WO2021071058A1 - Hybrid composite structure having cut and stab resistance and production method therefor - Google Patents

Hybrid composite structure having cut and stab resistance and production method therefor Download PDF

Info

Publication number
WO2021071058A1
WO2021071058A1 PCT/KR2020/008652 KR2020008652W WO2021071058A1 WO 2021071058 A1 WO2021071058 A1 WO 2021071058A1 KR 2020008652 W KR2020008652 W KR 2020008652W WO 2021071058 A1 WO2021071058 A1 WO 2021071058A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
material layer
reinforced composite
carbon fiber
composite structure
Prior art date
Application number
PCT/KR2020/008652
Other languages
French (fr)
Korean (ko)
Inventor
김민국
이민욱
천진실
Original Assignee
한국과학기술연구원
대한민국(경찰청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 대한민국(경찰청장) filed Critical 한국과학기술연구원
Publication of WO2021071058A1 publication Critical patent/WO2021071058A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0471Layered armour containing fibre- or fabric-reinforced layers
    • F41H5/0478Fibre- or fabric-reinforced layers in combination with plastics layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • B32B5/262Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary characterised by one fibrous or filamentary layer being a woven fabric layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/08Reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates or anti-ballistic clothing

Definitions

  • the present invention relates to a sword-proof hybrid composite structure and a method of manufacturing the same, and more particularly, to a sword-proof hybrid composite structure combining a high-hardness carbon fiber composite material and a cutting-resistant fiber composite material, and a method of manufacturing such a composite structure.
  • the research for the present invention was made with the support of the Ministry of Science and Technology Information and Communication's customized research and development project (management institution: Korea Research Foundation, project serial number: 1711096585) under the supervision of the Korea Institute of Science and Technology.
  • swordsight material As a material for protecting the human body from swords, spears, etc., it is important to have a swordsight material to protect the human body from attacks by knives or the like.
  • the material for swordsight is manufactured as a swordsman uniform, and can be used as a protective clothing to protect the safety of people who are threatened by swords or spears, such as police, soldiers, bodyguards, and security guards.
  • composite materials have been laminated in multiple layers as a material for anti-barrier materials, and in particular, an aramid laminate in which several layers of aramid fabric are laminated has been widely used.
  • an aramid laminate in which several layers of aramid fabric are laminated has been widely used.
  • a blade-proof material formed by simply laminating aramid fabrics as described above there is a problem in that the blade-proof performance is lowered compared to the weight and thickness, and the weight and thickness increase in order to provide an appropriate performance.
  • the present invention was conceived to solve the problems of the prior art described above, to form a hybrid composite structure having a laminated structure of a high hardness carbon fiber reinforced composite material on the outside and a cutting-resistant fiber composite material on the inside, and the weight and thickness It is an object of the present invention to provide a hybrid composite structure with maximized anti-barrier performance and a method of manufacturing the same.
  • a hybrid composite structure having anti-barrier performance comprising a cutting-resistant fiber-reinforced composite material layer and a carbon fiber-reinforced composite material attached to an upper portion of the cut-resistant fiber-reinforced composite material layer.
  • a hybrid composite structure comprising a layer is provided.
  • the carbon fiber reinforced composite material layer may be composed of carbon fiber reinforced plastic (CFRP), and the cutting-resistant fiber reinforced composite material layer may be composed of aramid fiber reinforced plastic (AFRP) or UHMWPE.
  • CFRP carbon fiber reinforced plastic
  • AFRP aramid fiber reinforced plastic
  • UHMWPE UHMWPE
  • a thin metal plate attached to an upper portion of the carbon fiber reinforced composite material layer may be further included.
  • the carbon fiber reinforced composite material layer may be configured by stacking a plurality of carbon fiber fabrics, and the cut resistant fiber reinforced composite material layer may be configured by stacking a plurality of aramid fiber fabrics.
  • it may further include another carbon fiber-reinforced composite material layer positioned below the cut-resistant fiber-reinforced composite material layer and to which the cut-resistant fiber-reinforced composite material layer is attached thereon.
  • a method of manufacturing the hybrid composite structure comprising: laminating a plurality of carbon fiber fabrics of the carbon fiber-reinforced composite material layer and a plurality of aramid fiber fabrics of the cut-resistant fiber-reinforced composite material layer , Impregnating the laminated fabric with a polymer resin, and curing the fabric impregnated with the polymer resin.
  • the step of laminating may include laminating a thin metal plate on the plurality of carbon fiber fabrics.
  • the curing may include placing plates on upper and lower portions of the laminated fabric impregnated with the polymer resin, and curing by applying vacuum compression and heat.
  • a hybrid composite structure having a laminated structure of a high-hardness carbon fiber-reinforced composite material on the outside and a cutting-resistant fiber composite material on the inside, and with enhanced anti-barrier performance.
  • the anti-barrier hybrid composite structure proposed by the present invention can maximize the anti-barrier performance compared to the weight and thickness by including a thin metal plate of ultrahardness in addition to the surface. That is, the anti-sword hybrid composite structure proposed in the present invention can implement the best anti-sword performance with the minimum weight and thickness.
  • FIG. 1 shows a cross-sectional view of a banggum hybrid composite structure according to an embodiment of the present invention.
  • FIG. 2A to 2C illustrate a manufacturing process of a banggum hybrid composite structure according to an embodiment of the present invention.
  • FIG. 3 is a graph showing a result of evaluating anti-banging performance of a hybrid composite structure according to an embodiment of the present invention.
  • 4A to 4C respectively show the degree of damage during a sword proofing performance test according to a sword proofing material according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components may not be limited by the terms. The terms may be used only for the purpose of distinguishing one component from another component.
  • a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.
  • the term “and/or” may include a combination of a plurality of related listed items or any of a plurality of related listed items.
  • the penetration of the blade can be divided into 1) material deformation and penetration by the blade tip, and 2) internal cutting by the blade edge.
  • the anti-knife material may first increase the strength of the material to prevent deformation and penetration of the material by the tip of the blade, and a material of high hardness may be disposed on the surface of the material.
  • a material having excellent cutting resistance that resists cutting may be disposed inside, thereby increasing the sword proofing performance.
  • FIGS. 1 to 2 a hybrid composite structure structure and a manufacturing method in which the anti-knife performance is improved in consideration of the penetrating characteristic of the blade are shown in FIGS. 1 to 2.
  • FIG. 1 shows a cross-sectional view of a banggum hybrid composite structure according to an embodiment of the present invention.
  • the anti-knock hybrid composite structure has a cutting-resistant fiber-reinforced composite material layer 101 having a cutting resistance on the innermost side, and a high hardness on the top of the cutting-resistant fiber-reinforced composite material layer 101. It includes a carbon fiber reinforced composite material layer 103 and a metal thin plate layer 105 on top of the carbon fiber reinforced composite material layer 103 in FIG.
  • the anti-knock hybrid composite structure as shown in FIG. 1 is a cutting-resistant fiber-reinforced composite material layer 101, a carbon fiber-reinforced composite material layer 103, and a thin metal plate from the innermost through the production section as shown in FIGS. 2A to 2C to be described later.
  • the layers 105 may be manufactured in a stacked structure.
  • the cutting-resistant fiber-reinforced composite material layer 101 and the carbon fiber-reinforced composite material layer 103 may be produced by laminating and bonding a plurality of fiber fabrics and carbon fiber fabrics, respectively.
