WO2021072615A1 - 一种海尔贝克阵列式耦合器 - Google Patents

一种海尔贝克阵列式耦合器 Download PDF

Info

Publication number
WO2021072615A1
WO2021072615A1 PCT/CN2019/111150 CN2019111150W WO2021072615A1 WO 2021072615 A1 WO2021072615 A1 WO 2021072615A1 CN 2019111150 W CN2019111150 W CN 2019111150W WO 2021072615 A1 WO2021072615 A1 WO 2021072615A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic rotor
bearing
end cover
axial
drainage
Prior art date
Application number
PCT/CN2019/111150
Other languages
English (en)
French (fr)
Inventor
王爽
李德永
郭永存
胡坤
周军鹏
苏畅
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Priority to PCT/CN2019/111150 priority Critical patent/WO2021072615A1/zh
Publication of WO2021072615A1 publication Critical patent/WO2021072615A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type

Definitions

  • the invention belongs to the field of magnetic induction technology, and specifically is a Halbach array coupler.
  • power distribution components which mainly include: directional couplers, power distributors, and various microwave branch devices.
  • Halbach Array is a kind of magnet structure, which is an approximate ideal structure in engineering. The goal is to generate the strongest magnetic field with the least amount of magnets.
  • This special permanent magnet structure In 1979, when the American scholar Klaus Halbach did an electron acceleration experiment, he discovered this special permanent magnet structure, and gradually improved this structure, and finally formed the so-called "Halbach” magnet.
  • the magnetic coupling is formed by the combination of the magnetic coupling and the magnetic coupling.
  • the working principle of the magnetic coupling follows the Coulomb's law of magnetism, that is, two magnets separated by a certain distance. Due to the magnetic field induction effect, they do not need any traditional mechanical components.
  • the present invention proposes a Halbach array coupler.
  • the invention is mainly used to solve the problem that the internal parts of the existing magnetic coupling will be damaged due to the vibration force when used on the truck in the hot area all the year round, and the magnetism in the coupling is likely to decrease or disappear under such a high temperature environment.
  • the magnetic coupling will produce magnetic leakage, which will lead to the loss of the magnetic induction line, which leads to the problem that the transmission efficiency of the magnetic coupling is affected.
  • a Halbach array coupler including an input shaft, an input end cover, a bearing set, an output shaft, an output end cover, a housing, a cooling mechanism and Buffer mechanism;
  • the bearing set includes No. 1 bearing and No.
  • the input end cover and the output end cover are connected by a shell, the outer end of the input end cover is fixedly connected with the input shaft by screws, and the inner side of the input end cover A bearing is installed in the wall to rotate, and an axial copper conductor is fixedly installed on the inner surface of the input end cover; the inner of the bearing is fixedly connected with the output shaft; the right end of the output shaft is connected to the output through the rotation of the second bearing
  • a radial magnetic rotor is fixedly connected to the middle outer surface of the output shaft, and axial magnetic rotors are fixedly connected to the outer surfaces of both ends of the output shaft;
  • the axial magnetic rotor adopts an axial Halbach permanent magnet array;
  • the radial magnetic rotor adopts a radial Halbach permanent magnet array;
  • the inner surface of the output end cover is fixedly installed with an axial copper conductor; the inner surface of the axial magnetic rotor is fixedly connected with a yoke iron disc, and the axial magnetic rot
  • the axial Halbach permanent magnet The magnetic field formed by the array and the radial Halbach permanent magnet array has dense magnetic induction lines on one side and scattered on the other side. Placing the dense magnetic induction lines directly on the copper conductor can increase the axial magnetic rotor and the axial copper conductor and the radial magnetic field respectively. The magnetic field strength of the air gap between the rotor and the radial copper conductor enables the Halbach array coupler to obtain greater torque density. Aligning the scattered side of the axial magnetic induction line to the radial magnetic rotor can reduce the magnetic leakage between the axial magnetic rotor and the radial magnetic rotor, and achieve the purpose of reducing the loss of the magnetic induction line.
  • the pole-type Halbach array distribution can realize that the air gap magnetic field generated by the distribution has a high sine degree and good manufacturability.
  • the radial magnetic rotor adopts the pole-interrupted Halbach array distribution, and the Halbach array parameters are reasonably designed to obtain Better air gap flux density performance than traditional radial magnetic rotor.
  • the cooling mechanism includes a liquid storage tank, an elastic block, a drainage groove, and a drainage block; the liquid storage tank is opened inside the output shaft, and the inner ends of the liquid storage tank are slidably connected with elastic blocks through a spring, and the liquid storage tank is filled with There is cooling oil, and a drainage groove is connected in the middle of the liquid storage tank; the drainage groove is annular, the outer end of the drainage groove is opened in the axial magnetic rotor and the radial magnetic rotor, and the drainage block is slidably installed inside the drainage groove;
  • the drainage block is initially set on the side close to the reservoir; when the coupler starts to work, it is affected by the force of the input shaft, and the internal output shaft starts to rotate, which drives the axial magnetic rotor and the radial magnetic rotor on its outer surface.
  • the rotor rotates, because the output shaft is provided with a liquid storage tank, which is filled with cooling oil.
  • the inner ends of the liquid storage tank are slidingly connected with elastic blocks through springs.
  • the axial magnetic rotor and the radial magnetic rotor are inside.
  • a drainage groove is provided, and the drainage block is slidably installed in the drainage groove. Therefore, when the output shaft rotates, the drainage block moves outward under the action of centrifugal force, which makes the liquid storage tank in a negative pressure state and sucks the cooling oil inside it.
  • the axial magnetic rotor and the radial magnetic rotor are cooled to prevent the magnetic field from being affected by the excessive temperature and the rotation effect of the output shaft.
  • the buffer mechanism includes an infusion tube, a through hole, a mounting groove, a rubber ring, and a hinge frame; the mounting groove is opened outside the No. 1 bearing, the upper and lower ends of the mounting groove are connected with through holes, and the mounting groove is initially filled with cooling
  • the middle part of the through hole is connected with the infusion tube;
  • the infusion tube is fixedly installed in the left end wall of the output shaft, and the infusion tube is inserted and connected to the inside of the elastic block at the left end;
  • the rubber ring is made of ceramic silicon rubber, The inner side of the rubber ring is connected with the No.
  • the hinge frame is fixedly connected with a draw rope; the other end of the draw rope is connected with the elastic block at the left end; when the cooling oil in the liquid storage tank is negatively pressured When sucked into the drainage groove, it drives the drainage blocks at both ends to slide inward, and because the drainage block on the left end is connected with the inner drawstring of the hinged frame inside the rubber ring, the drawstring will be pulled when the drainage block moves inward, causing the hinged frame
  • the two sides close to each other, that is, a squeezing force is generated on the rubber ring, so that the distance between the No. 1 bearing and the rubber ring is stretched, so as to give the No.
  • the output shaft has a certain shaking distance on the road to avoid the rigid connection between the output shaft and the input end cover and the output end cover from damaging the internal parts of the coupler, and because the installation groove is initially filled with cooling oil, the rubber ring is When squeezed, the cooling oil inside will enter the liquid storage tank through the through hole and the infusion tube, thereby giving a certain relief to the negative pressure state in the liquid storage tank, so that the sliding resistance of the drainage block in the drainage groove is greatly reduced.
  • the drainage block is connected in the drainage groove through screw thread rotation; when the drainage block is subjected to centrifugal force, the drainage block is connected in the drainage groove through the screw rotation, that is, the drainage block will spirally move in the drainage groove due to the centrifugal force, which will affect the liquid storage tank.
