WO2021075314A1 - Image processing device, image processing method, and computer-readable recording medium - Google Patents

Image processing device, image processing method, and computer-readable recording medium Download PDF

Info

Publication number
WO2021075314A1
WO2021075314A1 PCT/JP2020/037860 JP2020037860W WO2021075314A1 WO 2021075314 A1 WO2021075314 A1 WO 2021075314A1 JP 2020037860 W JP2020037860 W JP 2020037860W WO 2021075314 A1 WO2021075314 A1 WO 2021075314A1
Authority
WO
WIPO (PCT)
Prior art keywords
feature points
combination
dimensional coordinates
calculated
feature point
Prior art date
Application number
PCT/JP2020/037860
Other languages
French (fr)
Japanese (ja)
Inventor
喜宏 山下
伸弘 森岡
健吾 深川
Original Assignee
Necソリューションイノベータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necソリューションイノベータ株式会社 filed Critical Necソリューションイノベータ株式会社
Priority to JP2021552339A priority Critical patent/JP7294702B2/en
Publication of WO2021075314A1 publication Critical patent/WO2021075314A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images

Definitions

  • the present invention relates to an image processing apparatus and an image processing method for enabling the construction of a three-dimensional shape from a plurality of images, and further, a computer-readable recording medium in which a program for realizing these is recorded. Regarding.
  • SfM Structure from Motion
  • the feature amount (for example, SIFT feature amount, SURF feature amount) is calculated for each image, and robustness feature points that are resistant to image enlargement / reduction, rotation, and illuminance change are extracted. Will be done.
  • matching of the extracted feature points is executed between the images, and a pair of matching feature points is extracted.
  • Robust Estimation calculates the geometrical relationship of feature point pairs and excludes erroneous feature point pairs.
  • Patent Document 1 and Patent Document 2 disclose a system for correcting the positions of corresponding feature points.
  • Patent Document 1 Specifically, in the system disclosed in Patent Document 1, first, two images of the same object are arranged so that their epipolar lines are parallel to the scanning line, and each scanning line is arranged. The corresponding feature points are extracted from each image. Next, the system disclosed in Patent Document 1 accepts a user input of a line segment that specifies a corresponding portion on each image.
  • the system disclosed in Patent Document 1 determines whether or not each corresponding feature point on the scanning line coincides with the intersection of the scanning line and the input line segment, and if they do not match. , Correct the position of each feature point to the position of the intersection. The system disclosed in Patent Document 1 then reconstructs the three-dimensional shape using the position-corrected feature points.
  • the system disclosed in Patent Document 2 first extracts a combination of corresponding feature points from each pair of images obtained by photographing the same object. Next, the system disclosed in Patent Document 2 calculates a numerical matrix from the geometrical relationship between the line segments or points when the corresponding line segments or points are specified in each paired image.
  • the feature point is p
  • the epipolar line in which the feature point p is present is l
  • the corresponding feature point is p'and the epipolar line in which the feature point p'is present.
  • the system disclosed in Patent Document 2 determines that the combination of the feature point p and the feature point p'is geometrically inconsistent when the distance d is equal to or greater than the threshold value. Then, the system disclosed in Patent Document 2 reconstructs the three-dimensional shape by using the calculated numerical matrix, excluding the combinations determined to have inconsistent geometric relationships.
  • An example of an object of the present invention is an image processing apparatus, an image processing method, which can solve the above problem and suppress the extraction of an erroneous combination of feature points when extracting a combination of corresponding feature points from a plurality of images. And to provide a computer-readable recording medium.
  • the image processing apparatus is an apparatus for constructing a three-dimensional shape of the object from a plurality of images of the object.
  • a feature point extraction unit that extracts a combination of corresponding feature points from each of the plurality of images, When two or more line segments or two or more points corresponding to each other are specified on at least two images of the plurality of images, the geometrical relationship between the two or more line segments corresponding to each other, or each other.
  • a matrix calculation unit that identifies a geometric relationship between two or more corresponding points and calculates a numerical matrix that expresses the specified geometric relationship.
  • the unnecessary feature point identification unit that identifies the combination of the feature points in which the geometrical relationship between the feature points is inconsistent is used with the numerical matrix.
  • a camera matrix of each feature point constituting the combination is calculated, and further, the feature points of the combination are calculated using the calculated camera matrix.
  • a three-dimensional coordinate calculation unit that calculates the three-dimensional coordinates of the object corresponding to For each combination of the feature points for which the three-dimensional coordinates have been calculated, the camera matrix corresponding to the image of the extraction source of one feature point constituting the combination is applied to the three-dimensional coordinates of the combination.
  • the two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates are compared with the two-dimensional coordinates of the one feature point. Based on the result, a conformity determination unit that determines whether or not the one feature point is appropriate, and A three-dimensional shape construction unit that constructs a three-dimensional shape of the object using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate. It is characterized by having.
  • the image processing method in one aspect of the present invention is a method for constructing a three-dimensional shape of the object from a plurality of images of the object.
  • the two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point are calculated. Based on the comparison result with, the step of determining whether or not the one feature point is appropriate, and (F) A step of constructing a three-dimensional shape of the object using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate. It is characterized by having.
  • the computer-readable recording medium in one aspect of the present invention is a computer that records a program for constructing a three-dimensional shape of the object from a plurality of images of the object by a computer.
  • a readable recording medium On the computer (A) A step of extracting a combination of corresponding feature points from each of the plurality of images. (B) When two or more line segments or two or more points corresponding to each other are designated on at least two images of the plurality of images, the geometric relationship between the two or more line segments corresponding to each other is specified. Or, a step that identifies a geometric relationship between two or more points corresponding to each other and calculates a numerical matrix that expresses the specified geometric relationship.
  • the two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point are calculated. Based on the comparison result with, the step of determining whether or not the one feature point is appropriate, and (F) A step of constructing a three-dimensional shape of the object using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate. It is characterized by recording a program including an instruction to execute.
  • FIG. 1 is a block diagram schematically showing an image processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a specific configuration of the image processing apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a plurality of images to be processed in the present embodiment.
  • FIG. 4 is a diagram illustrating processing by the matrix calculation unit according to the embodiment of the present invention.
  • FIG. 5 is a diagram illustrating processing by the shape building unit according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of a pair image in which a combination of feature points is extracted.
  • FIG. 7 is a diagram showing an example of the three-dimensional coordinates of the camera of the initial pair image and the rotation matrix obtained from the camera matrix.
  • FIG. 1 is a block diagram schematically showing an image processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a specific configuration of the image processing apparatus according to the embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of a combination of a newly selected image after selection of an initial pair image and feature points extracted from the image.
  • FIG. 9 is a diagram illustrating a process of reprojecting the three-dimensional coordinates of the feature points in the object onto the two-dimensional image.
  • FIG. 10 is a flow chart showing the operation of the image processing apparatus according to the embodiment of the present invention.
  • FIG. 11 is a block diagram showing an example of a computer that realizes the image processing apparatus according to the embodiment of the present invention.
  • FIG. 1 is a block diagram schematically showing an image processing apparatus according to an embodiment of the present invention.
  • the image processing device 10 in the present embodiment shown in FIG. 1 is a device for constructing a three-dimensional shape of an object from a plurality of images of the object.
  • the image processing apparatus 10 includes a feature point extraction unit 11, a matrix calculation unit 12, an unnecessary feature point identification unit 13, a three-dimensional coordinate calculation unit 14, a compatibility determination unit 15, and 3 It includes a three-dimensional shape construction unit 16.
  • the feature point extraction unit 11 extracts a combination of corresponding feature points from each of the plurality of images.
  • the matrix calculation unit 12 determines the geometry of two or more line segments corresponding to each other when two or more line segments or two or more points corresponding to each other are specified on at least two images of the plurality of images. Identify the relationship, or the geometric relationship between two or more points that correspond to each other. Further, the matrix calculation unit 12 calculates a numerical matrix expressing the specified geometric relationship.
  • the unnecessary feature point identification unit 13 uses the calculated numerical matrix to identify the combinations of feature points whose geometric relationships between the feature points are inconsistent among the combinations of the extracted feature points.
  • the three-dimensional coordinate calculation unit 14 calculates the camera matrix of each feature point constituting the combination for each feature point combination excluding the specified feature point combination. Further, the three-dimensional coordinate calculation unit 14 calculates the three-dimensional coordinates of the object corresponding to the feature points of the combination by using the calculated camera matrix for each combination of the feature points.
  • the suitability determination unit 15 For each combination of feature points for which three-dimensional coordinates have been calculated, the suitability determination unit 15 applies a camera matrix corresponding to the image of the extraction source of one feature point constituting this combination to the three-dimensional coordinates of this combination. To do. Then, the suitability determination unit 15 calculates the two-dimensional coordinates obtained by projecting the three-dimensional coordinates of this combination onto the image from which the above-mentioned one feature point is extracted by applying the camera matrix. Further, the suitability determination unit 15 compares the calculated two-dimensional coordinates with the two-dimensional coordinates of one feature point (two-dimensional coordinates on the image of the extraction source), and based on the comparison result, one of the above-mentioned ones. Determine if the feature points are appropriate.
  • the three-dimensional shape construction unit 16 constructs the three-dimensional shape of the object by using the three-dimensional coordinates of the object corresponding to the feature points of the combination determined to be appropriate by the suitability determination unit 15.
  • the combination of contradictory feature points is excluded by the geometric relationship obtained from the specified line segment or point, and then the three-dimensional coordinates of the obtained object are obtained. Is projected onto a two-dimensional image to determine whether or not the feature points are appropriate. That is, in the present embodiment, the wrong feature points are eliminated twice, before and after the calculation of the three-dimensional coordinates. Therefore, according to the present embodiment, when extracting the combination of the corresponding feature points from the plurality of images, it is possible to suppress the extraction of the wrong combination of the feature points. As a result, a highly accurate three-dimensional shape is constructed.
  • FIG. 2 is a block diagram showing a specific configuration of the image processing apparatus according to the embodiment of the present invention.
  • the image processing apparatus 10 includes a feature point extraction unit 11, a matrix calculation unit 12, an unnecessary feature point identification unit 13, a three-dimensional coordinate calculation unit 14, and a compatibility determination unit 15.
  • a three-dimensional shape construction unit 16 In addition to the three-dimensional shape construction unit 16, an image acquisition unit 17, a filtering unit 18, an input reception unit 19, and a display unit 20 are further provided.
  • reference numeral 21 denotes a display device.
  • the image acquisition unit 17 acquires image data of each of a plurality of images showing a three-dimensional shape construction target from an external device, for example, an image pickup device, a terminal device, a storage device that holds image data, and the like.
  • FIG. 3 is a diagram showing an example of a plurality of images to be processed in the present embodiment. In the example of FIG. 3, a pair image is illustrated, but the number of target images in the present embodiment is not particularly limited.
  • the feature point extraction unit 11 calculates, for example, a SIFT feature amount or a SURF feature amount for each image to specify the feature points, and further, the feature points corresponding to each other are supported between the images. Extract as a combination of feature points.
  • the combination of feature points is a feature point pair.
  • the circled portion is one of the feature points.
  • the two images from which the combination of the corresponding feature points is extracted are hereinafter referred to as "pair images”.
  • the filtering unit 18 calculates the geometrical relationship between the feature points for each combination of the feature points, identifies an erroneous feature point combination based on the calculation result, and eliminates the specified feature point combination. ..
  • the filtering process by the filtering unit 18 is performed by using robust estimation as in the conventional SfM.
  • the filtering by the filtering unit 18 is also performed, so that the wrong combination of feature points is more reliably eliminated.
  • the input receiving unit 19 accepts the input of the designated line segment or point. Further, when the input receiving unit 19 receives the input of the line segments corresponding to each other on each image, the input receiving unit 19 notifies the matrix calculation unit 12 of the information (coordinates of the start point and the end point) of each line segment. Further, when the input receiving unit 19 receives the input of the points corresponding to each other on each image, the input receiving unit 19 notifies the matrix calculation unit 12 of the information (coordinates) of each point.
  • the line segment or the point may be designated by the user of the image processing device 10 or by another computer.
  • the matrix calculation unit 12 identifies and specifies the geometrical relationship between the line segment or the point based on the notified information.
  • a numerical matrix that expresses the geometrical relationship is calculated, and this numerical matrix is defined as an absolute numerical matrix.
  • the matrix calculation unit 12 cannot calculate a numerical matrix from the line segment or point information on each image notified from the input reception unit 19, or if the line segment or point information does not exist depending on the image, the feature point It is also possible to calculate a numerical matrix from a combination of feature points with a small error remaining by filtering after being extracted by the extraction unit 11. However, the numerical matrix calculated in this case is the same numerical matrix as the conventional one, and is not an absolute numerical matrix.
  • FIG. 4 is a diagram illustrating processing by the matrix calculation unit according to the embodiment of the present invention.
  • E represents a epipolar plane
  • O i denotes the camera center position of one image
  • O 'i denotes the center position of the camera of the other image.
  • the parallelograms shown on the left and right indicate the frame of the image, respectively.
  • a line segment L is designated in one image and a line segment L'is designated in the other image, and both line segments correspond to each other.
  • the epipolar line l n intersecting the start point and the epipolar line l n + m intersecting at the end point are defined as absolute epipolar lines
  • the epipolar line l intersecting the start point is also defined.
  • ' N and the epipolar line l'n + m that intersects at the end point are defined as absolute epipolar lines.
  • intersection x i between the line segment L and the absolute epipolar line l n, the intersection x 'i and n' absolute epipolar line l and 'line segment L defined as a combination of absolute characteristic points .
  • intersection x j of the line segment L and the absolute epipolar line l n + m also the intersection x 'j' and absolute epipolar line l 'segment L and n + m, is defined as a combination of absolute feature points.
  • arbitrary epipolar lines l n + 1 and l n + 2 may be set between the epipolar line l n and the epipolar line l n + m.
  • arbitrary epipolar lines l' n + 1 and l' n + 2 are set between the epipolar line l'n and the epipolar line l' n + m.
  • the intersection of the line segment L and the newly set epipolar lines l n + 1 and l n + 2 is the intersection of the line segment L'and the newly set epipolar lines l' n + 1 and l' n + 2, respectively. It is a combination of absolute feature points.
  • the interval between epipolar lines is set to an arbitrary value.
  • the matrix calculation unit 12 obtains an absolute combination of feature points as the geometric relationship between the lines, and uses the obtained combination of feature points to form the relationship of the following equation 1.
  • a Fundamental matrix (reference) is calculated as an absolute numerical matrix.
  • "x" is a two-dimensional point obtained by projecting a point X in a three-dimensional space onto one image.
  • "X'" is a two-dimensional point obtained by projecting a point X in a three-dimensional space onto the other image.
  • T is the transposed matrix.
  • F is a Fundamental matrix.
  • the numerical matrix is not limited to the Fundamental matrix, and any matrix that can express a geometric relationship may be used.
  • the unnecessary feature point identification unit 13 first uses a numerical matrix (Fundamental matrix) calculated by the matrix calculation unit 12 to combine feature points extracted by the feature point extraction unit 11 (filtering unit). From (excluding those excluded in 18), the combination of feature points with inconsistent geometric relationships is identified.
  • a numerical matrix Frundamental matrix
  • the unnecessary feature point identification unit 13 is a feature point that overlaps with a designated line segment or point from the combination of feature points extracted by the feature point extraction unit 11 (excluding those excluded by the filtering unit 18).
  • the combination of the feature points including the specified feature points can also be specified as the feature points whose geometric relationships are inconsistent. This is because if there is no feature point corresponding to one line segment or a feature point that overlaps only one point on the other line segment or the other point, this combination of feature points may be incorrect. Because it is expensive.
  • FIG. 5 is a diagram illustrating processing by the shape building unit according to the embodiment of the present invention.
  • those with the reference numerals shown in FIG. 4 indicate those with the same symbols in FIG.
  • the combination of the feature point p i and the feature point p 'i is assumed to be a determination of whether the target is wrong.
  • unnecessary feature point specifying unit 13 if the calculated epipolar line l '1 and the feature point p' the distance d between the i may determine whether a threshold value or more, the distance d is greater than or equal to a threshold value It determines that the combination of the feature point p i and the feature point p 'i is wrong. In this case, unnecessary feature point specifying unit 13, a combination of the feature point p i and the feature point p 'i, the geometric relationship is specified as a combination of feature points inconsistent.
  • the three-dimensional coordinate calculation unit 14 calculates the three-dimensional coordinates for constructing the three-dimensional shape by using the combination of the feature points not specified by the unnecessary feature point identification unit 13. Further, at this time, the three-dimensional coordinate calculation unit 14 can also use the corresponding point or the point on the corresponding line segment received by the input receiving unit 19 as a combination of the feature points.
  • FIG. 6 is a diagram showing an example of a pair image in which a combination of feature points is extracted.
  • FIG. 7 is a diagram showing an example of the three-dimensional coordinates of the camera of the initial pair image and the rotation matrix obtained from the camera matrix.
  • FIG. 8 is a diagram showing an example of a combination of a newly selected image after selection of an initial pair image and feature points extracted from the image.
  • the three-dimensional coordinate calculation unit 14 first selects an image 31 and an image 32 as a pair of images (initial pair images).
  • the feature points (m 1 to m 5 ) extracted from the image 31 correspond to the feature points (m ' 1 to m ' 5) extracted from the image 32.
  • m 1 and m '1, m 2 and m' 2, m 3 and m '3, m 4 and m' 4, m 5 and m '5 are each also referred to as a combination of feature points (hereinafter "feature point pair" To do).
  • the image 31 is photographed by the camera 41, and the image 32 is photographed by the camera 42.
  • M (M 1 to M 5 ) is a three-dimensional coordinate on the object corresponding to each feature point.
  • the three-dimensional coordinate calculation unit 14 using the initial pair images extracted feature point pair from each (m 1 ⁇ m 5, m '1 ⁇ m' 5), the camera 41 captures an image 31 Camera
  • the matrix P and the camera matrix P'of the camera 42 that captured the image 32 are calculated.
  • the camera matrix P and the camera matrix P' can be represented by the following equations 3 and 4, respectively, with the position of the camera 41 as the origin.
  • I is a rotation matrix of the camera 41.
  • R and t can be calculated by back-calculating from the camera matrix P and the camera matrix P'.
  • the three-dimensional coordinate calculation unit 14 calculates R and t by solving the equations shown in the following equations 5 to 7 using the coordinates of each feature point.
