構成にしてもよい。 As described above, in the sixth embodiment (example shown in FIG. 31), the case where the indirect irradiation type ultraviolet irradiation device is the self-supporting second ultraviolet irradiation device 100G has been illustrated, but in the sixth embodiment, the fifth embodiment ( A second ultraviolet irradiation device 100G provided with a duct 130 for creating a desired flow path as shown in FIGS. 28 and 30) may be adopted. In this case, the second ultraviolet irradiation device 100G with the duct 130 has a configuration in which both the air inlet IN (intake port 132) and the outlet OUT (near the bug filter 300) are arranged in the target region S. May be good. Further, the inflow port IN (intake port 132) is arranged in the target area S, the outlet OUT (near the bug filter 300) is arranged outside the target area S, and the inflow amount and the outflow amount are controlled in the target area S. The pressure may be controllable (negative pressure and positive pressure can be controlled).
 また、パーティクルカウンタ351は、常時設置しておくことが望ましい。例えば、ダクト130を備える第2紫外線照射装置100Gを採用した場合には、空気の流路となるその内部(ダクト130または第2紫外線照射装置100Gの内部)にパーティクルカウンタ351を設置することが望ましい。 It is also desirable that the particle counter 351 be installed at all times. For example, when the second ultraviolet irradiation device 100G provided with the duct 130 is adopted, it is desirable to install the particle counter 351 inside the second ultraviolet irradiation device 100G which is an air flow path (inside the duct 130 or the second ultraviolet irradiation device 100G). ..
 本実施形態では第1紫外線照射装置100Hが天面に配置されるため、例えばある第1紫外線照射装置100Hから対象領域Sの所定位置(例えば床面の所定位置など)までの距離が比較的容易かつ正確に算出でき、引いては当該第1紫外線照射装置100Hの照度の算出も(例えば第5実施形態の構成と比較して)比較的容易且つ正確に行える。つまり、本実施形態では、シミュレーション手段205によるシミュレーション結果も精度の高いものとなる。 In the present embodiment, since the first ultraviolet irradiation device 100H is arranged on the top surface, the distance from, for example, a certain first ultraviolet irradiation device 100H to a predetermined position of the target area S (for example, a predetermined position on the floor surface) is relatively easy. Moreover, it can be calculated accurately, and the illuminance of the first ultraviolet irradiation device 100H can be calculated relatively easily and accurately (for example, as compared with the configuration of the fifth embodiment). That is, in the present embodiment, the simulation result by the simulation means 205 is also highly accurate.
 これにより、例えば実際に対象領域Sを無人にすることなく、第1紫外線照射装置100Hの照射条件を変更した場合の対象領域Sの殺菌効果(清浄度)が容易に把握できるので、次回の実際の(無人状態での)第1紫外線照射装置100Hによる直接照射を効率よく実行することができる。 As a result, for example, the bactericidal effect (cleanliness) of the target area S when the irradiation conditions of the first ultraviolet irradiation device 100H are changed can be easily grasped without actually unmanning the target area S. Direct irradiation by the first ultraviolet irradiation device 100H (in an unmanned state) can be efficiently performed.
 本実施形態では、照射状態推定手段202及びシミュレーション手段205により、紫外線照射システム200Hの信頼度をより高めることができ、また、容易な操作で安全かつ効率の高い殺菌処理が可能となる。 In the present embodiment, the irradiation state estimation means 202 and the simulation means 205 can further increase the reliability of the ultraviolet irradiation system 200H, and enable safe and highly efficient sterilization treatment by simple operation.
 なお、第5実施形態の紫外線照射システム200Fにおいてもシミュレーション手段205を備える構成としてもよい。 The ultraviolet irradiation system 200F of the fifth embodiment may also be configured to include the simulation means 205.
