WO2021073219A1 - 一种gil-架空混合线路保护方法及系统 - Google Patents

一种gil-架空混合线路保护方法及系统 Download PDF

Info

Publication number
WO2021073219A1
WO2021073219A1 PCT/CN2020/108295 CN2020108295W WO2021073219A1 WO 2021073219 A1 WO2021073219 A1 WO 2021073219A1 CN 2020108295 W CN2020108295 W CN 2020108295W WO 2021073219 A1 WO2021073219 A1 WO 2021073219A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
gil
hybrid
protection
remote
Prior art date
Application number
PCT/CN2020/108295
Other languages
English (en)
French (fr)
Inventor
赵剑松
李宝伟
李文正
李旭
姜自强
董新涛
方正
冉志勇
刘林涛
腾晨旭
王振宇
Original Assignee
许继集团有限公司
许继电气股份有限公司
许昌许继软件技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许继集团有限公司, 许继电气股份有限公司, 许昌许继软件技术有限公司 filed Critical 许继集团有限公司
Publication of WO2021073219A1 publication Critical patent/WO2021073219A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/261Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations
    • H02H7/262Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured involving signal transmission between at least two stations involving transmissions of switching or blocking orders

Definitions

  • This application relates to a GIL-overhead hybrid line protection method and system.
  • GIL-overhead hybrid line As shown in Figure 1, it is a conventional GIL-overhead hybrid line topology, between two overhead lines A section of GIL line is provided, that is, the GIL-overhead hybrid line topology includes one GIL line section and two overhead line sections other than the GIL line section.
  • the structure of the GIL line section is very complex, and its characteristics and parameters are significantly different from those of the overhead line section. Therefore, the access of the GIL line section makes the line parameters of the hybrid line no longer uniform.
  • Traditional relay protection principles and protection schemes based on uniform line parameters cannot meet the requirements of GIL-overhead hybrid lines.
  • Traditional protection methods based on uniform line parameters will have large errors when applied to GIL-overhead hybrid lines. For example, : If distance protection is used, it may cause refusal or misoperation, because distance protection requires uniform line parameters. Therefore, the application of traditional protection methods based on uniform line parameters in GIL-overhead hybrid lines will reduce the reliability of protection actions. .
  • the purpose of this application is to provide a GIL-overhead hybrid line protection method and system to solve the problem that traditional relay protection based on uniform line parameters may cause refusal or misoperation, resulting in low reliability of protection actions.
  • the embodiment of the present application provides a protection system for a GIL-overhead hybrid line, which includes a GIL line section and an overhead line section,
  • One end of the GIL line section is provided with the first GIL line protection device and the first GIL line remote jumping device, and the other end is provided with the second GIL line protection device and the second GIL line remote jumping device;
  • One end of the hybrid line is provided with a first hybrid line protection device and a first hybrid line remote jump device, and the other end is provided with a second hybrid line protection device and a second hybrid line remote jump device;
  • the first GIL line remote jump device and the first hybrid line remote jump device are on the same side, and the second GIL line remote jump device and the second hybrid line remote jump device are on the same side;
  • the first GIL line protection device sends a trip signal to the first hybrid line remote trip device through the first GIL remote trip device, and when the first hybrid line remote trip device receives the trip signal, it trips and parallels Send a blocking reclose signal to the first hybrid line protection device;
  • the second GIL line protection device sends a trip signal to the second hybrid line remote trip device through the second GIL remote trip device, and the second hybrid line remote trip device receives the trip Signal, trip and send a lock-reclosing signal to the second hybrid line protection device.
  • a GIL line remote trip device is added on the side of the GIL line protection device, which is used to generate a trip signal when the GIL line section fails, and the newly added GIL line remote trip device independently sends the trip signal
  • the remote trip device of the hybrid line protection device performs a trip action when receiving a trip signal and sends a blocking reclose signal to the hybrid line protection device to block the circuit breaker to reclose to realize the GIL line
  • the reclosing function is blocked in the event of a fault in the section.
  • the newly installed GIL line remote trip device enables the protection system to independently send a trip signal when the GIL line section fails, which will not affect the logic discrimination of the protection device and the sending of other commands, which will cause the protection system to fail.
  • the protection reliability is high, meeting the requirements of the GIL-overhead hybrid line, and realizing the reliable protection of the GIL-overhead hybrid line.
  • the protection system further includes induced current release devices arranged on both sides of the GIL line section.
  • the induced current release device is turned on to release the induced current.
  • the induced current release device can release the induced current in the line to improve the safety of the line.
  • the hybrid line protection device trips, and if it is a transient fault, it is reclosed.
  • the embodiment of the present application also provides a protection method for the GIL-overhead hybrid line, including:
  • the first GIL line protection device sends a trip signal to the first hybrid line remote trip device through the first GIL remote trip device, and when the first hybrid line remote trip device receives the trip signal, it trips and parallels Send a blocking reclose signal to the first hybrid line protection device;
  • the second GIL line protection device sends a trip signal to the second hybrid line remote trip device through the second GIL remote trip device, and the second hybrid line remote trip device receives the trip Signal, trip and send a lock-reclosing signal to the second hybrid line protection device.
