WO2021074944A1 - Defect inspection method and defect inspection device - Google Patents

Defect inspection method and defect inspection device Download PDF

Info

Publication number
WO2021074944A1
WO2021074944A1 PCT/JP2019/040364 JP2019040364W WO2021074944A1 WO 2021074944 A1 WO2021074944 A1 WO 2021074944A1 JP 2019040364 W JP2019040364 W JP 2019040364W WO 2021074944 A1 WO2021074944 A1 WO 2021074944A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
swath
die
defect inspection
misalignment
Prior art date
Application number
PCT/JP2019/040364
Other languages
French (fr)
Japanese (ja)
Inventor
馨 梁
淳二 山本
広井 高志
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2019/040364 priority Critical patent/WO2021074944A1/en
Publication of WO2021074944A1 publication Critical patent/WO2021074944A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects

Definitions

  • the present invention relates to a defect inspection device that inspects foreign substances and defects on a semiconductor wafer.
  • the patterned wafer defect inspection device is used to detect defects that cause device defects in a patterned wafer on which a circuit pattern of a semiconductor device is formed. Due to the above-mentioned miniaturization, even finer pattern defects and very small defects are directly linked to deterioration of yield, and the inspection device also detects fine defects with higher sensitivity than before. There is a need to.
  • a patterned wafer inspection device for example, a wafer held on a stage is irradiated with light or an electron beam by XY scanning, and based on the light reflected or scattered from a sample, or the reflected or secondarily generated electron beam.
  • Patent Document 1 the wafer is irradiated with light from a light source, the light reflected or scattered from the wafer is detected by the detection optical system, and the amount of misalignment between the inspection image captured by the detection optical system and the reference image. Is calculated, and a method of determining a defect by performing threshold processing on the difference image between the inspection image and the reference image corrected based on the amount of misalignment is disclosed.
  • Patent Document 1 it is written that in the die comparison type optical defect inspection apparatus, a positional shift occurs between the inspection image to be compared and the reference image due to vibration of the stage or the like.
  • Patent Document 1 discloses that the misalignment information with the adjacent die image is obtained, and the misalignment information is corrected so as to match the design and adjustment conditions of the detection optical system.
  • Patent Document 1 discloses that scattered light from a repeating pattern is blocked by a spatial filter.
  • a repeating pattern such as a cell area of a memory
  • the light-shielding effect of the spatial filter is high.
  • the edge or the pattern of the logic area having no repeatability which is not disclosed in Patent Document 1
  • there are many edges or patterns that cannot be shielded by the spatial filter and the effect of the spatial filter is lower than that of the memory cell inspection. Is assumed.
  • light that cannot be completely blocked appears bright on the image. For example, in an edge or a pattern region with low repeatability, the detected image appears bright due to the influence of light from the edge or pattern.
  • the image processing unit uses the perturbation difference on the image for comparison. Can be considered. Since the defect size becomes very small, there is a problem that defects may be missed in this perturbation difference. As the pattern becomes finer in this way, the variation of pixel expression due to the change in the relative position of the pattern or edge and the pixel increases, and as a result of using the perturbation difference to correspond to the variation, the image comparison method such as die unit There is a problem that defect detection omission is likely to occur in inspection.
  • the present invention solves the above-mentioned problems by providing an image acquisition subsystem that acquires a swath image of the wafer and the acquired swath image in a defect inspection device that detects defects in a semiconductor wafer on which a plurality of dies are formed.
  • a computer subsystem that processes and acquires information on the candidate position of the defect is provided, and the computer subsystem performs threshold processing on the difference obtained by comparing the inspection image and the reference image to determine the defect.
  • the swath image is divided into an arbitrary frame image such as a die unit and further divided into an arbitrary number of pixels, and the frame image is collated with a reference pattern to calculate the amount of misalignment.
  • a defect inspection apparatus characterized by executing a process of generating and a process of comparing the reference image with the inspection image.
  • an inspection method for detecting defects by superimposing and comparing an inspection image and a reference image on a die To die, a cell To cell, or the like it is possible to improve the image alignment accuracy and the defect detection sensitivity. it can. In particular, it is possible to improve the defect detection sensitivity in the logic portion where the repeatability of edges and patterns is low.
  • a high-resolution reference image can be generated, the threshold value for defect determination can be set with a stricter value, and defect determination with higher sensitivity becomes possible.
  • FIG. It is a block diagram of the defect inspection apparatus which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the relationship between a wafer and a die, the relationship between a die and swath, and the relationship between swath and swath channel.
  • FIG. 1 shows a configuration diagram of a defect inspection device 100 according to the first embodiment.
  • the defect inspection device 100 is a device that detects defects (or locations that may be defects) existing in the pattern formed on the wafer 103 and outputs the inspection results.
  • the defect inspection device 100 shown in FIG. 1 is composed of an image acquisition subsystem 101 that acquires an image of a wafer 103, a computer subsystem 102 that processes acquired image data and extracts position information of defect candidate locations, and the like. ..
  • the image acquisition subsystem 101 uses a light source 105 that irradiates the wafer 103 with light, a detection optical system 106 that detects scattered light or reflected light generated from the wafer by irradiating the light, and light detected by the detection optical system 106.
  • a sensor 107 that converts an electric signal
  • an AD converter 108 that converts an analog electric signal output by the sensor 107 into a digital signal
  • a plurality of signal channels 114 that transmit light detected by the sensor 107 to the AD converter 108. It is composed of a stage 104, a control unit 109, and the like on which the wafer 103 is placed and an arbitrary position on the wafer 103 is moved to the light irradiation position of the light source 105.
  • the control unit 109 controls the operation of each component of the image acquisition subsystem 101 or the overall operation of the defect inspection device 100.
  • the light source is a laser
  • the detection optical system 106 mainly detects scattered light among the light generated from the wafer.
  • the light source is a broadband light source or the like, and mainly detects reflected light among the light generated from the wafer.
  • the defect inspection device 100 uses an electron source instead of the light source 105, irradiates the wafer with an electron beam, and detects secondary electrons or backscattered electrons generated from the wafer by a detection system instead of the detection optical system. It may be a type inspection device. As described above, the image acquisition subsystem may be applied to any of a dark field inspection device, a bright field inspection device, and an electron beam inspection device. In this embodiment, a defect inspection device using a dark field inspection device will be described as an example.
  • the computer subsystem 102 is composed of an image processing unit 110 and a control PC 111.
  • the image processing unit 110 can receive the pixel signal output by the AD converter 108 via the fiber 115.
  • the image processing unit 110 is a unit that uses the output signal of the AD converter 108 to generate a swath image of the wafer 103 and executes information processing for misalignment correction, which will be described later.
  • the "swath image” is an image acquired by irradiating the wafer 103 with the light source 105 while continuously moving the stage 104 on which the wafer 103 is placed in the uniaxial direction, and is elongated in the moving direction of the stage 104. It is rectangular image data.
  • the term "swath” when the term "swath” is simply used, it means an elongated region scanned by stage scanning and illumination from the light source 105. In the case of an electron beam inspection device, the light source should be read as an electron source.
  • a processor 112 and a storage device 113 are provided to perform the above-mentioned information processing.
  • the storage device 113 is a device that stores various data used by the control PC 111 and the image processing unit 110, and is composed of a large-capacity storage means such as a magnetic disk.
  • the storage device 113 stores a recipe that is data for setting conditions such as a program to be used for various processes, an image acquisition method, and an image method.
  • the image processing unit 110 is often configured by using a parallel computer that operates a plurality of processors in parallel.
  • the control PC 111 functions as a user interface for setting various conditions for information processing of misalignment correction and defect inspection, which will be described later.
  • FIG. 2 is a schematic diagram showing the relationship between the wafer and the die, the relationship between the die and the swath, and the relationship between the swath and the swath channel.
  • the figure shown in the upper part of FIG. 2 is a schematic view of a wafer in which 37 dies arranged in 7 rows ⁇ 7 columns are formed. Each die has coordinates and is specified by rows and columns of the matrix. In the stage scanning in the X direction, the movement from left to right in the figure is defined as the forward direction, and the movement from right to left is defined as the reverse direction.
  • the stage scan starts from the die at the bottom left corner of the wafer and proceeds in the direction indicated by the reference number 201 to acquire a swath image. If the light irradiation position for imaging has reached the rightmost die and the light irradiation position has not reached the uppermost die of the wafer, the stage is moved by one swath in the Y direction indicated by reference numeral 202. This time, the stage scan is performed in the reverse direction indicated by the reference number 201', and the swath image is acquired. When the light irradiation position reaches the leftmost die, the stage is scanned in the direction of reference number 202', and the stage is scanned in the X direction in the forward direction in the same manner.
  • FIG. 2 shows the wafer in which the stage scanning is started from the lower left die on the wafer of FIG. 2 and the stage scanning is completed until the middle of the die in the fourth row. Since the line indicating the above is complicated, the dies in the second and subsequent rows from the bottom are represented by one arrow for each row of dies.
  • the schematic diagram shown in the middle part of FIG. 2 shows the relationship between the swath image of the die in the fourth row from the bottom of the wafer in the upper part of FIG. 2 and the die.
  • a total of six swaths, swaths 208a to 208f, are required.
  • the die 205 corresponds to the wafer center die.
  • one swath image is divided and detected in a plurality of signal channels.
  • the scattered light corresponding to the swath 208f is detected by the sensor 210, but the output signal is collected for each signal channel and transmitted to the AD converter (108 in FIG. 1) at the subsequent stage.
  • a swath image corresponding to data transmitted by one signal channel (that is, a swath image having a pixel width of 1024 pixels in the Y direction) will be referred to as a “swath channel image”.
  • the acquisition area of one swath channel image will be referred to as "swath channel”.
  • an image obtained by cutting out a swath image in die units is referred to as a swath die image
  • an image obtained by cutting out a swath channel image in die units is referred to as a swath channel die image.
  • the schematic diagram in the lower part of FIG. 2 shows how the sensor 210 detects scattered light from the swath acquisition region composed of a plurality of swath channels (corresponding image is swath channel image 209) and outputs it as an analog output signal. ing.
  • the swath channel image or the swath image will be AD-converted in the following description. It is assumed that the pixel data is quantized by the device 108. It should be noted that the meaning of the swath die image is also a die image of the same size as the die on the wafer, which can be combined with a plurality of swath die images.
  • FIG. 3 shows a flow diagram of defect inspection in which the reference image is reconstructed by dividing it into subpixels.
  • S001 is the step of acquiring the swath image described above.
  • S002 a swath die image is generated from the swath image. For example, there are seven dies in the center row of wafers in FIG. In this case, the image processing unit 110 generates seven swath die images from one swath image. It is assumed that the swath die image is composed of n pixels in the scanning direction (S003).
  • the alignment of each die image is performed.
  • the unique pattern in the area to be aligned is registered as a template as a reference pattern.
  • Template matching is performed on each die image, the coordinates of the reference pattern are collated with the coordinates of the reference pattern equivalent pattern in each die image, and the difference amount with respect to the coordinates of the reference pattern is calculated as the displacement amount.
  • the image processing unit 110 stores this misalignment amount (correction amount) in the memory.
  • the coordinates including the amount of misalignment obtained in S004 of the pixels constituting the die image are rounded in units of 1 / m subpixels of the pixels.
  • each pixel having the same coordinates is grouped in subpixel units.
  • the brightness information of the sub-pixels is calculated based on the brightness information of the grouped pixels.
  • the brightness value of the sub-pixel in which the corresponding pixel does not exist is obtained by an estimation calculation from the calculated brightness information of the sub-pixel. Based on this calculation result, the image processing unit 110 constitutes a reference image having an m-fold resolution (S007).
  • the image processing unit 110 reconstructs a reference image having the same resolution as the die image having the amount of misalignment that matches the amount of misalignment of the inspection die from the reference image having m times resolution, and the reconstructed reference image.
  • the inspection die image is compared with the die To die.
  • the difference signal or the difference image is subjected to threshold processing, and those having a threshold value or more are determined to be defects.
  • the image processing unit 110 outputs a signal determined to be defective together with the coordinate information thereof as an inspection result via an output unit (not shown).
  • image blurring mechanisms in inspections that overlay images, such as die-to-die comparison.
  • the image processing unit 110 divides the swath image into die images
  • the starting point of the die on the actual wafer and the starting point at which the image processing unit 110 divides the image may be slightly deviated from each other.
  • a swath image or swath channel image is composed of pixels, and each pixel has discrete coordinates in pixel units.
  • the die width is not always an integral multiple of the pixels, and as a result, an error occurs between the line recognized as the start point of the die and the start point of the die on the actual wafer.
  • the subtle vibration of the stage also causes an error.
  • the defect inspection device 100 takes a perturbation difference in advance
  • the defect inspection device 100 stores the allowable deviation amount in advance.
  • the image processing unit 110 performs processing on the assumption that there is no deviation as long as it is within the permissible amount. In the comparison using the perturbation difference, it may lead to omission of detection of defects existing in the region corresponding to the amount of deviation allowed in advance.
  • FIG. 4 is a diagram illustrating interpolation processing in the inspection die image and the reference image for which the die To die is compared.
  • the inspection die image 301 and the reference image 302A acquired from the actual adjacent die have a deviation width w1. It is assumed that there is a bright spot as shown on the die. The brightness of each pixel changes depending on the position of imaging, and when one cell in FIG.