 このように本実施形態においても、直接照射型紫外線照射装置と間接照射型紫外線照射装置を別体とし、それぞれの照射方法に適切な構成とした。特に直接照射型紫外線照射装置(第1紫外線照射装置100H)は対象領域Sの上部(例えば、天井)に多数個配置することで、例えば床面に配置する場合よりもさらに、紫外線が照射されない領域を低減することができる。 As described above, also in this embodiment, the direct irradiation type ultraviolet irradiation device and the indirect irradiation type ultraviolet irradiation device are separated and have an appropriate configuration for each irradiation method. In particular, by arranging a large number of direct irradiation type ultraviolet irradiation devices (first ultraviolet irradiation device 100H) on the upper part (for example, the ceiling) of the target area S, the area where the ultraviolet rays are not irradiated is further than the case where the direct irradiation type ultraviolet irradiation device (first ultraviolet irradiation device 100H) is arranged on the floor surface, for example. Can be reduced.
 特にこの例では、レール501を一旦設置した後は、第1紫外線照射装置100Hの増減設は容易に行うことができる。また、第1紫外線照射装置100Hは、例えば床面等に設置する場合と異なり、設置数が多いことによる日常の作業(生活)への支障は略無いと言える。つまり、対象領域Sの天面に多めに設置し、動作時には必要な分(必要な数、必要な位置)の装置のみ選択して直接照射を行うことも可能である。 Especially in this example, once the rail 501 is installed, the first ultraviolet irradiation device 100H can be easily increased or decreased. Further, unlike the case where the first ultraviolet irradiation device 100H is installed on the floor surface or the like, it can be said that there is almost no hindrance to daily work (life) due to the large number of installations. That is, it is also possible to install a large number of devices on the top surface of the target area S and directly irradiate by selecting only the required number of devices (the required number and the required position) during operation.
 また、間接照射型紫外線照射装置である第2紫外線照射装置100G)は、望ましい空気の流量が得られる構成にできる(循環させる空気の流量を、直接照射型紫外線照射装置の制約なく増大できる)ので、循環殺菌の効果も高めることができる。 Further, the second ultraviolet irradiation device 100G, which is an indirect irradiation type ultraviolet irradiation device, can be configured to obtain a desired air flow rate (the flow rate of the circulating air can be increased without the limitation of the direct irradiation type ultraviolet irradiation device). , The effect of circulation sterilization can also be enhanced.
 なお、第1紫外線発光手段101Hは、面状発光体でもよい。 The first ultraviolet light emitting means 101H may be a planar light emitting body.
 このように本実施形態の紫外線照射システム200Hは、簡素な構成でありながら、高い殺菌効果を得ることができる。また、照射状態推定手段202及びシミュレーション手段205により、紫外線照射システム200Hの信頼度をより高めることができ、また効果的且つ安全な殺菌処理が簡単な操作(例えばリモートコントローラによる操作)で可能となる。すなわち、一般家庭や医療施設ではない公共施設などにおいても、安価で安全に紫外線照射システム200を導入することが可能となる。 As described above, the ultraviolet irradiation system 200H of the present embodiment can obtain a high bactericidal effect even though it has a simple configuration. Further, the irradiation state estimation means 202 and the simulation means 205 can further improve the reliability of the ultraviolet irradiation system 200H, and enable effective and safe sterilization processing by a simple operation (for example, operation by a remote controller). .. That is, it is possible to introduce the ultraviolet irradiation system 200 inexpensively and safely even in a general household or a public facility other than a medical facility.
 <シミュレーション手段のユーザインターフェイスとしての利用>
 本実施形態によれば、シミュレーション手段205により殺菌効果を容易に視覚化できるため、例えば、紫外線照射システム200の普及(販売等)においても説得力の高い提案が可能となる。例えば、所定の入力によりシミュレーション結果を提示できるユーザインターフェイスを例えば、紫外線照射システム200の販売会社のウェブサイトなどに準備することで、ユーザの理解や期待度も高まり、紫外線照射システム200の普及(販売等)の一助となる。