  • the m hat is the coordinates on the image A obtained by normalizing m (m 1 to m 5).
  • m 'hat, m' is the coordinates on the obtained image B the (m '1 ⁇ m' 5 ) is normalized.
  • E is the Essential matrix and K is the camera calibration matrix.
  • the calibration matrix K can be obtained from the following equations 8 and 9. Note that c x and cy are the center coordinates of the camera.
  • the three-dimensional coordinate calculation unit 14 calculates the three-dimensional coordinates M (M 1 to M 5 ) of the extracted feature points using the three-dimensional coordinates of the position of each camera and the rotation matrix. Specifically, the three-dimensional coordinate calculation unit 14 calculates the three-dimensional coordinate M by solving the following equation tens. Further, the matrix A in the equation 10 is represented by the equation 11. In Equation 11, p iT is the line of camera matrix P, p 'iT are camera matrix P' is a row of.
  • the three-dimensional coordinate calculation unit 14 newly selects one image 33 from the images obtained by extracting the feature points and other than the initial pair image.
  • the newly selected image 33 and one of the initial pair images are used as a new pair image.
  • the image 33 is taken by the camera 43.
  • the three-dimensional coordinate calculation unit 14 identifies characteristic points of the image 33 corresponding to the feature points of the image 32 (m '' 1 ⁇ m ' ' 3), feature points between the feature point and the image 33 of the image 32 And is a feature point pair. Then, the three-dimensional coordinate calculation unit 14 calculates the camera matrix Pn of the camera 43 that captured the image 33.
  • the camera matrix Pn can be represented by the following number 12.
  • the three-dimensional coordinate calculation unit 14 calculates Rn and tun of the camera matrix Pn of the camera 43 by solving the equation shown in the following equation 13 using the specified feature points of the image 33. ..
  • M i is the 3-dimensional coordinates of the feature points in common with the image 32 in the newly selected image 33.
  • the mi hat is the normalized coordinates of the feature points in the newly selected image 33.
  • the di indicates the distance between the camera 43 that captured the image 33 and the mi hat, as shown in the following number 14.
  • the three-dimensional coordinate calculation unit 14 uses the calculated Rn and tun of the camera matrix Pn of the camera 43 to obtain the three-dimensional coordinates of the specified feature points (m ′′ 1 to m ′′ 3) of the image 33. to calculate the M i. In this case as well, the three-dimensional coordinate calculation unit 14 calculates the three-dimensional coordinates M (M 1 to M 3 ) of the feature points by solving the above equation 10. Through the above processing, the three-dimensional coordinate calculation unit 14 can calculate the three-dimensional coordinates of the object.
  • the conformity determination unit 15 uses, for example, three-dimensional coordinates obtained from one of the feature point pairs and a camera matrix corresponding to the image of the extraction source to obtain the original two-dimensional image. Reprojection is performed on the top, and the two-dimensional coordinates of the projected position are compared with the two-dimensional coordinates of the position at the time of extraction. Then, in the present embodiment, the suitability determination unit 15 calculates the difference between the former two-dimensional coordinates and the latter two-dimensional coordinates as a comparison result, and when the calculated difference is equal to or less than the threshold value, it becomes a target. It is judged that the feature points are appropriate. On the other hand, when the calculated difference exceeds the threshold value, the suitability determination unit 15 determines that the target feature point is not appropriate.
  • the suitability determination unit 15 selects all or one part of the feature points constituting this combination for each combination of the feature points for which the three-dimensional coordinates have been calculated, and the selected feature points It is possible to determine whether or not they are appropriate one by one. For example, when the combination of feature points is composed of three feature points, the suitability determination unit 15 may determine whether or not each of the three feature points is appropriate, or only two of them. May be selected and it may be determined whether or not each of the two selected feature points is appropriate.
  • FIG. 9 is a diagram illustrating a process of reprojecting the three-dimensional coordinates of the feature points in the object onto the two-dimensional image. Further, in the example of FIG. 9, an example of reprojecting one of the feature points on the image 32 shown in FIG. 6 is shown. Further, in FIG. 9, the three-dimensional coordinates corresponding to the feature points, that is, the three-dimensional coordinates in the world coordinate system are set to (X W , Y W , Z W ), and the two-dimensional coordinates of the position at the time of extracting the feature points are set. Let (x f, y f ). Further, let the coordinates of the feature points in the camera coordinate system be (X C , Y C , Z C ).
  • the conformity determination unit 15 normalizes the coordinates (X C , Y C , Z C ) of the feature points in the camera coordinate system using the following equation 16.
  • the conformity determination unit 15 uses the coordinates normalized by the above equation 16 and the internal parameters of the camera (in the example of FIG. 9, the focal length f of the camera 42 and the coordinates of the image center position (c x, cy ). ) Is applied to the following equation 17 to calculate the two-dimensional coordinates (x p , y p ) when the feature points are reprojected on the image 32.
  • the conformity judging unit 15 uses the number 18 below, the two-dimensional coordinates (x p, y p) after re-projection calculated from the equation 17 and the two-dimensional coordinates of the position at the time of the feature point extraction The difference d from (x f , y f) is calculated.
  • the suitability determination unit 15 determines that the target feature point is appropriate when the calculated difference d is equal to or less than the threshold value G, and when the calculated difference d exceeds the threshold value G, it becomes a target. It is judged that the feature points are not appropriate.
  • the conformity determination unit 15 excludes the three-dimensional coordinates corresponding to the feature points determined to be inappropriate and the combination of all the feature points corresponding to the three-dimensional coordinates. Further, in the present embodiment, the conformity determination unit 15 excludes only the feature points determined to be inappropriate, and sets the three-dimensional coordinates corresponding to the feature points determined to be inappropriate and the three-dimensional coordinates. Of the corresponding combinations of feature points, it is possible not to exclude feature points other than the feature points determined to be inappropriate. In this case, when the suitability determination of all the feature points is completed, the suitability determination unit 15 has less than two feature points corresponding to the three-dimensional coordinates for all the three-dimensional coordinates. Three-dimensional coordinates need to be excluded.
  • the three-dimensional shape construction unit 16 recalculates the three-dimensional coordinates using the remaining feature points, constructs the point cloud data of the object, and sets this as the three-dimensional shape of the object.
  • the display unit 20 displays the three-dimensional shape constructed by the three-dimensional shape construction unit 16 on the screen of the display device 21. Specifically, the display unit 20 creates image data for displaying the constructed three-dimensional shape on the two-dimensional screen, and outputs the created image data to the display device 21.
  • the combination of the feature points extracted by the feature point extraction unit 11 is used, for example, the combination of the feature points after only the filtering by the filtering unit 18 is performed, and the three-dimensional coordinates are used.
  • the calculation unit 14 can also calculate the provisional three-dimensional coordinates of the object.
  • the three-dimensional shape building unit 16 further builds a temporary three-dimensional shape using the calculated temporary three-dimensional coordinates.
  • the display unit 20 displays the constructed temporary three-dimensional shape on the screen of the display device 21. In this case, the user can specify line segments or points corresponding to each other in the temporary three-dimensional shape displayed on the screen.
  • FIG. 10 is a flow chart showing the operation of the image processing apparatus according to the embodiment of the present invention.
  • FIGS. 1 to 9 will be referred to as appropriate.
  • the image processing method is implemented by operating the image processing device 10. Therefore, the description of the image processing method in the present embodiment will be replaced with the following description of the operation of the image processing device 10.
  • the image acquisition unit 17 acquires image data of each of a plurality of images showing a three-dimensional shape construction target from an external device (step A1).
  • the feature point extraction unit 11 identifies the feature points in the image for each image data acquired in step A1, and further extracts the feature points corresponding to each other as a combination of the corresponding feature points. (Step A2).
  • the filtering unit 18 calculates the geometrical relationship between the feature points for each combination of the feature points extracted in step A2, and identifies an erroneous feature point combination based on the calculation result.
  • the combination of the specified feature points is excluded (step A3).
  • the three-dimensional coordinate calculation unit 14 calculates temporary three-dimensional coordinates using the combination of the feature points after filtering, and further, the three-dimensional shape construction unit 16 Constructs a tentative 3D shape using the calculated tentative 3D coordinates. Further, the display unit 20 displays the constructed temporary three-dimensional shape on the screen of the display device 21 (step A4).
  • step A4 When step A4 is executed and the temporary three-dimensional shape is displayed on the screen of the display device 21, the user can use the line segments corresponding to each other on each image via the input device (not shown in FIG. 2). Or specify a point.
  • the input receiving unit 16 receives the input of the designated line segment or point (step A5). Further, the input receiving unit 16 notifies the matrix calculation unit 12 of the information of each designated line segment or the information of each point.
  • step A5 when step A5 is executed, the matrix calculation unit 12 identifies the geometric relationship between the line segments or the points based on the information of each line segment or the information of each point, and the specified geometric relationship. Is calculated (step A6).
  • the unnecessary feature point identification unit 13 uses the numerical matrix (Fundamental matrix) calculated in step A6, and from the combination of feature points after the execution of step A3, the combination of feature points whose geometric relationships are inconsistent. (Step A7).
  • the three-dimensional coordinate calculation unit 14 calculates the three-dimensional coordinates for constructing the three-dimensional shape by using the combination of the feature points not specified in step A7 (step A8).
  • the suitability determination unit 15 sets a camera matrix corresponding to the image of the extraction source of one feature point constituting this combination for each combination of the feature points whose three-dimensional coordinates are calculated in step A8. Applies to the 3D coordinates of. Then, the suitability determination unit 15 calculates the two-dimensional coordinates obtained by projecting the three-dimensional coordinates of this combination onto the image from which the above-mentioned one feature point is extracted by applying the camera matrix. Further, the suitability determination unit 15 compares the calculated two-dimensional coordinates with the two-dimensional coordinates of one feature point (two-dimensional coordinates on the image of the extraction source), and based on the comparison result, one of the above-mentioned ones. It is determined whether or not the feature points are appropriate (step A9).
  • the three-dimensional shape construction unit 16 constructs the three-dimensional shape of the object by using the three-dimensional coordinates of the object corresponding to the feature points of the combination determined to be appropriate in step A6 (. Step A10). After that, the display unit 20 displays the three-dimensional shape constructed in step A10 on the screen of the display device 21 (step A11).
  • the program in this embodiment may be any program that causes a computer to execute steps A1 to A11 shown in FIG.
  • the computer processor includes a feature point extraction unit 11, a matrix calculation unit 12, an unnecessary feature point identification unit 13, a three-dimensional coordinate calculation unit 14, a conformity determination unit 15, a three-dimensional shape construction unit 16, and an image acquisition unit 17.
  • It functions as a filtering unit 18 and an input receiving unit 19, and performs processing.
  • each computer has a feature point extraction unit 11, a matrix calculation unit 12, an unnecessary feature point identification unit 13, a three-dimensional coordinate calculation unit 14, a suitability determination unit 15, and a three-dimensional shape construction unit 16, respectively. It may function as any of the image acquisition unit 17, the filtering unit 18, and the input reception unit 19.
  • FIG. 11 is a block diagram showing an example of a computer that realizes the image processing apparatus according to the embodiment of the present invention.
  • the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. Each of these parts is connected to each other via a bus 121 so as to be capable of data communication. Further, the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
  • GPU Graphics Processing Unit
  • FPGA Field-Programmable Gate Array
  • the CPU 111 executes various operations by expanding the program (code group) in the present embodiment stored in the storage device 113 into the main memory 112 and executing each code in a predetermined order.
  • the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the program according to the present embodiment is provided in a state of being stored in a computer-readable recording medium 120.
  • the program in the present embodiment may be distributed on the Internet connected via the communication interface 117.
  • the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and mouse.
  • the display controller 115 is connected to the display device 119 and controls the display on the display device 119.
  • the data reader / writer 116 mediates the data transmission between the CPU 111 and the recording medium 120, reads the program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 include a general-purpose semiconductor storage device such as CF (CompactFlash (registered trademark)) and SD (SecureDigital), a magnetic recording medium such as a flexible disk, or a CD-.
  • CF CompactFlash (registered trademark)
  • SD Secure Digital
  • magnetic recording medium such as a flexible disk
  • CD- CompactDiskReadOnlyMemory
  • optical recording media such as ROM (CompactDiskReadOnlyMemory).
  • the image processing device 10 in the present embodiment can also be realized by using hardware (for example, a circuit) corresponding to each part instead of the computer in which the program is installed. Further, the image processing apparatus 10 may be partially realized by a program and the rest may be realized by hardware.
  • a device for constructing a three-dimensional shape of an object from a plurality of images of the object A feature point extraction unit that extracts a combination of corresponding feature points from each of the plurality of images, When two or more line segments or two or more points corresponding to each other are specified on at least two images of the plurality of images, the geometrical relationship between the two or more line segments corresponding to each other, or each other.
  • a matrix calculation unit that identifies a geometric relationship between two or more corresponding points and calculates a numerical matrix that expresses the specified geometric relationship.
  • the unnecessary feature point identification unit that identifies the combination of the feature points in which the geometrical relationship between the feature points is inconsistent is used with the numerical matrix.
  • a camera matrix of each feature point constituting the combination is calculated, and further, the feature points of the combination are calculated using the calculated camera matrix.
  • a three-dimensional coordinate calculation unit that calculates the three-dimensional coordinates of the object corresponding to For each combination of the feature points for which the three-dimensional coordinates have been calculated, the camera matrix corresponding to the image of the extraction source of one feature point constituting the combination is applied to the three-dimensional coordinates of the combination.
  • the two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates are compared with the two-dimensional coordinates of the one feature point.
  • a conformity determination unit that determines whether or not the one feature point is appropriate
  • a three-dimensional shape construction unit that constructs a three-dimensional shape of the object using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate.
  • Appendix 2 The image processing apparatus according to Appendix 1.
  • the suitability determination unit calculates the difference between the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point, and when the calculated difference is equal to or less than the threshold value, the one feature point is determined. It is determined that the feature point is appropriate, and when the calculated difference exceeds the threshold value, it is determined that the one feature point is not appropriate.
  • An image processing device characterized by this.
  • Appendix 3 The image processing apparatus according to Appendix 1 or 2.
  • the suitability determination unit selects all or one part of the feature points constituting the combination for each combination of the feature points for which the three-dimensional coordinates have been calculated, and whether or not each of the selected feature points is appropriate. To judge, An image processing device characterized by this.
  • the unnecessary feature point identification unit further sets a feature point that overlaps with two or more designated line segments or two or more points corresponding to each other among the feature points constituting the extracted combination of the feature points. Identify, An image processing device characterized by this.
  • Appendix 5 The image processing apparatus according to any one of Appendix 1 to 4. It further includes a display unit that displays the three-dimensional shape constructed by the three-dimensional shape construction unit on the screen. An image processing device characterized by this.
  • the image processing apparatus (Appendix 6) The image processing apparatus according to Appendix 5.
  • the three-dimensional coordinate calculation unit calculates temporary three-dimensional coordinates of the object by using the combination of the feature points extracted by the feature point extraction unit.
  • the three-dimensional shape construction unit constructs a temporary three-dimensional shape of the object by using the calculated temporary three-dimensional coordinates.
  • the display unit further displays the temporary three-dimensional shape on the screen. An image processing device characterized by this.
  • (Appendix 7) A method for constructing a three-dimensional shape of an object from a plurality of images of the object.
  • A A step of extracting a combination of corresponding feature points from each of the plurality of images.
  • B When two or more line segments or two or more points corresponding to each other are designated on at least two images of the plurality of images, the geometric relationship between the two or more line segments corresponding to each other is specified. Or, a step that identifies a geometric relationship between two or more points corresponding to each other and calculates a numerical matrix that expresses the specified geometric relationship.
  • C Using the numerical matrix, among the extracted combinations of the feature points, the step and the step of identifying the combination of the feature points in which the geometrical relationship between the feature points is inconsistent.
  • An image processing method comprising.
  • (Appendix 13) A computer-readable recording medium in which a computer records a program for constructing a three-dimensional shape of an object from a plurality of images of the object.
  • On the computer (A) A step of extracting a combination of corresponding feature points from each of the plurality of images.
  • the two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point are calculated. Based on the comparison result with, the step of determining whether or not the one feature point is appropriate, and (F) A step of constructing a three-dimensional shape of the object using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate.
  • a computer-readable recording medium characterized by recording a program, including instructions for executing the program.
  • Appendix 14 The computer-readable recording medium according to Appendix 13, which is a computer-readable recording medium.
  • step (e) as a comparison result, the difference between the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point is calculated, and when the calculated difference is equal to or less than the threshold value, the one feature point. Is appropriate, and when the calculated difference exceeds the threshold value, it is determined that the one feature point is not appropriate.
  • a computer-readable recording medium characterized by that.
  • (Appendix 16) A computer-readable recording medium according to any one of Appendix 13 to 15. In the step (c), among the feature points constituting the combination of the extracted feature points, the feature points overlapping the designated two or more line segments or two or more points corresponding to each other are designated. Identify, A computer-readable recording medium characterized by that.
  • Appendix 17 A computer-readable recording medium according to any one of Appendix 13 to 16.
  • the three-dimensional shape constructed by the step (f) is displayed on the screen, and the step is executed.
  • Appendix 18 The computer-readable recording medium according to Appendix 17, wherein the recording medium is readable.
  • the tentative three-dimensional coordinates of the object are calculated, and the calculated tentative three-dimensional coordinates are used to calculate the target.
  • a temporary three-dimensional shape of an object is constructed, and the temporary three-dimensional shape is displayed on the screen, and a step is executed.
  • a computer-readable recording medium characterized by that.
  • the present invention when extracting the corresponding combination of feature points from a plurality of images, it is possible to suppress the extraction of the wrong combination of feature points.
  • the present invention is useful in a technique for constructing a three-dimensional shape from a plurality of images such as SfM.
  • Image processing unit 11 Feature point extraction unit 12 Matrix calculation unit 13 Unnecessary feature point identification unit 14 3D coordinate calculation unit 15 Conformity judgment unit 16 3D shape construction unit 17 Image acquisition unit 18 Filtering unit 19 Input reception unit 20 Display unit 21 Display device 110 Computer 111 CPU 112 Main memory 113 Storage device 114 Input interface 115 Display controller 116 Data reader / writer 117 Communication interface 118 Input device 119 Display device 120 Recording medium 121 Bus

