WO2021074955A1 - Terminal - Google Patents

Terminal Download PDF

Info

Publication number
WO2021074955A1
WO2021074955A1 PCT/JP2019/040460 JP2019040460W WO2021074955A1 WO 2021074955 A1 WO2021074955 A1 WO 2021074955A1 JP 2019040460 W JP2019040460 W JP 2019040460W WO 2021074955 A1 WO2021074955 A1 WO 2021074955A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
frequency band
drs
configuration information
information
Prior art date
Application number
PCT/JP2019/040460
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 栗田
浩樹 原田
慎也 熊谷
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2021552006A priority Critical patent/JPWO2021074955A1/ja
Priority to PCT/JP2019/040460 priority patent/WO2021074955A1/en
Publication of WO2021074955A1 publication Critical patent/WO2021074955A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to a terminal that executes wireless communication, and more particularly to a terminal that uses an unlicensed frequency band.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • 5th generation mobile communication system for the purpose of further speeding up LTE.
  • Specifications also called 5G, New Radio (NR) or Next Generation (NG) are also underway.
  • Non-Patent Document 1 New Radio-Unlicensed (NR-U), which expands the available frequency band by using the spectrum of the unlicensed frequency band, is being studied (Non-Patent Document 1). ).
  • the candidate position (candidate SSB position) of SSB (SS / PBCH Block) composed of the synchronization signal (SS: Synchronization Signal) and the downlink physical broadcast channel (PBCH: Physical Broadcast CHannel).
  • SS Synchronization Signal
  • PBCH Physical Broadcast CHannel
  • the number of candidate SSB positions will be 10 when the subcarrier interval (SCS) is 15 kHz and 20 when the subcarrier interval (SCS) is 30 kHz.
  • the DRS (Discovery Reference Signal) configuration is configured by system information (MIB: Master Information Block). It is proposed to notify.
  • MIB Master Information Block
  • the terminal can limit the number of candidate SSB positions to be measured based on the DRS configuration, efficient SSB measurement is possible. As a result, quick initial access and reduction of processing load can be achieved.
  • 3GPP TR 38.889 V16.0.0 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on NR-based access to unlicensed spectrum (Release 16), 3GPP, December 2018 "Feature lead summary # 1 of Enhancements to initial access procedure", R1-1905635, 3GPP TSG RAN WG1 Meeting # 96BIS, 3GPP, August 2019
  • the above-mentioned request for reduction of candidate SSB position to be measured is the same for SSB measurement in peripheral cells in the unlicensed frequency band.
  • an object of the present invention is to provide a terminal capable of efficiently performing SSB measurement in peripheral cells in NR-U using an unlicensed frequency band. ..
  • One aspect of the present disclosure is a receiver that receives configuration information of a reference signal (DRS) used in a peripheral cell in a second frequency band (unlicensed frequency band Fu) different from the first frequency band assigned for mobile communication.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • FIG. 4 is a diagram showing a configuration example of a synchronization signal block (SSB).
  • FIG. 5 is a functional block configuration diagram of the UE 200.
  • FIG. 6A is a diagram (No. 1) showing a configuration example (2SSB / slot) of the DRS.
  • FIG. 6B is a diagram (No. 2) showing a configuration example (2SSB / slot) of the DRS.
  • FIG. 6C is a diagram (No.
  • FIG. 7 is a diagram showing another configuration example (1SSB / slot) of the DRS.
  • FIG. 8 is a diagram showing an example of an overall schematic sequence relating to the measurement of peripheral cells in the unlicensed frequency band Fu.
  • FIG. 9 is a diagram showing a configuration example of SSB-ToMeasure IE.
  • FIG. 10 is a diagram showing another configuration example of SSB-ToMeasure IE.
  • FIG. 11 is a diagram showing still another configuration example of SSB-ToMeasure IE.
  • FIG. 12 is a diagram showing a configuration example of SSB-ToMeasure-Unlicensed IE.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the UE 200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network
  • UE200 terminal 200
  • NG-RAN20 includes a radio base station 100 (hereinafter, gNB100).
  • gNB100 radio base station 100
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • the NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as "network”.
  • GNB100 is a wireless base station that complies with 5G, and executes wireless communication according to UE200 and 5G.
  • the gNB100 and UE200 use Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) to generate more directional beam BM by controlling radio signals transmitted from multiple antenna elements. It can support carrier aggregation (CA) that is used in a bundle, and dual connectivity (DC) that communicates simultaneously between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC component carriers
  • CA carrier aggregation
  • DC dual connectivity
  • Wireless communication system 10 supports multiple frequency ranges (FR).
  • FIG. 2 shows the frequency range used in the wireless communication system 10.
  • FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
  • the wireless communication system 10 corresponds to FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410 MHz to 7.125 GHz
  • FR2 24.25 GHz to 52.6 GHz
  • FR1 uses 15, 30 or 60kHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 has a higher frequency than FR1, uses SCS of 60, or 120kHz (240kHz may be included), and uses a bandwidth (BW) of 50 to 400MHz.
  • SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 may support a higher frequency band than the FR2 frequency band.
  • the wireless communication system 10 can support frequency bands beyond 52.6 GHz and up to 114.25 GHz.
  • FR4 belongs to the so-called EHF (extremely high frequency, also called millimeter wave).
  • FR4 is a tentative name and may be called by another name.
  • FR4 may be further classified. For example, FR4 may be divided into a frequency range of 70 GHz or less and a frequency range of 70 GHz or more. Alternatively, FR4 may be divided into more frequency ranges or frequencies other than 70 GHz.
  • FR3 is a frequency band above 7.125 GHz and below 24.25 GHz.
  • FR3 and FR4 are different from the frequency band including FR1 and FR2, and are referred to as different frequency bands.
  • an unlicensed frequency band Fu (second frequency band) different from the frequency band is also used.
  • New Radio-Unlicensed (NR-U) which extends the available frequency band by using the spectrum of the unlicensed frequency band, can be executed.
  • the frequency band allocated for the wireless communication system 10 is a frequency band included in the frequency range of FR1 and FR2 described above, and based on the license allocation by the government.
  • Unlicensed frequency band Fu is a frequency band that does not require a license allocation by the government and can be used without being limited to a specific telecommunications carrier.
  • a frequency band for wireless LAN (WLAN) (2.4 GHz or 5 GHz band, etc.) can be mentioned.
  • gNB100 executes carrier sense before starting transmission, and the channel is used by another system in the vicinity.
  • the Listen-Before-Talk (LBT) mechanism which enables transmission within a predetermined time length, is applied only when it can be confirmed that the notification has not been performed.
  • the carrier sense is a technique for confirming whether or not the frequency carrier is used for other communication before emitting a radio wave.
  • the gNB100 executes carrier sense and can confirm that the channel is not used by another system in the vicinity, it can refer to a reference signal for wireless link monitoring, specifically, RLM-RS (Radiolink monitoring-Reference). Signal) is transmitted into the forming cell.
  • RLM-RS Radiolink monitoring-Reference
  • RLM-RS may include DRS (Discovery Reference Signal), SSB (SS / PBCH blocks: Synchronization Signal / Physical Broadcast Channel blocks) and CSI-RS (Channel State Information-RS).
  • the DRS may also include a CSI-RS, RMSI-CORSET (Remaining minimum system information-control resource sets), or PDSCH (Physical Downlink Shared Channel) associated with the SSB.
  • RMSI-CORSET is a CORESET for Type0-PDCCH CSS (Common Search Space) set, and UE200 determines and determines several contiguous resource blocks (RBs) and symbols for RMSI-CORSET.
  • PDCCH Physical Downlink Control Channel
  • MO Type 0 PDCCH monitoring opportunity
  • SIB system information block
  • the UE 200 has one or more PRACHs (SS / PBCH Block) associated with an SSB (SS / PBCH Block) composed of a synchronization signal (SS: Synchronization Signal) and a downlink physical broadcast channel (PBCH: Physical Broadcast CHannel).
  • PRACH Occasion (RO) for PhysicalRandomAccessChannel
  • FIG. 4 shows a configuration example of a synchronization signal block (SSB).
  • the SSB is composed of a synchronization signal (SS: Synchronization Signal) and a downlink physical broadcast channel (PBCH: Physical Broadcast CHannel).
  • SS Synchronization Signal
  • PBCH Physical Broadcast CHannel
  • SSB is mainly transmitted periodically for UE200 to execute cell ID and reception timing detection at the start of communication.
  • SSB is also used to measure the reception quality of each cell.
  • PSS Primary SS
  • SSS Secondary SS
  • PSS is a known signal that UE200 first attempts to detect in the cell search procedure.
  • the SSS is a known signal transmitted to detect the physical cell ID in the cell search procedure.
  • PBCH is an index for identifying the symbol position of multiple SS / PBCH Blocks in the radio frame number (SFN: SystemFrameNumber) and half frame (5 milliseconds).
  • SFN SystemFrameNumber
  • the UE200 contains the information needed to establish frame synchronization with the NR cell formed by the gNB100.
  • the PBCH can also include system parameters required to receive system information (SIB). Further, the SSB also includes a reference signal for demodulation of the broadcast channel (DMRS for PBCH).
  • DMRS for PBCH is a known signal transmitted to measure the radio channel state for PBCH demodulation.
  • FIG. 5 is a functional block configuration diagram of the UE 200.
  • the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
  • the wireless signal transmitter / receiver 210 transmits / receives a wireless signal according to NR.
  • the radio signal transmitter / receiver 210 corresponds to Massive MIMO, a CA that bundles and uses a plurality of CCs, and a DC that simultaneously communicates between a UE and each of two NG-RAN Nodes.
  • the amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like.
  • the amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
  • the modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
  • the control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
  • control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • a predetermined control channel for example, control signals of the radio resource control layer (RRC).
  • RRC radio resource control layer
  • the control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation reference signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signal
  • DMRS Demodulation reference signal
  • PTRS Phase Tracking Reference Signal
  • DMRS is a known reference signal (pilot signal) between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
  • the reference signal also includes Channel State Information-Reference Signal (CSI-RS) and Sounding Reference Signal (SRS).
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • the reference signal also includes RLM-RS, as described above.
  • the channel includes a control channel and a data channel.
  • the control channel includes PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), PBCH (Physical Broadcast Channel) and the like.
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • control signal / reference signal processing unit 240 is unlicensed different from the frequency band (first frequency band) assigned for mobile communication, that is, the licensed frequency band (which may be called the license band). It receives the configuration information of the reference signal used in the peripheral cells in the frequency band Fu (second frequency band, which may also be called an unlicend band).
  • the control signal / reference signal processing unit 240 constitutes a receiving unit.
  • Peripheral cells in the unlicensed frequency band Fu use the band included in the unlicensed frequency band Fu and are formed around (may be near or near) the cell (which may be called a serving cell) to which the UE200 is connected. It may mean a cell that has been used.
  • the peripheral cell may be formed by a radio base station forming a serving cell, or may be formed by a radio base station different from the radio base station forming the serving cell.
  • the control signal / reference signal processing unit 240 receives the DRS configuration information used in the peripheral cell.
  • the DRS configuration information can be shown using SSB-ToMeasureIE specified in 3GPP TS38.331.
  • SSB-ToMeasure is used for setting SSB for NR, not for NR-U, specifically for notifying the candidate position of SSB (candidate SSB position), but in this embodiment, the DRS in NR-U It is diverted to the notification of configuration information.
  • SSB-ToMeasure is a bitmap format.
  • control signal / reference signal processing unit 240 uses a bitmap format indicating the candidate position of SSB in the cell in the frequency band (first frequency band) assigned for mobile communication, and is diverted to NR-U. Can receive configuration information.
  • a new IE may be specified to notify the DRS configuration information in NR-U, specifically, the candidate position of SSB (candidate SSB position).
  • SSB-ToMeasure-Unlicensed name is tentative name
  • SSB-ToMeasure-Unlicensed may be in bitmap format like SSB-ToMeasure, or may notify the unit size of DRS (may be simply expressed as size). That is, SSB-ToMeasure-Unlicensed may include the size of the DRS (reference signal).
  • control signal / reference signal processing unit 240 can receive the information element (IE) indicating the candidate position of SSB in the peripheral cell in the unlicensed frequency band Fu as the configuration information.
  • IE information element
  • the coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
  • the coding / decoding unit 250 divides the data output from the data transmitting / receiving unit 260 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
  • the data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU).
  • the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble.
  • the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
  • the control unit 270 controls each functional block constituting the UE 200.
  • the control unit 270 executes the control related to the NR-U.
  • control unit 270 executes the measurement of SSB in the peripheral cells in the unlicensed frequency band Fu based on the DRS configuration information received by the control signal / reference signal processing unit 240. More specifically, the control unit 270 identifies a candidate position (candidate SSB position) of the SSB to be measured based on the configuration information, and executes measurement using the specified SSB.
  • UE200 describes the operation related to the measurement of peripheral cells in the unlicensed frequency band Fu.
  • the operation of the UE 200 to identify the candidate position (candidate SSB position) of the SSB based on the DRS configuration information will be described.
  • DRS unit size ie 1 slot or half slot
  • Number of SSBs in one slot (1 or 2)
  • Index of candidate position of SSB (candidate SSB position) (even number only or all)
  • 6A to 6C show DRS configuration examples (2SSB / slot).
  • FIG. 7 shows another configuration example (1SSB / slot) of the DRS.
  • the position (symbol position) relationship between the PDCCH and the SSB in the slot may be such that the two PDCCH and the SSB may be arranged consecutively, or for each pair of the PDCCH and the SSB. It may be arranged.
  • the DRS may include a PDSCH, and the PDCCH and the SSB may be separately arranged in different slots.
  • one pair of PDCCH and SSB is arranged in the slot.
  • the PDCCH and SSB may be arranged separately in the time direction (that is, in the symbol direction) ((1) in the figure) or may be arranged adjacent to each other ((2)).
  • PDSCH may be included in DRS, and PDCCH and SSB may be arranged separately in different slots.
  • the DRS may be configured as follows. Specifically, the maximum size of the DRS send window is 5 ms. The maximum number (Y) of SSB candidate positions (candidate SSB positions) in the DRS transmission window is 10 for 15 kHz SCS and 20 for 30 kHz SCS.
  • the DRS includes PDCCH and PDSCH as described above, but in the present embodiment, the DRS may be interpreted by replacing the RLM-RS including the DRS. Alternatively, a part of the signal or channel included in the RLM-RS may be included in the DRS.
  • MIB Master Information Block
  • the DRS configuration information is also notified by the network in order to reduce the number of candidate SSB positions targeted by the terminal for SSB measurement in peripheral cells in the unlicensed frequency band Fu.
  • FIG. 8 shows an example of an overall schematic sequence relating to the measurement of peripheral cells in the unlicensed frequency band Fu.
  • the network notifies the system information block (SIB) to the UE 200 (S10).
  • SIB system information block
  • the type of SIB is not particularly limited, but here SIB1 is assumed.
  • SIB1 may contain information about DRS configuration information, specifically the SSB-ToMeasure or SSB-ToMeasure-Unlicensed field (name is tentative).
  • the UE200 acquires the configuration information of DRS included in SIB (S20). Specifically, the UE 200 acquires SSB-ToMeasure or SSB-ToMeasure-Unlicensed included in the SIB. This will The UE 200 can recognize the candidate position of SSB (candidate SSB position) in the unlicensed frequency band Fu, specifically, the candidate SSB position in the peripheral cells in the unlicensed frequency band Fu.
  • the UE200 executes measurement of peripheral cells using SSB based on the candidate SSB position in the peripheral cell (S30). Specifically, the UE 200 performs a reception quality measurement of the peripheral cell.
  • the UE200 reports the result of the reception quality measurement of the peripheral cell to the network (S40). In addition, it should be noted.
  • the UE 200 may determine that communication (NR-U) via the peripheral cell of the unlicensed frequency band Fu is possible as a result of the reception quality measurement, and execute the initial access.
  • FIG. 9 shows a configuration example of SSB-ToMeasure IE.
  • the SSB-ToMeasure includes a field of shortBitmap, and the bitmap is diverted to notify the DRS configuration information.
  • shortBitmap has 4 bits
  • the DRS configuration (DRS unit size) is 1 slot, it can be set as, for example, (1, 1, 1, 1) or (1, 1, 0, 0) (1, 1, 0, 0).
  • "1" means with DRS). Since the DRS configuration is one slot or a half slot, it is possible to notify using only the first and second bits, and the information of the third and fourth bits is not always necessary.
  • the DRS configuration (DRS unit size) is a half slot, it can be set as, for example, (1, 0, 1, 0) or (1, 0, 0, 0).
  • FIG. 10 shows another configuration example of SSB-ToMeasure IE.
  • a bitmap field for NR-U is added (unlicensedSCS15KHZBitmap and unlicensedSCS30KHZBitmap).
  • the number of candidate SSB positions described above (10 for 15 kHz SCS and 20 for 30 kHz SCS) is supported in order to notify the DRS configuration information.
  • the number of bits does not necessarily have to support the number of the candidate SSB position.
  • FIG. 11 shows still another configuration example of SSB-ToMeasure IE.
  • a field (unlicensedDRSSize) for notifying the DRS unit size is added.
  • the unlicensedDRSSize indicates the DRS unit size (1 slot or half slot).
  • FIG. 12 shows a configuration example of SSB-ToMeasure-Unlicensed IE.
  • SSB-ToMeasure-Unlicensed is a new IE for NR-U.
  • SSB-ToMeasure-Unlicensed includes the fields of unlicensedSCS15KHZBitmap, unlicensedSCS30KHZBitmap and unlicensedDRSSize shown in FIGS. 10 and 11.
  • the UE 200 is a frequency band assigned for mobile communication (first frequency band), that is, an unlicensed frequency band Fu (second frequency band, unlicensed band) different from the licensed frequency band.
  • the DRS configuration information (SSB-ToMeasure or SSB-ToMeasure-Unlicensed) used in the peripheral cell in (good) can be received, and the SSB measurement in the peripheral cell can be executed based on the received configuration information.
  • the UE 200 can reduce the number of candidate SSB positions to be measured based on the received configuration information. This allows the UE200 to perform efficient SSB measurements in peripheral cells as well as during initial access in NR-U using the unlicensed frequency band Fu.
  • the UE 200 uses SSB-ToMeasure for NR and can receive DRS configuration information using a bitmap format indicating the candidate SSB position in the peripheral cell.
  • the UE 200 can receive a new IE indicating the candidate SSB position in the peripheral cell, specifically, SSB-ToMeasure-Unlicensed as DRS configuration information.
  • the DRS configuration information may include the size of the DRS, specifically, the DRS unit size. Therefore, the UE 200 can easily recognize the configuration of the DRS.
  • the unlicensed frequency band may be called by a different name.
  • terms such as License-exempt or Licensed-Assisted Access (LAA) may be used.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't.
  • a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter.
  • the method of realizing each of them is not particularly limited.
  • FIG. 13 is a diagram showing an example of the hardware configuration of the UE 200.
  • the UE 200 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • the functional block of UE200 (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory 1002. And by controlling at least one of reading and writing of data in the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node.
  • various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side").
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
  • Physical RB Physical RB: PRB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB pair, and the like. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc. can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access.
  • Accessing (for example, accessing data in memory) may be regarded as "judgment” or “decision”.
  • judgment and “decision” mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100 gNB 200 UE 210 Radio signal transmission / reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A UE (200) receives reference-signal configuration information used in a neighbouring cell in a second frequency band different from a first frequency band assigned to mobile communications. The UE (200) measures a synchronisation signal block in said neighbouring cell on the basis of said configuration information.