<Use of simulation means as a user interface>
According to this embodiment, since the bactericidal effect can be easily visualized by the simulation means 205, it is possible to make a highly convincing proposal even in the spread (sales, etc.) of the ultraviolet irradiation system 200, for example. For example, by preparing a user interface that can present a simulation result by a predetermined input on, for example, the website of a sales company of the ultraviolet irradiation system 200, the understanding and expectation of the user can be increased, and the ultraviolet irradiation system 200 becomes widespread (sales). Etc.).
 これまでに説明した各実施形態の紫外線照射装置100の各構成(細部の構成)は、適宜選択・組み合わせが可能である。また、各実施形態の紫外線照射装置100を適宜選択・組み合わせて紫外線照射システム200を構築可能である。 Each configuration (detailed configuration) of the ultraviolet irradiation device 100 of each embodiment described so far can be appropriately selected and combined. Further, the ultraviolet irradiation system 200 can be constructed by appropriately selecting and combining the ultraviolet irradiation devices 100 of each embodiment.
 また、以下上記と重複する記載も含め、変形例として本発明の紫外線照射装置100および紫外線照射システム200において適宜選択・組み合わせ可能な構成を列挙する。 In addition, the configurations that can be appropriately selected and combined in the ultraviolet irradiation device 100 and the ultraviolet irradiation system 200 of the present invention are listed as modification examples, including the description overlapping with the above.
 紫外線照射装置100は、可搬型(自立型、衝立型、吊り下げ型)、取り付け型(壁または天面、一部は移動可能)、自走式のいずれかである。 The ultraviolet irradiation device 100 is either a portable type (self-supporting type, a striking type, a hanging type), a mounting type (wall or top surface, partly movable), or a self-propelled type.
 カバー手段103は、紫外線発光手段101と一体的に設けられ、紫外線発光手段101に対して相対的な移動はしない(開閉しない)構成であってもよい。 The cover means 103 may be provided integrally with the ultraviolet light emitting means 101 and may be configured so as not to move (open or close) relative to the ultraviolet light emitting means 101.
 遮断手段105と変換手段131は、例えば、カバー手段103と一体的に構成されてもよい。また、カバー手段103が遮断手段105を兼用する構成であってもよい。 The blocking means 105 and the converting means 131 may be integrally configured with, for example, the covering means 103. Further, the cover means 103 may also have a configuration in which the blocking means 105 is also used.
 紫外線照射装置100は装置内に空気の流路107、137を有し、循環殺菌可能であってもよいし流路107、137を有さなくてもよい。 The ultraviolet irradiation device 100 has air flow paths 107 and 137 in the device, and may or may not have flow paths 107 and 137.
 紫外線照射装置100は、UVを遮断せず(遮断手段105を有さず)、対象領域Sに直接照射を行うものであってもよい。この場合、状態切替手段225(ルーバー)などにより照射方向を変更するものであってもよい。 The ultraviolet irradiation device 100 may directly irradiate the target region S without blocking UV (without blocking means 105). In this case, the irradiation direction may be changed by the state switching means 225 (louver) or the like.
 紫外線照射装置100は、遮断手段105により遮断状態と非遮断状態を切り替え可能であってもよい。 The ultraviolet irradiation device 100 may be capable of switching between a blocked state and a non-blocked state by the blocking means 105.
 紫外線照射装置100はバグフィルタ300付きの流路130を有してもよいし有さなくてもよい。 The ultraviolet irradiation device 100 may or may not have a flow path 130 with a bug filter 300.
 紫外線照射装置100は一体的なバグフィルタ300を有しても良いし有さなくてもよい。 The ultraviolet irradiation device 100 may or may not have an integrated bug filter 300.
 紫外線照射装置100は、自身に紫外線反射手段250を一体的に有してもよいし有さなくてもよい。 The ultraviolet irradiation device 100 may or may not have the ultraviolet reflecting means 250 integrally.