  • a trip signal is generated when the GIL line section fails, and the trip signal is independently sent to the corresponding side of the hybrid line protection through the newly added GIL line remote trip device
  • the remote trip device of the device the remote trip device of the hybrid line protection device trips when it receives the trip signal and sends a blocking reclose signal to the hybrid line protection device to block the circuit breaker reclosing to achieve the blocking reclose function in the case of a fault in the GIL line section . Therefore, the GIL-overhead hybrid line is based on the newly installed GIL line remote trip device, so that the reliability of fault protection is high, especially when the GIL line section fails, to realize the reliable protection of the GIL-overhead hybrid line.
  • the induced current release device when the GIL line section fails, the induced current release device is controlled to release the induced current.
  • the induced current release device can release the induced current in the line to improve the safety of the line.
  • the hybrid line protection device trips, and if it is a transient fault, it is reclosed.
  • the hybrid line protection device trips to block the reclosing.
  • Figure 1 is a topological structure diagram of the existing GIL-overhead hybrid line
  • Figure 2 is a system wiring diagram of the UHV GIL-overhead hybrid line provided by an embodiment of the present application
  • Fig. 3 is a protection configuration diagram of an UHV GIL-overhead hybrid line provided by an embodiment of the present application.
  • the GIL-overhead hybrid line is an UHV GIL-overhead hybrid line as an example.
  • the UHV GIL-overhead hybrid line is specifically the UHV GIL-overhead hybrid line for the Taizhou-Suzhou section of the northern half of the northern half ring of Anhui to the east.
  • the GIL line section is a line that crosses the Yangtze River.
  • QF11, QF12, QF13, QF21, QF22 and QF23 are circuit breakers
  • CT11, CT12, CT21 and CT22 are current transformers.
  • the UHV GIL-overhead hybrid line includes a GIL line section and two overhead line sections other than the GIL line section (that is, at both ends).
  • the UHV GIL-overhead hybrid line can also be connected with other related lines. Both ends of the hybrid circuit, that is, both sides of the entire hybrid circuit, are provided with circuit breakers.
  • the line topology of the GIL-overhead hybrid line belongs to the prior art, and the invention of the GIL-overhead hybrid line lies in the protection system of the GIL-overhead hybrid line.
  • the protection system includes a GIL line protection device and a hybrid line protection device.
  • two GIL line protection devices are provided for the GIL line section, namely GIL line protection device A and GIL line protection device B are respectively set On both sides of the GIL line section, the two GIL line protection devices can exchange information;
  • the GIL line section is also equipped with two GIL line remote jump devices, that is, the GIL line remote jump device A and the GIL line remote jump device B are respectively set in On both sides of the GIL line section, the GIL line protection device A and the GIL line remote jumping device A are both on one side of the GIL line section (left side), and the GIL line protection device B and the GIL line remote jumping device B are on the other side of the GIL line section.
  • the GIL line protection device includes two parts, namely the fault judgment part and the communication part.
  • the fault judgment part is used to judge whether the GIL line section is faulty.
  • the fault judgment part generates a trip signal (hereinafter referred to as remote Jump signal)
  • the communication part is a remote jump signal sending unit, which is used to send the remote jump signal generated by the corresponding fault judgment part.
  • the fault judgment part includes an electrical quantity detection module and a logic judgment module.
  • the electrical quantity detection module is set on both sides of the GIL line section to detect electrical quantity information on both sides of the GIL line section.
  • the electrical quantity detection module includes a current transformer (CT3 and CT4) and voltage transformers (PT2 and PT3); the logic judgment module is used to perform protection logic calculations on the received electrical quantities.
  • the long-hop signal sending unit may be a conventional signal sending device.
  • the GIL line remote jump device includes a remote jump signal receiving unit and a remote jump signal sending unit.
  • the remote jump signal receiving unit of the GIL line remote jump device receives the trip signal sent by the GIL line protection device, and the sending unit of the GIL line remote jump device will The trip signal is sent to the hybrid line remote trip device.
  • the GIL line remote trip device plays the role of independent communication to transmit the trip signal, increasing the accuracy and reliability of the trip signal transmission.
  • the hybrid line protection device includes a long-hop signal receiving unit and a logic judgment unit, and the long-hop signal receiving unit may be a conventional signal receiving device.
  • the remote hop signal receiving unit is connected to the remote hop signal sending unit of the GIL line remote hop device. Because the distance between the remote hop signal sending unit and the remote hop signal receiving unit is relatively long, in general, the communication between the two is realized through optical fiber. And data exchange, wireless communication connection is also possible.
  • the far trip signal receiving unit receives the far trip signal sent by the far trip signal sending unit, and the logic judgment unit controls the corresponding circuit breaker to trip according to the received trip signal and sends a latching reclose signal to realize permanent trip.