Abstract

An image processing device 10 is provided with: a feature point extraction unit 11 for extracting combinations of feature points from images of a target object; a matrix calculation unit 12 for, when at least two corresponding line segments or points are designated, calculating a numerical matrix indicating a geometric relationship between the feature points; an unnecessary feature point specification unit 13 for specifying, from the numerical matrix, a combination of feature points the geometric relationship of which is contradicted; a three-dimensional coordinate calculation unit 14 for, by using a camera matrix of feature points calculated except for the specified combination, calculating three-dimensional coordinates corresponding to the feature points; a suitability determination unit 15 for applying the camera matrix to the three-dimensional coordinates for each of the combinations of feature points, calculating two-dimensional coordinates obtained by projecting the three-dimensional coordinates to an image of an extraction source of the feature points, and determining whether or not the feature points are suitable from comparison between the two-dimensional coordinates and the original two-dimensional coordinates of the feature points; and a three-dimensional shape construction unit 16 for constructing a three-dimensional shape of the target object by using the three-dimensional coordinates corresponding to the suitable feature points.

Description

画像処理装置、画像処理方法、及びコンピュータ読み取り可能な記録媒体Image processing equipment, image processing methods, and computer-readable recording media
 本発明は、複数の画像からの3次元形状の構築を可能にするための、画像処理装置、及び画像処理方法に関し、更には、これらを実現するためのプログラムを記録したコンピュータ読み取り可能な記録媒体に関する。 The present invention relates to an image processing apparatus and an image processing method for enabling the construction of a three-dimensional shape from a plurality of images, and further, a computer-readable recording medium in which a program for realizing these is recorded. Regarding.
 近年、画像に写っている対象の3次元形状を構築する技術が注目されている。このような技術の代表例としては、SfM(Structure from Motion)が知られている。SfMでは、特定の対象をカメラの視点を変えながら複数回撮影が行われ、得られた複数枚の画像から、特定の対象の3次元形状が再構築される。 In recent years, attention has been focused on the technology for constructing the three-dimensional shape of the object shown in the image. SfM (Structure from Motion) is known as a typical example of such a technique. In SfM, a specific target is photographed a plurality of times while changing the viewpoint of the camera, and the three-dimensional shape of the specific target is reconstructed from the obtained plurality of images.
 具体的には、まず、SfMでは、画像毎に、その特徴量(例えば、SIFT特徴量、SURF特徴量)が計算され、画像の拡大縮小、回転、及び照度変化に強いロバストネスな特徴点が抽出される。次に、画像間で、抽出した特徴点のマッチングが実行され、一致する特徴点のペアが抽出される。次に、例えば、ロバスト推定(Robust Estimation)によって、特徴点ペアの幾何学的な関係が計算され、誤った特徴点ペアが除外される。 Specifically, first, in SfM, the feature amount (for example, SIFT feature amount, SURF feature amount) is calculated for each image, and robustness feature points that are resistant to image enlargement / reduction, rotation, and illuminance change are extracted. Will be done. Next, matching of the extracted feature points is executed between the images, and a pair of matching feature points is extracted. Next, for example, Robust Estimation calculates the geometrical relationship of feature point pairs and excludes erroneous feature point pairs.
 その後、幾つかの特徴点ペア毎に、これらの幾何学的な関係に基づいて、Fundamental行列が算出され、算出された各Fundamental行列間での差が最も少なくなるように、特徴点ペア毎の幾何学的な関係が調整される。そして、調整後の幾何学的な関係に基づいて、3次元形状(点群)が再構築される。なお、この時の誤差の調整方法としては、Bundle Adjustmentと呼ばれる処理手法が挙げられる。 Then, for each of several feature point pairs, a Fundamental matrix is calculated based on these geometric relationships, and for each feature point pair so that the difference between each calculated Fundamental matrix is the smallest. Geometric relationships are adjusted. Then, the three-dimensional shape (point cloud) is reconstructed based on the adjusted geometrical relationship. As a method of adjusting the error at this time, a processing method called Bundle Adjustment can be mentioned.
 ところで、上述のSfMでは、特徴点間のマッチングに間違いが発生する場合があり、この場合、異なる特徴点間で特徴点ペアが抽出されてしまい、復元される3次元形状の精度が低下してしまう。このため、特許文献1及び特許文献2は、対応する特徴点の位置を補正するシステムを開示している。 By the way, in the above-mentioned SfM, an error may occur in matching between feature points. In this case, feature point pairs are extracted between different feature points, and the accuracy of the restored three-dimensional shape is lowered. It ends up. Therefore, Patent Document 1 and Patent Document 2 disclose a system for correcting the positions of corresponding feature points.
 具体的には、特許文献1に開示されたシステムは、まず、同一の対象物を撮影した2枚の画像を、それぞれのエピポーラ線が走査線に平行となるよう配置し、走査線毎に、各画像から対応する特徴点を抽出する。次に、特許文献1に開示されたシステムは、ユーザーによる各画像上への対応する箇所を指定する線分の入力を受け付ける。 Specifically, in the system disclosed in Patent Document 1, first, two images of the same object are arranged so that their epipolar lines are parallel to the scanning line, and each scanning line is arranged. The corresponding feature points are extracted from each image. Next, the system disclosed in Patent Document 1 accepts a user input of a line segment that specifies a corresponding portion on each image.
 そして、特許文献1に開示されたシステムは、走査線上の対応する各特徴点が、この走査線と入力された線分との交点に一致しているかどうかを判定し、一致していない場合は、各特徴点の位置を交点の位置に補正する。その後、特許文献1に開示されたシステムは、位置が補正された特徴点を用いて、3次元形状の再構築を実行する。 Then, the system disclosed in Patent Document 1 determines whether or not each corresponding feature point on the scanning line coincides with the intersection of the scanning line and the input line segment, and if they do not match. , Correct the position of each feature point to the position of the intersection. The system disclosed in Patent Document 1 then reconstructs the three-dimensional shape using the position-corrected feature points.
 また、特許文献2に開示されたシステムは、まず、同一の対象物を撮影したペア画像それぞれから、対応する特徴点の組合せを抽出する。次に、特許文献2に開示されたシステムは、ペア画像それぞれにおいて、対応する線分又は点が指定されると、線分間又は点間の幾何学的関係から数値行列を算出する。 Further, the system disclosed in Patent Document 2 first extracts a combination of corresponding feature points from each pair of images obtained by photographing the same object. Next, the system disclosed in Patent Document 2 calculates a numerical matrix from the geometrical relationship between the line segments or points when the corresponding line segments or points are specified in each paired image.
 続いて、ペア画像の一方の画像において、特徴点をp、特徴点pが存在するエピポーラ線をl、他方の画像において、対応する特徴点をp’、特徴点p’が存在するエピポーラ線をl’とする。この場合、特許文献2に開示されたシステムは、算出した数値行列を用いて、エピポーラ線lに対応するエピポーラ線l’を算出し、更に、エピポーラ線l’と特徴点p’との距離dを算出する。 Subsequently, in one image of the pair image, the feature point is p, the epipolar line in which the feature point p is present is l, and in the other image, the corresponding feature point is p'and the epipolar line in which the feature point p'is present. Let l'. In this case, the system disclosed in Patent Document 2 calculates the epipolar line l'corresponding to the epipolar line l using the calculated numerical matrix, and further, the distance d between the epipolar line l'and the feature point p'. Is calculated.
 そして、特許文献2に開示されたシステムは、距離dが閾値以上となっている場合は、特徴点pと特徴点p’との組合せは、幾何学的に矛盾すると判定する。そして、特許文献2に開示されたシステムは、算出した数値行列を用いて、幾何学的関係が矛盾すると判定した組合せを除外して3次元形状を再構築する。 Then, the system disclosed in Patent Document 2 determines that the combination of the feature point p and the feature point p'is geometrically inconsistent when the distance d is equal to or greater than the threshold value. Then, the system disclosed in Patent Document 2 reconstructs the three-dimensional shape by using the calculated numerical matrix, excluding the combinations determined to have inconsistent geometric relationships.
 このように、特許文献1又は特許文献2に開示されたシステムによれば、間違った特徴点ペアが抽出されてしまうという問題が解消されるので、復元される3次元形状の精度の低下が抑制されると考えられる。 As described above, according to the system disclosed in Patent Document 1 or Patent Document 2, the problem that the wrong feature point pair is extracted is solved, so that the deterioration of the accuracy of the restored three-dimensional shape is suppressed. It is thought that it will be done.
特許第5311465号公報Japanese Patent No. 531465 国際公開第2019/065784号International Publication No. 2019/065744
 しかしながら、特許文献1に開示されたシステムでは、特徴点の位置の補正は、2枚の画像のエピポーラ線に沿った走査線上でしか行われないので、同一の走査線上にない間違った特徴点ペアが排除されることがない。 However, in the system disclosed in Patent Document 1, since the correction of the position of the feature point is performed only on the scan line along the epipolar line of the two images, the wrong feature point pair that is not on the same scan line is performed. Is not excluded.
 一方、特許文献2に開示されたシステムでは、指定された線分間又は点間の幾何学的関係が求められ、更にこの幾何学的関係から求められたエピポーラ線と特徴点との距離に基づいて、間違った特徴点ペアが排除されるので、特許文献1における問題点は解消される。しかし、特許文献2に開示されたシステムには、幾何学的関係から求められたエピポーラ線と間違った特徴点との距離が近い場合に、間違った特徴点ペアを排除できないという問題がある。 On the other hand, in the system disclosed in Patent Document 2, a geometrical relationship between specified line intervals or points is obtained, and further, based on the distance between the epipolar line and the feature point obtained from this geometrical relationship. Since the wrong feature point pair is eliminated, the problem in Patent Document 1 is solved. However, the system disclosed in Patent Document 2 has a problem that the wrong feature point pair cannot be excluded when the distance between the epipolar line obtained from the geometrical relationship and the wrong feature point is short.
 このように、特許文献1及び特許文献2に開示されたシステムでは、間違った特徴点ペアの排除が不十分であり、復元される3次元形状の精度が低下する場合がある。 As described above, in the systems disclosed in Patent Document 1 and Patent Document 2, the elimination of wrong feature point pairs is insufficient, and the accuracy of the restored three-dimensional shape may decrease.
 本発明の目的の一例は、上記問題を解消し、複数の画像から対応する特徴点の組合せを抽出するに際して、間違った特徴点の組合せの抽出を抑制しうる、画像処理装置、画像処理方法、及びコンピュータ読み取り可能な記録媒体を提供することにある。 An example of an object of the present invention is an image processing apparatus, an image processing method, which can solve the above problem and suppress the extraction of an erroneous combination of feature points when extracting a combination of corresponding feature points from a plurality of images. And to provide a computer-readable recording medium.
 上記目的を達成するため、本発明の一側面における画像処理装置は、対象物の複数の画像から前記対象物の3次元形状を構築するための装置であって、
 前記複数の画像それぞれから、対応する特徴点の組合せを抽出する、特徴点抽出部と、
 前記複数の画像のうちの少なくとも2つの画像上に、互いに対応する2以上の線分又は2以上の点が指定された場合に、互いに対応する2以上の線分間の幾何学的関係、又は互いに対応する2以上の点間の幾何学的関係を特定し、特定した前記幾何学的関係を表現する数値行列を算出する、行列算出部と、
 前記数値行列を用いて、抽出された前記特徴点の組合せのうち、特徴点間の幾何学的関係が矛盾する前記特徴点の組合せを特定する、不要特徴点特定部と、
 特定された前記特徴点の組合せを除く、前記特徴点の組合せ毎に、当該組合せを構成する特徴点それぞれのカメラ行列を算出し、更に、算出した前記カメラ行列を用いて、当該組合せの特徴点に対応する、前記対象物の3次元座標を算出する、3次元座標算出部と、
 前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する1つの特徴点の抽出元の画像に対応するカメラ行列を、当該組合せの3次元座標に適用することによって、当該組合せの前記3次元座標を前記1つの特徴点が抽出された画像上に投影して得られる、2次元座標を算出し、算出した2次元座標と前記1つの特徴点の2次元座標との比較結果に基づいて、前記1つの特徴点が適正かどうかを判定する、適合性判定部と、
 適正であると判定された特徴点に対応する、前記対象物の3次元座標を用いて、前記対象物の3次元形状を構築する、3次元形状構築部と、
を備えている、ことを特徴とする。
In order to achieve the above object, the image processing apparatus according to one aspect of the present invention is an apparatus for constructing a three-dimensional shape of the object from a plurality of images of the object.
A feature point extraction unit that extracts a combination of corresponding feature points from each of the plurality of images,
When two or more line segments or two or more points corresponding to each other are specified on at least two images of the plurality of images, the geometrical relationship between the two or more line segments corresponding to each other, or each other. A matrix calculation unit that identifies a geometric relationship between two or more corresponding points and calculates a numerical matrix that expresses the specified geometric relationship.
Among the extracted combinations of the feature points, the unnecessary feature point identification unit that identifies the combination of the feature points in which the geometrical relationship between the feature points is inconsistent is used with the numerical matrix.
For each combination of the feature points excluding the specified combination of the feature points, a camera matrix of each feature point constituting the combination is calculated, and further, the feature points of the combination are calculated using the calculated camera matrix. A three-dimensional coordinate calculation unit that calculates the three-dimensional coordinates of the object corresponding to
For each combination of the feature points for which the three-dimensional coordinates have been calculated, the camera matrix corresponding to the image of the extraction source of one feature point constituting the combination is applied to the three-dimensional coordinates of the combination. The two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates are compared with the two-dimensional coordinates of the one feature point. Based on the result, a conformity determination unit that determines whether or not the one feature point is appropriate, and
A three-dimensional shape construction unit that constructs a three-dimensional shape of the object using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate.
It is characterized by having.
 また、上記目的を達成するため、本発明の一側面における画像処理方法は、対象物の複数の画像から前記対象物の3次元形状を構築するための方法であって、
(a)前記複数の画像それぞれから、対応する特徴点の組合せを抽出する、ステップと、
(b)前記複数の画像のうちの少なくとも2つの画像上に、互いに対応する2以上の線分又は2以上の点が指定された場合に、互いに対応する2以上の線分間の幾何学的関係、又は互いに対応する2以上の点間の幾何学的関係を特定し、特定した前記幾何学的関係を表現する数値行列を算出する、ステップと、
(c)前記数値行列を用いて、抽出された前記特徴点の組合せのうち、特徴点間の幾何学的関係が矛盾する前記特徴点の組合せを特定する、ステップと、
(d)特定された前記特徴点の組合せを除く、前記特徴点の組合せ毎に、当該組合せを構成する特徴点それぞれのカメラ行列を算出し、更に、算出した前記カメラ行列を用いて、当該組合せの特徴点に対応する、前記対象物の3次元座標を算出する、ステップと、
(e)前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する1つの特徴点の抽出元の画像に対応するカメラ行列を、当該組合せの3次元座標に適用することによって、当該組合せの前記3次元座標を前記1つの特徴点が抽出された画像上に投影して得られる、2次元座標を算出し、算出した2次元座標と前記1つの特徴点の2次元座標との比較結果に基づいて、前記1つの特徴点が適正かどうかを判定する、ステップと、
(f)適正であると判定された特徴点に対応する、前記対象物の3次元座標を用いて、前記対象物の3次元形状を構築する、ステップと、
を有する、ことを特徴とする。
Further, in order to achieve the above object, the image processing method in one aspect of the present invention is a method for constructing a three-dimensional shape of the object from a plurality of images of the object.
(A) A step of extracting a combination of corresponding feature points from each of the plurality of images.
(B) When two or more line segments or two or more points corresponding to each other are designated on at least two images of the plurality of images, the geometric relationship between the two or more line segments corresponding to each other is specified. Or, a step that identifies a geometric relationship between two or more points corresponding to each other and calculates a numerical matrix that expresses the specified geometric relationship.
(C) Using the numerical matrix, among the extracted combinations of the feature points, the step and the step of identifying the combination of the feature points in which the geometrical relationship between the feature points is inconsistent.
(D) For each combination of the feature points excluding the specified combination of the feature points, a camera matrix of each feature point constituting the combination is calculated, and further, the combination is used by using the calculated camera matrix. The step of calculating the three-dimensional coordinates of the object corresponding to the feature point of
(E) For each combination of the feature points for which the three-dimensional coordinates have been calculated, the camera matrix corresponding to the image of the extraction source of one feature point constituting the combination is applied to the three-dimensional coordinates of the combination. The two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point are calculated. Based on the comparison result with, the step of determining whether or not the one feature point is appropriate, and
(F) A step of constructing a three-dimensional shape of the object using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate.
It is characterized by having.
 更に、上記目的を達成するため、本発明の一側面におけるコンピュータ読み取り可能な記録媒体は、コンピュータによって、対象物の複数の画像から前記対象物の3次元形状を構築するためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、
(a)前記複数の画像それぞれから、対応する特徴点の組合せを抽出する、ステップと、
(b)前記複数の画像のうちの少なくとも2つの画像上に、互いに対応する2以上の線分又は2以上の点が指定された場合に、互いに対応する2以上の線分間の幾何学的関係、又は互いに対応する2以上の点間の幾何学的関係を特定し、特定した前記幾何学的関係を表現する数値行列を算出する、ステップと、
(c)前記数値行列を用いて、抽出された前記特徴点の組合せのうち、特徴点間の幾何学的関係が矛盾する前記特徴点の組合せを特定する、ステップと、
(d)特定された前記特徴点の組合せを除く、前記特徴点の組合せ毎に、当該組合せを構成する特徴点それぞれのカメラ行列を算出し、更に、算出した前記カメラ行列を用いて、
当該組合せの特徴点に対応する、前記対象物の3次元座標を算出する、ステップと、
(e)前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する1つの特徴点の抽出元の画像に対応するカメラ行列を、当該組合せの3次元座標に適用することによって、当該組合せの前記3次元座標を前記1つの特徴点が抽出された画像上に投影して得られる、2次元座標を算出し、算出した2次元座標と前記1つの特徴点の2次元座標との比較結果に基づいて、前記1つの特徴点が適正かどうかを判定する、ステップと、
(f)適正であると判定された特徴点に対応する、前記対象物の3次元座標を用いて、前記対象物の3次元形状を構築する、ステップと、
を実行させる命令を含む、プログラムを記録していることを特徴とする。
Further, in order to achieve the above object, the computer-readable recording medium in one aspect of the present invention is a computer that records a program for constructing a three-dimensional shape of the object from a plurality of images of the object by a computer. A readable recording medium
On the computer
(A) A step of extracting a combination of corresponding feature points from each of the plurality of images.
(B) When two or more line segments or two or more points corresponding to each other are designated on at least two images of the plurality of images, the geometric relationship between the two or more line segments corresponding to each other is specified. Or, a step that identifies a geometric relationship between two or more points corresponding to each other and calculates a numerical matrix that expresses the specified geometric relationship.
(C) Using the numerical matrix, among the extracted combinations of the feature points, the step and the step of identifying the combination of the feature points in which the geometrical relationship between the feature points is inconsistent.