  • the brightness values of the inspection die 301 are 0, 40, 40, and 0 from the left pixel.
  • the imaging position changes by the deviation width w1, so that the brightness of each pixel is 0, 6, 80, 6, 0 from the left, for example.
  • the reference image 302B is generated. If the amount of deviation is 0, the brightness that should be 0, 0, 40, 40, 0, 0 from the left pixel is 0, 3, 43, 43, 3, 0 from the left pixel as a result of interpolation processing. It becomes the reference image 302B of the brightness.
  • the resolution of the reference image is lowered and the value may be different from the original brightness.
  • the inspection method for detecting defects by die-to-die comparison if the defect size to be detected becomes smaller due to miniaturization, when the inspection die image and the reference image are superimposed in the die-to-die comparison, the image is blurred due to this slight deviation on the image. May lead to omission of defect detection.
  • a high-resolution reference image is generated and compared with the inspection die image and the die To die.
  • the high-resolution reference image generation will be described in detail below.
  • the process of generating a die image from the swath image and dividing the die image into n pixels is as described in FIG.
  • the swath image is divided into die images, and the die image is further divided into n pixels.
  • the alignment process is not limited to this method.
  • the reference die is scanned in advance to obtain a reference pattern.
  • the center die is used because the position error is the smallest near the center of the wafer. However, it may be other than the central die.
  • FIG. 5 is a schematic diagram showing the concept of coordinates in the die.
  • the dies 204 to 206 shown in FIG. 5 are the same as the schematic diagram of the die row shown in the middle of FIG. 2, and are the views showing only the swath 208b extracted.
  • the solid black line indicated by the reference number 401 is one of the swath channels constituting the swath 208b.
  • In-die coordinates with the lower left corner as the origin (0,0) are set for each die, and the positions of the pixels constituting the swath image or swath channel image can all be expressed using the in-die coordinates.
  • the first reference pattern used for alignment will be described.
  • the first reference pattern is a pattern for calibrating the misalignment of the swath image acquired by each die on the wafer in units of swath channel images according to the swath image acquired by a specific die. As described above, in this embodiment, this pattern is extracted from the swath image acquired by the wafer center die. Since it is used for misalignment correction, the first reference pattern needs to be a unique pattern (a pattern in which the same pattern does not exist elsewhere on the same swath channel die image). The first reference pattern requires at least one per swath channel die image.
  • the defect inspection device 100 may automatically set the reference pattern by finding the edge of the pattern on the two-dimensional pixel array by a pattern edge extraction method using the wavelet transform or the like.
  • the pattern shape and coordinates of the extracted first reference pattern are registered in association with the information of the corresponding swath channel.
  • the image processing unit 110 compares the die image obtained by cutting out the swath image in die units with the first reference pattern by template matching. By this comparison, the coordinates in the die of the pattern corresponding to the first reference pattern in the swath channel die image are obtained for each die. Further, the amount of deviation between the X-direction and the Y-direction of the swath channel die image of the predetermined die ( ⁇ X and ⁇ Y, which will be described later) can be obtained from the comparison between the obtained in-die coordinates and the in-die coordinates of the first reference pattern. The obtained deviation amount is stored in the memory in the image processing unit 110.
  • the software for executing template matching is also stored in the storage device 113, and is called by the processor 112 in the image processing unit 110 at the time of execution, and then stored in the memory in the image processing unit 110 and executed. ..
  • FIG. 6A schematically shows the relationship between the first reference pattern and the amount of deviation.
  • the die 205 is a wafer center die
  • the die 206 is a die to the right of the die
  • the swath 208b is formed so as to straddle these two dies.
  • the swath channel 401 is one of the 1024 pixel swath channels constituting the swath 208b
  • the first reference pattern 402 is extracted from the swath channel die image of the wafer center die 205. Since the adjacent die 206 has the same pattern as the wafer center die 205, the swath channel die image of the die 206 has the same pattern 402'as the first reference pattern 402.
  • the pattern 402' exists at a position slightly deviated from the first reference pattern on the image of the swath channel 401 due to the mechanical accuracy of the above.
  • the lower part of FIG. 6A also shows an enlarged view of the first reference pattern 402 and the pattern 402'.
  • the first reference pattern is shown as the pattern 502 present in the cropped image 601.
  • the pattern 402' is shown as a pattern 502' at a position deviated from the center of the cropped image 602.
  • the pattern shown by the dotted line indicates the first reference pattern 502 registered in the recipe, and the pattern 502'is deviated from the pattern 502 by ⁇ X and ⁇ Y. That is, if the coordinates in the die of the first reference pattern are expressed as (X, Y), the coordinates in the pattern die in the die 206 of the pattern 402'are expressed as (X + ⁇ X, Y + ⁇ Y).
  • FIG. 6B conceptually shows the deviation amount distribution in the X direction with respect to the swath channel 401.
  • the vertical axis of the figure is the deviation amount ⁇ X in the X direction
  • the horizontal axis is the coordinates WX in the X direction of the swath channel image
  • the coordinates WX_204, WX_205 and WX_206 are the X coordinates of the first reference pattern in the coordinates in the die of each die. These are the coordinates obtained by reprinting the same position into the coordinates of the swath channel image.
  • ⁇ X 204 that is, the in-die coordinates of the first reference pattern on the die 204
  • X_206 that is, the in-die coordinates of the first reference pattern on the die 206
  • X There is a misalignment of ⁇ X 206 in the direction.
  • the coordinates X_205 are the coordinates of the first reference pattern on the wafer center die 205, and since they are the positions where the first reference pattern is extracted in the first place, no misalignment occurs.
  • the deviation amount ( ⁇ X, ⁇ Y) is a discrete quantity obtained by each die, it is represented by a point on the “X-direction deviation amount distribution ⁇ X (WX)”.
  • WX X-direction deviation amount distribution
  • the first reference pattern is read out, the first reference pattern is used as a template, template matching is executed on the cut out image, and ⁇ X and ⁇ Y described in FIG. 6A are obtained.
  • the first reference pattern corresponding to the acquired swath channel image is read out, and an image having the same size as the above-mentioned cropped image is cut out from the acquired swath channel image.
  • the cut-out image is subjected to template matching using the first reference pattern as a template, and ⁇ X and ⁇ Y described in FIG. 6A are obtained.
  • misalignment correction for the swath image is performed.
  • the processor 112 executes a difference calculation between the coordinates in the die of the pixels constituting the swath channel image and the ⁇ X and ⁇ Y to correct the misalignment. Then, for each swath channel image, the processor 112 executes a difference calculation between the in-die coordinates of the pixels constituting the swath channel image and the ⁇ X and ⁇ Y to correct the misalignment. For the parts of each die image that do not correspond to the template image, a complementary operation is performed based on the amount of misalignment obtained by comparing the reference pattern and the pattern corresponding to the reference pattern.
  • the image processing unit 110 stores this in the memory.
  • the alignment process there is also a method of using design information.
  • a method of comparing the die layout with the die layout on the image acquired by the image processing unit 110 and calculating the amount of misalignment from the difference, or the image processing unit 110 uses an arbitrary reference on the wafer, for example, an arbitrary pattern.
  • a method of obtaining the amount of misalignment by comparing the image acquired by the image acquisition subsystem 101 with the coordinates of the pattern or mark on the design data at the coordinates of the alignment mark or the alignment mark is also conceivable.
  • the amount of misalignment can be obtained. good.
  • Various other methods for obtaining the amount of misalignment can be considered, and the method is not limited to the method described here.
  • FIG. 7 is a diagram showing the relationship between the die image, an arbitrary pixel, and an arbitrary sub-pixel.
  • FIG. 7 shows an example of dividing into m sub-pixels.
  • One swath image includes k dies with numbers 1, 2, 3 to k, each die contains n pixels, and each pixel is divided into m subpixels.
  • the n pixels of the first die are 11, 12, 13 to 1n
  • the n pixels of the second die are 21, 22, 23 to 2n, ...
  • the n pixels of the kth die are k1, Numbers such as k2, k3 to kn are attached.
  • the first pixel 11 of the first die is 11_1, 11_2, 11_3 to 11_m
  • the first pixel 21 of the second die is 21_1, 21_2, 21_3 to 21_m
  • the k-th die is numbered such as k1_1, k1_2, k1_3 to k1_m.
  • FIGS. 8 and 9A and 9B are diagrams for explaining the details of the process of dividing into sub-pixels.
  • a method of preparing virtual blocks in advance for the number of m divided into sub-pixels will be described.
  • the image processing unit 110 virtually prepares m blocks. Since the original pixel is set to 1 and divided into m pieces, one scale is 1 / m, and the increments of 1 / m are the virtual blocks referred to here.
  • the position information and brightness of each pixel are plotted on this virtual block based on the amount of misalignment calculated in FIGS. 5, 6A and 6B.
  • the position of each pixel of each die is corrected based on the calculated misalignment amount, or the correct position information to be corrected is known.
  • the pixels at the same position in each die are distributed to m blocks.
  • the determination as to whether or not they belong to the "same position" is made in units of 1 / m of this block unit.
  • the image processing unit 110 obtains the correct position information of the pixels of each die based on the calculated position shift amount.
  • FIG. 8 it is assumed that some of the pixels 11, 21 to k1 are located within the range of 0 to 1 / m.
  • the amount of deviation of each pixel is quantized in units of 1 / m. In this case, the pixels are grouped as pixels at the same position.
  • arithmetic processing is also executed so that the luminance information possessed by each of the pixels becomes one luminance G1-1 in one group by averaging or the like.
  • the brightness G1_1 is plotted on a block having a displacement amount of 0.
  • the image processing unit 110 obtains the correct position information of each pixel based on the amount of misalignment, groups each pixel at the same position in the die, and each pixel group exists. Brightness is distributed to blocks of 1 / m, 2 / m, 3 / m to (m-1) / m according to the position to be processed.
  • the scale on the horizontal axis indicating the position is 1 / m, 2 / m, 3 / m to (m-1) / m in block units.
  • the image processing unit 110 performs interpolation processing. For example, extrapolation interpolation or interpolation interpolation using a spline function is performed so that one luminance information is always plotted in each block.
  • the pixels 2, 3 to n are also processed in the same manner to obtain subpixel values of G2_1 to Gn_m.
  • each pixel belongs to any block (0, 1 / m, 2 / m, 3 / m to (m-1) / m) according to the position information.
  • the brightness G1-1' is obtained by averaging all the brightness of the plots (pixels 11 and 31 in the lower part of FIG. 9A and the upper part of FIG. 9B) included in the section of 0 to 1 / m. Be done.
  • the brightness G1_1' is plotted on a block having a displacement amount of 0.
  • the corresponding brightness can be obtained by averaging all the brightness of the plots included in each section.
  • the luminance information of the block in which the luminance information does not exist is obtained by interpolation.
  • a super-resolution image of pixel 1 can be obtained.
  • the pixels 2, 3 to n are also processed in the same manner to obtain subpixel values of G2_1'to Gn_m'.
  • the image processing unit 110 performs the processing of FIGS. 8 or 9A and B in all the swath images to be inspected.
  • the high-resolution reference image 302C shown in FIG. 10 is created.
  • the reference image with high resolution becomes a reference image with m times higher resolution than the die image which is not subjected to any processing in the original swath image.
  • the image processing unit 110 compares the high-resolution reference image created as described above with the inspection die image by die-to-die, executes threshold processing on the difference signal or difference image, and performs defect determination processing.
  • the image processing unit 110 sequentially executes a comparison process of each inspection die image and a high-resolution reference image of the swath image.
  • the image processing unit 110 calculates the amount of misalignment and corrects each die image as described above. That is, the position is adjusted with high accuracy. Based on this, the defect on the die image to be inspected is determined by calculating the difference between the high-resolution reference image and the signal at the same position. At this time, in each pixel, the resolution is different between the high-resolution reference image and the inspection die image.
  • the resolution adjustment process shown in FIG. 11 is performed. First, the averaging process is performed only in the X direction, and the resolution is adjusted.
  • the high-resolution reference image 302C is composed of 1 / m sub-pixels G1_1 to Gn_m.
  • the brightness values of the pixels 1'to the pixels n'that constitute the low-resolution reference image 302D are obtained by the averaging process of the sub-pixels included in each pixel. For example, in FIG. 11, since the brightness value of pixel 1'includes pixels 12 to 21 of 302C, it is obtained by averaging the brightness values of these pixels.
  • the image processing unit 110 sets a threshold value for the difference obtained by this die-To-die comparison, and determines that a signal higher than the threshold value is a defect and a signal lower than the threshold value is noise. Then, the signal determined to be defective is output together with the coordinates as a detection result via the display unit or the output unit (not shown).
  • the above is a description of a defect inspection device that reconstructs a reference image by dividing it into subpixels and determines defects by comparing the reference image with an inspection die image and its method.
  • the present invention is not limited to the above embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • the present invention can also be applied to the cell-to-cell method and the image comparison method of any unit.
  • the die is read as a cell.
  • the die image has been described, but an image of an arbitrary unit according to the unit of the image to be superimposed on the die image, the cell image, and the inspection image is generically referred to as a “frame image”.
  • the image processing unit 110 can divide the frame image into arbitrary pixels and execute the same processing.

Abstract

This defect inspection device for detecting a defect in a semiconductor wafer having a plurality of dies formed therein is characterized in that: the device comprises an image acquisition subsystem for acquiring a swath image of the wafer and a computer subsystem for processing the acquired swath image and acquiring information about a defect candidate position; and the computer subsystem carries out threshold processing on differences obtained by comparing an inspection image and reference image and identifies a defect, said computer subsystem carrying out processing in which the swath image is divided into frame images which are further divided into a given number of pixels, processing in which the frame images are compared with a reference pattern and amounts of positional deviation are calculated, processing in which corrected position information is calculated for the frame images on the basis of the amounts of positional deviation, processing in which brightness information for the pixels is allocated to finer imaginary blocks on the basis of the position information and one item of brightness information is calculated for each imaginary block, processing in which a reference image is generated on the basis of the brightness information for each block, and processing in which the reference image and an inspection image are compared.

