WO2021073251A1 - 功率均衡器及功率均衡器的调节方法 - Google Patents

功率均衡器及功率均衡器的调节方法 Download PDF

Info

Publication number
WO2021073251A1
WO2021073251A1 PCT/CN2020/110897 CN2020110897W WO2021073251A1 WO 2021073251 A1 WO2021073251 A1 WO 2021073251A1 CN 2020110897 W CN2020110897 W CN 2020110897W WO 2021073251 A1 WO2021073251 A1 WO 2021073251A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
wavelength
beams
attenuation
demultiplexer
Prior art date
Application number
PCT/CN2020/110897
Other languages
English (en)
French (fr)
Inventor
李仕茂
闫云飞
邹冰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20876178.3A priority Critical patent/EP3978988A4/en
Publication of WO2021073251A1 publication Critical patent/WO2021073251A1/zh
Priority to US17/575,534 priority patent/US12085760B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29391Power equalisation of different channels, e.g. power flattening
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0808Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more diffracting elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • G02B6/2713Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations
    • G02B6/272Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations comprising polarisation means for beam splitting and combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2773Polarisation splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/2941Signal power control in a multiwavelength system, e.g. gain equalisation using an equalising unit, e.g. a filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of optical communications, and in particular to a power equalizer and a power equalizer adjustment method.
  • WDM Wavelength Division Multiplexing
  • OFA optical fiber amplifier
  • EDFA Erbium-Doped Fiber Amplifiers
  • GFF Gain Flattening Filter
  • GFF Dynamic Gain Equalizer
  • DGE where GFF itself performs static gain equalization, the filter spectrum type cannot be changed, and cannot adapt to different gain spectra of EDFA; GFF combined with variable optical attenuator (Variable Optical Attenuator, VOA) can only achieve the translation of the filter function, Can not produce the filtering curve that totally accords with the optical amplifier requirement; But DGE carries on the cost of large-scale attenuation and high cost, at the same time, it may also affect the performance of WDM link.
  • VOA variable Optical Attenuator
  • the embodiments of the present application provide a power equalizer and a power equalizer adjustment method, which can achieve a more flexible and efficient adjustment of the gain flat curve of the optical signal in fiber amplification, and improve the performance of the optical amplifier.
  • an embodiment of the present application provides a power equalizer, including an input and output component, a demultiplexer, a first pre-attenuation device, and a beam modulator;
  • the first light beam is input from the input-output component, and the wave splitter combiner splits the first light beam incident from the input-output component to obtain multiple first sub-wavelength light beams, and propagates the multiple first sub-wavelength light beams to the first A pre-attenuation device;
  • the first pre-attenuation device makes the first sub-wavelength beam incident on the beam modulator at a preset angle, wherein the preset angle is an angle deviated from a direction perpendicular to the beam modulator, and
  • the preset angle is related to the preset light energy attenuation of the first sub-wavelength beam, and the preset light energy attenuation of the first sub-wavelength beam is related to the wavelength of the first sub-wavelength beam;
  • the beam modulator is used to The plurality of first sub-wavelength beams passing through the first pre-attenuation device are angularly deflected to obtain a plurality of second sub-wavelength beams; the first pre-attenuation device
  • the demultiplexer performs beam splitting or multiplexing, which can be a transmissive grating, a reflective grating, or a grating prism; wherein, the grating prism includes a reflective grating and a prism, and the reflective grating is usually Attached to the prism, the reflective grating realizes the spatial expansion of the input light spectrum, while the prism realizes the control of the input light aberration.
  • beam splitting or multiplexing which can be a transmissive grating, a reflective grating, or a grating prism; wherein, the grating prism includes a reflective grating and a prism, and the reflective grating is usually Attached to the prism, the reflective grating realizes the spatial expansion of the input light spectrum, while the prism realizes the control of the input light aberration.
  • the first pre-attenuation device includes any one of the following devices: a lens, a concave reflector, or a spherical reflector.
  • the relative position and relative inclination angle between the above-mentioned demultiplexer and the first pre-attenuation device are set such that the above-mentioned first sub-wavelength beam is incident on the beam modulator at a preset angle corresponding to it. .
  • the relative position and relative inclination angle between the above-mentioned split-wave multiplexer and the first pre-attenuation device include the rotation angle of the split-wave multiplexer and the difference between the split-wave multiplexer and the first pre-attenuation device. Distance, etc.; when the demultiplexer is a grating prism, the relative position and relative inclination between the demultiplexer and the first pre-attenuation device also include the angle or rotation angle of the prism in the grating prism.
  • the preset angle is positively correlated with the preset light energy attenuation of the first sub-wavelength beam, and the preset light energy attenuation of the first sub-wavelength beam does not exceed the gain of the power equalizer.
  • the above-mentioned input and output component includes a multi-port optical fiber array and/or a multi-port collimator array
  • the multi-port optical fiber array and/or a multi-port collimator array includes At least one input port and at least one output port.
  • the power equalizer further includes a polarization processing component, and the polarization processing component is used to unify the polarization of the first light beam.
  • the polarization processing component includes a polarization beam splitter and a half-wave plate, and the polarization beam splitter is used to separate the mutually perpendicular horizontal polarization component and the vertical polarization component of the first light beam into two beams.
  • Parallel beams; a half-wave plate is used to combine the two parallel beams by polarization to obtain the first beam after polarization processing.
  • the power equalizer disclosed in this application is mainly used in optical fiber amplification.
  • the input light is attenuated by a pre-attenuation device by a certain amount.
  • the dynamics of the optical signal attenuation that the beam modulator needs to perform The range is greatly reduced, so that a more flexible and efficient adjustment of the gain flat curve of the optical signal can be achieved, which greatly reduces the risk of performance degradation such as insertion loss caused by a large-scale dynamic attenuation, and improves the NF performance of fiber amplification and WDM link OSNR.
  • an embodiment of the present application provides a beam adjustment method in a power equalizer, the power equalizer including an input and output component, a demultiplexer, a pre-attenuation device, and a beam modulator, and the method includes:
  • the input/output component inputs the first light beam
  • the demultiplexer demultiplexes the first light beam to obtain multiple first sub-wavelength light beams, and propagates the multiple first sub-wavelength light beams to the pre-attenuation device;
  • the relative position and relative inclination angle between the demultiplexer and the pre-attenuation device are adjusted so that the first sub-wavelength beam is incident on the beam modulator at a preset angle, wherein the preset angle is relative to perpendicular to the beam modulator
  • the predetermined angle corresponding to the first sub-wavelength beam is related to the predetermined light energy attenuation of the first sub-wavelength beam, and the predetermined light energy attenuation of the first sub-wavelength beam is related to the first sub-wavelength beam.
  • the beam modulator angularly deflects the plurality of first sub-wavelength beams that have passed through the pre-attenuation device to obtain a plurality of second sub-wavelength beams;
  • the pre-attenuation device maps the multiple second sub-wavelength beams to the demultiplexer
  • the demultiplexer multiplexes a plurality of second sub-wavelength light beams to obtain a second light beam
  • the input-output component outputs the second light beam.
  • the relative position and relative inclination angle between the above-mentioned split-wave multiplexer and the first pre-attenuation device include the rotation angle of the split-wave multiplexer and the difference between the split-wave multiplexer and the first pre-attenuation device. Distance, etc.; when the demultiplexer is a grating prism, the relative position and relative inclination between the demultiplexer and the first pre-attenuation device also include the angle or rotation angle of the prism in the grating prism.
  • the method before the demultiplexer splits the first light beam to obtain multiple first sub-wavelength light beams, the method further includes:
  • the polarization beam splitter separates the mutually perpendicular horizontal polarization component and the vertical polarization component of the first beam into two parallel beams; the half-wave plate polarizes and combines the two parallel beams to obtain polarization The first light beam after processing.
  • the embodiments of the present application provide yet another power equalizer, which includes an input and output component, a second pre-attenuation device, a demultiplexer, an optical converter, and a beam modulator;
  • the first light beam is input from the input and output component; the second pre-attenuation device is used to attenuate the light energy of the first sub-wavelength light beams in the first light beam.
  • the attenuation of the light energy of the first sub-wavelength light beam and the first light beam The wavelength dependence of a sub-wavelength beam; the demultiplexer demultiplexes the first beam passing through the second pre-attenuation device to disperse the plurality of first sub-wavelength beams, and propagate the plurality of first sub-wavelength beams
  • the optical conversion device propagates the plurality of first sub-wavelength beams to a beam modulator; the beam modulator angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of second sub-wavelength beams; optical conversion The device propagates the multiple second sub-wavelength light beams to the above-mentioned demultiplexer; the demultiplexer multiplexes the multiple second sub-wavelength light beams to obtain a
  • the second pre-attenuation device is a passive filter, and includes any one of the following devices: a prism, a coated glass, a waveguide, or a long-period grating.
  • the optical conversion device is a lens or a mirror; when the optical conversion device is a lens, the power equalizer further includes another lens, and the other lens is located in the demultiplexer.
  • the distance between the other lens and the wave demultiplexer is equal to the focal length of the other lens, and the distance between the optical conversion device and the wave demultiplexer is equal to the focal length of the optical converter.
  • the power equalizer further includes a polarization processing component, the polarization processing component is located between the input/output component and the pre-attenuation device, and the polarization processing component is used to unify the polarization of the first light beam.
  • the polarization processing component includes a polarization beam splitter and a half-wave plate, and the polarization beam splitter is used to separate the mutually perpendicular horizontal polarization component and the vertical polarization component of the first beam into two parallel beams.
  • the beam; a half-wave plate is used to polarize the two parallel beams to obtain the first beam after polarization processing.
  • the power equalizer disclosed in this embodiment is mainly used in fiber amplification.
  • the input light is first attenuated by a certain amount.
  • the beam is modulated.
  • the dynamic range of the optical signal attenuation that the amplifier needs to perform is greatly reduced, so that a more flexible and efficient adjustment of the gain flat curve of the optical signal can be achieved, and the optical amplifier performance can be greatly improved.
  • the embodiments of the present application provide yet another power equalizer, which includes an input and output component, a second pre-attenuation device, a demultiplexer, an optical converter, and a beam modulator;
  • the first light beam is input from the input and output components; the demultiplexer splits the first light beam to obtain multiple first sub-wavelength light beams, and propagates the multiple first sub-wavelength light beams to the second pre-attenuation device; second The pre-attenuation device attenuates the light energy of the plurality of first sub-wavelength light beams, and the attenuation amount of the light energy of the first sub-wavelength light beam is related to the wavelength of the first sub-wavelength light beam; First sub-wavelength beams propagate to the first beam modulator; the first beam modulator angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of second sub-wavelength beams; the optical conversion device converts the plurality of second sub-wavelength beams After the wavelength beam propagates to the pre-attenuation device, it is combined by the split-wave multiplexer to obtain the second beam, which is output from the input and output components.
  • the second pre-attenuation device is a passive filter, and includes any one of the following devices: a prism, a coated glass, a waveguide, or a long-period grating.
  • the optical conversion device is a lens or a mirror; when the optical conversion device is a lens, the power equalizer further includes another lens, and the other lens is located in the demultiplexer.
  • the distance between the other lens and the wave demultiplexer is equal to the focal length of the other lens, and the distance between the optical conversion device and the wave demultiplexer is equal to the focal length of the optical converter.
  • the distance between the optical conversion device and the beam modulator is equal to the focal length of the optical conversion device; when the distance between the optical conversion device and the beam modulator is not equal to the focal length of the optical conversion device, it will be introduced Aberrations. At this time, the first sub-wavelength beam cannot be focused on the beam modulator, and it will also bring a certain attenuation.
  • the power equalizer further includes a polarization processing component, the polarization processing component is located between the input/output component and the pre-attenuation device, and the polarization processing component is used to unify the polarization of the first light beam.
  • the polarization processing component includes a polarization beam splitter and a half-wave plate, and the polarization beam splitter is used to separate the mutually perpendicular horizontal polarization component and the vertical polarization component of the first beam into two parallel beams.
  • the beam; a half-wave plate is used to polarize the two parallel beams to obtain the first beam after polarization processing.
  • the power equalizer and the power equalizer adjustment method provided in the present application can realize more flexible and efficient adjustment of the gain flat curve of the optical signal in fiber amplification, and improve the performance of the optical amplifier.
  • Fig. 1a is a schematic structural diagram of an optical amplifier disclosed in an embodiment of the application.
  • FIG. 1b is a schematic structural diagram of another optical amplifier disclosed in an embodiment of this application.
  • Fig. 2a is a schematic structural principle diagram of a power equalizer disclosed in an embodiment of the application.