(D) For each combination of the feature points excluding the specified combination of the feature points, a camera matrix of each feature point constituting the combination is calculated, and further, the calculated camera matrix is used.
A step of calculating the three-dimensional coordinates of the object corresponding to the feature point of the combination, and
(E) For each combination of the feature points for which the three-dimensional coordinates have been calculated, the camera matrix corresponding to the image of the extraction source of one feature point constituting the combination is applied to the three-dimensional coordinates of the combination. The two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point are calculated. Based on the comparison result with, the step of determining whether or not the one feature point is appropriate, and
(F) A step of constructing a three-dimensional shape of the object using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate.
It is characterized by recording a program including an instruction to execute.
 以上のように、本発明によれば、複数の画像から対応する特徴点の組合せを抽出するに際して、間違った特徴点の組合せの抽出を抑制することができる。 As described above, according to the present invention, when extracting the corresponding combination of feature points from a plurality of images, it is possible to suppress the extraction of the wrong combination of feature points.
図1は、本発明の実施の形態における画像処理装置を概略的に示すブロック図である。FIG. 1 is a block diagram schematically showing an image processing apparatus according to an embodiment of the present invention. 図2は、本発明の実施の形態における画像処理装置の具体的構成を示すブロック図である。FIG. 2 is a block diagram showing a specific configuration of the image processing apparatus according to the embodiment of the present invention. 図3は、本実施の形態で処理対象となる複数の画像の一例を示す図である。FIG. 3 is a diagram showing an example of a plurality of images to be processed in the present embodiment. 図4は、本発明の実施の形態における行列算出部による処理を説明する図である。FIG. 4 is a diagram illustrating processing by the matrix calculation unit according to the embodiment of the present invention. 図5は、本発明の実施の形態における形状構築部による処理を説明する図である。FIG. 5 is a diagram illustrating processing by the shape building unit according to the embodiment of the present invention. 図6は、特徴点の組合せが抽出されたペア画像の一例を示す図である。FIG. 6 is a diagram showing an example of a pair image in which a combination of feature points is extracted. 図7は、カメラ行列から求められる、初期ペア画像のカメラの3次元座標と回転行列との一例を示す図である。FIG. 7 is a diagram showing an example of the three-dimensional coordinates of the camera of the initial pair image and the rotation matrix obtained from the camera matrix. 図8は、初期ペア画像の選択後に新たに選択された画像とそれから抽出された特徴点の組合せの一例を示す図である。FIG. 8 is a diagram showing an example of a combination of a newly selected image after selection of an initial pair image and feature points extracted from the image. 図9は、対象物における特徴点の3次元座標を2次元画像に再投影する処理を説明する図である。FIG. 9 is a diagram illustrating a process of reprojecting the three-dimensional coordinates of the feature points in the object onto the two-dimensional image. 図10は、本発明の実施の形態における画像処理装置の動作を示すフロー図である。FIG. 10 is a flow chart showing the operation of the image processing apparatus according to the embodiment of the present invention. 図11は、本発明の実施の形態における画像処理装置を実現するコンピュータの一例を示すブロック図である。FIG. 11 is a block diagram showing an example of a computer that realizes the image processing apparatus according to the embodiment of the present invention.
 (実施の形態)
 以下、本発明の実施の形態における画像処理装置について、図1~図11を参照しながら説明する。
(Embodiment)
Hereinafter, the image processing apparatus according to the embodiment of the present invention will be described with reference to FIGS. 1 to 11.
[装置構成]
 最初に、図1を用いて、本発明の実施の形態における画像処理装置の概略構成について説明する。図1は、本発明の実施の形態における画像処理装置を概略的に示すブロック図である。
[Device configuration]
First, the schematic configuration of the image processing apparatus according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram schematically showing an image processing apparatus according to an embodiment of the present invention.
 図1に示す、本実施の形態における画像処理装置10は、対象物の複数の画像から対象物の3次元形状を構築するための装置である。図1に示すように、画像処理装置10は、特徴点抽出部11と、行列算出部12と、不要特徴点特定部13と、3次元座標算出部14と、適合性判定部15と、3次元形状構築部16とを備えている。 The image processing device 10 in the present embodiment shown in FIG. 1 is a device for constructing a three-dimensional shape of an object from a plurality of images of the object. As shown in FIG. 1, the image processing apparatus 10 includes a feature point extraction unit 11, a matrix calculation unit 12, an unnecessary feature point identification unit 13, a three-dimensional coordinate calculation unit 14, a compatibility determination unit 15, and 3 It includes a three-dimensional shape construction unit 16.
 特徴点抽出部11は、複数の画像それぞれから、対応する特徴点の組合せを抽出する。行列算出部12は、複数の画像のうちの少なくとも2つの画像上に、互いに対応する2以上の線分又は2以上の点が指定された場合に、互いに対応する2以上の線分間の幾何学的関係、又は互いに対応する2以上の点間の幾何学的関係を特定する。また、行列算出部12は、特定した幾何学的関係を表現する数値行列を算出する。 The feature point extraction unit 11 extracts a combination of corresponding feature points from each of the plurality of images. The matrix calculation unit 12 determines the geometry of two or more line segments corresponding to each other when two or more line segments or two or more points corresponding to each other are specified on at least two images of the plurality of images. Identify the relationship, or the geometric relationship between two or more points that correspond to each other. Further, the matrix calculation unit 12 calculates a numerical matrix expressing the specified geometric relationship.
 不要特徴点特定部13は、算出された数値行列を用いて、抽出された特徴点の組合せのうち、特徴点間の幾何学的関係が矛盾する特徴点の組合せを特定する。3次元座標算出部14は、特定された特徴点の組合せを除く、特徴点の組合せ毎に、その組合せを構成する特徴点それぞれのカメラ行列を算出する。また、3次元座標算出部14は、特徴点の組合せ毎に、算出したカメラ行列を用いて、その組合せの特徴点に対応する、対象物の3次元座標を算出する。 The unnecessary feature point identification unit 13 uses the calculated numerical matrix to identify the combinations of feature points whose geometric relationships between the feature points are inconsistent among the combinations of the extracted feature points. The three-dimensional coordinate calculation unit 14 calculates the camera matrix of each feature point constituting the combination for each feature point combination excluding the specified feature point combination. Further, the three-dimensional coordinate calculation unit 14 calculates the three-dimensional coordinates of the object corresponding to the feature points of the combination by using the calculated camera matrix for each combination of the feature points.
 適合性判定部15は、3次元座標が算出された特徴点の組合せ毎に、この組合せを構成する1つの特徴点の抽出元の画像に対応するカメラ行列を、この組合せの3次元座標に適用する。そして、適合性判定部15は、このカメラ行列の適用によって、この組合せの3次元座標を上述の1つの特徴点が抽出された画像上に投影して得られる、2次元座標を算出する。更に、適合性判定部15は、算出した2次元座標と1つの特徴点の2次元座標(抽出元の画像上の2次元座標)とを比較し、その比較結果に基づいて、上述の1つの特徴点が適正かどうかを判定する。 For each combination of feature points for which three-dimensional coordinates have been calculated, the suitability determination unit 15 applies a camera matrix corresponding to the image of the extraction source of one feature point constituting this combination to the three-dimensional coordinates of this combination. To do. Then, the suitability determination unit 15 calculates the two-dimensional coordinates obtained by projecting the three-dimensional coordinates of this combination onto the image from which the above-mentioned one feature point is extracted by applying the camera matrix. Further, the suitability determination unit 15 compares the calculated two-dimensional coordinates with the two-dimensional coordinates of one feature point (two-dimensional coordinates on the image of the extraction source), and based on the comparison result, one of the above-mentioned ones. Determine if the feature points are appropriate.
 3次元形状構築部16は、適合性判定部15によって適正であると判定された組合せの特徴点に対応する、対象物の3次元座標を用いて、対象物の3次元形状を構築する。 The three-dimensional shape construction unit 16 constructs the three-dimensional shape of the object by using the three-dimensional coordinates of the object corresponding to the feature points of the combination determined to be appropriate by the suitability determination unit 15.
 このように、本実施の形態では、まず、指定された線分又は点から得られた幾何学的関係によって、矛盾する特徴点の組合せが除外され、その後、得られた対象物の3次元座標を、2次元の画像に投影することによって、特徴点が適正かどうかの判定が行われる。つまり、本実施の形態では、3次元座標の算出前と算出後との2回に渡って、間違った特徴点の排除が行われる。このため、本実施の形態によれば、複数の画像から対応する特徴点の組合せを抽出するに際して、間違った特徴点の組合せの抽出を抑制することができる。結果、精度の高い3次元形状が構築される。 As described above, in the present embodiment, first, the combination of contradictory feature points is excluded by the geometric relationship obtained from the specified line segment or point, and then the three-dimensional coordinates of the obtained object are obtained. Is projected onto a two-dimensional image to determine whether or not the feature points are appropriate. That is, in the present embodiment, the wrong feature points are eliminated twice, before and after the calculation of the three-dimensional coordinates. Therefore, according to the present embodiment, when extracting the combination of the corresponding feature points from the plurality of images, it is possible to suppress the extraction of the wrong combination of the feature points. As a result, a highly accurate three-dimensional shape is constructed.
 続いて、図2~図9を用いて、本実施の形態における画像処理装置10の構成についてより具体的に説明する。図2は、本発明の実施の形態における画像処理装置の具体的構成を示すブロック図である。 Subsequently, the configuration of the image processing device 10 according to the present embodiment will be described more specifically with reference to FIGS. 2 to 9. FIG. 2 is a block diagram showing a specific configuration of the image processing apparatus according to the embodiment of the present invention.
 図2に示すように、画像処理装置10は、本実施の形態では、特徴点抽出部11、行列算出部12、不要特徴点特定部13、3次元座標算出部14、適合性判定部15、及び3次元形状構築部16に加えて、画像取得部17と、フィルタリング部18と、入力受付部19と、表示部20とを更に備えている。図2において、21は、表示装置である。 As shown in FIG. 2, in the present embodiment, the image processing apparatus 10 includes a feature point extraction unit 11, a matrix calculation unit 12, an unnecessary feature point identification unit 13, a three-dimensional coordinate calculation unit 14, and a compatibility determination unit 15. In addition to the three-dimensional shape construction unit 16, an image acquisition unit 17, a filtering unit 18, an input reception unit 19, and a display unit 20 are further provided. In FIG. 2, reference numeral 21 denotes a display device.
 画像取得部17は、外部の装置、例えば、撮像装置、端末装置、画像データを保持している記憶装置等から、3次元形状の構築対象が写った複数の画像それぞれの画像データを取得する。図3は、本実施の形態で処理対象となる複数の画像の一例を示す図である。図3の例では、ペア画像が例示されているが、本実施の形態において対象となる画像の枚数は特に限定されるものではない。 The image acquisition unit 17 acquires image data of each of a plurality of images showing a three-dimensional shape construction target from an external device, for example, an image pickup device, a terminal device, a storage device that holds image data, and the like. FIG. 3 is a diagram showing an example of a plurality of images to be processed in the present embodiment. In the example of FIG. 3, a pair image is illustrated, but the number of target images in the present embodiment is not particularly limited.
 特徴点抽出部11は、本実施の形態では、画像毎に、例えば、SIFT特徴量、又はSURF特徴量を計算して特徴点を特定し、更に、画像間で対応する特徴点同士を、対応する特徴点の組合せとして抽出する。なお、図3の例では、画像が2枚であるため、特徴点の組合せは、特徴点ペアである。図3において、丸で囲まれた部分が特徴点の一つである。また、対応する特徴点の組合せが抽出された2枚の画像は、以降においては、「ペア画像」と表記する。 In the present embodiment, the feature point extraction unit 11 calculates, for example, a SIFT feature amount or a SURF feature amount for each image to specify the feature points, and further, the feature points corresponding to each other are supported between the images. Extract as a combination of feature points. In the example of FIG. 3, since there are two images, the combination of feature points is a feature point pair. In FIG. 3, the circled portion is one of the feature points. Further, the two images from which the combination of the corresponding feature points is extracted are hereinafter referred to as "pair images".
 フィルタリング部18は、特徴点の組合せ毎に、特徴点間の幾何学的な関係を計算し、計算結果に基づいて、誤った特徴点の組合せを特定し、特定した特徴点の組合せを排除する。フィルタリング部18によるフィルタリング処理は、従来からのSfMと同様に、ロバスト推定を用いて行われる。本実施の形態では、後述する不要特徴点特定部13によるフィルタリングに加えて、フィルタリング部18によるフィルタリングも行われるので、より確実に間違った特徴点の組合せが排除される。 The filtering unit 18 calculates the geometrical relationship between the feature points for each combination of the feature points, identifies an erroneous feature point combination based on the calculation result, and eliminates the specified feature point combination. .. The filtering process by the filtering unit 18 is performed by using robust estimation as in the conventional SfM. In the present embodiment, in addition to the filtering by the unnecessary feature point specifying unit 13 described later, the filtering by the filtering unit 18 is also performed, so that the wrong combination of feature points is more reliably eliminated.
 入力受付部19は、処理対象となる各画像上において互いに対応する線分又は点が指定されると、指定された線分又は点の入力を受け付ける。また、入力受付部19は、各画像上で互いに対応する線分の入力を受け付けた場合は各線分の情報(始点及び終点の座標)を、行列算出部12に通知する。更に、入力受付部19は、各画像上で互いに対応する点の入力を受け付けた場合は各点の情報(座標)を、行列算出部12に通知する。なお、線分又は点の指定は、画像処理装置10のユーザーによって行われても良いし、別の計算機によって行われても良い。 When the line segment or point corresponding to each other is designated on each image to be processed, the input receiving unit 19 accepts the input of the designated line segment or point. Further, when the input receiving unit 19 receives the input of the line segments corresponding to each other on each image, the input receiving unit 19 notifies the matrix calculation unit 12 of the information (coordinates of the start point and the end point) of each line segment. Further, when the input receiving unit 19 receives the input of the points corresponding to each other on each image, the input receiving unit 19 notifies the matrix calculation unit 12 of the information (coordinates) of each point. The line segment or the point may be designated by the user of the image processing device 10 or by another computer.
 行列算出部12は、入力受付部19から各画像上の線分又は点の情報が通知されると、通知された情報に基づいて、線分間又は点間の幾何学的関係を特定し、特定した幾何学的関係を表現する数値行列を算出し、この数値行列を絶対的数値行列として定義する。行列算出部12は、入力受付部19から通知された各画像上の線分又は点の情報から数値行列が算出できない、または画像によっては線分又は点の情報が存在しない場合には、特徴点抽出部11で抽出された後のフィルタリングで残った誤差の少ない特徴点の組み合わせから数値行列を算出することもできる。但し、この場合算出される数値行列は従来と同様の数値行列であり、絶対的数値行列ではない。 When the input receiving unit 19 notifies the information of the line segment or the point on each image, the matrix calculation unit 12 identifies and specifies the geometrical relationship between the line segment or the point based on the notified information. A numerical matrix that expresses the geometrical relationship is calculated, and this numerical matrix is defined as an absolute numerical matrix. The matrix calculation unit 12 cannot calculate a numerical matrix from the line segment or point information on each image notified from the input reception unit 19, or if the line segment or point information does not exist depending on the image, the feature point It is also possible to calculate a numerical matrix from a combination of feature points with a small error remaining by filtering after being extracted by the extraction unit 11. However, the numerical matrix calculated in this case is the same numerical matrix as the conventional one, and is not an absolute numerical matrix.
 ここで、図4を用いて、行列算出部12における処理についてより具体的に説明する。図4は、本発明の実施の形態における行列算出部による処理を説明する図である。図4において、Eはエピポーラ面を示し、Oは一方の画像のカメラの中心位置を示し、O’は他方の画像のカメラの中心位置を示している。また、図4において、左右に示された並行四辺形はそれぞれ画像のフレームを示している。 Here, the processing in the matrix calculation unit 12 will be described more specifically with reference to FIG. FIG. 4 is a diagram illustrating processing by the matrix calculation unit according to the embodiment of the present invention. In FIG. 4, E represents a epipolar plane, O i denotes the camera center position of one image, O 'i denotes the center position of the camera of the other image. Further, in FIG. 4, the parallelograms shown on the left and right indicate the frame of the image, respectively.
 また、図4の例では、一方の画像において線分Lが指定され、他方の画像において線分L’が指定されており、両線分は対応している。この場合において、線分Lにおいて、その始点と交わるエピポーラ線lと、終点で交わるエピポーラ線ln+mとを絶対的エピポーラ線として定義し、線分L’においても、その始点と交わるエピポーラ線l’と、終点で交わるエピポーラ線l’n+mとを絶対的エピポーラ線として定義する。 Further, in the example of FIG. 4, a line segment L is designated in one image and a line segment L'is designated in the other image, and both line segments correspond to each other. In this case, in the line segment L, the epipolar line l n intersecting the start point and the epipolar line l n + m intersecting at the end point are defined as absolute epipolar lines, and in the line segment L', the epipolar line l intersecting the start point is also defined. ' N and the epipolar line l'n + m that intersects at the end point are defined as absolute epipolar lines.
 更に、線分Lと絶対的エピポーラ線lとの交点xと、線分L’と絶対的エピポーラ線l’との交点x’とは、絶対的な特徴点の組合せとして定義する。また、線分Lと絶対的エピポーラ線ln+mとの交点xと、線分L’と絶対的エピポーラ線l’n+mとの交点x’も、絶対的な特徴点の組合せとして定義する。 Furthermore, the intersection x i between the line segment L and the absolute epipolar line l n, the intersection x 'i and n' absolute epipolar line l and 'line segment L, defined as a combination of absolute characteristic points .. Further, the intersection x j of the line segment L and the absolute epipolar line l n + m, also the intersection x 'j' and absolute epipolar line l 'segment L and n + m, is defined as a combination of absolute feature points.
 なお、図4に示すように、エピポーラ線lとエピポーラ線ln+mとの間に、任意のエピポーラ線ln+1及びln+2が設定されていても良い。この場合、同様に、エピポーラ線l’とエピポーラ線l’n+mとの間にも、任意のエピポーラ線l’n+1及びl’n+2が設定される。また、この場合、線分Lと新たに設定されたエピポーラ線ln+1及びln+2それぞれとの交点は、線分L’と新たに設定されたエピポーラ線l’n+1及びl’n+2それぞれとの交点との間で、絶対的な特徴点の組合せとなる。なお、エピポーラ線間の間隔は任意の値に設定される。 As shown in FIG. 4, arbitrary epipolar lines l n + 1 and l n + 2 may be set between the epipolar line l n and the epipolar line l n + m. In this case, similarly, arbitrary epipolar lines l' n + 1 and l' n + 2 are set between the epipolar line l'n and the epipolar line l' n + m. Further, in this case, the intersection of the line segment L and the newly set epipolar lines l n + 1 and l n + 2 is the intersection of the line segment L'and the newly set epipolar lines l' n + 1 and l' n + 2, respectively. It is a combination of absolute feature points. The interval between epipolar lines is set to an arbitrary value.