Description

端末Terminal
 本発明は、無線通信を実行する端末に関し、特に、アンライセンス周波数帯を用いる端末に関する。 The present invention relates to a terminal that executes wireless communication, and more particularly to a terminal that uses an unlicensed frequency band.
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)、さらに、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)の仕様化も進められている。 The 3rd Generation Partnership Project (3GPP) is a specification of Long Term Evolution (LTE), LTE-Advanced (hereinafter referred to as LTE including LTE-Advanced), and 5th generation mobile communication system for the purpose of further speeding up LTE. Specifications (also called 5G, New Radio (NR) or Next Generation (NG)) are also underway.
 例えば、NRでも、LTEと同様に、アンライセンス(無免許)周波数帯のスペクトルを用いて利用可能な周波数帯を拡張するNew Radio-Unlicensed(NR-U)が検討されている(非特許文献1)。 For example, in NR, as in LTE, New Radio-Unlicensed (NR-U), which expands the available frequency band by using the spectrum of the unlicensed frequency band, is being studied (Non-Patent Document 1). ).
 また、NR-Uにおける初期アクセスに関して、同期信号(SS:Synchronization Signal)、及び下り物理報知チャネル(PBCH:Physical Broadcast CHannel)から構成されるSSB(SS/PBCH Block)の候補位置(candidate SSB position)が検討されている(非特許文献2)。 In addition, regarding the initial access in NR-U, the candidate position (candidate SSB position) of SSB (SS / PBCH Block) composed of the synchronization signal (SS: Synchronization Signal) and the downlink physical broadcast channel (PBCH: Physical Broadcast CHannel). Is being studied (Non-Patent Document 2).
 具体的には、candidate SSB positionの数は、サブキャリア間隔(SCS)が15kHzの場合は10、30kHzの場合は20とすることが合意されている。 Specifically, it has been agreed that the number of candidate SSB positions will be 10 when the subcarrier interval (SCS) is 15 kHz and 20 when the subcarrier interval (SCS) is 30 kHz.
 また、端末(User Equipment, UE)のネットワークに対する初期アクセスにおいて、端末が対象とするcandidate SSB positionの数を低減するため、DRS(Discovery Reference Signal)の構成をシステム情報(MIB:Master Information Block)によって通知することが提案されている。 In addition, in order to reduce the number of candidate SSB positions targeted by the terminal in the initial access to the network of the terminal (User Equipment, UE), the DRS (Discovery Reference Signal) configuration is configured by system information (MIB: Master Information Block). It is proposed to notify.
 端末は、DRSの構成に基づいて、測定対象とするcandidate SSB positionの数を制限できるため、効率的なSSB測定が可能となる。これにより、迅速な初期アクセス及び処理負荷の低減を図り得る。 Since the terminal can limit the number of candidate SSB positions to be measured based on the DRS configuration, efficient SSB measurement is possible. As a result, quick initial access and reduction of processing load can be achieved.
 上述したような測定対象とするcandidate SSB positionの低減要求は、アンライセンス周波数帯における周辺セルでのSSB測定に対しても同様である。 The above-mentioned request for reduction of candidate SSB position to be measured is the same for SSB measurement in peripheral cells in the unlicensed frequency band.
 そこで、本発明は、このような状況に鑑みてなされたものであり、アンライセンス周波数帯を用いるNR-Uにおいて、効率的な周辺セルでのSSB測定を実行し得る端末の提供を目的とする。 Therefore, the present invention has been made in view of such a situation, and an object of the present invention is to provide a terminal capable of efficiently performing SSB measurement in peripheral cells in NR-U using an unlicensed frequency band. ..
 本開示の一態様は、移動体通信用に割り当てられる第1周波数帯と異なる第2周波数帯(アンライセンス周波数帯Fu)における周辺セルにおいて用いられる参照信号(DRS)の構成情報を受信する受信部(制御信号・参照信号処理部240)と、前記構成情報に基づいて、前記周辺セルでの同期信号ブロック(SSB)の測定を実行する制御部(制御部270)とを備える端末(UE200)である。 One aspect of the present disclosure is a receiver that receives configuration information of a reference signal (DRS) used in a peripheral cell in a second frequency band (unlicensed frequency band Fu) different from the first frequency band assigned for mobile communication. A terminal (UE200) including (control signal / reference signal processing unit 240) and a control unit (control unit 270) that executes measurement of a synchronization signal block (SSB) in the peripheral cells based on the configuration information. is there.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram showing a frequency range used in the wireless communication system 10. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10. 図4は、同期信号ブロック(SSB)の構成例を示す図である。FIG. 4 is a diagram showing a configuration example of a synchronization signal block (SSB). 図5は、UE200の機能ブロック構成図である。FIG. 5 is a functional block configuration diagram of the UE 200. 図6Aは、DRSの構成例(2SSB/スロット)を示す図(その1)である。FIG. 6A is a diagram (No. 1) showing a configuration example (2SSB / slot) of the DRS. 図6Bは、DRSの構成例(2SSB/スロット)を示す図(その2)である。FIG. 6B is a diagram (No. 2) showing a configuration example (2SSB / slot) of the DRS. 図6Cは、DRSの構成例(2SSB/スロット)を示す図(その3)である。FIG. 6C is a diagram (No. 3) showing a configuration example (2SSB / slot) of the DRS. 図7は、DRSの他の構成例(1SSB/スロット)を示す図である。FIG. 7 is a diagram showing another configuration example (1SSB / slot) of the DRS. 図8は、アンライセンス周波数帯Fuにおける周辺セルの測定に関する全体概略シーケンスの例を示す図である。FIG. 8 is a diagram showing an example of an overall schematic sequence relating to the measurement of peripheral cells in the unlicensed frequency band Fu. 図9は、SSB-ToMeasure IEの構成例を示す図である。FIG. 9 is a diagram showing a configuration example of SSB-ToMeasure IE. 図10は、SSB-ToMeasure IEの他の構成例を示す図である。FIG. 10 is a diagram showing another configuration example of SSB-ToMeasure IE. 図11は、SSB-ToMeasure IEのさらに他の構成例を示す図である。FIG. 11 is a diagram showing still another configuration example of SSB-ToMeasure IE. 図12は、SSB-ToMeasure-Unlicensed IEの構成例を示す図である。FIG. 12 is a diagram showing a configuration example of SSB-ToMeasure-Unlicensed IE. 図13は、UE200のハードウェア構成の一例を示す図である。FIG. 13 is a diagram showing an example of the hardware configuration of the UE 200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and a terminal 200 (hereinafter, UE200)).
 NG-RAN20は、無線基地局100(以下、gNB100)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN20 includes a radio base station 100 (hereinafter, gNB100). The specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 The NG-RAN20 actually includes multiple NG-RANNodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G. In addition, NG-RAN20 and 5GC may be simply expressed as "network".
 gNB100は、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。 GNB100 is a wireless base station that complies with 5G, and executes wireless communication according to UE200 and 5G. The gNB100 and UE200 use Massive MIMO (Multiple-Input Multiple-Output) and multiple component carriers (CC) to generate more directional beam BM by controlling radio signals transmitted from multiple antenna elements. It can support carrier aggregation (CA) that is used in a bundle, and dual connectivity (DC) that communicates simultaneously between the UE and each of the two NG-RAN Nodes.
 無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。また、図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 Wireless communication system 10 supports multiple frequency ranges (FR). FIG. 2 shows the frequency range used in the wireless communication system 10. Further, FIG. 3 shows a configuration example of a wireless frame, a subframe, and a slot used in the wireless communication system 10.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 corresponds to FR1 and FR2. The frequency bands of each FR are as follows.
  ・FR1:410 MHz~7.125 GHz
  ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30または60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられる。FR2は、FR1よりも高周波数であり、60,または120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられる。
・ FR1: 410 MHz to 7.125 GHz
・ FR2: 24.25 GHz to 52.6 GHz
FR1 uses 15, 30 or 60kHz Sub-Carrier Spacing (SCS) and uses a bandwidth (BW) of 5-100MHz. FR2 has a higher frequency than FR1, uses SCS of 60, or 120kHz (240kHz may be included), and uses a bandwidth (BW) of 50 to 400MHz.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリアスペーシングと対応する。 SCS may be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯域よりも高周波数帯域にも対応してもよい。例えば、無線通信システム10は、52.6GHzを超え、114.25GHzまでの周波数帯域に対応し得る。ここでは、このような高周波数帯域を、便宜上「FR4」と呼ぶ。FR4は、いわゆるEHF(extremely high frequency、ミリ波とも呼ばれる)に属する。なお、FR4は仮称であり、別の名称で呼ばれても構わない。 Furthermore, the wireless communication system 10 may support a higher frequency band than the FR2 frequency band. For example, the wireless communication system 10 can support frequency bands beyond 52.6 GHz and up to 114.25 GHz. Here, such a high frequency band is referred to as "FR4" for convenience. FR4 belongs to the so-called EHF (extremely high frequency, also called millimeter wave). FR4 is a tentative name and may be called by another name.