  • FIG. 2b is a schematic diagram illustrating a preset angle disclosed in an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of another power equalizer disclosed in an embodiment of the application.
  • FIG. 5 is a schematic diagram of the structural principle of yet another power equalizer disclosed in an embodiment of the application.
  • FIG. 6 is a schematic structural principle diagram of another power equalizer disclosed in an embodiment of this application.
  • FIG. 7 is a schematic diagram of the structural principle of yet another power equalizer disclosed in an embodiment of the application.
  • FIG. 8 is a schematic structural principle diagram of yet another power equalizer disclosed in an embodiment of the application.
  • FIG. 9 is a schematic diagram of the structural principle of yet another power equalizer disclosed in an embodiment of the application.
  • connection in the embodiments of this application refers to the connection on the optical path.
  • Those skilled in the art can understand that specific optical devices may not necessarily have a substantial contact physical connection relationship, but the spatial position of these optical devices and their own The device characteristics make them form a kind of connection relationship on the optical path.
  • Fig. 1a is a schematic structural diagram of an optical amplifier disclosed in an embodiment of the application. It can be seen from the figure that the optical amplifier includes: an optical fiber amplifier 101, a power equalizer 102, and a controller 103; the optical fiber amplifier 101 and the power equalizer 102 are connected in sequence, and the input end of the optical fiber amplifier is the input end of the optical fiber amplifier.
  • the output terminal of the power equalizer 102 is the output terminal of the optical fiber amplifier.
  • the above-mentioned controller includes a control input terminal I and a control output terminal O.
  • the control input terminal I is used to receive the input optical signal of the optical fiber amplifier, and the control output terminal O is used to output Amplify the control signal to the aforementioned optical fiber amplifier 101, and output the adjustment control signal to the aforementioned power equalizer 102; the aforementioned power equalizer 102 is used to adjust the power of each wavelength separately according to the adjustment control signal.
  • connection sequence of the aforementioned optical fiber amplifier 101 and the power equalizer 102 can be interchanged, that is, the power equalizer 102 and the optical fiber amplifier 101 are connected in sequence, which is not limited in this application.
  • the above-mentioned power equalizer 102 adjusts the power of each wavelength separately according to the adjustment control signal, which means that the power equalizer 102 implements power adjustment for each wavelength by generating a different insertion loss for each wavelength. That is to say, optical signals with different wavelengths are amplified according to the above-mentioned gain characteristic parameters of the optical fiber amplifier.
  • the power equalizer 102 generates different insertion loss values for optical signals of different wavelengths, and the insertion loss value acts on each output of the optical fiber amplifier.
  • the optical power of each wavelength can be adjusted to achieve the effect of power adjustment for each wavelength.
  • the above-mentioned controller can calculate the above-mentioned amplification control according to the gain characteristic parameters of the optical fiber amplifier 101, the control characteristic parameters of the power equalizer 102, the target output optical power information of the optical fiber amplifier, and the input optical signal of the optical fiber amplifier.
  • Signal and regulation control signal The gain characteristic parameter of the optical fiber amplifier 101 may be the power amplification multiple of the optical fiber amplifier for each wavelength; the control characteristic parameter of the power equalizer 102 may be the relationship parameter between the insertion loss of each wavelength and the adjustment control signal.
  • the optical fiber amplifier disclosed in this embodiment can calculate an amplification control signal and an adjustment control signal based on the input optical signal received at the input end, and the amplification control signal can control the above optical fiber amplifier to amplify power for each wavelength.
  • the adjustment control signal can control the power equalizer to adjust the insertion loss of each wavelength separately, and the effect of the insertion loss adjustment acts on the optical power of each wavelength of the optical fiber amplifier, thereby realizing the single-wave gain of the gain curve of the optical fiber amplifier The adjustment effect improves the adjustment accuracy of the gain curve of the optical fiber amplifier.
  • the gain curve of the optical fiber amplifier disclosed in this embodiment can be adjusted to be relatively flat, thereby improving the flatness of the system, releasing the flat margin designed in the system specifications, and reducing the power equalizer sites.
  • the power equalizer disclosed in the embodiments of the present application can also be applied to two-stage amplifiers (the first amplifier and the second amplifier), as shown in FIG. 1b. Similarly, the power equalizer can also be applied to three-stage and more than three-stage amplifiers. In the multi-stage amplifier, the principle is similar to the above, so I will not repeat it here.
  • the power equalizer disclosed in the embodiments of the present application is mainly aimed at rare-earth-doped fiber amplifiers, such as EDFA.
  • EDFA rare-earth-doped fiber amplifiers
  • Those skilled in the art know that with the development of technology, the technology of this application can also be applied to other rare earth-doped fiber amplifiers under development or to be developed.
  • the technical solutions of the power equalizer in the embodiments of the present application will be described below in conjunction with the drawings in the embodiments of the present application.
  • first and second in this application are used to distinguish similar objects, but not necessarily used to describe a specific sequence or sequence. It should be understood that the data used in this way can be interchanged under appropriate circumstances, so that The described embodiments can be implemented in a sequence not described in this application.
  • “And/or” is used to describe the association relationship of associated objects, indicating that there can be three types of relationships. For example, A and/or B can mean that: A alone exists, A and B exist at the same time, and B exists alone.
  • the specific operation method in the method embodiment can also be applied to the device embodiment.
  • the present application uses the same figure numbers to represent components with the same or similar functions in the different embodiments.
  • Fig. 2a is a schematic structural principle diagram of a power equalizer disclosed in an embodiment of the application.
  • the power equalizer 200 includes an input and output component 201, a demultiplexer 202, a first pre-attenuation device 203, and a first pre-attenuation device 203.
  • the first light beam in this embodiment may be a WDM light beam, and a WDM light beam may include multiple (at least two) sub-beams.
  • the center wavelengths of the sub-beams (or the center frequency points of the sub-beams) are mutually different. Different.
  • the first light beam is input from the input/output component 201, and the demultiplexer 202 demultiplexes the first light beam incident on the input/output component 201 to obtain multiple first sub-wavelength light beams, and propagate the multiple first sub-wavelength light beams
  • the first pre-attenuation device 203 (the dotted line in Figure 2a represents a beam of light, and the decomposition of one beam into four beams is only for illustration, and can actually be decomposed into multiple beams); the first pre-attenuation device 203 combines the multiple first sub-beams
  • the wavelength beams are incident on the first beam modulator 204 at corresponding preset angles respectively, and the preset angle is related to the preset light energy attenuation of the corresponding first sub-wavelength beams among the plurality of first sub-wavelength beams,
  • the preset light energy attenuation of the first sub-wavelength beam is related to the wavelength of the first sub-wavelength beam; the first beam modulator 204 is configured
  • Angular deflection obtains a plurality of second sub-wavelength beams; the first pre-attenuation device 203 propagates the plurality of second sub-wavelength beams to the demultiplexer 202; the demultiplexer 202 combines the plurality of second sub-wavelength beams The two sub-wavelength light beams are combined to obtain a second light beam; the second light beam is output from the aforementioned input and output component 201.
  • the demultiplexer 202 performs demultiplexing or multiplexing of light beams, and can be a transmissive grating, a reflective grating, or a grating prism.
  • the grating prism includes a reflective grating and a prism.
  • the reflective grating is usually attached to the prism, and the reflective grating
  • the grating realizes the spatial expansion of the input light spectrum, and the prism realizes the control of the input light aberration.
  • the first pre-attenuation device 203 includes any one of the following devices: a lens, a concave mirror or a spherical mirror.
  • the relative position and relative inclination angle between the demultiplexer 202 and the first pre-attenuation device 203 are set so that the first sub-wavelength beam enters the first beam modulator 204 at a preset angle corresponding to it.
  • the preset angle is the angle deviated from the direction perpendicular to the beam modulator, as shown in Figure 2b, where the preset angle is defined by the angle deviating from the vertical direction. If a certain deviation direction is defined as positive , The opposite deviation direction is negative.
  • Adjusting the relative position and relative inclination angle between the demultiplexer 202 and the first pre-attenuation device 203 can introduce aberrations, so that the incident angle of the beam on the surface of the beam modulator varies with the wavelength, that is, the first The sub-wavelength beams are incident on the beam modulator at respective preset angles.
  • the first sub-wavelength beam is incident at a preset angle.
  • the specular reflection produces a corresponding deflection angle. After coupling out, there will be a certain attenuation. After the optical path is fixed, this attenuation is also Certainly, the fixed pre-attenuation before the dynamic attenuation of the beam modulator is realized.
  • the relative position and relative inclination between the above-mentioned demultiplexer 202 and the first pre-attenuation device 203 include the rotation angle of the demultiplexer 202 and/or the demultiplexer 202 and the first pre-attenuation device 203
  • the relative position and relative inclination between the demultiplexer 202 and the first pre-attenuation device 203 also include the angle or rotation angle of the prism in the grating prism.
  • the preset angle corresponding to each first sub-wavelength beam is positively correlated with the corresponding preset light energy attenuation of the first sub-wavelength light beam, that is, the larger the preset angle, the greater the preset light energy attenuation. It is worth noting that when comparing the size of the preset angle, the absolute value of the preset angle is compared.
  • the wavelength of each first sub-wavelength beam in the plurality of first sub-wavelength beams is different; the preset light energy attenuation corresponding to each first sub-wavelength beam may be the same or different; and then each first sub-wavelength beam
  • the preset angles corresponding to the sub-wavelength beams can be the same or different.
  • the incident light is deflected by controlling the liquid crystal phase, optical signal amplitude or angle of different areas on the first beam modulator 204, Furthermore, the light energy attenuation of each of the first sub-wavelength beams is controlled separately, and the gain curve of the first beam is flattened to obtain the second beam.
  • the deflection angle of the first sub-wavelength beam by the first beam modulator 204 is related to the dynamic attenuation of the first beam modulator 204 corresponding to the first sub-wavelength beam.
  • the first beam modulator 204 may be MEMS (Micro-Electro-Mechanical Systems) or LCoS (Liquid Crystal on Silicon, liquid crystal on silicon). Load a periodically varying grayscale image on the LCoS to form a phase grating to deflect the reflected light. Its deflection angle is usually positively correlated with the grating period; after the reflected light is deflected, it will reflect back to the output port and cause coupling loss, loss and deflection angle Positive correlation, so the energy attenuation of the reflected light can be controlled by changing the period of the gray image on the LCoS.
  • MEMS Micro-Electro-Mechanical Systems
  • LCoS Liquid Crystal on Silicon, liquid crystal on silicon
  • Beams of different wavelengths are incident on different areas on the LCoS, and the grayscale images with different periods of loading in different areas can generate a preset filter curve to flatten the gain spectrum of the input light.
  • the loading can be updated again.
  • the image generates a new corresponding flattening filter curve to realize the function of dynamic equalization to the input light.
  • the pre-attenuation curve formed by the attenuation of the first sub-wavelength beams by the first pre-attenuation device 203 is superimposed on the dynamic attenuation curve of the first beam modulator 204 to form the gain flattening filter curve of the power equalizer.
  • the above-mentioned power equalizer is designed with a gain flattening curve, and the preset light energy attenuation corresponding to each first sub-wavelength beam does not exceed all the designed gain flat filter curves of the above-mentioned power equalizer.
  • the input/output component 201 includes a fiber array with multiple ports and/or a collimator array with multiple ports, wherein at least the fiber array with multiple ports and/or the collimator array with multiple ports There is one input port and at least one output port.
  • the input/output component 201 may include an optical fiber array and/or a collimator array.
  • the optical fiber array may include N input fibers (N is a positive integer) arranged in one dimension, and the N input fibers are used to obtain light beams from various dimensions.
  • the optical fiber array may include one-dimensionally arranged in the port switching plane.
  • N input fibers; the collimator array may include N collimators arranged in one dimension, corresponding to the N input fibers, and used to convert the light beams input by the N input fibers into collimated light beams.
  • the input The collimator array may include N collimators arranged one-dimensionally on the port switching plane.
  • the N collimators correspond to the N input fibers one-to-one, and one collimator is used to collimate the light beam output from the corresponding input fiber, which can also be understood as converting the light beam input by the input fiber into parallel light , While expanding the beam waist value to facilitate subsequent optical path processing.
  • the input/output component 201 may include N dimensional output ports for dimensional output, and the second light beam may be output from one of the N dimensional output ports.
  • the output/output component 201 can also be connected with or built-in a circulator, and the circulator is used to separate input and output.
  • the power equalizer disclosed in this embodiment is mainly used in fiber amplification.
  • the input light is first attenuated by a pre-attenuation device.
  • the optical signal attenuation that the beam modulator needs to perform The dynamic range is greatly reduced, so that a more flexible and efficient adjustment of the gain flat curve of the optical signal can be achieved, which greatly reduces the risk of performance degradation such as insertion loss caused by a large-scale dynamic attenuation, and improves the NF (Noise Figure, Noise index) performance and OSNR (Optical Signal-to-Noise Ratio, optical signal-to-noise ratio) of the WDM link.