  • the hybrid line protection device also includes an electrical quantity detection unit, which has the same function as the above-mentioned electrical quantity detection module, and collects electrical quantity information on both sides of the hybrid line to determine whether a fault has occurred. Therefore, the logic judgment unit not only has the function of controlling the circuit breaker tripping and blocking the reclosing according to the received remote trip signal, but also has the function of judging the fault based on the electric quantity information on both sides of the mixed line detected by the electric quantity detecting unit. effect.
  • the hybrid line protection device can also be the original line protection device on both sides of the hybrid line. In addition to the function of controlling the circuit breaker to trip and blocking the reclosing according to the received remote trip signal, it also has its original function: In the case of an internal fault of the mixed line, it can be reliably tripped, and the external fault will not malfunction.
  • Inductive current release devices are also provided on both sides of the GIL line section, such as FES1, FES2, FES3, and FES4 in Figure 2.
  • FES Inductive current release devices
  • the judgment is then sent to the control device of the induced current release device, which is based on the voltage/current signals on both sides of the connected GIL line segment, the action information of the GIL line protection device, the information sent by the auxiliary control device, and the induction
  • the position information of the current release device is comprehensively judged, and the induced current release device is controlled according to the comprehensive judgment result, and finally the automatic input function of the induced current release device after a fault occurs in the GIL line section is realized.
  • the induction current release device can also have other control methods, such as: the GIL line protection device controls and connects the induction current release device. When a fault occurs in the GIL line section, the GIL line protection device The induction current release device sends a control instruction to control the operation of the induction current release device.
  • the GIL line protection device when an area fault occurs in the GIL line section, the GIL line protection device generates a trip signal for tripping, and sends the remote trip signal to the hybrid line remote trip device through the GIL line remote trip device, and the hybrid line remote trip device receives the remote trip Signal and control the tripping of the circuit breakers on both sides of the mixed line, and send a lock-reclosing signal to block the circuit breaker's reclosing function, so that when an area fault occurs in the GIL line section, the circuit breakers on both sides of the mixed line will reliably and permanently trip, and at the same time The requirements no longer overlap. Moreover, when an area fault occurs in the GIL line section, the induced current needs to be released.
  • the hybrid line protection device when the fault occurs in the overhead line section other than the GIL line section, the hybrid line protection device sends a trip signal, but does not perform the lockout reclosing control. Then, if the fault is a transient fault that occurs in the overhead line section other than the GIL line section, then the hybrid line protection device can still meet the reclosing function and can reliably realize the reclosing.
  • F1-F8 8 fault points such as F1-F8 are set up in Figure 2.
  • F1, F2, F5 and F6 are in the overhead line section outside the GIL line section
  • F3 and F4 are in the GIL line section
  • F7 and F8 are in the mixed line area. outer.
  • the entire protection system is subjected to metallic transient faults, metallic permanent faults, developmental and transitional faults, system oscillations, faults in system oscillations, line empty charging, unclosed loop and hand-switched line faults, frequency offset, CT saturation Wait for tests to verify the reliability of the protection system.
  • the GIL line segment slip protection that is, the GIL line protection device
  • the GIL line protection device does not operate means that it does not produce a remote trip signal ,
  • the meaning of the action of the GIL line protection device refers to the generation of a long-hop signal, the same below
  • the protection on both sides of the hybrid line ie, the protection device for the hybrid line, the protection on both sides of the hybrid line is the large difference protection
  • the short-drop protection of the GIL line section and the protection on both sides of the mixed line will act.
  • the remote trip signal of the GIL line protection device is transmitted to the hybrid line remote trip device through the GIL line remote trip device, and the three-phase trip and the recloser on both sides are blocked. Moreover, control the input of the induced current release device to release the induced current.
  • the system frequency is 48Hz and 52Hz.
  • the remote trip signal of the GIL line protection device is transmitted to the hybrid line remote trip device through the GIL line remote trip device, and the three-phase trip and the recloser on both sides are blocked. Moreover, control the input of the induced current release device to release the induced current.
  • induction current release devices are also installed on both sides of the GIL line section.
  • the induction current release device is turned on to release the induced current. This is just an optimized implementation. If the induced current does not need to be released, the protection system does not need to include an induced current release device, that is, there is no need to install an induced current release device on both sides of the GIL line section.
  • This embodiment provides a protection system for a GIL-overhead hybrid line. Since the protection system is described in detail in the foregoing embodiment of the protection method for a GIL-overhead hybrid line, this embodiment will not specifically describe it.
  • Those skilled in the art should understand that the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Locating Faults (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本申请涉及一种GIL-架空混合线路保护方法及系统,GIL-架空混合线路由GIL线路段以及设置在GIL线路段两端的架空线路段组成,GIL线路段两侧同时设有GIL线路保护装置和GIL线路远跳装置,整个混合线路两侧同时设有混合线路保护装置和混合线路远跳装置,当GIL线路段发生故障时,GIL线路保护装置通过对应侧的GIL远跳装置向对应侧的混合线路远跳装置发送跳闸信号,混合线路远跳装置接收到跳闸信号时,跳闸并向混合线路保护装置发送闭锁重合闸信号。因此,上述保护方式适用于GIL-架空混合线路,能够满足GIL-架空混合线路的需求,实现GIL-架空混合线路的可靠保护。