 紫外線照射システム200は、バグフィルタ300付きの流路130を備えてもよいし、備えなくてもよい。 The ultraviolet irradiation system 200 may or may not include a flow path 130 with a bug filter 300.
 バグフィルタ300は紫外線照射装置100と一体に設けられてもよいし、別体でもよい。 The bug filter 300 may be provided integrally with the ultraviolet irradiation device 100, or may be a separate body.
 対象領域Sに紫外線を直接照射可能な紫外線照射装置とは別体に設けられ、流路137と流路137内の空気に紫外線を照射可能な他の紫外線照射装置を有してもよいし、有さなくてもよい。 The target region S may be provided separately from the ultraviolet irradiation device capable of directly irradiating the ultraviolet rays, and may have another ultraviolet irradiation device capable of irradiating the air in the flow path 137 and the flow path 137 with the ultraviolet rays. It does not have to be present.
 以上説明したように、本発明の紫外線照射システム200は、医療機関、あるいは一般家庭や会社等、任意の場所であっても、あらゆる空間に自由に設営が可能であり、即時に、集中的に殺菌・浄化を行なうことができる。また、当該対象領域Sに対して効果的な紫外線照射処理(殺菌処理、循環殺菌処理)を行うことが可能であり、安全且つ効果的な浮遊菌、付着菌、ウィルスの抑制や殺菌が行え、感染を未然に防止することができる。 As described above, the ultraviolet irradiation system 200 of the present invention can be freely set up in any space, such as a medical institution, a general home, a company, etc., and can be set up immediately and intensively. Can be sterilized and purified. In addition, effective ultraviolet irradiation treatment (sterilization treatment, circulation sterilization treatment) can be performed on the target area S, and safe and effective airborne bacteria, adherent bacteria, and viruses can be suppressed and sterilized. Infection can be prevented.
 従って、災害やパンデミック対策のシステムとして被災地や医療後進国などにおいて幅広い活用を見込むことができる。 Therefore, it can be expected to be widely used as a disaster and pandemic countermeasure system in disaster-stricken areas and underdeveloped medical countries.
 尚、本発明の紫外線照射システムは、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 It should be noted that the ultraviolet irradiation system of the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention.
 本発明の紫外線照射装置100は、医療・健康維持等に関連する産業の分野で利用することができる。 The ultraviolet irradiation device 100 of the present invention can be used in the fields of industries related to medical treatment, health maintenance, and the like.
100  紫外線照射装置  
101  紫外線発光手段  
103  カバー手段
103F  前面カバー部
103S  側面カバー部
105  遮断手段
107  流路
109  駆動制御手段
121  支持枠(支持体、枠体)
123  脚部
130  ダクト(流路)  
131  変換手段
132  吸気口
137  流路
150  区画手段
150M  紫外線反射手段  
161  係合手段
180  扉
181A  排気路
181B  排気ファン
182A  給気路
200  紫外線照射システム
201  情報処理装置
202  照射状態推定手段
205  シミュレーション手段
225  状態切替手段
250  紫外線反射手段  
260  包囲手段
300  バグフィルタ
350  照度計
351  パーティクルカウンタ
501  レール
502  スライダー
S  対象領域
S0  関心領域
SR  天面(天井)
LP  低圧水銀ランプ  
100 UV irradiation device
101 Ultraviolet light emitting means
103 Cover means 103F Front cover part 103S Side cover part 105 Blocking means 107 Flow path 109 Drive control means 121 Support frame (support body, frame body)
123 Leg 130 Duct (flow path)
131 Conversion means 132 Intake port 137 Flow path 150 Partitioning means 150M Ultraviolet reflecting means
161 Engagement means 180 Door 181A Exhaust passage 181B Exhaust fan 182A Air supply passage 200 Ultraviolet irradiation system 201 Information processing device 202 Irradiation state estimation means 205 Simulation means 225 State switching means 250 Ultraviolet reflection means
260 Envelopment means 300 Bug filter 350 Illuminance meter 351 Particle counter 501 Rail 502 Slider S Target area S0 Area of interest SR Top surface (ceiling)
LP low pressure mercury lamp