  • the cutting-resistant fiber-reinforced composite material layer 101 may be made of a material having good cutting-resistance, and the application example is not limited, but, for example, aramid fiber reinforced plastic (AFRP) or UHMWPE (Ultra High Molecular Weight Polyethylene).
  • AFRP aramid fiber reinforced plastic
  • UHMWPE Ultra High Molecular Weight Polyethylene
  • the carbon fiber-reinforced composite material layer 103 is disposed on the surface side of the cutting-resistant fiber-reinforced composite material layer 101 to prevent material deformation by the edge of the blade and penetration of the blade with high hardness, and carbon fiber-reinforced plastic made of carbon fiber as a reinforcing material. (carbon fiber reinforced plastic, CFRP).
  • the composite structure in which the cutting-resistant fiber-reinforced composite material layer 101 and the carbon fiber-reinforced composite material layer 103 are laminated alone can provide a anti-barrier hybrid composite structure having excellent anti-barrier performance compared to weight and thickness.
  • An ultra-hard metal thin plate layer 105 may be optionally added.
  • the thin metal plate layer 105 may be additionally laminated and adhered to the surface of the anti-barrier hybrid composite structure.
  • the metal plate has a very high hardness, it is generally heavier in weight than a fiber material, so it can be formed in a thin sheet form to maximize the anti-barrier performance compared to the weight and thickness. That is, in the case of having the same sword fighting performance, the sword fighting hybrid composite structure proposed in the present invention can implement the same performance with a minimum weight and thickness.
  • the thin metal plate layer 105 has a thickness of 50 ⁇ m or more, and the thinner the thickness is, the more advantageous it is in terms of weight.
  • the thin metal plate layer 105 may be formed of, for example, a steel-based high-hardness metal material.
  • FIG. 2A to 2C illustrate a manufacturing process of a banggum hybrid composite structure according to an embodiment of the present invention.
  • the manufacturing process of the anti-glare hybrid composite structure includes a thin metal plate layer 105, a carbon fiber reinforced composite material layer 103, and a cutting-resistant fiber-reinforced composite material layer 101. ) Sequentially laminating, impregnating the laminated fabric with a polymer resin, and curing the fabric impregnated with the resin by applying heat and pressure.
  • a thin metal plate layer 105, a carbon fiber-reinforced composite material layer 103, and a cutting-resistant fiber-reinforced composite material layer 101 are sequentially stacked.
  • the carbon fiber reinforced composite material layer 103 is formed by laminating a plurality of carbon fiber fabrics
  • the cutting-resistant fiber reinforced composite material layer 101 is formed by laminating a cutting-resistant fiber fabric, for example, a plurality of aramid fiber fabrics. I can.
  • the laminated fabric is impregnated with a polymer resin.
  • a polymer resin for example, in consideration of ease of manufacture and physical properties, it can be used to adhere a laminated fabric by impregnating a thermosetting resin such as epoxy, vinyl ester, or phenol.
  • the polymer resin-impregnated fabric laminate is cured by applying heat and pressure. Plates are placed on the upper and lower portions of the fabric laminate impregnated with resin, and vacuum-compressed and cured by heat and pressure, thereby fabricating the anti-barrier hybrid composite structure of the structure shown in FIG. 1.
  • the curing temperature and time conditions may vary, and the manufacturing conditions may be changed in consideration of the curing conditions of the corresponding resin.
  • the application conditions of the resin are preferably such that the volume fraction of the fiber is 60% or more, and for this purpose, the higher the curing pressure is, the more advantageous.
  • a carbon fiber fabric, an aramid fiber fabric, and a method of simultaneously curing a metal thin plate on the surface at a time to manufacture integrally may be used.
  • a method of impregnating a polymer resin after preparing each fiber fabric by laminating it, or using a material impregnated with a resin in the fabric (Prepreg) in advance is used.
  • Prepreg a material impregnated with a resin in the fabric
  • a fabrication method that maximizes bending stiffness in addition to the method of manufacturing the anti-barrier hybrid composite structure by laminating in the order of a thin metal plate-a carbon fiber composite material-a fiber composite material (for example, an aramid fiber composite material), a thin metal plate-carbon fiber Composite material-Aramid fiber composite material-Through a sandwich structure of carbon fiber composite material, a fabrication method that maximizes bending stiffness can be used.
  • a thin metal plate-a carbon fiber composite material-a fiber composite material for example, an aramid fiber composite material
  • a thin metal plate-carbon fiber Composite material-Aramid fiber composite material-Through a sandwich structure of carbon fiber composite material a fabrication method that maximizes bending stiffness can be used.
  • the method of manufacturing the anti-sword hybrid composite structure proposed by the present invention is not limited to the above-described example, and the anti-sword hybrid composite structure having a cross-sectional structure as shown in FIG. 1 may be manufactured by various fabrication methods.
  • FIG. 3 is a graph showing a result graph of a bang sword performance evaluation of a bang sword hybrid composite structure according to an embodiment of the present invention.
  • the penetration depth (mm) of the blade was the deepest, about 9 mm, indicating that the sword-proof performance was the lowest.
  • the penetration depth is shallower than that of the polycarbonate (PC) material.
  • the penetration depth is significantly improved compared to the aramid fiber reinforced composite material (AFRP) material, but it can be confirmed that the anti-barrier performance is much lower than in the case of the hybrid composite material proposed in the present invention. have.
  • the penetration depth of the blade is remarkably improved.
  • the carbon/aramid hybrid composite material exhibits a negative value, which means the thickness of the specimen remaining without the blade being penetrated.
  • the anti-barrier performance is maximized.
  • the aramid fiber reinforced composite material is lighter than the carbon fiber composite material/aramid hybrid fiber composite material, and the thin metal plate hybrid composite material.
  • the aramid fiber reinforced composite material has a remarkably low anti-barrier performance, it can be seen that the carbon fiber composite material / aramid fiber composite material or metal thin plate hybrid composite material is much superior in the anti-barrier performance compared to weight and thickness.
  • 4A to 4C respectively show the degree of damage during a sword proofing performance test according to a sword proofing material according to an embodiment of the present invention.
  • carbon fiber reinforced composite material CFRP
  • aramid fiber reinforced composite material AFRP
  • carbon fiber composite material / aramid fiber composite material hybrid composite material as shown in Figure 3, each prepared to a thickness of 2.5 mm Pictures of the results of the degree of damage after the anti-microbial performance evaluation test for the specimen of the anti-microbial material are shown, respectively.
  • Photos arranged in the order from left to right in each of FIGS. 4A to 4C show an enlarged front view, an enlarged front view, and an enlarged rear view of each material. As shown in FIGS. 4A to 4C, it can be visually confirmed that the degree of breakage of the hybrid composite material is the slightest.
  • the hybrid composite material did not have any damage to the rear surface, and it can be confirmed that the hybrid composite material has excellent performance as a sword proof material.
  • constituent elements included in the invention are expressed in the singular or plural according to the presented specific embodiments.
  • the singular or plural expression is selected appropriately for the situation presented for convenience of description, and the above-described embodiments are not limited to the singular or plural constituent elements, and even constituent elements expressed in plural are composed of the singular or However, even if it is a component expressed in a singular number, it can be composed of pluralities.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

A hybrid composite structure having cut and stab resistance performance, according to the present invention, comprises: a cut resistant fiber reinforced composite material layer; and a carbon fiber reinforced composite material layer attached to the upper portion of the cut resistant fiber reinforced composite material layer. As such, a hybrid composite structure having reinforced cut and stab resistance performance by having a laminated structure having the high hardness carbon fiber reinforced composite material on the outside and the cut resistant fiber composite material on the inside, and a production method therefor may be provided.