Description

欠陥検査方法及び欠陥検査装置Defect inspection method and defect inspection equipment
 本発明は、半導体ウエハ上の異物や欠陥を検査する欠陥検査装置に関する。 The present invention relates to a defect inspection device that inspects foreign substances and defects on a semiconductor wafer.
 近年、大規模集積回路(LSI)の高集積化及び大容量化に伴い、半導体素子に要求される回路線幅はますます狭くなってきている。例えば、半導体ウエハ上に形成されるLSIパターン寸法の微細化に伴って、パターン欠陥として検出しなければならない欠陥寸法も極めて小さいものとなっている。 In recent years, with the increasing integration and capacity of large-scale integrated circuits (LSIs), the circuit line width required for semiconductor elements has become narrower and narrower. For example, with the miniaturization of the LSI pattern size formed on the semiconductor wafer, the defect size that must be detected as a pattern defect is also extremely small.
 パターン付きウエハ欠陥検査装置は、半導体デバイスの回路パターンが形成されたパターン付きウエハにおいて、デバイス不良の原因となる欠陥を検出するために用いられる。前述の微細化により、より微細なパターン不良や非常に小さな欠陥であっても歩留悪化に直結するようになってきており、前記検査装置についても、従来よりも高感度に微細な欠陥を検出する必要がある。パターン付きウエハ検査装置の検査方法として、例えば、ステージに保持したウエハに対し、XYスキャンで光又は電子線を照射し、試料から反射若しくは散乱した光、又は反射若しくは二次発生した電子線に基づき画像を生成し、当該画像をセル単位又はダイ単位といった所定領域に分け、当該画像と参照画像とを比較し、その差分に対し閾値判定を行い、欠陥を検出する方法がある。半導体のパターン線幅が微細になるほど、欠陥検出において、比較の際の画像の重ね合わせにおいて、画像同士の位置がより高精度に合致していることが求められる。高精度に画像を重ね合わせて比較することにより、より微細な欠陥を漏れなく検出することができるからである。 The patterned wafer defect inspection device is used to detect defects that cause device defects in a patterned wafer on which a circuit pattern of a semiconductor device is formed. Due to the above-mentioned miniaturization, even finer pattern defects and very small defects are directly linked to deterioration of yield, and the inspection device also detects fine defects with higher sensitivity than before. There is a need to. As an inspection method of a patterned wafer inspection device, for example, a wafer held on a stage is irradiated with light or an electron beam by XY scanning, and based on the light reflected or scattered from a sample, or the reflected or secondarily generated electron beam. There is a method of generating an image, dividing the image into predetermined regions such as cell units or die units, comparing the image with a reference image, performing threshold determination on the difference, and detecting defects. As the pattern line width of the semiconductor becomes finer, it is required that the positions of the images match with higher accuracy in the defect detection and in the superimposition of the images at the time of comparison. This is because finer defects can be detected without omission by superimposing and comparing images with high accuracy.
 特許文献1には、光源から光をウエハに照射し、ウエハから反射若しくは散乱した光を検出光学系で検出し、検出光学系で撮像された検査画像と、参照画像との間の位置ずれ量を算出し、位置ずれ量に基づき補正した検査画像と参照画像との差画像に閾値処理を行い、欠陥判定する方法が開示されている。特許文献1の、ダイ比較方式の光学式欠陥検査装置において、比較をする検査画像と参照画像との間には、ステージの振動等により位置ずれが生じることが書かれている。検査対象となる配線パターンの線幅や、致命欠陥サイズ自体が微細化すると、この位置ずれがわずかであっても画像重ね合わせ精度を低下させ、検査結果に大きな影響を及ぼす。それに対し特許文献1では、隣接ダイ画像との位置ずれ情報を求め、該位置ずれ情報を検出光学系の設計及び調整条件に整合するよう補正処理を施すことが開示されている。 In Patent Document 1, the wafer is irradiated with light from a light source, the light reflected or scattered from the wafer is detected by the detection optical system, and the amount of misalignment between the inspection image captured by the detection optical system and the reference image. Is calculated, and a method of determining a defect by performing threshold processing on the difference image between the inspection image and the reference image corrected based on the amount of misalignment is disclosed. In Patent Document 1, it is written that in the die comparison type optical defect inspection apparatus, a positional shift occurs between the inspection image to be compared and the reference image due to vibration of the stage or the like. If the line width of the wiring pattern to be inspected or the fatal defect size itself becomes finer, even if this misalignment is slight, the image superposition accuracy is lowered and the inspection result is greatly affected. On the other hand, Patent Document 1 discloses that the misalignment information with the adjacent die image is obtained, and the misalignment information is corrected so as to match the design and adjustment conditions of the detection optical system.
特開2008-268199号Japanese Patent Application Laid-Open No. 2008-268199
 しかしながら、特許文献1の位置ずれ量の求め方には更なる改善の余地がある。実際、微細化が進むにつれ、より厳密な位置ずれ補正が求められるようになっている。 However, there is room for further improvement in the method of obtaining the amount of misalignment in Patent Document 1. In fact, as miniaturization progresses, more strict misalignment correction is required.
 特許文献1は繰返しパターンからの散乱光を空間フィルタで遮光することが開示されている。メモリのセルエリアのような、繰り返しパターンにおいては、空間フィルタの遮光効果は高い。しかし、特許文献1に開示のない、エッジや、繰り返し性の無いロジックエリアのパターンにおいては、空間フィルタで遮光できないエッジ又はパターンが多く、空間フィルタの効果はメモリセル部検査よりも低下するという課題が想定される。光学式欠陥検査装置において、遮光しきれない光は画像上明るく写る。例えば、エッジや、繰り返し性の低いパターン領域においては、エッジやパターンからの光の影響で、検出される画像が明るく写る。そうすると、微細なパターンやエッジは画素に対する相対的な位置によって、撮影結果が変動するため、画像処理部で明暗の境目の判別が難しくなり、画像処理部は画像上摂動差分を用いて比較する場合が考えられる。欠陥サイズが非常に小さくなることで、この摂動差分において欠陥の取りこぼしが発生しうるという課題がある。このようにパターンが微細になることで、パターンやエッジと画素の相対位置の変化による画素表現のバリエーションが増え、そのバリエーションへの対応のため摂動差分を用いる結果、ダイ単位等の画像比較方式の検査において欠陥検出漏れが起きやすいという課題がある。 Patent Document 1 discloses that scattered light from a repeating pattern is blocked by a spatial filter. In a repeating pattern such as a cell area of a memory, the light-shielding effect of the spatial filter is high. However, in the edge or the pattern of the logic area having no repeatability, which is not disclosed in Patent Document 1, there are many edges or patterns that cannot be shielded by the spatial filter, and the effect of the spatial filter is lower than that of the memory cell inspection. Is assumed. In an optical defect inspection device, light that cannot be completely blocked appears bright on the image. For example, in an edge or a pattern region with low repeatability, the detected image appears bright due to the influence of light from the edge or pattern. Then, since the shooting result fluctuates depending on the position of the fine pattern or edge relative to the pixel, it becomes difficult for the image processing unit to distinguish between light and dark, and the image processing unit uses the perturbation difference on the image for comparison. Can be considered. Since the defect size becomes very small, there is a problem that defects may be missed in this perturbation difference. As the pattern becomes finer in this way, the variation of pixel expression due to the change in the relative position of the pattern or edge and the pixel increases, and as a result of using the perturbation difference to correspond to the variation, the image comparison method such as die unit There is a problem that defect detection omission is likely to occur in inspection.
 本発明は、前述の課題に対し、複数のダイが形成された半導体ウエハの欠陥を検出する欠陥検査装置において、前記ウエハのスワス画像を取得する画像取得サブシステムと、当該取得されたスワス画像を処理し、前記欠陥の候補位置の情報を取得するコンピュータサブシステムと、を備え、前記コンピュータサブシステムは、検査画像と参照画像とを比較し得られる差分に対し閾値処理を行い、欠陥を判定するシステムであって、前記スワス画像をダイ単位等の任意のフレーム画像に分け更に任意の数の画素に分ける処理と、前記フレーム画像において基準パターンと照合して位置ずれ量を算出する処理と、前記位置ずれ量に基づき前記画素が持つ輝度情報を前記画素より更に細かい単位の仮想ブロックに振り分けるとともに前記仮想ブロックごとに1つの輝度情報を算出する処理と、前記ブロックごとの輝度情報に基づき参照画像を生成する処理と、前記参照画像と前記検査画像とを比較する処理を実行することを特徴とする欠陥検査装置を提供する。 The present invention solves the above-mentioned problems by providing an image acquisition subsystem that acquires a swath image of the wafer and the acquired swath image in a defect inspection device that detects defects in a semiconductor wafer on which a plurality of dies are formed. A computer subsystem that processes and acquires information on the candidate position of the defect is provided, and the computer subsystem performs threshold processing on the difference obtained by comparing the inspection image and the reference image to determine the defect. In the system, the swath image is divided into an arbitrary frame image such as a die unit and further divided into an arbitrary number of pixels, and the frame image is collated with a reference pattern to calculate the amount of misalignment. A process of allocating the brightness information of the pixel to virtual blocks having a finer unit than the pixel based on the amount of misalignment and calculating one brightness information for each virtual block, and a reference image based on the brightness information of each block. Provided is a defect inspection apparatus characterized by executing a process of generating and a process of comparing the reference image with the inspection image.
 本発明は、ダイToダイ、セルToセル等で検査画像と参照画像を重ね合わせて比較し、欠陥を検出する検査方式において、画像の位置合わせ精度を向上させ、欠陥検出感度を向上させることができる。特に、エッジやパターンの繰り返し性の低いロジック部での欠陥検出感度を向上することができる。高解像度の参照画像を生成し、欠陥判定における閾値をより厳密な値で設定でき、より高感度な欠陥判定が可能になる。 According to the present invention, in an inspection method for detecting defects by superimposing and comparing an inspection image and a reference image on a die To die, a cell To cell, or the like, it is possible to improve the image alignment accuracy and the defect detection sensitivity. it can. In particular, it is possible to improve the defect detection sensitivity in the logic portion where the repeatability of edges and patterns is low. A high-resolution reference image can be generated, the threshold value for defect determination can be set with a stricter value, and defect determination with higher sensitivity becomes possible.
実施の形態1に係る欠陥検査装置の構成図である。It is a block diagram of the defect inspection apparatus which concerns on Embodiment 1. FIG. ウエハとダイの関係、ダイとスワスの関係およびスワスとスワスチャネルの関係を示す模式図である。It is a schematic diagram which shows the relationship between a wafer and a die, the relationship between a die and swath, and the relationship between swath and swath channel. サブピクセルに分割して参照画像を再構成する欠陥検査のフロー図である。It is a flow diagram of defect inspection which divides into sub-pixels and reconstructs a reference image. ダイToダイ比較する検査ダイ画像と参照画像における補間処理を説明する図である。Die To Die It is a figure explaining the interpolation processing in the inspection die image and the reference image to compare. ダイ内座標の概念を示す模式図である。It is a schematic diagram which shows the concept of the coordinates in a die. 第1の基準パターンとずれ量との関係を模式的に示した図である。It is a figure which showed typically the relationship between the 1st reference pattern and the deviation amount. ダイ内座標とずれ量分布の関係を示す模式図である。It is a schematic diagram which shows the relationship between the coordinates in a die and the deviation amount distribution. ダイ画像と任意の画素、任意のサブピクセルの関係を示す図である。It is a figure which shows the relationship between a die image, an arbitrary pixel, and an arbitrary sub-pixel. サブピクセルに分ける処理の第1例の詳細を説明する図である。It is a figure explaining the detail of the 1st example of the process of dividing into sub-pixels. サブピクセルに分ける処理の第2例の詳細を説明する図である。It is a figure explaining the detail of the 2nd example of the process of dividing into sub-pixels. サブピクセルに分ける処理の第2例の詳細を説明する図である。It is a figure explaining the detail of the 2nd example of the process of dividing into sub-pixels. 高解像の参照画像を生成する概念図である。It is a conceptual diagram which generates a high-resolution reference image. 検査ダイと超解像参照画像とを比較する例を示す図である。It is a figure which shows the example which compares an inspection die and a super-resolution reference image.
 <実施の形態1>
 図1は、本実施形態1に係る欠陥検査装置100の構成図を示す。欠陥検査装置100は、ウエハ103に形成されたパターンに存在する欠陥(もしくは欠陥である可能性のある個所)を検出し、検査結果として出力する装置である。図1に示す欠陥検査装置100は、ウエハ103の画像を取得する画像取得サブシステム101、取得された画像データを処理して欠陥候補箇所の位置情報を抽出するコンピュータサブシステム102等によって構成される。
<Embodiment 1>
FIG. 1 shows a configuration diagram of a defect inspection device 100 according to the first embodiment. The defect inspection device 100 is a device that detects defects (or locations that may be defects) existing in the pattern formed on the wafer 103 and outputs the inspection results. The defect inspection device 100 shown in FIG. 1 is composed of an image acquisition subsystem 101 that acquires an image of a wafer 103, a computer subsystem 102 that processes acquired image data and extracts position information of defect candidate locations, and the like. ..
 画像取得サブシステム101は、ウエハ103に対して光を照射する光源105、光を照射することでウエハから生じる散乱光若しくは反射光を検出する検出光学系106、検出光学系106が検出した光を電気信号に変換するセンサ107、センサ107が出力したアナログの電気信号をデジタル信号に変換するAD変換器108、センサ107で検出された光をAD変換器108に伝送する複数本の信号チャネル114、ウエハ103を載置し光源105の光照射位置にウエハ103上の任意箇所を移動させるステージ104、制御部109等によって構成される。制御部109は、画像取得サブシステム101の各構成要素の動作ないし欠陥検査装置100の全体動作を制御する。 The image acquisition subsystem 101 uses a light source 105 that irradiates the wafer 103 with light, a detection optical system 106 that detects scattered light or reflected light generated from the wafer by irradiating the light, and light detected by the detection optical system 106. A sensor 107 that converts an electric signal, an AD converter 108 that converts an analog electric signal output by the sensor 107 into a digital signal, and a plurality of signal channels 114 that transmit light detected by the sensor 107 to the AD converter 108. It is composed of a stage 104, a control unit 109, and the like on which the wafer 103 is placed and an arbitrary position on the wafer 103 is moved to the light irradiation position of the light source 105. The control unit 109 controls the operation of each component of the image acquisition subsystem 101 or the overall operation of the defect inspection device 100.
 ここで、欠陥検査装置100が暗視野光学検査である場合、光源はレーザであり、検出光学系106は、ウエハから生じる光のうち、主に散乱光を検出する。欠陥検査装置100が明視野検査装置である場合、光源はブロードバンド光源等でありウエハから生じる光のうち主に反射光を検出する。 Here, when the defect inspection device 100 is a dark field optical inspection, the light source is a laser, and the detection optical system 106 mainly detects scattered light among the light generated from the wafer. When the defect inspection device 100 is a bright field inspection device, the light source is a broadband light source or the like, and mainly detects reflected light among the light generated from the wafer.
 また、欠陥検査装置100は、光源105の代わりに電子源を用い、電子ビームをウエハに照射し、検出光学系に代わる検出系にてウエハから発生する二次電子又は反射電子を検出する電子線式検査装置であっても良い。このように、画像取得サブシステムとしては、暗視野式検査装置、明視野式検査装置又は電子線式検査装置のいずれに適用してもよい。本実施例においては、暗視野式検査装置を用いた欠陥検査装置を例にして説明を行う。 Further, the defect inspection device 100 uses an electron source instead of the light source 105, irradiates the wafer with an electron beam, and detects secondary electrons or backscattered electrons generated from the wafer by a detection system instead of the detection optical system. It may be a type inspection device. As described above, the image acquisition subsystem may be applied to any of a dark field inspection device, a bright field inspection device, and an electron beam inspection device. In this embodiment, a defect inspection device using a dark field inspection device will be described as an example.