 従って、図4の例においては、行列算出部12は、線分間の幾何学的関係として、絶対的な特徴点の組合せを求め、求めた特徴点の組合せを用いて、下記の数1の関係式から、絶対的数値行列として、Fundamental行列(参照文献)を算出する。なお、下記の数1において、「x」は、3次元空間における点Xを一方の画像上に射影することによって得られた二次元上の点である。「x’」は、3次元空間における点Xを他方の画像上に射影することによって得られた二次元上の点である。Tは転置行列である。また、FはFundamental行列である。また、本実施の形態において数値行列は、Fundamental行列に限定されるものではなく、幾何学的関係を表現できる行列であれば良い。 Therefore, in the example of FIG. 4, the matrix calculation unit 12 obtains an absolute combination of feature points as the geometric relationship between the lines, and uses the obtained combination of feature points to form the relationship of the following equation 1. From the equation, a Fundamental matrix (reference) is calculated as an absolute numerical matrix. In the following equation 1, "x" is a two-dimensional point obtained by projecting a point X in a three-dimensional space onto one image. "X'" is a two-dimensional point obtained by projecting a point X in a three-dimensional space onto the other image. T is the transposed matrix. Also, F is a Fundamental matrix. Further, in the present embodiment, the numerical matrix is not limited to the Fundamental matrix, and any matrix that can express a geometric relationship may be used.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 参照文献:Richard Hartleyand Andrew Zisserman, “Multiple View Geometry in Computer Vision Second Edition”, Cambridge University Press, March 2004. References: Richard Hartley and Andrew Zisserman, “Multiple View Geometry in Computer Vision Second Edition”, Cambridge University Press, March 2004.
 不要特徴点特定部13は、本実施の形態では、まず、行列算出部12によって算出された数値行列(Fundamental行列)を用いて、特徴点抽出部11で抽出された特徴点の組合せ(フィルタリング部18で除外されたものを除く)から、幾何学的関係が矛盾する特徴点の組合せを特定する。 In the present embodiment, the unnecessary feature point identification unit 13 first uses a numerical matrix (Fundamental matrix) calculated by the matrix calculation unit 12 to combine feature points extracted by the feature point extraction unit 11 (filtering unit). From (excluding those excluded in 18), the combination of feature points with inconsistent geometric relationships is identified.
 また、不要特徴点特定部13は、特徴点抽出部11で抽出された特徴点の組合せ(フィルタリング部18で除外されたものを除く)の中から、指定された線分又は点に重なる特徴点を含むものを特定し、特定した特徴点を含む特徴点の組合せも、幾何学的関係が矛盾する特徴点として特定することができる。これは、一方の線分又は一方の点のみに重なる特徴点に対応する特徴点が、他方の線分又は他方の点の上にないときは、この特徴点の組合せは間違っている可能性が高いからである。 Further, the unnecessary feature point identification unit 13 is a feature point that overlaps with a designated line segment or point from the combination of feature points extracted by the feature point extraction unit 11 (excluding those excluded by the filtering unit 18). The combination of the feature points including the specified feature points can also be specified as the feature points whose geometric relationships are inconsistent. This is because if there is no feature point corresponding to one line segment or a feature point that overlaps only one point on the other line segment or the other point, this combination of feature points may be incorrect. Because it is expensive.
 ここで、図5を用いて、不要特徴点特定部13における処理についてより具体的に説明する。図5は、本発明の実施の形態における形状構築部による処理を説明する図である。図5において、図4示された符号が付されたものは、図4で同じ記号が付与されたものを示している。そして、図5においては、特徴点pと特徴点p’との組合せが、間違っているかどうかの判断対象であるとする。 Here, the process in the unnecessary feature point specifying unit 13 will be described more specifically with reference to FIG. FIG. 5 is a diagram illustrating processing by the shape building unit according to the embodiment of the present invention. In FIG. 5, those with the reference numerals shown in FIG. 4 indicate those with the same symbols in FIG. Then, in FIG. 5, the combination of the feature point p i and the feature point p 'i is assumed to be a determination of whether the target is wrong.
 図5の例において、不要特徴点特定部13は、エピポーラ線についての下記の数2に示す関係を用いて、特徴点pが存在しているエピポーラ線lに対応するエピポーラ線l’を算出する。 In the example of FIG. 5, unnecessary feature point specifying unit 13, using the relationship shown in Equation 2 below for the epipolar line, the epipolar line l '1 corresponding to the epipolar lines l 1 to the feature point p i is present Is calculated.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 そして、不要特徴点特定部13は、算出したエピポーラ線l’と特徴点p’との距離dが、閾値以上となっているかどうかを判定し、距離dが閾値以上となっている場合は、特徴点pと特徴点p’との組合せは間違っていると判定する。この場合、不要特徴点特定部13は、特徴点pと特徴点p’との組合せを、幾何学的関係が矛盾する特徴点の組合せとして特定する。 Then, unnecessary feature point specifying unit 13, if the calculated epipolar line l '1 and the feature point p' the distance d between the i may determine whether a threshold value or more, the distance d is greater than or equal to a threshold value It determines that the combination of the feature point p i and the feature point p 'i is wrong. In this case, unnecessary feature point specifying unit 13, a combination of the feature point p i and the feature point p 'i, the geometric relationship is specified as a combination of feature points inconsistent.
 3次元座標算出部14は、不要特徴点特定部13によって特定されなかった特徴点の組合せを用いて、3次元形状を構築するための3次元座標を算出する。また、このとき、3次元座標算出部14は、入力受付部19によって受け付けられた、対応する点、又は対応する線分上の点も、特徴点の組合せとして用いることができる。 The three-dimensional coordinate calculation unit 14 calculates the three-dimensional coordinates for constructing the three-dimensional shape by using the combination of the feature points not specified by the unnecessary feature point identification unit 13. Further, at this time, the three-dimensional coordinate calculation unit 14 can also use the corresponding point or the point on the corresponding line segment received by the input receiving unit 19 as a combination of the feature points.
 ここで、図6~図8を用いて、3次元座標算出部14による3次元座標の算出処理について具体的に説明する。図6は、特徴点の組合せが抽出されたペア画像の一例を示す図である。図7は、カメラ行列から求められる、初期ペア画像のカメラの3次元座標と回転行列との一例を示す図である。図8は、初期ペア画像の選択後に新たに選択された画像とそれから抽出された特徴点の組合せの一例を示す図である。 Here, the calculation process of the three-dimensional coordinates by the three-dimensional coordinate calculation unit 14 will be specifically described with reference to FIGS. 6 to 8. FIG. 6 is a diagram showing an example of a pair image in which a combination of feature points is extracted. FIG. 7 is a diagram showing an example of the three-dimensional coordinates of the camera of the initial pair image and the rotation matrix obtained from the camera matrix. FIG. 8 is a diagram showing an example of a combination of a newly selected image after selection of an initial pair image and feature points extracted from the image.
 図6に示すように、3次元座標算出部14は、最初に、一組のペア画像(初期ペア画像)として画像31と画像32とを選択する。そして、この場合、画像31から抽出されている特徴点(m~m)と、画像32から抽出されている特徴点(m’~m’)とは対応している。mとm’、mとm’、mとm’、mとm’、mとm’は、それぞれ特徴点の組合せ(以下「特徴点ペア」とも表記する)である。また、図6の例では、画像31はカメラ41によって撮影され、画像32はカメラ42によって撮影されている。図6において、M(M~M)は、各特徴点に対応する対象物上の3次元座標である。 As shown in FIG. 6, the three-dimensional coordinate calculation unit 14 first selects an image 31 and an image 32 as a pair of images (initial pair images). In this case, the feature points (m 1 to m 5 ) extracted from the image 31 correspond to the feature points (m ' 1 to m ' 5) extracted from the image 32. m 1 and m '1, m 2 and m' 2, m 3 and m '3, m 4 and m' 4, m 5 and m '5 are each also referred to as a combination of feature points (hereinafter "feature point pair" To do). Further, in the example of FIG. 6, the image 31 is photographed by the camera 41, and the image 32 is photographed by the camera 42. In FIG. 6, M (M 1 to M 5 ) is a three-dimensional coordinate on the object corresponding to each feature point.
 続いて、3次元座標算出部14は、初期ペア画像それぞれから抽出された特徴点ペア(m~m、m’~m’)を用いて、画像31を撮影したカメラ41のカメラ行列Pと、画像32を撮影したカメラ42のカメラ行列P’とを算出する。また、カメラ行列P及びカメラ行列P’は、カメラ41の位置を原点とすると、それぞれ下記の数3及び数4によって表すことができる。 Subsequently, the three-dimensional coordinate calculation unit 14, using the initial pair images extracted feature point pair from each (m 1 ~ m 5, m '1 ~ m' 5), the camera 41 captures an image 31 Camera The matrix P and the camera matrix P'of the camera 42 that captured the image 32 are calculated. Further, the camera matrix P and the camera matrix P'can be represented by the following equations 3 and 4, respectively, with the position of the camera 41 as the origin.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記数3において、Iは、カメラ41の回転行列である。図7に示すように、カメラ41の位置が原点となるので、I=(1,1,1)となる。また、上記数4において、Rは、カメラ42の回転行列である(R=(R,R,R))。tは、上述したように並進行列であり、カメラ42の位置の3次元座標に相当する(t=(t,t,t))。 In the above equation 3, I is a rotation matrix of the camera 41. As shown in FIG. 7, since the position of the camera 41 is the origin, I = (1,1,1). Further, in the above equation 4, R is a rotation matrix of the camera 42 (R = (R x, R y , R z )). As described above, t is a parallel traveling matrix and corresponds to the three-dimensional coordinates of the position of the camera 42 (t = (t x , ty , t z )).
 従って、この場合は、カメラ行列P及びカメラ行列P’から逆算することによって、R及びtを算出することが出来る。具体的には、3次元座標算出部14は、各特徴点の座標を用いて、下記の数5~数7に示す方程式を解くことによって、R及びtを算出する。数5~数7において、mハットは、m(m~m)を正規化して得られた画像A上の座標である。同様に、m’ハットは、m’(m’~m’)を正規化して得られた画像B上の座標である。Eは、Essential行列、Kはカメラのキャリブレーション行列である。 Therefore, in this case, R and t can be calculated by back-calculating from the camera matrix P and the camera matrix P'. Specifically, the three-dimensional coordinate calculation unit 14 calculates R and t by solving the equations shown in the following equations 5 to 7 using the coordinates of each feature point. In the equations 5 to 7, the m hat is the coordinates on the image A obtained by normalizing m (m 1 to m 5). Similarly, m 'hat, m' is the coordinates on the obtained image B the (m '1 ~ m' 5 ) is normalized. E is the Essential matrix and K is the camera calibration matrix.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 また、キャリブレーション行列Kは、下記の数8及び数9から求めることができる。なお、c、cは、カメラの中心座標である。 Further, the calibration matrix K can be obtained from the following equations 8 and 9. Note that c x and cy are the center coordinates of the camera.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 次に、3次元座標算出部14は、各カメラの位置の3次元座標と回転行列とを用いて、抽出された特徴点の3次元座標M(M~M)を算出する。具体的には、3次元座標算出部14は、下記の数10を解くことで3次元座標Mを算出する。また、数10における行列Aは、数11で示される。数11において、piTは、カメラ行列Pの行であり、p’iTは、カメラ行列P’の行である。 Next, the three-dimensional coordinate calculation unit 14 calculates the three-dimensional coordinates M (M 1 to M 5 ) of the extracted feature points using the three-dimensional coordinates of the position of each camera and the rotation matrix. Specifically, the three-dimensional coordinate calculation unit 14 calculates the three-dimensional coordinate M by solving the following equation tens. Further, the matrix A in the equation 10 is represented by the equation 11. In Equation 11, p iT is the line of camera matrix P, p 'iT are camera matrix P' is a row of.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 次に、図8に示すように、3次元座標算出部14は、特徴点が抽出されている画像であって、初期ペア画像以外の画像の中から、1つの画像33を新たに選択し、新たに選択した画像33と初期ペア画像の1つとを新たなペア画像とする。画像33は、カメラ43によって撮影されている。 Next, as shown in FIG. 8, the three-dimensional coordinate calculation unit 14 newly selects one image 33 from the images obtained by extracting the feature points and other than the initial pair image. The newly selected image 33 and one of the initial pair images are used as a new pair image. The image 33 is taken by the camera 43.
 そして、3次元座標算出部14は、画像32の特徴点に対応する画像33の特徴点(m’’~m’’)を特定し、画像32の特徴点と画像33との特徴点とを特徴点ペアとする。そして、3次元座標算出部14は、画像33を撮影したカメラ43のカメラ行列Pnを算出する。カメラ行列Pnは、下記の数12によって表すことができる。 Then, the three-dimensional coordinate calculation unit 14 identifies characteristic points of the image 33 corresponding to the feature points of the image 32 (m '' 1 ~ m ' ' 3), feature points between the feature point and the image 33 of the image 32 And is a feature point pair. Then, the three-dimensional coordinate calculation unit 14 calculates the camera matrix Pn of the camera 43 that captured the image 33. The camera matrix Pn can be represented by the following number 12.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 具体的には、3次元座標算出部14は、画像33の特定された特徴点を用いて、下記の数13に示す方程式を解くことによって、カメラ43のカメラ行列PnのRn及びtnを算出する。 Specifically, the three-dimensional coordinate calculation unit 14 calculates Rn and tun of the camera matrix Pn of the camera 43 by solving the equation shown in the following equation 13 using the specified feature points of the image 33. ..
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 数13において、Mは、新たに選択された画像33における画像32と共通する特徴点の3次元座標である。mハットは、新たに選択された画像33における特徴点の正規化された座標である。diは、下記の数14に示すように、画像33を撮影したカメラ43とmハットとの距離を示している。 In Equation 13, M i is the 3-dimensional coordinates of the feature points in common with the image 32 in the newly selected image 33. The mi hat is the normalized coordinates of the feature points in the newly selected image 33. The di indicates the distance between the camera 43 that captured the image 33 and the mi hat, as shown in the following number 14.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 次に、3次元座標算出部14は、算出したカメラ43のカメラ行列PnのRn及びtnを用いて、画像33の特定された特徴点(m’’~m’’)の3次元座標Mを算出する。この場合も、3次元座標算出部14は、上記数10を解くことで、特徴点の3次元座標M(M~M)を算出する。以上の処理により、3次元座標算出部14は、対象物の3次元座標を算出することができる。 Next, the three-dimensional coordinate calculation unit 14 uses the calculated Rn and tun of the camera matrix Pn of the camera 43 to obtain the three-dimensional coordinates of the specified feature points (m ″ 1 to m ″ 3) of the image 33. to calculate the M i. In this case as well, the three-dimensional coordinate calculation unit 14 calculates the three-dimensional coordinates M (M 1 to M 3 ) of the feature points by solving the above equation 10. Through the above processing, the three-dimensional coordinate calculation unit 14 can calculate the three-dimensional coordinates of the object.
 適合性判定部15は、本実施の形態では、例えば、特徴点ペアの一方について、それから得られが3次元座標と、抽出元の画像に対応するカメラ行列とを用いて、元の2次元画像上に再投影を行い、投影された位置の2次元座標と、抽出時の位置の2次元座標とを比較する。そして、適合性判定部15は、本実施の形態では、比較結果として、前者の2次元座標と後者の2次元座標との差分を算出し、算出した差分が閾値以下の場合に、対象となった特徴点が適正であると判定する。一方、適合性判定部15は、算出した差分が閾値を越える場合は、対象となった特徴点が適正でないと判定する。 In the present embodiment, the conformity determination unit 15 uses, for example, three-dimensional coordinates obtained from one of the feature point pairs and a camera matrix corresponding to the image of the extraction source to obtain the original two-dimensional image. Reprojection is performed on the top, and the two-dimensional coordinates of the projected position are compared with the two-dimensional coordinates of the position at the time of extraction. Then, in the present embodiment, the suitability determination unit 15 calculates the difference between the former two-dimensional coordinates and the latter two-dimensional coordinates as a comparison result, and when the calculated difference is equal to or less than the threshold value, it becomes a target. It is judged that the feature points are appropriate. On the other hand, when the calculated difference exceeds the threshold value, the suitability determination unit 15 determines that the target feature point is not appropriate.
 また、本実施の形態では、適合性判定部15は、3次元座標が算出された特徴点の組合せ毎に、この組合せを構成する特徴点の全部又は1部を選択し、選択した特徴点について1つずつ適正かどうかを判定することができる。例えば、特徴点の組合せが3つの特徴点で構成されている場合は、適合性判定部15は、3つの特徴点について1つずつ適正かどうかを判定しても良いし、このうち2つのみを選択し、選択した2つの特徴点について1つずつ適正かどうかを判定しても良い。 Further, in the present embodiment, the suitability determination unit 15 selects all or one part of the feature points constituting this combination for each combination of the feature points for which the three-dimensional coordinates have been calculated, and the selected feature points It is possible to determine whether or not they are appropriate one by one. For example, when the combination of feature points is composed of three feature points, the suitability determination unit 15 may determine whether or not each of the three feature points is appropriate, or only two of them. May be selected and it may be determined whether or not each of the two selected feature points is appropriate.
 ここで、図9を用いて、適合性判定部15による判定処理について具体的に説明する。図9は、対象物における特徴点の3次元座標を2次元画像に再投影する処理を説明する図である。また、図9の例では、図6に示した画像32上の特徴点の一つを再投影する例について示している。更に、図9において、特徴点に対応する3次元座標、即ち、世界座標系での3次元座標を(X,Y,Z)とし、特徴点の抽出時の位置の2次元座標を(x、y)とする。また、特徴点のカメラ座標系での座標を(X,Y,Z)とする。 Here, the determination process by the conformity determination unit 15 will be specifically described with reference to FIG. FIG. 9 is a diagram illustrating a process of reprojecting the three-dimensional coordinates of the feature points in the object onto the two-dimensional image. Further, in the example of FIG. 9, an example of reprojecting one of the feature points on the image 32 shown in FIG. 6 is shown. Further, in FIG. 9, the three-dimensional coordinates corresponding to the feature points, that is, the three-dimensional coordinates in the world coordinate system are set to (X W , Y W , Z W ), and the two-dimensional coordinates of the position at the time of extracting the feature points are set. Let (x f, y f ). Further, let the coordinates of the feature points in the camera coordinate system be (X C , Y C , Z C ).