 また、FR4は、さらに区分されても構わない。例えば、FR4は、70GHz以下の周波数レンジと、70GHz以上の周波数レンジとに区分されてもよい。或いは、FR4は、さらに多くの周波数レンジに区分されてもよいし、70GHz以外の周波数において区分されてもよい。 Also, FR4 may be further classified. For example, FR4 may be divided into a frequency range of 70 GHz or less and a frequency range of 70 GHz or more. Alternatively, FR4 may be divided into more frequency ranges or frequencies other than 70 GHz.
 また、ここでは、FR2とFR41との間の周波数帯は、便宜上「FR3」と呼ぶ。FR3は、7.125 GHzを超え、24.25 GHz未満の周波数帯である。 Also, here, the frequency band between FR2 and FR41 is referred to as "FR3" for convenience. FR3 is a frequency band above 7.125 GHz and below 24.25 GHz.
 本実施形態では、FR3及びFR4は、FR1及びFR2を含む周波数帯域と異なっており、異周波数帯域と呼ぶ。 In this embodiment, FR3 and FR4 are different from the frequency band including FR1 and FR2, and are referred to as different frequency bands.
 また、無線通信システム10では、無線通信システム10用に割り当てられる周波数帯(第1周波数帯)に加え、当該周波数帯と異なるアンライセンス周波数帯Fu(第2周波数帯)も用いられる。具体的には、無線通信システム10では、アンライセンス(無免許)周波数帯のスペクトルを用いて利用可能な周波数帯を拡張するNew Radio-Unlicensed(NR-U)が実行可能である。 Further, in the wireless communication system 10, in addition to the frequency band (first frequency band) assigned for the wireless communication system 10, an unlicensed frequency band Fu (second frequency band) different from the frequency band is also used. Specifically, in the wireless communication system 10, New Radio-Unlicensed (NR-U), which extends the available frequency band by using the spectrum of the unlicensed frequency band, can be executed.
 無線通信システム10用に割り当てられる周波数帯とは、上述したFR1及びFR2などに周波数レンジ内に含まれ、行政による免許割り当てに基づく周波数帯である。 The frequency band allocated for the wireless communication system 10 is a frequency band included in the frequency range of FR1 and FR2 described above, and based on the license allocation by the government.
 アンライセンス周波数帯Fuとは、行政による免許割り当てが不要であり、特定の通信事業者に限定されずに使用可能な周波数帯である。例えば、無線LAN(WLAN)用の周波数帯(2.4GHzまたは5GHz帯など)が挙げられる。 Unlicensed frequency band Fu is a frequency band that does not require a license allocation by the government and can be used without being limited to a specific telecommunications carrier. For example, a frequency band for wireless LAN (WLAN) (2.4 GHz or 5 GHz band, etc.) can be mentioned.
 アンライセンス周波数帯Fuでは、特定の通信事業者に限らず無線局を設置することが可能であるが、近傍の無線局からの信号が互いに干渉して通信性能を大きく劣化させることは望ましくない。 In the unlicensed frequency band Fu, it is possible to install a radio station not limited to a specific telecommunications carrier, but it is not desirable that signals from nearby radio stations interfere with each other and significantly deteriorate communication performance.
 そのため、例えば日本では、アンライセンス周波数帯Fu(例えば、5GHz帯)を用いる無線システムへの要求条件として、送信を開始する前にgNB100がキャリアセンスを実行し、チャネルが近傍の他システムによって使用されていないことを確認できた場合にのみ、所定の時間長以内の送信を可能とするListen-Before-Talk(LBT)のメカニズムが適用される。なお、キャリアセンスとは、電波を発射する前に、その周波数キャリアが他の通信に使用されていないかを確認する技術である。 Therefore, for example, in Japan, as a requirement for a wireless system using the unlicensed frequency band Fu (for example, 5 GHz band), gNB100 executes carrier sense before starting transmission, and the channel is used by another system in the vicinity. The Listen-Before-Talk (LBT) mechanism, which enables transmission within a predetermined time length, is applied only when it can be confirmed that the notification has not been performed. The carrier sense is a technique for confirming whether or not the frequency carrier is used for other communication before emitting a radio wave.
 gNB100は、キャリアセンスを実行し、当該チャネルが近傍の他システムによって使用されていないことを確認できた場合、無線リンクモニタリング用の参照信号、具体的には、RLM-RS(Radio link monitoring-Reference Signal)を、形成しているセル内に向けて送信する。 When the gNB100 executes carrier sense and can confirm that the channel is not used by another system in the vicinity, it can refer to a reference signal for wireless link monitoring, specifically, RLM-RS (Radiolink monitoring-Reference). Signal) is transmitted into the forming cell.
 RLM-RSは、DRS(Discovery Reference Signal)、SSB(SS/PBCH blocks:Synchronization Signal/ Physical Broadcast Channel blocks)及びCSI-RS(Channel State Information-RS)を含んでもよい。また、DRSは、SSBに関連付けられたCSI-RS、RMSI-CORSET(Remaining minimum system information-control resource sets)、またはPDSCH(Physical Downlink Shared Channel)を含んでもよい。 RLM-RS may include DRS (Discovery Reference Signal), SSB (SS / PBCH blocks: Synchronization Signal / Physical Broadcast Channel blocks) and CSI-RS (Channel State Information-RS). The DRS may also include a CSI-RS, RMSI-CORSET (Remaining minimum system information-control resource sets), or PDSCH (Physical Downlink Shared Channel) associated with the SSB.
 RMSI-CORSETは、Type0-PDCCH CSS(Common Search Space:共通検索スペース) set用のCORESETであり、UE200は、RMSI-CORSET用の幾つかの連続したリソースブロック(RB)及びシンボルを決定し、決定したRB及びシンボルに基づいて、PDCCH(Physical Downlink Control Channel)、具体的には、システム情報ブロック(SIB)復号化のためのType 0 PDCCHのモニタリング機会(MO)を設定する。 RMSI-CORSET is a CORESET for Type0-PDCCH CSS (Common Search Space) set, and UE200 determines and determines several contiguous resource blocks (RBs) and symbols for RMSI-CORSET. PDCCH (Physical Downlink Control Channel), specifically, Type 0 PDCCH monitoring opportunity (MO) for system information block (SIB) decoding is set based on the RB and symbol.
 また、UE200には、同期信号(SS:Synchronization Signal)、及び下り物理報知チャネル(PBCH:Physical Broadcast CHannel)から構成されるSSB(SS/PBCH Block)と対応付けられた1つまたは複数のPRACH(Physical Random Access Channel)の送信機会(PRACH Occasion (RO)という)が提供される。 In addition, the UE 200 has one or more PRACHs (SS / PBCH Block) associated with an SSB (SS / PBCH Block) composed of a synchronization signal (SS: Synchronization Signal) and a downlink physical broadcast channel (PBCH: Physical Broadcast CHannel). A transmission opportunity (called PRACH Occasion (RO)) for PhysicalRandomAccessChannel) is provided.
 図4は、同期信号ブロック(SSB)の構成例を示す。図4に示すように、SSBは、同期信号(SS:Synchronization Signal)、及び下り物理報知チャネル(PBCH:Physical Broadcast CHannel)から構成される。 FIG. 4 shows a configuration example of a synchronization signal block (SSB). As shown in FIG. 4, the SSB is composed of a synchronization signal (SS: Synchronization Signal) and a downlink physical broadcast channel (PBCH: Physical Broadcast CHannel).
 SSBは、主に、UE200が通信開始時にセルIDや受信タイミング検出を実行するために周期的に送信される。5Gでは、SSBは、各セルの受信品質測定にも流用される。 SSB is mainly transmitted periodically for UE200 to execute cell ID and reception timing detection at the start of communication. In 5G, SSB is also used to measure the reception quality of each cell.
 SSは、プライマリ同期信号(PSS:Primary SS)及びセカンダリ同期信号(SSS:Secondary SS)によって構成される。 SS is composed of a primary synchronization signal (PSS: Primary SS) and a secondary synchronization signal (SSS: Secondary SS).
 PSSは、セルサーチ手順においてUE200が最初に検出を試みる既知の信号である。SSSは、セルサーチ手順において物理セルIDを検出するために送信される既知の信号である。 PSS is a known signal that UE200 first attempts to detect in the cell search procedure. The SSS is a known signal transmitted to detect the physical cell ID in the cell search procedure.
 PBCHは、は無線フレーム番号(SFN:System Frame Number)、及びハーフフレーム(5ミリ秒)内の複数のSS/PBCH Blockのシンボル位置を識別するためのインデックスなど、SS/PBCH Blockを検出した後にUE200が、gNB100が形成するNRセルとのフレーム同期を確立するために必要な情報を含む。 After detecting SS / PBCH Block, PBCH is an index for identifying the symbol position of multiple SS / PBCH Blocks in the radio frame number (SFN: SystemFrameNumber) and half frame (5 milliseconds). The UE200 contains the information needed to establish frame synchronization with the NR cell formed by the gNB100.
 また、PBCHは、システム情報(SIB)を受信するために必要となるシステムパラメータも含むことができる。さらに、SSBには、報知チャネル復調用参照信号(DMRS for PBCH)も含まれる。DMRS for PBCHは、PBCH復調のための無線チャネル状態を測定するために送信される既知の信号である。 The PBCH can also include system parameters required to receive system information (SIB). Further, the SSB also includes a reference signal for demodulation of the broadcast channel (DMRS for PBCH). DMRS for PBCH is a known signal transmitted to measure the radio channel state for PBCH demodulation.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。
(2) Functional block configuration of the wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of UE200 will be described.
 図5は、UE200の機能ブロック構成図である。図5に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 FIG. 5 is a functional block configuration diagram of the UE 200. As shown in FIG. 5, the UE 200 includes a radio signal transmission / reception unit 210, an amplifier unit 220, a modulation / demodulation unit 230, a control signal / reference signal processing unit 240, a coding / decoding unit 250, a data transmission / reception unit 260, and a control unit 270. ..
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The wireless signal transmitter / receiver 210 transmits / receives a wireless signal according to NR. The radio signal transmitter / receiver 210 corresponds to Massive MIMO, a CA that bundles and uses a plurality of CCs, and a DC that simultaneously communicates between a UE and each of two NG-RAN Nodes.