  • NF Noise Figure, Noise index
  • OSNR Optical Signal-to-Noise Ratio, optical signal-to-noise ratio
  • FIG. 3 is a schematic structural principle diagram of another power equalizer disclosed in an embodiment of the application.
  • the power equalizer 300 includes an input and output component 201, a polarization processing component 301, a demultiplexer 202, and a first The pre-attenuation device 203 and the second beam modulator 302.
  • the first light beam is input from the input and output component 201, and the polarization processing component 301 uniformly polarizes the collimated first light beam; the first light beam after polarization processing undergoes beam splitting, splitting and combining on the wavelength splitting multiplexer 202
  • the wave device 202 demultiplexes the first beam to obtain multiple first sub-wavelength beams, and propagates the multiple first sub-wavelength beams to the first pre-attenuation device 203; the first pre-attenuation device 203 separates the multiple first sub-wavelength beams
  • the first sub-wavelength beams are incident on the first beam modulator 204 at corresponding preset angles, which are attenuated by the preset light energy of the corresponding first sub-wavelength beams among the plurality of first sub-wavelength beams.
  • the amount of light energy attenuation of the first sub-wavelength beam is related to the wavelength of the first sub-wavelength beam; the first beam modulator 204 is used to combine the plurality of first sub-wavelength beams passing through the first pre-attenuation device.
  • the wavelength beam is angularly deflected to obtain a plurality of second sub-wavelength beams; the first pre-attenuation device 203 propagates the plurality of second sub-wavelength beams to the demultiplexer 202; the demultiplexer 202 demultiplexes the A plurality of second sub-wavelength light beams are combined to obtain a second light beam; the second light beam is output from the aforementioned input and output component 201.
  • the relative position and relative inclination angle between the demultiplexer 202 and the first pre-attenuation device 203 are set such that the first sub-wavelength beam is incident on the first beam modulator 204 at a preset angle corresponding thereto, wherein The preset angle is the angle deviated from the direction perpendicular to the beam modulator.
  • the above-mentioned relative position and relative inclination between the demultiplexer 202 and the first pre-attenuation device 203 include the rotation angle of the demultiplexer 202, the distance or the division between the demultiplexer 202 and the first pre-attenuation device 203.
  • the polarization processing component 301 includes a polarization beam splitter and a half-wave plate, and the polarization beam splitter is used to separate the mutually perpendicular horizontal polarization component and the vertical polarization component of the first beam into two parallel beams.
  • the light beam; the half-wave plate is used to combine the polarization of the two parallel light beams to obtain the first light beam after polarization processing, such as rotating the vertically polarized light beam by 90 degrees to the horizontal polarization to unify the first light beam Into the horizontal polarization.
  • the distance between the wavelength splitting and multiplexing device 203 and the polarization processing component 301 may specifically be the distance between the wavelength splitting and multiplexing device 203 and the polarization beam splitter.
  • the second beam modulator 301 may generally be polarization-dependent LCoS or LC (Liquid Crystal, liquid crystal).
  • LCoS technology uses the principle of liquid crystal grating to adjust the reflection angle of light of different wavelengths to achieve the purpose of separating light. Because there are no moving parts, LCoS technology has a fairly high reliability.
  • the LCoS technology uses the refractive index change control of the liquid crystal cell to realize the reflection angle change, which can be easily expanded and upgraded. Different channels correspond to different areas of the spatial light modulator (liquid crystal) array, and the light transmission direction is changed by adjusting the phase of the light spot.
  • the LC can control the rotation of the polarization state of the beam by applying a voltage, and then pass through the analyzer to achieve attenuation of light of different wavelengths.
  • the analyzer is also a polarizer, and its main function is to turn the incident light into linearly polarized light and emit it.
  • the polarizer When the polarizer is placed on the light source assembly, it is called a polarizer. It is used to convert the light emitted by the light source into linearly polarized light.
  • the polarizer is placed in front of the photoelectric sensor to detect the polarization state of a beam of light, it is called Analyzer.
  • FIG. 4 is a flowchart of a beam adjustment method in a power equalizer disclosed in an embodiment of the application. As shown in FIG. 4, the beam adjustment method in the power equalizer is applied to the power equalizer provided in the foregoing embodiment. include:
  • the input/output component inputs the first light beam
  • the demultiplexer splits the first light beam to obtain multiple first sub-wavelength light beams, and propagates the multiple first sub-wavelength light beams to the first pre-attenuation device;
  • the preset angle is an angle deviated from the direction perpendicular to the beam modulator, the preset angle corresponding to the first sub-wavelength beam is related to the preset light energy attenuation of the first sub-wavelength beam, and the first sub-wavelength beam
  • the preset light energy attenuation corresponding to the light beam is related to the wavelength of the first sub-wavelength beam; generally, the preset angle corresponding to each first sub-wavelength beam is positive to the corresponding preset light energy attenuation of the first sub-wavelength beam.
  • the correlation is that the greater the attenuation of the preset light energy, the greater the preset angle.
  • the beam modulator angularly deflects the multiple first sub-wavelength beams that have passed through the first pre-attenuation device to obtain multiple second sub-wavelength beams.
  • the first pre-attenuation device maps the multiple second sub-wavelength light beams onto the wave splitter and multiplexer.
  • the demultiplexer multiplexes the multiple second sub-wavelength light beams to obtain a second light beam.
  • the input/output component outputs the second light beam.
  • step S402 split-wave multiplexer splits the foregoing first light beam to obtain multiple first sub-wavelength light beams
  • the method further includes:
  • the polarization beam splitter separates the mutually perpendicular horizontal polarization component and the vertical polarization component of the first beam into two parallel beams; the half-wave plate polarizes the two parallel beams and combines them to obtain a polarization-treated first beam. beam.
  • FIG. 5 is a schematic structural principle diagram of another power equalizer disclosed in an embodiment of the application.
  • the power equalizer 500 includes an input and output component 201, a second pre-attenuation device 501, a demultiplexer 202, The optical converter 502 and the first beam modulator 204.
  • the first light beam is input from the input and output component 201; the second pre-attenuation device 501 is used to attenuate the light energy of the first sub-wavelength light beams in the first light beam.
  • the attenuation of the light energy of the first sub-wavelength light beam is It is related to the wavelength of the first sub-wavelength beam; the demultiplexer 202 splits the first beam that has passed through the second pre-attenuation device 501 to disperse the plurality of first sub-wavelength beams, and disperses the plurality of first sub-wavelength beams.
  • the sub-wavelength beams propagate to the optical conversion device 502; the optical conversion device 502 propagates the plurality of first sub-wavelength beams to the first beam modulator 204; the first beam modulator 204 angles the plurality of first sub-wavelength beams Deflection obtains a plurality of second sub-wavelength beams; the optical conversion device 502 propagates the plurality of second sub-wavelength beams to the above-mentioned demultiplexer 202; the demultiplexer 202 combines the plurality of second sub-wavelength beams The wave obtains a second light beam; after the second light beam propagates through the second pre-attenuation device 501 to the aforementioned input-output component 201, it is output from the input-output component 201.
  • the second pre-attenuation device 501 may be any of the following devices: passive filters such as prisms, coated glass, waveguides, or long-period gratings that produce different aberrations according to different wavelengths.
  • the second pre-attenuation device 501 performs a preset attenuation for each first sub-wavelength light beam, wherein the wavelength of each first sub-wavelength light beam in the plurality of first sub-wavelength light beams is different;
  • the preset light energy attenuation corresponding to the sub-wavelength beams can be the same or different.
  • the optical converter 502 may be a spherical lens or a spherical mirror.
  • the power equalizer disclosed in this embodiment is mainly used in fiber amplification.
  • the input light is first attenuated by a certain amount.
  • the beam is modulated.
  • the dynamic range of the optical signal attenuation that the receiver needs to perform is greatly reduced, so that a more flexible and efficient adjustment of the gain flat curve of the optical signal can be achieved, which greatly reduces the risk of performance degradation such as insertion loss caused by a large-scale dynamic attenuation, and improves NF performance of optical fiber amplification and OSNR of WDM link.
  • FIG. 6 is a schematic structural principle diagram of another power equalizer disclosed in an embodiment of the application.
  • the power equalizer 600 is different from the power equalizer 500 in that the second pre-attenuation of the power equalizer 500
  • the device 501 is located between the input/output component 201 and the demultiplexer 202, and the second pre-attenuation device 501 of the power equalizer 600 is located between the demultiplexer 202 and the optical conversion device 502.
  • the first light beam is input from the input and output component 201; the demultiplexer 202 demultiplexes the first light beam to obtain multiple first sub-wavelength light beams, and propagates the multiple first sub-wavelength light beams to the second pre-attenuation device 501
  • the second pre-attenuation device 501 attenuates the light energy of the plurality of first sub-wavelength light beams, and the attenuation of the light energy of the first sub-wavelength light beam is related to the wavelength of the first sub-wavelength light beam;
  • the attenuated multiple first sub-wavelength beams propagate to the first beam modulator 204; the first beam modulator 204 angularly deflects the multiple first sub-wavelength beams to obtain multiple second sub-wavelength beams; optical conversion device After 502 propagates the plurality of second sub-wavelength beams to the pre-attenuation device 501, they are combined by the demultiplexer 202 to obtain the second beam, which is output from the input/output component
  • the input/output component 201, the demultiplexer 202, the first beam modulator 204, and other related descriptions can be referred to the foregoing embodiment, and will not be repeated here.
  • FIG. 7 is a schematic structural principle diagram of another power equalizer disclosed in an embodiment of the application.
  • the power equalizer 700 includes an input and output component 201, a polarization processing component 301, a second pre-attenuation component 501, and a splitter.
  • the first beam is input from the input and output component 201; the polarization processing component 301 uniformly polarizes the collimated first beam; the first beam after the polarization treatment is subjected to beam splitting on the wavelength splitting combiner 202;
  • the wave device 202 demultiplexes the first beam to obtain multiple first sub-wavelength beams, and propagates the multiple first sub-wavelength beams to the second pre-attenuation device 501;
  • the second pre-attenuation device 501 performs
  • the light energy of the sub-wavelength beams are respectively attenuated, and the attenuation of the light energy of the first sub-wavelength beam is related to the wavelength of the first sub-wavelength beam;
  • the optical conversion device 502 propagates the attenuated multiple first sub-wavelength beams to The second beam modulator 302; the second beam modulator 302 angularly deflects the multiple first sub-wavelength beams to obtain multiple second sub-wavelength beams, and then passes through the optical conversion device 502
  • FIG. 8 is a schematic structural principle diagram of another power equalizer disclosed in an embodiment of the application.
  • the power equalizer 800 includes an input and output component 201, a second pre-attenuation device 501, a lens 801, and a demultiplexer.
  • the waver 202, the lens 802, and the first beam modulator 204 are the first beam modulator 204.
  • the first light beam is input from the input and output component 201; the second pre-attenuation device 501 is used to attenuate the light energy of the first sub-wavelength light beams in the first light beam.
  • the attenuation of the light energy of the first sub-wavelength light beam is It is related to the wavelength of the first sub-wavelength beam; the lens 801 maps the first beam to the demultiplexer 202; the demultiplexer 202 performs demultiplexing to disperse the plurality of first sub-wavelength beams, and disperse the plurality of first sub-wavelength beams.
  • the first sub-wavelength beams propagate to the lens 802; the lens 802 propagates the plurality of first sub-wavelength beams to the first beam modulator 204; the first beam modulator 204 angularly deflects the plurality of first sub-wavelength beams Obtain a plurality of second sub-wavelength light beams; the second sub-wavelength light beams are mapped through the lens 802 again and then multiplexed on the above-mentioned demultiplexer 202 to obtain the second light beam; the second light beam passes through the lens 801 and the second pre-attenuation device 501, from The input and output component 201 outputs.
  • the focal length of the lens 801 and the lens 802 are the same; the distance between the lens 801 and the demultiplexer 202 is equal to the focal length of the lens 801, and the distance between the lens 802 and the demultiplexer 202 is equal to the focal length of the lens 802, forming 4f(f It is the focal length of the lens) system; it should be noted that the figure shown in FIG. 5 is only a schematic diagram, and the lens 801 and the lens 802 can also be replaced by other devices, such as a spherical mirror, which is not limited here.
  • the distance between the lens 802 and the first beam modulator 204 is equal to the focal length of the lens 802; when the distance between the lens 802 and the first beam modulator 204 is not equal to the focal length of the lens 802, aberrations will be introduced. A sub-wavelength beam cannot be focused on the first beam modulator 204, which will also cause a certain attenuation of light energy.
  • FIG. 9 is a schematic structural principle diagram of another power equalizer disclosed in an embodiment of the application.
  • the power equalizer 900 includes an input and output component 201, a polarization processing component 301, a second pre-attenuation component 501, and a lens. 801, a demultiplexer 202, a lens 802, and a second beam modulator 302.
  • the focal length of the lens 801 and the lens 802 are the same; the distance between the lens 801 and the demultiplexer 202 is equal to the focal length of the lens 801, and the distance between the lens 802 and the demultiplexer 202 is equal to the focal length of the lens 802, forming 4f(f Is the focal length of the lens) system.
  • the distance between the lens 802 and the second beam modulator 302 is equal to the focal length of the lens 802;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)