Description

一种GIL-架空混合线路保护方法及系统
相关申请的交叉引用
本申请基于申请号为201910989380.9、申请日为2019年10月17日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及一种GIL-架空混合线路保护方法及系统。
背景技术
目前气体绝缘金属密闭输电线路(Gas Insulated metal enclosed transmission Line,GIL)-架空混合线路的实际应用非常普遍,如图1所示,为常规的GIL-架空混合线路拓扑结构,两段架空线路之间设置有一段GIL线路,即该GIL-架空混合线路拓扑结构包括一个GIL线路段以及GIL线路段以外的两个架空线路段。GIL线路段的结构非常复杂,其特性和参数与架空线路段之间存在显著区别,因此GIL线路段的接入使得混合线路的线路参数不再均匀。传统的基于均匀线路参数的继电保护原理和保护方案无法满足GIL-架空混合线路的需求,传统的基于均匀线路参数的保护方法应用在GIL-架空混合线路中时会有很大的误差,例如:如果采用距离保护的话,可能会造成拒动或者误动,因为距离保护要求线路参数均匀,因此,传统的基于均匀线路参数的保护方法应用在GIL-架空混合线路中会降低保护动作的可靠性。
发明内容
本申请的目的是提供一种GIL-架空混合线路保护方法及系统,用以解决传统的基于均匀线路参数的继电保护可能会造成拒动或者误动,造成保护动作可靠性低的问题。
为实现上述目的,本申请实施例提供了一种GIL-架空混合线路的保护系统,包括GIL线路段和架空线路段,
GIL线路段的一端设置第一GIL线路保护装置和第一GIL线路远跳装置,另一端设置第二GIL线路保护装置和第二GIL线路远跳装置;
混合线路一端设置第一混合线路保护装置和第一混合线路远跳装置,另一端设置第二混合线路保护装置和第二混合线路远跳装置;
所述第一GIL线路远跳装置和所述第一混合线路远跳装置处于同一侧,所述第二GIL线路远跳装置和所述第二混合线路远跳装置处于同一侧;
当GIL线路段发生故障时,第一GIL线路保护装置通过第一GIL远跳装置向第一混合线路远跳装置发送跳闸信号,第一混合线路远跳装置接收到所述跳闸信号时,跳闸并向第一混合线路保护装置发送闭锁重合闸信号;第二GIL线路保护装置通过第二GIL远跳装置向第二混合线路远跳装置发送跳闸信号,第二混合线路远跳装置接收到所述跳闸信号时,跳闸并向第二混合线路保护装置发送闭锁重合闸信号。
本申请实施例的上述技术方案,GIL线路保护装置侧新增GIL线路远跳装置,用于当GIL线路段发生故障时产生跳闸信号,通过新增的GIL线路远跳装置独立的将跳闸信号发送给对应侧的混合线路保护装置的远跳装置,混合线路保护装置的远跳装置在接收到跳闸信号时进行跳闸动作并向混合线路保护装置发送闭锁重合闸信号,闭锁断路器重合,实现GIL线路段区内故障时闭锁重合闸功能。因此,通过新增设置的GIL线路远跳装置使得该保护系统在GIL线路段发生故障的时候,独立发送跳闸信号,不会 影响保护装置的逻辑判别和其他命令的发送,使该保护系统的故障保护可靠性高,满足GIL-架空混合线路的需求,实现GIL-架空混合线路的可靠保护。
在本申请一可选方式中,所述保护系统还包括用于设置在GIL线路段两侧的感应电流释放装置,当GIL线路段发生故障时,感应电流释放装置投入,释放感应电流。在GIL线路段发生故障时,感应电流释放装置能够释放线路中的感应电流,提升线路的安全性。
在本申请一可选方式中,为了提升保护系统的可靠性,当故障发生在GIL线路段以外的架空线路段时,混合线路保护装置跳闸,如果是瞬时性故障,重合闸。
本申请实施例还提供一种GIL-架空混合线路的保护方法,包括:
当GIL线路段发生故障时,第一GIL线路保护装置通过第一GIL远跳装置向第一混合线路远跳装置发送跳闸信号,第一混合线路远跳装置接收到所述跳闸信号时,跳闸并向第一混合线路保护装置发送闭锁重合闸信号;第二GIL线路保护装置通过第二GIL远跳装置向第二混合线路远跳装置发送跳闸信号,第二混合线路远跳装置接收到所述跳闸信号时,跳闸并向第二混合线路保护装置发送闭锁重合闸信号。
本申请实施例的上述技术方案,该GIL-架空混合线路中,当GIL线路段发生故障时产生跳闸信号,通过新增的GIL线路远跳装置独立的将跳闸信号发送给对应侧的混合线路保护装置的远跳装置,混合线路保护装置的远跳装置在接收到跳闸信号时跳闸并向混合线路保护装置发送闭锁重合闸信号,闭锁断路器重合,实现GIL线路段区内故障时闭锁重合闸功能。因此,该GIL-架空混合线路在新增设置的GIL线路远跳装置的基础上,使得故障保护可靠性高,尤其是当GIL线路段发生故障的时候,实现GIL-架空混合线路的可靠保护。
在本申请一可选方式中,当GIL线路段发生故障时控制投入感应电流释放装置,释放感应电流。在GIL线路段发生故障时,感应电流释放装置能够释放线路中的感应电流,提升线路的安全性。
在本申请一可选方式中,为了提升保护系统的可靠性,当故障发生在GIL线路段以外的架空线路段时,混合线路保护装置跳闸,如果是瞬时性故障,重合闸。
在本申请一可选方式中,为了提升保护系统的可靠性,当故障发生在GIL线路段时,混合线路保护装置跳闸,闭锁重合闸。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
图1是现有的GIL-架空混合线路的拓扑结构图;
图2是本申请实施例提供的特高压GIL-架空混合线路的系统接线图;
图3是本申请实施例提供的特高压GIL-架空混合线路的保护配置图。
具体实施方式
GIL-架空混合线路的保护方法实施例:
本实施例提供一种GIL-架空混合线路,如图2所示,GIL-架空混合线路以特高压GIL-架空混合线路为例。该特高压GIL-架空混合线路具体是皖电东送北半环泰州-苏州段特高压GIL-架空混合线路,GIL线路段为一段跨越长江的线路。其中,QF11、QF12、QF13、QF21、QF22和QF23为断路器,CT11、CT12、CT21和CT22为电流互感器。如图2所示,该特高压GIL-架空混合线路包括GIL线路段以及GIL线路段以外(即两端)的两个架空线路段。当然,该特高压GIL-架空混合线路还可以连接有其他的相关线路。混合线路的两端,即整个混合线路的两侧均设置有断路器。
该GIL-架空混合线路的线路拓扑结构属于现有技术,该GIL-架空混合线路的发明点在于GIL-架空混合线路的保护系统。该保护系统包括GIL线路保护装置和混合线路保护装置,其中,对于一条混合线路而言,对于GIL线路段设置有两个GIL线路保护装置,即GIL线路保护装置A和GIL线路保护装置B分别设置在GIL线路段两侧,这两个GIL线路保护装置之间可以信息交互;GIL线路段还设置两个GIL线路远跳装置,即GIL线路远跳装置A和GIL线路远跳装置B分别设置在GIL线路段两侧,其中GIL线路保护装置A和GIL线路远跳装置A同在GIL线路段一侧(左侧),GIL线路保护装置B和GIL线路远跳装置B同在GIL线路段另一侧(右侧);对于整个混合线路设置有两个混合线路保护装置,即混合线路保护装置A和混合线路保护装置B分别设置在混合线路两侧,这两个混合线路保护装置之间可以信息交互;整个混合线路还设置有两个混合线路远跳装置,其中混合线路保护装置A和混合线路远跳装置A同设在混合线路一侧(左侧),混合线路保护装置B和混合线路远跳装置B同设在混合线路另一侧(右侧)。
GIL线路保护装置包括两大部分,分别是故障判断部分和通讯部分,故障判断部分用于判断GIL线路段是否发生故障,当GIL线路段发生故障时,故障判断部分产生跳闸信号(以下称为远跳信号),通讯部分为远跳信号发送单元,用于发送对应的故障判断部分产生的远跳信号。故障判断部分包括电气量检测模块和逻辑判断模块,其中,电气量检测模块设置在GIL线路段两侧,用于检测GIL线路段两侧的电气量信息,这里,电气量检测模块包括电流互感器(CT3和CT4)和电压互感器(PT2和PT3);逻辑判断模块用于对接收到的电气量进行保护逻辑计算。远跳信号发送单元可以为常规的信号发送设备。
GIL线路远跳装置包括远跳信号接收单元和远跳信号发送单元,GIL线路远跳装置的远跳信号接收单元接收GIL线路保护装置发送的跳闸信 号,GIL线路远跳装置的发送单元再将该跳闸信号发送给混合线路远跳装置。GIL线路远跳装置起到独立通信传送跳闸信号的作用,增加跳闸信号传输的准确性、可靠性。
混合线路保护装置包括远跳信号接收单元和逻辑判断单元,远跳信号接收单元可以为常规的信号接收设备。远跳信号接收单元与GIL线路远跳装置的远跳信号发送单元通信连接,由于远跳信号发送单元与远跳信号接收单元距离较远,因此,一般情况下,两者之间通过光纤实现通信及数据交换,也可以无线通信连接。远跳信号接收单元接收远跳信号发送单元发送的远跳信号,逻辑判断单元根据接收到的跳闸信号控制对应的断路器跳闸并发送闭锁重合闸信号,实现永跳。而且,混合线路保护装置还包括电气量检测单元,电气量检测单元与上述电气量检测模块的功能相同,采集混合线路两侧的电气量信息,以判断是否产生故障。因此,逻辑判断单元除了具有根据接收到的远跳信号控制断路器跳闸并闭锁重合闸的功能之外,还有根据电气量检测单元检测到的混合线路两侧的电气量信息进行故障判断的功能作用。当然,混合线路保护装置还可以是混合线路两侧原有的线路保护装置,除了具有根据接收到的远跳信号控制断路器跳闸并闭锁重合闸的功能之外,还具有其原本的功能:整个混合线路的区内故障时,能可靠跳闸,区外故障不误动。
在GIL线路段两侧还设置有感应电流释放装置(FES),例如图2中的FES1、FES2、FES3和FES4。当GIL线路段发生区内故障时,控制感应电流释放装置投入,释放感应电流。以下给出感应电流释放装置投入的一种控制方式:如图3所示,在混合线路两侧增设感应电流释放装置的辅助控制装置(对应图3中的FES辅助控制装置),GIL线路段两侧增设感应电流释放装置的控制装置(对应图3中的FES控制装置),辅助控制装置分别接收混合线路两侧电压/电流信号以及混合线路保护装置的动作信息,并对接 收到的数据信息进行判断,然后将判断结果发送给感应电流释放装置的控制装置,该控制装置根据接入的GIL线路段两侧的电压/电流信号、GIL线路保护装置的动作信息、辅助控制装置发送的信息以及感应电流释放装置的位置信息进行综合判断,根据综合判断结果对感应电流释放装置进行控制,最终实现GIL线路段发生区内故障后感应电流释放装置的自动投入功能。另外,除了上述控制方式之外,感应电流释放装置还可以有其他的控制方式,比如:GIL线路保护装置控制连接该感应电流释放装置,当GIL线路段发生区内故障时,GIL线路保护装置向感应电流释放装置发送控制指令,控制感应电流释放装置投入。
因此,当GIL线路段发生区内故障时,GIL线路保护装置产生跳闸的远跳信号,并通过GIL线路远跳装置将远跳信号发送给混合线路远跳装置,混合线路远跳装置接收远跳信号并控制控制混合线路两侧的断路器跳闸,并发送闭锁重合闸信号,闭锁断路器的重合闸功能,实现GIL线路段发生区内故障时,混合线路两侧的断路器可靠永跳,同时要求不再重合。而且,当GIL线路段发生区内故障时,需要对感应电流进行释放。
另外,当故障发生在GIL线路段以外的架空线路段时,混合线路保护装置发出跳闸信号,但不进行闭锁重合闸控制。那么,如果故障是发生在GIL线路段以外的架空线路段的瞬时性故障,那么,混合线路保护装置仍能满足重合闸功能,能可靠实现重合闸。
