WO2021074480A1 - Method of approach and coupling between vtol and htol platforms, self-contained approach and coupling system, and associated vtol platform - Google Patents

Method of approach and coupling between vtol and htol platforms, self-contained approach and coupling system, and associated vtol platform Download PDF

Info

Publication number
WO2021074480A1
WO2021074480A1 PCT/ES2020/070781 ES2020070781W WO2021074480A1 WO 2021074480 A1 WO2021074480 A1 WO 2021074480A1 ES 2020070781 W ES2020070781 W ES 2020070781W WO 2021074480 A1 WO2021074480 A1 WO 2021074480A1
Authority
WO
WIPO (PCT)
Prior art keywords
platform
vtol
htol
platforms
landing
Prior art date
Application number
PCT/ES2020/070781
Other languages
Spanish (es)
French (fr)
Inventor
Sebastián SÁNCHEZ PRIETO
Tomás Arribas Navarro
Mariano GÓMEZ PLAZA
Original Assignee
Universidad De Alcalá
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Alcalá filed Critical Universidad De Alcalá
Publication of WO2021074480A1 publication Critical patent/WO2021074480A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0607Rate of change of altitude or depth specially adapted for aircraft
    • G05D1/0653Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing
    • G05D1/0676Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing
    • G05D1/0684Rate of change of altitude or depth specially adapted for aircraft during a phase of take-off or landing specially adapted for landing on a moving platform, e.g. aircraft carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D5/00Aircraft transported by aircraft, e.g. for release or reberthing during flight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/20Launching, take-off or landing arrangements for releasing or capturing UAVs in flight by another aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/30Launching, take-off or landing arrangements for capturing UAVs in flight by ground or sea-based arresting gear, e.g. by a cable or a net
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/80Transport or storage specially adapted for UAVs by vehicles
    • B64U80/82Airborne vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0008Transmission of traffic-related information to or from an aircraft with other aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • G08G5/025Navigation or guidance aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle

Definitions

  • This invention is part of the technical sector of coordinated automatic control and operation for multiple aircraft in real time, allowing to control the joint flight operation automatically and safely.
  • the present invention defines a new vertical take-off and landing assistance system, "Vertical Take-Off and Landing” (hereinafter VTOL), for platforms lacking said capacity.
  • VTOL Vertical Take-Off and Landing
  • HTOL Horizontal Take-Off and Landing
  • the object of the present invention is to allow the combined operation of two flight platforms, one VTOL and the other HTOL, in take-off and landing maneuvers.
  • the control solution proposed in this invention solves an air navigation paradigm related to the aircraft take-off and landing method.
  • HTOL aircraft such as airplanes
  • HTOL aircraft conventionally use a take-off method based on wing lift, and therefore require reaching a certain initial speed on the ground to guarantee lift, prior to starting the climb maneuver.
  • the landing maneuver also requires specific characteristics such as a landing strip and a specific approach and touchdown maneuver.
  • alternative take-off and landing mechanisms such as catapult take-off or recovery or landing by parachute.
  • An alternative solution consists of the manufacture of a hybrid aircraft that triples both capacities, that is, that includes vertical and horizontal propellers in its structure that allow it to have vertical lift capacities, regardless of the lift capacity derived from propulsion. Horizon.
  • This characteristic solves the vertical take-off and landing problem, it represents an efficiency and load problem, since the entire flight time must carry the load associated with the VTOL system and can additionally penalize the aerodynamics of the aircraft.
  • the present patent proposes to provide HTOL platforms with VTOL capabilities through the temporary coupling of a specific VTOL subsystem, such as a multirotor or multicopter system to assist take-off and landing maneuvers.
  • auxiliary aircraft Although the fact of using auxiliary aircraft would not be the specific innovation object of this patent, the presented method does represent an important advance, since the permanent penalty of the VTOL subsystem is eliminated, which becomes a temporary coupling element and that It only intervenes during takeoff and landing maneuvers, decoupling and recovering independently and autonomously, at the end of said maneuvers.
  • CACM-RL 1 allows to control any dynamic system, including non-linear real complex systems such as airplanes, satellites, RPAS and other vehicles.
  • CACM-RL is a technology that integrates system dynamics techniques and intelligent learning schemes.
  • CACM-RL The main advantages of using CACM-RL are: 1) to provide optimal solutions based on certain optimality criteria (time, distance or energy); two)
  • the present invention proposes a double dynamic and controlled coupling and uncoupling system between two HTOL and VTOL platforms in the most critical take-off and landing maneuvers.
  • the proposed solution consists of two key elements.
  • the former provides a control method to perform the automatic and safe docking and undocking process between aircraft in flight.
  • the second provides the system with the ability of a combined control to safely perform assisted take-off or landing operations.
  • VTOL coupling and uncoupling system will be available for horizontal take-off platforms that will provide the following capabilities:
  • the advantage of the proposed solution technique consists on the one hand in releasing the HTOL platform from the VTOL, since the former can perform its flight with better performance and independently after the take-off operation, and on the other hand the capture of the HTOL platform in the landing process by the VTOL platform, eliminating the characteristic risks of landing on the runway.
  • the technique object of the invention patent comprises the sequential execution of the following phases:
  • the invention therefore, relates to a method of approaching and lashing between VTOL and HTOL platforms.
  • the HTOL platform consists of one or several engines, a fuselage, two wings and a tail, and necessarily comprises two ferromagnetic plates.
  • the VTOL platform consists of a front landing gear with an electromagnet at its base, a rear landing gear with at least a pressure sensor at its base, and at least two legs, each of which comprises a pressure sensor.
  • the position of the HTOL platform is sent to the VTOL platform and an optimal approach path is generated, so that the VTOL platform avoids the possible air turbulences that the HTOL platform may generate, preferably using CACM-RL technology, implemented in a self-pilot system of each of the HTOL and VTOL platforms.
  • an approach maneuver is carried out with the VTOL platform following the optimal approach path and artificial vision images are processed in real time, using the VTOL platform, to identify visual marks fixed on the HTOL platform, which are preferably coded stickers or high intensity LEDs, this leads to correcting the position of the VTOL platform with respect to the HTOL platform to locate and stabilize on said HTOL platform, causing an automatic magnetic attraction between both platforms, activating, at that moment, the pressure detectors when magnetic contact occurs.
  • the method of the invention can also comprise, to perform the landing maneuver, the steps of sending a command to the HTOL platform to execute a slight dive maneuver, raising the tail until the fuselage makes contact with the landing gear. rear of the VTOL platform, activating at least one pressure detector. Next, one or more claws, located on the rear landing gear of the VTOL platform, are actuated and hooked to the tail of the HTOL platform. Finally, a command is sent to the HTOL platform to stop its engines.
  • the method of the invention may also comprise, to perform the takeoff maneuver, the steps of initiating a vertical takeoff maneuver until reaching a certain altitude, then initiating a trajectory in the opposite direction to the wind on the VTOL platform until reaching a speed minimum and send an order to start engines to the HTOL platform.
  • the claws on the VTOL platform are then actuated to release the HTOL platform.
  • the steps of sending commands are performed using telemetry.
  • the invention also refers to an autonomous approach and lashing system, which makes use of a VTOL platform, which has a front landing gear and a rear landing gear, and an HTOL platform, which has engines, a fuselage, two wings and a tail.
  • VTOL platform which has a front landing gear and a rear landing gear
  • HTOL platform which has engines, a fuselage, two wings and a tail.
  • the system of the invention comprises at least two ferromagnetic plates, intended to adhere to the HTOL platform and one or more visual marks, intended to adhere to the HTOL platform.
  • the system comprises two legs, intended to be coupled to the VTOL platform and at least two lashing modules, located at the base of said legs and each comprising: an electromagnet, at least one pressure detector and at least one mechanical claw, which has an actuator to drive it, preferably a servomotor.
  • the system also comprises a first positioning module, intended to be mounted on the HTOL platform, to obtain the position of the HTOL platform and a second positioning module, intended to be mounted on the VTOL platform, to obtain the position of the platform.
  • VTOL both positioning modules using GPS technology.
  • first communication module intended to be coupled to the VTOL platform
  • second communication module intended to be coupled to the HTOL platform, so that the HTOL and VTOL platforms can send and receive information between them.
  • the system comprises an image processing module; intended to be mounted on the VTOL platform, and configured to identify the visual marks of the HTOL platform and a calculation module, intended to be mounted on the VTOL platform, and configured to generate an optimal approach path to the HTOL platform, in based on the position of the HTOL and VTOL platforms, preferably using CACM-RL technology.
  • At least two ferromagnetic plates and one or more visual markings are intended to adhere to the wings of the HTOL platform.
  • the system of the invention may additionally comprise at least one pressure sensor intended to be located at the base of the landing gear of the VTOL platform.
  • the invention also refers to a VTOL platform, which has a front landing gear and a rear landing gear and a fuselage, and further comprises two legs, coupled to the fuselage; at least two lashing modules, located at the base of the legs and each comprising an electromagnet, at least one pressure sensor and at least one mechanical claw, which has an actuator to actuate it.
  • the VTOL platform also comprises a positioning module to obtain the position of the VTOL platform, a communication module to send and receive information, an image processing module configured to identify visual marks of an HTOL platform and a calculation module that uses CACM-RL technology to generate an optimal approach path to an HTOL platform.
  • Figure 1 Shows a general diagram of the patented operating environment, in which the two platforms (VTOL and HTOL) are on the ground and have to be coupled for the VTOL takeoff of the HTOL platform.
  • Figure 2. Shows a general diagram of the patented operating environment, in which the two platforms (VTOL and HTOL) are in flight and have to be coupled for the VTOL landing of the HTOL platform.
  • Figure 3. Shows the approach maneuvers (with GPS) and precise aiming (with visual markings) in flight.
  • Figure 4.- Shows the front lashing in flight (magnetic contact).
  • Figure 5. Shows the front lashing in flight (mechanical fixation).
  • Figure 6- Shows the rear lashing in flight (mechanical fixation).
  • the present invention makes it possible to execute two coupling maneuvers between aerial platforms, during take-off and landing, each maneuver with a particular execution procedure.
  • the VTOL platform in a first action, the VTOL platform must be coupled manually to the HTOL mechanically using the claws included in the VTOL platform.
  • the servo motors that control the claws will begin to exert the necessary force to hold them, as seen in Figures 5 and 6.
  • the VTOL begins takeoff vertically and reaches a certain altitude, it starts a trajectory in the opposite direction to the wind and reached a minimum speed, it sends the HTOL platform by telecommand the order to start engines to release it and start planning according to the mission entrusted.
  • the HTOL platform is oriented facing the wind to achieve minimum speed and leveling in flight.
  • the HTOL platform sends its position by telemetry to the VTOL platform so that it can trace an optimal approach path by GPS (with decimeter precision) that avoids possible air turbulence that the second may generate. about the first.
  • CACM-RL technique implemented in its autopilots will be a relevant technological aspect, since only with it will it be possible to follow this optimal trajectory, as seen in Figure 3, regardless of the types of platforms or weather conditions.
  • the VTOL platform performs artificial vision processing in real time for the recognition and identification of certain visual marks (coded stickers or high intensity LEDs) affixed on the wings of the HTOL platform, as seen in Figure 3. In this way and with millimeter precision, the VTOL platform corrects its relative position error to position itself and stabilize itself on the HTOL platform and be able to execute step 3.
  • magnetic fixation and front lashing in flight To carry out this action, it is necessary for the HTOL platform to have 2 small metal plates on each of its wings and for the VTOL platform to integrate an electromagnet and a pressure detector into the base of its front landing gear. on each of its two legs.
  • the pressure detectors are activated to fire two servomotors that move two mechanical claws to catch the HTOL platform by the edge of each wing mechanically and as a gripper, as seen in Figure 5.
  • the VTOL platform For its execution, it will be necessary for the VTOL platform to integrate a pressure detector into the base of its rear landing gear. Thus and after the execution of step 3, the VTOL platform sends a remote control to the HTOL platform to execute a slight dive maneuver, and in this way, raise its tail until the fuselage makes contact with the rear landing gear of the VTOL.
  • This contact is detected by the VTOL platform through the implanted pressure detectors and triggers the servomotor (s) to move the corresponding claw (s) and to mechanically catch the HTOL platform by the tail, as seen in the Figure 6.
  • the VTOL platform sends a remote control to the HTOL so that it stops its engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Transportation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A method of approach and coupling between VTOL and HTOL platforms, self-contained approach and coupling system, and associated VTOL platform. This consists of a vertical take-off and landing (VTOL) assistance system for platforms lacking said capability, such as HTOL platforms, enabling the combined operation of two flight platforms, a VTOL and a HTOL. To this end, it presents a dual dynamic, controlled coupling and uncoupling system between the two platforms during the take-off and landing manoeuvres. On the one hand, the advantage consists of freeing the HTOL platform from the VTOL platform, once the former can fly independently and with better performance subsequent to the take-off operation, and on the other hand, the capture of the HTOL platform by the VTOL platform during the landing process, eliminating the risks characteristic of runway landing.