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier unit 220 is composed of PA (Power Amplifier) / LNA (Low Noise Amplifier) and the like. The amplifier unit 220 amplifies the signal output from the modulation / demodulation unit 230 to a predetermined power level. Further, the amplifier unit 220 amplifies the RF signal output from the radio signal transmission / reception unit 210.
 変復調部230は、所定の通信先(gNB100または他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。 The modulation / demodulation unit 230 executes data modulation / demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB100 or other gNB).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。 The control signal / reference signal processing unit 240 executes processing related to various control signals transmitted / received by the UE 200 and processing related to various reference signals transmitted / received by the UE 200.
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Specifically, the control signal / reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, control signals of the radio resource control layer (RRC). Further, the control signal / reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
 制御信号・参照信号処理部240は、Demodulation reference signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal / reference signal processing unit 240 executes processing using a reference signal (RS) such as Demodulation reference signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 DMRS is a known reference signal (pilot signal) between the base station and the terminal of each terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for the purpose of estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)及びSounding Reference Signal(SRS)も含まれる。さらに、参照信号には、上述したように、RLM-RSも含まれる。 In addition to DMRS and PTRS, the reference signal also includes Channel State Information-Reference Signal (CSI-RS) and Sounding Reference Signal (SRS). In addition, the reference signal also includes RLM-RS, as described above.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、PRACH(Physical Random Access Channel)、及びPBCH(Physical Broadcast Channel)などが含まれる。 In addition, the channel includes a control channel and a data channel. The control channel includes PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), PBCH (Physical Broadcast Channel) and the like.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。 The data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data means data transmitted over a data channel.
 本実施形態では、制御信号・参照信号処理部240は、移動体通信用に割り当てられる周波数帯(第1周波数帯)、つまり、免許周波数帯(ライセンドバンドと呼ばれてもよい)と異なるアンライセンス周波数帯Fu(第2周波数帯、アンライセンドバンドと呼ばれてもよい)における周辺セルにおいて用いられる参照信号の構成情報を受信する。本実施形態において、制御信号・参照信号処理部240は、受信部を構成する。 In the present embodiment, the control signal / reference signal processing unit 240 is unlicensed different from the frequency band (first frequency band) assigned for mobile communication, that is, the licensed frequency band (which may be called the license band). It receives the configuration information of the reference signal used in the peripheral cells in the frequency band Fu (second frequency band, which may also be called an unlicend band). In the present embodiment, the control signal / reference signal processing unit 240 constitutes a receiving unit.
 アンライセンス周波数帯Fuにおける周辺セルとは、アンライセンス周波数帯Fuに含まれる帯域を利用し、UE200が接続中のセル(サービングセルと呼ばれてもよい)の周辺(近隣、近傍でもよい)に形成されているセルを意味してよい。 Peripheral cells in the unlicensed frequency band Fu use the band included in the unlicensed frequency band Fu and are formed around (may be near or near) the cell (which may be called a serving cell) to which the UE200 is connected. It may mean a cell that has been used.
 また、当該周辺セルは、サービングセルを形成する無線基地局によって形成されていてもよいし、サービングセルを形成する無線基地局とは異なる無線基地局によって形成されてもよい。 Further, the peripheral cell may be formed by a radio base station forming a serving cell, or may be formed by a radio base station different from the radio base station forming the serving cell.
 制御信号・参照信号処理部240は、当該周辺セルにおいて用いられるDRSの構成情報を受信する。具体的には、DRSの構成情報は、3GPP TS38.331において規定されているSSB-ToMeasure IEを用いて示すことができる。SSB-ToMeasureは、NR-U用ではなく、NR用のSSBの設定、具体的にはSSBの候補位置(candidate SSB position)の通知に用いられるが、本実施形態では、NR-UにおけるDRSの構成情報の通知に流用される。SSB-ToMeasureは、ビットマップ形式である。 The control signal / reference signal processing unit 240 receives the DRS configuration information used in the peripheral cell. Specifically, the DRS configuration information can be shown using SSB-ToMeasureIE specified in 3GPP TS38.331. SSB-ToMeasure is used for setting SSB for NR, not for NR-U, specifically for notifying the candidate position of SSB (candidate SSB position), but in this embodiment, the DRS in NR-U It is diverted to the notification of configuration information. SSB-ToMeasure is a bitmap format.
 つまり、制御信号・参照信号処理部240は、移動体通信用に割り当てられる周波数帯(第1周波数帯)におけるセルでのSSBの候補位置を示すビットマップの形式を用い、NR-Uに流用された構成情報を受信し得る。 That is, the control signal / reference signal processing unit 240 uses a bitmap format indicating the candidate position of SSB in the cell in the frequency band (first frequency band) assigned for mobile communication, and is diverted to NR-U. Can receive configuration information.
 或いは、NR-UにおけるDRSの構成情報、具体的には、SSBの候補位置(candidate SSB position)を通知するために、新規のIEが規定されてもよい。例えば、SSB-ToMeasure-Unlicensed(名称は仮称)が新たに規定されてもよい。SSB-ToMeasure-Unlicensedは、SSB-ToMeasureと同様にビットマップ形式でもよいし、DRSのユニットサイズ(単にサイズと表現されてもよい)を通知するようにしてもよい。つまり、SSB-ToMeasure-Unlicensedは、DRS(参照信号)のサイズを含んでよい。 Alternatively, a new IE may be specified to notify the DRS configuration information in NR-U, specifically, the candidate position of SSB (candidate SSB position). For example, SSB-ToMeasure-Unlicensed (name is tentative name) may be newly specified. SSB-ToMeasure-Unlicensed may be in bitmap format like SSB-ToMeasure, or may notify the unit size of DRS (may be simply expressed as size). That is, SSB-ToMeasure-Unlicensed may include the size of the DRS (reference signal).
 つまり、制御信号・参照信号処理部240は、アンライセンス周波数帯Fuにおける周辺セルでのSSBの候補位置を示す情報要素(IE)を構成情報として受信し得る。 That is, the control signal / reference signal processing unit 240 can receive the information element (IE) indicating the candidate position of SSB in the peripheral cell in the unlicensed frequency band Fu as the configuration information.
 なお、SSB-ToMeasure及びSSB-ToMeasure-Unlicensedの具体的な構成例については、後述する。 A specific configuration example of SSB-ToMeasure and SSB-ToMeasure-Unlicensed will be described later.
 符号化/復号部250は、所定の通信先(gNB100または他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The coding / decoding unit 250 executes data division / concatenation and channel coding / decoding for each predetermined communication destination (gNB100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the coding / decoding unit 250 divides the data output from the data transmitting / receiving unit 260 into a predetermined size, and executes channel coding for the divided data. Further, the coding / decoding unit 250 decodes the data output from the modulation / demodulation unit 230 and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、ハイブリッドARQ(Hybrid automatic repeat request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission / reception unit 260 executes transmission / reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitter / receiver 260 is a PDU / SDU in a plurality of layers (such as a medium access control layer (MAC), a wireless link control layer (RLC), and a packet data convergence protocol layer (PDCP)). Assemble / disassemble. Further, the data transmission / reception unit 260 executes data error correction and retransmission control based on the hybrid ARQ (Hybrid automatic repeat request).
 制御部270は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部270は、NR-Uの関する制御を実行する。 The control unit 270 controls each functional block constituting the UE 200. In particular, in the present embodiment, the control unit 270 executes the control related to the NR-U.
 具体的には、制御部270は、制御信号・参照信号処理部240が受信したDRSの構成情報に基づいて、アンライセンス周波数帯Fuにおける周辺セルでのSSBの測定を実行する。より具体的には、制御部270は、当該構成情報に基づいて、測定対象となるSSBの候補位置(candidate SSB position)を特定し、特定したSSBを用いた測定を実行する。 Specifically, the control unit 270 executes the measurement of SSB in the peripheral cells in the unlicensed frequency band Fu based on the DRS configuration information received by the control signal / reference signal processing unit 240. More specifically, the control unit 270 identifies a candidate position (candidate SSB position) of the SSB to be measured based on the configuration information, and executes measurement using the specified SSB.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、UE200が、アンライセンス周波数帯Fuにおける周辺セルの測定に関する動作について説明する。特に、UE200が、DRSの構成情報に基づいて、SSBの候補位置(candidate SSB position)を特定する動作について説明する。