 まず、適合性判定部15は、下記の数15を用いて、カメラ行列P’(=[R|t])と特徴点の3次元座標(X,Y,Z)とから、特徴点のカメラ座標系での座標(X,Y,Z)を算出する。 First, the conformity determination unit 15 uses the following equation 15 to obtain features from the camera matrix P'(= [R | t]) and the three-dimensional coordinates (X W , Y W , Z W ) of the feature points. Calculate the coordinates (X C , Y C , Z C ) of the points in the camera coordinate system.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 続いて、適合性判定部15は、下記の数16を用いて、特徴点のカメラ座標系での座標(X,Y,Z)を正規化する。 Subsequently, the conformity determination unit 15 normalizes the coordinates (X C , Y C , Z C ) of the feature points in the camera coordinate system using the following equation 16.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 続いて、適合性判定部15は、上記数16で正規化された座標と、カメラの内部パラメータ(図9の例では、カメラ42の焦点距離f、画像中心位置の座標(c,c)とを、下記の数17に適用して、特徴点を画像32に再投影した時の2次元座標(x、y)を算出する。 Subsequently, the conformity determination unit 15 uses the coordinates normalized by the above equation 16 and the internal parameters of the camera (in the example of FIG. 9, the focal length f of the camera 42 and the coordinates of the image center position (c x, cy ). ) Is applied to the following equation 17 to calculate the two-dimensional coordinates (x p , y p ) when the feature points are reprojected on the image 32.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 次に、適合性判定部15は、下記の数18を用いて、上記数17から算出した再投影後の2次元座標(x、y)と特徴点の抽出時の位置の2次元座標(x、y)との差分dを算出する。 Next, the conformity judging unit 15 uses the number 18 below, the two-dimensional coordinates (x p, y p) after re-projection calculated from the equation 17 and the two-dimensional coordinates of the position at the time of the feature point extraction The difference d from (x f , y f) is calculated.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 その後、適合性判定部15は、算出した差分dが閾値G以下の場合に、対象となった特徴点が適正であると判定し、算出した差分dが閾値Gを越える場合は、対象となった特徴点が適正でないと判定する。 After that, the suitability determination unit 15 determines that the target feature point is appropriate when the calculated difference d is equal to or less than the threshold value G, and when the calculated difference d exceeds the threshold value G, it becomes a target. It is judged that the feature points are not appropriate.
 適合性判定部15は、本実施の形態では、適正でないと判定された特徴点に対応する3次元座標、及び、この3次元座標に対応する全ての特徴点の組み合わせを除外する。また、適合性判定部15は、本実施の形態では、適正でないと判定された特徴点のみを除外し、適正でないと判定された特徴点に対応する3次元座標、及び、この3次元座標に対応する特徴点の組み合わせのうち、適正でないと判定された特徴点以外の特徴点は除外しないことも可能である。この場合、適合性判定部15は、全ての特徴点の適合性判定が完了したときに、全ての3次元座標に対して、それぞれの3次元座標に対応する特徴点の数が2個未満の3次元座標は除外する必要がある。 In the present embodiment, the conformity determination unit 15 excludes the three-dimensional coordinates corresponding to the feature points determined to be inappropriate and the combination of all the feature points corresponding to the three-dimensional coordinates. Further, in the present embodiment, the conformity determination unit 15 excludes only the feature points determined to be inappropriate, and sets the three-dimensional coordinates corresponding to the feature points determined to be inappropriate and the three-dimensional coordinates. Of the corresponding combinations of feature points, it is possible not to exclude feature points other than the feature points determined to be inappropriate. In this case, when the suitability determination of all the feature points is completed, the suitability determination unit 15 has less than two feature points corresponding to the three-dimensional coordinates for all the three-dimensional coordinates. Three-dimensional coordinates need to be excluded.
 3次元形状構築部16は、残りの特徴点を用いて、3次元座標を再計算し、対象物の点群データを構築し、これを対象物の3次元形状とする。 The three-dimensional shape construction unit 16 recalculates the three-dimensional coordinates using the remaining feature points, constructs the point cloud data of the object, and sets this as the three-dimensional shape of the object.
 また、表示部20は、3次元形状構築部16によって構築された3次元形状を、表示装置21の画面上に表示させる。具体的には、表示部20は、構築された3次元形状を二次元画面上に表示するための画像データを作成し、作成した画像データを表示装置21に出力する。 Further, the display unit 20 displays the three-dimensional shape constructed by the three-dimensional shape construction unit 16 on the screen of the display device 21. Specifically, the display unit 20 creates image data for displaying the constructed three-dimensional shape on the two-dimensional screen, and outputs the created image data to the display device 21.
 また、本実施の形態では、特徴点抽出部11によって抽出された特徴点の組合せを用いて、例えば、フィルタリング部18によるフィルタリングのみが行われた後の特徴点の組合せを用いて、3次元座標算出部14は、対象物の仮の3次元座標を算出することもできる。この場合、3次元形状構築部16は、更に、算出された仮の3次元座標を用いて、仮の3次元形状を構築する。その後、表示部20は、構築された仮の3次元形状を表示装置21の画面上に表示させる。この場合、ユーザーは、画面に表示された仮の3次元形状において、互いに対応する線分又は点を指定することができる。 Further, in the present embodiment, the combination of the feature points extracted by the feature point extraction unit 11 is used, for example, the combination of the feature points after only the filtering by the filtering unit 18 is performed, and the three-dimensional coordinates are used. The calculation unit 14 can also calculate the provisional three-dimensional coordinates of the object. In this case, the three-dimensional shape building unit 16 further builds a temporary three-dimensional shape using the calculated temporary three-dimensional coordinates. After that, the display unit 20 displays the constructed temporary three-dimensional shape on the screen of the display device 21. In this case, the user can specify line segments or points corresponding to each other in the temporary three-dimensional shape displayed on the screen.
[装置動作]
 次に、本発明の実施の形態における画像処理装置10の動作について図10を用いて説明する。図10は、本発明の実施の形態における画像処理装置の動作を示すフロー図である。以下の説明においては、適宜図1~図9を参照する。また、本実施の形態では、画像処理装置10を動作させることによって、画像処理方法が実施される。よって、本実施の形態における画像処理方法の説明は、以下の画像処理装置10の動作説明に代える。
[Device operation]
Next, the operation of the image processing device 10 according to the embodiment of the present invention will be described with reference to FIG. FIG. 10 is a flow chart showing the operation of the image processing apparatus according to the embodiment of the present invention. In the following description, FIGS. 1 to 9 will be referred to as appropriate. Further, in the present embodiment, the image processing method is implemented by operating the image processing device 10. Therefore, the description of the image processing method in the present embodiment will be replaced with the following description of the operation of the image processing device 10.
 図10に示すように、最初に、画像取得部17は、外部の装置から、3次元形状の構築対象が写った複数の画像それぞれの画像データを取得する(ステップA1)。 As shown in FIG. 10, first, the image acquisition unit 17 acquires image data of each of a plurality of images showing a three-dimensional shape construction target from an external device (step A1).
 次に、特徴点抽出部11は、ステップA1で取得された画像データ毎に、その画像における特徴点を特定し、更に、画像間で対応する特徴点同士を、対応する特徴点の組合せとして抽出する(ステップA2)。 Next, the feature point extraction unit 11 identifies the feature points in the image for each image data acquired in step A1, and further extracts the feature points corresponding to each other as a combination of the corresponding feature points. (Step A2).
 次に、フィルタリング部18は、ステップA2で抽出された特徴点の組合せ毎に、特徴点間の幾何学的な関係を計算し、計算結果に基づいて、誤った特徴点の組合せを特定し、特定した特徴点の組合せを排除する(ステップA3)。 Next, the filtering unit 18 calculates the geometrical relationship between the feature points for each combination of the feature points extracted in step A2, and identifies an erroneous feature point combination based on the calculation result. The combination of the specified feature points is excluded (step A3).
 次に、ステップA3によるフィルタリング処理が実行されると、フィルタリング後の特徴点の組合せを用いて、3次元座標算出部14は、仮の3次元座標を算出し、更に、3次元形状構築部16は、算出された仮の3次元座標を用いて、仮の3次元形状を構築する。更に、表示部20は、構築された仮の3次元形状を表示装置21の画面上に表示させる(ステップA4)。 Next, when the filtering process according to step A3 is executed, the three-dimensional coordinate calculation unit 14 calculates temporary three-dimensional coordinates using the combination of the feature points after filtering, and further, the three-dimensional shape construction unit 16 Constructs a tentative 3D shape using the calculated tentative 3D coordinates. Further, the display unit 20 displays the constructed temporary three-dimensional shape on the screen of the display device 21 (step A4).
 ステップA4が実行され、仮の3次元形状が表示装置21の画面上に表示されると、ユーザーは、入力装置(図2において図示せず)を介して、各画像上において互いに対応する線分又は点を指定する。これにより、入力受付部16は、指定された線分又は点の入力を受け付ける(ステップA5)。また、入力受付部16は、指定された各線分の情報又は各点の情報を、行列算出部12に通知する。 When step A4 is executed and the temporary three-dimensional shape is displayed on the screen of the display device 21, the user can use the line segments corresponding to each other on each image via the input device (not shown in FIG. 2). Or specify a point. As a result, the input receiving unit 16 receives the input of the designated line segment or point (step A5). Further, the input receiving unit 16 notifies the matrix calculation unit 12 of the information of each designated line segment or the information of each point.
 次に、行列算出部12は、ステップA5が実行されると、各線分の情報又は各点の情報に基づいて、線分間又は点間の幾何学的関係を特定し、特定した幾何学的関係を表現する数値行列を算出する(ステップA6)。 Next, when step A5 is executed, the matrix calculation unit 12 identifies the geometric relationship between the line segments or the points based on the information of each line segment or the information of each point, and the specified geometric relationship. Is calculated (step A6).
 次に、不要特徴点特定部13は、ステップA6で算出された数値行列(Fundamental行列)を用いて、ステップA3の実行後の特徴点の組合せから、幾何学的関係が矛盾する特徴点の組合せを特定する(ステップA7)。 Next, the unnecessary feature point identification unit 13 uses the numerical matrix (Fundamental matrix) calculated in step A6, and from the combination of feature points after the execution of step A3, the combination of feature points whose geometric relationships are inconsistent. (Step A7).
 次に、3次元座標算出部14は、ステップA7において特定されなかった特徴点の組合せを用いて、3次元形状を構築するための3次元座標を算出する(ステップA8)。 Next, the three-dimensional coordinate calculation unit 14 calculates the three-dimensional coordinates for constructing the three-dimensional shape by using the combination of the feature points not specified in step A7 (step A8).
 次に、適合性判定部15は、ステップA8で3次元座標が算出された特徴点の組合せ毎に、この組合せを構成する1つの特徴点の抽出元の画像に対応するカメラ行列を、この組合せの3次元座標に適用する。そして、適合性判定部15は、このカメラ行列の適用によって、この組合せの3次元座標を、上述の1つの特徴点が抽出された画像上に投影して得られる、2次元座標を算出する。更に、適合性判定部15は、算出した2次元座標と1つの特徴点の2次元座標(抽出元の画像上の2次元座標)とを比較し、その比較結果に基づいて、上述の1つの特徴点が適正かどうかを判定する(ステップA9)。 Next, the suitability determination unit 15 sets a camera matrix corresponding to the image of the extraction source of one feature point constituting this combination for each combination of the feature points whose three-dimensional coordinates are calculated in step A8. Applies to the 3D coordinates of. Then, the suitability determination unit 15 calculates the two-dimensional coordinates obtained by projecting the three-dimensional coordinates of this combination onto the image from which the above-mentioned one feature point is extracted by applying the camera matrix. Further, the suitability determination unit 15 compares the calculated two-dimensional coordinates with the two-dimensional coordinates of one feature point (two-dimensional coordinates on the image of the extraction source), and based on the comparison result, one of the above-mentioned ones. It is determined whether or not the feature points are appropriate (step A9).
 次に、3次元形状構築部16は、ステップA6において、適正であると判定された組合せの特徴点に対応する、対象物の3次元座標を用いて、対象物の3次元形状を構築する(ステップA10)。その後、表示部20は、ステップA10で構築された3次元形状を、表示装置21の画面上に表示させる(ステップA11)。 Next, the three-dimensional shape construction unit 16 constructs the three-dimensional shape of the object by using the three-dimensional coordinates of the object corresponding to the feature points of the combination determined to be appropriate in step A6 (. Step A10). After that, the display unit 20 displays the three-dimensional shape constructed in step A10 on the screen of the display device 21 (step A11).
[実施の形態による効果]
 以上のように、本実施の形態における画像処理装置10は、フィルタリング部18、不要特徴点特定部13、及び適合性判定部15によって、間違った特徴点を排除することができる。このため、画像処理装置10は、複数の画像から対応する特徴点の組合せを抽出するに際して、間違った特徴点の組合せを抽出してしまう事態を抑制できる。この結果、本実施の形態によれば、対象物の3次元形状を高い精度で構築することができる。
[Effect of the embodiment]
As described above, in the image processing apparatus 10 of the present embodiment, erroneous feature points can be eliminated by the filtering unit 18, the unnecessary feature point identification unit 13, and the compatibility determination unit 15. Therefore, the image processing device 10 can suppress a situation in which an erroneous combination of feature points is extracted when extracting a combination of corresponding feature points from a plurality of images. As a result, according to the present embodiment, the three-dimensional shape of the object can be constructed with high accuracy.
[プログラム]
 本実施の形態におけるプログラムは、コンピュータに、図10に示すステップA1~A11を実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態における画像処理装置10と画像処理方法とを実現することができる。この場合、コンピュータのプロセッサは、特徴点抽出部11、行列算出部12、不要特徴点特定部13、3次元座標算出部14、適合性判定部15、3次元形状構築部16、画像取得部17、フィルタリング部18、及び入力受付部19として機能し、処理を行なう。
[program]
The program in this embodiment may be any program that causes a computer to execute steps A1 to A11 shown in FIG. By installing this program on a computer and executing it, the image processing device 10 and the image processing method according to the present embodiment can be realized. In this case, the computer processor includes a feature point extraction unit 11, a matrix calculation unit 12, an unnecessary feature point identification unit 13, a three-dimensional coordinate calculation unit 14, a conformity determination unit 15, a three-dimensional shape construction unit 16, and an image acquisition unit 17. , It functions as a filtering unit 18 and an input receiving unit 19, and performs processing.
 また、本実施の形態におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、特徴点抽出部11、行列算出部12、不要特徴点特定部13、3次元座標算出部14、適合性判定部15、3次元形状構築部16、画像取得部17、フィルタリング部18、及び入力受付部19のいずれかとして機能しても良い。 Further, the program in the present embodiment may be executed by a computer system constructed by a plurality of computers. In this case, for example, each computer has a feature point extraction unit 11, a matrix calculation unit 12, an unnecessary feature point identification unit 13, a three-dimensional coordinate calculation unit 14, a suitability determination unit 15, and a three-dimensional shape construction unit 16, respectively. It may function as any of the image acquisition unit 17, the filtering unit 18, and the input reception unit 19.
 ここで、本実施の形態におけるプログラムを実行することによって、画像処理装置を実現するコンピュータについて図11を用いて説明する。図11は、本発明の実施の形態における画像処理装置を実現するコンピュータの一例を示すブロック図である。 Here, a computer that realizes an image processing device by executing the program according to the present embodiment will be described with reference to FIG. FIG. 11 is a block diagram showing an example of a computer that realizes the image processing apparatus according to the embodiment of the present invention.
 図11に示すように、コンピュータ110は、CPU111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。また、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-Programmable Gate Array)を備えていても良い。 As shown in FIG. 11, the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader / writer 116, and a communication interface 117. Each of these parts is connected to each other via a bus 121 so as to be capable of data communication. Further, the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
 CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード群)をメインメモリ112に展開し、各コードを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。 The CPU 111 executes various operations by expanding the program (code group) in the present embodiment stored in the storage device 113 into the main memory 112 and executing each code in a predetermined order. The main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory). Further, the program according to the present embodiment is provided in a state of being stored in a computer-readable recording medium 120. The program in the present embodiment may be distributed on the Internet connected via the communication interface 117.
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。 Further, specific examples of the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive. The input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and mouse. The display controller 115 is connected to the display device 119 and controls the display on the display device 119.
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。 The data reader / writer 116 mediates the data transmission between the CPU 111 and the recording medium 120, reads the program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120. The communication interface 117 mediates data transmission between the CPU 111 and another computer.
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体が挙げられる。 Specific examples of the recording medium 120 include a general-purpose semiconductor storage device such as CF (CompactFlash (registered trademark)) and SD (SecureDigital), a magnetic recording medium such as a flexible disk, or a CD-. Examples include optical recording media such as ROM (CompactDiskReadOnlyMemory).
 なお、本実施の形態における画像処理装置10は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェア(例えば、回路)を用いることによっても実現可能である。更に、画像処理装置10は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。 The image processing device 10 in the present embodiment can also be realized by using hardware (for example, a circuit) corresponding to each part instead of the computer in which the program is installed. Further, the image processing apparatus 10 may be partially realized by a program and the rest may be realized by hardware.
 上述した実施の形態の一部又は全部は、以下に記載する(付記1)~(付記18)によって表現することができるが、以下の記載に限定されるものではない。 A part or all of the above-described embodiments can be expressed by the following descriptions (Appendix 1) to (Appendix 18), but the description is not limited to the following.
(付記1)
 対象物の複数の画像から前記対象物の3次元形状を構築するための装置であって、
 前記複数の画像それぞれから、対応する特徴点の組合せを抽出する、特徴点抽出部と、
 前記複数の画像のうちの少なくとも2つの画像上に、互いに対応する2以上の線分又は2以上の点が指定された場合に、互いに対応する2以上の線分間の幾何学的関係、又は互いに対応する2以上の点間の幾何学的関係を特定し、特定した前記幾何学的関係を表現する数値行列を算出する、行列算出部と、
 前記数値行列を用いて、抽出された前記特徴点の組合せのうち、特徴点間の幾何学的関係が矛盾する前記特徴点の組合せを特定する、不要特徴点特定部と、
 特定された前記特徴点の組合せを除く、前記特徴点の組合せ毎に、当該組合せを構成する特徴点それぞれのカメラ行列を算出し、更に、算出した前記カメラ行列を用いて、当該組合せの特徴点に対応する、前記対象物の3次元座標を算出する、3次元座標算出部と、
 前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する1つの特徴点の抽出元の画像に対応するカメラ行列を、当該組合せの3次元座標に適用することによって、当該組合せの前記3次元座標を前記1つの特徴点が抽出された画像上に投影して得られる、2次元座標を算出し、算出した2次元座標と前記1つの特徴点の2次元座標との比較結果に基づいて、前記1つの特徴点が適正かどうかを判定する、適合性判定部と、
 適正であると判定された特徴点に対応する、前記対象物の3次元座標を用いて、前記対象物の3次元形状を構築する、3次元形状構築部と、
を備えている、ことを特徴とする画像処理装置。
(Appendix 1)
A device for constructing a three-dimensional shape of an object from a plurality of images of the object.
A feature point extraction unit that extracts a combination of corresponding feature points from each of the plurality of images,
When two or more line segments or two or more points corresponding to each other are specified on at least two images of the plurality of images, the geometrical relationship between the two or more line segments corresponding to each other, or each other. A matrix calculation unit that identifies a geometric relationship between two or more corresponding points and calculates a numerical matrix that expresses the specified geometric relationship.