 コンピュータサブシステム102は、画像処理部110と制御PC111とによって構成される。画像処理部110はファイバー115を介してAD変換器108の出力する画素信号を受け取ることができる。画像処理部110は、AD変換器108の出力信号を用いて、ウエハ103のスワス画像を生成し、後述する位置ずれ補正の情報処理を実行するユニットである。ここで「スワス画像」とは、ウエハ103を載置したステージ104を一軸方向に連続移動させながら光源105にてウエハ103を照射することにより取得される画像であり、ステージ104の移動方向に細長い矩形状の画像データである。また、単に「スワス」と言った場合、ステージ走査と光源105からの照明によって走査される細長い領域のことを指すものとする。電子線検査装置の場合には、光源は電子源と読み替える。 The computer subsystem 102 is composed of an image processing unit 110 and a control PC 111. The image processing unit 110 can receive the pixel signal output by the AD converter 108 via the fiber 115. The image processing unit 110 is a unit that uses the output signal of the AD converter 108 to generate a swath image of the wafer 103 and executes information processing for misalignment correction, which will be described later. Here, the "swath image" is an image acquired by irradiating the wafer 103 with the light source 105 while continuously moving the stage 104 on which the wafer 103 is placed in the uniaxial direction, and is elongated in the moving direction of the stage 104. It is rectangular image data. Further, when the term "swath" is simply used, it means an elongated region scanned by stage scanning and illumination from the light source 105. In the case of an electron beam inspection device, the light source should be read as an electron source.
 上述の情報処理を行うため、プロセッサ112やストレージ装置113が備えられている。ストレージ装置113は、制御PC111と画像処理部110が用いる各種データを記憶する装置であり、磁気ディスク等、大容量の記憶手段によって構成される。ストレージ装置113には、各種の処理に使用させるプログラム、画像取得方法や画像方法などの条件を設定するためのデータであるレシピが格納されている。大量の画像データを処理するため、複数のプロセッサを並列稼働させる並列計算機を用いて画像処理部110を構成する場合も多い。制御PC111は、後述する位置ずれ補正の情報処理と欠陥検査のための各種条件を設定するユーザーインターフェースとして機能する。 A processor 112 and a storage device 113 are provided to perform the above-mentioned information processing. The storage device 113 is a device that stores various data used by the control PC 111 and the image processing unit 110, and is composed of a large-capacity storage means such as a magnetic disk. The storage device 113 stores a recipe that is data for setting conditions such as a program to be used for various processes, an image acquisition method, and an image method. In order to process a large amount of image data, the image processing unit 110 is often configured by using a parallel computer that operates a plurality of processors in parallel. The control PC 111 functions as a user interface for setting various conditions for information processing of misalignment correction and defect inspection, which will be described later.
 図2は、ウエハとダイの関係、ダイとスワスの関係およびスワスとスワスチャネルの関係を示す模式図である。図2上段に示した図は、7行×7列に配列された37個のダイが形成されたウエハの模式図である。各ダイには座標が付されておりマトリックスの行と列で指定される。X方向のステージ走査は図中左から右への移動が順方向、右から左への移動が逆方向と定義することにする。 FIG. 2 is a schematic diagram showing the relationship between the wafer and the die, the relationship between the die and the swath, and the relationship between the swath and the swath channel. The figure shown in the upper part of FIG. 2 is a schematic view of a wafer in which 37 dies arranged in 7 rows × 7 columns are formed. Each die has coordinates and is specified by rows and columns of the matrix. In the stage scanning in the X direction, the movement from left to right in the figure is defined as the forward direction, and the movement from right to left is defined as the reverse direction.
 ステージ走査はウエハ最下段左隅のダイから開始され、参照番号201で示される方向に進みスワス画像が取得される。撮像のための光照射位置が右端のダイに到達した状態で当該光照射位置がウエハの最上行のダイに到達していなければ、参照番号202で示されるY方向に1スワス分ステージを移動させ、今度は参照番号201’で示される逆方向にステージ走査を行いスワス画像が取得される。光照射位置が左端のダイに到達したら参照番号202′の方向にステージが走査され、同じ要領で順方向にX方向のステージ走査が行われる。以上の通り、1列のダイ分のスワス画像を取得するには、順方向と逆方向のX方向ステージ走査を何回か繰り返して撮像を行う必要がある。図2の上段図には、図2のウエハ上の左下のダイからステージ走査を開始し4列目のダイの途中までステージ走査が終了した状態のウエハが示されているが、ステージの走査方向を示す線が煩雑になるため、下から2列目以降のダイについては各ダイ列につき1つの矢印で代表させて示した。 The stage scan starts from the die at the bottom left corner of the wafer and proceeds in the direction indicated by the reference number 201 to acquire a swath image. If the light irradiation position for imaging has reached the rightmost die and the light irradiation position has not reached the uppermost die of the wafer, the stage is moved by one swath in the Y direction indicated by reference numeral 202. This time, the stage scan is performed in the reverse direction indicated by the reference number 201', and the swath image is acquired. When the light irradiation position reaches the leftmost die, the stage is scanned in the direction of reference number 202', and the stage is scanned in the X direction in the forward direction in the same manner. As described above, in order to acquire the swath images for one row of dies, it is necessary to repeat the X-direction stage scanning in the forward direction and the reverse direction several times to perform imaging. The upper view of FIG. 2 shows the wafer in which the stage scanning is started from the lower left die on the wafer of FIG. 2 and the stage scanning is completed until the middle of the die in the fourth row. Since the line indicating the above is complicated, the dies in the second and subsequent rows from the bottom are represented by one arrow for each row of dies.
 前述の通り、1ダイ分の画像を取得するには、1本のスワス画像を取得するだけでは足りず、複数本のスワス画像を取得する必要がある。図2の中段に示した模式図は、図2上段図のウエハの下から4列目のダイのスワス画像とダイの関係を示す。ダイ204からダイ206のダイの列の画像を取得する場合、スワス208aから208fと合計6本のスワスが必要となる。ダイ205がウエハ中心ダイに相当する。 As described above, in order to acquire an image for one die, it is not enough to acquire one swath image, but it is necessary to acquire a plurality of swath images. The schematic diagram shown in the middle part of FIG. 2 shows the relationship between the swath image of the die in the fourth row from the bottom of the wafer in the upper part of FIG. 2 and the die. When acquiring an image of a row of dies of dies 204 to 206, a total of six swaths, swaths 208a to 208f, are required. The die 205 corresponds to the wafer center die.
 更に、1本のスワス画像は複数の信号チャネルで分割検出される。例えば、スワス208fに相当する散乱光は、センサ210によって検出されるが、出力信号は信号チャネルごとに纏められ、後段のAD変換器(図1の108)に伝送される。以降の実施例では、信号チャネル1本で伝送されるデータに対応するスワス画像(すなわちY方向の画素幅が1024画素分のスワス画像)を「スワスチャネル画像」と呼ぶことにする。また、1本のスワスチャネル画像の取得領域を「スワスチャネル」と呼ぶことにする。更に、スワス画像をダイ単位に切り出した画像をスワスダイ画像、スワスチャネル画像をダイ単位に切り出した画像をスワスチャネルダイ画像と呼ぶことにする。図2下段の模式図は、複数のスワスチャネル(対応する画像がスワスチャネル画像209)によって構成されるスワス取得領域からの散乱光がセンサ210によって検出され、アナログ出力信号として出力される様子を示している。なお、コンピュータサブシステム102を構成する画像処理部110や制御PC111が認識できる画像データはAD変換器108を通過後のデジタルデータであるため、以降の説明では、スワスチャネル画像あるいはスワス画像はAD変換器108により量子化された画素データであるものとする。尚、スワスダイ画像の意味でも、複数のスワスダイ画像を併せてできる、ウエハ上のダイと同サイズのダイ画像、どちらの意味であっても良い場合は単に「ダイ画像」と表記する。 Furthermore, one swath image is divided and detected in a plurality of signal channels. For example, the scattered light corresponding to the swath 208f is detected by the sensor 210, but the output signal is collected for each signal channel and transmitted to the AD converter (108 in FIG. 1) at the subsequent stage. In the following examples, a swath image corresponding to data transmitted by one signal channel (that is, a swath image having a pixel width of 1024 pixels in the Y direction) will be referred to as a “swath channel image”. Further, the acquisition area of one swath channel image will be referred to as "swath channel". Further, an image obtained by cutting out a swath image in die units is referred to as a swath die image, and an image obtained by cutting out a swath channel image in die units is referred to as a swath channel die image. The schematic diagram in the lower part of FIG. 2 shows how the sensor 210 detects scattered light from the swath acquisition region composed of a plurality of swath channels (corresponding image is swath channel image 209) and outputs it as an analog output signal. ing. Since the image data that can be recognized by the image processing unit 110 and the control PC 111 constituting the computer subsystem 102 is digital data after passing through the AD converter 108, the swath channel image or the swath image will be AD-converted in the following description. It is assumed that the pixel data is quantized by the device 108. It should be noted that the meaning of the swath die image is also a die image of the same size as the die on the wafer, which can be combined with a plurality of swath die images.
 図3にサブピクセルに分割して参照画像を再構成する欠陥検査のフロー図を示す。まず、S001は、前述したスワス画像取得のステップである。S002で、スワス画像からスワスダイ画像を生成する。例えば、図2のウエハ中央列には7個のダイがある。この場合、画像処理部110は、1スワス画像から7個のスワスダイ画像を生成する。スワスダイ画像はスキャン方向にn個の画素から構成されていると仮定する(S003)。 FIG. 3 shows a flow diagram of defect inspection in which the reference image is reconstructed by dividing it into subpixels. First, S001 is the step of acquiring the swath image described above. In S002, a swath die image is generated from the swath image. For example, there are seven dies in the center row of wafers in FIG. In this case, the image processing unit 110 generates seven swath die images from one swath image. It is assumed that the swath die image is composed of n pixels in the scanning direction (S003).
 そして、S004で、各ダイ画像の位置合わせを行う。位置合わせを行う領域におけるユニークパターンを基準パターンとしてテンプレート登録する。各ダイ画像においてテンプレートマッチングを行い、当該基準パターンの座標と、各ダイ画像における基準パターン相当パターンの座標とを照合し、基準パターンの座標に対する差分量を位置ずれ量として算出する。この位置ずれ量(補正量)を画像処理部110はメモリに記憶させておく。 Then, in S004, the alignment of each die image is performed. The unique pattern in the area to be aligned is registered as a template as a reference pattern. Template matching is performed on each die image, the coordinates of the reference pattern are collated with the coordinates of the reference pattern equivalent pattern in each die image, and the difference amount with respect to the coordinates of the reference pattern is calculated as the displacement amount. The image processing unit 110 stores this misalignment amount (correction amount) in the memory.
 S005では、ダイ画像を構成する画素のS004で求めた位置ずれ量を含んだ座標を画素の1/mのサブピクセル単位で丸める。S006では、サブピクセル単位で座標が同一となる各画素をグルーピングする。グルーピングした画素の輝度情報に基づき、当該サブピクセルの輝度情報を演算する。該当する画素が存在しないサブピクセルの輝度値は、演算済みのサブピクセルの輝度情報から推定演算により求める。この演算結果に基づき、画像処理部110は、m倍解像度の参照画像を構成する(S007)。 In S005, the coordinates including the amount of misalignment obtained in S004 of the pixels constituting the die image are rounded in units of 1 / m subpixels of the pixels. In S006, each pixel having the same coordinates is grouped in subpixel units. The brightness information of the sub-pixels is calculated based on the brightness information of the grouped pixels. The brightness value of the sub-pixel in which the corresponding pixel does not exist is obtained by an estimation calculation from the calculated brightness information of the sub-pixel. Based on this calculation result, the image processing unit 110 constitutes a reference image having an m-fold resolution (S007).
 S008で画像処理部110は、m倍解像度の参照画像から、検査ダイの位置ずれ量と一致する位置ずれ量を持つダイ画像と同解像度の参照画像を再構成し、その再構成した参照画像と検査ダイ画像をダイToダイ比較する。そして、その差信号又は差画像に対し、閾値処理を行い、閾値以上のものを欠陥と判定する。画像処理部110は、欠陥と判定した信号を、その座標情報とともに検査結果として出力部(不図示)を介して出力する。 In S008, the image processing unit 110 reconstructs a reference image having the same resolution as the die image having the amount of misalignment that matches the amount of misalignment of the inspection die from the reference image having m times resolution, and the reconstructed reference image. The inspection die image is compared with the die To die. Then, the difference signal or the difference image is subjected to threshold processing, and those having a threshold value or more are determined to be defects. The image processing unit 110 outputs a signal determined to be defective together with the coordinate information thereof as an inspection result via an output unit (not shown).
 ダイToダイ比較のような、画像を重ね合わせる検査において、画像がぼけるメカニズムの例をいくつか紹介する。まず、画像処理部110がスワス画像をダイ画像に分割する際、実際のウエハ上のダイの始点と、画像処理部110が画像を分割する始点が微妙にずれるという場合がある。スワス画像またはスワスチャネル画像は画素で構成されており、各画素は画素単位の離散座標を持つ。一方、ダイ幅は画素の整数倍とは限らず、その結果、ダイの始点と認識したラインと、実際のウエハ上のダイの始点に誤差が生じる。また、ステージの微妙な振動も誤差の要因となる。このずれを許容するために、差分を求める際に誤差を認める摂動差分を用いる方法がある。欠陥検査装置100が、予め摂動差分をとる場合、予め許容するずれ量を欠陥検査装置100に記憶させておく。そして、画像処理部110は、その許容量の範囲内であればずれがないとみなして処理をする。摂動差分を用いた比較では、予め許容するずれ量に相当する領域に存在する欠陥の検出漏れに繋がりかねない。 Here are some examples of image blurring mechanisms in inspections that overlay images, such as die-to-die comparison. First, when the image processing unit 110 divides the swath image into die images, the starting point of the die on the actual wafer and the starting point at which the image processing unit 110 divides the image may be slightly deviated from each other. A swath image or swath channel image is composed of pixels, and each pixel has discrete coordinates in pixel units. On the other hand, the die width is not always an integral multiple of the pixels, and as a result, an error occurs between the line recognized as the start point of the die and the start point of the die on the actual wafer. In addition, the subtle vibration of the stage also causes an error. In order to allow this deviation, there is a method of using a perturbation difference that allows an error when calculating the difference. When the defect inspection device 100 takes a perturbation difference in advance, the defect inspection device 100 stores the allowable deviation amount in advance. Then, the image processing unit 110 performs processing on the assumption that there is no deviation as long as it is within the permissible amount. In the comparison using the perturbation difference, it may lead to omission of detection of defects existing in the region corresponding to the amount of deviation allowed in advance.
 前述のように、各ダイ画像間では微小な誤差があり、ダイToダイ比較を行う際に、補間処理が必要となる。図4は、ダイToダイ比較する検査ダイ画像と参照画像における補間処理を説明する図である。検査ダイ画像301に対し、例えば、隣接ダイの画像を参照画像302AとしてダイToダイ比較する際、検査ダイ画像301と実際の隣接ダイから取得した参照画像302Aにはずれ幅w1がある。ダイ上に図示したような輝点が存在するとする。撮像する位置により、各画素の輝度は変化し、図4の1マスを1画素とした場合、検査ダイ301では、左の画素から0、40、40、0の輝度の値であったとする。参照画像とする隣接ダイの輝度を画素単位で見た場合は、ずれ幅w1だけ撮像位置が変化しているため、例えば左から各画素の輝度は0、6、80、6、0であったとする。しかし、同じ位置の画像同士を重ね合わせるための補間処理として参照画像に平均化処理を行うと、参照画像302Bが生成される。ずれ量が0であれば、左の画素から0、0、40、40、0、0であるはずの輝度が、補間処理の結果、左の画素から0、3、43、43、3、0という輝度の参照画像302Bとなる。実際に取り込んだ隣接ダイ画像の輝度に対し、平均化等の補間処理を経て参照画像が生成される結果、参照画像の解像度が低下し、本来の輝度と異なる値となりえる。このように、解像度が低下した参照画像と検査ダイ画像を比較するにはずれを許容する摂動差分などを用いる必要があり、結果として参照画像側の解像度が低下すると、検査ダイ画像と参照画像のダイToダイにおいて欠陥とノイズの分別がより難しくなる。 As mentioned above, there is a minute error between each die image, and interpolation processing is required when comparing die To dies. FIG. 4 is a diagram illustrating interpolation processing in the inspection die image and the reference image for which the die To die is compared. For example, when comparing the inspection die image 301 with the die To die using the image of the adjacent die as the reference image 302A, the inspection die image 301 and the reference image 302A acquired from the actual adjacent die have a deviation width w1. It is assumed that there is a bright spot as shown on the die. The brightness of each pixel changes depending on the position of imaging, and when one cell in FIG. 4 is regarded as one pixel, it is assumed that the brightness values of the inspection die 301 are 0, 40, 40, and 0 from the left pixel. When the brightness of the adjacent die used as the reference image is viewed in pixel units, the imaging position changes by the deviation width w1, so that the brightness of each pixel is 0, 6, 80, 6, 0 from the left, for example. To do. However, when the reference image is averaged as an interpolation process for superimposing the images at the same position, the reference image 302B is generated. If the amount of deviation is 0, the brightness that should be 0, 0, 40, 40, 0, 0 from the left pixel is 0, 3, 43, 43, 3, 0 from the left pixel as a result of interpolation processing. It becomes the reference image 302B of the brightness. As a result of generating a reference image through interpolation processing such as averaging with respect to the brightness of the adjacent die image actually captured, the resolution of the reference image is lowered and the value may be different from the original brightness. In this way, in order to compare the reference image with reduced resolution and the inspection die image, it is necessary to use a perturbation difference that allows deviation, and as a result, when the resolution on the reference image side decreases, the inspection die image and the reference image die Defects and noise are more difficult to separate on the To die.