Abstract

本申请涉及一种功率均衡器,应用于光纤放大中,该功率均衡器包括输入输出组件、分波合波器、预衰减器件、光束调制器;第一光束从输入输出组件输入,分波合波器将第一光束进行分波得到多个第一子波长光束,并传播至预衰减器件;预衰减器件将该第一子波长光束以预设角度入射到光束调制器上,该预设角度与第一子波长光束的预设光能衰减量相关,预设光能衰减量与第一子波长光束的波长相关;光束调制器将经过第一预衰减器件的多个第一子波长光束进行角度偏转得到多个第二子波长光束;预衰减器件再将该多个第二子波长光束传播至分波合波器上;分波合波器将该多个第二子波长光束进行合波得到第二光束后从输入输出组件输出。

Description

功率均衡器及功率均衡器的调节方法
本申请要求于2019年10月14日提交中国国家知识产权局、申请号为201910974368.0、发明名称为“功率均衡器及功率均衡器的调节方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,尤其涉及一种功率均衡器及功率均衡器的调节方法。
背景技术
功率均衡是波分复用(Wavelength Division Multiplexing,WDM)系统的一项重要技术。功率不均衡的WDM信号,经过光纤放大器(Optical Fiber Amplifier,OFA)之后不均衡性会放大,例如,对于多个掺铒光纤放大器(Erbium-Doped Fiber Amplifier,EDFA)级联的长距传输系统,某个波长信号的功率会变小甚至探测不到,造成信噪比下降、误码率上升。信号功率不均衡主要是由于EDFA的增益谱不平坦导致,即对不同波长的信号增益不相等,所以WDM系统的功率均衡可以通过EDFA的增益均衡来实现。
利用滤波器的进行EDFA增益均衡是目前最常用的方法。滤波器型增益均衡方法又可以分为静态增益均衡技术与动态增益均衡技术,这两种技术的代表器件分别是增益平坦滤波器(Gain Flattening Filter,GFF)和动态增益均衡器(Dynamic Gain Equalizer,DGE),其中,GFF本身进行静态的增益均衡,滤波谱型无法改变,不能适配EDFA不同的增益谱;GFF结合可调光衰减器(Variable Optical Attenuator,VOA)只能实现滤波函数的平移,不能产生完全符合光放要求的滤波曲线;而DGE进行大范围衰减的代价大成本高,同时还可能影响WDM链路性能。
因此,亟须一种新型的功率均衡器能够更加高效地实现光纤放大器的动态增益均衡,同时提升WDM链路性能、降低成本。
发明内容
鉴于此,本申请实施例提供了功率均衡器及功率均衡器的调节方法,在光纤放大中可以实现更加灵活高效的调节光信号的增益平坦曲线,提高光放性能。
第一方面,本申请实施例提供了一种功率均衡器,包括输入输出组件、分波合波器、第一预衰减器件和光束调制器;
第一光束从输入输出组件输入,分波合波器将上述输入输出组件入射的第一光束进行分波得到多个第一子波长光束,并将上述多个第一子波长光束传播至上述第一预衰减器件;第一预衰减器件将上述第一子波长光束以预设角度入射到上述光束调制器上,其中,预设角度是相对于垂直于光束调制器的方向而偏离的角度,该预设角度与上述第一子波长光束的预设光能衰减量相关,上述第一子波长光束的预设光能衰减量与第一子波长光束的波长相关;上述光束调制器,用于将上述经过第一预衰减器件的多个第一子波长光束进行角度偏转得到多 个第二子波长光束;上述第一预衰减器件将该多个第二子波长光束传播至上述分波合波器上;上述分波合波器将多个第二子波长光束进行合波得到第二光束;该第二光束从输入输出组件输出。
一种可能的实现方式中,分波合波器进行光束的分波或合波,可以是透射式光栅或反射式光栅或光栅棱镜;其中,光栅棱镜包括反射式光栅和棱镜,反射式光栅通常贴在棱镜上,反射式光栅实现输入光光谱的空间展开,而棱镜则实现输入光像差的控制。
一种可能的实现方式中,第一预衰减器件包括如下器件中的任意一种:透镜、凹面反射镜或球面反射镜。
一种可能的实现方式中,上述分波合波器和第一预衰减器件之间的相对位置和相对倾角设置为使上述第一子波长光束以与其对应的预设角度入射到光束调制器上。
一种可能的实现方式中,上述分波合波器和第一预衰减器件之间的相对位置和相对倾角包括分波合波器的旋转角、分波合波器与第一预衰减器件的距离等;当分波合波器为光栅棱镜时,上述分波合波器和第一预衰减器件之间的相对位置和相对倾角还包括光栅棱镜中棱镜的角度或旋转角。
一种可能的实现方式中,上述预设角度与第一子波长光束的预设光能衰减量正相关,上述第一子波长光束的预设光能衰减量不超过所述功率均衡器的增益平坦滤波曲线中该第一子波长光束对应的光能衰减量的最小值。
一种可能的实现方式中,上述输入输出组件包括多个端口的光纤阵列和/或多个端口的准直器阵列,该多个端口的光纤阵列和/或多个端口的准直器阵列包括至少一个输入端口和至少一个输出端口。
一种可能的实现方式中,所述功率均衡器还包括偏振处理组件,该偏振处理组件用于统一所述第一光束的偏振。
一种可能的实现方式中,上述偏振处理组件包括偏振分束器和二分之一波片,偏振分束器用于将上述第一光束的互相垂直的水平偏振分量和垂直偏振分量分离成两束平行的光束;二分之一波片用于将该两束平行的光束偏振合束得到偏振处理后的第一光束。
本申请公开的功率均衡器主要用于光纤放大中,通过预衰减器件对输入光先进行了一定量的衰减,当光信号到达光束调制器上时,光束调制器需要执行的光信号衰减的动态范围得到大大减小,从而可以实现更加灵活高效的调节光信号的增益平坦曲线,大大降低了大范围动态衰减带来的插损等性能劣化的风险,提高了光纤放大的NF性能和WDM链路的OSNR。
第二方面,本申请实施例提供了一种功率均衡器中的光束调节方法,该功率均衡器包括输入输出组件、分波合波器、预衰减器件和光束调制器,所述方法包括:
输入输出组件输入第一光束;
分波合波器将上述第一光束进行分波得到多个第一子波长光束,并将上述多个第一子波长光束传播至预衰减器件;
调节上述分波合波器和预衰减器件之间的相对位置和相对倾角使上述第一子波长光束以预设角度入射到光束调制器上,其中,预设角度是相对于垂直于光束调制器的方向而偏离的角度,上述第一子波长光束对应的预设角度与第一子波长光束的预设光能衰减量相关,上述第一子波长光束的预设光能衰减量与第一子波长光束的波长相关;
光束调制器将经过预衰减器件的多个第一子波长光束进行角度偏转得到多个第二子波长光束;
预衰减器件将上述多个第二子波长光束映射到分波合波器上;
分波合波器将多个第二子波长光束进行合波得到第二光束;
输入输出组件输出该第二光束。
一种可能的实现方式中,上述分波合波器和第一预衰减器件之间的相对位置和相对倾角包括分波合波器的旋转角、分波合波器与第一预衰减器件的距离等;当分波合波器为光栅棱镜时,上述分波合波器和第一预衰减器件之间的相对位置和相对倾角还包括光栅棱镜中棱镜的角度或旋转角。
一种可能的实现方式中,分波合波器将所述第一光束进行分波得到多个第一子波长光束之前,所述方法还包括:
偏振分束器将所述第一光束的互相垂直的水平偏振分量和垂直偏振分量分离成两束平行的光束;所述二分之一波片将所述两束平行的光束偏振合束得到偏振处理后的所述第一光束。
第三方面,本申请实施例提供了又一种功率均衡器,该功率均衡器包括输入输出组件、第二预衰减器件、分波合波器、光学转换器和光束调制器;
第一光束从输入输出组件输入;第二预衰减器件,用于对第一光束中的多个第一子波长光束分别进行光能的衰减,上述第一子波长光束光能的衰减量与第一子波长光束的波长相关;分波合波器将上述经过第二预衰减器件的第一光束进行分波使上述多个第一子波长光束色散,并将上述多个第一子波长光束传播至上述光学转换器件;光学转换器件将上述多个第一子波长光束传播至光束调制器;光束调制器将上述多个第一子波长光束进行角度偏转得到多个第二子波长光束;光学转换器件将上述多个第二子波长光束传播至上述分波合波器上;分波合波器将多个第二子波长光束进行合波得到第二光束;第二光束经第二预衰减器件传播至输入输出组件后,从输入输出组件输出。
一种可能的实现方式中,第二预衰减器件为无源滤波器,包括如下器件中的任意一种:棱镜、镀膜玻璃、波导或长周期光栅。
一种可能的实现方式中,所述光学转换器件为透镜或反射镜;当所述光学转换器件为透镜时,所述功率均衡器还包括另一透镜,该另一透镜位于所述分波合波器之前,上述另一透镜与上述分波合波器之间的距离等于该另一透镜的焦距,上述光学转换器件与分波合波器的距离等于上述光学转换器件的焦距。
一种可能的实现方式中,功率均衡器还包括偏振处理组件,偏振处理组件位于所述输入输出组件与所述预衰减器件之间,该偏振处理组件用于统一所述第一光束的偏振。
一种可能的实现方式中,偏振处理组件包括偏振分束器和二分之一波片,偏振分束器用于将上述第一光束的互相垂直的水平偏振分量和垂直偏振分量分离成两束平行的光束;二分之一波片用于将该两束平行的光束偏振合束得到偏振处理后的第一光束。
本实施例公开的功率均衡器主要用于光纤放大中,通过在输入输出组件后增加了预衰减器件,输入的光先进行了一定量的衰减,当光信号到达光束调制器上时,光束调制器需要执行的光信号衰减的动态范围得到大大减小,从而可以实现更加灵活高效的调节光信号的增益平坦曲线,大大提高光放性能。
第四方面,本申请实施例提供了再一种功率均衡器,该功率均衡器包括输入输出组件、第二预衰减器件、分波合波器、光学转换器和光束调制器;
第一光束从输入输出组件输入;分波合波器将第一光束进行分波得到多个第一子波长光束,并将上述多个第一子波长光束传播至第二预衰减器件;第二预衰减器件对上述多个第一 子波长光束分别进行光能的衰减,上述第一子波长光束光能的衰减量与第一子波长光束的波长相关;光学转换器件将上述经过衰减后的多个第一子波长光束传播至第一光束调制器;第一光束调制器将上述多个第一子波长光束进行角度偏转得到多个第二子波长光束;光学转换器件将上述多个第二子波长光束传播至预衰减器件后,经分波合波器合波得到第二光束,从输入输出组件输出。
一种可能的实现方式中,第二预衰减器件为无源滤波器,包括如下器件中的任意一种:棱镜、镀膜玻璃、波导或长周期光栅。
一种可能的实现方式中,所述光学转换器件为透镜或反射镜;当所述光学转换器件为透镜时,所述功率均衡器还包括另一透镜,该另一透镜位于所述分波合波器之前,上述另一透镜与上述分波合波器之间的距离等于该另一透镜的焦距,上述光学转换器件与分波合波器的距离等于上述光学转换器件的焦距。
一种可能的实现方式中,上述光学转换器件与光束调制器的距离等于上述光学转换器件的焦距;当上述光学转换器件与光束调制器的距离不等于上述光学转换器件的焦距的时候,会引入像差,此时第一子波长光束在光束调制器上无法聚焦,也会带来一定的衰减。
一种可能的实现方式中,功率均衡器还包括偏振处理组件,偏振处理组件位于所述输入输出组件与所述预衰减器件之间,该偏振处理组件用于统一所述第一光束的偏振。
一种可能的实现方式中,偏振处理组件包括偏振分束器和二分之一波片,偏振分束器用于将上述第一光束的互相垂直的水平偏振分量和垂直偏振分量分离成两束平行的光束;二分之一波片用于将该两束平行的光束偏振合束得到偏振处理后的第一光束。
本申请提供的功率均衡器及功率均衡器的调节方法,在光纤放大中可以实现更加灵活高效的调节光信号的增益平坦曲线,提高光放性能。
附图说明