(3) Operation of the wireless communication system Next, the operation of the wireless communication system 10 will be described. Specifically, UE200 describes the operation related to the measurement of peripheral cells in the unlicensed frequency band Fu. In particular, the operation of the UE 200 to identify the candidate position (candidate SSB position) of the SSB based on the DRS configuration information will be described.
 (3.1)DRSの構成
 NR-UにおけるDRS(Discovery Reference Signal)としては、1スロットまたはハーフスロット構成が想定される。
(3.1) DRS configuration As the DRS (Discovery Reference Signal) in NR-U, a one-slot or half-slot configuration is assumed.
 ここで、DRSの構成に関しては、次のような複数の表現方法が挙げられる。但し、何れも規定している内容は、同様である。 Here, regarding the configuration of DRS, the following multiple expression methods can be mentioned. However, the contents specified in each case are the same.
  ・DRSユニットサイズ(つまり、1スロットまたはハーフスロット)
  ・1スロット内のSSB数(1または2)
  ・SSBの候補位置(candidate SSB position)のインデックス(偶数のみ、または全て)
 図6A~6Cは、DRSの構成例(2SSB/スロット)を示す。図7は、DRSの他の構成例(1SSB/スロット)を示す。
DRS unit size (ie 1 slot or half slot)
・ Number of SSBs in one slot (1 or 2)
・ Index of candidate position of SSB (candidate SSB position) (even number only or all)
6A to 6C show DRS configuration examples (2SSB / slot). FIG. 7 shows another configuration example (1SSB / slot) of the DRS.
 図6A~6Cに示すように、2SSB/スロットの場合、PDCCHとSSBとのペアがスロット(14シンボル)内に2つ配置される。図6Aの上段及び下段に示すように、PDCCHとSSBのスロット内の位置(シンボル位置)関係は、2つのPDCCH及びSSBが連続して配置されてもよいし、PDCCHとSSBとのペア毎に配置されてもよい。 As shown in FIGS. 6A to 6C, in the case of 2SSB / slot, two pairs of PDCCH and SSB are arranged in the slot (14 symbols). As shown in the upper and lower rows of FIG. 6A, the position (symbol position) relationship between the PDCCH and the SSB in the slot may be such that the two PDCCH and the SSB may be arranged consecutively, or for each pair of the PDCCH and the SSB. It may be arranged.
 また、図6B及び図6Cに示すように、DRSには、PDSCHが含まれてもよく、PDCCHとSSBとは、異なるスロットに分離して配置されてもよい。 Further, as shown in FIGS. 6B and 6C, the DRS may include a PDSCH, and the PDCCH and the SSB may be separately arranged in different slots.
 図7に示すように、1SSB/スロットの場合、PDCCHとSSBとのペアがスロット内に1つ配置される。PDCCHとSSBとは、時間方向(つまり、シンボル方向)において、分離して配置されてもよい(図中の(1))し、隣接して配置されてもよい(同(2))。 As shown in FIG. 7, in the case of 1SSB / slot, one pair of PDCCH and SSB is arranged in the slot. The PDCCH and SSB may be arranged separately in the time direction (that is, in the symbol direction) ((1) in the figure) or may be arranged adjacent to each other ((2)).
 また、2SSB/スロットの場合と同様に、DRSには、PDSCHが含まれてもよく、PDCCHとSSBとは、異なるスロットに分離して配置されてもよい。 Also, as in the case of 2SSB / slot, PDSCH may be included in DRS, and PDCCH and SSB may be arranged separately in different slots.
 なお、DRSは、次のように構成されてもよい。具体的には、DRS送信ウィンドウの最大サイズは、5msである。DRS送信ウィンドウ内におけるSSBの候補位置(candidate SSB position)の最大数(Y)は、15 kHz SCSの場合は10、30 kHz SCSの場合は20とする。 Note that the DRS may be configured as follows. Specifically, the maximum size of the DRS send window is 5 ms. The maximum number (Y) of SSB candidate positions (candidate SSB positions) in the DRS transmission window is 10 for 15 kHz SCS and 20 for 30 kHz SCS.
 また、DRSには、上述したように、PDCCH及びPDSCHが含まれるが、本実施形態において、DRSは、DRSを含むRLM-RSに置き換えて解釈されてもよい。或いは、RLM-RSに含まれる信号またはチャネルの一部がDRSに含まれても構わない。 Further, the DRS includes PDCCH and PDSCH as described above, but in the present embodiment, the DRS may be interpreted by replacing the RLM-RS including the DRS. Alternatively, a part of the signal or channel included in the RLM-RS may be included in the DRS.
 上述したように、初期アクセスにおいては、端末(UE200)が対象とするcandidate SSB positionの数を低減するため、DRSの構成をシステム情報(MIB:Master Information Block)によって通知することが提案されている。 As mentioned above, in order to reduce the number of candidate SSB positions targeted by the terminal (UE200) in the initial access, it has been proposed to notify the DRS configuration by system information (MIB: Master Information Block). ..
 本実施形態では、アンライセンス周波数帯Fuにおける周辺セルでのSSB測定についても、端末が対象とするcandidate SSB positionの数を低減するため、DRSの構成情報がネットワークによって通知される。 In this embodiment, the DRS configuration information is also notified by the network in order to reduce the number of candidate SSB positions targeted by the terminal for SSB measurement in peripheral cells in the unlicensed frequency band Fu.
(3.2)動作例
 次に、端末(UE200)が、上述したDRSの構成情報に基づいてアンライセンス周波数帯Fuにおける周辺セルの測定を実行する動作について説明する。
(3.2) Operation Example Next, an operation in which the terminal (UE200) executes measurement of peripheral cells in the unlicensed frequency band Fu based on the above-mentioned DRS configuration information will be described.
 (3.2.1)全体概略シーケンス
 図8は、アンライセンス周波数帯Fuにおける周辺セルの測定に関する全体概略シーケンスの例を示す。
(3.2.1) Overall Schematic Sequence FIG. 8 shows an example of an overall schematic sequence relating to the measurement of peripheral cells in the unlicensed frequency band Fu.
 図8に示すように、ネットワークは、システム情報ブロック(SIB)をUE200に向けて報知する(S10)。SIBの種別は特に限定されないが、ここでは、SIB1を想定する。 As shown in FIG. 8, the network notifies the system information block (SIB) to the UE 200 (S10). The type of SIB is not particularly limited, but here SIB1 is assumed.
 SIB1には、DRSの構成情報に関する情報、具体的には、SSB-ToMeasureまたはSSB-ToMeasure-Unlicensedのフィールド(名称は仮称)が含まれ得る。 SIB1 may contain information about DRS configuration information, specifically the SSB-ToMeasure or SSB-ToMeasure-Unlicensed field (name is tentative).
 UE200は、SIBに含まれるDRSの構成情報を取得する(S20)。具体的には、UE200は、SIBに含まれるSSB-ToMeasureまたはSSB-ToMeasure-Unlicensedを取得する。これにより、
UE200は、アンライセンス周波数帯FuにおけるSSBの候補位置(candidate SSB position)、具体的には、アンライセンス周波数帯Fuにおける周辺セルでのcandidate SSB positionを認識し得る。
UE200 acquires the configuration information of DRS included in SIB (S20). Specifically, the UE 200 acquires SSB-ToMeasure or SSB-ToMeasure-Unlicensed included in the SIB. This will
The UE 200 can recognize the candidate position of SSB (candidate SSB position) in the unlicensed frequency band Fu, specifically, the candidate SSB position in the peripheral cells in the unlicensed frequency band Fu.
 UE200は、当該周辺セルでのcandidate SSB positionに基づいて、SSBを用いた周辺セルの測定を実行する(S30)。具体的には、UE200は、当該周辺セルの受信品質測定を実行する。 UE200 executes measurement of peripheral cells using SSB based on the candidate SSB position in the peripheral cell (S30). Specifically, the UE 200 performs a reception quality measurement of the peripheral cell.
 UE200は、当該周辺セルの受信品質測定の結果をネットワークに報告する(S40)。なお、
UE200は、当該受信品質測定の結、アンライセンス周波数帯Fuの当該周辺セルを介した通信(NR-U)が可能と判定し、初期アクセスを実行してもよい。
The UE200 reports the result of the reception quality measurement of the peripheral cell to the network (S40). In addition, it should be noted.
The UE 200 may determine that communication (NR-U) via the peripheral cell of the unlicensed frequency band Fu is possible as a result of the reception quality measurement, and execute the initial access.
 (3.2.2)DRSの構成情報の通知例
 次に、DRSの構成情報の通知例について説明する。具体的には、上述したSIBに含まれるSSB-ToMeasure及びSSB-ToMeasure-Unlicensedの内容について説明する。
(3.2.2) Example of notification of DRS configuration information Next, an example of notification of DRS configuration information will be described. Specifically, the contents of SSB-ToMeasure and SSB-ToMeasure-Unlicensed included in the above-mentioned SIB will be described.
 (3.2.2.1)通知例
 まず、SSB-ToMeasureによるDRSの構成情報の通知例について説明する。
(3.2.2.1) Notification example First, an example of notification of DRS configuration information by SSB-ToMeasure will be described.
 (3.2.2.1.1)通知例1-1
 図9は、SSB-ToMeasure IEの構成例を示す。図9に示すように、SSB-ToMeasureには、shortBitmapのフィールドが含まれ、当該ビットマップがDRSの構成情報の通知に流用される。
(3.2.2.1.1) Notification example 1-1
FIG. 9 shows a configuration example of SSB-ToMeasure IE. As shown in FIG. 9, the SSB-ToMeasure includes a field of shortBitmap, and the bitmap is diverted to notify the DRS configuration information.
 例えば、shortBitmapは、4ビットであるため、DRSの構成(DRSユニットサイズ)が1スロットの場合、例えば、(1, 1, 1, 1)或いは(1, 1, 0, 0)と設定できる(「1」はDRS有りを意味する)。DRSの構成は1スロットかハーフスロットとなるため、第1、2ビットのみ用いて通知することが可能であり、第3、4ビットの情報は必ずしも必要はない。 For example, since shortBitmap has 4 bits, when the DRS configuration (DRS unit size) is 1 slot, it can be set as, for example, (1, 1, 1, 1) or (1, 1, 0, 0) (1, 1, 0, 0). "1" means with DRS). Since the DRS configuration is one slot or a half slot, it is possible to notify using only the first and second bits, and the information of the third and fourth bits is not always necessary.
 一方、DRSの構成(DRSユニットサイズ)がハーフスロットの場合、例えば、(1, 0, 1, 0)或いは(1, 0, 0, 0)と設定できる。 On the other hand, when the DRS configuration (DRS unit size) is a half slot, it can be set as, for example, (1, 0, 1, 0) or (1, 0, 0, 0).
 (3.2.2.1.2)通知例1-2
 図10は、SSB-ToMeasure IEの他の構成例を示す。図10に示す構成例では、NR-U用のビットマップのフィールドが追加されている(unlicensedSCS15KHZBitmap及びunlicensedSCS30KHZBitmap)。
(3.2.2.2.1) Notification example 1-2