Claims (28)

  1.  所定の主波長を含む紫外線を出力可能な紫外線発光手段と、
     少なくとも一部が前記紫外線発光手段に対向配置されて前記紫外線の少なくとも一部を遮断する遮断手段と、を有し、
     前記遮断手段により前記紫外線の遮断状態と、非遮断状態とを切替可能に構成されている、
    ことを特徴とする紫外線照射装置。
    An ultraviolet light emitting means capable of outputting ultraviolet rays including a predetermined main wavelength, and
    It has, at least a part of the blocking means, which is arranged to face the ultraviolet light emitting means and blocks at least a part of the ultraviolet rays.
    The blocking means is configured to be able to switch between a blocking state of ultraviolet rays and a non-blocking state.
    An ultraviolet irradiation device characterized by the fact that.
  2.  前記遮断手段の物理的な移動、および/または材料の制御による前記遮断手段の選択により前記遮断状態と前記非遮断状態を切り替え可能に構成される、
    ことを特徴等する請求項1に記載の紫外線照射装置。
    It is configured so that the blocking state and the non-blocking state can be switched by the physical movement of the blocking means and / or the selection of the blocking means by controlling the material.
    The ultraviolet irradiation device according to claim 1, wherein the ultraviolet irradiation device is characterized in that.
  3.  前記紫外線発光手段との間で空気の流路を形成可能なカバー手段を備える、
    ことを特徴とする請求項1または請求項2に記載の紫外線照射装置。
    A covering means capable of forming an air flow path with the ultraviolet light emitting means is provided.
    The ultraviolet irradiation device according to claim 1 or 2.
  4.  前記紫外線発光手段は、前記流路の一端側から流入し他端側から流出する空気に前記紫外線を照射する、
    ことを特徴とする請求項3に記載の紫外線照射装置。
    The ultraviolet light emitting means irradiates the air flowing in from one end side of the flow path and flowing out from the other end side with the ultraviolet rays.
    The ultraviolet irradiation device according to claim 3.
  5.  前記紫外線発光手段によって前記紫外線を出力した状態で、前記遮断手段を前記紫外線発光手段に対して相対的に移動させることで前記遮断状態と前記非遮断状態を切り替え可能に構成されている、
    ことを特徴とする請求項1から請求項4のいずれかに記載の紫外線照射装置。
    In a state where the ultraviolet rays are output by the ultraviolet light emitting means, the blocking means can be switched between the blocking state and the non-blocking state by moving the blocking means relative to the ultraviolet emitting means.
    The ultraviolet irradiation device according to any one of claims 1 to 4.
  6.  前記主波長は、殺菌領域の波長であり、
     前記遮断手段は、前記殺菌領域の波長の光を遮断する、
    ことを特徴とする請求項1から請求項5のいずれかに記載の紫外線照射装置。
    The main wavelength is a wavelength in the sterilization region.
    The blocking means blocks light having a wavelength in the sterilization region.
    The ultraviolet irradiation device according to any one of claims 1 to 5.
  7.  前記紫外線照射装置は、可搬型である、
    ことを特徴とする請求項1から請求項6のいずれかに記載の紫外線照射装置。
    The ultraviolet irradiation device is portable.
    The ultraviolet irradiation device according to any one of claims 1 to 6, wherein the ultraviolet irradiation device is characterized.
  8.  前記紫外線を反射可能な紫外線反射手段を備える、
    ことを特徴とする請求項1から請求項7のいずれかに記載の紫外線照射装置。
    The ultraviolet reflecting means capable of reflecting the ultraviolet rays is provided.
    The ultraviolet irradiation device according to any one of claims 1 to 7.
  9.  バグフィルタを備える、
     ことを特徴とする請求項1から請求項8のいずれかに記載の紫外線照射装置。
    Equipped with a bug filter,
    The ultraviolet irradiation device according to any one of claims 1 to 8.
  10.  前記紫外線照射装置は、他の部材と係合可能な係合手段を備える、
    ことを特徴とする請求項1乃至請求項9のいずれかに記載の紫外線照射装置。
    The ultraviolet irradiation device includes engaging means capable of engaging with other members.
    The ultraviolet irradiation device according to any one of claims 1 to 9.
  11.  前記他の部材は、他の紫外線照射装置である、
    ことを特徴とする請求項10に記載の紫外線照射装置。
    The other member is another ultraviolet irradiation device.
    The ultraviolet irradiation device according to claim 10.
  12.  請求項1から請求項11のいずれかに記載の紫外線照射装置を有し、対象領域に前記紫外線を照射する紫外線照射システムであって、
     前記対象領域は区画手段により区画される領域である、
    ことを特徴とする紫外線照射システム。