 ダイToダイ比較により欠陥を検出する検査方式において、微細化により検出したい欠陥サイズが小さくなると、ダイToダイ比較で検査ダイ画像と参照画像を重ね合わせる際、このわずかな画像上のずれによる画像ぼけが欠陥の検出漏れに繋がる場合がある。 In the inspection method for detecting defects by die-to-die comparison, if the defect size to be detected becomes smaller due to miniaturization, when the inspection die image and the reference image are superimposed in the die-to-die comparison, the image is blurred due to this slight deviation on the image. May lead to omission of defect detection.
 このような課題を解決するために高解像の参照画像を生成し検査ダイ画像とダイToダイ比較する。高解像の参照画像生成について、以下に詳細を説明する。スワス画像からダイ画像を生成し、ダイ画像をn画素に分けるところまでは図3の説明のとおりである。スワス画像をダイ画像に分け、ダイ画像を更にn画素に分割する。 In order to solve such a problem, a high-resolution reference image is generated and compared with the inspection die image and the die To die. The high-resolution reference image generation will be described in detail below. The process of generating a die image from the swath image and dividing the die image into n pixels is as described in FIG. The swath image is divided into die images, and the die image is further divided into n pixels.
 次に、画像処理部110が基準パターンを用いて行う画像の位置ずれ量算出処理の1例について説明する。この処理においては、単に位置ずれ量を求めるだけでなく、最終的に位置ずれ量に基づき位置補正処理も行う。一例であるので、位置合わせ処理はこの手法に限るものではない。まず、画像の位置合わせ処理では、基準のダイを事前にスキャンし、基準パターンを得る。以下の説明では中心ダイで基準パターンを得る例を説明する。中心ダイを用いるのは、ウエハ中心付近が最も位置誤差が少ないためである。しかし、中心ダイ以外であっても良い。 Next, an example of the image misalignment amount calculation process performed by the image processing unit 110 using the reference pattern will be described. In this process, not only the amount of misalignment is obtained, but also the position correction process is finally performed based on the amount of misalignment. Since this is just an example, the alignment process is not limited to this method. First, in the image alignment process, the reference die is scanned in advance to obtain a reference pattern. In the following description, an example of obtaining a reference pattern with the center die will be described. The center die is used because the position error is the smallest near the center of the wafer. However, it may be other than the central die.
 次に、スワス画像を構成するスワスチャネル画像各々について所定の演算処理を行い第1の基準パターンを抽出し、更に当該第1の基準パターンのダイ内座標を求める。ここでダイ内座標とは、各ダイについて設定されたダイ内のパターンを記述するための内部座標のことである。図5は、ダイ内座標の概念を示す模式図である。図5に示すダイ204から206は図2の中段に示したダイ列の模式図と同じであり、スワス208bのみを抜き出して示した図である。参照番号401で示される黒い実線はスワス208bを構成するスワスチャネルの一つである。各ダイには左下隅を原点(0,0)とするダイ内座標が設定されており、スワス画像あるいはスワスチャネル画像を構成する画素の位置は全てダイ内座標を用いて表現することができる。 Next, a predetermined arithmetic process is performed on each of the swath channel images constituting the swath image to extract the first reference pattern, and further, the coordinates in the die of the first reference pattern are obtained. Here, the in-die coordinates are the internal coordinates for describing the pattern in the die set for each die. FIG. 5 is a schematic diagram showing the concept of coordinates in the die. The dies 204 to 206 shown in FIG. 5 are the same as the schematic diagram of the die row shown in the middle of FIG. 2, and are the views showing only the swath 208b extracted. The solid black line indicated by the reference number 401 is one of the swath channels constituting the swath 208b. In-die coordinates with the lower left corner as the origin (0,0) are set for each die, and the positions of the pixels constituting the swath image or swath channel image can all be expressed using the in-die coordinates.
 位置合わせにおいて用いる第1の基準パターンについて説明する。第1の基準パターンとは、ウエハ上の各ダイで取得されたスワス画像の位置ずれを、特定のダイで取得されたスワス画像に合わせてスワスチャネル画像単位で較正するためのパターンである。前述の通り、本実施例ではこのパターンをウエハ中心ダイで取得されたスワス画像から抽出する。位置ずれ補正に使用されるため、第1の基準パターンはユニークパターン(同一のスワスチャネルダイ画像上で他に同じパターンが存在しないパターン)である必要がある。第1の基準パターンは、スワスチャネルダイ画像辺り最低でも一つ必要である。更に、位置ずれ補正の精度を上げるためには基準パターンを複数個(スワスチャネルダイ画像辺りで)設定することが望ましい。目視でパターンを確認し人手で選択しても良いが、基準パターンの数が多い場合、人手での選択は煩雑である。そのため、ウェーブレット変換を利用したパターンエッジ抽出方法等により、2次元の画素配列上でパターンのエッジを見つけ基準パターンを欠陥検査装置100が機械的に自動設定しても良い。 The first reference pattern used for alignment will be described. The first reference pattern is a pattern for calibrating the misalignment of the swath image acquired by each die on the wafer in units of swath channel images according to the swath image acquired by a specific die. As described above, in this embodiment, this pattern is extracted from the swath image acquired by the wafer center die. Since it is used for misalignment correction, the first reference pattern needs to be a unique pattern (a pattern in which the same pattern does not exist elsewhere on the same swath channel die image). The first reference pattern requires at least one per swath channel die image. Further, in order to improve the accuracy of the misalignment correction, it is desirable to set a plurality of reference patterns (around the swath channel die image). The pattern may be visually confirmed and manually selected, but when the number of reference patterns is large, the manual selection is complicated. Therefore, the defect inspection device 100 may automatically set the reference pattern by finding the edge of the pattern on the two-dimensional pixel array by a pattern edge extraction method using the wavelet transform or the like.
 抽出された第1の基準パターンのパターン形状と座標(後述する切り出し画像の座標)は、対応するスワスチャネルの情報と紐付けられて登録される。 The pattern shape and coordinates of the extracted first reference pattern (coordinates of the cutout image described later) are registered in association with the information of the corresponding swath channel.
 画像処理部110は、前述のとおり、スワス画像をダイ単位に切り出したダイ画像をテンプレートマッチングにより第1の基準パターンと比較する。この比較により、スワスチャネルダイ画像における第1の基準パターン相当のパターンのダイ内座標がダイごとに求められる。更に、求められたダイ内座標と第1の基準パターンのダイ内座標との比較から、所定ダイのスワスチャネルダイ画像のX方向とY方向のずれ量(後述するΔXとΔY)が求められる。求められたずれ量は画像処理部110内のメモリに格納される。テンプレートマッチングを実行するためのソフトウェアは同じくストレージ装置113に格納されており、実行時には画像処理部110内のプロセッサ112により呼び出された後、同じく画像処理部110内のメモリに格納されて実行される。 As described above, the image processing unit 110 compares the die image obtained by cutting out the swath image in die units with the first reference pattern by template matching. By this comparison, the coordinates in the die of the pattern corresponding to the first reference pattern in the swath channel die image are obtained for each die. Further, the amount of deviation between the X-direction and the Y-direction of the swath channel die image of the predetermined die (ΔX and ΔY, which will be described later) can be obtained from the comparison between the obtained in-die coordinates and the in-die coordinates of the first reference pattern. The obtained deviation amount is stored in the memory in the image processing unit 110. The software for executing template matching is also stored in the storage device 113, and is called by the processor 112 in the image processing unit 110 at the time of execution, and then stored in the memory in the image processing unit 110 and executed. ..
 図6Aに、第1の基準パターンとずれ量との関係を模式的に示す。ダイ205はウエハ中心ダイ、ダイ206はその右隣のダイであり、スワス208bはこれら2つのダイに跨って形成されている。スワスチャネル401はスワス208bを構成する1024画素のスワスチャネルの一つであり、第1の基準パターン402はウエハ中心ダイ205のスワスチャネルダイ画像から抽出される。隣接ダイ206にはウエハ中心ダイ205と同じパターンが形成されているため、ダイ206のスワスチャネルダイ画像には第1の基準パターン402と同じパターン402’が形成されているが、前述のとおりステージの機械精度等の理由により、スワスチャネル401の画像上では、パターン402’は第1の基準パターンとは僅かにずれた位置に存在する。図6Aの下段には第1の基準パターン402とパターン402’の拡大図を併せて示す。これらの拡大図においては、第1の基準パターンは切り出し画像601内に存在するパターン502として示されている。同様に、パターン402’は切り出し画像602の中心からずれた位置にパターン502’として示されている。点線で示されるパターンはレシピに登録された第1の基準パターン502を示し、パターン502’はパターン502に対しΔX, ΔYだけずれている。すなわち、第1の基準パターンのダイ内座標を(X, Y)と表現すれば、パターン402’のダイ206におけるパターンダイ内座標は(X+ΔX, Y+ΔY)と表現される。 FIG. 6A schematically shows the relationship between the first reference pattern and the amount of deviation. The die 205 is a wafer center die, the die 206 is a die to the right of the die, and the swath 208b is formed so as to straddle these two dies. The swath channel 401 is one of the 1024 pixel swath channels constituting the swath 208b, and the first reference pattern 402 is extracted from the swath channel die image of the wafer center die 205. Since the adjacent die 206 has the same pattern as the wafer center die 205, the swath channel die image of the die 206 has the same pattern 402'as the first reference pattern 402. The pattern 402'exists at a position slightly deviated from the first reference pattern on the image of the swath channel 401 due to the mechanical accuracy of the above. The lower part of FIG. 6A also shows an enlarged view of the first reference pattern 402 and the pattern 402'. In these enlarged views, the first reference pattern is shown as the pattern 502 present in the cropped image 601. Similarly, the pattern 402'is shown as a pattern 502' at a position deviated from the center of the cropped image 602. The pattern shown by the dotted line indicates the first reference pattern 502 registered in the recipe, and the pattern 502'is deviated from the pattern 502 by ΔX and ΔY. That is, if the coordinates in the die of the first reference pattern are expressed as (X, Y), the coordinates in the pattern die in the die 206 of the pattern 402'are expressed as (X + ΔX, Y + ΔY).
 ΔX、ΔYはダイごとに異なる値を取るので、ΔX、ΔYはスワスチャネル画像上で分布量を取る。図6Bにはスワスチャネル401に関するX方向のずれ量分布を概念的に示した。図の縦軸がX方向のずれ量ΔX、横軸がスワスチャネル画像のX方向の座標WXで、座標WX_204、WX_205およびWX_206は、各ダイのダイ内座標における第1の基準パターンのX座標と同じ位置をスワスチャネル画像の座標に焼き直した座標である。座標X_204、すなわちダイ204における第1の基準パターンのダイ内座標では、X方向にΔX204の位置ずれが発生しており、座標X_206、すなわちダイ206における第1の基準パターンのダイ内座標ではX方向にΔX206の位置ずれが発生している。座標X_205はウエハ中心ダイ205における第1の基準パターンの座標であり、そもそも第1の基準パターンを抽出した位置であるため位置ずれは発生していない。ずれ量(ΔX、ΔY)は各ダイで求まる離散量であるため、「X方向ずれ量分布ΔX(WX)」上に点で表される。座標X_204、座標X_205、座標X_206の各点を補間することで図6B上の実線が求められ、任意のWXに対するずれ量ΔXを読み取れる。 Since ΔX and ΔY take different values for each die, ΔX and ΔY take a distribution amount on the swath channel image. FIG. 6B conceptually shows the deviation amount distribution in the X direction with respect to the swath channel 401. The vertical axis of the figure is the deviation amount ΔX in the X direction, the horizontal axis is the coordinates WX in the X direction of the swath channel image, and the coordinates WX_204, WX_205 and WX_206 are the X coordinates of the first reference pattern in the coordinates in the die of each die. These are the coordinates obtained by reprinting the same position into the coordinates of the swath channel image. At the coordinates X_204, that is, the in-die coordinates of the first reference pattern on the die 204, a positional shift of ΔX 204 occurs in the X direction, and at the coordinates X_206, that is, the in-die coordinates of the first reference pattern on the die 206, X There is a misalignment of ΔX 206 in the direction. The coordinates X_205 are the coordinates of the first reference pattern on the wafer center die 205, and since they are the positions where the first reference pattern is extracted in the first place, no misalignment occurs. Since the deviation amount (ΔX, ΔY) is a discrete quantity obtained by each die, it is represented by a point on the “X-direction deviation amount distribution ΔX (WX)”. By interpolating the points of the coordinates X_204, the coordinates X_205, and the coordinates X_206, the solid line on FIG. 6B can be obtained, and the deviation amount ΔX with respect to an arbitrary WX can be read.
 このように第1の基準パターンを読み出し、第1の基準パターンをテンプレートとし、切り出した画像に対しテンプレートマッチングを実行し、図6Aで説明したΔX, ΔYを求める。具体的には、取得されたスワスチャネル画像に対応する第1の基準パターンを読み出し、前述の切り出し画像と同じサイズの画像を取得されたスワスチャネル画像から切り出す。そして切り出した画像に対して、第1の基準パターンをテンプレートとするテンプレートマッチングを実行し図6Aで説明したΔX、ΔYを求める。その次に、スワス画像に対する位置ずれ補正が実行される。すなわち、スワス画像を構成する各スワスチャネル画像に対し、当該スワスチャネル画像を構成する画素のダイ内座標と上記ΔX、ΔYとの差分演算をプロセッサ112が実行し位置ずれ補正を行う。そして、各スワスチャネル画像に対し、当該スワスチャネル画像を構成する画素のダイ内座標と上記ΔX、ΔYとの差分演算をプロセッサ112が実行し位置ずれ補正を行う。尚、各ダイ画像においてテンプレート画像と対応しない部位については、基準パターンと基準パターン相当パターンを比較し求めた位置ずれ量に基づき補完演算を行う。これにより、各ダイ画像において基準パターンと一致しない部位の座標についても補正する。これを全ての検査対象のダイ画像で実行し位置ずれを補正する。以上位置ずれ補正で用いたずれ量は、後述の高解像の参照画像生成においても用いるため画像処理部110はこれをメモリに保存する。 In this way, the first reference pattern is read out, the first reference pattern is used as a template, template matching is executed on the cut out image, and ΔX and ΔY described in FIG. 6A are obtained. Specifically, the first reference pattern corresponding to the acquired swath channel image is read out, and an image having the same size as the above-mentioned cropped image is cut out from the acquired swath channel image. Then, the cut-out image is subjected to template matching using the first reference pattern as a template, and ΔX and ΔY described in FIG. 6A are obtained. Next, misalignment correction for the swath image is performed. That is, for each swath channel image constituting the swath image, the processor 112 executes a difference calculation between the coordinates in the die of the pixels constituting the swath channel image and the ΔX and ΔY to correct the misalignment. Then, for each swath channel image, the processor 112 executes a difference calculation between the in-die coordinates of the pixels constituting the swath channel image and the ΔX and ΔY to correct the misalignment. For the parts of each die image that do not correspond to the template image, a complementary operation is performed based on the amount of misalignment obtained by comparing the reference pattern and the pattern corresponding to the reference pattern. As a result, the coordinates of the portion that does not match the reference pattern in each die image are also corrected. This is executed on all the die images to be inspected to correct the misalignment. Since the amount of deviation used in the above misalignment correction is also used in the generation of a high-resolution reference image described later, the image processing unit 110 stores this in the memory.