FIG. 10 shows another configuration example of SSB-ToMeasure IE. In the configuration example shown in FIG. 10, a bitmap field for NR-U is added (unlicensedSCS15KHZBitmap and unlicensedSCS30KHZBitmap).
 なお、図10に示す例では、DRSの構成情報を通知するため、上述したcandidate SSB positionの数(15 kHz SCSの場合は10、30 kHz SCSの場合は20)をサポートする。但し、必ずしも当該candidate SSB positionの数をサポートするビット数でなくてもよい。 In the example shown in FIG. 10, the number of candidate SSB positions described above (10 for 15 kHz SCS and 20 for 30 kHz SCS) is supported in order to notify the DRS configuration information. However, the number of bits does not necessarily have to support the number of the candidate SSB position.
 (3.2.2.1.3)通知例1-3
 図11は、SSB-ToMeasure IEのさらに他の構成例を示す。図11に示す構成例では、DRSユニットサイズを通知するフィールド(unlicensedDRSSize)が追加されている。
(3.2.2.2.1) Notification example 1-3
FIG. 11 shows still another configuration example of SSB-ToMeasure IE. In the configuration example shown in FIG. 11, a field (unlicensedDRSSize) for notifying the DRS unit size is added.
 図11に示すように、unlicensedDRSSizeは、DRSユニットサイズ(1スロットまたはハーフスロット)を示す。 As shown in FIG. 11, the unlicensedDRSSize indicates the DRS unit size (1 slot or half slot).
 (3.2.2.2)通知例2
 図12は、SSB-ToMeasure-Unlicensed IEの構成例を示す。上述したように、SSB-ToMeasure-Unlicensedは、NR-U用の新規なIEである。図12に示すように、SSB-ToMeasure-Unlicensedには、図10及び図11に示したunlicensedSCS15KHZBitmap, unlicensedSCS30KHZBitmap及びunlicensedDRSSizeのフィールドが含まれる。
(3.2.2.2) Notification example 2
FIG. 12 shows a configuration example of SSB-ToMeasure-Unlicensed IE. As mentioned above, SSB-ToMeasure-Unlicensed is a new IE for NR-U. As shown in FIG. 12, SSB-ToMeasure-Unlicensed includes the fields of unlicensedSCS15KHZBitmap, unlicensedSCS30KHZBitmap and unlicensedDRSSize shown in FIGS. 10 and 11.
 なお、SSB-ToMeasure-Unlicensedには、必ずしも全てのフィールドが含まれていなくても構わない。 Note that SSB-ToMeasure-Unlicensed does not necessarily have to include all fields.
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200は、移動体通信用に割り当てられる周波数帯(第1周波数帯)、つまり、免許周波数帯と異なるアンライセンス周波数帯Fu(第2周波数帯、アンライセンドバンドと呼ばれてもよい)における周辺セルにおいて用いられるDRSの構成情報(SSB-ToMeasureまたはSSB-ToMeasure-Unlicensed)を受信し、受信した構成情報に基づいて、当該周辺セルでのSSBの測定を実行できる。
(4) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, the UE 200 is a frequency band assigned for mobile communication (first frequency band), that is, an unlicensed frequency band Fu (second frequency band, unlicensed band) different from the licensed frequency band. The DRS configuration information (SSB-ToMeasure or SSB-ToMeasure-Unlicensed) used in the peripheral cell in (good) can be received, and the SSB measurement in the peripheral cell can be executed based on the received configuration information.
 このため、UE200は、受信した構成情報に基づいて、測定対象とするcandidate SSB positionの数を低減し得る。これにより、UE200は、アンライセンス周波数帯Fuを用いるNR-Uにおいて、初期アクセス時だけでなく、効率的な周辺セルでのSSB測定を実行し得る。 Therefore, the UE 200 can reduce the number of candidate SSB positions to be measured based on the received configuration information. This allows the UE200 to perform efficient SSB measurements in peripheral cells as well as during initial access in NR-U using the unlicensed frequency band Fu.
 本実施形態では、UE200は、NR用のSSB-ToMeasureを用い、当該周辺セルでのcandidate SSB positionを示すビットマップの形式を用いたDRSの構成情報を受信できる。また、UE200は、当該周辺セルでのcandidate SSB positionを示す新たなIE、具体的には、SSB-ToMeasure-UnlicensedをDRSの構成情報として受信できる。 In this embodiment, the UE 200 uses SSB-ToMeasure for NR and can receive DRS configuration information using a bitmap format indicating the candidate SSB position in the peripheral cell. In addition, the UE 200 can receive a new IE indicating the candidate SSB position in the peripheral cell, specifically, SSB-ToMeasure-Unlicensed as DRS configuration information.
 このため、既存のIEまたは新規のIEを用いて、容易かつ確実にDRSの構成情報をUE200に認識させることができる。 Therefore, it is possible to easily and surely make the UE 200 recognize the DRS configuration information by using the existing IE or the new IE.
 本実施形態では、DRSの構成情報には、DRSのサイズ、具体的には、DRSユニットサイズが含まれてもよい。このため、UE200は、容易にDRSの構成を認識し得る。 In the present embodiment, the DRS configuration information may include the size of the DRS, specifically, the DRS unit size. Therefore, the UE 200 can easily recognize the configuration of the DRS.
 (5)その他の実施形態
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the contents of the present invention have been described above with reference to the examples, the present invention is not limited to these descriptions, and various modifications and improvements are possible. It is self-evident to the trader.
 例えば、アンライセンス周波数帯は、異なる名称で呼ばれてもよい。例えば、免許免除(License-exempt)或いはLicensed-Assisted Access(LAA)などの用語が用いられてもよい。 For example, the unlicensed frequency band may be called by a different name. For example, terms such as License-exempt or Licensed-Assisted Access (LAA) may be used.
 また、上述した実施形態の説明に用いたブロック構成図(図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Further, the block configuration diagram (FIG. 4) used in the description of the above-described embodiment shows a block for each functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. There are broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these. I can't. For example, a functional block (constituent unit) for functioning transmission is called a transmitting unit or a transmitter. As described above, the method of realizing each of them is not particularly limited.
 さらに、上述したUE200は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、UE200のハードウェア構成の一例を示す図である。図13に示すように、UE200は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the UE 200 described above may function as a computer that processes the wireless communication method of the present disclosure. FIG. 13 is a diagram showing an example of the hardware configuration of the UE 200. As shown in FIG. 13, the UE 200 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
 UE200の機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 The functional block of UE200 (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、UE200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory 1002. And by controlling at least one of reading and writing of data in the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or a combination thereof. RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobile Broadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in the present disclosure may be performed by its upper node. In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information can be overwritten, updated, or added. The output information may be deleted. The input information may be transmitted to another device.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 Note that the terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group" Terms such as "carrier" and "component carrier" can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 The base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. In addition, words such as "up" and "down" may be read as words corresponding to inter-terminal communication (for example, "side"). For example, an uplink channel, a downlink channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe.
Subframes may further consist of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. The mini-slot may also be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, and the like. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) may represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. Good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two "connected" or "combined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. , Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions, etc., can be considered to be "connected" or "coupled" to each other.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). (For example, searching in a table, database or another data structure), ascertaining may be regarded as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as "judgment" or "decision". In addition, "judgment" and "decision" mean that the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as an amendment or modification without departing from the purpose and scope of the present disclosure, which is determined by the description of the scope of claims. Therefore, the description of the present disclosure is for the purpose of exemplary explanation and does not have any limiting meaning to the present disclosure.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 
10 Radio communication system 20 NG-RAN
100 gNB
200 UE
210 Radio signal transmission / reception unit 220 Amplifier unit 230 Modulation / demodulation unit 240 Control signal / reference signal processing unit 250 Coding / decoding unit 260 Data transmission / reception unit 270 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (4)