Description

방검 하이브리드 복합 구조체 및 그 제조방법Anti-barrier hybrid composite structure and its manufacturing method
본 발명은 방검 하이브리드 복합 구조체 및 그 제작방법에 관한 것으로, 더욱 상세하게는 고경도 탄소섬유복합재료 및 내절삭성 섬유복합재료를 결합한 방검 하이브리드 복합 구조체 및 이러한 복합 구조체의 제조방법에 관한 것이다.The present invention relates to a sword-proof hybrid composite structure and a method of manufacturing the same, and more particularly, to a sword-proof hybrid composite structure combining a high-hardness carbon fiber composite material and a cutting-resistant fiber composite material, and a method of manufacturing such a composite structure.
[국가지원 연구개발에 대한 설명][Explanation of nationally supported R&D]
본 발명을 위한 연구는 한국과학기술연구원의 주관하에 과학기술정보통신부의 치안현장 맞춤형 연구개발사업(관리기관: 한국연구재단, 과제고유번호: 1711096585)의 지원에 의하여 이루어진 것이다. The research for the present invention was made with the support of the Ministry of Science and Technology Information and Communication's customized research and development project (management institution: Korea Research Foundation, project serial number: 1711096585) under the supervision of the Korea Institute of Science and Technology.
방검 소재는 칼 및 창 등으로부터 인체를 보호하기 위한 소재로서, 칼 등에 의한 공격으로부터 인체를 보호하는 방검 성능을 갖는 것이 중요하다. 방검용 소재는 방검복 등으로 제조되어, 경찰, 군인, 경호원, 경비원 등, 칼이나 창에 의한 위협이 큰 사람들의 안전을 보호 보호하는 보호복으로 사용될 수 있다. As a material for protecting the human body from swords, spears, etc., it is important to have a swordsight material to protect the human body from attacks by knives or the like. The material for swordsight is manufactured as a swordsman uniform, and can be used as a protective clothing to protect the safety of people who are threatened by swords or spears, such as police, soldiers, bodyguards, and security guards.
일반적으로 날카로운 칼끝에 의해 찔리거나 절삭되는 것을 막기 위한 방검 성능을 구비하기 위해서는, 소재 표면의 강도와 날카로운 칼에 의한 절삭에 저항하는 소재의 내절삭성을 높일 필요가 있다. In general, in order to have anti-barrier performance to prevent being pierced or cut by a sharp knife tip, it is necessary to increase the strength of the material surface and the cutting resistance of the material that resists cutting by a sharp knife.
종래에는 방검 소재로서 복합재들을 여러층으로 적층하여 사용하였으며, 특히 아라미드 직물을 여러 겹 적층한 아라미드 적층제가 널리 사용되어 왔다. 그러나, 이와 같이 아라미드 직물을 단순히 적층하여 형성된 방검 소재의 경우 무게, 두께 대비 방검 성능이 떨어지고, 적절한 성능을 내기 위해 무게와 두께가 증가하는 문제가 있었다. Conventionally, composite materials have been laminated in multiple layers as a material for anti-barrier materials, and in particular, an aramid laminate in which several layers of aramid fabric are laminated has been widely used. However, in the case of a blade-proof material formed by simply laminating aramid fabrics as described above, there is a problem in that the blade-proof performance is lowered compared to the weight and thickness, and the weight and thickness increase in order to provide an appropriate performance.
[선행기술문헌][Prior technical literature]
한국공개특허공보 제10-2013-0016861호Korean Patent Application Publication No. 10-2013-0016861
본 발명은 상술한 종래기술의 문제점을 해결하기 위해 안출된 것으로, 외부에 고경도 탄소섬유강화복합재료를, 내부에 내절삭성 섬유복합재료의 적층 구조를 가지는 하이브리드 복합 구조체를 형성하고, 무게, 두께 대비 방검 성능이 극대화된 하이브리드 복합 구조체 및 그 제작방법을 제공하는 것을 목적으로 한다.The present invention was conceived to solve the problems of the prior art described above, to form a hybrid composite structure having a laminated structure of a high hardness carbon fiber reinforced composite material on the outside and a cutting-resistant fiber composite material on the inside, and the weight and thickness It is an object of the present invention to provide a hybrid composite structure with maximized anti-barrier performance and a method of manufacturing the same.
상기 목적을 달성하기 위하여, 본 발명의 일 측면에 따르면, 방검 성능을 갖는 하이브리드 복합 구조체로서, 내절삭성 섬유강화복합재료층 및 상기 내절삭성 섬유강화복합재료층의 상부에 부착된 탄소섬유강화복합재료층을 포함하는, 하이브리드 복합 구조체가 제공된다.In order to achieve the above object, according to an aspect of the present invention, according to an aspect of the present invention, there is provided a hybrid composite structure having anti-barrier performance, comprising a cutting-resistant fiber-reinforced composite material layer and a carbon fiber-reinforced composite material attached to an upper portion of the cut-resistant fiber-reinforced composite material layer. A hybrid composite structure comprising a layer is provided.
본 발명의 일 실시예에 따르면, 상기 탄소섬유강화복합재료층은 탄소섬유 강화 플라스틱(CFRP)으로 구성되고, 상기 내절삭성 섬유강화복합재료층은 아라미드 섬유 강화 플라스틱(AFRP) 또는 UHMWPE로 구성될 수 있다.According to an embodiment of the present invention, the carbon fiber reinforced composite material layer may be composed of carbon fiber reinforced plastic (CFRP), and the cutting-resistant fiber reinforced composite material layer may be composed of aramid fiber reinforced plastic (AFRP) or UHMWPE. have.
본 발명의 일 실시예에 따르면, 상기 탄소섬유강화복합재료층의 상부에 부착된 금속 박판을 더 포함할 수 있다.According to an embodiment of the present invention, a thin metal plate attached to an upper portion of the carbon fiber reinforced composite material layer may be further included.
본 발명의 일 실시예에 따르면, 상기 탄소섬유강화복합재료층은 복수의 탄소 섬유 직물을 적층하여 구성되고, 상기 내절삭성 섬유강화복합재료층은 복수의 아라미드 섬유 직물을 적층하여 구성될 수 있다.According to an embodiment of the present invention, the carbon fiber reinforced composite material layer may be configured by stacking a plurality of carbon fiber fabrics, and the cut resistant fiber reinforced composite material layer may be configured by stacking a plurality of aramid fiber fabrics.
본 발명의 일 실시예에 따르면, 상기 내절삭성 섬유강화복합재료층의 하부에 위치하여, 상기 내절삭성 섬유강화복합재료층이 그 상부에 부착되는 다른 탄소섬유강화복합재료층을 더 포함할 수 있다.According to an embodiment of the present invention, it may further include another carbon fiber-reinforced composite material layer positioned below the cut-resistant fiber-reinforced composite material layer and to which the cut-resistant fiber-reinforced composite material layer is attached thereon. .
본 발명의 다른 일 측면에 따르면, 상기 하이브리드 복합 구조체의 제작방법으로서, 상기 탄소섬유강화복합재료층의 복수의 탄소 섬유 직물 및 상기 내절삭성 섬유강화복합재료층의 복수의 아라미드 섬유 직물을 적층하는 단계, 상기 적층된 직물에 폴리머 수지를 함침하는 단계, 및 상기 폴리머 수지가 함침된 직물을 경화하는 단계를 포함하는 것을 특징으로 하는, 제작방법이 제공된다.According to another aspect of the present invention, a method of manufacturing the hybrid composite structure, comprising: laminating a plurality of carbon fiber fabrics of the carbon fiber-reinforced composite material layer and a plurality of aramid fiber fabrics of the cut-resistant fiber-reinforced composite material layer , Impregnating the laminated fabric with a polymer resin, and curing the fabric impregnated with the polymer resin.
본 발명의 일 실시예에 따르면, 상기 적층하는 단계는, 상기 복수의 탄소 섬유 직물 위에 금속 박판을 적층하는 단계를 포함할 수 있다.According to an embodiment of the present invention, the step of laminating may include laminating a thin metal plate on the plurality of carbon fiber fabrics.
본 발명의 일 실시예에 따르면, 상기 경화하는 단계는, 상기 폴리머 수지가 함침된 적층된 직물의 상부 및 하부에 플레이트를 배치하고, 진공 압축 및 열을 가하여 경화시키는 단계를 포함할 수 있다.According to an embodiment of the present invention, the curing may include placing plates on upper and lower portions of the laminated fabric impregnated with the polymer resin, and curing by applying vacuum compression and heat.
본 발명의 다양한 실시예들에 따라, 외부에 고경도 탄소섬유강화복합재료를, 내부에 내절삭성 섬유복합재료의 적층 구조를 가지고 방검 성능이 강화된 하이브리드 복합 구조체를 제공한다. 또한, 본 발명에서 제안하는 방검 하이브리드 복합 구조체는, 표면에 추가로 초경도 금속 박판을 포함하여 무게, 두께 대비 방검 성능을 극대화할 수 있다. 즉, 본 발명에서 제안하는 방검 하이브리드 복합 구조체는 최소의 무게와 두께로서 최선의 방검 성능의 구현이 가능하다. 이러한 복합 구조체를 이용하여, 가볍고 얇으면서도 방검 성능이 우수한 방검복을 제공하여 인체를 보호할 수 있다. According to various embodiments of the present invention, there is provided a hybrid composite structure having a laminated structure of a high-hardness carbon fiber-reinforced composite material on the outside and a cutting-resistant fiber composite material on the inside, and with enhanced anti-barrier performance. In addition, the anti-barrier hybrid composite structure proposed by the present invention can maximize the anti-barrier performance compared to the weight and thickness by including a thin metal plate of ultrahardness in addition to the surface. That is, the anti-sword hybrid composite structure proposed in the present invention can implement the best anti-sword performance with the minimum weight and thickness. By using such a composite structure, it is possible to protect the human body by providing a shielding suit that is light and thin and has excellent anti-sight performance.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned can be clearly understood by those of ordinary skill in the technical field to which the present invention pertains from the following description. will be.
도 1은 본 발명의 일 실시예에 따른 방검 하이브리드 복합 구조체의 단면도를 도시한다.1 shows a cross-sectional view of a banggum hybrid composite structure according to an embodiment of the present invention.
도 2a 내지 2c는 본 발명의 일 실시예에 따른 방검 하이브리드 복합 구조체의 제작과정을 도시한다.2A to 2C illustrate a manufacturing process of a banggum hybrid composite structure according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 하이브리드 복합 구조체의 방검 성능 평과 결과 그래프를 도시한다.3 is a graph showing a result of evaluating anti-banging performance of a hybrid composite structure according to an embodiment of the present invention.
도 4a 내지 4c는 본 발명의 일 실시예에 따른 방검 소재에 따라 방검 성능 시험 시 파손 정도를 각각 도시한다.4A to 4C respectively show the degree of damage during a sword proofing performance test according to a sword proofing material according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해될 수 있다.In the present invention, various modifications may be made and various embodiments may be provided, and specific embodiments will be illustrated in the drawings and described in detail in the detailed description. This is not intended to limit the present invention to a specific embodiment, it can be understood to include all changes, equivalents, or substitutes included in the spirit and scope of the present invention.
본 발명을 설명함에 있어서 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지 않을 수 있다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 수 있다.In describing the present invention, terms such as first and second may be used to describe various components, but the components may not be limited by the terms. The terms may be used only for the purpose of distinguishing one component from another component.
예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. For example, without departing from the scope of the present invention, a first element may be referred to as a second element, and similarly, a second element may be referred to as a first element.
“및/또는”이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함할 수 있다. The term “and/or” may include a combination of a plurality of related listed items or any of a plurality of related listed items.
반면에, 어떤 구성요소가 다른 구성요소에 “직접 연결되어” 있다거나 “직접 결합되어” 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해될 수 있다. On the other hand, when a component is referred to as being "directly connected" or "directly coupled" to another component, it may be understood that the other component does not exist in the middle.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions may include plural expressions unless the context clearly indicates otherwise.
본 출원에서, “포함하다” 또는 “가지다” 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로서, 하나 또는 그 이상의 다른 특정들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해될 수 있다.In the present application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, actions, components, parts, or a combination thereof described in the specification. It may be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. Unless otherwise defined, all terms used herein including technical or scientific terms may have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석될 수 있으며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않을 수 있다.Terms as defined in a commonly used dictionary may be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, it is interpreted as an ideal or excessively formal meaning. It may not be.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 설명한다. 본 발명의 도면에 도시된 방검 하이브리드 복합 구조체는 설명을 위한 예시적인 것일 뿐, 본 발명의 범위가 이에 제한되는 것은 아니다. Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The banggum hybrid composite structure shown in the drawings of the present invention is merely exemplary for description, and the scope of the present invention is not limited thereto.
일반적으로 칼날의 관통은 1) 칼날 끝(blade tip)에 의한 소재 변형 및 관통과, 2) 칼날(blade edge)에 의한 내부 절삭으로 나눌 수 있다. 이러한 칼날의 관통을 방지하기 위해, 방검 소재는 먼저 칼날 끝에 의한 소재의 변형 및 관통을 막기 위해 소재의 강도를 높이고, 고경도의 재료를 소재의 표면에 배치할 수 있다. 또한, 일차적으로 칼날 끝에 의해 소재가 변형된 후라면 칼날에 의한 절삭을 방지하기 위해 절삭에 저항하는 내절삭성이 우수한 소재를 내부에 배치하여 방검 성능을 높일 수 있다. In general, the penetration of the blade can be divided into 1) material deformation and penetration by the blade tip, and 2) internal cutting by the blade edge. In order to prevent penetration of such a blade, the anti-knife material may first increase the strength of the material to prevent deformation and penetration of the material by the tip of the blade, and a material of high hardness may be disposed on the surface of the material. In addition, if the material is primarily deformed by the edge of the blade, in order to prevent cutting by the blade, a material having excellent cutting resistance that resists cutting may be disposed inside, thereby increasing the sword proofing performance.
이와 같이, 칼날의 관통 특성을 고려하여 방검 성능을 높인 하이브리드 복합 구조체 구조 및 제작 방법이 도 1 내지 도 2에 도시된다. As described above, a hybrid composite structure structure and a manufacturing method in which the anti-knife performance is improved in consideration of the penetrating characteristic of the blade are shown in FIGS. 1 to 2.
도 1은 본 발명의 일 실시예에 따른 방검 하이브리드 복합 구조체의 단면도를 도시한다.1 shows a cross-sectional view of a banggum hybrid composite structure according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 방검 하이브리드 복합 구조체는 가장 내측에 내절삭성을 갖는 내절삭성 섬유강화복합재료층(101), 내절삭성 섬유강화복합재료층(101) 상부에 고경도의 탄소섬유강화복합재료층(103), 탄소섬유강화복합재료층(103) 상부에 금속 박판층(105)을 포함한다. Referring to FIG. 1, the anti-knock hybrid composite structure according to an embodiment of the present invention has a cutting-resistant fiber-reinforced composite material layer 101 having a cutting resistance on the innermost side, and a high hardness on the top of the cutting-resistant fiber-reinforced composite material layer 101. It includes a carbon fiber reinforced composite material layer 103 and a metal thin plate layer 105 on top of the carbon fiber reinforced composite material layer 103 in FIG.
도 1과 같은 방검 하이브리드 복합 구조체는 예시적으로 후술하는 도 2a 내지 2c와 같은 제작과장을 통해 가장 내측부터 내절삭성 섬유강화복합재료층(101), 탄소섬유강화복합재료층(103) 및 금속 박판층(105)이 적층된 구조로 제작될 수 있다. 제작과정에서 내절삭성 섬유강화복합재료층(101) 및 탄소섬유강화복합재료층(103)은 각각 복수의 섬유 직물 및 탄소 섬유 직물을 적층하고 접착시켜 제작될 수 있다. The anti-knock hybrid composite structure as shown in FIG. 1 is a cutting-resistant fiber-reinforced composite material layer 101, a carbon fiber-reinforced composite material layer 103, and a thin metal plate from the innermost through the production section as shown in FIGS. 2A to 2C to be described later. The layers 105 may be manufactured in a stacked structure. In the manufacturing process, the cutting-resistant fiber-reinforced composite material layer 101 and the carbon fiber-reinforced composite material layer 103 may be produced by laminating and bonding a plurality of fiber fabrics and carbon fiber fabrics, respectively.
내절삭성 섬유강화복합재료층(101)은 내절삭성이 좋은 재료로 이루어질 수 있으며, 그 적용 예에는 따로 제한은 없으나, 예를 들어 아라미드 섬유 강화 플라스틱(aramid fiber reinforced plastic, AFRP) 또는 UHMWPE(Ultra High Molecular Weight Polyethylene)로 구성될 수 있다. The cutting-resistant fiber-reinforced composite material layer 101 may be made of a material having good cutting-resistance, and the application example is not limited, but, for example, aramid fiber reinforced plastic (AFRP) or UHMWPE (Ultra High Molecular Weight Polyethylene).
탄소섬유강화복합재료층(103)은 고경도로 칼날 끝에 의한 소재 변형 및 칼날의 관통을 막기 위해 내절삭성 섬유강화복합재료층(101)보다 표면 쪽에 배치되며, 탄소 섬유를 강화재로 한 탄소섬유 강화 플라스틱(carbon fiber reinforced plastic, CFRP)로 구성될 수 있다. The carbon fiber-reinforced composite material layer 103 is disposed on the surface side of the cutting-resistant fiber-reinforced composite material layer 101 to prevent material deformation by the edge of the blade and penetration of the blade with high hardness, and carbon fiber-reinforced plastic made of carbon fiber as a reinforcing material. (carbon fiber reinforced plastic, CFRP).
내절삭성 섬유강화복합재료층(101) 및 탄소섬유강화복합재료층(103)을 적층한 복합 구조체만으로도 무게, 두께 대비 방검 성능이 우수한 방검 하이브리드 복합 구조체가 제공될 수 있으나, 칼날의 관통을 막기 위한 초경도의 금속 박판층(105)이 선택적으로 추가될 수 있다. The composite structure in which the cutting-resistant fiber-reinforced composite material layer 101 and the carbon fiber-reinforced composite material layer 103 are laminated alone can provide a anti-barrier hybrid composite structure having excellent anti-barrier performance compared to weight and thickness. An ultra-hard metal thin plate layer 105 may be optionally added.
금속 박판층(105)은 방검 하이브리드 복합 구조체의 표면에 추가로 적층되어 접착될 수 있다. 금속판은 경도는 매우 높으나 일반적으로 섬유재료에 비해 무게가 무거우므로, 얇은 박판 형태로 제작되어 무게, 두께 대비 방검 성능을 극대화하도록 형성될 수 있다. 즉, 동일한 방검 성능을 가지는 경우 본 발명에서 제안하는 방검 하이브리드 복합 구조체는 최소의 무게와 두께로서 동일한 성능의 구현이 가능하다. 예를 들어, 금속 박판층(105)은 50㎛ 이상의 두께를 가지며, 얇은 두께를 가질수록 무게 측면에서 유리하다. 금속 박판층(105)은, 예를 들어 철(steel) 기반의 고경도 금속 재료가 사용될 수 있다. The thin metal plate layer 105 may be additionally laminated and adhered to the surface of the anti-barrier hybrid composite structure. Although the metal plate has a very high hardness, it is generally heavier in weight than a fiber material, so it can be formed in a thin sheet form to maximize the anti-barrier performance compared to the weight and thickness. That is, in the case of having the same sword fighting performance, the sword fighting hybrid composite structure proposed in the present invention can implement the same performance with a minimum weight and thickness. For example, the thin metal plate layer 105 has a thickness of 50 μm or more, and the thinner the thickness is, the more advantageous it is in terms of weight. The thin metal plate layer 105 may be formed of, for example, a steel-based high-hardness metal material.
도 2a 내지 2c는 본 발명의 일 실시예에 따른 방검 하이브리드 복합 구조체의 제작과정을 도시한다. 2A to 2C illustrate a manufacturing process of a banggum hybrid composite structure according to an embodiment of the present invention.
도 2a 내지 2c를 참조하면, 본 발명의 일 실시예에 따른 방검 하이브리드 복합 구조체의 제작과정은 금속 박판층(105), 탄소섬유강화복합재료층(103) 및 내절삭성 섬유강화복합재료층(101)을 순서대로 적층하는 단계, 적층된 직물에 폴리머수지를 함침시키는 단계 및 수지가 함침된 직물을 열과 압력을 가해 경화하는 단계를 포함한다. 2A to 2C, the manufacturing process of the anti-glare hybrid composite structure according to an embodiment of the present invention includes a thin metal plate layer 105, a carbon fiber reinforced composite material layer 103, and a cutting-resistant fiber-reinforced composite material layer 101. ) Sequentially laminating, impregnating the laminated fabric with a polymer resin, and curing the fabric impregnated with the resin by applying heat and pressure.
먼저 도 2a에 도시된 바와 같이, 금속 박판층(105), 탄소섬유강화복합재료층(103) 및 내절삭성 섬유강화복합재료층(101)을 순서대로 적층한다. 탄소섬유강화복합재료층(103)은 복수의 탄소 섬유 직물을 적층하여 형성되고, 내절삭성 섬유강화복합재료층(101)은 내절삭성 섬유 직물, 예를 들어 복수의 아라미드 섬유 직물을 적층하여 형성될 수 있다. First, as shown in FIG. 2A, a thin metal plate layer 105, a carbon fiber-reinforced composite material layer 103, and a cutting-resistant fiber-reinforced composite material layer 101 are sequentially stacked. The carbon fiber reinforced composite material layer 103 is formed by laminating a plurality of carbon fiber fabrics, and the cutting-resistant fiber reinforced composite material layer 101 is formed by laminating a cutting-resistant fiber fabric, for example, a plurality of aramid fiber fabrics. I can.
다음으로 도 2b에 도시된 바와 같이, 적층된 직물에 폴리머 수지를 함침시킨다. 예를 들어, 제조의 용이성 및 물성을 고려할 때, 에폭시, 비닐에스터, 페놀 등의 열경화성 수지를 함침시켜 적층된 직물을 접착시키는 데 사용할 수 있다. Next, as shown in FIG. 2B, the laminated fabric is impregnated with a polymer resin. For example, in consideration of ease of manufacture and physical properties, it can be used to adhere a laminated fabric by impregnating a thermosetting resin such as epoxy, vinyl ester, or phenol.
마지막으로, 도 2c에 도시된 바와 같이, 폴리머 수지가 함침된 직물 적층체에 열과 압력을 가해 경화한다. 수지가 함침된 직물 적층체의 상부 및 하부에 플레이트를 배치하고 진공 압축하여 열과 압력에 의해 경화시켜 도 1과 같은 구조의 방검 하이브리드 복합 구조체를 제작할 수 있다. 사용되는 수지에 따라 경화 온도 및 시간 조건은 달라질 수 있으며, 해당 수지의 경화 조건을 고려하여 제작 조건을 변화시킬 수 있다. 수지의 적용 조건은 섬유의 부피분율이 60% 이상 되도록 하는 것이 바람직하며, 이를 위해 경화 압력은 높을수록 유리하다. Finally, as shown in FIG. 2C, the polymer resin-impregnated fabric laminate is cured by applying heat and pressure. Plates are placed on the upper and lower portions of the fabric laminate impregnated with resin, and vacuum-compressed and cured by heat and pressure, thereby fabricating the anti-barrier hybrid composite structure of the structure shown in FIG. 1. Depending on the resin used, the curing temperature and time conditions may vary, and the manufacturing conditions may be changed in consideration of the curing conditions of the corresponding resin. The application conditions of the resin are preferably such that the volume fraction of the fiber is 60% or more, and for this purpose, the higher the curing pressure is, the more advantageous.
상술한 바와 같이, 예를 들어 탄소 섬유 직물, 아라미드 섬유 직물 및 표면의 금속 박판을 한번에 동시에 경화시켜 일체로 제조하는 방법이 이용될 수 있다. As described above, for example, a carbon fiber fabric, an aramid fiber fabric, and a method of simultaneously curing a metal thin plate on the surface at a time to manufacture integrally may be used.
본 발명의 다른 일 실시예에 따라, 복수의 탄소 섬유 직물을 적층한 탄소섬유복합재료와 내절삭성 섬유복합재료(예를 들어, 복수의 아라미드 섬유 직물을 적층한)를 각각 제조한 후, 접착을 통해 일체화하여 제조하는 방법도 고려할 수 있다. According to another embodiment of the present invention, after each of a carbon fiber composite material in which a plurality of carbon fiber fabrics are laminated and a cutting-resistant fiber composite material (for example, a plurality of aramid fiber fabrics are laminated) are prepared, bonding is performed. It is also possible to consider a method of manufacturing by integrating through.
또한, 본 발명의 다른 일 실시예에 따라, 복합재료 제조 시, 각 섬유 직물을 적층시켜 준비한 후 폴리머 수지를 함침시키는 방법, 또는 미리 직물에 수지가 함침된 소재(Prepreg)를 사용하는 방법이 이용될 수 있다. In addition, according to another embodiment of the present invention, when preparing a composite material, a method of impregnating a polymer resin after preparing each fiber fabric by laminating it, or using a material impregnated with a resin in the fabric (Prepreg) in advance is used. Can be.
본 발명의 또 다른 변형 예에서, 금속 박판 - 탄소섬유복합재료 - 섬유복합재료(예를 들어, 아라미드 섬유복합재료)의 순서대로 적층시켜 방검 하이브리드 복합 구조체를 제작하는 방법 이외에, 금속 박판 - 탄소섬유복합재료 - 아라미드 섬유복합재료 - 탄소섬유복합재료의 샌드위치 구조를 통해 굽힘 강성을 최대화하는 제작 방법이 이용될 수 있다. In another modified example of the present invention, in addition to the method of manufacturing the anti-barrier hybrid composite structure by laminating in the order of a thin metal plate-a carbon fiber composite material-a fiber composite material (for example, an aramid fiber composite material), a thin metal plate-carbon fiber Composite material-Aramid fiber composite material-Through a sandwich structure of carbon fiber composite material, a fabrication method that maximizes bending stiffness can be used.
본 발명에서 제안하는 방검 하이브리드 복합 구조체를 제작하는 방법은 상술한 예에 제한되지 않으며, 다양한 제작방법에 의해 도 1과 같은 단면 구조를 갖는 방검 하이브리드 복합 구조체가 제조될 수 있다.The method of manufacturing the anti-sword hybrid composite structure proposed by the present invention is not limited to the above-described example, and the anti-sword hybrid composite structure having a cross-sectional structure as shown in FIG. 1 may be manufactured by various fabrication methods.
도 3은 본 발명의 일 실시예에 따른 방검 하이브리드 복합 구조체의 방검 성능 평과 결과 그래프를 도시한다. 3 is a graph showing a result graph of a bang sword performance evaluation of a bang sword hybrid composite structure according to an embodiment of the present invention.
도 3을 참조하면, 동일한 두께로 제작된 다양한 재료의 방검 성능 평가 결과를 나타낸다. 각 재료의 시편은 모두 2.5mm 두께로 제작되었으며, 본 평가는 미법무부 산하 NIJ(National Institute of Justice)의 방검 소재 기준의 레벨 1 (24J) 등급의 성능 평가를 각 재료별로 실시하여 수행되었다. Referring to FIG. 3, the results of evaluating the anti-barrier performance of various materials manufactured with the same thickness are shown. All specimens of each material were made to have a thickness of 2.5mm, and this evaluation was performed by performing a performance evaluation of the level 1 (24J) grade of the NIJ (National Institute of Justice) anti-aircraft material standard under the US Department of Justice for each material.
도 3에 도시된 바와 같이, 폴리카보네이트(PC) 소재의 경우 칼날의 관통 깊이(mm)가 약 9mm로 가장 깊어 방검 성능이 가장 떨어지는 것으로 나타났다. 아라미드 섬유강화복합재료(AFRP) 소재를 사용한 경우 폴리카보네이트(PC) 소재에 비해서는 관통 깊이가 얕지만, 그 다음으로 관통 깊이가 깊어 방검 성능이 떨어지는 것을 확인할 수 있다. 탄소섬유강화복합재료(CFRP) 소재의 경우, 아라미드 섬유강화복합재료(AFRP) 소재에 비해 관통 깊이가 현저히 개선되나, 본 발명에서 제안하는 하이브리드 복합재료의 경우에 비하면 방검 성능이 훨씬 떨어지는 것을 확인할 수 있다. As shown in FIG. 3, in the case of a polycarbonate (PC) material, the penetration depth (mm) of the blade was the deepest, about 9 mm, indicating that the sword-proof performance was the lowest. When the aramid fiber-reinforced composite material (AFRP) material is used, the penetration depth is shallower than that of the polycarbonate (PC) material. In the case of the carbon fiber reinforced composite material (CFRP) material, the penetration depth is significantly improved compared to the aramid fiber reinforced composite material (AFRP) material, but it can be confirmed that the anti-barrier performance is much lower than in the case of the hybrid composite material proposed in the present invention. have.
본 발명에서 제안하는 탄소섬유복합재료/아라미드 섬유복합재료의 하이브리드 복합재료인 경우가 칼날의 관통 깊이가 현저히 개선되는 것을 확인할 수 있다. 도 3에 도시된 바와 같이, 탄소/아라미드 하이브리드 복합재료에서 음의 값을 나타내는 것을 확인할 수 있으며, 이것은 칼날이 관통되지 못하고 남은 시편의 두께를 의미한다. 특히, 금속 박판을 표면에 더 추가한 하이브리드 복합재료의 경우 칼날의 관통이 이루어지지 않았을 뿐만 아니라, 시편을 거의 뚫지 못해 방검 성능이 극대화 됨을 확인할 수 있다. 실험에 사용된 시편의 무게는 섬유의 밀도에 비례하므로, 아라미드 섬유강화복합재료(AFRP)가 탄소섬유복합재료/아라미드 하이브리드 섬유복합재료, 금속 박판 하이브리드 복합재료보다 가볍다. 그러나, 아라미드 섬유강화복합재료(AFRP)의 방검 성능이 현저히 떨어지므로, 무게, 두께 대비 방검 성능은 탄소섬유복합재료/아라미드 섬유복합재료 또는 금속 박판 하이브리드 복합재료가 훨씬 뛰어난 것을 확인할 수 있다. In the case of the hybrid composite material of the carbon fiber composite material/aramid fiber composite material proposed in the present invention, it can be seen that the penetration depth of the blade is remarkably improved. As shown in FIG. 3, it can be seen that the carbon/aramid hybrid composite material exhibits a negative value, which means the thickness of the specimen remaining without the blade being penetrated. In particular, in the case of the hybrid composite material in which a thin metal plate was added to the surface, not only did not penetrate the blade, but also hardly penetrate the specimen, it can be confirmed that the anti-barrier performance is maximized. Since the weight of the specimen used in the experiment is proportional to the density of the fiber, the aramid fiber reinforced composite material (AFRP) is lighter than the carbon fiber composite material/aramid hybrid fiber composite material, and the thin metal plate hybrid composite material. However, since the aramid fiber reinforced composite material (AFRP) has a remarkably low anti-barrier performance, it can be seen that the carbon fiber composite material / aramid fiber composite material or metal thin plate hybrid composite material is much superior in the anti-barrier performance compared to weight and thickness.
도 4a 내지 4c는 본 발명의 일 실시예에 따른 방검 소재에 따라 방검 성능 시험 시 파손 정도를 각각 도시한다. 4A to 4C respectively show the degree of damage during a sword proofing performance test according to a sword proofing material according to an embodiment of the present invention.
도 4a 내지 4c를 참조하면, 탄소섬유강화복합재료(CFRP), 아라미드 섬유강화복합재료(AFRP) 및 탄소섬유복합재료/아라미드 섬유복합재료의 하이브리드 복합재료의 도 3과 같은 2.5mm 두께로 준비된 각 방검 소재의 시편에 대한 방검 성능 평가 시험 후 파손 정도에 대한 결과 사진이 각각 도시된다. Referring to Figures 4a to 4c, carbon fiber reinforced composite material (CFRP), aramid fiber reinforced composite material (AFRP), and carbon fiber composite material / aramid fiber composite material hybrid composite material as shown in Figure 3, each prepared to a thickness of 2.5 mm Pictures of the results of the degree of damage after the anti-microbial performance evaluation test for the specimen of the anti-microbial material are shown, respectively.
도 4a 내지 4c 각각의 좌측으로부터 우측 순서로 나열된 사진은 각 소재의 전면 확대도, 전면도, 후면 확대도를 도시하다. 도 4a 내지 4c에 도시된 바와 같이, 하이브리드 복합재료가 파손 정도가 가장 경미한 것을 시각적으로 확인할 수 있다. Photos arranged in the order from left to right in each of FIGS. 4A to 4C show an enlarged front view, an enlarged front view, and an enlarged rear view of each material. As shown in FIGS. 4A to 4C, it can be visually confirmed that the degree of breakage of the hybrid composite material is the slightest.
특히, 도 4a 및 4b의 좌측의 후면 확대도를 참고하면, 탄소섬유강화복합재료(CFRP) 소재 및 아라미드 섬유강화복합재료(AFRP) 소재는 후면까지 칼날이 관통하여 파손된 것을 확인할 수 있다. In particular, referring to the enlarged rear view of the left side of FIGS. 4A and 4B, it can be seen that the blade penetrated to the rear surface of the carbon fiber reinforced composite material (CFRP) material and the aramid fiber reinforced composite material (AFRP) material.
이에 반해, 도 4c의 좌측의 후면 확대도를 참고하면, 하이브리드 복합재료는 후면이 전혀 파손되지 않았고, 방검 소재로서 우수한 성능을 확인할 수 있다. On the other hand, referring to the enlarged rear view of the left side of FIG. 4C, the hybrid composite material did not have any damage to the rear surface, and it can be confirmed that the hybrid composite material has excellent performance as a sword proof material.
상술한 구체적인 실시예들에서, 발명에 포함되는 구성 요소는 제시된 구체적인 실시예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 상술한 실시예들이 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.In the above-described specific embodiments, constituent elements included in the invention are expressed in the singular or plural according to the presented specific embodiments. However, the singular or plural expression is selected appropriately for the situation presented for convenience of description, and the above-described embodiments are not limited to the singular or plural constituent elements, and even constituent elements expressed in plural are composed of the singular or However, even if it is a component expressed in a singular number, it can be composed of pluralities.
한편 발명의 설명에서는 구체적인 실시예에 관해 설명하였으나, 다양한 실시예들이 내포하는 기술적 사상의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니되며 후술하는 청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.Meanwhile, although specific embodiments have been described in the description of the invention, various modifications can be made without departing from the scope of the technical idea implied by the various embodiments. Therefore, the scope of the present invention is limited to the described embodiments and should not be defined, but should be defined by the claims and equivalents as well as the claims to be described later.
[부호의 설명][Explanation of code]
101 : 내절삭성 섬유강화복합재료층 103 : 탄소섬유강화복합재료층101: cutting-resistant fiber-reinforced composite material layer 103: carbon fiber-reinforced composite material layer
105 : 금속 박판층105: thin metal plate layer

Claims (8)

  1. 방검 성능을 갖는 하이브리드 복합 구조체로서,As a hybrid composite structure with anti-barrier performance,
    내절삭성 섬유강화복합재료층; 및A layer of cutting-resistant fiber-reinforced composite material; And
    상기 내절삭성 섬유강화복합재료층의 상부에 부착된 탄소섬유강화복합재료층을 포함하는, 하이브리드 복합 구조체. A hybrid composite structure comprising a carbon fiber-reinforced composite material layer attached to an upper portion of the cut-resistant fiber-reinforced composite material layer.
  2. 제1항에 있어서,The method of claim 1,
    상기 탄소섬유강화복합재료층은 탄소섬유 강화 플라스틱(CFRP)으로 구성되고,The carbon fiber reinforced composite material layer is composed of carbon fiber reinforced plastic (CFRP),
    상기 내절삭성 섬유강화복합재료층은 아라미드 섬유 강화 플라스틱(AFRP) 또는 UHMWPE로 구성되는 것을 특징으로 하는, 하이브리드 복합 구조체.The cutting-resistant fiber-reinforced composite material layer is characterized in that consisting of aramid fiber-reinforced plastic (AFRP) or UHMWPE, hybrid composite structure.
  3. 제1항에 있어서,The method of claim 1,
    상기 탄소섬유강화복합재료층의 상부에 부착된 금속 박판을 더 포함하는 것을 특징으로 하는, 하이브리드 복합 구조체. It characterized in that it further comprises a thin metal plate attached to the upper portion of the carbon fiber reinforced composite material layer, hybrid composite structure.
  4. 제1항에 있어서,The method of claim 1,
    상기 탄소섬유강화복합재료층은 복수의 탄소 섬유 직물을 적층하여 구성되고,The carbon fiber reinforced composite material layer is constructed by laminating a plurality of carbon fiber fabrics,
    상기 내절삭성 섬유강화복합재료층은 복수의 아라미드 섬유 직물을 적층하여 구성되는 것을 특징으로 하는, 하이브리드 복합 구조체.The cutting-resistant fiber-reinforced composite material layer is characterized in that formed by laminating a plurality of aramid fiber fabrics, hybrid composite structure.
  5. 제1항에 있어서,The method of claim 1,
    상기 내절삭성 섬유강화복합재료층의 하부에 위치하여, 상기 내절삭성 섬유강화복합재료층이 그 상부에 부착되는 다른 탄소섬유강화복합재료층을 더 포함하는 것을 특징으로 하는, 하이브리드 복합 구조체.The hybrid composite structure further comprising another carbon fiber-reinforced composite material layer positioned under the cut-resistant fiber-reinforced composite material layer and to which the cut-resistant fiber-reinforced composite material layer is attached thereon.
  6. 제1항에 따른 하이브리드 복합 구조체의 제작방법으로서,As a method of manufacturing a hybrid composite structure according to claim 1,
    상기 탄소섬유강화복합재료층의 복수의 탄소 섬유 직물 및 상기 내절삭성 섬유강화복합재료층의 복수의 아라미드 섬유 직물을 적층하는 단계; Laminating a plurality of carbon fiber fabrics of the carbon fiber reinforced composite material layer and a plurality of aramid fiber fabrics of the cut resistant fiber reinforced composite material layer;
    상기 적층된 직물에 폴리머 수지를 함침하는 단계; 및Impregnating the laminated fabric with a polymer resin; And
    상기 폴리머 수지가 함침된 직물을 경화하는 단계를 포함하는 것을 특징으로 하는, 제작방법. It characterized in that it comprises the step of curing the fabric impregnated with the polymer resin, manufacturing method.
  7. 제6항에 있어서,The method of claim 6,
    상기 적층하는 단계는,The stacking step,
    상기 복수의 탄소 섬유 직물 위에 금속 박판을 적층하는 단계를 포함하는 것을 특징으로 하는, 제작방법.And laminating a thin metal plate on the plurality of carbon fiber fabrics.
  8. 제6항에 있어서,The method of claim 6,
    상기 경화하는 단계는,The curing step,
    상기 폴리머 수지가 함침된 적층된 직물의 상부 및 하부에 플레이트를 배치하고, 진공 압축 및 열을 가하여 경화시키는 단계를 포함하는 것을 특징으로 하는, 제작방법.Placing plates on the upper and lower portions of the laminated fabric impregnated with the polymer resin, and curing by applying vacuum compression and heat.
PCT/KR2020/008652 2019-10-08 2020-07-02 Hybrid composite structure having cut and stab resistance and production method therefor WO2021071058A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0124590 2019-10-08
KR1020190124590A KR102263817B1 (en) 2019-10-08 2019-10-08 Manufacturing method of stab proof hybrid composite structure