 位置合わせ処理のその他の例として、設計情報を用いる方法もある。例えば、ダイレイアウトと画像処理部110が取得した画像上のダイレイアウトとを比較し、差分から位置ずれ量を算出する方法や、画像処理部110は、ウエハ上の任意の基準、例えば任意のパターンやアライメントマークの座標において画像取得サブシステム101が取得した画像と設計データ上の当該パターンやマークの座標とを比較して位置ずれ量を求める方法も考えられる。設計情報を用いない場合であっても、予め登録されている座標が既知の画像と、検査ウエハで画像取得サブシステム101が取得した対応箇所の画像とを比較し、位置ずれ量を求めても良い。位置ずれ量を求める方法はこれ以外にも様々考えられ、ここに記載した方法に限定されない。 As another example of the alignment process, there is also a method of using design information. For example, a method of comparing the die layout with the die layout on the image acquired by the image processing unit 110 and calculating the amount of misalignment from the difference, or the image processing unit 110 uses an arbitrary reference on the wafer, for example, an arbitrary pattern. A method of obtaining the amount of misalignment by comparing the image acquired by the image acquisition subsystem 101 with the coordinates of the pattern or mark on the design data at the coordinates of the alignment mark or the alignment mark is also conceivable. Even when the design information is not used, even if the image whose coordinates are known in advance is compared with the image of the corresponding portion acquired by the image acquisition subsystem 101 on the inspection wafer, the amount of misalignment can be obtained. good. Various other methods for obtaining the amount of misalignment can be considered, and the method is not limited to the method described here.
 図7はダイ画像と任意の画素、任意のサブピクセルの関係を示す図である。例えば図7は、m個のサブピクセルまでに分割する例である。1スワス画像は1、2、3乃至kといった番号のkダイを含む、各ダイがn画素を含む、各画素がmサブピクセルに分割する。説明の便宜上、第1ダイ目のn画素は11、12、13乃至1n、第2ダイ目のn画素は21、22、23乃至2n、・・・、第kダイ目のn画素はk1、k2、k3乃至knといった番号を付している。分割したサブピクセルに、第1ダイ目の第1個目画素11は11_1、11_2、11_3乃至11_m、第2ダイ目の第1個目画素21は21_1、21_2、21_3乃至21_m、第kダイ目の第1個目画素k1はk1_1、k1_2、k1_3乃至k1_mといった番号を付している。 FIG. 7 is a diagram showing the relationship between the die image, an arbitrary pixel, and an arbitrary sub-pixel. For example, FIG. 7 shows an example of dividing into m sub-pixels. One swath image includes k dies with numbers 1, 2, 3 to k, each die contains n pixels, and each pixel is divided into m subpixels. For convenience of explanation, the n pixels of the first die are 11, 12, 13 to 1n, the n pixels of the second die are 21, 22, 23 to 2n, ..., The n pixels of the kth die are k1, Numbers such as k2, k3 to kn are attached. In the divided sub-pixels, the first pixel 11 of the first die is 11_1, 11_2, 11_3 to 11_m, the first pixel 21 of the second die is 21_1, 21_2, 21_3 to 21_m, and the k-th die. The first pixel k1 of the above is numbered such as k1_1, k1_2, k1_3 to k1_m.
 図8、図9A並びに図9Bは、サブピクセルに分ける処理の詳細を説明する図である。まず、サブピクセルに分けた個数m分だけ、仮想ブロックを事前に用意する方法を説明する。m個のサブピクセルに分割する場合、画像処理部110は、m個のブロックを仮想的に用意する。元の画素を1として、m個に分割するので、1目盛りは1/mであり、この1/mずつの刻みが、ここでいう仮想ブロックである。 8 and 9A and 9B are diagrams for explaining the details of the process of dividing into sub-pixels. First, a method of preparing virtual blocks in advance for the number of m divided into sub-pixels will be described. When dividing into m sub-pixels, the image processing unit 110 virtually prepares m blocks. Since the original pixel is set to 1 and divided into m pieces, one scale is 1 / m, and the increments of 1 / m are the virtual blocks referred to here.
 この仮想ブロックに、図5、6A、6Bで算出した位置ずれ量に基づき、各画素の位置情報と輝度をプロットする。各ダイの各画素の位置は前記算出した位置ずれ量に基づき補正されている、又は補正すべき正しい位置情報が判明している。この位置情報に基づき各ダイ内同じ位置にある画素を、m個のブロックに振り分ける処理を行う。以下、「同じ位置」に属するか否かの判定は、このブロック単位の1/m単位で判定する。 The position information and brightness of each pixel are plotted on this virtual block based on the amount of misalignment calculated in FIGS. 5, 6A and 6B. The position of each pixel of each die is corrected based on the calculated misalignment amount, or the correct position information to be corrected is known. Based on this position information, the pixels at the same position in each die are distributed to m blocks. Hereinafter, the determination as to whether or not they belong to the "same position" is made in units of 1 / m of this block unit.
 プロットの手段の1つ目として、ダイを構成するn個の各画素について、図5、6A、6Bで求めた位置ずれ量を仮想ブロック単位にグルーピングして行う例がある。画像処理部110は、算出した位置ずれ量に基づき、各ダイの画素の正しい位置情報を求める。その結果、図8に示すとおり、11、21乃至k1のうちいくつかの画素が0~1/mの範囲内の位置にあるとする。ここで各画素のずれ量を1/m単位で量子化する。この場合、当該画素は同じ位置の画素としてグルーピングする。グルーピング処理の際、当該画素それぞれが持つ輝度情報は平均化等により1グループで1つの輝度G1_1となるよう演算処理を併せて実行する。輝度G1_1を位置ずれ量0のブロックにプロットする。11、21乃至k1の他の画素についても同様に画像処理部110は、位置ずれ量に基づき各画素の正しい位置情報を求め、ダイ内同じ位置にある各画素をグルーピングし、各画素グループが存在する位置に応じて、1/m、2/m、3/m乃至(m-1)/mのブロックに輝度を振り分ける。例えば縦軸を輝度、横軸を位置とするグラフで表すと、位置を示す横軸の目盛りはブロック単位の1/m、2/m、3/m乃至(m-1)/mの刻みとなる。全ての画素をグルーピングし、各グループを各ブロックに振り分けた結果、ブロックによってはどの画素グループも割り当てられないものがある場合がある。どのグループも振り分けられないブロックは輝度情報が無いことになる。この場合、画像処理部110は、補間処理を行う。例えば外挿補間や、スプライン関数などで内挿補間し、各ブロックに必ず1つの輝度情報がプロットされるようにする。画素2、3乃至nも、同様に処理してG2_1乃至Gn_mのサブピクセル値が得られる。 As the first means of plotting, there is an example in which the amount of misalignment obtained in FIGS. 5, 6A and 6B is grouped in units of virtual blocks for each of the n pixels constituting the die. The image processing unit 110 obtains the correct position information of the pixels of each die based on the calculated position shift amount. As a result, as shown in FIG. 8, it is assumed that some of the pixels 11, 21 to k1 are located within the range of 0 to 1 / m. Here, the amount of deviation of each pixel is quantized in units of 1 / m. In this case, the pixels are grouped as pixels at the same position. At the time of grouping processing, arithmetic processing is also executed so that the luminance information possessed by each of the pixels becomes one luminance G1-1 in one group by averaging or the like. The brightness G1_1 is plotted on a block having a displacement amount of 0. Similarly for the other pixels of 11, 21 to k1, the image processing unit 110 obtains the correct position information of each pixel based on the amount of misalignment, groups each pixel at the same position in the die, and each pixel group exists. Brightness is distributed to blocks of 1 / m, 2 / m, 3 / m to (m-1) / m according to the position to be processed. For example, when represented by a graph in which the vertical axis is the brightness and the horizontal axis is the position, the scale on the horizontal axis indicating the position is 1 / m, 2 / m, 3 / m to (m-1) / m in block units. Become. As a result of grouping all the pixels and allocating each group to each block, no pixel group may be assigned depending on the block. Blocks that cannot be sorted by any group have no brightness information. In this case, the image processing unit 110 performs interpolation processing. For example, extrapolation interpolation or interpolation interpolation using a spline function is performed so that one luminance information is always plotted in each block. The pixels 2, 3 to n are also processed in the same manner to obtain subpixel values of G2_1 to Gn_m.
 プロットの手段の第2の例として、ダイを構成するn個の各画素について、図5、6A、6Bで求めた位置ずれ量に対して各画素の値を直接各ブロックにプロットする例である。プロットの手段の1と同じ、画像処理部110は、算出した位置ずれ量に基づき、各ダイの画素の正しい位置情報を求める。その後、図9A及び図9Bに示す通り11、21、31乃至k1の値を直接に該当位置にプロットする。その場合、位置情報に応じて各画素はいずれのブロック(0、1/m、2/m、3/m乃至(m-1)/m)に所属する。この直接プロットした結果、例えば0~1/mの区間に含まれるプロット(図9Aの下段及び図9B上段の図では画素11及び31)の全ての輝度を平均化等により、輝度G1_1’が得られる。輝度G1_1’を位置ずれ量0のブロックにプロットする。他のブロックについても同様に、各区間に含まれるプロットの全ての輝度を平均化等により、該当輝度が得られる。プロットの手段の1と同様に、輝度情報が存在しないブロックの輝度情報を補間により求める。これにより、画素1の超解像画像が得られる。画素2、3乃至nも、同様に処理して、G2_1’乃至Gn_m’のサブピクセル値が得られる。 As a second example of plotting means, for each of the n pixels constituting the die, the value of each pixel is directly plotted on each block with respect to the amount of misalignment obtained in FIGS. 5, 6A and 6B. .. The image processing unit 110, which is the same as the plotting means 1, obtains the correct position information of the pixels of each die based on the calculated displacement amount. Then, as shown in FIGS. 9A and 9B, the values of 11, 21, 31 to k1 are directly plotted at the corresponding positions. In that case, each pixel belongs to any block (0, 1 / m, 2 / m, 3 / m to (m-1) / m) according to the position information. As a result of this direct plot, for example, the brightness G1-1'is obtained by averaging all the brightness of the plots ( pixels 11 and 31 in the lower part of FIG. 9A and the upper part of FIG. 9B) included in the section of 0 to 1 / m. Be done. The brightness G1_1'is plotted on a block having a displacement amount of 0. Similarly, for the other blocks, the corresponding brightness can be obtained by averaging all the brightness of the plots included in each section. Similar to the plotting means 1, the luminance information of the block in which the luminance information does not exist is obtained by interpolation. As a result, a super-resolution image of pixel 1 can be obtained. The pixels 2, 3 to n are also processed in the same manner to obtain subpixel values of G2_1'to Gn_m'.
 画像処理部110は、検査対象となる全てのスワス画像において、図8又は図9A及びBの処理を行う。ダイの全ての画素についてG1_1’ 乃至Gn_m’ を求めることで、図10に示す高解像の参照画像302Cを作成する。分けたいサブピクセル数の仮想ブロックがm個の場合は、この高解像の参照画像は、もとのスワス画像で何ら処理を施さないダイ画像に対しm倍高解像な参照画像となる。 The image processing unit 110 performs the processing of FIGS. 8 or 9A and B in all the swath images to be inspected. By obtaining G1_1'to Gn_m' for all the pixels of the die, the high-resolution reference image 302C shown in FIG. 10 is created. When the number of virtual blocks with the number of subpixels to be divided is m, the reference image with high resolution becomes a reference image with m times higher resolution than the die image which is not subjected to any processing in the original swath image.
 画像処理部110は、以上のとおり作成した、高解像の参照画像と、検査ダイ画像とをダイToダイ比較し、差信号又は差画像に対し閾値処理を実行し、欠陥判定処理を行う。画像処理部110は、スワス画像を順次各検査ダイ画像と、高解像の参照画像との比較処理を実行する。尚、各ダイ画像は、画像処理部110が、前述のとおり位置ずれ量を算出し、補正処理を施している。即ち、位置を高精度に合わせ込んでいる。これを踏まえ、高解像の参照画像の同一位置上の信号との差分を算出することにより、検査するダイ画像上の欠陥を判定する。この際、各画素において、高解像の参照画像と検査ダイ画像とでは解像度が異なる。異なる解像度のままでは比較ができないため、図11に示す解像度合わせ込み処理を行う。まず、X方向のみの平均化処理をし、解像度の合わせこみをする。高解像の参照画像302Cは1/mのサブ画素G1_1乃至Gn_mで構成される。検査ダイ画像の位置ずれ量Δを考慮して低解像度の参照画像302Dを構成する画素1’乃至画素n’の輝度値を各画素に含まれるサブ画素の平均化処理で求める。例えば図11において、画素1’の輝度値は302Cの画素12乃至21を含むため、これらの画素の輝度値の平均化処理により求める。同様に画素2’乃至画素n’の輝度値を求める。その上で検査ダイ画像と参照画像302Dの各画素における輝度を比較する。画像処理部110は、このダイToダイ比較で得られた差分に対し、閾値を設定し、閾値よりも高い信号の場合には欠陥と、閾値より低い場合にはノイズと判定する。そして欠陥と判定した信号はその座標とともに検出結果として表示部又は出力部(不図示)を介して出力する。 The image processing unit 110 compares the high-resolution reference image created as described above with the inspection die image by die-to-die, executes threshold processing on the difference signal or difference image, and performs defect determination processing. The image processing unit 110 sequentially executes a comparison process of each inspection die image and a high-resolution reference image of the swath image. The image processing unit 110 calculates the amount of misalignment and corrects each die image as described above. That is, the position is adjusted with high accuracy. Based on this, the defect on the die image to be inspected is determined by calculating the difference between the high-resolution reference image and the signal at the same position. At this time, in each pixel, the resolution is different between the high-resolution reference image and the inspection die image. Since comparisons cannot be made with different resolutions, the resolution adjustment process shown in FIG. 11 is performed. First, the averaging process is performed only in the X direction, and the resolution is adjusted. The high-resolution reference image 302C is composed of 1 / m sub-pixels G1_1 to Gn_m. In consideration of the amount of misalignment Δ of the inspection die image, the brightness values of the pixels 1'to the pixels n'that constitute the low-resolution reference image 302D are obtained by the averaging process of the sub-pixels included in each pixel. For example, in FIG. 11, since the brightness value of pixel 1'includes pixels 12 to 21 of 302C, it is obtained by averaging the brightness values of these pixels. Similarly, the brightness values of the pixels 2'to the pixels n'are obtained. Then, the brightness of each pixel of the inspection die image and the reference image 302D is compared. The image processing unit 110 sets a threshold value for the difference obtained by this die-To-die comparison, and determines that a signal higher than the threshold value is a defect and a signal lower than the threshold value is noise. Then, the signal determined to be defective is output together with the coordinates as a detection result via the display unit or the output unit (not shown).
 以上が、サブピクセルに分割して参照画像を再構成し、当該参照画像と検査ダイ画像比較により欠陥判定する欠陥検査装置及びその方法の説明である。本発明は上記実施形態に限定されるものではなく、様々な変形例が含まれる。上記実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 The above is a description of a defect inspection device that reconstructs a reference image by dividing it into subpixels and determines defects by comparing the reference image with an inspection die image and its method. The present invention is not limited to the above embodiment, and includes various modifications. The above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
 上記実施形態ではダイToダイ比較方式を説明したが、本発明は、セルToセル方式や任意の単位の画像比較方式にも適用できる。その場合、例えばセルToセル方式ならダイをセルと読み替えるものとする。上記実施形態ではダイ画像で説明したが、ダイ画像、セル画像、その他検査画像に対し重ね合わせる画像の単位に応じた任意の単位の画像を総称して「フレーム画像」とする。画像処理部110は、フレーム画像を任意の画素に分け同様の処理を実行できる。 Although the die-to-die comparison method has been described in the above embodiment, the present invention can also be applied to the cell-to-cell method and the image comparison method of any unit. In that case, for example, in the cell To cell method, the die is read as a cell. In the above embodiment, the die image has been described, but an image of an arbitrary unit according to the unit of the image to be superimposed on the die image, the cell image, and the inspection image is generically referred to as a “frame image”. The image processing unit 110 can divide the frame image into arbitrary pixels and execute the same processing.
100:欠陥検査装置、101:画像取得サブシステム、102:コンピュータサブシステム、103:ウエハ、104:ステージ、105:光源、106:検出光学系、107:センサ、108:AD変換器、109:制御部、110:画像処理部、111:制御PC、112:プロセッサ、113:ストレージ装置、207:スワス208fに取得時のステージ走査方向、208a~208f:スワス画像、209:スワスチャネル画像、210:センサ、301:検査ダイ画像、302A~C:参照ダイ画像 100: Defect inspection device, 101: Image acquisition subsystem, 102: Computer subsystem, 103: Wafer, 104: Stage, 105: Light source, 106: Detection optical system, 107: Sensor, 108: AD converter, 109: Control Unit, 110: Image processing unit, 111: Control PC, 112: Processor, 113: Storage device, 207: Stage scanning direction at the time of acquisition to Swath 208f, 208a to 208f: Swath image, 209: Swath channel image, 210: Sensor , 301: Inspection die image, 302A to C: Reference die image