  1.  移動体通信用に割り当てられる第1周波数帯と異なる第2周波数帯における周辺セルにおいて用いられる参照信号の構成情報を受信する受信部と、
     前記構成情報に基づいて、前記周辺セルでの同期信号ブロックの測定を実行する制御部と
    を備える端末。
    A receiver that receives configuration information of reference signals used in peripheral cells in a second frequency band different from the first frequency band assigned for mobile communication, and a receiver.
    A terminal including a control unit that executes measurement of a synchronization signal block in the peripheral cells based on the configuration information.
  2.  前記受信部は、前記第1周波数帯におけるセルでの同期信号ブロックの候補位置を示すビットマップの形式を用いた前記構成情報を受信する請求項1に記載の端末。 The terminal according to claim 1, wherein the receiving unit receives the configuration information using a bitmap format indicating a candidate position of a synchronization signal block in a cell in the first frequency band.
  3.  前記受信部は、前記第2周波数帯における前記周辺セルでの前記同期信号ブロックの候補位置を示す情報要素を前記構成情報として受信する請求項1に記載の端末。 The terminal according to claim 1, wherein the receiving unit receives an information element indicating a candidate position of the synchronization signal block in the peripheral cell in the second frequency band as the configuration information.
  4.  前記構成情報は、前記参照信号のサイズを含む請求項2または3に記載の端末。
     
     
     
    The terminal according to claim 2 or 3, wherein the configuration information includes the size of the reference signal.


PCT/JP2019/040460 2019-10-15 2019-10-15 Terminal WO2021074955A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021552006A JPWO2021074955A1 (en) 2019-10-15 2019-10-15
PCT/JP2019/040460 WO2021074955A1 (en) 2019-10-15 2019-10-15 Terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040460 WO2021074955A1 (en) 2019-10-15 2019-10-15 Terminal

Publications (1)

Publication Number Publication Date
WO2021074955A1 true WO2021074955A1 (en) 2021-04-22

Family

ID=75538677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040460 WO2021074955A1 (en) 2019-10-15 2019-10-15 Terminal

Country Status (2)

Country Link
JP (1) JPWO2021074955A1 (en)
WO (1) WO2021074955A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3RD GENERATION PARTNERSHIP PROJECT: "Technical Specification Group Radio Access Network; NR; Radio Resource Control (RRC) protocol specification (Release 15", 3GPP TS 38.331, 27 September 2019 (2019-09-27), XP051779105 *
NTT DOCOMO, INC.: "Initial access signals and channels for NR-U", 3GPP TSG RAN WG1 #98B RI-1911157, 7 October 2019 (2019-10-07), XP051789930 *
SPREADTRUM COMMUNICATIONS: "Discussion on initial access and mobility in NR- U", 3GPP TSG RAN WG1 #98B R1-1910015, 3 October 2019 (2019-10-03), XP051788822 *

Also Published As

Publication number Publication date
JPWO2021074955A1 (en) 2021-04-22

Similar Documents

Publication Publication Date Title
WO2020261524A1 (en) Terminal
WO2021005663A1 (en) Terminal
WO2021009821A1 (en) Terminal
WO2021171594A1 (en) Terminal
JP7477523B2 (en) Terminal
WO2022163840A1 (en) Terminal and wireless communication system
WO2022003788A1 (en) Terminal
WO2021199200A1 (en) Terminal
WO2021074951A1 (en) Terminal
WO2021192306A1 (en) Terminal
WO2021033328A1 (en) Terminal
WO2021019698A1 (en) Terminal
EP4007386A1 (en) Terminal
WO2021019695A1 (en) Terminal
WO2021074955A1 (en) Terminal
WO2021095215A1 (en) Terminal
WO2022029982A1 (en) Terminal
WO2021186719A1 (en) Terminal
WO2021074948A1 (en) Terminal
WO2021064965A1 (en) Terminal
WO2022070364A1 (en) Terminal, and radio communication method
WO2022029980A1 (en) Terminal
WO2022029981A1 (en) Terminal
WO2022029972A1 (en) Terminal
WO2021029072A1 (en) Terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949201

Country of ref document: EP

Kind code of ref document: A1