为了更清楚地说明本申请的实施例或现有技术中的技术方案,下面将对描述背景技术和实施例时所使用的附图作简单的介绍。显而易见地,下面附图中描述的仅仅是本申请的一部分实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图和描述得到其他的附图或实施例,而本申请旨在涵盖所有这些衍生的附图或实施例。
图1a为本申请实施例公开的一种光放大器的结构示意图;
图1b为本申请实施例公开的又一种光放大器的结构示意图;
图2a为本申请实施例公开的一种功率均衡器的结构原理示意图;
图2b为本申请实施例公开的预设角度的说明示意图;
图3为本申请实施例公开的又一种功率均衡器的结构原理示意图;
图4为本申请实施例公开的一种功率均衡器的调节方法流程图;
图5为本申请实施例公开的再一种功率均衡器的结构原理示意图;
图6为本申请实施例公开的又一种功率均衡器的结构原理示意图;
图7为本申请实施例公开的再一种功率均衡器的结构原理示意图;
图8为本申请实施例公开的再一种功率均衡器的结构原理示意图;
图9为本申请实施例公开的再一种功率均衡器的结构原理示意图。
具体实施方式
本申请实施例中的“连接”是指光路上的连接,本领域技术人员可以理解,具体的光器件可能不一定具有实质的接触性的物理连接关系,但是这些光器件的空间位置和它们本身的器件特性让它们构成一种光路上的连接关系。
图1a为本申请实施例公开的一种光放大器的结构示意图。由图可知,该光放大器包括:光纤放大器101,功率均衡器102和控制器103;该光纤放大器101和该功率均衡器102依次连接,其中,光纤放大器的输入端即为光纤放大器的输入端,功率均衡器102的输出端即为光纤放大器的输出端,上述控制器包括控制输入端I和控制输出端O,控制输入端I用于接收光纤放大器的输入光信号,控制输出端O用于输出放大控制信号至上述光纤放大器101,以及输出调节控制信号至上述功率均衡器102;上述功率均衡器102,用于根据调节控制信号分别对每个波长进行功率调节。
在本实施例中,上述光纤放大器101和功率均衡器102的连接顺序可以互换,即功率均衡器102和光纤放大器101依次连接,本申请对此不做限制。
在本实施例中,上述功率均衡器102根据调节控制信号分别对每个波长进行功率调节,是指功率均衡器102通过对每个波长产生不同的插入损耗来实现对每个波长进行功率调节。即携带不同波长的光信号按照上述光纤放大器的增益特性参数实现对应倍数的功率放大,功率均衡器102对不同波长的光信号产生不同的插损值,该插损值作用于光纤放大器输出的每个波长光功率上,从而实现对每个波长进行功率调节的效果。
在本实施例中,上述控制器可以根据光纤放大器101的增益特性参数,功率均衡器102的调控特性参数,光纤放大器的目标输出光功率信息,以及光纤放大器的输入光信号,计算得到上述放大控制信号和调节控制信号。其中,光纤放大器101的增益特性参数可以为光纤放大器对各波长的功率放大倍数;功率均衡器102的调控特性参数可以为各波长的插损与调节控制信号的关系参数。
可以理解,本实施例所公开的光纤放大器可以根据输入端所接收到的输入光信号,计算得到放大控制信号和调节控制信号,该放大控制信号可以控制上述光纤放大器对每个波长进行功率放大,该调节控制信号可以控制功率均衡器分别对每个波长进行插损调节,该插损调节的效果作用于光纤放大器的每个波长的光功率,从而实现了对光纤放大器的增益曲线进行单波增益调节的效果,提高了对光纤放大器的增益曲线的调节精度。
因此,本实施例所公开的光纤放大器的增益曲线可以被调节为较为平坦,进而提高系统的平坦度,释放系统规格中设计的平坦余量,同时减少功率均衡器站点。
本申请实施例公开的功率均衡器还可以应用于两级放大器(第一放大器和第二放大器)中,如图1b所示,同理该功率均衡器还可以应用于三级以及三级以上的多级放大器中,原理与上述类同,在此不再赘述。
本申请实施例公开的功率均衡器主要针对稀土掺杂光纤放大器,例如,EDFA。本领域技术人员可知,随着技术发展,本申请的技术也可适用于其他正在开发或者待开发的稀土掺杂光纤放大器。下面将结合本申请实施例中的附图,对本申请实施例中的功率均衡器技术方案进行描述。
本申请的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序,应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以本申请未描述的顺序实施。“和/或”,用于描述关联对象的关联关系,表示可以存在三种 关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。方法实施例中的具体操作方法也可以应用于装置实施例中。此外,为了更加明显地体现不同实施例中的组件的关系,本申请采用相同的附图编号来表示不同实施例中功能相同或相似的组件。
还需要说明的是,除非特殊说明,一个实施例中针对一些技术特征的具体描述也可以应用于解释其他实施例提及对应的技术特征,例如图2b中关于预设角度的说明也可以应用其他相关实施例中。
图2a为本申请实施例公开的一种功率均衡器的结构原理示意图,如图2a所示,功率均衡器200包括输入输出组件201、分波合波器202、第一预衰减器件203和第一光束调制器204。本实施例中的第一光束可以为一束WDM光束,一束WDM光束可以包括多束(至少两束)子光束,各子光束的中心波长(或者说,各子光束的中心频点)彼此相异。
第一光束从输入输出组件201输入,分波合波器202将上述输入输出组件201入射的第一光束进行分波得到多个第一子波长光束,并将上述多个第一子波长光束传播至上述第一预衰减器件203(图2a中虚线代表一束光束,一束光束分解为四束仅为示意,实际可分解为多束);第一预衰减器件203将上述多个第一子波长光束分别以对应的预设角度入射到上述第一光束调制器204上,该预设角度与上述多个第一子波长光束中对应的第一子波长光束的预设光能衰减量相关,上述第一子波长光束的预设光能衰减量与第一子波长光束的波长相关;上述第一光束调制器204,用于将上述经过第一预衰减器件的多个第一子波长光束进行角度偏转得到多个第二子波长光束;上述第一预衰减器件203将该多个第二子波长光束传播至上述分波合波器202上;上述分波合波器202将上述多个第二子波长光束进行合波得到第二光束;该第二光束从上述输入输出组件201输出。
分波合波器202进行光束的分波或合波,可以是透射式光栅或反射式光栅或光栅棱镜;其中,光栅棱镜包括反射式光栅和棱镜,反射式光栅通常贴在棱镜上,反射式光栅实现输入光光谱的空间展开,而棱镜则实现输入光像差的控制。
第一预衰减器件203包括如下器件中的任意一种:透镜、凹面反射镜或球面反射镜。
具体地,上述分波合波器202和上述第一预衰减器件203之间的相对位置和相对倾角设置为使上述第一子波长光束以与其对应的预设角度入射到第一光束调制器204上,其中预设角度是相对于垂直于光束调制器的方向而偏离的角度,如图2b所示,这里预设角度是以偏离垂直方向的角度来定义的,如果定义某一个偏离方向为正,则与其相反的偏离方向就为负值。调节上述分波合波器202和上述第一预衰减器件203之间的相对位置和相对倾角可以引入像差,使得在光束调制器表面上光束的入射角随波长变化,即可以使各个第一子波长光束以各自的预设角度入射到光束调制器。第一子波长光束以预设角度入射,在光束调制器还未进行动态衰减调节前就已经镜面反射产生了相应的偏转角度,耦合输出后会有一定的衰减,在光路固定之后这个衰减也就是确定的,即实现了光束调制器动态衰减前的固定的预衰减。
这里,上述分波合波器202和第一预衰减器件203之间的相对位置和相对倾角包括分波合波器202的旋转角和/或分波合波器202与第一预衰减器件203的距离等;当分波合波器202为光栅棱镜时,上述分波合波器202和第一预衰减器件203之间的相对位置和相对倾角还包括光栅棱镜中棱镜的角度或旋转角。
一般地,每个第一子波长光束对应的预设角度与该第一子波长光束的对应预设光能衰减量呈正相关关系,即预设角度越大,则其预设光能衰减量越大,值得注意的是,这里在比较预设角度大小的时候,是对预设角度的绝对值进行比较。其中,上述多个第一子波长光束中 中每个第一子波长光束的波长不同;每个第一子波长光束对应的预设光能衰减量可以相同,亦可以不同;进而每个第一子波长光束对应的预设角度可以相同,亦可以不同。
具体地,上述第一子波长光束经过第一预衰减器件203的预衰减处理后,通过控制上述第一光束调制器204上不同区域的液晶相位、光信号幅度或角度,使入射光发生偏转,进而分别控制上述各个第一子波长光束的光能衰减,平坦第一光束的增益曲线后得到第二光束。其中,第一光束调制器204对上述第一子波长光束的偏转角度与该第一子波长光束对应的第一光束调制器204上的动态的衰减量相关。
第一光束调制器204可以是MEMS(Micro-Electro-Mechanical Systems,微机电系统)或者LCoS(Liquid Crystal on Silicon,硅基液晶)。在LCoS上面加载周期变化的灰度图,形成相位光栅,从而对反射光进行偏转,其偏转角度与光栅周期通常呈正相关;反射光偏转之后反射回输出端口会产生耦合损耗,损耗大小与偏转角度正相关,所以可以通过改变LCoS上的灰度图周期来控制对反射光的能量衰减。不同波长的光束入射到LCoS上的不同区域,在不同区域加载周期不同的灰度图就可以产生预设的滤波曲线对输入光的增益谱进行平坦化,当增益谱变化后,可以再更新加载图像产生新的对应的平坦化滤波曲线,实现对输入光动态均衡的功能。
第一预衰减器件203对上述各个第一子波长光束的的衰减构成的预衰减曲线与第一光束调制器204的动态衰减曲线叠加构成功率均衡器的增益平坦滤波曲线。
值得注意的是,实际应用中,会对上述功率均衡器设计增益平坦曲线,每个第一子波长光束对应的预设光能衰减量不超过上述功率均衡器的所有设计的增益平坦滤波曲线中该第一子波长光束对应的光能衰减量的最小值。
本申请实施例中,输入输出组件201包括多个端口的光纤阵列和/或多个端口的准直器阵列,其中,多个端口的光纤阵列和/或多个端口的准直器阵列中至少有一个输入端口且至少有一个输出端口。
可选地,输入输出组件201可以包括光纤阵列和/或准直器阵列。其中,光纤阵列可以包括一维排列的N个输入光纤(N为正整数),其中N个输入光纤用于获取来自各维度的光束,具体的,光纤阵列可以包括在端口交换平面一维排列的N个输入光纤;准直器阵列可以包括一维排列的N个准直器,分别与N个输入光纤对应,用于将该N个输入光纤输入的光束转换成准直光束,具体的,输入准直器阵列可以包括在端口交换平面一维排列的N个准直器。其中,该N个准直器与N个输入光纤一一对应,一个准直器用于对从所对应的输入光纤输出的光束进行准直,也可以理解为将输入光纤输入的光束转换成平行光,同时扩展光束束腰值以便于进行后续的光路处理。同样地,输入输出组件201可以包括N个用于维度输出的维度输出端口,第二光束可以从N个维度输出端口中的一个端口输出。
输出输出组件201还可以外接或内置环形器,环形器用于输入输出分离。
本实施例公开的功率均衡器主要用于光纤放大中,通过预衰减器件对输入光先进行了一定量的衰减,当光信号到达光束调制器上时,光束调制器需要执行的光信号衰减的动态范围得到大大减小,从而可以实现更加灵活高效的调节光信号的增益平坦曲线,大大降低了大范围动态衰减带来的插损等性能劣化的风险,提高了光纤放大的NF(Noise Figure,噪声指数)性能和WDM链路的OSNR(Optical Signal-to-Noise Ratio,光信噪比)。