Claims (9)

  1.  複数のダイが形成された半導体ウエハの欠陥を検出する欠陥検査装置において、
     前記ウエハのスワス画像を取得する画像取得サブシステムと、
     当該取得されたスワス画像を処理し、前記欠陥の候補位置の情報を取得するコンピュータサブシステムと、を備え、
     前記コンピュータサブシステムは、
     検査画像と参照画像とを比較し得られる差分に対し閾値処理を行い、欠陥を判定するシステムであって、
     前記スワス画像をフレーム画像に分け更に任意の数の画素に分ける処理と、
     前記フレーム画像において基準パターンと照合して位置ずれ量を算出する処理と、
     位置ずれ量に基づき前記フレーム画像において補正した位置情報を算出する処理と、
     前記位置情報に基づき前記画素が持つ輝度情報を更に細かい仮想ブロックに振り分けるとともに前記仮想ブロックごとに1つの輝度情報を算出する処理と、
     前記ブロックごとの輝度情報に基づき参照画像を生成する処理と、
     前記参照画像と前記検査画像とを比較する処理を実行することを特徴とする欠陥検査装置。
    In a defect inspection device that detects defects in a semiconductor wafer on which multiple dies are formed,
    An image acquisition subsystem that acquires a swath image of the wafer,
    A computer subsystem that processes the acquired swath image and acquires information on the candidate position of the defect is provided.
    The computer subsystem is
    It is a system that determines defects by performing threshold processing on the difference obtained by comparing the inspection image and the reference image.
    The process of dividing the swath image into frame images and further dividing them into an arbitrary number of pixels,
    The process of calculating the amount of misalignment by collating with the reference pattern in the frame image,
    The process of calculating the corrected position information in the frame image based on the amount of misalignment, and
    A process of allocating the luminance information of the pixel to finer virtual blocks based on the positional information and calculating one luminance information for each virtual block.
    The process of generating a reference image based on the brightness information for each block, and
    A defect inspection apparatus for performing a process of comparing the reference image with the inspection image.
  2.  請求項1記載の欠陥検査装置において、
     前記フレーム画像はダイ画像であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 1,
    A defect inspection device characterized in that the frame image is a die image.
  3.  請求項2記載の欠陥検査装置において、
     検査画像に対しm倍の解像度の参照画像を生成する場合の前記仮想ブロックの数はm個であることを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 2,
    A defect inspection apparatus for generating a reference image having a resolution of m times that of an inspection image, wherein the number of the virtual blocks is m.
  4.  請求項2記載の欠陥検査装置において、
     前記コンピュータサブシステムは、
     前記位置ずれ量を算出する処理において、
     前記ウエハの中心を含む領域に形成されたダイについて第1のスワス画像を取得するステップと、
     当該第1のスワス画像において、前記複数の信号チャネルのうち1の信号チャネルから読み出された画素信号(以下、スワスチャネル画像とする)に対し所定の演算処理を施すことにより、当該第1のスワス画像を構成するスワスチャネル画像からダイ単位に切り出されたスワスチャネルダイ画像当たり少なくとも1つ以上の第1の基準パターンを設定するステップと、
     前記ウエハの第2のスワス画像を取得するステップと、
     当該第2のスワス画像を構成するスワスチャネル画像において前記第1の基準パターンとダイ内座標が同じ位置のパターンと、前記第1の基準パターンとを、前記第2のスワス画像に含まれる同一のスワスチャネル画像上の少なくとも2か所以上で比較することにより、前記第1のスワス画像と前記第2のスワス画像の位置ずれ量の分布を求めるステップと、
     当該求めた位置ずれ量の分布を用いて前記第1のスワス画像に対する前記第2のスワス画像の位置ずれを補正するステップと、
     当該位置ずれが補正されたスワス画像を用いて比較検査を実行することにより、前記ウエハの欠陥候補位置を求めるステップを実行することを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 2,
    The computer subsystem is
    In the process of calculating the amount of misalignment,
    A step of acquiring a first swath image of a die formed in a region including the center of the wafer, and
    In the first swath image, the pixel signal read from one of the plurality of signal channels (hereinafter referred to as swath channel image) is subjected to a predetermined arithmetic process to perform the first swath image. A step of setting at least one first reference pattern per swath channel die image cut out in die units from the swath channel image constituting the swath image, and a step of setting.
    The step of acquiring the second swath image of the wafer and
    In the swath channel image constituting the second swath image, the pattern at the same position as the first reference pattern and the coordinates in the die and the first reference pattern are the same included in the second swath image. A step of obtaining the distribution of the amount of misalignment between the first swath image and the second swath image by comparing at least two places on the swath channel image, and
    A step of correcting the misalignment of the second swath image with respect to the first swath image using the obtained distribution of the misalignment amount, and
    A defect inspection apparatus, characterized in that a step of obtaining a defect candidate position of the wafer is executed by performing a comparative inspection using a swath image in which the misalignment has been corrected.
  5.  請求項1記載の欠陥検査装置において、
     前記コンピュータサブシステムは、
     前記位置ずれ量に基づき前記各画素の位置情報を求めるステップと、
     前記仮想ブロック単位で、前記位置情報に基づき前記フレーム画像内の同じ位置と判定した前記各画素を1つのグループにするステップと、
     前記各グループで1つの輝度情報を持つよう輝度を算出するステップを実行することを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 1,
    The computer subsystem is
    A step of obtaining the position information of each pixel based on the amount of misalignment, and
    A step of grouping each pixel determined to be the same position in the frame image based on the position information in the virtual block unit.
    A defect inspection apparatus comprising executing a step of calculating brightness so that each group has one brightness information.
  6.  請求項1記載の欠陥検査装置において、
     前記コンピュータサブシステムは、
     前記位置ずれ量に基づき前記各画素の位置情報を求めるステップと、
     前記位置情報に基づき前記各画素が存在する位置の仮想ブロックに振り分けるステップと、
     前記各仮想ブロックにおいて前記どの画素も振り分けられないブロックを隣接ブロックの位置情報及び輝度情報をもとに補間処理して1つの輝度情報を算出するステップを実行する欠陥検査装置。
    In the defect inspection apparatus according to claim 1,
    The computer subsystem is
    A step of obtaining the position information of each pixel based on the amount of misalignment, and
    Based on the position information, the step of allocating to the virtual block at the position where each pixel exists, and
    A defect inspection device that executes a step of calculating one luminance information by interpolating a block in which none of the pixels is distributed in each virtual block based on the position information and the luminance information of adjacent blocks.
  7.  請求項5又は6記載の欠陥検査装置において、
     前記コンピュータサブシステムは、
     前記検査画像と前記参照画像とを比較する処理において、
     前記参照画像を構成する各仮想ブロックが持つ輝度に対し平均化処理を施すことを特徴とする欠陥検査装置。
    In the defect inspection apparatus according to claim 5 or 6.
    The computer subsystem is
    In the process of comparing the inspection image with the reference image,
    A defect inspection apparatus characterized in that the brightness of each virtual block constituting the reference image is averaged.
  8.  請求項1記載の欠陥検査装置において、
     前記画像取得サブシステムは、
     前記ウエハに対して光を照射する光源と、
     前記光を照射することで前記ウエハから生じる散乱光を検出する検出光学系と、
     前記検出光学系が検出した光を電気信号に変換するセンサと、
     前記ウエハを載置し前記光源の光照射位置に前記ウエハの任意箇所を移動させるステージと、を備える欠陥検査装置。
    In the defect inspection apparatus according to claim 1,
    The image acquisition subsystem is
    A light source that irradiates the wafer with light,
    A detection optical system that detects scattered light generated from the wafer by irradiating the light,
    A sensor that converts the light detected by the detection optical system into an electrical signal,
    A defect inspection device including a stage on which the wafer is placed and an arbitrary position of the wafer is moved to a light irradiation position of the light source.
  9.  ステージ上に保持され、複数のダイが形成された半導体ウエハに対し、
     光源からの光を当て、ステージをXY方向に移動させ、前記ウエハからの光を受けたセンサからの信号に基づきスワス画像を取得するステップと、
     前記スワス画像を前記ダイ単位の画像に分けるステップと、
     前記ダイ画像を更に任意の数の画素に分けるステップと、
    前記ダイ画像において、基準パターンの座標情報と照合し位置ずれ量を求めるステップと、前記フレーム画像において基準パターンと照合して位置ずれ量を算出するステップと、
     位置ずれ量に基づき前記フレーム画像において補正を施した位置情報を算出するステップと、
     前記位置情報に基づき前記画素が持つ輝度情報を更に細かい仮想ブロックに振り分けるとともに前記仮想ブロックごとに1つの輝度情報を算出するステップと、
     前記仮想ブロックごとの輝度情報に基づき参照画像を生成するステップと、
     前記参照画像と前記検査ダイ画像とを比較し得た差分に対し閾値処理にて欠陥を判定するステップとを有する光学式欠陥検査方法。
    For semiconductor wafers held on a stage and having multiple dies formed
    A step of shining light from a light source, moving the stage in the XY direction, and acquiring a swath image based on a signal from a sensor that received the light from the wafer.
    The step of dividing the swath image into the image of the die unit, and
    The step of further dividing the die image into an arbitrary number of pixels,
    In the die image, a step of collating with the coordinate information of the reference pattern to obtain the misalignment amount, and a step of collating the frame image with the reference pattern to calculate the misalignment amount.
    A step of calculating the corrected position information in the frame image based on the amount of misalignment, and
    A step of allocating the luminance information of the pixel to finer virtual blocks based on the positional information and calculating one luminance information for each virtual block.
    A step of generating a reference image based on the brightness information for each virtual block, and
    An optical defect inspection method including a step of determining a defect by threshold processing with respect to a difference obtained by comparing the reference image and the inspection die image.
PCT/JP2019/040364 2019-10-15 2019-10-15 Defect inspection method and defect inspection device WO2021074944A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040364 WO2021074944A1 (en) 2019-10-15 2019-10-15 Defect inspection method and defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/040364 WO2021074944A1 (en) 2019-10-15 2019-10-15 Defect inspection method and defect inspection device