    An ultraviolet irradiation system having the ultraviolet irradiation device according to any one of claims 1 to 11 and irradiating the target area with the ultraviolet rays.
    The target area is an area partitioned by the partitioning means.
    An ultraviolet irradiation system characterized by this.
  13.  前記紫外線照射装置は、前記区画手段の少なくとも一部を構成する、
    ことを特徴とする請求項12に記載の紫外線照射システム。
    The ultraviolet irradiation device constitutes at least a part of the partition means.
    The ultraviolet irradiation system according to claim 12.
  14.  前記対象領域内の空気の少なくとも一部を該対象領域外に排出する排気手段を備える、
    ことを特徴とする請求項12または請求項13に記載の紫外線照射システム。
    An exhaust means for exhausting at least a part of the air in the target area to the outside of the target area is provided.
    The ultraviolet irradiation system according to claim 12 or 13.
  15.  対象領域に対して所定の主波長を含む紫外線を出力可能な紫外線発光手段と、
     前記対象領域内の空気が通過する流路と、
     前記紫外線発光手段とは別体に設けられ、前記流路内を通過する空気に対して所定の主波長を含む紫外線を出力可能な他の紫外線発光手段と、を有する、
    ことを特徴とする紫外線照射システム。
    An ultraviolet light emitting means capable of outputting ultraviolet rays containing a predetermined main wavelength with respect to a target region, and
    The flow path through which the air in the target area passes and
    It is provided separately from the ultraviolet light emitting means, and has another ultraviolet light emitting means capable of outputting ultraviolet rays including a predetermined main wavelength to air passing through the flow path.
    An ultraviolet irradiation system characterized by this.
  16.  対象領域に対して所定の主波長を含む紫外線を出力可能な紫外線発光手段と、
     前記紫外線発光手段から出力された紫外線の照射状態に基づき、前記対象領域内の清浄程度または該対象領域の清浄に必要な紫外線の照射条件を推定する推定手段と、を有する、
    ことを特徴とする紫外線照射システム。
    An ultraviolet light emitting means capable of outputting ultraviolet rays containing a predetermined main wavelength with respect to a target region, and
    It has an estimation means for estimating the degree of cleanliness in the target area or the irradiation condition of the ultraviolet rays required for cleaning the target area based on the irradiation state of the ultraviolet rays output from the ultraviolet light emitting means.
    An ultraviolet irradiation system characterized by this.
  17.  入力される条件に基づき、前記対象領域内の清浄に必要な紫外線の照射条件を推定するシミュレーション手段を有する、
    ことを特徴とする請求項16に記載の紫外線照射システム。
    A simulation means for estimating the irradiation conditions of ultraviolet rays required for cleaning the target area based on the input conditions.
    The ultraviolet irradiation system according to claim 16.
  18.  前記紫外線発光手段は、前記対象領域の上方に配置される、
    ことを特徴とする請求項16または請求項17に記載の紫外線照射システム。
    The ultraviolet light emitting means is arranged above the target area.
    The ultraviolet irradiation system according to claim 16 or 17.
  19.  前記対象領域内の空気が通過する流路と、
     前記紫外線発光手段とは別体に設けられ、前記流路内を通過する空気に対して所定の主波長を含む紫外線を出力可能な他の紫外線発光手段と、を有する、
    ことを特徴とする請求項16から請求項18のいずれかに記載の紫外線照射システム。
    The flow path through which the air in the target area passes and
    It is provided separately from the ultraviolet light emitting means, and has another ultraviolet light emitting means capable of outputting ultraviolet rays including a predetermined main wavelength to air passing through the flow path.
    The ultraviolet irradiation system according to any one of claims 16 to 18.
  20.  前記紫外線発光手段を備える紫外線照射装置を複数設ける、
    ことを特徴とする請求項15から請求項19のいずれかに記載の紫外線照射システム。
    A plurality of ultraviolet irradiation devices provided with the ultraviolet light emitting means are provided.
    The ultraviolet irradiation system according to any one of claims 15 to 19.
  21.  少なくとも1つの前記紫外線照射装置は、移動可能に構成される、
    ことを特徴とする請求項20に記載の紫外線照射システム。
    At least one of the UV irradiators is configured to be movable.
    20. The ultraviolet irradiation system according to claim 20.
  22.  対象領域に殺菌領域の主波長の紫外線を照射する紫外線照射方法であって、
     前記対象領域に前記紫外線を出力可能な紫外線照射装置を配置するステップと、
     前記紫外線照射装置の遮断手段により、前記紫外線の遮断状態と非遮断状態とを切り替えるステップと、を有する、