Among the extracted combinations of the feature points, the unnecessary feature point identification unit that identifies the combination of the feature points in which the geometrical relationship between the feature points is inconsistent is used with the numerical matrix.
For each combination of the feature points excluding the specified combination of the feature points, a camera matrix of each feature point constituting the combination is calculated, and further, the feature points of the combination are calculated using the calculated camera matrix. A three-dimensional coordinate calculation unit that calculates the three-dimensional coordinates of the object corresponding to
For each combination of the feature points for which the three-dimensional coordinates have been calculated, the camera matrix corresponding to the image of the extraction source of one feature point constituting the combination is applied to the three-dimensional coordinates of the combination. The two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates are compared with the two-dimensional coordinates of the one feature point. Based on the result, a conformity determination unit that determines whether or not the one feature point is appropriate, and
A three-dimensional shape construction unit that constructs a three-dimensional shape of the object using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate.
An image processing device characterized by being equipped with.
(付記2)
 付記1に記載の画像処理装置であって、
 前記適合性判定部が、比較結果として、算出した2次元座標と前記1つの特徴点の2次元座標との差分を算出し、算出した前記差分が閾値以下の場合に、前記1つの特徴点が適正であると判定し、算出した前記差分が閾値を越える場合に、前記1つの特徴点が適正でないと判定する、
ことを特徴とする画像処理装置。
(Appendix 2)
The image processing apparatus according to Appendix 1.
As a comparison result, the suitability determination unit calculates the difference between the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point, and when the calculated difference is equal to or less than the threshold value, the one feature point is determined. It is determined that the feature point is appropriate, and when the calculated difference exceeds the threshold value, it is determined that the one feature point is not appropriate.
An image processing device characterized by this.
(付記3)
 付記1または2に記載の画像処理装置であって、
 前記適合性判定部が、前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する特徴点の全部又は1部を選択し、選択した特徴点について1つずつ適正かどうかを判定する、
ことを特徴とする画像処理装置。
(Appendix 3)
The image processing apparatus according to Appendix 1 or 2.
The suitability determination unit selects all or one part of the feature points constituting the combination for each combination of the feature points for which the three-dimensional coordinates have been calculated, and whether or not each of the selected feature points is appropriate. To judge,
An image processing device characterized by this.
(付記4)
 付記1~3のいずれかに記載の画像処理装置であって、
 前記不要特徴点特定部が、更に、抽出された前記特徴点の組合せを構成している特徴点のうち、指定された、互いに対応する2以上の線分又は2以上の点に重なる特徴点を特定する、
ことを特徴とする画像処理装置。
(Appendix 4)
The image processing apparatus according to any one of Supplementary note 1 to 3.
The unnecessary feature point identification unit further sets a feature point that overlaps with two or more designated line segments or two or more points corresponding to each other among the feature points constituting the extracted combination of the feature points. Identify,
An image processing device characterized by this.
(付記5)
 付記1~4のいずれかに記載の画像処理装置であって、
 前記3次元形状構築部によって構築された前記3次元形状を画面上に表示する、表示部を更に備えている、
ことを特徴とする画像処理装置。
(Appendix 5)
The image processing apparatus according to any one of Appendix 1 to 4.
It further includes a display unit that displays the three-dimensional shape constructed by the three-dimensional shape construction unit on the screen.
An image processing device characterized by this.
(付記6)
 付記5に記載の画像処理装置であって、
 前記3次元座標算出部が、前記特徴点抽出部によって抽出された前記特徴点の組合せを用いて、前記対象物の仮の3次元座標を算出し、
 前記3次元形状構築部が、算出された前記仮の3次元座標を用いて、前記対象物の仮の3次元形状を構築し、
 前記表示部が、更に、前記仮の3次元形状を画面上に表示する、
ことを特徴とする画像処理装置。
(Appendix 6)
The image processing apparatus according to Appendix 5.
The three-dimensional coordinate calculation unit calculates temporary three-dimensional coordinates of the object by using the combination of the feature points extracted by the feature point extraction unit.
The three-dimensional shape construction unit constructs a temporary three-dimensional shape of the object by using the calculated temporary three-dimensional coordinates.
The display unit further displays the temporary three-dimensional shape on the screen.
An image processing device characterized by this.
(付記7)
 対象物の複数の画像から前記対象物の3次元形状を構築するための方法であって、
(a)前記複数の画像それぞれから、対応する特徴点の組合せを抽出する、ステップと、
(b)前記複数の画像のうちの少なくとも2つの画像上に、互いに対応する2以上の線分又は2以上の点が指定された場合に、互いに対応する2以上の線分間の幾何学的関係、又は互いに対応する2以上の点間の幾何学的関係を特定し、特定した前記幾何学的関係を表現する数値行列を算出する、ステップと、
(c)前記数値行列を用いて、抽出された前記特徴点の組合せのうち、特徴点間の幾何学的関係が矛盾する前記特徴点の組合せを特定する、ステップと、
(d)特定された前記特徴点の組合せを除く、前記特徴点の組合せ毎に、当該組合せを構成する特徴点それぞれのカメラ行列を算出し、更に、算出した前記カメラ行列を用いて、当該組合せの特徴点に対応する、前記対象物の3次元座標を算出する、ステップと、
(e)前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する1つの特徴点の抽出元の画像に対応するカメラ行列を、当該組合せの3次元座標に適用することによって、当該組合せの前記3次元座標を前記1つの特徴点が抽出された画像上に投影して得られる、2次元座標を算出し、算出した2次元座標と前記1つの特徴点の2次元座標との比較結果に基づいて、前記1つの特徴点が適正かどうかを判定する、ステップと、
(f)適正であると判定された特徴点に対応する、前記対象物の3次元座標を用いて、前記対象物の3次元形状を構築する、ステップと、
を有する、ことを特徴とする画像処理方法。
(Appendix 7)
A method for constructing a three-dimensional shape of an object from a plurality of images of the object.
(A) A step of extracting a combination of corresponding feature points from each of the plurality of images.
(B) When two or more line segments or two or more points corresponding to each other are designated on at least two images of the plurality of images, the geometric relationship between the two or more line segments corresponding to each other is specified. Or, a step that identifies a geometric relationship between two or more points corresponding to each other and calculates a numerical matrix that expresses the specified geometric relationship.
(C) Using the numerical matrix, among the extracted combinations of the feature points, the step and the step of identifying the combination of the feature points in which the geometrical relationship between the feature points is inconsistent.
(D) For each combination of the feature points excluding the specified combination of the feature points, a camera matrix of each feature point constituting the combination is calculated, and further, the combination is used by using the calculated camera matrix. The step of calculating the three-dimensional coordinates of the object corresponding to the feature point of
(E) For each combination of the feature points for which the three-dimensional coordinates have been calculated, the camera matrix corresponding to the image of the extraction source of one feature point constituting the combination is applied to the three-dimensional coordinates of the combination. The two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point are calculated. Based on the comparison result with, the step of determining whether or not the one feature point is appropriate, and
(F) A step of constructing a three-dimensional shape of the object using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate.
An image processing method comprising.
(付記8)
 付記7に記載の画像処理方法であって、
 前記(e)のステップにおいて、比較結果として、算出した2次元座標と前記1つの特徴点の2次元座標との差分を算出し、算出した前記差分が閾値以下の場合に、前記1つの特徴点が適正であると判定し、算出した前記差分が閾値を越える場合に、前記1つの特徴点が適正でないと判定する、
ことを特徴とする画像処理方法。
(Appendix 8)
The image processing method described in Appendix 7
In the step (e), as a comparison result, the difference between the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point is calculated, and when the calculated difference is equal to or less than the threshold value, the one feature point. Is appropriate, and when the calculated difference exceeds the threshold value, it is determined that the one feature point is not appropriate.
An image processing method characterized by that.
(付記9)
 付記7または8に記載の画像処理方法であって、
 前記(e)のステップにおいて、前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する特徴点の全部又は1部を選択し、選択した特徴点について1つずつ適正かどうかを判定する、
ことを特徴とする画像処理方法。
(Appendix 9)
The image processing method according to Appendix 7 or 8.
In the step (e), for each combination of the feature points for which the three-dimensional coordinates have been calculated, all or one part of the feature points constituting the combination is selected, and whether the selected feature points are appropriate one by one. Judge whether
An image processing method characterized by that.
(付記10)
 付記7~9のいずれかに記載の画像処理方法であって、
 前記(c)のステップにおいて、更に、抽出された前記特徴点の組合せを構成している特徴点のうち、指定された、互いに対応する2以上の線分又は2以上の点に重なる特徴点を特定する、
ことを特徴とする画像処理方法。
(Appendix 10)
The image processing method according to any one of Appendix 7 to 9.
In the step (c), among the feature points constituting the combination of the extracted feature points, the feature points overlapping the designated two or more line segments or two or more points corresponding to each other are designated. Identify,
An image processing method characterized by that.
(付記11)
 付記7~10のいずれかに記載の画像処理方法であって、
(g)前記(f)のステップによって構築された前記3次元形状を画面上に表示する、ステップを更に有する、
ことを特徴とする画像処理方法。
(Appendix 11)
The image processing method according to any one of Appendix 7 to 10.
(G) Further having a step of displaying the three-dimensional shape constructed by the step of (f) on the screen.
An image processing method characterized by that.
(付記12)
 付記11に記載の画像処理方法であって、
(h)前記(a)のステップによって抽出された前記特徴点の組合せを用いて、前記対象物の仮の3次元座標を算出し、算出された前記仮の3次元座標を用いて、前記対象物の仮の3次元形状を構築し、更に、前記仮の3次元形状を画面上に表示する、ステップを、
更に有する、
ことを特徴とする画像処理方法。
(Appendix 12)
The image processing method according to Appendix 11,
(H) Using the combination of the feature points extracted in the step (a), the tentative three-dimensional coordinates of the object are calculated, and the calculated tentative three-dimensional coordinates are used to calculate the target. A step of constructing a temporary three-dimensional shape of an object and further displaying the temporary three-dimensional shape on the screen.
Have more
An image processing method characterized by that.
(付記13)
 コンピュータによって、対象物の複数の画像から前記対象物の3次元形状を構築するためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、
(a)前記複数の画像それぞれから、対応する特徴点の組合せを抽出する、ステップと、
(b)前記複数の画像のうちの少なくとも2つの画像上に、互いに対応する2以上の線分又は2以上の点が指定された場合に、互いに対応する2以上の線分間の幾何学的関係、又は互いに対応する2以上の点間の幾何学的関係を特定し、特定した前記幾何学的関係を表現する数値行列を算出する、ステップと、
(c)前記数値行列を用いて、抽出された前記特徴点の組合せのうち、特徴点間の幾何学的関係が矛盾する前記特徴点の組合せを特定する、ステップと、
(d)特定された前記特徴点の組合せを除く、前記特徴点の組合せ毎に、当該組合せを構成する特徴点それぞれのカメラ行列を算出し、更に、算出した前記カメラ行列を用いて、当該組合せの特徴点に対応する、前記対象物の3次元座標を算出する、ステップと、
(e)前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する1つの特徴点の抽出元の画像に対応するカメラ行列を、当該組合せの3次元座標に適用することによって、当該組合せの前記3次元座標を前記1つの特徴点が抽出された画像上に投影して得られる、2次元座標を算出し、算出した2次元座標と前記1つの特徴点の2次元座標との比較結果に基づいて、前記1つの特徴点が適正かどうかを判定する、ステップと、
(f)適正であると判定された特徴点に対応する、前記対象物の3次元座標を用いて、前記対象物の3次元形状を構築する、ステップと、
を実行させる命令を含む、プログラムを記録していることを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 13)
A computer-readable recording medium in which a computer records a program for constructing a three-dimensional shape of an object from a plurality of images of the object.
On the computer
(A) A step of extracting a combination of corresponding feature points from each of the plurality of images.
(B) When two or more line segments or two or more points corresponding to each other are designated on at least two images of the plurality of images, the geometric relationship between the two or more line segments corresponding to each other is specified. Or, a step that identifies a geometric relationship between two or more points corresponding to each other and calculates a numerical matrix that expresses the specified geometric relationship.
(C) Using the numerical matrix, among the extracted combinations of the feature points, the step and the step of identifying the combination of the feature points in which the geometrical relationship between the feature points is inconsistent.
(D) For each combination of the feature points excluding the specified combination of the feature points, a camera matrix of each feature point constituting the combination is calculated, and further, the combination is used by using the calculated camera matrix. The step of calculating the three-dimensional coordinates of the object corresponding to the feature point of
(E) For each combination of the feature points for which the three-dimensional coordinates have been calculated, the camera matrix corresponding to the image of the extraction source of one feature point constituting the combination is applied to the three-dimensional coordinates of the combination. The two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point are calculated. Based on the comparison result with, the step of determining whether or not the one feature point is appropriate, and
(F) A step of constructing a three-dimensional shape of the object using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate.
A computer-readable recording medium characterized by recording a program, including instructions for executing the program.
(付記14)
 付記13に記載のコンピュータ読み取り可能な記録媒体であって、
 前記(e)のステップにおいて、比較結果として、算出した2次元座標と前記1つの特徴点の2次元座標との差分を算出し、算出した前記差分が閾値以下の場合に、前記1つの特徴点が適正であると判定し、算出した前記差分が閾値を越える場合に、前記1つの特徴点が適正でないと判定する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 14)
The computer-readable recording medium according to Appendix 13, which is a computer-readable recording medium.
In the step (e), as a comparison result, the difference between the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point is calculated, and when the calculated difference is equal to or less than the threshold value, the one feature point. Is appropriate, and when the calculated difference exceeds the threshold value, it is determined that the one feature point is not appropriate.
A computer-readable recording medium characterized by that.
(付記15)
 付記13または14に記載のコンピュータ読み取り可能な記録媒体であって、
 前記(e)のステップにおいて、前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する特徴点の全部又は1部を選択し、選択した特徴点について1つずつ適正かどうかを判定する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 15)
A computer-readable recording medium according to Appendix 13 or 14.
In the step (e), for each combination of the feature points for which the three-dimensional coordinates have been calculated, all or one part of the feature points constituting the combination is selected, and whether the selected feature points are appropriate one by one. Judge whether
A computer-readable recording medium characterized by that.
(付記16)
 付記13~15のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
 前記(c)のステップにおいて、更に、抽出された前記特徴点の組合せを構成している特徴点のうち、指定された、互いに対応する2以上の線分又は2以上の点に重なる特徴点を特定する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 16)
A computer-readable recording medium according to any one of Appendix 13 to 15.
In the step (c), among the feature points constituting the combination of the extracted feature points, the feature points overlapping the designated two or more line segments or two or more points corresponding to each other are designated. Identify,
A computer-readable recording medium characterized by that.
(付記17)
 付記13~16のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、更に、
(g)前記(f)のステップによって構築された前記3次元形状を画面上に表示する、ステップを実行させる、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 17)
A computer-readable recording medium according to any one of Appendix 13 to 16.
In addition to the computer
(G) The three-dimensional shape constructed by the step (f) is displayed on the screen, and the step is executed.
A computer-readable recording medium characterized by that.
(付記18)
 付記17に記載のコンピュータ読み取り可能な記録媒体であって、
前記コンピュータに、更に、
(h)前記(a)のステップによって抽出された前記特徴点の組合せを用いて、前記対象物の仮の3次元座標を算出し、算出された前記仮の3次元座標を用いて、前記対象物の仮の3次元形状を構築し、更に、前記仮の3次元形状を画面上に表示する、ステップを実行させる、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(Appendix 18)
The computer-readable recording medium according to Appendix 17, wherein the recording medium is readable.
In addition to the computer
(H) Using the combination of the feature points extracted in the step (a), the tentative three-dimensional coordinates of the object are calculated, and the calculated tentative three-dimensional coordinates are used to calculate the target. A temporary three-dimensional shape of an object is constructed, and the temporary three-dimensional shape is displayed on the screen, and a step is executed.
A computer-readable recording medium characterized by that.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the invention of the present application has been described above with reference to the embodiment, the invention of the present application is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made within the scope of the present invention in terms of the structure and details of the present invention.
 この出願は、2019年10月16日に出願された日本出願特願2019-189792を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2019-189792 filed on October 16, 2019, and incorporates all of its disclosures herein.
 以上のように、本発明によれば、複数の画像から対応する特徴点の組合せを抽出するに際して、間違った特徴点の組合せの抽出を抑制することができる。本発明は、SfMといった複数の画像から三次元形状を構築する技術に有用である。 As described above, according to the present invention, when extracting the corresponding combination of feature points from a plurality of images, it is possible to suppress the extraction of the wrong combination of feature points. The present invention is useful in a technique for constructing a three-dimensional shape from a plurality of images such as SfM.
 10 画像処理装置
 11 特徴点抽出部
 12 行列算出部
 13 不要特徴点特定部
 14 3次元座標算出部
 15 適合性判定部
 16 3次元形状構築部
 17 画像取得部
 18 フィルタリング部
 19 入力受付部
 20 表示部
 21 表示装置
 110 コンピュータ
 111 CPU
 112 メインメモリ
 113 記憶装置
 114 入力インターフェイス
 115 表示コントローラ
 116 データリーダ/ライタ
 117 通信インターフェイス
 118 入力機器
 119 ディスプレイ装置
 120 記録媒体
 121 バス
 
10 Image processing unit 11 Feature point extraction unit 12 Matrix calculation unit 13 Unnecessary feature point identification unit 14 3D coordinate calculation unit 15 Conformity judgment unit 16 3D shape construction unit 17 Image acquisition unit 18 Filtering unit 19 Input reception unit 20 Display unit 21 Display device 110 Computer 111 CPU
112 Main memory 113 Storage device 114 Input interface 115 Display controller 116 Data reader / writer 117 Communication interface 118 Input device 119 Display device 120 Recording medium 121 Bus

Claims (18)

  1.  対象物の複数の画像から前記対象物の3次元形状を構築するための装置であって、
     前記複数の画像それぞれから、対応する特徴点の組合せを抽出する、特徴点抽出手段と、
     前記複数の画像のうちの少なくとも2つの画像上に、互いに対応する2以上の線分又は2以上の点が指定された場合に、互いに対応する2以上の線分間の幾何学的関係、又は互いに対応する2以上の点間の幾何学的関係を特定し、特定した前記幾何学的関係を表現する数値行列を算出する、行列算出手段と、
     前記数値行列を用いて、抽出された前記特徴点の組合せのうち、特徴点間の幾何学的関係が矛盾する前記特徴点の組合せを特定する、不要特徴点特定手段と、
     特定された前記特徴点の組合せを除く、前記特徴点の組合せ毎に、当該組合せを構成する特徴点それぞれのカメラ行列を算出し、更に、算出した前記カメラ行列を用いて、当該組合せの特徴点に対応する、前記対象物の3次元座標を算出する、3次元座標算出手段と、
     前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する1つの特徴点の抽出元の画像に対応するカメラ行列を、当該組合せの3次元座標に適用することによって、当該組合せの前記3次元座標を前記1つの特徴点が抽出された画像上に投影して得られる、2次元座標を算出し、算出した2次元座標と前記1つの特徴点の2次元座標との比較結果に基づいて、前記1つの特徴点が適正かどうかを判定する、適合性判定手段と、
     適正であると判定された特徴点に対応する、前記対象物の3次元座標を用いて、前記対象物の3次元形状を構築する、3次元形状構築手段と、
    を備えている、ことを特徴とする画像処理装置。
    A device for constructing a three-dimensional shape of an object from a plurality of images of the object.
    A feature point extraction means for extracting a combination of corresponding feature points from each of the plurality of images,
    When two or more line segments or two or more points corresponding to each other are specified on at least two images of the plurality of images, the geometrical relationship between the two or more line segments corresponding to each other, or each other. A matrix calculation means that identifies a geometric relationship between two or more corresponding points and calculates a numerical matrix that expresses the specified geometric relationship.
    An unnecessary feature point identifying means for identifying the combination of the feature points whose geometric relationship between the feature points is inconsistent among the extracted combinations of the feature points using the numerical matrix.
    For each combination of the feature points excluding the specified combination of the feature points, a camera matrix of each feature point constituting the combination is calculated, and further, the feature points of the combination are calculated using the calculated camera matrix. A three-dimensional coordinate calculation means for calculating the three-dimensional coordinates of the object corresponding to
    For each combination of the feature points for which the three-dimensional coordinates have been calculated, the camera matrix corresponding to the image of the extraction source of one feature point constituting the combination is applied to the three-dimensional coordinates of the combination. The two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates are compared with the two-dimensional coordinates of the one feature point. A conformity determination means for determining whether or not the one feature point is appropriate based on the result,
    A three-dimensional shape constructing means for constructing a three-dimensional shape of the object using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate.
    An image processing device characterized by being equipped with.
  2.  請求項1に記載の画像処理装置であって、
     前記適合性判定手段が、比較結果として、算出した2次元座標と前記1つの特徴点の2次元座標との差分を算出し、算出した前記差分が閾値以下の場合に、前記1つの特徴点が適正であると判定し、算出した前記差分が閾値を越える場合に、前記1つの特徴点が適正でないと判定する、
    ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 1.
    As a comparison result, the suitability determination means calculates the difference between the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point, and when the calculated difference is equal to or less than the threshold value, the one feature point is determined. It is determined that the feature point is appropriate, and when the calculated difference exceeds the threshold value, it is determined that the one feature point is not appropriate.
    An image processing device characterized by this.
  3.  請求項1または2に記載の画像処理装置であって、
     前記適合性判定手段が、前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する特徴点の全部又は1部を選択し、選択した特徴点について1つずつ適正かどうかを判定する、
    ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 1 or 2.
    Whether or not the suitability determination means selects all or one part of the feature points constituting the combination for each combination of the feature points for which the three-dimensional coordinates have been calculated, and is appropriate for each of the selected feature points. To judge,
    An image processing device characterized by this.
  4.  請求項1~3のいずれかに記載の画像処理装置であって、
     前記不要特徴点特定手段が、更に、抽出された前記特徴点の組合せを構成している特徴点のうち、指定された、互いに対応する2以上の線分又は2以上の点に重なる特徴点を特定する、
    ことを特徴とする画像処理装置。
    The image processing apparatus according to any one of claims 1 to 3.
    The unnecessary feature point identifying means further obtains feature points that overlap with two or more designated line segments or two or more points corresponding to each other among the feature points constituting the extracted combination of the feature points. Identify,
    An image processing device characterized by this.
  5.  請求項1~4のいずれかに記載の画像処理装置であって、
     前記3次元形状構築手段によって構築された前記3次元形状を画面上に表示する、表示手段を更に備えている、
    ことを特徴とする画像処理装置。
    The image processing apparatus according to any one of claims 1 to 4.
    Further provided with a display means for displaying the three-dimensional shape constructed by the three-dimensional shape construction means on the screen.
    An image processing device characterized by this.
  6.  請求項5に記載の画像処理装置であって、
     前記3次元座標算出手段が、前記特徴点抽出手段によって抽出された前記特徴点の組合せを用いて、前記対象物の仮の3次元座標を算出し、
     前記3次元形状構築手段が、算出された前記仮の3次元座標を用いて、前記対象物の仮の3次元形状を構築し、
     前記表示手段が、更に、前記仮の3次元形状を画面上に表示する、
    ことを特徴とする画像処理装置。
    The image processing apparatus according to claim 5.
    The three-dimensional coordinate calculation means calculates provisional three-dimensional coordinates of the object by using the combination of the feature points extracted by the feature point extraction means.
    The three-dimensional shape construction means constructs a temporary three-dimensional shape of the object by using the calculated temporary three-dimensional coordinates.
    The display means further displays the temporary three-dimensional shape on the screen.
    An image processing device characterized by this.
  7.  対象物の複数の画像から前記対象物の3次元形状を構築するための方法であって、
     前記複数の画像それぞれから、対応する特徴点の組合せを抽出し、
     前記複数の画像のうちの少なくとも2つの画像上に、互いに対応する2以上の線分又は2以上の点が指定された場合に、互いに対応する2以上の線分間の幾何学的関係、又は互いに対応する2以上の点間の幾何学的関係を特定し、特定した前記幾何学的関係を表現する数値行列を算出し、
     前記数値行列を用いて、抽出された前記特徴点の組合せのうち、特徴点間の幾何学的関係が矛盾する前記特徴点の組合せを特定し、
     特定された前記特徴点の組合せを除く、前記特徴点の組合せ毎に、当該組合せを構成する特徴点それぞれのカメラ行列を算出し、更に、算出した前記カメラ行列を用いて、当該組合せの特徴点に対応する、前記対象物の3次元座標を算出し、
     前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する1つの特徴点の抽出元の画像に対応するカメラ行列を、当該組合せの3次元座標に適用することによって、当該組合せの前記3次元座標を前記1つの特徴点が抽出された画像上に投影して得られる、2次元座標を算出し、算出した2次元座標と前記1つの特徴点の2次元座標との比較結果に基づいて、前記1つの特徴点が適正かどうかを判定し、
     適正であると判定された特徴点に対応する、前記対象物の3次元座標を用いて、前記対象物の3次元形状を構築する、ことを特徴とする画像処理方法。
    A method for constructing a three-dimensional shape of an object from a plurality of images of the object.
    A combination of corresponding feature points is extracted from each of the plurality of images.
    When two or more line segments or two or more points corresponding to each other are specified on at least two images of the plurality of images, the geometrical relationship between the two or more line segments corresponding to each other, or each other. The geometric relationship between two or more corresponding points is specified, and a numerical matrix expressing the specified geometric relationship is calculated.
    Using the numerical matrix, among the extracted combinations of the feature points, the combinations of the feature points in which the geometrical relationships between the feature points are inconsistent are identified.
    For each combination of the feature points excluding the specified combination of the feature points, a camera matrix of each feature point constituting the combination is calculated, and further, the feature points of the combination are calculated using the calculated camera matrix. Calculate the three-dimensional coordinates of the object corresponding to
    For each combination of the feature points for which the three-dimensional coordinates have been calculated, the camera matrix corresponding to the image of the extraction source of one feature point constituting the combination is applied to the three-dimensional coordinates of the combination. The two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates are compared with the two-dimensional coordinates of the one feature point. Based on the result, it is determined whether or not the one feature point is appropriate, and
    An image processing method characterized in that a three-dimensional shape of the object is constructed by using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate.
  8.  請求項7に記載の画像処理方法であって、
     前記1つの特徴点が適正化どうかの判定において、比較結果として、算出した2次元座標と前記1つの特徴点の2次元座標との差分を算出し、算出した前記差分が閾値以下の場合に、前記1つの特徴点が適正であると判定し、算出した前記差分が閾値を越える場合に、前記1つの特徴点が適正でないと判定する、
    ことを特徴とする画像処理方法。
    The image processing method according to claim 7.
    In the determination of whether or not the one feature point is optimized, as a comparison result, the difference between the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point is calculated, and when the calculated difference is equal to or less than the threshold value, It is determined that the one feature point is appropriate, and when the calculated difference exceeds the threshold value, it is determined that the one feature point is not appropriate.
    An image processing method characterized by that.
  9.  請求項7または8に記載の画像処理方法であって、
     前記1つの特徴点が適正化どうかの判定において、前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する特徴点の全部又は1部を選択し、選択した特徴点について1つずつ適正かどうかを判定する、
    ことを特徴とする画像処理方法。
    The image processing method according to claim 7 or 8.
    In the determination of whether or not the one feature point is optimized, all or one part of the feature points constituting the combination is selected for each combination of the feature points for which the three-dimensional coordinates are calculated, and the selected feature points are obtained. Judge whether it is appropriate one by one,
    An image processing method characterized by that.
  10.  請求項7~9のいずれかに記載の画像処理方法であって、
     前記特徴点の組合せの特定において、更に、抽出された前記特徴点の組合せを構成している特徴点のうち、指定された、互いに対応する2以上の線分又は2以上の点に重なる特徴点を特定する、
    ことを特徴とする画像処理方法。
    The image processing method according to any one of claims 7 to 9.
    In specifying the combination of the feature points, further, among the feature points constituting the extracted combination of the feature points, the feature points overlapping the designated two or more line segments or two or more points corresponding to each other. To identify,
    An image processing method characterized by that.
  11.  請求項7~10のいずれかに記載の画像処理方法であって、
     前記3次元形状の構築によって構築された前記3次元形状を画面上に表示する、
    ことを特徴とする画像処理方法。
    The image processing method according to any one of claims 7 to 10.
    The three-dimensional shape constructed by constructing the three-dimensional shape is displayed on the screen.
    An image processing method characterized by that.
  12.  請求項11に記載の画像処理方法であって、
     前記対応する特徴点の組合せの抽出によって抽出された前記特徴点の組合せを用いて、前記対象物の仮の3次元座標を算出し、算出された前記仮の3次元座標を用いて、前記対象物の仮の3次元形状を構築し、更に、前記仮の3次元形状を画面上に表示する、
    ことを特徴とする画像処理方法。
    The image processing method according to claim 11.
    Using the combination of the feature points extracted by extracting the combination of the corresponding feature points, the tentative three-dimensional coordinates of the object are calculated, and the calculated tentative three-dimensional coordinates are used to calculate the target. A temporary three-dimensional shape of an object is constructed, and the temporary three-dimensional shape is displayed on the screen.
    An image processing method characterized by that.
  13.  コンピュータによって、対象物の複数の画像から前記対象物の3次元形状を構築するためのコンピュータ読み取り可能な記録媒体であって、
    前記コンピュータに、
     前記複数の画像それぞれから、対応する特徴点の組合せを抽出させ、
     前記複数の画像のうちの少なくとも2つの画像上に、互いに対応する2以上の線分又は2以上の点が指定された場合に、互いに対応する2以上の線分間の幾何学的関係、又は互いに対応する2以上の点間の幾何学的関係を特定し、特定した前記幾何学的関係を表現する数値行列を算出させ、
     前記数値行列を用いて、抽出された前記特徴点の組合せのうち、特徴点間の幾何学的関係が矛盾する前記特徴点の組合せを特定させ、
     特定された前記特徴点の組合せを除く、前記特徴点の組合せ毎に、当該組合せを構成する特徴点それぞれのカメラ行列を算出し、更に、算出した前記カメラ行列を用いて、当該組合せの特徴点に対応する、前記対象物の3次元座標を算出させ、
     前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する1つの特徴点の抽出元の画像に対応するカメラ行列を、当該組合せの3次元座標に適用することによって、当該組合せの前記3次元座標を前記1つの特徴点が抽出された画像上に投影して得られる、2次元座標を算出し、算出した2次元座標と前記1つの特徴点の2次元座標との比較結果に基づいて、前記1つの特徴点が適正かどうかを判定させ、
     適正であると判定された特徴点に対応する、前記対象物の3次元座標を用いて、前記対象物の3次元形状を構築させる、
    命令を含むプログラムを記録している、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium for constructing a three-dimensional shape of an object from a plurality of images of the object by a computer.
    On the computer
    A combination of corresponding feature points is extracted from each of the plurality of images.
    When two or more line segments or two or more points corresponding to each other are specified on at least two images of the plurality of images, the geometrical relationship between the two or more line segments corresponding to each other, or each other. The geometric relationship between two or more corresponding points is specified, and a numerical matrix expressing the specified geometric relationship is calculated.
    Using the numerical matrix, among the extracted combinations of the feature points, the combinations of the feature points in which the geometrical relationships between the feature points are inconsistent are identified.
    For each combination of the feature points excluding the specified combination of the feature points, a camera matrix of each feature point constituting the combination is calculated, and further, the feature points of the combination are calculated using the calculated camera matrix. To calculate the three-dimensional coordinates of the object corresponding to
    For each combination of the feature points for which the three-dimensional coordinates have been calculated, the camera matrix corresponding to the image of the extraction source of one feature point constituting the combination is applied to the three-dimensional coordinates of the combination. The two-dimensional coordinates obtained by projecting the three-dimensional coordinates of the combination onto the image from which the one feature point is extracted are calculated, and the calculated two-dimensional coordinates are compared with the two-dimensional coordinates of the one feature point. Based on the result, it is determined whether or not the one feature point is appropriate, and the result is determined.
    Using the three-dimensional coordinates of the object corresponding to the feature points determined to be appropriate, the three-dimensional shape of the object is constructed.
    Recording the program containing the instructions,
    A computer-readable recording medium characterized by that.
  14.  請求項13に記載のコンピュータ読み取り可能な記録媒体であって、
     前記1つの特徴点が適正化どうかの判定において、比較結果として、算出した2次元座標と前記1つの特徴点の2次元座標との差分を算出し、算出した前記差分が閾値以下の場合に、前記1つの特徴点が適正であると判定し、算出した前記差分が閾値を越える場合に、前記1つの特徴点が適正でないと判定する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    The computer-readable recording medium according to claim 13.
    In the determination of whether or not the one feature point is optimized, as a comparison result, the difference between the calculated two-dimensional coordinates and the two-dimensional coordinates of the one feature point is calculated, and when the calculated difference is equal to or less than the threshold value, It is determined that the one feature point is appropriate, and when the calculated difference exceeds the threshold value, it is determined that the one feature point is not appropriate.
    A computer-readable recording medium characterized by that.
  15.  請求項13または14に記載のコンピュータ読み取り可能な記録媒体であって、
     前記1つの特徴点が適正化どうかの判定において、前記3次元座標が算出された前記特徴点の組合せ毎に、当該組合せを構成する特徴点の全部又は1部を選択し、選択した特徴点について1つずつ適正かどうかを判定する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium according to claim 13 or 14.
    In the determination of whether or not the one feature point is optimized, all or one part of the feature points constituting the combination is selected for each combination of the feature points for which the three-dimensional coordinates are calculated, and the selected feature points are obtained. Judge whether it is appropriate one by one,
    A computer-readable recording medium characterized by that.
  16.  請求項13~15のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
     前記特徴点の組合せの特定において、更に、抽出された前記特徴点の組合せを構成している特徴点のうち、指定された、互いに対応する2以上の線分又は2以上の点に重なる特徴点を特定する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium according to any one of claims 13 to 15.
    In specifying the combination of the feature points, further, among the feature points constituting the extracted combination of the feature points, the feature points overlapping the designated two or more line segments or two or more points corresponding to each other. To identify,
    A computer-readable recording medium characterized by that.
  17.  請求項13~16のいずれかに記載のコンピュータ読み取り可能な記録媒体であって、
    前記プログラムが、前記コンピュータに、
     前記3次元形状の構築によって構築された前記3次元形状を画面上に表示させる、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    A computer-readable recording medium according to any one of claims 13 to 16.
    The program is on the computer
    The three-dimensional shape constructed by constructing the three-dimensional shape is displayed on the screen.
    A computer-readable recording medium characterized by that.
  18.  請求項17に記載のコンピュータ読み取り可能な記録媒体であって、
    前記プログラムが、前記コンピュータに、
     前記対応する特徴点の組合せの抽出によって抽出された前記特徴点の組合せを用いて、前記対象物の仮の3次元座標を算出し、算出された前記仮の3次元座標を用いて、前記対象物の仮の3次元形状を構築し、更に、前記仮の3次元形状を画面上に表示させる、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
    The computer-readable recording medium according to claim 17.
    The program is on the computer
    Using the combination of the feature points extracted by extracting the combination of the corresponding feature points, the tentative three-dimensional coordinates of the object are calculated, and the calculated tentative three-dimensional coordinates are used to calculate the target. A temporary three-dimensional shape of an object is constructed, and the temporary three-dimensional shape is displayed on the screen.
    A computer-readable recording medium characterized by that.
PCT/JP2020/037860 2019-10-16 2020-10-06 Image processing device, image processing method, and computer-readable recording medium WO2021075314A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021552339A JP7294702B2 (en) 2019-10-16 2020-10-06 Image processing device, image processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019189792 2019-10-16
JP2019-189792 2019-10-16

Publications (1)

Publication Number Publication Date
WO2021075314A1 true WO2021075314A1 (en) 2021-04-22

Family

ID=75537457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037860 WO2021075314A1 (en) 2019-10-16 2020-10-06 Image processing device, image processing method, and computer-readable recording medium

Country Status (2)

Country Link
JP (1) JP7294702B2 (en)
WO (1) WO2021075314A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075637A (en) * 2014-10-08 2016-05-12 キヤノン株式会社 Information processing apparatus and method for the same
WO2019065784A1 (en) * 2017-09-29 2019-04-04 Necソリューションイノベータ株式会社 Image processing device, image processing method, and computer-readable recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016075637A (en) * 2014-10-08 2016-05-12 キヤノン株式会社 Information processing apparatus and method for the same
WO2019065784A1 (en) * 2017-09-29 2019-04-04 Necソリューションイノベータ株式会社 Image processing device, image processing method, and computer-readable recording medium

Also Published As

Publication number Publication date
JP7294702B2 (en) 2023-06-20
JPWO2021075314A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
US10368062B2 (en) Panoramic camera systems
KR101820349B1 (en) Picture presentation method and apparatus
JP6716996B2 (en) Image processing program, image processing apparatus, and image processing method
US20120294528A1 (en) Method of Detecting and Correcting Digital Images of Books in the Book Spine Area
WO2022105415A1 (en) Method, apparatus and system for acquiring key frame image, and three-dimensional reconstruction method
EP3633606B1 (en) Information processing device, information processing method, and program
US20120014453A1 (en) Image processing apparatus and image processing method
JP2012050013A (en) Imaging apparatus, image processing device, image processing method, and image processing program
JP6542230B2 (en) Method and system for correcting projected distortion
WO2019123554A1 (en) Image processing device, image processing method, and recording medium
EP2536123A1 (en) Image processing method and image processing apparatus
JP6989153B2 (en) Image processing equipment, image processing methods, and programs
US20120038785A1 (en) Method for producing high resolution image
JP7312026B2 (en) Image processing device, image processing method and program
JP2006113832A (en) Stereoscopic image processor and program
WO2021075314A1 (en) Image processing device, image processing method, and computer-readable recording medium
JP2022064506A (en) Image processing device, image processing method, and program
WO2021166574A1 (en) Image processing device, image processing method, and computer-readable recording medium
JP2013153392A (en) Image processing apparatus and image processing method, and program
JP2008077489A (en) Image processor, method, program, and storage medium
CN113167568A (en) Coordinate calculation device, coordinate calculation method, and computer-readable recording medium
JP2023104399A (en) Image processing device, image processing method, and program
JP5636966B2 (en) Error detection apparatus and error detection program
CN111630569A (en) Binocular matching method, visual imaging device and device with storage function
JP7443965B2 (en) Information processing device, correction method, program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876227

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552339

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876227

Country of ref document: EP

Kind code of ref document: A1