Publications (1)

Publication Number Publication Date
WO2021074944A1 true WO2021074944A1 (en) 2021-04-22

Family

ID=75538650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040364 WO2021074944A1 (en) 2019-10-15 2019-10-15 Defect inspection method and defect inspection device

Country Status (1)

Country Link
WO (1) WO2021074944A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243408A (en) * 1996-12-27 1998-09-11 Sharp Corp Image pickup device
JP2003223630A (en) * 2002-01-30 2003-08-08 Hitachi Ltd Method and device for pattern inspection
JP2008165198A (en) * 2006-12-08 2008-07-17 Advanced Mask Inspection Technology Kk Pattern inspection device and pattern inspection method
JP2010216829A (en) * 2009-03-13 2010-09-30 Constec Engi Co Defect inspection device
JP2012015529A (en) * 2004-12-07 2012-01-19 Kla-Encor Corp Computer-implemented method for detecting and (or) sorting defect in reticle design pattern
JP2014219764A (en) * 2013-05-02 2014-11-20 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP2015132621A (en) * 2007-07-20 2015-07-23 ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation Method for generating standard reference die for use in standard reference die comparison inspection and method for inspecting wafer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10243408A (en) * 1996-12-27 1998-09-11 Sharp Corp Image pickup device
JP2003223630A (en) * 2002-01-30 2003-08-08 Hitachi Ltd Method and device for pattern inspection
JP2012015529A (en) * 2004-12-07 2012-01-19 Kla-Encor Corp Computer-implemented method for detecting and (or) sorting defect in reticle design pattern
JP2008165198A (en) * 2006-12-08 2008-07-17 Advanced Mask Inspection Technology Kk Pattern inspection device and pattern inspection method
JP2015132621A (en) * 2007-07-20 2015-07-23 ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation Method for generating standard reference die for use in standard reference die comparison inspection and method for inspecting wafer
JP2010216829A (en) * 2009-03-13 2010-09-30 Constec Engi Co Defect inspection device
JP2014219764A (en) * 2013-05-02 2014-11-20 キヤノン株式会社 Image processing apparatus, image processing method, and program

Similar Documents

Publication Publication Date Title
US9406117B2 (en) Inspection system and method for inspecting line width and/or positional errors of a pattern
KR102369848B1 (en) Outlier detection for a population of pattern images of interest
JP4554691B2 (en) Correction pattern image generation apparatus, pattern inspection apparatus, and correction pattern image generation method
US9865046B2 (en) Defect inspection method and defect inspection device
KR101588367B1 (en) Charged particle beam apparatus
JP4919988B2 (en) Circuit pattern inspection apparatus and circuit pattern inspection method
JP4229767B2 (en) Image defect inspection method, image defect inspection apparatus, and appearance inspection apparatus
WO2012098605A1 (en) Circuit pattern inspection device and inspection method therefor
JP4652391B2 (en) Pattern inspection apparatus and pattern inspection method
WO2012077271A1 (en) Charged particle beam apparatus
US20150146967A1 (en) Pattern evaluation device and pattern evaluation method
US10578560B2 (en) Inspection apparatus and method for detecting false defects
JP2016145887A (en) Inspection device and method
US20110286685A1 (en) Image formation method and image formation device
JP2012173072A (en) Inspection device and inspection method
WO2021038633A1 (en) Defect inspection method and defect inspection device
JP2010060904A (en) Photomask inspection method, semiconductor device inspection method, and pattern inspection apparatus
KR20160142801A (en) Instrumentation device and instrumentation method
JP4629086B2 (en) Image defect inspection method and image defect inspection apparatus
WO2021074944A1 (en) Defect inspection method and defect inspection device
JP5136108B2 (en) 3D shape measuring method and 3D shape measuring apparatus
JP4772815B2 (en) Correction pattern image generation apparatus, pattern inspection apparatus, and correction pattern image generation method
KR20160016650A (en) Position measuring method, position-deviation map generating method and inspection system
JP2009188175A (en) External appearance inspecting apparatus and method
JP5449886B2 (en) Method for determining overlap between imaging ranges

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP