WO2021070778A1 - Nanodisc - Google Patents

Nanodisc Download PDF

Info

Publication number
WO2021070778A1
WO2021070778A1 PCT/JP2020/037729 JP2020037729W WO2021070778A1 WO 2021070778 A1 WO2021070778 A1 WO 2021070778A1 JP 2020037729 W JP2020037729 W JP 2020037729W WO 2021070778 A1 WO2021070778 A1 WO 2021070778A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanodisc
lysolecithin
mass
lecithin
less
Prior art date
Application number
PCT/JP2020/037729
Other languages
French (fr)
Japanese (ja)
Inventor
恵広 柳澤
忠夫 辻
井村 知弘
敏彰 平
Original Assignee
株式会社カネカ
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 国立研究開発法人産業技術総合研究所 filed Critical 株式会社カネカ
Publication of WO2021070778A1 publication Critical patent/WO2021070778A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • A61K31/122Ketones having the oxygen directly attached to a ring, e.g. quinones, vitamin K1, anthralin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/55Phosphorus compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions

Definitions

  • the present invention relates to nanodiscs which can be easily produced, which can disperse hydrophobic compounds and the like well in water and have excellent transparency and stability, and cosmetics containing the nanodiscs. ..
  • compositions such as cosmetics and pharmaceutical compositions are hydrophobic and difficult to disperse in aqueous solvents.
  • Organic solvents may be used to disperse hydrophobic compounds, but even ethanol and isopropanol may be reduced or avoided in personal care and pharmaceutical compositions applied to the human body. Tend to do. Therefore, especially in personal care compositions, surfactants are often used to disperse hydrophobic compounds in aqueous solvents.
  • the size of the liposome is relatively large, and the dispersion liquid of the liposome is usually cloudy. Therefore, in recent years, very fine particles called nanodisks having a lipid bilayer structure similar to that of liposomes have been developed.
  • the nanodisc has a structure in which the hydrophobic side of the disc composed of a lipid bilayer is coated with an amphipathic membrane scaffold protein (Non-Patent Documents 1, Patent Documents 4 and 5), and is a layer of nanodiscs.
  • the thickness is several nm and the diameter is less than 10 nm, which is very fine.
  • Patent Document 6 also discloses a composition containing a lipid and a surfactant, which is a polymer aggregate having a diameter of less than 100 nm. Therefore, the dispersion liquid of nanodisc is very transparent.
  • lipid bilayer membrane of nanodiscs is similar to the lipid bilayer membrane of cells, it is considered that the membrane proteins contained in nanodiscs retain the structure and activity of the cell membranes as they are. It is expected that research on membrane proteins will progress dramatically.
  • the present inventors have also developed a nanodisk characterized by containing a lipid bilayer and lipopeptide biosurfactant (Patent Document 7).
  • nanodiscs containing a lipid bilayer have been developed, and it is considered that hydrophobic compounds and the like can be satisfactorily dispersed in an aqueous solvent by using nanodiscs.
  • nanodiscs are expected to be applied to cosmetics having excellent transparency, the transparency may decrease over time and precipitation may occur in some cases. Therefore, the present invention provides nanodiscs which can be easily produced, can disperse hydrophobic compounds and the like well in water, and have excellent transparency and stability, and cosmetics containing the nanodiscs. The purpose is.
  • the present inventors have conducted intensive studies to solve the above problems. As a result, they have found that by using lipopeptide biosurfactant as a surfactant and using a specific ratio of lecithin and lysolecithin as lipids, nanodiscs having excellent transparency and stability can be easily produced, and the present invention has been completed. did. Hereinafter, the present invention will be shown.
  • [1] Contains lipid bilayer and lipopeptide biosurfactant
  • the lipid bilayer contains lecithin and lysolecithin, A nanodisk characterized in that the ratio of the lysolecithin to the total of the lecithin and the lysolecithin is 1% by mass or more and 20% by mass or less.
  • the nanodisc according to the above [1] or [2] which has a thickness of 2 nm or more and 10 nm or less.
  • the lipopeptide biosurfactant is a surfactin represented by the following formula (I) or a salt thereof.
  • X indicates an amino acid residue selected from leucine, isoleucine and valine; R 1 represents a C 9-18 alkyl group]
  • a cosmetic comprising the nanodisc according to any one of the above [1] to [8].
  • membrane scaffold protein has been used for manufacturing nanodiscs, but it took a lot of time and effort to design and manufacture membrane scaffold protein.
  • the lipopeptide biosurfactant which is the surfactant used in the present invention, is produced by a microorganism and can be produced relatively easily.
  • the nanodisc according to the present invention can be manufactured by a very simple method as compared with the conventional nanodisk which could not be manufactured without going through a complicated process. Further, by using the nanodisc according to the present invention, it is possible to satisfactorily disperse the hydrophobic compound in an aqueous solvent to obtain a visually transparent composition, and the transdermal properties of the hydrophobic compound are remarkably improved. There is a possibility of doing so.
  • the nanodisk of the present invention which has a lipid bilayer structure similar to that of cells, may significantly improve the transdermal properties of hydrophilic compounds existing in the vicinity thereof.
  • the nanodisc of the present invention has excellent stability and can maintain the transparency of the preparation for a long period of time. Therefore, the present invention is industrially excellent as a technique that contributes to the development of personal care compositions and pharmaceutical compositions having excellent properties.
  • FIG. 1 is an external photograph of the lipid preparation according to the present invention after a stability test.
  • FIG. 2 is an external photograph of a lipid preparation outside the scope of the present invention after a stability test.
  • the nanodisc according to the present invention contains a lipid bilayer and lipopeptide biosurfactant.
  • a general nanodisc is stabilized by a structure in which the hydrophobic part of the amphipathic membrane scaffold protein is bound to the side hydrophobic part of the lipid bilayer to cover it, and the hydrophilic part faces outward.
  • the nanodisc according to the present invention is stabilized by a structure in which the hydrophobic portion of the lipopeptide biosurfactant is bound to the side hydrophobic portion of the lipid bilayer to cover it and the hydrophilic portion faces outward. Conceivable.
  • a cyclic peptide is pierced into a lipid bilayer as an ion channel, or a lipid having a bulky hydrophobic portion and a surface active compound having a bulky hydrophilic portion form a bilayer. Therefore, even in the nanodisc according to the present invention, it is possible that some lipopeptide biohydrophobics form a bilayer together with lipids.
  • the size of the nanodisk according to the present invention may be 2 nm or more and 10 nm or less, and the diameter may be 5 nm or more and 40 nm or less.
  • the thickness is preferably 3 nm or more, more preferably 4 nm or more, preferably 8 nm or less, and more preferably 6 nm or less.
  • the diameter is preferably 6 nm or more, more preferably 7 nm or more, preferably 20 nm or less, and more preferably 15 nm or less.
  • the phospholipid constituting the lipid bilayer is a compound having a hydrophilic phosphate base and a hydrophobic tail, and in the present invention, lecithin and lysolecithin are used in combination.
  • Lecithin is a general term for lipid products containing phospholipids, and is produced by separating and drying components that precipitate by adding water to raw materials containing phospholipids, such as soybean oil and egg yolk, or by extracting with ethanol or the like.
  • Lecithin made from soybeans is called soybean lecithin
  • lecithin made from egg yolk is called egg yolk lecithin.
  • the components constituting lecithin are not particularly limited, and examples thereof include glycerophospholipids, sphingolipids, glycolipids, synthetic lipids, and sterols.
  • Glycerophospholipids are double-stranded phospholipids having a complex structure of two fatty acids, glycerin, phosphate and choline, such as dipalmitoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DLPC), and dipalmitoylphosphatidylcholine (DMPC). ), Dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), 1-stearoyl-2-myristoylphosphatidylcholine, dilinoleylphosphatidylcholine and the like.
  • DOPC dipalmitoylphosphatidylcholine
  • DLPC dipalmitoylphosphatidylcholine
  • DMPC dipalmitoylphosphatidylcholine
  • DPPC dipalmito
  • glycerophospholipid examples include a glycerophospholipid represented by the following formula (II). [In the formula, R 2 and R 3 independently represent a C 10-24 alkyl group or a C 10-24 alkenyl group]
  • examples of the C 10-24 alkyl group include n-decyl, 8-methylnonade, n-undecyl, 9-methyldecyl, n-dodecyl, 10-methylundecyl, n-tridecyl, 11-.
  • examples thereof include methyldodecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecylic, n-icosyl, n-docosyl, n-tetracosyl and the like.
  • Examples of the C 10-24 alkenyl group include decenyl, dodecenyl, tetradecenyl, hexadecenyl, octadecenyl, icosenyl, docosenyl, tetracosenyl and the like.
  • Sphingolipid has a structure in which phosphoric acid and a base are bound to ceramide in which a fatty acid is amide-bonded to sphingoid. That is, the sphingolipid is a double-chain phospholipid having a long-chain hydrocarbon group derived from sphingosine and a long-chain hydrocarbon group derived from a long-chain fatty acid. Examples of sphingolipids include sphingomyelin.
  • glycolipids examples include mannosyl erythritol lipid, sophorolipid, sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride, galactosyl cerebroside, lactosyl cerebroside, and ganglioside.
  • sterols examples include animal-derived sterols such as cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, and dihydrocholesterol; plant-derived sterols such as stigmasterol, cytosterol, campesterol, and brushcasterol (phytosterols); thymosterol. , Sterols derived from microorganisms such as ergosterol and the like.
  • Lysolecithin is a single-stranded phospholipid that has only one hydrophobic tail, whereas major lecithin such as glycerophospholipids and sphingolipids are double-stranded phospholipids that have two hydrophobic tails. is there. Lysolecithin is produced, for example, by treating glycerophospholipids and sphingolipids with phospholipase A2 to remove one of the hydrophobic tails.
  • lysolecithin examples include lysophosphatidylcholine having a structure in which the fatty acid at the 2-position of phosphatidylcholine is removed by phospholipase A2, lysophosphatidic acid having a structure in which choline is removed from lysophosphatidylcholine, sphingosine monophosphate, sphingosine phosphorylcholine and the like. Can be mentioned.
  • Lecithin and lysolecithin generally contain a carbon-carbon double bond in the long-chain fatty acid moiety, but lecithin and lysolecithin used in the present invention may be saturated hydrogenated additives to which hydrogen is added or unsaturated. A mixture of mold and saturated mold may be used.
  • the lipid bilayer of the nanodisc according to the present invention is mainly composed of lecithin and lysolecithin.
  • a general lipid bilayer is mainly composed of double-stranded phospholipids, which are planar because they have a well-balanced hydrophilic and hydrophobic parts and occupy an elongated rectangular parallelepiped space. It has the property of easily forming an infinite aggregate.
  • a membrane scaffold protein which is a polymer, forms a disc state by surrounding the lipid bilayer.
  • the shape is maintained by the molecular aggregate instead of the polymer, stabilization is necessary for practical use, and it was considered that the addition of the third component is effective for that purpose.
  • lysolecithin is a single chain, the hydrophobic part is small with respect to the hydrophilic part, the shape is different from lecithin, and it fills the intermolecular gap that causes the instability of nanodiscs. It was thought that nanodiscs could be stabilized by using an appropriate amount of lysolecithin together. Therefore, in the present invention, the ratio of lecithin to lysolecithin is adjusted to improve the stability of nanodiscs.
  • the ratio of lysolecithin to the total of lecithin and lysolecithin is 1% by mass or more and 20% by mass or less.
  • the ratio within this range, as shown in the results of the examples described later, the nanodisc stabilizing effect can be obtained by using lysolecithin in combination with lecithin.
  • 1.5% by mass or more is preferable, 2% by mass or more is more preferable, 3% by mass or more is further preferable, 15% by mass or less is preferable, and 10% by mass or less is more preferable.
  • the total amount of lecithin and lysolecithin can be appropriately adjusted within the range in which nanodiscs can be satisfactorily produced.
  • the total amount of lecithin and lysolecithin with respect to the solvent containing the nanodisk of the present invention can be 0.01% by mass or more and 10% by mass or less.
  • Lipopeptide biosurfactant has a hydrophobic group and a peptide containing a hydrophilic moiety, exhibits a surface-active effect, and is produced by a microorganism.
  • examples of the lipopeptide biosurfactant include surfactin, arslovactin, itulin, fendisin, serawettin, leikecin, and viscocin.
  • surfactin represented by the above formula (I) or a salt thereof (hereinafter referred to as “surfactin (I)" is preferable.
  • the roots of the carboxymethyl group and the carboxyethyl group represent the optically active sites.
  • X represents any one amino acid residue selected from leucine, isoleucine and valine.
  • the amino acid residue as X may be L-form or D-form, but L-form is preferable.
  • R 1 represents a C 9-18 alkyl group.
  • the "C 9-18 alkyl group” refers to a linear or branched monovalent saturated hydrocarbon group having 9 or more and 18 or less carbon atoms.
  • N-tetradecyl n-pentadecylic, n-hexadecyl, n-heptadecyl, n-octadecyl and the like.
  • the above-mentioned surfactin (I) may be used alone or in combination of two or more.
  • the C 9-18 alkyl group of R 1 may contain a plurality of different surfactins (I).
  • Surfactin (I) can be used by culturing a microorganism, for example, a strain belonging to Bacillus subtilis, and separating it from the culture solution according to a known method, and it can be used as a refined product or an unrefined product.
  • the culture solution can be used as it is.
  • those obtained by a chemical synthesis method can also be used in the same manner.
  • a salt of surfactin (I) can also be used.
  • the counter cation constituting the salt is not particularly limited, and examples thereof include alkali metal ions and ammonium ions.
  • the alkali metal ion that can be used for the salt of surfactin (I) is not particularly limited, but represents lithium ion, sodium ion, potassium ion, or the like. Further, the two alkali metal ions may be the same as each other or may be different from each other.
  • Examples of the substituent of the ammonium ion include alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl and t-butyl; aralkyl groups such as benzyl, methylbenzyl and phenylethyl; phenyl, toluyl, xsilyl and the like. Examples include organic groups such as the aryl group of. Examples of the ammonium ion include tetramethylammonium ion, tetraethylammonium ion, pyridinium ion and the like.
  • the two counter cations may be the same or different from each other. Also, one of the carboxy group -COOH or -COO - shall may be in the state of.
  • the amount of lipopeptide biosurfactant used may be appropriately adjusted within the range in which nanodisks are formed.
  • the amount of lipopeptide biosurfactant with respect to the total of lecithin and lysolecithin can be 0.5 mass times or more and 5 mass times or less. If the amount is 0.5 mass times or more, nanodisks are formed more reliably, and if the amount is 5 mass times or less, the amount of lipopeptide biosurfactant that is not involved in the formation of nanodisks is so excessive. Not economical.
  • the amount is preferably 1 mass times or more, preferably 4 mass times or less, and more preferably 3 mass times or less.
  • the nanodisc according to the present invention may contain components other than lecithin, lysolecithin and lipopeptide biosurfactant.
  • an aqueous solvent is mainly used as a solvent for cosmetics and pharmaceutical compositions, but there is a problem that it is difficult to disperse a hydrophobic compound in the aqueous solvent.
  • a hydrophobic compound can probably be taken in and dispersed in an aqueous solvent, so that a highly transparent composition can be obtained.
  • the "aqueous solvent” refers to water and a mixed solvent of a water-miscible organic solvent and water.
  • the water-miscible organic solvent refers to an organic solvent that can be miscible with water without limitation, and examples thereof include C 1-3 alcohol, preferably ethanol or isopropanol.
  • the proportion of the water-miscible organic solvent in the mixed solvent is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 2% by mass or less.
  • the aqueous solvent may be a buffer solution, and its pH is not particularly limited, but is preferably 5.0 or more and 13.0 or less.
  • Hydrophobic compound refers to a compound that has a hydrophobic group, is sparingly soluble in water, and is soluble in oil.
  • poorly soluble means that 100 mL or more of water is required to dissolve 1 g of the hydrophobic compound at 20 ⁇ 5 ° C.
  • the hydrophobic compound used in the present invention is not particularly limited as long as it is an active ingredient to be blended in cosmetics, pharmaceutical compositions, etc., but for example, a whitening agent, an anti-aging agent, an antioxidant, a moisturizer, a hair restorer, and cell activation. Examples include agents, vitamins and amino acids.
  • fat-soluble vitamins such as tocopherol, coenzyme Q10, reduced coenzyme Q10, and derivatives thereof; oils such as squalane; steroidal anti-inflammatory agents such as hydrocortisone, prednisolone, dexamethasone, betamethasone; acetyl.
  • Non-steroidal anti-inflammatory agents such as salicylic acid, ibuprofen, indomethacin, loxoprofen; antibiotics; antifungal agents; preservatives such as methylparaben; fragrances such as menthol; pigments such as alizanin.
  • albutin and its derivatives L-ascorbic acid and its derivatives; hydroquinone and its derivatives; glutathione and its derivatives; placenta extract; pantothenic acid and its derivatives; tranexamic acid and its derivatives; Derivatives; Plant extracts such as chamomile extract and citrus extract; Carotenoids such as beta-carotene; Astaxanthin and its derivatives; Flavonoids; Catechin and its derivatives; Vitamin A and its derivatives; ⁇ -lipoic acid and its derivatives; Glycyrrhizic acid And its derivatives; thiotaurine and its derivatives; urea and its derivatives; glycerin derivatives; salicylic acid and its derivatives; nicotinic acid and its derivatives; L-amino acids and its derivatives; adenosine and its derivatives; plant female hormone-like components such as isoflavone; Grabridine and its derivatives; magnolignan and its derivative
  • the nanodisc according to the present invention may contain a membrane protein.
  • Membrane proteins are proteins that are bound to biological membranes, and are mainly biological membranes other than covalent bonds such as hydrophobic interactions and electrostatic interactions with endogenous membrane proteins, of which at least a part of them is present in the biological membrane. It is classified as a superficial membrane protein that is bound to. Conventionally, it has been considered extremely difficult to study the function of a membrane protein because the higher-order structure changes and the original function is lost when a membrane protein existing in a biological membrane such as a cell membrane is isolated.
  • the nanodisc according to the present invention has a lipid bilayer similar to that of a biological membrane, and it is considered that the membrane protein maintains the structure in the biological membrane in the lipid bilayer. Research on functions will progress dramatically, and it is possible that the difficult industrial use of membrane proteins will be possible.
  • the nanodisk according to the present invention may contain a hydrophilic compound.
  • the hydrophilic compound is not particularly limited as long as it is a compound having an affinity for water molecules.
  • Many hydrophilic compounds are water-soluble, and water-soluble hydrophilic compounds can be dissolved in aqueous solvents, but they may be adsorbed on the hydrophilic part of nanodiscs to further stabilize them. is there.
  • an active ingredient such as a metal oxide, which is hydrophilic but insoluble in water, on the hydrophilic portion of the nanodisk, it may be possible to disperse the active ingredient in an aqueous solvent.
  • a plurality of nanodisks are laminated with each other to form a multilayer structure.
  • the hydrophilic compound may be present between the lipid bilayer layers.
  • the hydrophilic compound refers to a compound in which the amount of water for dissolving 1 g at 20 ⁇ 5 ° C. is less than 30 mL.
  • hydrophilic compounds include ultraviolet scattering agents such as titanium oxide particles and zinc oxide particles; inorganic pigments such as red iron oxide, titanium oxide and iron oxide; water-soluble vitamins such as ascorbic acid and its derivatives; locust bean gum and guar gum.
  • ultraviolet scattering agents such as titanium oxide particles and zinc oxide particles
  • inorganic pigments such as red iron oxide, titanium oxide and iron oxide
  • water-soluble vitamins such as ascorbic acid and its derivatives
  • locust bean gum and guar gum examples include thickeners such as derivatives, carrageenan, pectin, xanthan gum, gellan gum, and alginic acid.
  • the nanodisc according to the present invention may contain a surfactant other than lipopeptide biosurfactant.
  • a surfactant is not particularly limited, such as a nonionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • the nonionic surfactant is not particularly limited, but for example, polyoxyethylene (hereinafter, also referred to as POE) -polyoxypropylene (hereinafter, also referred to as POP) block copolymer; POE-POP block copolymer addition of ethylene diamine such as poloxamine.
  • POE polyoxyethylene
  • POP polyoxypropylene
  • POE sorbitan fatty acid esters such as monolauric acid POE (20) sorbitan, monooleic acid POE (20) sorbitan, POE sorbitan monostearate, POE sorbitan tristearate; POE (5) hardened castor oil, POE (10) ) Hardened castor oil, POE (20) Hardened castor oil, POE (40) Hardened castor oil, POE (50) Hardened castor oil, POE (60) Hardened castor oil, POE (100) Hardened castor oil, etc.
  • the numbers in parentheses indicate the average number of moles of POP or POE added.
  • the anionic surfactant is not particularly limited, and examples thereof include alkylbenzene sulfonate, alkyl sulfate, polyoxyethylene alkyl sulfate, aliphatic ⁇ -sulfomethyl ester, and ⁇ -olefin sulfonic acid.
  • the cationic surfactant is not particularly limited, and examples thereof include benzalkonium chloride and benzethonium chloride.
  • amphoteric tenside is not particularly limited, and examples thereof include glycine type such as alkyldiaminoethylglycine, betaine type acetate such as lauryldimethylaminoacetic acid betaine, and imidazoline type amphoteric tenside.
  • glycine type such as alkyldiaminoethylglycine
  • betaine type acetate such as lauryldimethylaminoacetic acid betaine
  • imidazoline type amphoteric tenside imidazoline type amphoteric tenside.
  • nanodiscs are manufactured by a complicated method in which a membrane scaffold protein is added to a phospholipid solution containing sodium cholic acid as a surfactant, and then the surfactant is removed by dialysis or the like.
  • the nanodisc according to the present invention can be produced by an extremely simple method of mixing at least lecithin, lysolecithin and lipopeptide biosurfactant in an aqueous solvent.
  • the total concentration of lecithin and lysolecithin in the reaction solution may be appropriately adjusted, but can be, for example, 0.001% by mass or more and 40% by mass or less, preferably 0.1% by mass or more and 30% by mass or less. ..
  • the concentration of lipopeptide biosurfactant in the reaction solution can also be 0.001 part by mass or more and 50% by mass or less, preferably 0.1% by mass or more and 45% by mass or less.
  • the amounts of the hydrophobic compound and the hydrophilic compound are preferably 0.1% by mass or more and 50% by mass or less, respectively, based on the total amount of lecithin and lysolecithin, respectively. It is more preferably 5.5% by mass or more and 20% by mass or less, and even more preferably 1% by mass or more and 10% by mass or less.
  • the reaction conditions of lecithin, lysolecithin and lipopeptide biosurfactant may be appropriately adjusted within a range in which the formation of nanodisks progresses satisfactorily.
  • the reaction temperature may be room temperature.
  • the temperature can be set to 20 ° C. or higher and 30 ° C. or lower, which is near the general phase transition temperature.
  • the reaction time can be 2 minutes or more and 50 hours or less.
  • nanodiscs may not be formed simply by mixing each component, but even in such a case, the reaction temperature is relatively high, for example, 40 ° C. or higher.
  • Nanodiscs may be formed by lowering the temperature to 90 ° C. or lower.
  • the temperature is preferably 85 ° C. or lower, more preferably 80 ° C. or lower.
  • the nanodisk according to the present invention can also be produced by first preparing liposomes from lecithin and lysolecithin, and then adding lipopeptide biosurfactant. That is, after dissolving lecithin and lysolecithin in a lower alcohol solvent such as methanol, ethanol and isopropanol or an organic solvent such as chloroform, the organic solvent is distilled off to form a lipid film, and an aqueous solvent is added and stirred to form liposomes. ..
  • a lower alcohol solvent such as methanol, ethanol and isopropanol or an organic solvent such as chloroform
  • the concentration of the liposome dispersion liquid at this time may be appropriately adjusted, and for example, it can be 0.01% by mass or more and 40% by mass or less with respect to the organic solvent, and 0.05% by mass or more and 35% by mass or less. The following is preferable.
  • nanodiscs can be obtained.
  • the concentration of the lipopeptide biosurfactant in the reaction solution may be appropriately adjusted, and may be, for example, 0.01% by mass or more and 40% by mass or less, 0.05% by mass or more, based on the amount of the liposome solution. It is preferably 35% by mass or less.
  • ingredients other than lecithin, lysolecithin and lipopeptide biosurfactant may be added in a timely manner.
  • the hydrophilic compound may be added to the aqueous solvent in a timely manner.
  • Hydrophobic compounds, membrane proteins and water-insoluble hydrophilic compounds are preferably allowed to coexist with at least lecithin and lysolecithin in aqueous solvents.
  • the amounts of the hydrophobic compound and the hydrophilic compound are preferably 0.1% by mass or more and 100% by mass or less, more preferably 0.5% by mass or more and 50% by mass or less, based on the total of lecithin and lysolecithin, respectively. More preferably, it is by mass% or more and 20% by mass or less.
  • biomolecules lecithin and lysolecithin exhibit a surface-active action, they assist the dispersion of these compounds in an aqueous solvent. Further, in the case of a membrane protein, it is also possible to bind the membrane protein to the nanodisk by cell-free synthesis of the membrane protein in the presence of the nanodisk according to the present invention.
  • the nanodisks may be freeze-dried and then the freeze-dried nanodisks may be dissolved again in an aqueous solvent.
  • the nanodisc concentration of the redissolved solution can be adjusted arbitrarily.
  • the nanodisc according to the present invention can take in a hydrophobic compound therein and disperse it well in an aqueous solvent and is extremely fine, the dispersion in the aqueous solvent is visually sufficient. It looks transparent and is considered to have high permeability to skin tissues.
  • a state in which the dispersoid cannot be visually confirmed and the dispersion liquid becomes visually transparent may be referred to as "solubilization". Therefore, it can be said that the nanodisc according to the present invention is particularly effective as a component of a personal care composition such as a cosmetic or a pharmaceutical composition containing a hydrophobic compound as an active ingredient.
  • Example 1 Production of Nanodiscs Containing Coenzyme Q10 According to the composition shown in Table 1, only soy lecithin (“Basis LP-20” manufactured by Nisshin Oillio Group) or soy lecithin and hydrogenated lysolecithin (“SLP-LPC70H”” A solution was prepared by stirring and mixing a combination with Tsuji Oil Co., Ltd.), coenzyme Q10 (manufactured by Kaneka Co., Ltd.) and an appropriate amount of chloroform with a vortex mixer. During the draft, chloroform was distilled off by spraying nitrogen gas on the obtained solution, and the solution was dried.
  • Base LP-20 manufactured by Nisshin Oillio Group
  • SLP-LPC70H soy lecithin and hydrogenated lysolecithin
  • the phosphate buffer solution and paraben as a preservative were added to the obtained dried product, the mixture was heated to 60 to 70 ° C., and the mixture was stirred and mixed with a vortex mixer to obtain a solution.
  • Sodium surfactin and the remaining amount of phosphate buffer were added to the obtained solution, the mixture was heated to 60 to 70 ° C., and stirred and mixed with a vortex mixer to obtain a solution.
  • the hydrogenated lysolecithin product used contains about 70% by mass of lysophosphatidylcholine as lysolecithin.
  • Test Example 1 Measurement of Nanodisc Particle Size According to the composition shown in Table 2, soy lecithin (“Basis LP-20” manufactured by Nisshin Oillio Group) alone, or soy lecithin and hydrogenated chloroform (“SLP-LPC70H” Tsuji) A solution was prepared by stirring and mixing the combination with (manufactured by Oil & Refinery Co., Ltd.) and an appropriate amount of chloroform with a vortex mixer. During the draft, chloroform was distilled off by spraying nitrogen gas on the obtained solution, and the solution was dried.
  • the particle size increases as the proportion of lysolecithin increases, but if the proportion of lysolecithin / (lysolecithin + lecithin) is 25% by mass or less, the appearance of the mixed solution is transparent and the average particle size.
  • the particle size of general liposomes is said to be 0.1 to 0.2 ⁇ m, and the mixed solution was somewhat opaque, so the ratio of lysolecithin / (lysolecithin + lecithin).
  • the main component was considered to be liposomes.
  • Test Example 2 Measurement of particle size of nanodisc According to the composition shown in Table 3, hydrogenated lecithin (“SLP-PC70HS” manufactured by Tsuji Oil Co., Ltd.) only, or hydrogenated lecithin and hydrogenated chloroform (“SLP-LPC70H” Tsuji Oil Co., Ltd.) A solution was prepared by stirring and mixing the combination with (manufactured by the company) and an appropriate amount of chloroform with a vortex mixer. During the draft, chloroform was distilled off by spraying nitrogen gas on the obtained solution, and the solution was dried.
  • SLP-PC70HS hydrogenated lecithin
  • SLP-LPC70H hydrogenated lecithin and hydrogenated chloroform
  • Test Example 3 Method of obtaining nanodiscs directly from powder According to the composition shown in Table 3, hydrogenated lecithin (“SLP-PC70HS” manufactured by Tsuji Oil Co., Ltd.) and hydrogenated lecithin (“SLP-LPC70H” manufactured by Tsuji Oil Co., Ltd.)
  • SLP-PC70HS hydrogenated lecithin
  • SLP-LPC70H hydrogenated lecithin
  • the phosphate buffer solution was directly added to the powder of sodium surfactin, and the mixture was stirred with a vortex for 5 minutes, and then stirred at 180 rpm and 25 ° C. for 20 hours using a shaker (“TAITEC BioShaker BR-23FP”). did.
  • the mixture was stirred and mixed with a vortex mixer for 3 minutes to obtain an opaque liquid.
  • Test Example 4 Formation of Nanodiscs Using Different Hydrogenated Lecithin
  • SLP-PC92H manufactured by Tsuji Oil Co., Ltd.
  • SLP-LPC70H manufactured by Tsuji Oil Co., Ltd.
  • Test Example 5 Formation of Nanodiscs Using Different Soy Lecithin According to the composition shown in Table 5, soy lecithin (“SLP-White” manufactured by Tsuji Oil Co., Ltd.) and hydrogenated lecithin (“SLP-LPC70H” manufactured by Tsuji Oil Co., Ltd.) Nanodiscs were prepared with the combination of. Specifically, soybean lecithin, hydrogenated lysolecithin, and an appropriate amount of chloroform were stirred and mixed with a vortex mixer to prepare a solution. During the draft, chloroform was distilled off by spraying nitrogen gas on the obtained solution, and the solution was dried.
  • Test Example 6 Stability test The mixture (10 mL) prepared in Example 1 was placed in a 50 mL falcon tube and placed in a constant temperature and humidity chamber (manufactured by Yamato) at 50 ° C, 25 ° C or 5 ° C for 30 days (1M). Alternatively, it was stored for 60 days (2M), or it was stored for 30 days or 60 days even under the condition that the cycle of raising and lowering the temperature in the range of ⁇ 5 ° C. to 45 ° C. was repeated 3 times in 2 days. The appearance was observed after 30 days or 60 days, and the stability was evaluated according to the following criteria. The results are shown in Table 6.
  • Transparent
  • Slightly reduced transparency is observed, but overall transparent
  • Clear turbidity and precipitation are observed.
  • the transparency of the nanodisc solution is maintained for 30 days even at a relatively high temperature of 50 ° C., and the ratio is 20% by mass. If it is% or less, the transparency is maintained even after 60 days except when it is held at 50 ° C. or 25 ° C., and if it is 10% by mass or less, the transparency is maintained after 60 days even if it is held at 50 ° C. Therefore, the stability of the nanodisk according to the present invention was demonstrated.

Abstract

The purpose of the present invention is to provide: a nanodisc that can be produced easily, that makes it possible to suitably disperse a hydrophobic compound or the like in water, and that has excellent transparency and stability; and a cosmetic containing the nanodisc. A nanodisc according to the present invention includes a lipid bilayer and a lipopeptide biosurfactant and is characterized in that the lipid bilayer includes a lecithin and a lysolecithin and the ratio of the lysolecithin to the total of the lecithin and the lysolecithin is 1-20 mass%.

Description

ナノディスクNanodisc
 本発明は、容易に製造することができ、疎水性化合物などを水中に良好に分散させることが可能で透明性と安定性に優れたナノディスク、および当該ナノディスクを含む化粧料に関するものである。 The present invention relates to nanodiscs which can be easily produced, which can disperse hydrophobic compounds and the like well in water and have excellent transparency and stability, and cosmetics containing the nanodiscs. ..
 化粧料などのパーソナルケア組成物や医薬組成物などに含まれる有効成分の多くは疎水性を示し、水系溶媒中に分散させ難いものである。疎水性化合物を分散させるには有機溶媒を使うことが考えられるが、人体に適用するパーソナルケア組成物や医薬組成物には、エタノールやイソプロパノールでさえ、使用量が低減されたり使用が避けられたりする傾向がある。よって、特にパーソナルケア組成物には、疎水性化合物を水系溶媒中に分散させるため界面活性剤が多用されている。 Many of the active ingredients contained in personal care compositions such as cosmetics and pharmaceutical compositions are hydrophobic and difficult to disperse in aqueous solvents. Organic solvents may be used to disperse hydrophobic compounds, but even ethanol and isopropanol may be reduced or avoided in personal care and pharmaceutical compositions applied to the human body. Tend to do. Therefore, especially in personal care compositions, surfactants are often used to disperse hydrophobic compounds in aqueous solvents.
 しかし、単に界面活性剤を配合するのみでは疎水性化合物を十分に分散できないことがある。そこで、疎水性化合物の分散性を高める技術が種々開発されている。 However, it may not be possible to sufficiently disperse the hydrophobic compound simply by adding a surfactant. Therefore, various techniques for enhancing the dispersibility of hydrophobic compounds have been developed.
 例えば、界面活性剤の水溶液中濃度が高まると、界面活性剤の親水性部分が外側を向いて集合したミセルやベシクルが形成されることが知られており、その内部の疎水性部分に疎水性化合物を内包させることにより疎水性化合物を分散できることが知られている。リン脂質で形成されたベシクルは、リポソームと呼ばれる。特許文献1に記載の発明では、更に水溶性高分子を配合することによりリポソームを多重膜構造とし、膜形成効率と膜安定性を高めている。また、特許文献2と特許文献3には、リン脂質とリゾリン脂質を含むリポソームが開示されている。 For example, it is known that when the concentration of a surfactant in an aqueous solution increases, micelles or vesicles in which the hydrophilic portions of the surfactant are aggregated facing outward are formed, and the hydrophobic portion inside thereof is hydrophobic. It is known that a hydrophobic compound can be dispersed by encapsulating the compound. Vesicles formed of phospholipids are called liposomes. In the invention described in Patent Document 1, a water-soluble polymer is further blended to form a liposome having a multi-membrane structure, and membrane formation efficiency and membrane stability are improved. Further, Patent Document 2 and Patent Document 3 disclose liposomes containing phospholipids and lysophospholipids.
 ところが、リポソームのサイズは比較的大きく、通常、リポソームの分散液は白濁したものとなる。そこで、近年、リポソームと同じく脂質二分子膜構造を有するナノディスクと呼ばれる非常に微細な粒子が開発されている。 However, the size of the liposome is relatively large, and the dispersion liquid of the liposome is usually cloudy. Therefore, in recent years, very fine particles called nanodisks having a lipid bilayer structure similar to that of liposomes have been developed.
 ナノディスクは、脂質二重膜からなるディスクの疎水性側面が両親媒性の膜スキャフォールドタンパク質で被覆された構造を有し(非特許文献1,特許文献4,5)、一層のナノディスクの厚さは数nm、直径は10nm足らずと非常に微細なものである。特許文献6にも、脂質と界面活性剤を含み、直径100nm未満の高分子集合体である組成物が開示されている。よって、ナノディスクの分散液は非常に透明性が高い。また、ナノディスクの脂質二重膜は細胞の脂質二重膜と同様のものであるため、ナノディスクに含まれる膜タンパク質は細胞膜での構造や活性をそのまま保持していると考えられ、ナノディスクにより膜タンパク質の研究が飛躍的に進むことが期待されている。本発明者らも、脂質二重層およびリポペプチドバイオサーファクタントを含むことを特徴とするナノディスクを開発している(特許文献7)。 The nanodisc has a structure in which the hydrophobic side of the disc composed of a lipid bilayer is coated with an amphipathic membrane scaffold protein (Non-Patent Documents 1, Patent Documents 4 and 5), and is a layer of nanodiscs. The thickness is several nm and the diameter is less than 10 nm, which is very fine. Patent Document 6 also discloses a composition containing a lipid and a surfactant, which is a polymer aggregate having a diameter of less than 100 nm. Therefore, the dispersion liquid of nanodisc is very transparent. In addition, since the lipid bilayer membrane of nanodiscs is similar to the lipid bilayer membrane of cells, it is considered that the membrane proteins contained in nanodiscs retain the structure and activity of the cell membranes as they are. It is expected that research on membrane proteins will progress dramatically. The present inventors have also developed a nanodisk characterized by containing a lipid bilayer and lipopeptide biosurfactant (Patent Document 7).
特開2008-94809号公報Japanese Unexamined Patent Publication No. 2008-94809 特開2008-127327号公報Japanese Unexamined Patent Publication No. 2008-127327 特開2007-269635号公報Japanese Unexamined Patent Publication No. 2007-269635 特表2007-525490号公報Special Table 2007-525490 特表2016-504312号公報Special Table 2016-504312 特表2010-511032号公報Special Table 2010-51103A 国際公開第2018/181538号パンフレットInternational Publication No. 2018/181538 Pamphlet
 上述したように、脂質二重層を含む微細なナノディスクが開発されており、ナノディスクを用いれば水系溶媒中に疎水性化合物などを良好に分散できると考えられる。
 しかし、ナノディスクは透明性に優れた化粧品などへの適用が期待されているものの、経時的に透明性が低下したり、場合によっては沈殿が生じることがあった。
 そこで本発明は、容易に製造することができ、疎水性化合物などを水中に良好に分散させることが可能で透明性と安定性に優れたナノディスク、および当該ナノディスクを含む化粧料を提供することを目的とする。
As described above, fine nanodiscs containing a lipid bilayer have been developed, and it is considered that hydrophobic compounds and the like can be satisfactorily dispersed in an aqueous solvent by using nanodiscs.
However, although nanodiscs are expected to be applied to cosmetics having excellent transparency, the transparency may decrease over time and precipitation may occur in some cases.
Therefore, the present invention provides nanodiscs which can be easily produced, can disperse hydrophobic compounds and the like well in water, and have excellent transparency and stability, and cosmetics containing the nanodiscs. The purpose is.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、界面活性剤としてリポペプチドバイオサーファクタントを用い、且つ脂質として特定割合のレシチンとリゾレシチンを用いることにより、透明性と安定性に優れるナノディスクを容易に製造できることを見出して、本発明を完成した。
 以下、本発明を示す。
The present inventors have conducted intensive studies to solve the above problems. As a result, they have found that by using lipopeptide biosurfactant as a surfactant and using a specific ratio of lecithin and lysolecithin as lipids, nanodiscs having excellent transparency and stability can be easily produced, and the present invention has been completed. did.
Hereinafter, the present invention will be shown.
 [1] 脂質二重層およびリポペプチドバイオサーファクタントを含み、
 上記脂質二重層がレシチンとリゾレシチンを含み、
 上記レシチンと上記リゾレシチンの合計に対する上記リゾレシチンの割合が、1質量%以上、20質量%以下であることを特徴とするナノディスク。
 [2] 上記脂質二重膜の側面に上記リポペプチドバイオサーファクタントが膜スキャフォールドタンパク質として結合している上記[1]に記載のナノディスク。
 [3] 厚さが2nm以上、10nm以下である上記[1]または[2]に記載のナノディスク。
 [4] 直径が6nm以上、40nm以下である上記[1]~[3]のいずれかに記載のナノディスク。
 [5] 上記割合が10質量%以下である上記[1]~[4]のいずれかに記載のナノディスク。
 [6] 上記リポペプチドバイオサーファクタントが、下記式(I)で表されるサーファクチンまたはその塩である上記[1]~[5]のいずれかに記載のナノディスク。
Figure JPOXMLDOC01-appb-C000002

[式中、
 Xは、ロイシン、イソロイシンおよびバリンから選択されるアミノ酸残基を示し;
 R1はC9-18アルキル基を示す]
 [7] 更に疎水性化合物を含む上記[1]~[6]のいずれかに記載のナノディスク。
 [8] 更に親水性化合物を含む上記[1]~[7]のいずれかに記載のナノディスク。
 [9] 上記[1]~[8]のいずれかに記載のナノディスクを含むことを特徴とする化粧料。
[1] Contains lipid bilayer and lipopeptide biosurfactant
The lipid bilayer contains lecithin and lysolecithin,
A nanodisk characterized in that the ratio of the lysolecithin to the total of the lecithin and the lysolecithin is 1% by mass or more and 20% by mass or less.
[2] The nanodisc according to the above [1], wherein the lipopeptide biosurfactant is bound as a membrane scaffold protein to the side surface of the lipid bilayer membrane.
[3] The nanodisc according to the above [1] or [2], which has a thickness of 2 nm or more and 10 nm or less.
[4] The nanodisc according to any one of the above [1] to [3], which has a diameter of 6 nm or more and 40 nm or less.
[5] The nanodisc according to any one of the above [1] to [4], wherein the ratio is 10% by mass or less.
[6] The nanodisc according to any one of the above [1] to [5], wherein the lipopeptide biosurfactant is a surfactin represented by the following formula (I) or a salt thereof.
Figure JPOXMLDOC01-appb-C000002

[During the ceremony,
X indicates an amino acid residue selected from leucine, isoleucine and valine;
R 1 represents a C 9-18 alkyl group]
[7] The nanodisc according to any one of the above [1] to [6], which further contains a hydrophobic compound.
[8] The nanodisc according to any one of the above [1] to [7], which further contains a hydrophilic compound.
[9] A cosmetic comprising the nanodisc according to any one of the above [1] to [8].
 従来、ナノディスクの製造には膜スキャフォールドタンパク質が用いられているが、膜スキャフォールドタンパク質のデザインや製造には非常に手間や時間が必要であった。それに対して本発明で用いる界面活性剤であるリポペプチドバイオサーファクタントは微生物が生産するものであり、比較的容易に製造が可能である。また、本発明に係るナノディスクは、煩雑な工程を経なければ製造できなかった従来のナノディスクに比べ、非常に簡単な方法で製造することが可能である。更に、本発明に係るナノディスクを用いれば、疎水性化合物を水系溶媒に良好に分散させ、目視上透明な組成物を得ることも可能であるし、疎水性化合物の経皮特性が顕著に向上する可能性もあり得る。また、細胞と同じく脂質二重膜構造を有する本発明のナノディスクは、その近傍に存在する親水性化合物の経皮特性を顕著に向上させる可能性もあり得る。また、本発明のナノディスクは安定性に優れ、製剤の透明性を長期間にわたり維持することが可能である。よって本発明は、優れた特性を有するパーソナルケア組成物や医薬組成物の開発に寄与する技術として、産業上非常に優れている。 Conventionally, membrane scaffold protein has been used for manufacturing nanodiscs, but it took a lot of time and effort to design and manufacture membrane scaffold protein. On the other hand, the lipopeptide biosurfactant, which is the surfactant used in the present invention, is produced by a microorganism and can be produced relatively easily. Further, the nanodisc according to the present invention can be manufactured by a very simple method as compared with the conventional nanodisk which could not be manufactured without going through a complicated process. Further, by using the nanodisc according to the present invention, it is possible to satisfactorily disperse the hydrophobic compound in an aqueous solvent to obtain a visually transparent composition, and the transdermal properties of the hydrophobic compound are remarkably improved. There is a possibility of doing so. In addition, the nanodisk of the present invention, which has a lipid bilayer structure similar to that of cells, may significantly improve the transdermal properties of hydrophilic compounds existing in the vicinity thereof. In addition, the nanodisc of the present invention has excellent stability and can maintain the transparency of the preparation for a long period of time. Therefore, the present invention is industrially excellent as a technique that contributes to the development of personal care compositions and pharmaceutical compositions having excellent properties.
図1は、本発明に係る脂質製剤の安定性試験後の外観写真である。FIG. 1 is an external photograph of the lipid preparation according to the present invention after a stability test. 図2は、本発明範囲外の脂質製剤の安定性試験後の外観写真である。FIG. 2 is an external photograph of a lipid preparation outside the scope of the present invention after a stability test.
 本発明に係るナノディスクは、脂質二重層およびリポペプチドバイオサーファクタントを含む。 The nanodisc according to the present invention contains a lipid bilayer and lipopeptide biosurfactant.
 一般的なナノディスクは、脂質二重層の側面疎水部に、両親媒性である膜スキャフォールドタンパク質の疎水性部分が結合して被覆し且つ親水性部分が外側を向いている構造で安定化している。それに対して本発明に係るナノディスクは、脂質二重層の側面疎水部にリポペプチドバイオサーファクタントの疎水性部分が結合して被覆し且つ親水性部分が外側を向いている構造で安定化していると考えられる。更に、環状ペプチドがイオンチャネルとして脂質二重層に刺さっていたり、嵩高い疎水性部分を有する脂質と嵩高い親水性部分を有する界面活性化合物が二重層を形成している例も知られていることから、本発明に係るナノディスクでも、一部のリポペプチドバイオサーファクタントが脂質と共に二重層を形成している可能性もあり得る。 A general nanodisc is stabilized by a structure in which the hydrophobic part of the amphipathic membrane scaffold protein is bound to the side hydrophobic part of the lipid bilayer to cover it, and the hydrophilic part faces outward. There is. On the other hand, the nanodisc according to the present invention is stabilized by a structure in which the hydrophobic portion of the lipopeptide biosurfactant is bound to the side hydrophobic portion of the lipid bilayer to cover it and the hydrophilic portion faces outward. Conceivable. Further, it is also known that a cyclic peptide is pierced into a lipid bilayer as an ion channel, or a lipid having a bulky hydrophobic portion and a surface active compound having a bulky hydrophilic portion form a bilayer. Therefore, even in the nanodisc according to the present invention, it is possible that some lipopeptide biohydrophobics form a bilayer together with lipids.
 本発明に係るナノディスクの大きさとしては、厚さが2nm以上、10nm以下、直径が5nm以上、40nm以下であってよい。当該厚さとしては3nm以上が好ましく、4nm以上がより好ましく、また、8nm以下が好ましく、6nm以下がより好ましい。当該直径としては、6nm以上が好ましく、7nm以上がより好ましく、また、20nm以下が好ましく、15nm以下がより好ましい。 The size of the nanodisk according to the present invention may be 2 nm or more and 10 nm or less, and the diameter may be 5 nm or more and 40 nm or less. The thickness is preferably 3 nm or more, more preferably 4 nm or more, preferably 8 nm or less, and more preferably 6 nm or less. The diameter is preferably 6 nm or more, more preferably 7 nm or more, preferably 20 nm or less, and more preferably 15 nm or less.
 脂質二重層を構成するリン脂質は、親水性のリン酸基部と疎水性の尾部を有する化合物であり、本発明では、レシチンとリゾレシチンを併用する。 The phospholipid constituting the lipid bilayer is a compound having a hydrophilic phosphate base and a hydrophobic tail, and in the present invention, lecithin and lysolecithin are used in combination.
 レシチンは、リン脂質を含む脂質製品の総称であり、大豆油や卵黄など、リン脂質を含む原料に水を加えて沈殿する成分を分離乾燥したり、エタノール等で抽出することにより製造される。大豆を原料とするレシチンを大豆レシチンといい、卵黄を原料とするレシチンを卵黄レシチンという。レシチンを構成する成分は特に制限されないが、例えば、グリセロリン脂質、スフィンゴリン脂質、糖脂質、合成脂質、ステロール等を挙げることができる。 Lecithin is a general term for lipid products containing phospholipids, and is produced by separating and drying components that precipitate by adding water to raw materials containing phospholipids, such as soybean oil and egg yolk, or by extracting with ethanol or the like. Lecithin made from soybeans is called soybean lecithin, and lecithin made from egg yolk is called egg yolk lecithin. The components constituting lecithin are not particularly limited, and examples thereof include glycerophospholipids, sphingolipids, glycolipids, synthetic lipids, and sterols.
 グリセロリン脂質は、2つの脂肪酸、グリセリン、リン酸およびコリンが複合した構造を有する二本鎖リン脂質であり、例えば、ジオレオイルホスファチジルコリン(DOPC)、ジラウロイルホスファチジルコリン(DLPC)、ジミリストイルホスファチジルコリン(DMPC)、ジパルミトイルホスファチジルコリン(DPPC)、ジステアロイルホスファチジルコリン(DSPC)、1-パルミトイル-2-オレオイルホスファチジルコリン(POPC)、1-ステアロイル-2-ミリストイルホスファチジルコリン、ジリノレイルホスファチジルコリンなどを挙げることができる。 Glycerophospholipids are double-stranded phospholipids having a complex structure of two fatty acids, glycerin, phosphate and choline, such as dipalmitoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DLPC), and dipalmitoylphosphatidylcholine (DMPC). ), Dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC), 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), 1-stearoyl-2-myristoylphosphatidylcholine, dilinoleylphosphatidylcholine and the like.
 グリセロリン脂質としては、下記式(II)で表されるグリセロリン脂質を挙げることができる。
Figure JPOXMLDOC01-appb-C000003

[式中、R2とR3は独立してC10-24アルキル基またはC10-24アルケニル基を示す]
Examples of the glycerophospholipid include a glycerophospholipid represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000003

[In the formula, R 2 and R 3 independently represent a C 10-24 alkyl group or a C 10-24 alkenyl group]
 上記式(II)中、C10-24アルキル基としては、例えば、n-デシル、8-メチルノニル、n-ウンデシル、9-メチルデシル、n-ドデシル、10-メチルウンデシル、n-トリデシル、11-メチルドデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-ノナデシル、n-イコシル、n-ドコシル、n-テトラコシルなどが挙げられる。C10-24アルケニル基としては、例えば、デセニル、ドデセニル、テトラデセニル、ヘキサデセニル、オクタデセニル、イコセニル、ドコセニル、テトラコセニルなどが挙げられる。 In the above formula (II) , examples of the C 10-24 alkyl group include n-decyl, 8-methylnonade, n-undecyl, 9-methyldecyl, n-dodecyl, 10-methylundecyl, n-tridecyl, 11-. Examples thereof include methyldodecyl, n-tetradecyl, n-pentadecyl, n-hexadecyl, n-heptadecyl, n-octadecyl, n-nonadecylic, n-icosyl, n-docosyl, n-tetracosyl and the like. Examples of the C 10-24 alkenyl group include decenyl, dodecenyl, tetradecenyl, hexadecenyl, octadecenyl, icosenyl, docosenyl, tetracosenyl and the like.
 スフィンゴリン脂質は、スフィンゴイドに脂肪酸がアミド結合したセラミドに、リン酸と塩基が結合した構造を有する。即ち、スフィンゴリン脂質は、スフィンゴシンに由来する長鎖炭化水素基と長鎖脂肪酸に由来する長鎖炭化水素基を有する二本鎖リン脂質である。スフィンゴリン脂質としては、例えばスフィンゴミエリンを挙げることができる。 Sphingolipid has a structure in which phosphoric acid and a base are bound to ceramide in which a fatty acid is amide-bonded to sphingoid. That is, the sphingolipid is a double-chain phospholipid having a long-chain hydrocarbon group derived from sphingosine and a long-chain hydrocarbon group derived from a long-chain fatty acid. Examples of sphingolipids include sphingomyelin.
 糖脂質としては、例えば、マンノシルエリスリトールリピッド、ソホロリピッド、スルホキシリボシルグリセリド、ジグリコシルジグリセリド、ジガラクトシルジグリセリド、ガラクトシルジグリセリド、グリコシルジグリセリド、ガラクトシルセレブロシド、ラクトシルセレブロシド、ガングリオシドなどを挙げることができる。 Examples of glycolipids include mannosyl erythritol lipid, sophorolipid, sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride, galactosyl cerebroside, lactosyl cerebroside, and ganglioside.
 ステロールとしては、例えば、コレステロールコハク酸、ラノステロール、ジヒドロラノステロール、デスモステロール、ジヒドロコレステロールなどの動物由来のステロール;スチグマステロール、シトステロール、カンペステロール、ブラシカステロールなどの植物由来のステロール(フィトステロール);チモステロール、エルゴステロールなどの微生物由来のステロールなどを挙げることができる。 Examples of sterols include animal-derived sterols such as cholesterol succinic acid, lanosterol, dihydrolanosterol, desmosterol, and dihydrocholesterol; plant-derived sterols such as stigmasterol, cytosterol, campesterol, and brushcasterol (phytosterols); thymosterol. , Sterols derived from microorganisms such as ergosterol and the like.
 リゾレシチンは、グリセロリン脂質やスフィンゴリン脂質などの主要なレシチンが疎水性の尾部を二本有する二本鎖リン脂質であるのに対して、疎水性の尾部を一本のみ有する一本鎖リン脂質である。リゾレシチンは、例えば、グリセロリン脂質やスフィンゴリン脂質をホスホリパーゼA2で処理して、一方の疎水性尾部を除去することにより製造される。リゾレシチンとしては、例えば、ホスファチジルコリンの2位の脂肪酸がホスホリパーゼA2によって除去された構造を有するリゾホスファチジルコリン、リゾホスファチジルコリンからコリンが除去された構造を有するリゾホスファチジン酸、スフィンゴシン1リン酸、スフィンゴシルホスホリルコリン等が挙げられる。 Lysolecithin is a single-stranded phospholipid that has only one hydrophobic tail, whereas major lecithin such as glycerophospholipids and sphingolipids are double-stranded phospholipids that have two hydrophobic tails. is there. Lysolecithin is produced, for example, by treating glycerophospholipids and sphingolipids with phospholipase A2 to remove one of the hydrophobic tails. Examples of lysolecithin include lysophosphatidylcholine having a structure in which the fatty acid at the 2-position of phosphatidylcholine is removed by phospholipase A2, lysophosphatidic acid having a structure in which choline is removed from lysophosphatidylcholine, sphingosine monophosphate, sphingosine phosphorylcholine and the like. Can be mentioned.
 レシチンおよびリゾレシチンは、一般に長鎖脂肪酸部分に炭素-炭素二重結合を含むが、本発明において使用するレシチンとリゾレシチンは、水素を添加した飽和型の水素添加物であってもよいし、不飽和型と飽和型の混合物を用いてもよい。 Lecithin and lysolecithin generally contain a carbon-carbon double bond in the long-chain fatty acid moiety, but lecithin and lysolecithin used in the present invention may be saturated hydrogenated additives to which hydrogen is added or unsaturated. A mixture of mold and saturated mold may be used.
 本発明に係るナノディスクの脂質二重層は、主にレシチンとリゾレシチンで構成されている。一般的な脂質二重層は主に二本鎖リン脂質で構成されており、二本鎖リン脂質は、親水部と疎水部のバランスが整っており、細長い直方体状の空間を占めるため、平面的な無限会合体を形成し易い性質を持つ。一般的なナノディスクにおいては、高分子である膜スキャフォールドタンパク質が脂質二重層の周囲を取り囲むことでディスク状態を形成しているものと考えられている。本発明者らは、本発明におけるナノディスクでは、高分子である膜スキャフォールドタンパク質が担う役割を、リポペプチドバイオサーファクタントが形成する分子集合体が担っているものと考えた。このように高分子ではなく分子集合体で形状を維持するため、実用化には安定化が必要であり、そのためには第三成分の添加が有効と考えた。ここで、リゾレシチンは一本鎖であるため親水部に対して疎水部が小さく、レシチンとは形状が異なり、ナノディスクの不安定性の要因となる分子間の隙間を埋めることから、レシチンに加えて適量のリゾレシチンを併用することによりナノディスクを安定化できると考えた。そこで本発明では、レシチンとリゾレシチンとの割合を調整し、ナノディスクの安定性を改善している。 The lipid bilayer of the nanodisc according to the present invention is mainly composed of lecithin and lysolecithin. A general lipid bilayer is mainly composed of double-stranded phospholipids, which are planar because they have a well-balanced hydrophilic and hydrophobic parts and occupy an elongated rectangular parallelepiped space. It has the property of easily forming an infinite aggregate. In general nanodiscs, it is considered that a membrane scaffold protein, which is a polymer, forms a disc state by surrounding the lipid bilayer. The present inventors considered that in the nanodisc in the present invention, the role played by the membrane scaffold protein, which is a polymer, is played by the molecular aggregate formed by the lipopeptide biosurfactant. In this way, since the shape is maintained by the molecular aggregate instead of the polymer, stabilization is necessary for practical use, and it was considered that the addition of the third component is effective for that purpose. Here, since lysolecithin is a single chain, the hydrophobic part is small with respect to the hydrophilic part, the shape is different from lecithin, and it fills the intermolecular gap that causes the instability of nanodiscs. It was thought that nanodiscs could be stabilized by using an appropriate amount of lysolecithin together. Therefore, in the present invention, the ratio of lecithin to lysolecithin is adjusted to improve the stability of nanodiscs.
 具体的には、本発明に係るナノディスクの脂質二重層においては、レシチンとリゾレシチンの合計に対するリゾレシチンの割合を1質量%以上、20質量%以下とする。当該割合がこの範囲内に調整されることにより、後記の実施例の結果の通り、レシチンにリゾレシチンを併用することによるナノディスクの安定化効果が得られる。上記割合としては、1.5質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上がより更に好ましく、また、15質量%以下が好ましく、10質量%以下がより好ましい。 Specifically, in the lipid bilayer of the nanodisk according to the present invention, the ratio of lysolecithin to the total of lecithin and lysolecithin is 1% by mass or more and 20% by mass or less. By adjusting the ratio within this range, as shown in the results of the examples described later, the nanodisc stabilizing effect can be obtained by using lysolecithin in combination with lecithin. As the above ratio, 1.5% by mass or more is preferable, 2% by mass or more is more preferable, 3% by mass or more is further preferable, 15% by mass or less is preferable, and 10% by mass or less is more preferable.
 レシチンとリゾレシチンの合計量は、ナノディスクを良好に作製できる範囲で適宜調整することができる。例えば、本発明のナノディスクを含む溶媒に対するレシチンとリゾレシチンの合計量を0.01質量%以上、10質量%以下とすることができる。 The total amount of lecithin and lysolecithin can be appropriately adjusted within the range in which nanodiscs can be satisfactorily produced. For example, the total amount of lecithin and lysolecithin with respect to the solvent containing the nanodisk of the present invention can be 0.01% by mass or more and 10% by mass or less.
 リポペプチドバイオサーファクタントは、疎水性基と、親水性部分を含むペプチドを有し、界面活性作用を示すものであり、微生物が生産するものをいう。リポペプチドバイオサーファクタントとしては、例えば、サーファクチン、アルスロファクチン、イチュリン、フェンジシン、セラウェッチン、ライケシン、ビスコシンを挙げることができる。 Lipopeptide biosurfactant has a hydrophobic group and a peptide containing a hydrophilic moiety, exhibits a surface-active effect, and is produced by a microorganism. Examples of the lipopeptide biosurfactant include surfactin, arslovactin, itulin, fendisin, serawettin, leikecin, and viscocin.
 リポペプチドバイオサーファクタントとしては、上記式(I)で表されるサーファクチンまたはその塩(以下、「サーファクチン(I)」という)が好ましい。式(I)中、カルボキシメチル基およびカルボキシエチル基の根元は光学活性点を表す。 As the lipopeptide biosurfactant, surfactin represented by the above formula (I) or a salt thereof (hereinafter referred to as "surfactin (I)") is preferable. In formula (I), the roots of the carboxymethyl group and the carboxyethyl group represent the optically active sites.
 Xは、ロイシン、イソロイシンおよびバリンから選択されるいずれか1種のアミノ酸残基を表す。Xとしてのアミノ酸残基は、L体でもD体でもよいが、L体が好ましい。 X represents any one amino acid residue selected from leucine, isoleucine and valine. The amino acid residue as X may be L-form or D-form, but L-form is preferable.
 R1は、C9-18アルキル基を表す。ここで、「C9-18アルキル基」は、炭素数が9以上、18以下の直鎖状または分枝鎖状の一価飽和炭化水素基をいう。例えば、n-ノニル、6-メチルオクチル、7-メチルオクチル、n-デシル、8-メチルノニル、n-ウンデシル、9-メチルデシル、n-ドデシル、10-メチルウンデシル、n-トリデシル、11-メチルドデシル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシルなどが挙げられる。 R 1 represents a C 9-18 alkyl group. Here, the "C 9-18 alkyl group" refers to a linear or branched monovalent saturated hydrocarbon group having 9 or more and 18 or less carbon atoms. For example, n-nonyl, 6-methyloctyl, 7-methyloctyl, n-decyl, 8-methylnonyl, n-undecyl, 9-methyldecyl, n-dodecyl, 10-methylundecyl, n-tridecyl, 11-methyldodecyl. , N-tetradecyl, n-pentadecylic, n-hexadecyl, n-heptadecyl, n-octadecyl and the like.
 上記サーファクチン(I)は1種、または2種以上使用してもよい。例えば、R1のC9-18アルキル基が異なる複数のサーファクチン(I)を含むものであってもよい。 The above-mentioned surfactin (I) may be used alone or in combination of two or more. For example, the C 9-18 alkyl group of R 1 may contain a plurality of different surfactins (I).
 サーファクチン(I)は、公知方法に従って、微生物、例えばバチルス・ズブチリスに属する菌株を培養し、その培養液から分離することができ、精製品であっても未精製品であっても使用できる。例えば培養液のまま使用することもできる。また、化学合成法によって得られるものでも同様に使用できる。 Surfactin (I) can be used by culturing a microorganism, for example, a strain belonging to Bacillus subtilis, and separating it from the culture solution according to a known method, and it can be used as a refined product or an unrefined product. For example, the culture solution can be used as it is. Further, those obtained by a chemical synthesis method can also be used in the same manner.
 サーファクチン(I)の塩も用いることができる。当該塩を構成するカウンターカチオンは特に制限されないが、例えばアルカリ金属イオンやアンモニウムイオンが挙げられる。 A salt of surfactin (I) can also be used. The counter cation constituting the salt is not particularly limited, and examples thereof include alkali metal ions and ammonium ions.
 サーファクチン(I)の塩に使用できるアルカリ金属イオンは特に限定されないが、リチウムイオン、ナトリウムイオン、カリウムイオンなどを表す。また、2つのアルカリ金属イオンは、互いに同一であってもよいし、異なっていてもよい。 The alkali metal ion that can be used for the salt of surfactin (I) is not particularly limited, but represents lithium ion, sodium ion, potassium ion, or the like. Further, the two alkali metal ions may be the same as each other or may be different from each other.
 アンモニウムイオンの置換基としては、例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、t-ブチル等のアルキル基;ベンジル、メチルベンジル、フェニルエチル等のアラルキル基;フェニル、トルイル、キシリル等のアリール基等の有機基が挙げられる。アンモニウムイオンとしては、例えば、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、ピリジニウムイオン等が挙げられる。 Examples of the substituent of the ammonium ion include alkyl groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl and t-butyl; aralkyl groups such as benzyl, methylbenzyl and phenylethyl; phenyl, toluyl, xsilyl and the like. Examples include organic groups such as the aryl group of. Examples of the ammonium ion include tetramethylammonium ion, tetraethylammonium ion, pyridinium ion and the like.
 なお、サーファクチン(I)の塩中、二つのカウンターカチオンは互いに同一であってもよいし、異なっていてもよいものとする。また、一方のカルボキシ基が-COOHまたは-COO-の状態になっていてもよいものとする。 In the salt of surfactin (I), the two counter cations may be the same or different from each other. Also, one of the carboxy group -COOH or -COO - shall may be in the state of.
 リポペプチドバイオサーファクタントの使用量は、ナノディスクが形成される範囲で適宜調整すればよい。例えば、レシチンとリゾレシチンの合計に対するリポペプチドバイオサーファクタントの量を0.5質量倍以上、5質量倍以下とすることができる。上記量が0.5質量倍以上であれば、ナノディスクがより確実に形成され、上記量が5質量倍以下であれば、ナノディスクの形成に関与しないリポペプチドバイオサーファクタントの量がそれほど過剰にならず、経済的である。上記量としては、1質量倍以上が好ましく、また、4質量倍以下が好ましく、3質量倍以下がより好ましい。 The amount of lipopeptide biosurfactant used may be appropriately adjusted within the range in which nanodisks are formed. For example, the amount of lipopeptide biosurfactant with respect to the total of lecithin and lysolecithin can be 0.5 mass times or more and 5 mass times or less. If the amount is 0.5 mass times or more, nanodisks are formed more reliably, and if the amount is 5 mass times or less, the amount of lipopeptide biosurfactant that is not involved in the formation of nanodisks is so excessive. Not economical. The amount is preferably 1 mass times or more, preferably 4 mass times or less, and more preferably 3 mass times or less.
 本発明に係るナノディスクは、レシチン、リゾレシチンおよびリポペプチドバイオサーファクタント以外の成分を含んでいてもよい。例えば、化粧料や医薬組成物などの溶媒としては主に水系溶媒が用いられるが、疎水性化合物は水系溶媒中に分散させ難いという課題がある。しかし本発明に係るナノディスクを用いれば、おそらくは疎水性化合物を内部に取り込んで水系溶媒中に分散させることができるため、透明性の高い組成物とすることができる。なお、本発明において「水系溶媒」とは、水、および水混和性有機溶媒と水との混合溶媒をいう。水混和性有機溶媒は、水と制限無く混和可能な有機溶媒をいい、例えば、C1-3アルコールを挙げることができ、好ましくはエタノールまたはイソプロパノールである。なお、上記混合溶媒における水混和性有機溶媒の割合としては、10質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下がより更に好ましい。また、水系溶媒は、緩衝液であってもよく、そのpHは特に制限されないが、5.0以上、13.0以下が好ましい。 The nanodisc according to the present invention may contain components other than lecithin, lysolecithin and lipopeptide biosurfactant. For example, an aqueous solvent is mainly used as a solvent for cosmetics and pharmaceutical compositions, but there is a problem that it is difficult to disperse a hydrophobic compound in the aqueous solvent. However, if the nanodisc according to the present invention is used, a hydrophobic compound can probably be taken in and dispersed in an aqueous solvent, so that a highly transparent composition can be obtained. In the present invention, the "aqueous solvent" refers to water and a mixed solvent of a water-miscible organic solvent and water. The water-miscible organic solvent refers to an organic solvent that can be miscible with water without limitation, and examples thereof include C 1-3 alcohol, preferably ethanol or isopropanol. The proportion of the water-miscible organic solvent in the mixed solvent is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 2% by mass or less. The aqueous solvent may be a buffer solution, and its pH is not particularly limited, but is preferably 5.0 or more and 13.0 or less.
 疎水性化合物は、疎水性基を有し、水に難溶で且つ油に可溶である化合物をいう。ここで難溶とは、1gの疎水性化合物を20±5℃で溶解するために100mL以上の水を要することをいう。本発明で用いる疎水性化合物は、化粧料や医薬組成物などに配合する有効成分であれば特に制限されないが、例えば、美白剤、抗老化剤、抗酸化剤、保湿剤、育毛剤、細胞賦活剤、ビタミン類、アミノ酸類などが挙げられる。より具体的には、例えば、トコフェロール、コエンザイムQ10、還元型コエンザイムQ10、およびそれらの誘導体などの脂溶性ビタミン類;スクワランなどのオイル;ヒドロコルチゾン、プレドニゾロン、デキサメタゾン、ベタメタゾンなどのステロイド系抗炎症薬;アセチルサリチル酸、イブプロフェン、インドメタシン、ロキソプロフェンなどの非ステロイド系抗炎症薬;抗生物質;抗真菌剤;メチルパラベンなどの防腐剤;メントールなどの香料;アリザニンなどの色素を挙げることができる。その他、アルブチン及びその誘導体;L-アスコルビン酸およびその誘導体;ハイドロキノンおよびその誘導体;グルタチオンおよびその誘導体;胎盤抽出物;パントテン酸およびその誘導体;トラネキサム酸およびその誘導体;コウジ酸およびその誘導体;システインおよびその誘導体;カミツレエキス、カンゾウ抽出物などの植物抽出物;ベータカロチン等のカロテノイド類;アスタキサンチンおよびその誘導体;フラボノイド類;カテキンおよびその誘導体;ビタミンAおよびその誘導体;α-リポ酸およびその誘導体;グリチルリチン酸およびその誘導体;チオタウリンおよびその誘導体;尿素およびその誘導体;グリセリン誘導体;サリチル酸およびその誘導体;ニコチン酸およびその誘導体;L-アミノ酸およびその誘導体;アデノシンおよびその誘導体;イソフラボン等の植物性女性ホルモン様成分;グラブリジンおよびその誘導体;マグノリグナンおよびその誘導体;ミノキシジルおよびその誘導体;フィナステリドおよびその誘導体;フラバノン類;塩化カルプロニウムおよびその誘導体;フェルラ酸およびその誘導体;フラーレンおよびその誘導体;ラクトフェリン;D-アミノ酸およびその誘導体;オリゴ糖およびその誘導体;核酸およびその誘導体;D-グルコサミンおよびその誘導体;コンドロイチン硫酸ナトリウムおよびその誘導体;ジプロピレングリコールおよびその誘導体;セラミドおよびその誘導体;ソルビトールおよびその誘導体;トレハロースおよびその誘導体;ヒアルロン酸およびその誘導体;プロピレングリコール脂肪酸エステルおよびその誘導体;マルチトールおよびその誘導体;ラフィノースおよびその誘導体;アルギン酸およびその誘導体;カフェインおよびその誘導体;カルボキシビニルポリマーおよびその誘導体;キサンタンガムおよびその誘導体;ヒドロキシエチルセルロースおよびその誘導体;ポリビニルピロリドンおよびその誘導体;ケラチン分解物およびその誘導体;シルクタンパク質分解物およびその誘導体;γ-アミノ酪酸およびその誘導体;アラントインおよびその誘導体;γ-オリザノールおよびその誘導体;L-カルニチンおよびその誘導体;β-1,3-グルカンおよびその誘導体;ビオチンおよびその誘導体などが挙げられる。 Hydrophobic compound refers to a compound that has a hydrophobic group, is sparingly soluble in water, and is soluble in oil. Here, poorly soluble means that 100 mL or more of water is required to dissolve 1 g of the hydrophobic compound at 20 ± 5 ° C. The hydrophobic compound used in the present invention is not particularly limited as long as it is an active ingredient to be blended in cosmetics, pharmaceutical compositions, etc., but for example, a whitening agent, an anti-aging agent, an antioxidant, a moisturizer, a hair restorer, and cell activation. Examples include agents, vitamins and amino acids. More specifically, fat-soluble vitamins such as tocopherol, coenzyme Q10, reduced coenzyme Q10, and derivatives thereof; oils such as squalane; steroidal anti-inflammatory agents such as hydrocortisone, prednisolone, dexamethasone, betamethasone; acetyl. Non-steroidal anti-inflammatory agents such as salicylic acid, ibuprofen, indomethacin, loxoprofen; antibiotics; antifungal agents; preservatives such as methylparaben; fragrances such as menthol; pigments such as alizanin. In addition, albutin and its derivatives; L-ascorbic acid and its derivatives; hydroquinone and its derivatives; glutathione and its derivatives; placenta extract; pantothenic acid and its derivatives; tranexamic acid and its derivatives; Derivatives; Plant extracts such as chamomile extract and citrus extract; Carotenoids such as beta-carotene; Astaxanthin and its derivatives; Flavonoids; Catechin and its derivatives; Vitamin A and its derivatives; α-lipoic acid and its derivatives; Glycyrrhizic acid And its derivatives; thiotaurine and its derivatives; urea and its derivatives; glycerin derivatives; salicylic acid and its derivatives; nicotinic acid and its derivatives; L-amino acids and its derivatives; adenosine and its derivatives; plant female hormone-like components such as isoflavone; Grabridine and its derivatives; magnolignan and its derivatives; minoxidil and its derivatives; finasteride and its derivatives; flavanones; carpronium chloride and its derivatives; ferulic acid and its derivatives; fullerene and its derivatives; lactoferrin; D-amino acids and its derivatives; Oligosaccharides and their derivatives; Nucleic acid and its derivatives; D-glucosamine and its derivatives; Sodium chondroitin sulfate and its derivatives; Dipropylene glycol and its derivatives; Ceramide and its derivatives; Sorbitol and its derivatives; Trehalose and its derivatives; Hyaluronic acid and its derivatives Derivatives thereof; Propropylene glycol fatty acid ester and its derivatives; Martitol and its derivatives; Raffinose and its derivatives; Arginic acid and its derivatives; Caffeine and its derivatives; Carboxyvinyl polymers and its derivatives; Xanthan gum and its derivatives; Polyvinylpyrrolidone and its derivatives; keratin degradation products and their derivatives; silk protein degradation products and their derivatives; γ-aminobutyric acid and its derivatives; allantin and its derivatives; γ-orizanol and its derivatives; L-carnitine and its derivatives; β -1,3-Glucane and its derivatives; biotin and its derivatives and the like.
 本発明に係るナノディスクは、膜タンパク質を含むものであってもよい。膜タンパク質は生体膜に結合しているタンパク質であり、主に、その少なくとも一部が生体膜内に存在する内在性膜タンパク質と、疎水性相互作用や静電相互作用など共有結合以外で生体膜に結合している表在性膜タンパク質とに分類される。従来、細胞膜などの生体膜に存在する膜タンパク質を単離すると高次構造が変化してしまい、本来の機能が喪失してしまうため、膜タンパク質の機能に関する研究は非常に難しいとされていた。しかし本発明に係るナノディスクは生体膜と同様の脂質二重層を有し、膜タンパク質は当該脂質二重層中で生体膜中における構造を維持していると考えられるので、本発明により膜タンパク質の機能に関する研究が飛躍的に進行し、困難であった膜タンパク質の産業利用が可能となる可能性がある。 The nanodisc according to the present invention may contain a membrane protein. Membrane proteins are proteins that are bound to biological membranes, and are mainly biological membranes other than covalent bonds such as hydrophobic interactions and electrostatic interactions with endogenous membrane proteins, of which at least a part of them is present in the biological membrane. It is classified as a superficial membrane protein that is bound to. Conventionally, it has been considered extremely difficult to study the function of a membrane protein because the higher-order structure changes and the original function is lost when a membrane protein existing in a biological membrane such as a cell membrane is isolated. However, the nanodisc according to the present invention has a lipid bilayer similar to that of a biological membrane, and it is considered that the membrane protein maintains the structure in the biological membrane in the lipid bilayer. Research on functions will progress dramatically, and it is possible that the difficult industrial use of membrane proteins will be possible.