Description

MÉTODO DE APROXIMACIÓN Y TRINCADO ENTRE PLATAFORMAS VTOL Y HTOL. SISTEMA AUTÓNOMO DE APROXIMACIÓN Y TRINCADO Y PLATAFORMA VTOL ASOCIADA
Figure imgf000003_0001
APPROACHING AND BINDING METHOD BETWEEN VTOL AND HTOL PLATFORMS. AUTONOMOUS APPROACHING AND LATCHING SYSTEM AND ASSOCIATED VTOL PLATFORM
Figure imgf000003_0001
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
Esta invención se enmarca en el sector técnico del control y operación automático coordinado para múltiples aeronaves en tiempo real, permitiendo controlar la operación de vuelo conjunta de forma automática y segura. This invention is part of the technical sector of coordinated automatic control and operation for multiple aircraft in real time, allowing to control the joint flight operation automatically and safely.
En la presente invención se define un nuevo sistema de asistencia al despegue y aterrizaje vertical, “Vertical Take-Off and Landing” (en adelante VTOL), para plataformas carentes de dicha capacidad. Como ejemplo más representativo de estas últimas tenemos las conocidas plataformas HTOL u “Horizontal Take-Off and Landing”. The present invention defines a new vertical take-off and landing assistance system, "Vertical Take-Off and Landing" (hereinafter VTOL), for platforms lacking said capacity. As a more representative example of the latter we have the well-known HTOL or “Horizontal Take-Off and Landing” platforms.
El objeto de la presente invención es permitir la operación combinada de dos plataformas de vuelo, una VTOL y otra HTOL, en las maniobras de despegue y aterrizaje. The object of the present invention is to allow the combined operation of two flight platforms, one VTOL and the other HTOL, in take-off and landing maneuvers.
ANTECEDENTES DE LA INVENCIÓN La solución de control planteada en esta invención resuelve un paradigma de navegación aérea relativo al método de despegue y aterrizaje de las aeronaves. Generalmente las aeronaves HTOL (como son los aeroplanos) utilizan convencionalmente un método de despegue basado en sustentación alar, y por ello requieren alcanzar en tierra cierta velocidad inicial que garantice la sustentación, previo a iniciar la maniobra de ascenso. Para este tipo de aeronaves, la maniobra de aterrizaje también requiere de unas características específicas como una pista de aterrizaje y una maniobra de aproximación y toma de contacto específica con tierra. Cuando no se dispone de las características o requisitos convencionales, se utilizan mecanismos alternativos de despegue y aterrizaje como por ejemplo el despegue mediante catapulta o la recuperación o aterrizaje mediante paracaídas. Una solución alternativa consiste en la fabricación de una aeronave híbrida que ¡triplemente ambas capacidades, es decir, que incluya en su estructura propulsores verticales y horizontales que le permitan disponer de capacidades de sustentación vertical, con independencia de la capacidad de sustentación derivada de la propulsión horizontal. Si bien esta característica resuelve el problema de despegue y aterrizaje vertical, supone un problema de eficiencia y carga, debido a que todo el tiempo de vuelo debe transportar la carga asociada al sistema VTOL y adicionalmente puede penalizar la aerodinámica de la aeronave. En la presente patente se propone dotar de capacidades VTOL a plataformas HTOL mediante el acoplamiento temporal de un subsistema específico VTOL como es el caso de un sistema multirrotor o multicóptero para asistir a las maniobras de despegue y aterrizaje. Si bien el hecho de utilizar aeronaves auxiliares no sería la innovación específica objeto de esta patente, el método presentado sí que supone un avance importante, ya que se elimina la penalización permanente del subsistema VTOL, que se convierte en un elemento de acoplamiento temporal y que únicamente interviene durante las maniobras de despegue y aterrizaje, desacoplándose y recuperándose de forma independiente y autónoma, al finalizar dichas maniobras. BACKGROUND OF THE INVENTION The control solution proposed in this invention solves an air navigation paradigm related to the aircraft take-off and landing method. Generally, HTOL aircraft (such as airplanes) conventionally use a take-off method based on wing lift, and therefore require reaching a certain initial speed on the ground to guarantee lift, prior to starting the climb maneuver. For this type of aircraft, the landing maneuver also requires specific characteristics such as a landing strip and a specific approach and touchdown maneuver. When conventional characteristics or requirements are not available, alternative take-off and landing mechanisms such as catapult take-off or recovery or landing by parachute. An alternative solution consists of the manufacture of a hybrid aircraft that triples both capacities, that is, that includes vertical and horizontal propellers in its structure that allow it to have vertical lift capacities, regardless of the lift capacity derived from propulsion. horizontal. Although this characteristic solves the vertical take-off and landing problem, it represents an efficiency and load problem, since the entire flight time must carry the load associated with the VTOL system and can additionally penalize the aerodynamics of the aircraft. The present patent proposes to provide HTOL platforms with VTOL capabilities through the temporary coupling of a specific VTOL subsystem, such as a multirotor or multicopter system to assist take-off and landing maneuvers. Although the fact of using auxiliary aircraft would not be the specific innovation object of this patent, the presented method does represent an important advance, since the permanent penalty of the VTOL subsystem is eliminated, which becomes a temporary coupling element and that It only intervenes during takeoff and landing maneuvers, decoupling and recovering independently and autonomously, at the end of said maneuvers.
La tecnología CACM-RL1 permite controlar cualquier sistema dinámico, incluyendo sistemas complejos reales no lineales como aviones, satélites, RPAS y otros vehículos. CACM-RL es una tecnología que integra técnicas de dinámica de sistemas y esquemas inteligentes de aprendizaje. The CACM-RL 1 technology allows to control any dynamic system, including non-linear real complex systems such as airplanes, satellites, RPAS and other vehicles. CACM-RL is a technology that integrates system dynamics techniques and intelligent learning schemes.
Las principales ventajas de utilizar CACM-RL son: 1 ) proporcionar soluciones óptimas en función de determinados criterios de optimalidad (tiempo, distancia o energía); 2) The main advantages of using CACM-RL are: 1) to provide optimal solutions based on certain optimality criteria (time, distance or energy); two)
1 T. Arribas, S. Sánchez and M. Gómez, “Optimal Control of Dynamic Systems using a New Adjoining Cell Mapping Method with Reinforcement Learning,” Control and Cybernetics Journal, vol.44, no.3, pp. 369-387, 2015. 1 T. Arribas, S. Sánchez and M. Gómez, “Optimal Control of Dynamic Systems using a New Adjoining Cell Mapping Method with Reinforcement Learning,” Control and Cybernetics Journal, vol.44, no.3, pp. 369-387, 2015.
M. Gómez, R.V. González, T. Martínez-Marín, D. Meziat and S. Sánchez, Optimal Motion Planning by Reinforcement Learning in Autonomous Mobile Vehicles,” Robotica, vol. 30, no. 2, pp. 159-170, 2012. aprender de la experiencia interactuando con el entorno; 3) auto-adaptarse a los posibles cambios (físicos, mecánicos, etc.) en tiempo real; 4) no necesitar un modelo matemático de la plataforma; y 5) reducir los costes de mantenimiento por ser soluciones tecnológicas óptimas. M. Gómez, RV González, T. Martínez-Marín, D. Meziat and S. Sánchez, Optimal Motion Planning by Reinforcement Learning in Autonomous Mobile Vehicles, ”Robotica, vol. 30, no. 2, pp. 159-170, 2012. learn from experience interacting with the environment; 3) self-adapt to possible changes (physical, mechanical, etc.) in real time; 4) not need a mathematical model of the platform; and 5) reduce maintenance costs as they are optimal technological solutions.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención propone un doble sistema de acoplamiento y desacoplamiento, dinámico y controlado, entre dos plataformas HTOL y VTOL en las maniobras más críticas de despegue y aterrizaje. The present invention proposes a double dynamic and controlled coupling and uncoupling system between two HTOL and VTOL platforms in the most critical take-off and landing maneuvers.
La solución propuesta consta de dos elementos clave. El primero proporciona un método de control para realizar el proceso automático y seguro de acoplamiento y desacoplamiento entre aeronaves en vuelo. El segundo aporta al sistema la capacidad de un control combinado para realizar de forma segura las operaciones de aterrizaje o despegue asistido. The proposed solution consists of two key elements. The former provides a control method to perform the automatic and safe docking and undocking process between aircraft in flight. The second provides the system with the ability of a combined control to safely perform assisted take-off or landing operations.
Mediante la presente invención se dispondrá de un nuevo sistema VTOL de acople y desacople para plataformas de despegue horizontal que aportará las siguientes capacidades: By means of the present invention, a new VTOL coupling and uncoupling system will be available for horizontal take-off platforms that will provide the following capabilities:
1. Maniobra automática de alineamiento no invasiva de plataformas VTOL sobre plataformas HTOL mediante técnicas de seguimiento y predicción de trayectorias. 1. Automatic maneuvering of non-invasive alignment of VTOL platforms on HTOL platforms using trajectory tracking and prediction techniques.
2. Acoplamiento y trincado de forma sincronizada y en vuelo, entre las plataformas VTOL y HTOL. 2. Coupling and lashing in a synchronized way and in flight, between the VTOL and HTOL platforms.
3. Transferencia autónoma del control a la plataforma VTOL para llevar a cabo la maniobra de aterrizaje, una vez realizado el trincado. 3. Autonomous transfer of control to the VTOL platform to carry out the landing maneuver, once the lashing has been carried out.
4. Apoyo en vuelo por parte de la plataforma VTOL a la maniobra de liberación de la plataforma HTOL. 4. In-flight support by the VTOL platform for the HTOL platform release maneuver.
Las primeras tres capacidades mencionadas se asocian a la maniobra de aterrizaje de la plataforma HTOL, mientras que la cuarta se refiere a la maniobra de despegue. Para llevar a cabo cualquiera de los puntos anteriores, tanto la plataforma HTOL como la VTOL, estarán gobernadas por un autopiloto basado en la tecnología CACM-RL. Por tanto, el controlador resultante, al hacer uso de la técnica CACM-RL hereda todas las ventajas de esta, las cuales se citan a continuación: The first three capacities mentioned are associated with the landing maneuver of the HTOL platform, while the fourth refers to the take-off maneuver. To carry out any of the above points, both the HTOL and VTOL platforms will be governed by an autopilot based on CACM-RL technology. Therefore, the resulting controller, by making use of the CACM-RL technique, inherits all its advantages, which are listed below:
• Solución no invasiva y adaptativa con las plataformas HTOL existentes. • Non-invasive and adaptive solution with existing HTOL platforms.
• Solución capaz de ser aplicada a sistemas dinámicos no-lineales (y por tanto lineales también) e inestables (y por tanto estables también). • Solution capable of being applied to non-linear dynamic systems (and therefore linear as well) and unstable (and therefore also stable).
• Solución que garantiza reducción de costes de mantenimiento por el hecho de ser un control óptimo. • Solution that guarantees reduction of maintenance costs by virtue of being an optimal control.
• Solución diseñada para realizar con seguridad las operaciones, al basarse en técnicas de control óptimo y disponer de los mecanismos de control en lazo cerrado requeridos, que garantizan el éxito de la operación. • Solution designed to safely carry out operations, based on optimal control techniques and having the required closed-loop control mechanisms, which guarantee the success of the operation.
• Solución con capacidad de adaptación a cambios dinámicos en las plataformas. • Solution capable of adapting to dynamic changes in platforms.
La ventaja de la técnica de la solución propuesta consiste por un lado en liberar la plataforma HTOL de la VTOL, una vez que la primera puede realizar su vuelo con mejor desempeño y de forma independiente tras la operación de despegue, y por otro lado la captura de la plataforma HTOL en el proceso de aterrizaje por parte de la plataforma VTOL, eliminando los riesgos característicos del aterrizaje en pista. The advantage of the proposed solution technique consists on the one hand in releasing the HTOL platform from the VTOL, since the former can perform its flight with better performance and independently after the take-off operation, and on the other hand the capture of the HTOL platform in the landing process by the VTOL platform, eliminating the characteristic risks of landing on the runway.
Para alcanzar la ventaja indicada anteriormente, la técnica objeto de la patente de invención comprende la ejecución secuencial de las siguientes fases: To achieve the advantage indicated above, the technique object of the invention patent comprises the sequential execution of the following phases:
1. Aproximación GPS entre ambas plataformas. Para ello, se prevén marcas ópticas en la superficie alar de la plataforma HTOL con objeto de que las plataformas queden niveladas. Esta fase es crítica ya que hay que compensar las corrientes de aire generadas por ambas plataformas mediante una trayectoria de aproximación óptima. Gracias a la técnica CACM-RL podrá llevarse a cabo esta trayectoria. 1. GPS approach between both platforms. For this, optical marks are provided on the wing surface of the HTOL platform in order to make the platforms level. This phase is critical since the air currents generated by both platforms must be compensated by an optimal approach path. Thanks to the CACM-RL technique, this trajectory can be carried out.
2. Acoplamiento de puntos de contacto magnéticos sobre la superficie alar. 2. Coupling of magnetic contact points on the wing surface.
3. Fijación mecánica de la plataforma VTOL a la superficie alar de la HTOL. 4. Fijación de una garra trasera de la plataforma VTOL a la HTOL mediante una maniobra de picado de la HTOL. 3. Mechanical fixation of the VTOL platform to the wing surface of the HTOL. 4. Attachment of a rear claw of the VTOL platform to the HTOL by means of a chopping maneuver of the HTOL.
5. Parada de motores de la plataforma HTOL y control total de la plataforma VTOL. 5. Stop of HTOL platform motors and full control of VTOL platform.
La invención, por tanto, se refiere a un método de aproximación y trincado entre plataformas VTOL y HTOL. La plataforma HTOL consta uno o vahos motores, un fuselaje, dos alas y una cola, y comprende necesariamente dos placas ferromagnéticas, La plataforma VTOL consta de un tren de aterrizaje delantero con un electroimán en su base, un tren de aterrizaje trasero con al menos un detector de presión en su base, y al menos dos patas, en cada una de las cuales comprende un detector de presión. The invention, therefore, relates to a method of approaching and lashing between VTOL and HTOL platforms. The HTOL platform consists of one or several engines, a fuselage, two wings and a tail, and necessarily comprises two ferromagnetic plates.The VTOL platform consists of a front landing gear with an electromagnet at its base, a rear landing gear with at least a pressure sensor at its base, and at least two legs, each of which comprises a pressure sensor.
En el proceso de aterrizaje se envía la posición de la plataforma HTOL a la plataforma VTOL y se genera una trayectoria óptima de aproximación, de modo que la plataforma VTOL evite las posibles turbulencias de aire que pueda generar la plataforma HTOL, preferentemente se hace uso de la tecnología CACM-RL, implantada en un sistema de autopilotaje de cada una de las plataformas HTOL y VTOL. In the landing process, the position of the HTOL platform is sent to the VTOL platform and an optimal approach path is generated, so that the VTOL platform avoids the possible air turbulences that the HTOL platform may generate, preferably using CACM-RL technology, implemented in a self-pilot system of each of the HTOL and VTOL platforms.
Seguidamente, se realiza con la plataforma VTOL una maniobra de acercamiento siguiendo la trayectoria óptima de aproximación y se procesan en tiempo real, mediante la plataforma VTOL, imágenes de visión artificial para identificar unas marcas visuales fijadas sobre la plataforma HTOL, que son preferentemente pegatinas codificadas o leds de alta intensidad, esto lleva a corregir la posición de la plataforma VTOL con respecto a la plataforma HTOL para situarse y estabilizarse sobre dicha plataforma HTOL, provocando una atracción magnética automática entre ambas plataformas, activándose, en ese momento, los detectores de presión cuando se produce el contacto magnético. Next, an approach maneuver is carried out with the VTOL platform following the optimal approach path and artificial vision images are processed in real time, using the VTOL platform, to identify visual marks fixed on the HTOL platform, which are preferably coded stickers or high intensity LEDs, this leads to correcting the position of the VTOL platform with respect to the HTOL platform to locate and stabilize on said HTOL platform, causing an automatic magnetic attraction between both platforms, activating, at that moment, the pressure detectors when magnetic contact occurs.
A continuación, se procede a accionar dos o más garras mecánicas, situadas en las patas de la plataforma VTOL, para engancharse a la plataforma HTOL, preferiblemente por el borde de cada una de sus alas. Adicionalmente el método de la invención también puede comprender, para realizar la maniobra de aterrizaje, los pasos de enviar un comando a la plataforma HTOL para que ejecute una maniobra de ligero picado, levantando la cola hasta que el fuselaje haga contacto con el tren de aterrizaje trasero de la plataforma VTOL, activando al menos un detector de presión. Seguidamente, se accionan una o más garras, situadas en el tren de aterrizaje trasero de la plataforma VTOL, y se engancha a la cola de la plataforma HTOL. Finalmente, se envía un comando a la plataforma HTOL para detener sus motores. Next, two or more mechanical claws, located on the legs of the VTOL platform, are actuated to engage the HTOL platform, preferably by the edge of each of its wings. Additionally, the method of the invention can also comprise, to perform the landing maneuver, the steps of sending a command to the HTOL platform to execute a slight dive maneuver, raising the tail until the fuselage makes contact with the landing gear. rear of the VTOL platform, activating at least one pressure detector. Next, one or more claws, located on the rear landing gear of the VTOL platform, are actuated and hooked to the tail of the HTOL platform. Finally, a command is sent to the HTOL platform to stop its engines.
Adicionalmente el método de la invención también puede comprender, para realizar la maniobra de despegue, los pasos de iniciar una maniobra de despegue vertical hasta alcanzar una altitud determinada, entonces, iniciar en la plataforma VTOL una trayectoria en sentido contrario al viento hasta alcanzar una velocidad mínima y enviar a la plataforma HTOL una orden para encender motores. A continuación, se accionan las garras de la plataforma VTOL para liberar la plataforma HTOL. Additionally, the method of the invention may also comprise, to perform the takeoff maneuver, the steps of initiating a vertical takeoff maneuver until reaching a certain altitude, then initiating a trajectory in the opposite direction to the wind on the VTOL platform until reaching a speed minimum and send an order to start engines to the HTOL platform. The claws on the VTOL platform are then actuated to release the HTOL platform.
Preferiblemente, los pasos de enviar comandos son realizados haciendo uso de telemetría. Preferably, the steps of sending commands are performed using telemetry.
La invención también se refiere a un sistema autónomo de aproximación y trincado, que hace uso de una plataforma VTOL, que tiene un tren de aterrizaje delantero y un tren de aterrizaje trasero, y una plataforma HTOL, que tiene unos motores, un fuselaje, dos alas y una cola. The invention also refers to an autonomous approach and lashing system, which makes use of a VTOL platform, which has a front landing gear and a rear landing gear, and an HTOL platform, which has engines, a fuselage, two wings and a tail.
El sistema de la invención comprende al menos dos placas ferromagnéticas, destinadas a adherirse a la plataforma HTOL y una o más marcas visuales, destinadas a adherirse a la plataforma HTOL. The system of the invention comprises at least two ferromagnetic plates, intended to adhere to the HTOL platform and one or more visual marks, intended to adhere to the HTOL platform.
Asimismo, el sistema comprende dos patas, destinadas a ser acopladas a la plataforma VTOL y al menos dos módulos de trincado, situados en la base de dichas patas y que comprenden cada uno: un electroimán, al menos un detector de presión y al menos una garra mecánica, que cuenta con un actuador para accionarla, preferiblemente un servomotor. El sistema también comprende un primer módulo de posicionamiento, destinado a ser montado en la plataforma HTOL, para obtener la posición de la plataforma HTOL y un segundo módulo de posicionamiento, destinado a ser montado en la plataforma VTOL, para obtener la posición de la plataforma VTOL, ambos módulos de posicionamiento haciendo uso de tecnología GPS. Likewise, the system comprises two legs, intended to be coupled to the VTOL platform and at least two lashing modules, located at the base of said legs and each comprising: an electromagnet, at least one pressure detector and at least one mechanical claw, which has an actuator to drive it, preferably a servomotor. The system also comprises a first positioning module, intended to be mounted on the HTOL platform, to obtain the position of the HTOL platform and a second positioning module, intended to be mounted on the VTOL platform, to obtain the position of the platform. VTOL, both positioning modules using GPS technology.
Asimismo, comprende un primer módulo de comunicación, destinado a ser acoplado a la plataforma VTOL y un segundo módulo de comunicación, destinado a ser acoplado a la plataforma HTOL, de modo que las plataformas HTOL y VTOL pueden enviar y recibir información entre ellas. Likewise, it comprises a first communication module, intended to be coupled to the VTOL platform and a second communication module, intended to be coupled to the HTOL platform, so that the HTOL and VTOL platforms can send and receive information between them.
Por otro lado, el sistema comprende un módulo de procesamiento de imágenes; destinado a ser montado en la plataforma VTOL, y configurado para identificar las marcas visuales de la plataforma HTOL y un módulo de cálculo, destinado a ser montado en la plataforma VTOL, y configurado para generar una trayectoria óptima de aproximación a la plataforma HTOL, en base a la posición de las plataformas HTOL y VTOL, preferentemente haciendo uso de la tecnología CACM-RL. On the other hand, the system comprises an image processing module; intended to be mounted on the VTOL platform, and configured to identify the visual marks of the HTOL platform and a calculation module, intended to be mounted on the VTOL platform, and configured to generate an optimal approach path to the HTOL platform, in based on the position of the HTOL and VTOL platforms, preferably using CACM-RL technology.
Preferentemente, al menos dos placas ferromagnéticas y una o más marcas visuales están destinadas a adherirse a las alas de la plataforma HTOL. Preferably, at least two ferromagnetic plates and one or more visual markings are intended to adhere to the wings of the HTOL platform.
El sistema de la invención puede comprender adicionalmente al menos un detector de presión destinado a ser situado en la base del tren de aterrizaje de la plataforma VTOL. The system of the invention may additionally comprise at least one pressure sensor intended to be located at the base of the landing gear of the VTOL platform.
La invención también se refiere a una plataforma VTOL, que tiene un tren de aterrizaje delantero y un tren de aterrizaje trasero y un fuselaje, y además comprende dos patas, acopladas al fuselaje; al menos dos módulos de trincado, situados en la base de las patas y que comprenden cada uno un electroimán, al menos un detector de presión y al menos una garra mecánica, que cuenta con un actuador para accionarla. The invention also refers to a VTOL platform, which has a front landing gear and a rear landing gear and a fuselage, and further comprises two legs, coupled to the fuselage; at least two lashing modules, located at the base of the legs and each comprising an electromagnet, at least one pressure sensor and at least one mechanical claw, which has an actuator to actuate it.
La plataforma VTOL también comprende un módulo de posicionamiento para obtener la posición de la plataforma VTOL, un módulo de comunicación para enviar y recibir información, un módulo de procesamiento de imágenes configurado para identificar unas marcas visuales de una plataforma HTOL y un módulo de cálculo que hace uso de la tecnología CACM-RL para generar una trayectoria óptima de aproximación a una plataforma HTOL. The VTOL platform also comprises a positioning module to obtain the position of the VTOL platform, a communication module to send and receive information, an image processing module configured to identify visual marks of an HTOL platform and a calculation module that uses CACM-RL technology to generate an optimal approach path to an HTOL platform.
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Figura 1 Muestra un esquema general del entorno operativo patentado, en el que las dos plataformas (VTOL y HTOL) se encuentran en tierra y han de ser acopladas para el despegue VTOL de la plataforma HTOL. Figure 1 Shows a general diagram of the patented operating environment, in which the two platforms (VTOL and HTOL) are on the ground and have to be coupled for the VTOL takeoff of the HTOL platform.
Figura 2.- Muestra un esquema general del entorno operativo patentado, en el que las dos plataformas (VTOL y HTOL) se encuentran en vuelo y han de ser acopladas para el aterrizaje VTOL de la plataforma HTOL. Figure 2.- Shows a general diagram of the patented operating environment, in which the two platforms (VTOL and HTOL) are in flight and have to be coupled for the VTOL landing of the HTOL platform.
Figura 3.- Muestra las maniobras de aproximación (con GPS) y apuntamiento preciso (con marcas visuales) en vuelo. Figure 3.- Shows the approach maneuvers (with GPS) and precise aiming (with visual markings) in flight.
Figura 4.- Muestra el trincado delantero en vuelo (contacto magnético). Figure 4.- Shows the front lashing in flight (magnetic contact).
Figura 5.- Muestra el trincado delantero en vuelo (fijación mecánica). Figure 5.- Shows the front lashing in flight (mechanical fixation).
Figura 6- Muestra el trincado trasero en vuelo (fijación mecánica). Figure 6- Shows the rear lashing in flight (mechanical fixation).
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
La presente invención permite ejecutar dos maniobras de acople entre plataformas aéreas, durante el despegue y el aterrizaje, cada maniobra con un procedimiento de ejecución particular. The present invention makes it possible to execute two coupling maneuvers between aerial platforms, during take-off and landing, each maneuver with a particular execution procedure.
Respecto a la maniobra de despegue y conforme a la Figura 2, en una primera acción, la plataforma VTOL se debe acoplar manualmente a la HTOL de forma mecánica haciendo uso de las garras incluidas en la plataforma VTOL. Al encender y arrancar las aeronaves (la HTOL sólo queda armada), los servomotores que controlan las garras empezarán a ejercer la fuerza necesaria para su sujeción, como se ve en las Figuras 5 y 6. Cuando la VTOL comienza el despegue verticalmente y alcanza determinada altitud, inicia una trayectoria en sentido contrario al viento y alcanzada una velocidad mínima, envía por telecomando a la plataforma HTOL la orden de encender motores para liberarla y que comience a planear según la misión encomendada. Regarding the takeoff maneuver and according to Figure 2, in a first action, the VTOL platform must be coupled manually to the HTOL mechanically using the claws included in the VTOL platform. When turning on and starting aircraft (the HTOL is only armed), the servo motors that control the claws will begin to exert the necessary force to hold them, as seen in Figures 5 and 6. When the VTOL begins takeoff vertically and reaches a certain altitude, it starts a trajectory in the opposite direction to the wind and reached a minimum speed, it sends the HTOL platform by telecommand the order to start engines to release it and start planning according to the mission entrusted.
A continuación, se indican los 4 pasos necesarios en vuelo que son necesarios implementar para conseguir un aterrizaje conjunto VTOL óptimo. Para ello, lo primero será que la plataforma HTOL se oriente de cara al viento para conseguir mínima velocidad y nivelación en vuelo. The following are the 4 necessary steps in flight that need to be implemented to achieve an optimal VTOL joint landing. To do this, the first thing will be that the HTOL platform is oriented facing the wind to achieve minimum speed and leveling in flight.
Primero, maniobra de alineamiento en vuelo de ambas plataformas. De acuerdo a la Figura 1 -a, la plataforma HTOL envía por telemetría a la plataforma VTOL su posición para que esta pueda trazar una trayectoria óptima de aproximación por GPS (con precisión decimétrica) que evite las posibles turbulencias de aire que pueda generar la segunda sobre la primera. First, in-flight alignment maneuver of both platforms. According to Figure 1 -a, the HTOL platform sends its position by telemetry to the VTOL platform so that it can trace an optimal approach path by GPS (with decimeter precision) that avoids possible air turbulence that the second may generate. about the first.
Para poder llevar a cabo esta maniobra, la técnica CACM-RL implantada en sus autopilotos será un aspecto tecnológico relevante, pues solo con ella será posible seguir dicha trayectoria óptima, como se ve en la Figura 3, independientemente de los tipos de plataformas o de las condiciones meteorológicas. In order to carry out this maneuver, the CACM-RL technique implemented in its autopilots will be a relevant technological aspect, since only with it will it be possible to follow this optimal trajectory, as seen in Figure 3, regardless of the types of platforms or weather conditions.
Segundo, maniobra de aproximación precisa en vuelo. Una vez realizada la maniobra de alineamiento del paso 1 , como se ve en la Figura 2, la plataforma VTOL realiza un procesamiento de visión artificial en tiempo real para el reconocimiento e identificación de determinadas marcas visuales (pegatinas codificadas o leds de alta intensidad) fijadas sobre las alas de la plataforma HTOL, como se ve en la Figura 3. De este modo y con una precisión milimétrica, la plataforma VTOL corrige su error de posición relativa para situarse y estabilizarse sobre la plataforma HTOL y poder ejecutar el paso 3. Tercero, fijación magnética y trincado delantero en vuelo. Para llevar a cabo esta acción, es preciso que la plataforma HTOL disponga de 2 placas metálicas de dimensiones reducidas en cada una de sus alas y que la plataforma VTOL integre en la base de su tren de aterrizaje delantero, un electroimán y un detector de presión en cada una de sus dos patas. Second, precise approach maneuver in flight. Once the alignment maneuver of step 1 has been carried out, as seen in Figure 2, the VTOL platform performs artificial vision processing in real time for the recognition and identification of certain visual marks (coded stickers or high intensity LEDs) affixed on the wings of the HTOL platform, as seen in Figure 3. In this way and with millimeter precision, the VTOL platform corrects its relative position error to position itself and stabilize itself on the HTOL platform and be able to execute step 3. Third, magnetic fixation and front lashing in flight. To carry out this action, it is necessary for the HTOL platform to have 2 small metal plates on each of its wings and for the VTOL platform to integrate an electromagnet and a pressure detector into the base of its front landing gear. on each of its two legs.
La ¡dea patentada en este paso y según Figura 4, consiste en provocar una atracción magnética automática entre ambas plataformas por el hecho de haberse enfrentado en el paso 2 con una precisión milimétrica. The patented idea in this step and according to Figure 4, consists of causing an automatic magnetic attraction between both platforms due to the fact that they faced each other in step 2 with millimeter precision.
Cuando se produce el contacto magnético, los detectores de presión son activados para disparar dos servomotores que mueven dos garras mecánicas para atrapar la plataforma HTOL por el borde de cada ala de forma mecánica y a modo de pinza, como se ve en la Figura 5. When the magnetic contact occurs, the pressure detectors are activated to fire two servomotors that move two mechanical claws to catch the HTOL platform by the edge of each wing mechanically and as a gripper, as seen in Figure 5.
Cuarto, trincado trasero en vuelo. Para su ejecución, será necesario que la plataforma VTOL integre en la base de su tren de aterrizaje trasero un detector de presión. Así y tras la ejecución del paso 3, la plataforma VTOL envía un telecomando a la plataforma HTOL para que ejecute una maniobra de ligero picado, y de esta manera, levante su cola hasta que el fuselaje haga contacto con el tren de aterrizaje trasero de la VTOL. Fourth, rear lashing in flight. For its execution, it will be necessary for the VTOL platform to integrate a pressure detector into the base of its rear landing gear. Thus and after the execution of step 3, the VTOL platform sends a remote control to the HTOL platform to execute a slight dive maneuver, and in this way, raise its tail until the fuselage makes contact with the rear landing gear of the VTOL.
Ese contacto es detectado por la plataforma VTOL a través de los detectores de presión implantados y dispara el/los servomotor/es para mover la/s garra/s correspondientes y para atrapar mecánicamente a la plataforma HTOL por la cola, como se ve en la Figura 6. This contact is detected by the VTOL platform through the implanted pressure detectors and triggers the servomotor (s) to move the corresponding claw (s) and to mechanically catch the HTOL platform by the tail, as seen in the Figure 6.
Justo en ese instante, la plataforma VTOL envía un telecomando a la HTOL para que esta detenga sus motores. Just at that moment, the VTOL platform sends a remote control to the HTOL so that it stops its engines.
De forma resumida, la patente engloba las siguientes ventajas: In summary, the patent encompasses the following advantages:
• Aproximación de ambas plataformas mediante CACM-RL y visión artificial.• Approximation of both platforms using CACM-RL and artificial vision.
• Coordinación de los autopilotos de ambas plataformas mediante intercambio de telemetría y telecomandos. • Fijación magnética de precisión. • Coordination of the autopilots of both platforms through exchange of telemetry and remote controls. • Precision magnetic fixation.
• Trincado mecánico de precisión. • Precision mechanical lashing.
• Control de garras mecánicas para fijaciones. • Control of mechanical claws for fixings.

Claims

REIVINDICACIONES
1. Solución específica para un sistema de aproximación final y trincado entre plataformas VTOL, vertical take off and landing, y HTOL, horizontal take off and landing, consiguiendo una etapa final de aproximación más precisa. 1. Specific solution for a final approach and lashing system between VTOL platforms, vertical take off and landing, and HTOL, horizontal take off and landing, achieving a more precise final approach stage.
2. Método que comprende los pasos de: a) enviar un comando a la plataforma HTOL para que ejecute una maniobra de ligero picado, levantando la cola hasta que el fuselaje haga contacto con el tren de aterrizaje trasero de la plataforma VTOL, activando al menos un detector de presión; b) accionar una o más garras, situadas en el tren de aterrizaje trasero de la plataforma VTOL, y engancharse a la cola de la plataforma HTOL; c) enviar un comando a la plataforma HTOL para detener sus motores. Método donde las garras situadas en las patas de la plataforma VTOL se enganchan con la plataforma HTOL por el borde de ataque de cada una de sus alas. 2. Method comprising the steps of: a) sending a command to the HTOL platform to execute a slight dive maneuver, raising the tail until the fuselage makes contact with the rear landing gear of the VTOL platform, activating at least a pressure detector; b) actuate one or more claws, located on the rear landing gear of the VTOL platform, and hook onto the tail of the HTOL platform; c) send a command to the HTOL platform to stop its engines. Method where the claws located on the legs of the VTOL platform engage with the HTOL platform by the leading edge of each of its wings.
PCT/ES2020/070781 2019-10-14 2020-12-10 Method of approach and coupling between vtol and htol platforms, self-contained approach and coupling system, and associated vtol platform WO2021074480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201930904 2019-10-14
ES201930904A ES2819325B2 (en) 2019-10-14 2019-10-14 APPROACH AND LATCHING METHOD BETWEEN VTOL AND HTOL PLATFORMS, AUTONOMOUS APPROACH AND LATCHING SYSTEM AND ASSOCIATED VTOL PLATFORM

Publications (1)

Publication Number Publication Date
WO2021074480A1 true WO2021074480A1 (en) 2021-04-22

Family

ID=75420278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070781 WO2021074480A1 (en) 2019-10-14 2020-12-10 Method of approach and coupling between vtol and htol platforms, self-contained approach and coupling system, and associated vtol platform

Country Status (2)

Country Link
ES (1) ES2819325B2 (en)
WO (1) WO2021074480A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160327945A1 (en) * 2015-05-07 2016-11-10 Insitu, Inc. (A Subsidiary Of The Boeing Company) Methods and apparatus to deploy and recover a fixed wing unmanned aerial vehicle via a non-fixed wing aircraft
US20170036762A1 (en) * 2015-08-03 2017-02-09 Dustin Gamble Release and Capture of a Fixed-Wing Aircraft
US20170274997A1 (en) * 2016-03-22 2017-09-28 Hood Technology Corporation Rotorcraft-assisted system and method for launching and retrieving a fixed-wing aircraft into and from free flight
US20180101173A1 (en) * 2016-10-10 2018-04-12 Qualcomm Incorporated Systems and methods for landing a drone on a moving base
WO2018107278A1 (en) * 2016-12-13 2018-06-21 Ryan Evaristo Pinto System and method for capturing and releasing fixed-wing aircraft
US20180327093A1 (en) * 2017-05-11 2018-11-15 Hood Technology Corporation Aircraft-retrieval system
CZ2017418A3 (en) * 2017-07-19 2019-01-30 České vysoké učení technické v Praze Unmanned vehicle
US20190033889A1 (en) * 2017-01-23 2019-01-31 Hood Technology Corporation Rotorcraft-assisted system and method for launching and retrieving a fixed-wing aircraft
US20190248487A1 (en) * 2018-02-09 2019-08-15 Skydio, Inc. Aerial vehicle smart landing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160327945A1 (en) * 2015-05-07 2016-11-10 Insitu, Inc. (A Subsidiary Of The Boeing Company) Methods and apparatus to deploy and recover a fixed wing unmanned aerial vehicle via a non-fixed wing aircraft
US20170036762A1 (en) * 2015-08-03 2017-02-09 Dustin Gamble Release and Capture of a Fixed-Wing Aircraft
US20170274997A1 (en) * 2016-03-22 2017-09-28 Hood Technology Corporation Rotorcraft-assisted system and method for launching and retrieving a fixed-wing aircraft into and from free flight
US20180101173A1 (en) * 2016-10-10 2018-04-12 Qualcomm Incorporated Systems and methods for landing a drone on a moving base
WO2018107278A1 (en) * 2016-12-13 2018-06-21 Ryan Evaristo Pinto System and method for capturing and releasing fixed-wing aircraft
US20190033889A1 (en) * 2017-01-23 2019-01-31 Hood Technology Corporation Rotorcraft-assisted system and method for launching and retrieving a fixed-wing aircraft
US20180327093A1 (en) * 2017-05-11 2018-11-15 Hood Technology Corporation Aircraft-retrieval system
CZ2017418A3 (en) * 2017-07-19 2019-01-30 České vysoké učení technické v Praze Unmanned vehicle
US20190248487A1 (en) * 2018-02-09 2019-08-15 Skydio, Inc. Aerial vehicle smart landing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GÓMEZ PLAZA MARIANO, ARRIBAS NAVARRO TOMÁS, SÁNCHEZ PRIETO SEBASTIÁN: "Introducing MultiScale technique with CACM-RL", INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, vol. 14, no. 1, January 2017 (2017-01-01), XP055816591, DOI: 10.1177/1729881417694289 *

Also Published As

Publication number Publication date
ES2819325B2 (en) 2022-04-21
ES2819325A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
US20230303245A1 (en) Unmanned supply delivery aircraft
EP3127809B1 (en) Release and capture of a fixed-wing aircraft
AU2020362080C1 (en) Maneuverability involving a fixed-wing aircraft and an aerial vehicle having vertical takeoff and landing capabilities
US9630712B1 (en) Using multirotor lifters to deploy fixed wing aircraft
US10099778B2 (en) Unmanned aerial vehicle
US10654584B2 (en) Refueling system and method
EP3489139B1 (en) Systems and methods for powering an electric aerial vehicle
CN112272639B (en) Unmanned aerial vehicle's resident stop and automatic management base
Huh et al. A vision-based automatic landing method for fixed-wing UAVs
US20120232722A1 (en) Automatic Configuration Control of a Device
WO2017184272A2 (en) Rotorcraft-assisted system and method for launching and retrieving a fixed-wing aircraft into and from free flight
WO2017166724A1 (en) Aircraft apron device, aircraft, and aircraft parking system
US11485475B2 (en) Rudder twist lock method and apparatus
EP3856633A1 (en) Flying apparatus
CN105217054A (en) A kind of fixed-wing VUAV detects landing platform automatically
AU2019391315A1 (en) Guidance system for landing a drone
JP7414732B2 (en) unmanned supply delivery aircraft
ES2819325B2 (en) APPROACH AND LATCHING METHOD BETWEEN VTOL AND HTOL PLATFORMS, AUTONOMOUS APPROACH AND LATCHING SYSTEM AND ASSOCIATED VTOL PLATFORM
US8498761B2 (en) Method and system to assist conventional fixed-wing aircraft landing, without a runway
CN110844098B (en) Aircraft with a flight control device
Gajjar et al. A07: On-ship landing and takeoff of Unmanned Aerial Vehicles (UAV’S)
US11459114B2 (en) Systems and methods for parachute-assisted landing of an unmanned aerial vehicle
Wyllie et al. Precision parafoil recovery-Providing flexibility for battlefield UAV systems?
CN117075625A (en) Autonomous and precise target attachment method and system for multi-rotor unmanned aerial vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20877600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20877600

Country of ref document: EP

Kind code of ref document: A1