图2中设置了F1-F8等8个故障点,其中,F1、F2、F5和F6处于GIL线路段以外的架空线路段中,F3和F4处于GIL线路段中,F7和F8处于混合线路区外。以下对整个保护系统进行金属性瞬时性故障、金属性永久性故障、发展性及转换性故障、系统振荡、系统振荡中故障、线路空充、解合环及手合带线路故障、频率偏移、CT饱和等试验,以验证保护系统的可靠性。
1、金属性瞬时性故障:
(1)当F1、F2、F5、F6发生金属性瞬时性故障时,GIL线路段小差保护(即GIL线路保护装置)不动作(GIL线路保护装置不动作的含义是指不产生远跳信号,下同;相应地,GIL线路保护装置动作的含义是指产生远跳信号,下同),混合线路两侧保护(即混合线路保护装置,混合线路两侧保护具体是大差保护)正确选相跳闸,单相接地故障可靠重合闸。
(2)当F7、F8发生金属性瞬时性故障时,GIL线路段小差保护与混合线路两侧保护均不动作。
2、金属性永久性故障:
(1)当F1、F2、F5、F6发生金属性永久性故障时,GIL线路段小差保护不动作,混合线路两侧保护正确选相跳闸,单相接地故障应选相跳闸,重合于故障后加速三跳。
(2)当F3、F4发生金属性永久性故障时,GIL线路段小差保护和混合线路两侧保护均动作。故障后,GIL线路保护装置的远跳信号经GIL线路远跳装置传输到混合线路远跳装置,对应的断路器三相跳闸并闭锁重合闸。而且,控制感应电流释放装置投入,释放感应电流。
3、发展性急转换性故障:
(1)当F1、F2、F5、F6发生同一故障点发展性故障时,GIL线路段小差保护不动作,混合线路两侧保护应线单跳,第二次故障发生后三跳。
(2)当F2、F5发生故障时,GIL线路段小差保护不动作,混合线路两侧保护正确选相跳闸,并发出重合闸信号。故障转换为F3、F4的异名相故障后,GIL线路段小差保护和混合线路两侧保护均动作。GIL线路保护装置的远跳信号经GIL线路远跳装置传输到混合线路远跳装置,并在进行重合闸前闭锁两侧重合闸。而且,控制感应电流释放装置投入,释放感应电流。
(3)当F3、F4故障时,GIL线路段小差保护和混合线路两侧保护均动作。GIL线路保护装置的远跳信号经GIL线路远跳装置传输到混合线路远跳装置,对应的断路器三相跳闸并闭锁重合闸。而且,控制感应电流释放装置投入,释放感应电流。故障转换为F2、F5故障后,GIL线路段小差保护不动作,混合线路两侧保护正确选相跳闸,重合闸闭锁,不进行重合闸。
(4)当F7、F8发生故障时,GIL线路段小差保护与混合线路两侧保护均不动作。故障转换为F1、F6故障后,GIL线路段小差保护不动作,混合线路两侧保护正确选相跳闸,并可靠重合闸。
(5)当F1、F6发生故障时,GIL线路段小差保护不动作,混合线路两侧保护正确选相跳闸并可靠重合闸。故障转换为F7、F8故障后,GIL线路段小差保护与混合线路两侧保护均不动作。
4、系统稳定性破坏:
在系统发生全相振荡及非全相振荡,GIL线路段小差保护与混合线路两侧保护均不动作。
5、系统稳定性破坏时再故障:
(1)在系统振荡中,F1、F2、F5、F6发生故障时,GIL线路段小差保护不动作,混合线路两侧保护应正确选相跳闸,并重合成功。
(2)在系统振荡中,F3、F4发生故障时,GIL线路段小差保护和混合空线路两侧保护均动作。GIL线路保护装置的远跳信号经GIL线路远跳装置传输到混合线路远跳装置,三相跳闸并闭锁两侧重合闸。而且,控制感应电流释放装置投入,释放感应电流。
6、线路空充、解合环及手合带线路故障:
(1)在空充线路情况下,GIL线路段小差保护与混合线路两侧保护均不动作。
(2)在线路解合环情况下,GIL线路段小差保护与混合线路两侧保护均不动作。
(3)在手合于混合线路段故障时,GIL线路段小差保护不动作,混合线路两侧保护正确三相跳闸。
(4)在手合于GIL线路段故障时,GIL线路段小差保护和混合线路两侧保护均动作。GIL线路保护装置的远跳信号经GIL线路远跳装置传输到混合线路远跳装置,三相跳闸并闭锁两侧重合闸。而且,控制感应电流释放装置投入,释放感应电流。
7、系统频率偏移:
系统频率为48Hz和52Hz,GIL线路段发生故障时,GIL线路段小差保护和混合线路两侧保护均动作。GIL线路保护装置的远跳信号经GIL线路远跳装置传输到混合线路远跳装置,三相跳闸并闭锁两侧重合闸。而且,控制感应电流释放装置投入,释放感应电流。
8、CT饱和:
(1)当F7发生故障,混合线路一侧CT出现暂态饱和,正常波形持续时间不小于5ms时,GIL线路段小差保护与混合线路两侧保护均不动作。
(2)当F2发生故障,GIL线路段一侧CT出现暂态饱和,正常波形持续时间不小于5ms时,GIL线路段小差保护不动作,混合线路两侧保护正确选相跳闸。
上述实施例中,在GIL线路段两侧还装设有感应电流释放装置,当GIL线路段发生故障时,感应电流释放装置投入,释放感应电流。这只是一种优化的实施方式,如果感应电流无需释放的话,保护系统中就无需包括感应电流释放装置,即在GIL线路段两侧无需装设感应电流释放装置。
以上给出了具体的实施方式,但本申请不局限于所描述的实施方式。本申请的基本思路在于上述基本方案,对本领域普通技术人员而言,根据 本申请的教导,设计出各种变形的模型、公式、参数并不需要花费创造性劳动。在不脱离本申请的原理和精神的情况下对实施方式进行的变化、修改、替换和变型仍落入本申请的保护范围内。
GIL-架空混合线路的保护系统实施例:
本实施例提供一种GIL-架空混合线路的保护系统,由于该保护系统在上述GIL-架空混合线路的保护方法实施例中以进行了详细地描述,本实施例就不再具体说明。本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备 上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (7)

  1. 一种气体绝缘金属密闭输电线路GIL-架空混合线路的保护系统,包括GIL线路段和架空线路段,其中,
    GIL线段段的一端设置第一GIL线路保护装置和第一GIL线路远跳装置,另一端设置第二GIL线路保护装置和第二GIL线路远跳装置;
    混合线路一端设置第一混合线路保护装置和第一混合线路远跳装置,另一端设置第二混合线路保护装置和第二混合线路远跳装置;
    所述第一GIL线路远跳装置和所述第一混合线路远跳装置处于同一侧,所述第二GIL线路远跳装置和所述第二混合线路远跳装置处于同一侧;
    当GIL线路段发生故障时,第一GIL线路保护装置通过第一GIL远跳装置向第一混合线路远跳装置发送跳闸信号,第一混合线路远跳装置接收到跳闸信号时,跳闸并向第一混合线路保护装置发送闭锁重合闸信号;第二GIL线路保护装置通过第二GIL远跳装置向第二混合线路远跳装置发送跳闸信号,第二混合线路远跳装置接收到跳闸信号时,跳闸并向第二混合线路保护装置发送闭锁重合闸信号。
  2. 根据权利要求1所述的GIL-架空混合线路的保护系统,其中,所述保护系统还包括用于设置在GIL线路段两侧的感应电流释放装置,当GIL线路段发生故障时,感应电流释放装置投入,释放感应电流。
  3. 根据权利要求1或2所述的GIL-架空混合线路的保护系统,其中,当故障发生在GIL线路段以外的架空线路段时,混合线路保护装置跳闸,如果是瞬时性故障,重合闸。
  4. 一种GIL-架空混合线路的保护方法,包括:
    当GIL线路段发生故障时,第一GIL线路保护装置通过第一GIL远跳装置向第一混合线路远跳装置发送跳闸信号,第一混合线路远跳装置 接收到跳闸信号时,跳闸并向第一混合线路保护装置发送闭锁重合闸信号;第二GIL线路保护装置通过第二GIL远跳装置向第二混合线路远跳装置发送跳闸信号,第二混合线路远跳装置接收到跳闸信号时,跳闸并向第二混合线路保护装置发送闭锁重合闸信号。
  5. 根据权利要求4所述的GIL-架空混合线路的保护方法,其中,当GIL线路段发生故障时,控制投入感应电流释放装置,释放感应电流。
  6. 根据权利要求4或5所述的GIL-架空混合线路的保护方法,其中,当故障发生在GIL线路段以外的架空线路段时,混合线路保护装置跳闸,如果是瞬时性故障,重合闸。
  7. 根据权利要求4或5所述的GIL-架空混合线路的保护方法,其中,当故障发生在GIL线路段时,混合线路保护装置跳闸,闭锁重合闸。
PCT/CN2020/108295 2019-10-17 2020-08-10 一种gil-架空混合线路保护方法及系统 WO2021073219A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910989380.9 2019-10-17
CN201910989380.9A CN110768219A (zh) 2019-10-17 2019-10-17 一种gil-架空混合线路保护方法及系统

Publications (1)

Publication Number Publication Date
WO2021073219A1 true WO2021073219A1 (zh) 2021-04-22

Family

ID=69332495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108295 WO2021073219A1 (zh) 2019-10-17 2020-08-10 一种gil-架空混合线路保护方法及系统

Country Status (2)

Country Link
CN (1) CN110768219A (zh)
WO (1) WO2021073219A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768219A (zh) * 2019-10-17 2020-02-07 许继集团有限公司 一种gil-架空混合线路保护方法及系统
CN112350315A (zh) * 2020-11-02 2021-02-09 天津尚圣科技有限公司 一种应用于城市及郊区的新型混合输电方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7925388B2 (en) * 2001-07-10 2011-04-12 Yingco Electronics, Inc. Remotely controllable wireless energy control unit
CN203243029U (zh) * 2013-04-11 2013-10-16 中国水电顾问集团华东勘测设计研究院 一种500kV GIL继电保护电路
CN206135375U (zh) * 2016-10-24 2017-04-26 中国能源建设集团江苏省电力设计院有限公司 一种gil管线的过路布置结构
CN106655116A (zh) * 2016-10-10 2017-05-10 中国能源建设集团江苏省电力设计院有限公司 一种架空‑gil混合线路继电保护配置方法
CN107907794A (zh) * 2017-11-21 2018-04-13 中国电力科学研究院有限公司 一种特高压gil‑架空混合线路故障区段识别方法及装置
CN110768219A (zh) * 2019-10-17 2020-02-07 许继集团有限公司 一种gil-架空混合线路保护方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1922804A1 (de) * 2005-09-09 2008-05-21 Siemens Aktiengesellschaft Vorrichtung für die elektroenergieübertragung
CN101572403B (zh) * 2009-06-10 2011-05-04 山东大学 适用于含dg配电网的有通道快速电流保护方法
CN109004619B (zh) * 2018-07-03 2022-04-29 中国电力科学研究院有限公司 一种混合线路距离保护整定计算方法
CN109995010B (zh) * 2019-04-29 2021-04-20 南京南瑞继保电气有限公司 一种感应电流快速释放装置自动控制方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7925388B2 (en) * 2001-07-10 2011-04-12 Yingco Electronics, Inc. Remotely controllable wireless energy control unit
CN203243029U (zh) * 2013-04-11 2013-10-16 中国水电顾问集团华东勘测设计研究院 一种500kV GIL继电保护电路
CN106655116A (zh) * 2016-10-10 2017-05-10 中国能源建设集团江苏省电力设计院有限公司 一种架空‑gil混合线路继电保护配置方法
CN206135375U (zh) * 2016-10-24 2017-04-26 中国能源建设集团江苏省电力设计院有限公司 一种gil管线的过路布置结构
CN107907794A (zh) * 2017-11-21 2018-04-13 中国电力科学研究院有限公司 一种特高压gil‑架空混合线路故障区段识别方法及装置
CN110768219A (zh) * 2019-10-17 2020-02-07 许继集团有限公司 一种gil-架空混合线路保护方法及系统

Also Published As

Publication number Publication date
CN110768219A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
Hasibar et al. The application of high-speed grounding switches for single-pole reclosing on 500 kV power systems
WO2021073219A1 (zh) 一种gil-架空混合线路保护方法及系统
US11605948B2 (en) Communication-based permissive protection scheme for power distribution networks
CN105140892A (zh) 一种输电线路的线路保护方法
US11258249B2 (en) Primary and system protection for an electric power delivery system
Nagpal et al. Field verification of secondary arc extinction logic
CN107884665A (zh) 防止发电机出口电压互感器匝间短路误跳机的装置及方法
Schweitzer et al. Applying radio communication in distribution generation teleprotection schemes
Chandraratne et al. Smart grid protection through self-healing
Boussadia et al. A new algorithm to prevent maloperation of distance protection zone 3 during wide‐area disturbances
CN108535634B (zh) 一种适用于半波长输电线路保护装置的试验方法及系统
US8183718B2 (en) Method and device for controlled reclosing of a circuit breaker
McGuinness et al. Performance of protection relays during stable and unstable power swings
CN110098599A (zh) 一种架空线-电缆混合线路的故障处理方法和系统
Ihedioha Ahmed Differential protection for power transformer using relay
JP2016034183A (ja) 3相送電保護方法および装置
Chen et al. Field experience with a digital system for transmission line protection
Sharma Novel Directional Protection Scheme for the FREEDM Smart Grid System
Radhakrishnan et al. Impact of converter‐interfaced renewable generations on breaker failure protection of the emanant transmission lines
Mackie et al. Summary paper for C37. 243 IEEE guide for application of digital line current differential relays using digital communication
Salem et al. Protection relays coordination in networks equipped with distribution generation during different modes of operation
RU2437193C1 (ru) Способ, система и устройство дифференциальной защиты
Mishra et al. Detection of internal faults in transformers by negative sequence current
CN103840553A (zh) 失灵启动回路和启动失灵回路的方法
Guan et al. Coordination method for protective devices of closed-loop distribution system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20876029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20876029

Country of ref document: EP

Kind code of ref document: A1