  • the cooling oil inside imparts a rotational force, which makes the cooling oil in a spiral rotation state when moving in the axial magnetic rotor and the radial magnetic rotor, so that it continuously spirals the inner surface of the axial magnetic rotor and the radial magnetic rotor. Flushing can obtain a better cooling effect on the axial magnetic rotor and the radial magnetic rotor compared to the direct suction method.
  • a heat-conducting plate is fixedly installed in the outer wall of the rubber ring; the heat-conducting plate is made of flexible metal, and the inner side of the heat-conducting plate is provided with a heat-conducting hole; the cross-section of the heat-conducting hole is triangular, and the heat-conducting hole can be expanded into the rubber ring.
  • the hinge frame Connected; when the hinge frame is pulled by the elastic block at the left end, the hinge frame will push up the four ends of the rubber ring due to the contraction force, so that the rubber ring between the hinge frame is concave, because the outer end wall of the rubber ring
  • the heat-conducting plate is fixedly installed in the middle, and the heat-conducting plate is made of flexible metal, that is, when the rubber ring between the hinge brackets is concave, the heat-conducting plate will gradually bend into an arc shape, that is, the inner end of the heat-conducting hole inside the heat-conducting plate is opened, so
  • the inner surface of the heat-conducting plate will communicate with the air in the rubber ring to absorb the heat in the air, and at the same time, the cooling oil on the outer surface will cool the internal air to prevent the bearing assembly from generating high temperatures and causing the coupler to heat up.
  • the inner end of the articulated frame is set in an arc shape, and the inner end of the articulated frame can be fitted into the outer wall of the No. 1 bearing; when the articulated frame reciprocates during the working process, the inner end of the articulated frame is set in an arc shape.
  • the end can be fitted into the outer wall of the No. 1 bearing, which can effectively protect the hinge frame itself, avoiding the shrinkage of the rubber ring when it is not working, which will cause the joint end of the hinge frame and the No. 1 bearing to be subjected to a large compression force, which will lead to the hinge frame
  • the occurrence of fracture affects the cooling effect of the No. 1 bearing.
  • the axial magnetic rotor adopts the axial Halbach permanent magnet array
  • the radial magnetic rotor adopts the radial Halbach permanent magnet array.
  • the magnetic field formed by the permanent magnet array has dense magnetic induction lines on one side and scattered on the other side. Aligning the dense magnetic induction lines to the copper conductor can increase the axial magnetic rotor and the axial copper conductor, and the radial magnetic rotor and the radial copper conductor respectively. The strength of the magnetic field between the air gaps allows the Halbach array coupler to obtain greater torque density.
  • Aligning the scattered side of the axial magnetic induction line to the radial magnetic rotor can reduce the magnetic leakage between the axial magnetic rotor and the radial magnetic rotor, and achieve the purpose of reducing the loss of the magnetic induction line.
  • the pole-type Halbach array distribution can realize that the air gap magnetic field generated by the distribution has a high sine degree and good manufacturability.
  • the radial magnetic rotor adopts the pole-interrupted Halbach array distribution, and the Halbach array parameters are reasonably designed to obtain Better air gap flux density performance than traditional radial magnetic rotor.
  • the present invention can realize that when the coupler starts to work, the internal output shaft starts to rotate, that is, the axial magnetic rotor and the radial magnetic rotor on the outer surface are driven to rotate when the coupler starts to work.
  • the liquid storage tank is filled with cooling oil
  • the inner ends of the liquid storage tank are slidingly connected with elastic blocks through springs
  • the axial magnetic rotor and the radial magnetic rotor are provided with Drainage groove
  • the drainage block is slidably installed in the drainage groove, so when the output shaft rotates, the drainage block will move outward under the action of centrifugal force, that is, make the liquid storage tank in a negative pressure state, and suck the cooling oil inside it into the drainage
  • the axial magnetic rotor and the radial magnetic rotor are cooled to prevent the magnetic field from being affected by the excessive temperature and the rotation effect of the output shaft is affected.
  • the present invention can realize that when the cooling oil in the storage tank is sucked into the drainage groove under negative pressure by setting the buffer mechanism, it drives the drainage blocks at both ends to slide inward, and the drainage block and the rubber ring at the left end
  • the inner hinge frame is connected by a draw rope, so when the drainage block moves to the inside, the draw rope will be pulled to cause the two sides of the hinge frame to approach each other, that is, a squeezing force is generated on the rubber ring, so that the distance between the No. 1 bearing and the rubber ring is reduced. Stretch to give a certain amount of buffer distance to the No.
  • the output shaft has a certain shaking distance when the truck is driving on a relatively bumpy road, and avoids the coupling of the rigid connection between the output shaft and the input end cover and the output end cover
  • the internal parts of the device are damaged, and because the installation groove is initially filled with cooling oil, when the rubber ring is squeezed, the cooling oil inside it will enter the reservoir through the through hole and the infusion tube, thereby giving it to the reservoir.
  • the negative pressure state of the radiator is relieved to a certain extent, so that the sliding resistance of the suction block in the suction groove is greatly reduced, and the cooling effect on the axial magnetic rotor and the radial magnetic rotor is improved.
  • Figure 1 is a front view of the present invention
  • Figure 2 is a schematic diagram of the structure of the buffer mechanism of the present invention.
  • Figure 3 is a schematic view of the structure of the axial magnetic rotor of the present invention.
  • FIG. 4 is a schematic diagram of the structure of the radial magnetic rotor of the present invention.
  • the Halbach array coupler of the present invention includes an input shaft 1, an input end cover 2, a bearing set 3, an output shaft 4, an output end cover 5, a housing 6, and a cooling
  • the bearing set 3 includes the No. 1 bearing 31 and the No.
  • the input shaft 1 is fixedly connected, a bearing 31 is rotatably installed in the inner side wall of the input end cover 2, and an axial copper conductor 21 is fixedly installed on the inner surface of the input end cover 2; the inner part of the first bearing 31 is fixedly connected to the output Shaft 4; the right end of the output shaft 4 is connected to the output end cover 5 by rotation and insertion through the second bearing 32, the middle outer surface of the output shaft 4 is fixedly connected with a radial magnetic rotor 41, and the outer surfaces of both ends of the output shaft 4 are fixed
  • the axial magnetic rotor 42 is connected; the axial magnetic rotor 42 adopts the axial Halbach permanent magnet array 43; the radial magnetic rotor 41 adopts the radial Halbach permanent magnet array 44; the inner part of the output end cover 5
  • the axial copper conductor 21 is fixedly installed on the surface; the inner surface of the
  • the outer end of the radial magnetic rotor 41 is provided with a radial copper conductor 61; the radial copper conductor 61 is fixedly installed on the inner surface of the housing 6;
  • the magnetic rotor 42 adopts the axial Halbach permanent magnet array 43, and the radial magnetic rotor 41 adopts the radial Halbach permanent magnet array 44.
  • the axial Halbach permanent magnet array 43 is compared with the radial Halbach permanent magnet array 43.
  • the magnetic field formed by the permanent magnet array 44 has dense magnetic induction lines on one side and scattered on the other side.
  • Aligning the dense magnetic induction lines to the copper conductor can increase the axial magnetic rotor 42 and the axial copper conductor 21, and the radial magnetic rotor 41 and The magnetic field strength of the air gap between the radial copper conductors 61 enables the Halbach array coupler to obtain greater torque density. Aligning the scattered side of the axial magnetic induction line to the radial magnetic rotor 41 can reduce the magnetic leakage between the axial magnetic rotor 42 and the radial magnetic rotor 41, and achieve the purpose of reducing the loss of the magnetic induction line.
  • the single-piece three-pole Halbach array distribution can realize the high sine degree of the air gap magnetic field generated by the distribution, and the manufacturability is better.
  • the radial magnetic rotor 41 adopts the pole-interrupted Halbach array distribution, and the Halbach array is rationally designed. Array parameters can obtain better air gap flux density performance than the traditional radial magnetic rotor 41.
  • the cooling mechanism 7 includes a liquid storage tank 71, an elastic block 72, a drainage groove 73 and a drainage block 74; the liquid storage tank 71 is opened inside the output shaft 4, and the inner ends of the liquid storage tank 71 are slidingly connected with each other through springs.
  • the elastic block 72, the liquid storage tank 71 is filled with cooling oil, the middle of the liquid storage tank 71 is connected with a drainage groove 73; the drainage groove 73 is annular, and the outer end of the drainage groove 73 is opened on the axial magnetic rotor 42 and the radial magnetic rotor 42
  • a drainage block 74 is slidably installed inside the drainage groove 73; the drainage block 74 is initially set on the side close to the liquid storage tank 71; when the coupler starts to work, it is affected by the force of the input shaft 1, which The internal output shaft 4 starts to rotate, that is, drives the axial magnetic rotor 42 and the radial magnetic rotor 41 on its outer surface to rotate.
  • the output shaft 4 is provided with a liquid storage tank 71 inside, the liquid storage tank 71 is filled with cooling oil.
  • the inner ends of the liquid storage tank 71 are slidably connected with elastic blocks 72 through springs.
  • the axial magnetic rotor 42 and the radial magnetic rotor 41 are provided with drainage grooves 73, and the drainage blocks 74 are slidably installed in the drainage grooves 73, so When the output shaft 4 rotates, the drainage block 74 moves outward under the action of centrifugal force, that is, the negative pressure state in the liquid storage tank 71, the cooling oil inside it is sucked into the drainage groove 73, and the axial magnetic rotor 42 and The temperature of the radial magnetic rotor 41 is lowered to prevent the magnetic field from being affected by the excessively high temperature and the rotation effect of the output shaft 4 is affected.
  • the buffer mechanism 8 includes an infusion tube 81, a through hole 82, a mounting groove 83, a rubber ring 84 and a hinge frame 85; the mounting groove 83 is opened outside the No. 1 bearing 31, and the upper and lower ends of the mounting groove 83 are communicated with each other.
  • Hole 82, the installation groove 83 is initially filled with cooling oil; the middle of the through hole 82 communicates with the infusion tube 81; the infusion tube 81 is fixedly installed in the left end wall of the output shaft 4, and the infusion tube 81 is inserted and connected to the left end
  • the inside of the elastic block 72; the rubber ring 84 is made of ceramic silicon rubber, and the inner side of the rubber ring 84 is connected to the No.
  • the hinge frame 85 is fixedly connected with a drawstring 86; the pull The other end of the rope 86 is connected to the elastic block 72 at the left end; when the cooling oil in the liquid storage tank 71 is sucked into the drainage groove 73 under negative pressure, it drives the drainage blocks 74 at both ends to slide inwardly.
  • the drainage block 74 is connected to the inner drawstring 86 of the hinge frame 85 inside the rubber ring 84, so when the drainage block 74 moves inward, the drawstring 86 will be pulled to cause the two sides of the hinge frame 85 to approach each other, that is, a squeeze of the rubber ring 84 is generated.
  • the pressure causes the distance between the No.
  • the drainage block 74 is connected in the drainage groove 73 by screw rotation; when the drainage block 74 is subjected to centrifugal force, the drainage block 74 is connected in the drainage groove 73 through the screw rotation, that is, the drainage block 74 will be in the drainage groove 73 due to centrifugal force.
  • the spiral movement imparts a rotational force to the cooling oil in the reservoir 71, so that the cooling oil is in a spiral rotation state when it moves in the axial magnetic rotor 42 and the radial magnetic rotor 41, so that it continuously faces the axial magnetic rotor. 42 and the inner surface of the radial magnetic rotor 41 are helically flushed, which can achieve a better cooling effect on the axial magnetic rotor 42 and the radial magnetic rotor 41 than the direct suction method.
  • a heat-conducting plate 87 is fixedly installed in the outer wall of the rubber ring 84; the heat-conducting plate 87 is made of flexible metal, and the inner side of the heat-conducting plate 87 is provided with a heat-conducting hole 88; the cross-section of the heat-conducting hole 88 is triangular and the heat-conducting hole 88 can be expanded to communicate with the inside of the rubber ring 84; when the hinge frame 85 is forced by the pulling action of the left end elastic block 72, that is, the hinge frame 85 will push up the four ends of the rubber ring 84 due to the contraction force, so that the hinge frame 85
  • the rubber ring 84 is concave, because the outer end wall of the rubber ring 84 is fixedly installed with a heat-conducting plate 87.
  • the heat-conducting plate 87 is made of flexible metal. That is, when the rubber ring 84 between the hinge brackets 85 is concave, the heat-conducting plate 87 Gradually bend into an arc shape, that is, the inner end of the heat conduction hole 88 inside the heat conduction plate 87 is opened, so the inner surface of the heat conduction plate 87 will communicate with the air in the rubber ring 84, absorb the heat in the air, and pass through it at the same time.
  • the cooling oil on the surface cools the internal air to prevent the bearing assembly 3 from generating a high temperature and causing the inside of the coupler to heat up.
  • the inner end of the articulated frame 85 is set in an arc shape, and the inner end of the articulated frame 85 can be fitted into the outer wall of the No. 1 bearing 31; when the articulated frame 85 reciprocates during the working process, the inner end of the articulated frame 85 is set in an arc shape.
  • the inner end can be fitted into the outer wall of the No. 1 bearing 31, which can effectively protect the hinge frame 85 itself, avoiding the shrinkage of the rubber ring 84 when it is not working, which may cause the joint end of the hinge frame 85 and the No. 1 bearing 31 to be affected.
  • the larger squeezing force causes the hinge frame 85 to break and affects the cooling effect on the No. 1 bearing 31.
  • the internal output shaft 4 starts to rotate, that is, drives the axial magnetic rotor 42 and the radial magnetic rotor 41 on its outer surface to rotate, because of the internal output shaft 4
  • a liquid storage tank 71 is provided.
  • the liquid storage tank 71 is filled with cooling oil.
  • the inner ends of the liquid storage tank 71 are slidably connected with elastic blocks 72 through springs.
  • the axial magnetic rotor 42 and the radial magnetic rotor 41 are provided with In the drainage groove 73, the drainage block 74 is slidably installed in the drainage groove 73.
  • the drainage block 74 moves outwards under the action of centrifugal force, which makes the liquid storage tank 71 in a negative pressure state, and the inside
  • the cooling oil is sucked into the drainage groove 73, and the axial magnetic rotor 42 and the radial magnetic rotor 41 are cooled to prevent the magnetic field magnetism from being affected by the excessive temperature and the rotation effect of the output shaft 4 is affected;
  • the drainage block 74 When the drainage block 74 is subjected to centrifugal force, the drainage block 74 is connected in the drainage groove 73 by screw rotation, that is, the drainage block 74 spirally moves in the drainage groove 73 due to the centrifugal force, imparting a rotation to the cooling oil in the reservoir 71
  • the power causes the cooling oil to spirally rotate when moving in the axial magnetic rotor 42 and the radial magnetic rotor 41, so that it continuously helically washes the inner surfaces of the axial magnetic rotor 42 and the radial magnetic rotor 41.
  • a better cooling effect on the axial magnetic rotor 42 and the radial magnetic rotor 41 can be obtained;
  • a heat-conducting plate 87 is fixedly installed in the outer end wall of 84.
  • the heat-conducting plate 87 is made of flexible metal, that is, when the rubber ring 84 between the hinge brackets 85 is recessed, the heat-conducting plate 87 will gradually bend into an arc shape, that is, the heat-conducting plate
  • the inner end of the heat-conducting hole 88 inside 87 is open, so the inner surface of the heat-conducting plate 87 will communicate with the air in the rubber ring 84 to absorb the heat in the air, and at the same time, the cooling oil on the outer surface will cool the internal air.
  • the articulated frame 85 When the articulated frame 85 reciprocates in the working process, because its inner end is set in an arc shape, its inner end can be fitted into the outer wall of the No. 1 bearing 31, that is, the articulated frame 85 itself can be effectively protected to avoid accidents.
  • the shrinkage of the rubber ring 84 during operation causes the joint end of the hinge frame 85 and the No. 1 bearing 31 to be subjected to a relatively large squeezing force, which causes the hinge frame 85 to break, which affects the cooling effect of the No. 1 bearing 31.

Abstract

一种海尔贝克阵列式耦合器,包括输入轴(1)、输入端盖(2)、轴承组(3)、输出轴(4)、输出端盖(5)、外壳(6)、降温机构(7)和缓冲机构(8);所述轴承组(3)包括一号轴承(31)和二号轴承(32);所述输入端盖(2)与输出端盖(5)之间通过外壳(6)连接,输入端盖(2)的外端通过螺钉固定连接有输入轴(1),输入端盖(2)的内侧壁中转动安装有一号轴承(31),输入端盖(2)的内表面固定安装有轴向铜导体(21)。该耦合器解决了现有的磁力耦合器在常年炎热地区的载货车上使用时会因震动力导致内部零件损坏,且在这种高温环境下易导致耦合器内的磁性下降或消失,同时由于磁力耦合器会产生漏磁现象即导致磁感应线发生损耗,从而导致磁力耦合器的传动效率受到影响的问题。

Description

一种海尔贝克阵列式耦合器 技术领域
本发明属于磁感应技术领域,具体的说是一种海尔贝克阵列式耦合器。
背景技术
在微波系统中,往往需将一路微波功率按比例分成几路,这就是功率分配问题。实现这一功能的元件称为功率分配元器件即耦合器,主要包括:定向耦合器、功率分配器以及各种微波分支器件。
海尔贝克阵列(Halbach Array)是一种磁体结构,是工程上的近似理想结构,目标是用最少量的磁体产生最强的磁场。1979年,美国学者Klaus Halbach做电子加速实验时,发现了这种特殊的永磁铁结构,并逐步完善这种结构,最终形成了所谓的“Halbach”磁铁,随着磁领域被逐渐开发完善,耦合器与磁力结合便形成了磁力耦合器,磁力耦合器的工作原理遵循磁的库仑定律,即两个相隔一定距离的磁体,由于磁场感应效应,它们不需要任何传统机械构件,通过磁体的耦合力,就能把功率从一个磁体传递到另外一个磁体,构成一个非接触传递扭矩机构,由于其具备的优良性能,磁力耦合器在汽车领域也开始被使用,但是对于一些常年炎热地区的载货车来说,由于载货车经常行驶于乡下的坑洼路面,造成对磁力耦合器的震动较大易使得其内部零件发生损坏,同时由于工作时磁力耦合器会生热,与外界空气的高温结合后会使得其内部的温度较高,而在这种高温下极易导致磁力耦合器的磁性下降或消失,从而导致传动力受到影响,不利于人们的日常使用,同时由于磁力耦合器内会发生漏磁现象,随即导致磁感应线发生损耗,致使传动效率受到影响。
发明概述
技术问题
问题的解决方案
技术解决方案
为了弥补现有技术的不足,本发明提出的一种海尔贝克阵列式耦合器。本发明 主要用于解决现有的磁力耦合器在常年炎热地区的载货车上使用时会因震动力导致内部零件损坏,且在这种高温环境下易导致耦合器内的磁性下降或消失,同时由于磁力耦合器会产生漏磁现象即导致磁感应线发生损耗,从而导致磁力耦合器的传动效率受到影响的问题。
本发明解决其技术问题所采用的技术方案是:本发明所述的一种海尔贝克阵列式耦合器,包括输入轴、输入端盖、轴承组、输出轴、输出端盖、外壳、降温机构和缓冲机构;所述轴承组包括一号轴承和二号轴承;所述输入端盖与输出端盖之间通过外壳连接,输入端盖的外端通过螺钉固定连接有输入轴,输入端盖的内侧壁中转动安装有一号轴承,输入端盖的内表面固定安装有轴向铜导体;所述一号轴承的内部固定连接有输出轴;所述输出轴的右端通过二号轴承转动穿插连接在输出端盖内,输出轴的中部外表面固定连接有径向磁转子,输出轴的两端外表面固定连接有轴向磁转子;所述轴向磁转子采用轴向海尔贝克永磁体阵列;所述径向磁转子采用径向海尔贝克永磁体阵列;所述输出端盖的内表面固定安装有轴向铜导体;所述轴向磁转子的内表面固定连接有轭铁盘,轴向磁转子采用单块三极式海尔贝克阵列分布;所述径向磁转子采用极间隔断型海尔贝克阵列安装在凹槽内,径向磁转子的外端设有径向铜导体;所述径向铜导体固定安装在外壳的内表面;因轴向磁转子采用轴向海尔贝克永磁体阵列,径向磁转子采用径向海尔贝克永磁体阵列,相较于普通的永磁体分布,轴向海尔贝克永磁体阵列与径向海尔贝克永磁体阵列形成的磁场一侧磁感应线密集,另一侧较零散,将磁感应线密集侧正对铜导体,可分别提高轴向磁转子与轴向铜导体、径向磁转子与径向铜导体之间气隙的磁场强度,从而使海尔贝克阵列式耦合器获得更大的转矩密度。将轴向磁感应线零散侧正对径向磁转子,可减少轴向磁转子与径向磁转子之间的漏磁,达到减少磁感应线损耗的目的,而通过将轴向磁转子采用单块三极式海尔贝克阵列分布即可实现分布产生的气隙磁场正弦度较高,工艺性较好,同时将径向磁转子采用极间隔断型海尔贝克阵列分布,合理设计海尔贝克阵列参数,可获得比传统径向磁转子更加优越的气隙磁通密度性能。
所述降温机构包括储液槽、弹性块、引流槽和引流块;所述储液槽开设在输出 轴的内部,储液槽的内部两端通过弹簧滑动连接有弹性块,储液槽中填充有冷却油,储液槽中部连通有引流槽;所述引流槽呈环形,引流槽的外端开设在轴向磁转子和径向磁转子内,引流槽的内部滑动安装有引流块;所述引流块初始时设置在靠近储液槽一侧;当耦合器开始工作时,受到输入轴的作用力影响,其内部的输出轴开始转动,即带动其外表面的轴向磁转子和径向磁转子转动,因输出轴的内部开设有储液槽,储液槽内填充有冷却油,储液槽的内部两端通过弹簧滑动连接有弹性块,同时轴向磁转子和径向磁转子的内部开设有引流槽,引流槽内滑动安装有引流块,所以在输出轴转动时即使得引流块在离心力作用下向外运动,即使得储液槽内为负压状态,将其内部的冷却油吸进引流槽中,对轴向磁转子和径向磁转子进行降温处理,避免其温度过高导致磁场磁性受到影响从而导致输出轴的转动效果受到影响。
所述缓冲机构包括输液管、通孔、安装槽、橡胶环和铰接架;所述安装槽开设在一号轴承的外侧,安装槽的上下两端连通有通孔,安装槽内初始时充满冷却油;所述通孔的中部与输液管连通;所述输液管固定安装在输出轴的左端壁中,且输液管穿插连接在左端弹性块的内部;所述橡胶环由陶瓷硅橡胶制成,橡胶环的内侧通过铰接架与一号轴承连接;所述铰接架内部固定连接有拉绳;所述拉绳的另一端与左端的弹性块连接;当储液槽内的冷却油受到负压被吸进引流槽内时,即带动其两端的引流块向内侧滑动,而因左端的引流块与橡胶环内侧的铰接架内部拉绳连接,所以引流块向内侧运动时会拉动拉绳致使铰接架的两侧相互靠近,即对橡胶环产生一股挤压力,使得一号轴承与橡胶环的距离被拉伸,从而给予一号轴承一定幅度的缓冲距离,使得载货车行驶在较为颠簸的路面时输出轴具有一定的晃动距离,避免输出轴与输入端盖和输出端盖之间刚性连接对耦合器内部的零件造成破坏,且因安装槽内初始时充满冷却油,所以在橡胶环被挤压时其内部的冷却油会通过通孔和输液管进入储液槽内,从而给予储液槽内的负压状态一定的缓解,使得引流块在引流槽内的滑动阻力被大幅减小,提高对轴向磁转子和径向磁转子的冷却效果。
所述引流块通过螺纹转动连接在引流槽内;当引流块受到离心力作用时,因引流块通过螺纹转动连接在引流槽内,即引流块会因离心力在引流槽内螺旋运动 ,对储液槽内的冷却油赋予一个转动力,使得冷却油在轴向磁转子和径向磁转子内运动时为螺旋转动状态,使得其不停的对轴向磁转子和径向磁转子的内表面进行螺旋冲刷,相较于直接吸入的方式可以获得对轴向磁转子和径向磁转子更好的降温效果。
所述橡胶环的外壁中固定安装有导热板;所述导热板为柔性金属制成,导热板的内侧设有导热孔;所述导热孔的横截面呈三角形,导热孔可以扩张与橡胶环内部连通;当铰接架受到左端弹性块的拉动作用力时,即铰接架会因收缩力将橡胶环的四端顶起,从而使得铰接架之间的橡胶环内凹,因橡胶环的外端壁中固定安装有导热板,导热板为柔性金属制成,即铰接架之间的橡胶环内凹时会使得导热板逐渐弯曲成弧形,即使得导热板内侧的导热孔内端张开,所以导热板的内表面会与橡胶环内的空气连通,对空气中的热量进行吸收,同时通过其外表面的冷却油对内部空气进行降温处理,避免轴承组产生较高温度致使耦合器内升温。
所述铰接架的内端设置为弧形,铰接架的内端可以嵌合进一号轴承的外壁中;当铰接架在工作过程中往复运动时,因其内端设置为弧形,其内端可以嵌合进一号轴承的外壁中,即可以对铰接架自身进行有效保护,避免在不工作时橡胶环收缩导致铰接架与一号轴承的连接端受到较大挤压力从而导致铰接架发生断裂影响到对一号轴承的冷却效果。
发明的有益效果
有益效果
本发明的有益效果如下:
1.因轴向磁转子采用轴向海尔贝克永磁体阵列,径向磁转子采用径向海尔贝克永磁体阵列,相较于普通的永磁体分布,轴向海尔贝克永磁体阵列与径向海尔贝克永磁体阵列形成的磁场一侧磁感应线密集,另一侧较零散,将磁感应线密集侧正对铜导体,可分别提高轴向磁转子与轴向铜导体、径向磁转子与径向铜导体之间气隙的磁场强度,从而使海尔贝克阵列式耦合器获得更大的转矩密度。将轴向磁感应线零散侧正对径向磁转子,可减少轴向磁转子与径向磁转子之间的漏磁,达到减少磁感应线损耗的目的,而通过将轴向磁转子采用单块三 极式海尔贝克阵列分布即可实现分布产生的气隙磁场正弦度较高,工艺性较好,同时将径向磁转子采用极间隔断型海尔贝克阵列分布,合理设计海尔贝克阵列参数,可获得比传统径向磁转子更加优越的气隙磁通密度性能。
2.本发明通过设置降温机构即可实现当耦合器开始工作时,受到输入轴的作用力影响,其内部的输出轴开始转动,即带动其外表面的轴向磁转子和径向磁转子转动,因输出轴的内部开设有储液槽,储液槽内填充有冷却油,储液槽的内部两端通过弹簧滑动连接有弹性块,同时轴向磁转子和径向磁转子的内部开设有引流槽,引流槽内滑动安装有引流块,所以在输出轴转动时即使得引流块在离心力作用下向外运动,即使得储液槽内为负压状态,将其内部的冷却油吸进引流槽中,对轴向磁转子和径向磁转子进行降温处理,避免其温度过高导致磁场磁性受到影响从而导致输出轴的转动效果受到影响。
3.本发明通过设置缓冲机构即可实现当储液槽内的冷却油受到负压被吸进引流槽内时,即带动其两端的引流块向内侧滑动,而因左端的引流块与橡胶环内侧的铰接架内部拉绳连接,所以引流块向内侧运动时会拉动拉绳致使铰接架的两侧相互靠近,即对橡胶环产生一股挤压力,使得一号轴承与橡胶环的距离被拉伸,从而给予一号轴承一定幅度的缓冲距离,使得载货车行驶在较为颠簸的路面时输出轴具有一定的晃动距离,避免输出轴与输入端盖和输出端盖之间刚性连接对耦合器内部的零件造成破坏,且因安装槽内初始时充满冷却油,所以在橡胶环被挤压时其内部的冷却油会通过通孔和输液管进入储液槽内,从而给予储液槽内的负压状态一定的缓解,使得引流块在引流槽内的滑动阻力被大幅减小,提高对轴向磁转子和径向磁转子的冷却效果。
对附图的简要说明
附图说明
图1是本发明的主视图;
图2是本发明缓冲机构的结构示意图;
图3是本发明轴向磁转子的结构示意图;
图4是本发明径向磁转子的结构示意图;
图中:输入轴1,输入端盖2,轴向铜导体21,轴承组3,一号轴承31,二号轴 承32,输出轴4,径向磁转子41,轴向磁转子42,轴向海尔贝克永磁体阵列43,径向海尔贝克永磁体阵列44,轭铁盘45,输出端盖5,外壳6,径向铜导体61,降温机构7,储液槽71,弹性块72,引流槽73,引流块74,缓冲机构8,输液管81,通孔82,安装槽83,橡胶环84,铰接架85,拉绳86,导热板87,导热孔88。
发明实施例
本发明的实施方式
使用图1-图4对本发明一实施方式的一种海尔贝克阵列式耦合器进行如下说明。
如图1-图4所示,本发明所述的一种海尔贝克阵列式耦合器,包括输入轴1、输入端盖2、轴承组3、输出轴4、输出端盖5、外壳6、降温机构7和缓冲机构8;所述轴承组3包括一号轴承31和二号轴承32;所述输入端盖2与输出端盖5之间通过外壳6连接,输入端盖2的外端通过螺钉固定连接有输入轴1,输入端盖2的内侧壁中转动安装有一号轴承31,输入端盖2的内表面固定安装有轴向铜导体21;所述一号轴承31的内部固定连接有输出轴4;所述输出轴4的右端通过二号轴承32转动穿插连接在输出端盖5内,输出轴4的中部外表面固定连接有径向磁转子41,输出轴4的两端外表面固定连接有轴向磁转子42;所述轴向磁转子42采用轴向海尔贝克永磁体阵列43;所述径向磁转子41采用径向海尔贝克永磁体阵列44;所述输出端盖5的内表面固定安装有轴向铜导体21;所述轴向磁转子42的内表面固定连接有轭铁盘45,轴向磁转子42采用单块三极式海尔贝克阵列分布;所述径向磁转子41采用极间隔断型海尔贝克阵列安装在凹槽内,径向磁转子41的外端设有径向铜导体61;所述径向铜导体61固定安装在外壳6的内表面;因轴向磁转子42采用轴向海尔贝克永磁体阵列43,径向磁转子41采用径向海尔贝克永磁体阵列44,相较于普通的永磁体分布,轴向海尔贝克永磁体阵列43与径向海尔贝克永磁体阵列44形成的磁场一侧磁感应线密集,另一侧较零散,将磁感应线密集侧正对铜导体,可分别提高轴向磁转子42与轴向铜导体21、径向磁转子41与径向铜导体61之间气隙的磁场强度,从而使海尔贝克阵列式耦合器获得更大的转矩密度。将轴向磁感应线零散侧正对径向磁转子41,可减少轴向磁转子42与径向磁转子41之间的漏磁,达到减少磁感应线损耗的目的,而通过将轴向磁 转子42采用单块三极式海尔贝克阵列分布即可实现分布产生的气隙磁场正弦度较高,工艺性较好,同时将径向磁转子41采用极间隔断型海尔贝克阵列分布,合理设计海尔贝克阵列参数,可获得比传统径向磁转子41更加优越的气隙磁通密度性能。
所述降温机构7包括储液槽71、弹性块72、引流槽73和引流块74;所述储液槽71开设在输出轴4的内部,储液槽71的内部两端通过弹簧滑动连接有弹性块72,储液槽71中填充有冷却油,储液槽71中部连通有引流槽73;所述引流槽73呈环形,引流槽73的外端开设在轴向磁转子42和径向磁转子41内,引流槽73的内部滑动安装有引流块74;所述引流块74初始时设置在靠近储液槽71一侧;当耦合器开始工作时,受到输入轴1的作用力影响,其内部的输出轴4开始转动,即带动其外表面的轴向磁转子42和径向磁转子41转动,因输出轴4的内部开设有储液槽71,储液槽71内填充有冷却油,储液槽71的内部两端通过弹簧滑动连接有弹性块72,同时轴向磁转子42和径向磁转子41的内部开设有引流槽73,引流槽73内滑动安装有引流块74,所以在输出轴4转动时即使得引流块74在离心力作用下向外运动,即使得储液槽71内为负压状态,将其内部的冷却油吸进引流槽73中,对轴向磁转子42和径向磁转子41进行降温处理,避免其温度过高导致磁场磁性受到影响从而导致输出轴4的转动效果受到影响。
所述缓冲机构8包括输液管81、通孔82、安装槽83、橡胶环84和铰接架85;所述安装槽83开设在一号轴承31的外侧,安装槽83的上下两端连通有通孔82,安装槽83内初始时充满冷却油;所述通孔82的中部与输液管81连通;所述输液管81固定安装在输出轴4的左端壁中,且输液管81穿插连接在左端弹性块72的内部;所述橡胶环84由陶瓷硅橡胶制成,橡胶环84的内侧通过铰接架85与一号轴承31连接;所述铰接架85内部固定连接有拉绳86;所述拉绳86的另一端与左端的弹性块72连接;当储液槽71内的冷却油受到负压被吸进引流槽73内时,即带动其两端的引流块74向内侧滑动,而因左端的引流块74与橡胶环84内侧的铰接架85内部拉绳86连接,所以引流块74向内侧运动时会拉动拉绳86致使铰接架85的两侧相互靠近,即对橡胶环84产生一股挤压力,使得一号轴承31与橡胶环84的距离被拉伸,从而给予一号轴承31一定幅度的缓冲距离,使得载货车行驶在较为 颠簸的路面时输出轴4具有一定的晃动距离,避免输出轴4与输入端盖2和输出端盖5之间刚性连接对耦合器内部的零件造成破坏,且因安装槽83内初始时充满冷却油,所以在橡胶环84被挤压时其内部的冷却油会通过通孔82和输液管81进入储液槽71内,从而给予储液槽71内的负压状态一定的缓解,使得引流块74在引流槽73内的滑动阻力被大幅减小,提高对轴向磁转子42和径向磁转子41的冷却效果。
所述引流块74通过螺纹转动连接在引流槽73内;当引流块74受到离心力作用时,因引流块74通过螺纹转动连接在引流槽73内,即引流块74会因离心力在引流槽73内螺旋运动,对储液槽71内的冷却油赋予一个转动力,使得冷却油在轴向磁转子42和径向磁转子41内运动时为螺旋转动状态,使得其不停的对轴向磁转子42和径向磁转子41的内表面进行螺旋冲刷,相较于直接吸入的方式可以获得对轴向磁转子42和径向磁转子41更好的降温效果。
所述橡胶环84的外壁中固定安装有导热板87;所述导热板87为柔性金属制成,导热板87的内侧设有导热孔88;所述导热孔88的横截面呈三角形,导热孔88可以扩张与橡胶环84内部连通;当铰接架85受到左端弹性块72的拉动作用力时,即铰接架85会因收缩力将橡胶环84的四端顶起,从而使得铰接架85之间的橡胶环84内凹,因橡胶环84的外端壁中固定安装有导热板87,导热板87为柔性金属制成,即铰接架85之间的橡胶环84内凹时会使得导热板87逐渐弯曲成弧形,即使得导热板87内侧的导热孔88内端张开,所以导热板87的内表面会与橡胶环84内的空气连通,对空气中的热量进行吸收,同时通过其外表面的冷却油对内部空气进行降温处理,避免轴承组3产生较高温度致使耦合器内升温。
所述铰接架85的内端设置为弧形,铰接架85的内端可以嵌合进一号轴承31的外壁中;当铰接架85在工作过程中往复运动时,因其内端设置为弧形,其内端可以嵌合进一号轴承31的外壁中,即可以对铰接架85自身进行有效保护,避免在不工作时橡胶环84收缩导致铰接架85与一号轴承31的连接端受到较大挤压力从而导致铰接架85发生断裂影响到对一号轴承31的冷却效果。
具体工作流程如下:
当耦合器开始工作时,受到输入轴1的作用力影响,其内部的输出轴4开始转动 ,即带动其外表面的轴向磁转子42和径向磁转子41转动,因输出轴4的内部开设有储液槽71,储液槽71内填充有冷却油,储液槽71的内部两端通过弹簧滑动连接有弹性块72,同时轴向磁转子42和径向磁转子41的内部开设有引流槽73,引流槽73内滑动安装有引流块74,所以在输出轴4转动时即使得引流块74在离心力作用下向外运动,即使得储液槽71内为负压状态,将其内部的冷却油吸进引流槽73中,对轴向磁转子42和径向磁转子41进行降温处理,避免其温度过高导致磁场磁性受到影响从而导致输出轴4的转动效果受到影响;
当储液槽71内的冷却油受到负压被吸进引流槽73内时,即带动其两端的引流块74向内侧滑动,而因左端的引流块74与橡胶环84内侧的铰接架85内部拉绳86连接,所以引流块74向内侧运动时会拉动拉绳86致使铰接架85的两侧相互靠近,即对橡胶环84产生一股挤压力,使得一号轴承31与橡胶环84的距离被拉伸,从而给予一号轴承31一定幅度的缓冲距离,使得载货车行驶在较为颠簸的路面时输出轴4具有一定的晃动距离,避免输出轴4与输入端盖2和输出端盖5之间刚性连接对耦合器内部的零件造成破坏,且因安装槽83内初始时充满冷却油,所以在橡胶环84被挤压时其内部的冷却油会通过通孔82和输液管81进入储液槽71内,从而给予储液槽71内的负压状态一定的缓解,使得引流块74在引流槽73内的滑动阻力被大幅减小,提高对轴向磁转子42和径向磁转子41的冷却效果;
当引流块74受到离心力作用时,因引流块74通过螺纹转动连接在引流槽73内,即引流块74会因离心力在引流槽73内螺旋运动,对储液槽71内的冷却油赋予一个转动力,使得冷却油在轴向磁转子42和径向磁转子41内运动时为螺旋转动状态,使得其不停的对轴向磁转子42和径向磁转子41的内表面进行螺旋冲刷,相较于直接吸入的方式可以获得对轴向磁转子42和径向磁转子41更好的降温效果;
当铰接架85受到左端弹性块72的拉动作用力时,即铰接架85会因收缩力将橡胶环84的四端顶起,从而使得铰接架85之间的橡胶环84内凹,因橡胶环84的外端壁中固定安装有导热板87,导热板87为柔性金属制成,即铰接架85之间的橡胶环84内凹时会使得导热板87逐渐弯曲成弧形,即使得导热板87内侧的导热孔88内端张开,所以导热板87的内表面会与橡胶环84内的空气连通,对空气中的热 量进行吸收,同时通过其外表面的冷却油对内部空气进行降温处理,避免轴承组3产生较高温度致使耦合器内升温;
当铰接架85在工作过程中往复运动时,因其内端设置为弧形,其内端可以嵌合进一号轴承31的外壁中,即可以对铰接架85自身进行有效保护,避免在不工作时橡胶环84收缩导致铰接架85与一号轴承31的连接端受到较大挤压力从而导致铰接架85发生断裂影响到对一号轴承31的冷却效果。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。。

Claims (6)

  1. 一种海尔贝克阵列式耦合器,包括输入轴(1)、输入端盖(2)、轴承组(3)、输出轴(4)、输出端盖(5)、外壳(6)、降温机构(7)和缓冲机构(8);其特征在于:所述轴承组(3)包括一号轴承(31)和二号轴承(32);所述输入端盖(2)与输出端盖(5)之间通过外壳(6)连接,输入端盖(2)的外端通过螺钉固定连接有输入轴(1),输入端盖(2)的内侧壁中转动安装有一号轴承(31),输入端盖(2)的内表面固定安装有轴向铜导体(21);所述一号轴承(31)的内部固定连接有输出轴(4);所述输出轴(4)的右端通过二号轴承(32)转动穿插连接在输出端盖(5)内,输出轴(4)的中部外表面固定连接有径向磁转子(41),输出轴(4)的两端外表面固定连接有轴向磁转子(42);所述轴向磁转子(42)采用轴向海尔贝克永磁体阵列(43);所述径向磁转子(41)采用径向海尔贝克永磁体阵列(44);所述输出端盖(5)的内表面固定安装有轴向铜导体(21);所述轴向磁转子(42)的内表面固定连接有轭铁盘(45),轴向磁转子(42)采用单块三极式海尔贝克阵列分布;所述径向磁转子(41)采用极间隔断型海尔贝克阵列安装在凹槽内,径向磁转子(41)的外端设有径向铜导体(61);所述径向铜导体(61)固定安装在外壳(6)的内表面。
  2. 根据权利要求1所述的一种海尔贝克阵列式耦合器,其特征在于:所述降温机构(7)包括储液槽(71)、弹性块(72)、引流槽(73)和引流块(74);所述储液槽(71)开设在输出轴(4)的内部,储液槽(71)的内部两端通过弹簧滑动连接有弹性块(72),储液槽(71)中填充有冷却油,储液槽(71)中部连通有引流槽(73);所述引流槽(73)呈环形,引流槽(73)的外端开设在轴向磁转子(42)和径向磁转子(41)内,引流槽(73)的内部滑动安装有引流块(74);所述引流块(74)初始时设置在靠近储液槽(71)一侧。
  3. 根据权利要求1所述的一种海尔贝克阵列式耦合器,其特征在于:所述缓冲机构(8)包括输液管(81)、通孔(82)、安装槽(83)、橡胶环( 84)和铰接架(85);所述安装槽(83)开设在一号轴承(31)的外侧,安装槽(83)的上下两端连通有通孔(82),安装槽(83)内初始时充满冷却油;所述通孔(82)的中部与输液管(81)连通;所述输液管(81)固定安装在输出轴(4)的左端壁中,且输液管(81)穿插连接在左端弹性块(72)的内部;所述橡胶环(84)由陶瓷硅橡胶制成,橡胶环(84)的内侧通过铰接架(85)与一号轴承(31)连接;所述铰接架(85)内部固定连接有拉绳(86);所述拉绳(86)的另一端与左端的弹性块(72)连接。
  4. 根据权利要求2所述的一种海尔贝克阵列式耦合器,其特征在于:所述引流块(74)通过螺纹转动连接在引流槽(73)内。
  5. 根据权利要求3所述的一种海尔贝克阵列式耦合器,其特征在于:所述橡胶环(84)的外壁中固定安装有导热板(87);所述导热板(87)为柔性金属制成,导热板(87)的内侧设有导热孔(88);所述导热孔(88)的横截面呈三角形,导热孔(88)可以扩张与橡胶环(84)内部连通。
  6. 根据权利要求3所述的一种海尔贝克阵列式耦合器,其特征在于:所述铰接架(85)的内端设置为弧形,铰接架(85)的内端可以嵌合进一号轴承(31)的外壁中。
PCT/CN2019/111150 2019-10-15 2019-10-15 一种海尔贝克阵列式耦合器 WO2021072615A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111150 WO2021072615A1 (zh) 2019-10-15 2019-10-15 一种海尔贝克阵列式耦合器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/111150 WO2021072615A1 (zh) 2019-10-15 2019-10-15 一种海尔贝克阵列式耦合器

Publications (1)

Publication Number Publication Date
WO2021072615A1 true WO2021072615A1 (zh) 2021-04-22

Family

ID=75537482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111150 WO2021072615A1 (zh) 2019-10-15 2019-10-15 一种海尔贝克阵列式耦合器

Country Status (1)

Country Link
WO (1) WO2021072615A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU684687A1 (ru) * 1977-08-29 1979-09-05 Предприятие П/Я Г-4371 Гермитична торцова магнитна муфта
CN101982932A (zh) * 2010-09-21 2011-03-02 南京大寰控制系统有限公司 盘式水冷永磁涡流调速装置
CN102739116A (zh) * 2012-06-25 2012-10-17 浙江工业大学 基于Halbach阵列的磁耦合传动装置
CN102969868A (zh) * 2012-11-13 2013-03-13 江苏大学 一种盘形异步磁力联轴器及调速方法
CN103326537A (zh) * 2013-06-19 2013-09-25 南京艾凌永磁调速技术研究有限公司 限矩型永磁耦合器
CN106059252A (zh) * 2016-07-20 2016-10-26 安徽理工大学 一种新型复合式双盘磁力耦合器
CN107171531A (zh) * 2017-06-13 2017-09-15 江苏磁谷科技股份有限公司 一种同步永磁联轴器
US20170294828A1 (en) * 2014-09-15 2017-10-12 Zhengqing Chen Outer cup rotary axial eddy current damper
CN107579645A (zh) * 2017-10-25 2018-01-12 诸暨和创电机科技有限公司 一种限矩型永磁联轴器
CN207368860U (zh) * 2017-09-05 2018-05-15 兰州工业学院 一种混合式永磁联轴器
CN110535321A (zh) * 2019-09-05 2019-12-03 安徽理工大学 一种海尔贝克阵列式耦合器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU684687A1 (ru) * 1977-08-29 1979-09-05 Предприятие П/Я Г-4371 Гермитична торцова магнитна муфта
CN101982932A (zh) * 2010-09-21 2011-03-02 南京大寰控制系统有限公司 盘式水冷永磁涡流调速装置
CN102739116A (zh) * 2012-06-25 2012-10-17 浙江工业大学 基于Halbach阵列的磁耦合传动装置
CN102969868A (zh) * 2012-11-13 2013-03-13 江苏大学 一种盘形异步磁力联轴器及调速方法
CN103326537A (zh) * 2013-06-19 2013-09-25 南京艾凌永磁调速技术研究有限公司 限矩型永磁耦合器
US20170294828A1 (en) * 2014-09-15 2017-10-12 Zhengqing Chen Outer cup rotary axial eddy current damper
CN106059252A (zh) * 2016-07-20 2016-10-26 安徽理工大学 一种新型复合式双盘磁力耦合器
CN107171531A (zh) * 2017-06-13 2017-09-15 江苏磁谷科技股份有限公司 一种同步永磁联轴器
CN207368860U (zh) * 2017-09-05 2018-05-15 兰州工业学院 一种混合式永磁联轴器
CN107579645A (zh) * 2017-10-25 2018-01-12 诸暨和创电机科技有限公司 一种限矩型永磁联轴器
CN110535321A (zh) * 2019-09-05 2019-12-03 安徽理工大学 一种海尔贝克阵列式耦合器

Similar Documents

Publication Publication Date Title
CN110535321B (zh) 一种海尔贝克阵列式耦合器
CN105387191A (zh) 带风冷和缓冲结构的减速机
WO2021072615A1 (zh) 一种海尔贝克阵列式耦合器
CN109713821A (zh) 一种适用于内转子电机的转子液冷系统结构
CN213340349U (zh) 一种功率器件散热模块
CN109995189A (zh) 一种集成式油冷型永磁调速器
CN208094422U (zh) 一种超导隔磁式调磁装置
CN206117328U (zh) 用于新能源车风冷电机定子绕组的冷却结构
CN209375429U (zh) 一种盘式油冷型冷却磁力耦合器
CN206490547U (zh) 一种散热性能好的微型电机
CN206023441U (zh) 一种轴承改善型电机
CN213744016U (zh) 一种自吸式磁力泵
CN206611296U (zh) 一种水冷散热电机
CN105939091A (zh) 盖板式散热片和永磁涡流柔性驱动器
CN109412379A (zh) 一种盘式油冷型冷却磁力耦合器
CN205753935U (zh) 盖板式散热片和永磁涡流柔性驱动器
CN210240190U (zh) 一种液压站用油冷却装置
CN207283340U (zh) 一种具有双侧散热机构的电机
CN102270903B (zh) 一种贯通式液冷自循环驱动电机
CN205160079U (zh) 一种无功电容补偿柜
CN206294479U (zh) 一种高效的组合式散热器
CN216811879U (zh) 一种内燃机工程机械用高低温散热器
CN216241623U (zh) 一种集成马达端盖连接结构
CN114198425B (zh) 一种永磁激励下的双剪切磁流变离合器
CN212106372U (zh) 一种新型高温磁力泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19949225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19949225

Country of ref document: EP

Kind code of ref document: A1