图3为本申请实施例公开的又一种功率均衡器的结构原理示意图,如图3所示,功率均衡器300包括输入输出组件201、偏振处理组件301、分波合波器202、第一预衰减器件203和第二 光束调制器302。
第一光束从输入输出组件201输入,偏振处理组件301将准直后的第一光束统一偏振;经偏振处理后的第一光束在分波合波器202上进行光束的分波,分波合波器202将上述第一光束进行分波得到多个第一子波长光束,并将上述多个第一子波长光束传播至上述第一预衰减器件203;第一预衰减器件203将上述多个第一子波长光束分别以对应的预设角度入射到上述第一光束调制器204上,该预设角度与上述多个第一子波长光束中对应的第一子波长光束的预设光能衰减量相关,上述第一子波长光束的预设光能衰减量与第一子波长光束的波长相关;上述第一光束调制器204,用于将上述经过第一预衰减器件的多个第一子波长光束进行角度偏转得到多个第二子波长光束;上述第一预衰减器件203将该多个第二子波长光束传播至上述分波合波器202上;上述分波合波器202将上述多个第二子波长光束进行合波得到第二光束;该第二光束从上述输入输出组件201输出。
输入输出组件201、分波合波器202和第一预衰减器件203的相关描述参见上述图2a对应的实施例,此处不再赘述。
上述分波合波器202和上述第一预衰减器件203之间的相对位置和相对倾角设置为使上述第一子波长光束以与其对应的预设角度入射到第一光束调制器204上,其中预设角度是相对于垂直于光束调制器的方向而偏离的角度。
上述分波合波器202和第一预衰减器件203之间的相对位置和相对倾角包括分波合波器202的旋转角、分波合波器202与第一预衰减器件203的距离或分波合波器202与偏振处理组件301的距离等;当分波合波器202为光栅棱镜时,上述分波合波器202和第一预衰减器件203之间的相对位置和相对倾角还包括光栅棱镜中棱镜的角度或旋转角。
具体地,偏振处理组件301包括偏振分束器和二分之一波片,所述偏振分束器用于将所述第一光束的互相垂直的水平偏振分量和垂直偏振分量分离成两束平行的光束;所述二分之一波片用于将所述两束平行的光束偏振合束得到偏振处理后的所述第一光束,例如旋转垂直偏振光束90度至水平偏振,将第一光束统一成水平偏振。上述分波合波器件203与偏振处理组件301的距离具体可以是分波合波器件203与偏振分束器的距离。
其中,第二光束调制器302与图2a实施例中第一光束调制器204的区别在于,第二光束调制器301一般可以为偏振相关的LCoS或LC(Liquid Crystal,液晶)。LCoS技术是利用液晶光栅原理,调整不同波长的光反射角度来达到分离光的目的。由于没有活动部件,LCoS技术具有相当高的可靠性。LCoS技术采用液晶单元折射率变化控制实现反射角变化,可以方便的实现扩展和升级。不同通道对应空间光调制器(液晶)阵列的不同区域,通过调节光斑的相位,来改变光的传输方向。LC可以通过施加电压控制光束偏振态旋转,再经过检偏器就可以实现对不同波长的光进行衰减。检偏器也就是偏振片,主要作用是把入射光变成线偏振光出射。当偏振片放置在光源组件上时叫做起偏器,用来将光源发出的光变成线偏振光,当偏振片放置在光电传感器前方用来检测某一束光的偏振态时,被称为检偏器。
图4为本申请实施例公开的一种功率均衡器中的光束调节方法流程图,如图4所示,该功率均衡器中的光束调节方法应用于上述实施例提供的功率均衡器,该方法包括:
S401、输入输出组件输入第一光束;
S402、分波合波器将上述第一光束进行分波得到多个第一子波长光束,并将该多个第一子波长光束传播至第一预衰减器件;
S403、调节分波合波器和第一预衰减器件之间的相对位置和相对倾角使上述第一子波长 光束以预设角度入射到光束调制器上;
其中预设角度是相对于垂直于光束调制器的方向而偏离的角度,上述第一子波长光束对应的预设角度与第一子波长光束的预设光能衰减量相关,上述第一子波长光束对应的预设光能衰减量与第一子波长光束的波长相关;一般地,每个第一子波长光束对应的预设角度与该第一子波长光束的对应预设光能衰减量呈正相关关系,即预设光能衰减量越大,则其预设角度越大。
S404、光束调制器将上述经过第一预衰减器件的多个第一子波长光束进行角度偏转得到多个第二子波长光束;
S405、第一预衰减器件将所述多个第二子波长光束映射到所述分波合波器上;
S406、分波合波器将所述多个第二子波长光束进行合波得到第二光束;
S407、输入输出组件输出所述第二光束。
可选地,在步骤S402分波合波器将上述第一光束进行分波得到多个第一子波长光束之前,所述方法还包括:
偏振分束器将第一光束的互相垂直的水平偏振分量和垂直偏振分量分离成两束平行的光束;二分之一波片将该两束平行的光束偏振合束得到偏振处理后的第一光束。
本实施例所描述的方法与图2a-图3描述的设备的实施例对应,相关部分互相参见即可,在此不再赘述。
图5为本申请实施例公开的再一种功率均衡器的结构原理示意图,如图5所示,功率均衡器500包括输入输出组件201、第二预衰减器件501、分波合波器202、光学转换器502和第一光束调制器204。
第一光束从输入输出组件201输入;第二预衰减器件501,用于对第一光束中的多个第一子波长光束分别进行光能的衰减,上述第一子波长光束光能的衰减量与第一子波长光束的波长相关;分波合波器202将上述经过第二预衰减器件501的第一光束进行分波使上述多个第一子波长光束色散,并将上述多个第一子波长光束传播至上述光学转换器件502;光学转换器件502将上述多个第一子波长光束传播至第一光束调制器204;第一光束调制器204将上述多个第一子波长光束进行角度偏转得到多个第二子波长光束;光学转换器件502将上述多个第二子波长光束传播至上述分波合波器202上;分波合波器202将多个第二子波长光束进行合波得到第二光束;第二光束经第二预衰减器件501传播至上述输入输出组件201后,从输入输出组件201输出。
在本实施例中,第二预衰减器件501可以是如下器件中的任意一种:根据不同波长产生不同像差的棱镜、镀膜玻璃、波导或长周期光栅等无源滤波器。
具体地,第二预衰减器件501针对每个第一子波长光束进行预设的衰减,其中,上述多个第一子波长光束中中每个第一子波长光束的波长不同;每个第一子波长光束对应的预设光能衰减量可以相同,亦可以不同。
光学转换器502可以是球面透镜或球面反射镜。
本实施例中输入输出组件201、分波合波器202和第一光束调制器204的相关描述参见图2a对应的实施例。
本实施例公开的功率均衡器主要用于光纤放大中,通过在输入输出组件后增加了预衰减器件,输入的光先进行了一定量的衰减,当光信号到达光束调制器上时,光束调制器需要执行的光信号衰减的动态范围得到大大减小,从而可以实现更加灵活高效的调节光信号的增益 平坦曲线,大大降低了大范围动态衰减带来的插损等性能劣化的风险,提高了光纤放大的NF性能和WDM链路的OSNR。
图6为本申请实施例公开的又一种功率均衡器的结构原理示意图,如图6所示,该功率均衡器600与功率均衡器500不同之处在于,功率均衡器500的第二预衰减器件501位于输入输出组件201和分波合波器202之间,而功率均衡器600的第二预衰减器件501位于分波合波器202和光学转换器件502之间。
第一光束从输入输出组件201输入;分波合波器202将第一光束进行分波得到多个第一子波长光束,并将上述多个第一子波长光束传播至第二预衰减器件501;第二预衰减器件501对上述多个第一子波长光束分别进行光能的衰减,上述第一子波长光束光能的衰减量与第一子波长光束的波长相关;光学转换器件502将上述经过衰减后的多个第一子波长光束传播至第一光束调制器204;第一光束调制器204将上述多个第一子波长光束进行角度偏转得到多个第二子波长光束;光学转换器件502将上述多个第二子波长光束传播至预衰减器件501后,经分波合波器202合波得到第二光束,从输入输出组件201输出。
本实施例中输入输出组件201、分波合波器202、第一光束调制器204以及其它相关描述参见上述实施例,在此不再赘述。
图7为本申请实施例公开的再一种功率均衡器的结构原理示意图,如图7所示,该功率均衡器700包括输入输出组件201、偏振处理组件301、第二预衰减器件501、分波合波器202、光学转换器502和第二光束调制器302。
第一光束从输入输出组件201输入;偏振处理组件301将准直后的第一光束统一偏振;经偏振处理后的第一光束在分波合波器202上进行光束的分波;分波合波器202将第一光束进行分波得到多个第一子波长光束,并将上述多个第一子波长光束传播至第二预衰减器件501;第二预衰减器件501对上述多个第一子波长光束分别进行光能的衰减,上述第一子波长光束光能的衰减量与第一子波长光束的波长相关;光学转换器件502将上述经过衰减后的多个第一子波长光束传播至第二光束调制器302;第二光束调制器302将上述多个第一子波长光束进行角度偏转得到多个第二子波长光束后,经过光学转换器件502和预衰减器件501,在分波合波器202合波得到第二光束,从输入输出组件201输出。
图8为本申请实施例公开的再一种功率均衡器的结构原理示意图,如图8所示,该功率均衡器800包括输入输出组件201、第二预衰减器件501、透镜801、分波合波器202、透镜802和第一光束调制器204。
第一光束从输入输出组件201输入;第二预衰减器件501,用于对第一光束中的多个第一子波长光束分别进行光能的衰减,上述第一子波长光束光能的衰减量与第一子波长光束的波长相关;透镜801将第一光束映射到分波合波器202上;分波合波器202进行分波使上述多个第一子波长光束色散,并将上述多个第一子波长光束传播至上述透镜802;透镜802将上述多个第一子波长光束传播至第一光束调制器204;第一光束调制器204将上述多个第一子波长光束进行角度偏转得到多个第二子波长光束;第二子波长光束再次经过透镜802映射再上述分波合波器202上合波得到第二光束;第二光束经过透镜801和第二预衰减器件501,从输入输出组件201输出。
可选地,透镜801与透镜802焦距相同;透镜801与分波合波器202的距离等于透镜801的焦距,透镜802与分波合波器202的距离等于透镜802的焦距,构成4f(f为透镜的焦距)系统;需要说明的是,图5中示出仅为一种示意,透镜801和透镜802还可以用其他器件替代,例如球 面反射镜,这里并不限定。
可选地,透镜802与第一光束调制器204的距离等于透镜802的焦距;当透镜802与第一光束调制器204的距离不等于透镜802的焦距的时候,会引入像差,此时第一子波长光束在第一光束调制器204上无法聚焦,也会带来一定的光能的衰减。
图9为本申请实施例公开的再一种功率均衡器的结构原理示意图,如图9所示,该功率均衡器900包括输入输出组件201、偏振处理组件301、第二预衰减器件501、透镜801、分波合波器202、透镜802和第二光束调制器302。
可选地,透镜801与透镜802焦距相同;透镜801与分波合波器202的距离等于透镜801的焦距,透镜802与分波合波器202的距离等于透镜802的焦距,构成4f(f为透镜的焦距)系统。
可选地,透镜802与第二光束调制器302的距离等于透镜802的焦距;
本说明书中的各个实施例之间相同相似的部分互相参见即可,尤其,对于图7-图9对应的实施例描述的较简单,参见上述实施例即可。
最后应说明的是:以上所述仅为本申请的具体实施方式,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (14)

  1. 一种功率均衡器,其特征在于,包括:
    输入输出组件、分波合波器、预衰减器件、光束调制器;
    所述输入输出组件,用于输入第一光束;
    所述分波合波器,用于将所述输入输出组件入射的第一光束进行分波得到多个第一子波长光束,并将所述多个第一子波长光束传播至所述预衰减器件;
    所述预衰减器件,用于将所述第一子波长光束以预设角度入射到所述光束调制器上,所述预设角度与所述第一子波长光束的预设光能衰减量相关,所述第一子波长光束的预设光能衰减量与所述第一子波长光束的波长相关;
    所述光束调制器,用于将所述经过预衰减器件的多个第一子波长光束进行角度偏转得到多个第二子波长光束;
    所述预衰减器件,还用于将所述多个第二子波长光束传播至所述分波合波器上;
    所述分波合波器,还用于将所述多个第二子波长光束进行合波得到第二光束;
    所述输入输出组件,还用于输出所述第二光束。
  2. 如权利要求1所述的功率均衡器,其特征在于,所述分波合波器和所述预衰减器件之间的相对位置和相对倾角设置为使所述第一子波长光束以预设角度入射到所述光束调制器上。
  3. 如权利要求1-2所述的功率均衡器,其特征在于,所述预设角度与所述第一子波长光束的预设光能衰减量正相关,所述第一子波长光束的预设光能衰减量不超过所述功率均衡器的增益平坦滤波曲线中所述第一子波长光束对应的光能衰减量的最小值。
  4. 如权利要求1-3任一所述的功率均衡器,其特征在于,所述预衰减器件包括如下器件中的任意一种:透镜、凹面反射镜或球面反射镜。
  5. 如权利要求1-4任一所述的功率均衡器,其特征在于,所述输入输出组件包括多个端口的光纤阵列和/或多个端口的准直器阵列,所述多个端口的光纤阵列和/或多个端口的准直器阵列包括至少一个输入端口和至少一个输出端口。
  6. 如权利要求1-5任一所述的功率均衡器,其特征在于,所述功率均衡器还包括偏振处理组件,所述偏振处理组件包括偏振分束器和二分之一波片,所述偏振分束器用于将所述第一光束的互相垂直的水平偏振分量和垂直偏振分量分离成两束平行的光束;所述二分之一波片用于将所述两束平行的光束偏振合束得到偏振处理后的所述第一光束。
  7. 一种功率均衡器,其特征在于,包括:
    输入输出组件、预衰减器件、分波合波器、光学转换器件、光束调制器;
    所述输入输出组件,用于输入第一光束;
    所述预衰减器件,用于对所述第一光束中的多个第一子波长光束分别进行光能的衰减,所述第一子波长光束光能的衰减量与所述第一子波长光束的波长相关;
    所述分波合波器,用于将所述经过预衰减器件的第一光束进行分波使所述多个第一子波长光束色散,并将所述多个第一子波长光束传播至所述光学转换器件;
    所述光学转换器件,用于将所述多个第一子波长光束传播至所述光束调制器;
    所述光束调制器,用于将所述多个第一子波长光束进行角度偏转得到多个第二子波长光束;
    所述光学转换器件,还用于将所述多个第二子波长光束传播至所述分波合波器上;
    所述分波合波器,还用于将所述多个第二子波长光束进行合波得到第二光束;
    所述预衰减器件,还用于将所述第二光束传播至所述输入输出组件;
    所述输入输出组件,还用于输出所述第二光束。
  8. 如权利要求7所述的功率均衡器,其特征在于,所述预衰减器件为无源滤波器,包括如下器件中的任意一种:棱镜、镀膜玻璃、波导或长周期光栅。
  9. 如权利要求7或8任一所述的功率均衡器,其特征在于,所述光学转换器件为透镜或反射镜;
    当所述光学转换器件为透镜时,所述功率均衡器还包括另一透镜,所述另一透镜位于所述分波合波器之前,所述另一透镜与所述分波合波器之间的距离等于所述另一透镜的焦距,所述光学转换器件与所述分波合波器的距离等于所述光学转换器件的焦距,所述光学转换器件与所述光束调制器之间距离等于光学转换器件的焦距。
  10. 如权利要求7-9任一所述的功率均衡器,其特征在于,所述功率均衡器还包括偏振处理组件,所述偏振处理组件位于所述输入输出组件与所述预衰减器件之间,所述偏振处理组件用于统一所述第一光束的偏振。
  11. 如权利要求7-10任一所述的功率均衡器,其特征在于,所述偏振处理组件包括偏振分束器和二分之一波片,所述偏振分束器用于将所述第一光束的互相垂直的水平偏振分量和垂直偏振分量分离成两束平行的光束;所述二分之一波片用于将所述两束平行的光束偏振合束得到偏振处理后的所述第一光束。
  12. 一种功率均衡器,其特征在于,包括:
    输入输出组件、分波合波器、预衰减器件、光学转换器件、光束调制器;
    所述输入输出组件,用于输入第一光束;
    所述分波合波器,用于将所述第一光束进行分波得到所述多个第一子波长光束,并将所述多个第一子波长光束传播至所述预衰减器件;
    所述预衰减器件,用于对所述第一光束中的多个第一子波长光束分别进行光能的衰减,所述第一子波长光束光能的衰减量与所述第一子波长光束的波长相关;
    所述光学转换器件,用于将所述经过预衰减器件的多个第一子波长光束传播至所述光束调制器;
    所述光束调制器,用于将所述多个第一子波长光束进行角度偏转得到多个第二子波长光束;
    所述预衰减器件,还用于将所述多个第二子波长光束传播至所述光学转换器件;
    所述光学转换器件,还用于将所述多个第二子波长光束传播至所述分波合波器上;
    所述分波合波器,还用于将所述多个第二子波长光束进行合波得到第二光束;
    所述输入输出组件,还用于输出所述第二光束。
  13. 如权利要求12所述的功率均衡器,其特征在于,所述预衰减器件为无源滤波器,包括如下器件中的任意一种:棱镜、镀膜玻璃、波导或长周期光栅。
  14. 如权利要求12或13任一所述的功率均衡器,其特征在于,所述光学转换器件为透镜或反射镜;
    当所述光学转换器件为透镜时,所述功率均衡器还包括另一透镜,所述另一透镜位于所述分波合波器之前,所述另一透镜与所述分波合波器之间的距离等于所述另一透镜的焦距,所述光学转换器件与所述分波合波器的距离等于所述光学转换器件的焦距,所述光学转换器件与所述光束调制器之间距离等于光学转换器件的焦距。
PCT/CN2020/110897 2019-10-14 2020-08-24 功率均衡器及功率均衡器的调节方法 WO2021073251A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20876178.3A EP3978988A4 (en) 2019-10-14 2020-08-24 POWER EQUALIZER AND CORRESPONDING ADJUSTMENT METHOD
US17/575,534 US12085760B2 (en) 2019-10-14 2022-01-13 Power equalizer and adjustment method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910974368.0 2019-10-14
CN201910974368.0A CN112737683B (zh) 2019-10-14 2019-10-14 功率均衡器及功率均衡器的调节方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/575,534 Continuation US12085760B2 (en) 2019-10-14 2022-01-13 Power equalizer and adjustment method therefor

Publications (1)

Publication Number Publication Date
WO2021073251A1 true WO2021073251A1 (zh) 2021-04-22

Family

ID=75537634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110897 WO2021073251A1 (zh) 2019-10-14 2020-08-24 功率均衡器及功率均衡器的调节方法

Country Status (4)

Country Link
US (1) US12085760B2 (zh)
EP (1) EP3978988A4 (zh)
CN (1) CN112737683B (zh)
WO (1) WO2021073251A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737683B (zh) * 2019-10-14 2023-05-16 华为技术有限公司 功率均衡器及功率均衡器的调节方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226848A (zh) * 2011-06-03 2011-10-26 孙方红 一种波长选择开关结构
CN102707387A (zh) * 2012-06-08 2012-10-03 武汉邮电科学研究院 波长选择开关及切换方法
CN103091787A (zh) * 2013-01-17 2013-05-08 珠海保税区光联通讯技术有限公司 可调光衰减器及可调光衰减波分复用器
CN104756422A (zh) * 2013-09-27 2015-07-01 华为技术有限公司 波长选择开关和控制波长选择开关中的空间相位调制器的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1239933C (zh) * 2001-03-19 2006-02-01 卡佩拉光子学公司 一种光学装置
US6782205B2 (en) * 2001-06-25 2004-08-24 Silicon Light Machines Method and apparatus for dynamic equalization in wavelength division multiplexing
US20030053750A1 (en) * 2001-09-20 2003-03-20 Yang William (Wei) Dynamic channel power equalizer based on VPG elements
US20030086146A1 (en) * 2001-11-05 2003-05-08 Meyers Mark M Optical attenuation device for use as an optical add/drop with spectrally selective attenuation and a method of manufacture therefor
US7133202B1 (en) * 2004-04-05 2006-11-07 Rainbow Communications Inc. Method and system for flexible and cost effective dynamic tilt gain equalizer
JP4476140B2 (ja) * 2005-03-07 2010-06-09 富士通株式会社 波長選択スイッチ
US8867917B2 (en) * 2011-06-27 2014-10-21 Finisar Corporation Optical wavelength selective switch calibration system
CN103885122B (zh) * 2012-12-21 2019-02-01 上海矽睿科技有限公司 Mems阵列电可调谐光衰减器及其制备方法
CN103076655B (zh) * 2013-01-17 2016-06-29 珠海保税区光联通讯技术有限公司 可调光衰减波分复用器
ES2663239T3 (es) * 2013-08-22 2018-04-11 Huawei Technologies Co., Ltd. Conmutador selectivo de longitud de onda
US9588299B2 (en) * 2014-01-29 2017-03-07 Oplink Communications, Inc. 2×2 wavelength selective switch array
CN104459881B (zh) * 2014-12-31 2017-04-12 武汉邮电科学研究院 偏振不敏感的波分复用型硅基光接收芯片
CN204855860U (zh) * 2015-06-30 2015-12-09 北极光电(深圳)有限公司 一种可插拔和监控的可调光衰减器
CN110730034B (zh) * 2018-07-16 2022-02-25 华为技术有限公司 频偏处理方法、装置、设备及存储介质
CN112737683B (zh) * 2019-10-14 2023-05-16 华为技术有限公司 功率均衡器及功率均衡器的调节方法
CN114545557A (zh) * 2020-11-26 2022-05-27 华为技术有限公司 一种光处理装置及光学系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226848A (zh) * 2011-06-03 2011-10-26 孙方红 一种波长选择开关结构
CN102707387A (zh) * 2012-06-08 2012-10-03 武汉邮电科学研究院 波长选择开关及切换方法
CN103091787A (zh) * 2013-01-17 2013-05-08 珠海保税区光联通讯技术有限公司 可调光衰减器及可调光衰减波分复用器
CN104756422A (zh) * 2013-09-27 2015-07-01 华为技术有限公司 波长选择开关和控制波长选择开关中的空间相位调制器的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3978988A4

Also Published As

Publication number Publication date
US12085760B2 (en) 2024-09-10
EP3978988A1 (en) 2022-04-06
CN112737683A (zh) 2021-04-30
US20220137300A1 (en) 2022-05-05
EP3978988A4 (en) 2022-08-24
CN112737683B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
US6898348B2 (en) Spectral power equalizer for wavelength-multiplexed optical fiber communication links
US5805759A (en) Optical equalizer having variable transmittance versus wavelength characteristics for attenuating light
JP6102943B2 (ja) 光デバイス
US6856459B1 (en) Apparatus and method for controlling polarization of an optical signal
US9294217B2 (en) Optical signal multiplexing method and optical multiplexer
US20140313469A1 (en) RECONFIGURABLE 1xN FEW-MODE FIBER OPTICAL SWITCH BASED ON A SPATIAL LIGHT MODULATOR
US6721475B1 (en) Apparatus and method for providing gain equalization
WO2021073251A1 (zh) 功率均衡器及功率均衡器的调节方法
US20030053750A1 (en) Dynamic channel power equalizer based on VPG elements
US6842239B2 (en) Alignment of multi-channel diffractive WDM device
US7116862B1 (en) Apparatus and method for providing gain equalization
US6493488B1 (en) Apparatus and method for high speed optical signal processing
US20240280736A1 (en) Optical filter system and method
US6876475B1 (en) Dual modulator wavelength-selective switch and equalizer
US20220344891A1 (en) Gain Adjuster, Gain Adjustment Method, and Optical Line Terminal
JP2004253931A (ja) 直交偏波多重伝送装置
CN214097867U (zh) 一种多波长信号共纤同传的装置
US7218857B1 (en) Method, apparatus and system for a re-configurable optical add-drop multiplexer
US7286288B2 (en) Method and system for flexible and cost effective dynamic tilt gain equalizer
JP2004240215A (ja) 光通信デバイスおよび光通信システム
CN117031794B (zh) 一种动态信道均衡滤波器及光纤通信系统
US7043110B1 (en) Wavelength-selective switch and equalizer
JP2005062565A (ja) 集積光フィルタ
Yuan et al. Dynamic gain equalizer based on liquid crystal technology
JPWO2002079865A1 (ja) 可変光等化器および光多重伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876178

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020876178

Country of ref document: EP

Effective date: 20220103

NENP Non-entry into the national phase

Ref country code: DE