Publications (1)

Publication Number Publication Date
WO2021071058A1 true WO2021071058A1 (en) 2021-04-15

Family

ID=75437217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008652 WO2021071058A1 (en) 2019-10-08 2020-07-02 Hybrid composite structure having cut and stab resistance and production method therefor

Country Status (2)

Country Link
KR (1) KR102263817B1 (en)
WO (1) WO2021071058A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113733602A (en) * 2021-07-16 2021-12-03 浙江理工大学 Preparation method of brittle/tough fiber fabric layering hybrid composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121774A (en) * 2007-11-16 2009-06-04 Kyocera Chemical Corp Composite bulletproof plate
US20090324966A1 (en) * 2003-12-05 2009-12-31 Sgl Carbon Ag Multilayer armor plating, and process for producing the plating
KR20130016861A (en) * 2011-08-09 2013-02-19 안희봉 Bullet and stab proof plate and producing method thereof
KR101575397B1 (en) * 2013-06-12 2015-12-07 코오롱인더스트리 주식회사 Bulletproof Material
KR20190012957A (en) * 2017-07-31 2019-02-11 주식회사 엑시아머티리얼스 Lightweight sandwich panels for military buildings

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090324966A1 (en) * 2003-12-05 2009-12-31 Sgl Carbon Ag Multilayer armor plating, and process for producing the plating
JP2009121774A (en) * 2007-11-16 2009-06-04 Kyocera Chemical Corp Composite bulletproof plate
KR20130016861A (en) * 2011-08-09 2013-02-19 안희봉 Bullet and stab proof plate and producing method thereof
KR101575397B1 (en) * 2013-06-12 2015-12-07 코오롱인더스트리 주식회사 Bulletproof Material
KR20190012957A (en) * 2017-07-31 2019-02-11 주식회사 엑시아머티리얼스 Lightweight sandwich panels for military buildings

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113733602A (en) * 2021-07-16 2021-12-03 浙江理工大学 Preparation method of brittle/tough fiber fabric layering hybrid composite material
CN113733602B (en) * 2021-07-16 2023-05-02 浙江理工大学 Preparation method of brittle/tough fiber fabric layering hybrid composite material

Also Published As

Publication number Publication date
KR20210041854A (en) 2021-04-16
KR102263817B1 (en) 2021-06-14

Similar Documents

Publication Publication Date Title
Yahaya et al. Measurement of ballistic impact properties of woven kenaf–aramid hybrid composites
EP0507942B1 (en) Reinforced soft and hard body armor
US6825137B2 (en) Lightweight ballistic resistant rigid structural panel
WO2014088213A1 (en) Magnet-type reinforcing plate and manufacturing method therefor
US10709190B2 (en) Ballistic protection layer for helmet pad system
WO2021071058A1 (en) Hybrid composite structure having cut and stab resistance and production method therefor
Dickson et al. The environmental fatigue behaviour of carbon fibre reinforced polyether ether ketone
JP2009121774A (en) Composite bulletproof plate
Marsyahyo et al. Preliminary investigation on bulletproof panels made from ramie fiber reinforced composites for NIJ Level II, IIA, and IV
WO2009046979A1 (en) A helmet containing polyethylene fibers
US10655940B2 (en) Ballistic resistant sheet and use of such a sheet
CN113203323A (en) Composite bulletproof plate and coating method
Li et al. Dynamic stab resistance of multi-ply three-dimensional warp interlock fabrics with high-performance high-molecular-weight polyethylene yarns for protective applications
WO2015093722A1 (en) Bulletproof vest using unidirectional aramid sheet and polyethylene film and method for manufacturing same
GB2277141A (en) Composite ballistic armour
GB2276934A (en) Composite ballistic armour
GB2276935A (en) Composite ballistic armour
CN214892876U (en) Reduce sunken shellproof picture peg structure
CN203744841U (en) Armor made of composite materials
JPH03109435A (en) Composite exterior decorative material
CN112304160A (en) Reduce sunken shellproof picture peg structure
KR20170080093A (en) LightWeight bulletproof materials using unidirectional aramid sheet and hybrid matrix
US20040216594A1 (en) Splinter resistant composite laminate
KR20040043006A (en) A bulletproof helmet and its manufacturing method therefor
GB2276933A (en) Composite ballistic armour

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873848

Country of ref document: EP

Kind code of ref document: A1