    ことを特徴とする紫外線照射方法。
    It is an ultraviolet irradiation method that irradiates the target area with ultraviolet rays of the main wavelength of the sterilization area.
    A step of arranging an ultraviolet irradiation device capable of outputting the ultraviolet rays in the target area, and
    It has a step of switching between a blocked state and a non-blocked state of the ultraviolet ray by the blocking means of the ultraviolet irradiation device.
    An ultraviolet irradiation method characterized by the fact that.
  23.  前記遮断手段を物理的な移動させることにより、および/または材料の制御によって前記遮断手段を選択することにより、前記紫外線の遮断状態と非遮断状態とを切り替えるステップを有する、
    ことを特徴とする請求項22に記載の紫外線照射方法。
    By physically moving the blocking means and / or by selecting the blocking means by controlling the material, there is a step of switching between the blocking state and the non-blocking state of the ultraviolet rays.
    22. The ultraviolet irradiation method according to claim 22.
  24.  前記紫外線照射装置の内部に設けられた流路を流通する空気に前記紫外線の少なくとも一部を照射するステップを有する、
    ことを特徴とする請求項22または請求項23に記載の紫外線照射方法。
    It has a step of irradiating at least a part of the ultraviolet rays to the air flowing through the flow path provided inside the ultraviolet irradiation device.
    The ultraviolet irradiation method according to claim 22 or 23.
  25.  前記紫外線を出力した状態で、前記流路を流通する空気に前記紫外線を照射するとともに、前記遮断状態と前記非遮断状態を切り替える、
    ことを特徴とする請求項24に記載の紫外線照射方法。
    In the state where the ultraviolet rays are output, the air flowing through the flow path is irradiated with the ultraviolet rays, and the blocked state and the non-blocked state are switched.
    The ultraviolet irradiation method according to claim 24.
  26.  対象領域に対して紫外線発光手段から所定の主波長を含む紫外線を出力するステップと、
     前記対象領域内の空気が通過する流路に設けられた他の紫外線発光手段から該流路内を通過する空気に対して所定の主波長を含む紫外線を出力するステップと、
    を有することを特徴とする紫外線照射方法。
    A step of outputting ultraviolet rays containing a predetermined main wavelength from an ultraviolet light emitting means to a target area, and
    A step of outputting ultraviolet rays containing a predetermined main wavelength to the air passing through the flow path from another ultraviolet light emitting means provided in the flow path through which the air in the target region passes.
    An ultraviolet irradiation method characterized by having.
  27.  対象領域に対して紫外線発光手段から所定の主波長を含む紫外線を出力するステップと、
     出力された紫外線の照射状態に基づき、推定手段により前記対象領域内の清浄の程度または、該対象領域内の清浄に必要な紫外線の照射条件を推定するステップと、を有する、
    ことを特徴とする紫外線照射方法。
    A step of outputting ultraviolet rays containing a predetermined main wavelength from an ultraviolet light emitting means to a target area, and
    Based on the output ultraviolet irradiation state, there is a step of estimating the degree of cleaning in the target area or the ultraviolet irradiation conditions required for cleaning in the target area by an estimation means.
    An ultraviolet irradiation method characterized by the fact that.
  28.  紫外線発光手段から対象領域に対して所定の主波長を含む紫外線を出力する場合におけるシミュレーション方法であって、
     条件の入力を受け付けるステップと、
     前記条件に基づき、シミュレーション手段により前記対象領域内の清浄に必要な紫外線の照射条件をシミュレーションするステップと、を有する、
    ことを特徴とするシミュレーション方法。
    This is a simulation method in which ultraviolet rays containing a predetermined main wavelength are output from an ultraviolet light emitting means to a target region.
    Steps to accept input of conditions and
    Based on the above conditions, the simulation means includes a step of simulating the irradiation conditions of ultraviolet rays necessary for cleaning the target area.
    A simulation method characterized by that.
PCT/JP2020/038913 2019-10-17 2020-10-15 Ultraviolet ray irradiation device, ultraviolet ray irradiation system, ultraviolet ray irradiation method, and simulation method WO2021075496A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021552429A JPWO2021075496A1 (en) 2019-10-17 2020-10-15

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-189999 2019-10-17
JP2019189999 2019-10-17
JP2019-190000 2019-10-17
JP2019190000 2019-10-17

Publications (1)

Publication Number Publication Date
WO2021075496A1 true WO2021075496A1 (en) 2021-04-22

Family

ID=75538232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038913 WO2021075496A1 (en) 2019-10-17 2020-10-15 Ultraviolet ray irradiation device, ultraviolet ray irradiation system, ultraviolet ray irradiation method, and simulation method

Country Status (2)

Country Link
JP (1) JPWO2021075496A1 (en)
WO (1) WO2021075496A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210363767A1 (en) * 2020-05-19 2021-11-25 seiwo Technik GmbH Modular Protective Room and Pass-Through Hatch for a Protective Room
US20220042342A1 (en) * 2020-08-05 2022-02-10 Empowerment Innovation Lab Modular shelter pods
CN114832138A (en) * 2022-07-04 2022-08-02 至善时代智能科技(北京)有限公司 Method and device for detecting sterilizing effect of UVC ultraviolet radiation
US20220265498A1 (en) * 2021-02-18 2022-08-25 Industry-Academic Cooperation Foundation, Yonsei University Vehicle-type mobile infectious disease clinic
WO2022254713A1 (en) * 2021-06-04 2022-12-08 日本電信電話株式会社 Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023011923A1 (en) * 2021-08-05 2023-02-09 Signify Holding B.V. Disinfecting luminaire using switchable mirrors
WO2023174927A1 (en) * 2022-03-15 2023-09-21 Signify Holding B.V. Controlling an ultraviolet disinfection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246165A (en) * 1987-04-01 1988-10-13 豊田メデイカル株式会社 Apparatus for sterilizing and disinfecting local surface with ultraviolet rays
JPH0656132A (en) * 1992-08-03 1994-03-01 Shibuya Kogyo Co Ltd Ultraviolet ray shielding shutter for ultraviolet germicidal lamp
JP2005176982A (en) * 2003-12-17 2005-07-07 Fujitsu General Ltd Ultraviolet sterilizer
JP2014100206A (en) * 2012-11-19 2014-06-05 Tokuyama Corp Air cleaner
JP2016182170A (en) * 2015-03-25 2016-10-20 株式会社トクヤマ Portable ultraviolet sterilization device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63246165A (en) * 1987-04-01 1988-10-13 豊田メデイカル株式会社 Apparatus for sterilizing and disinfecting local surface with ultraviolet rays
JPH0656132A (en) * 1992-08-03 1994-03-01 Shibuya Kogyo Co Ltd Ultraviolet ray shielding shutter for ultraviolet germicidal lamp
JP2005176982A (en) * 2003-12-17 2005-07-07 Fujitsu General Ltd Ultraviolet sterilizer
JP2014100206A (en) * 2012-11-19 2014-06-05 Tokuyama Corp Air cleaner
JP2016182170A (en) * 2015-03-25 2016-10-20 株式会社トクヤマ Portable ultraviolet sterilization device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210363767A1 (en) * 2020-05-19 2021-11-25 seiwo Technik GmbH Modular Protective Room and Pass-Through Hatch for a Protective Room
US20220042342A1 (en) * 2020-08-05 2022-02-10 Empowerment Innovation Lab Modular shelter pods
US11739546B2 (en) * 2020-08-05 2023-08-29 Empowerment Innovation Lab Modular shelter pods
US20220265498A1 (en) * 2021-02-18 2022-08-25 Industry-Academic Cooperation Foundation, Yonsei University Vehicle-type mobile infectious disease clinic
US11850190B2 (en) * 2021-02-18 2023-12-26 Industry-Academic Cooperation Foundation, Yonsei University Vehicle-type mobile infectious disease clinic
WO2022254713A1 (en) * 2021-06-04 2022-12-08 日本電信電話株式会社 Ultraviolet light irradiation system and ultraviolet light irradiation method
WO2023011923A1 (en) * 2021-08-05 2023-02-09 Signify Holding B.V. Disinfecting luminaire using switchable mirrors
WO2023174927A1 (en) * 2022-03-15 2023-09-21 Signify Holding B.V. Controlling an ultraviolet disinfection system
CN114832138A (en) * 2022-07-04 2022-08-02 至善时代智能科技(北京)有限公司 Method and device for detecting sterilizing effect of UVC ultraviolet radiation
CN114832138B (en) * 2022-07-04 2022-09-30 至善时代智能科技(北京)有限公司 Method and device for detecting sterilizing effect of UVC ultraviolet radiation

Also Published As

Publication number Publication date
JPWO2021075496A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
WO2021075496A1 (en) Ultraviolet ray irradiation device, ultraviolet ray irradiation system, ultraviolet ray irradiation method, and simulation method
JP6607623B1 (en) UV irradiation equipment
US11547772B2 (en) Pre-doffing disinfection systems and methods
JP6490318B1 (en) UV irradiation apparatus, UV irradiation method, lighting apparatus and UV irradiation system
KR101980208B1 (en) Germicidal apparatuses with configurations to selectively conduct different disinfection modes interior and exterior to the apparatus
US8067750B2 (en) Area sterilizer and method of disinfection
CN106998764B (en) Room and area disinfection using pulsed light with modulated power flux and light system with visible light compensation between pulses
US8859994B2 (en) Disinfection device and method
EP3262992B1 (en) Containment curtains as well as systems and apparatuses including same
EP3806136A2 (en) Self-propagating discharge lamp apparatuses for room disinfection
US20230372561A1 (en) Apparatus and method for uv-c mask sanitization
KR20220072948A (en) Pass-through sterilization device
Akshat et al. AT89S52-Microcontroller Based Elevator with UV-C disinfection to prevent the transmission of COVID-19
US20220047765A1 (en) UV Air and Surface Disinfection Apparatus
IL302314A (en) Device for access control with physical disinfection
Ringangaonkar et al. A Comparative Study on UVC Light Devices To Inactivate Viruses
JP6947458B1 (en) Indoor sterilizer
Narouei et al. Effects of Germicidal Far-UVC on Indoor Air Quality in an Office Setting
Ciugudeanu et al. SteriLightVent-Hybrid UV Lighting Decontamination Device
WO2022125010A1 (en) Upper room air sterilization system with uvgi content

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552429

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877408

Country of ref document: EP

Kind code of ref document: A1