 また、本発明に係るナノディスクは、親水性化合物を含んでいてもよい。親水性化合物は、水分子に対して親和性を示す化合物であれば特に制限されない。親水性化合物は水溶性を示すものが多く、水溶性の親水性化合物は水系溶媒に溶解することも可能であるが、ナノディスクの親水性部分に吸着してより一層安定化している可能性がある。また、金属酸化物など、親水性ではあるが水に対して不溶性である有効成分をナノディスクの親水性部分に吸着させることにより、水系溶媒中に分散させることも可能になり得る。なお、複数のナノディスクが互いに積層されて多層構造を形成している場合があるが、この場合、親水性化合物は脂質二重層間に存在している可能性もある。なお、本開示において親水性化合物は、1gを20±5℃で溶解するための水の量が30mL未満である化合物をいう。 Further, the nanodisk according to the present invention may contain a hydrophilic compound. The hydrophilic compound is not particularly limited as long as it is a compound having an affinity for water molecules. Many hydrophilic compounds are water-soluble, and water-soluble hydrophilic compounds can be dissolved in aqueous solvents, but they may be adsorbed on the hydrophilic part of nanodiscs to further stabilize them. is there. Further, by adsorbing an active ingredient such as a metal oxide, which is hydrophilic but insoluble in water, on the hydrophilic portion of the nanodisk, it may be possible to disperse the active ingredient in an aqueous solvent. In some cases, a plurality of nanodisks are laminated with each other to form a multilayer structure. In this case, the hydrophilic compound may be present between the lipid bilayer layers. In the present disclosure, the hydrophilic compound refers to a compound in which the amount of water for dissolving 1 g at 20 ± 5 ° C. is less than 30 mL.
 親水性化合物としては、例えば、酸化チタン粒子や酸化亜鉛粒子などの紫外線散乱剤;ベンガラ、酸化チタン、酸化鉄などの無機顔料;アスコルビン酸やその誘導体などの水溶性ビタミン類;ローカストビーンガム、グァーガム誘導体、カラギーナン、ペクチン、キサンタンガム、ジェランガム、アルギン酸などの増粘剤を挙げることができる。 Examples of hydrophilic compounds include ultraviolet scattering agents such as titanium oxide particles and zinc oxide particles; inorganic pigments such as red iron oxide, titanium oxide and iron oxide; water-soluble vitamins such as ascorbic acid and its derivatives; locust bean gum and guar gum. Examples thereof include thickeners such as derivatives, carrageenan, pectin, xanthan gum, gellan gum, and alginic acid.
 本発明に係るナノディスクは、リポペプチドバイオサーファクタント以外の界面活性剤を含んでいてもよい。かかる界面活性剤は、非イオン界面活性剤、陰イオン界面活性剤、陽イオン界面活性剤、両性界面活性剤など、特に制限されない。 The nanodisc according to the present invention may contain a surfactant other than lipopeptide biosurfactant. Such a surfactant is not particularly limited, such as a nonionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant.
 非イオン界面活性剤は特に制限されないが、例えば、ポリオキシエチレン(以下、POEともいう。)-ポリオキシプロピレン(以下、POPともいう。)ブロックコポリマー;ポロキサミンなどのエチレンジアミンのPOE-POPブロックコポリマー付加物;モノラウリル酸POE(20)ソルビタン、モノオレイン酸POE(20)ソルビタン、POEソルビタンモノステアレート、POEソルビタントリステアレートなどのPOEソルビタン脂肪酸エステル類;POE(5)硬化ヒマシ油、POE(10)硬化ヒマシ油、POE(20)硬化ヒマシ油、POE(40)硬化ヒマシ油、POE(50)硬化ヒマシ油、POE(60)硬化ヒマシ油、POE(100)硬化ヒマシ油などのPOE硬化ヒマシ油類;POE(3)ヒマシ油、POE(10)ヒマシ油、POE(35)ヒマシ油などのPOEヒマシ油類;POE(9)ラウリルエーテルなどのPOEアルキルエーテル類;POE(20)POP(4)セチルエーテルなどのPOE・POPアルキルエーテル類;POE(10)ノニルフェニルエーテルなどのPOEアルキルフェニルエーテル類;ステアリン酸ポリオキシル40などのモノステアリン酸ポリエチレングリコールなどが挙げられる。なお、括弧内の数字はPOP又はPOEの平均付加モル数を示す。 The nonionic surfactant is not particularly limited, but for example, polyoxyethylene (hereinafter, also referred to as POE) -polyoxypropylene (hereinafter, also referred to as POP) block copolymer; POE-POP block copolymer addition of ethylene diamine such as poloxamine. Things: POE sorbitan fatty acid esters such as monolauric acid POE (20) sorbitan, monooleic acid POE (20) sorbitan, POE sorbitan monostearate, POE sorbitan tristearate; POE (5) hardened castor oil, POE (10) ) Hardened castor oil, POE (20) Hardened castor oil, POE (40) Hardened castor oil, POE (50) Hardened castor oil, POE (60) Hardened castor oil, POE (100) Hardened castor oil, etc. Classes; POE (3) castor oil, POE (10) castor oil, POE (35) castor oil and other POE castor oils; POE (9) POE alkyl ethers such as lauryl ether; POE (20) POP (4) POE / POP alkyl ethers such as cetyl ether; POE alkylphenyl ethers such as POE (10) nonionic phenyl ether; polyethylene glycol monostearate such as polyoxyl 40 stearate and the like can be mentioned. The numbers in parentheses indicate the average number of moles of POP or POE added.
 陰イオン界面活性剤は特に制限されないが、例えば、アルキルベンゼンスルホン酸塩、アルキル硫酸塩、ポリオキシエチレンアルキル硫酸塩、脂肪族α-スルホメチルエステル、α-オレフィンスルホン酸などが例示される。 The anionic surfactant is not particularly limited, and examples thereof include alkylbenzene sulfonate, alkyl sulfate, polyoxyethylene alkyl sulfate, aliphatic α-sulfomethyl ester, and α-olefin sulfonic acid.
 陽イオン界面活性剤は特に制限されないが、例えば、塩化ベンザルコニウム、塩化ベンゼトニウム等が例示される。 The cationic surfactant is not particularly limited, and examples thereof include benzalkonium chloride and benzethonium chloride.
 両性界面活性剤は特に制限されないが、例えば、アルキルジアミノエチルグリシン等のグリシン型、ラウリルジメチルアミノ酢酸ベタイン等の酢酸ベタイン型、イミダゾリン型等の両性界面活性剤が例示される。 The amphoteric tenside is not particularly limited, and examples thereof include glycine type such as alkyldiaminoethylglycine, betaine type acetate such as lauryldimethylaminoacetic acid betaine, and imidazoline type amphoteric tenside.
 一般的なナノディスクは、界面活性剤としてコール酸ナトリウムを含むリン脂質溶液に膜スキャフォールドタンパク質を加えた後、界面活性剤を透析などにより除去するという煩雑な方法で製造されている。それに対して本発明に係るナノディスクは、水系溶媒中、少なくともレシチン、リゾレシチンおよびリポペプチドバイオサーファクタントを混合するという極めて簡便な方法で製造することができる。 General nanodiscs are manufactured by a complicated method in which a membrane scaffold protein is added to a phospholipid solution containing sodium cholic acid as a surfactant, and then the surfactant is removed by dialysis or the like. On the other hand, the nanodisc according to the present invention can be produced by an extremely simple method of mixing at least lecithin, lysolecithin and lipopeptide biosurfactant in an aqueous solvent.
 反応液中のレシチンとリゾレシチンの合計濃度は適宜調整すればよいが、例えば、0.001質量%以上、40質量%以下とすることができ、0.1質量%以上、30質量%以下が好ましい。リポペプチドバイオサーファクタントの反応液中濃度も、0.001質量部以上、50質量%以下とすることができ、0.1質量%以上、45質量%以下が好ましい。 The total concentration of lecithin and lysolecithin in the reaction solution may be appropriately adjusted, but can be, for example, 0.001% by mass or more and 40% by mass or less, preferably 0.1% by mass or more and 30% by mass or less. .. The concentration of lipopeptide biosurfactant in the reaction solution can also be 0.001 part by mass or more and 50% by mass or less, preferably 0.1% by mass or more and 45% by mass or less.
 疎水性化合物および/または親水性化合物を添加する場合、疎水性化合物および親水性化合物の量は、それぞれレシチンとリゾレシチンとの合計に対して0.1質量%以上、50質量%以下が好ましく、0.5質量%以上、20質量%以下がより好ましく、1質量%以上、10質量%以下がより更に好ましい。 When a hydrophobic compound and / or a hydrophilic compound is added, the amounts of the hydrophobic compound and the hydrophilic compound are preferably 0.1% by mass or more and 50% by mass or less, respectively, based on the total amount of lecithin and lysolecithin, respectively. It is more preferably 5.5% by mass or more and 20% by mass or less, and even more preferably 1% by mass or more and 10% by mass or less.
 レシチン、リゾレシチンおよびリポペプチドバイオサーファクタントの反応条件も、ナノディスクの形成が良好に進行する範囲で適宜調整すればよく、例えば反応温度は常温でも構わない。例えば、脂質としてDMPCなどのリン脂質を用いた場合には、その一般的な相転移温度付近である20℃以上、30℃以下とすることができる。また、反応時間は、2分間以上、50時間以下とすることができる。なお、後記のリポソームを経由する製造方法に比べ、単に各成分を混合するのみではナノディスクが形成されない場合があるが、そのような場合であっても反応温度を比較的高く、例えば40℃以上、90℃以下にすることにより、ナノディスクが形成される場合がある。当該温度としては、85℃以下が好ましく、80℃以下がより好ましい。 The reaction conditions of lecithin, lysolecithin and lipopeptide biosurfactant may be appropriately adjusted within a range in which the formation of nanodisks progresses satisfactorily. For example, the reaction temperature may be room temperature. For example, when a phospholipid such as DMPC is used as the lipid, the temperature can be set to 20 ° C. or higher and 30 ° C. or lower, which is near the general phase transition temperature. The reaction time can be 2 minutes or more and 50 hours or less. In addition, as compared with the production method via liposomes described later, nanodiscs may not be formed simply by mixing each component, but even in such a case, the reaction temperature is relatively high, for example, 40 ° C. or higher. , Nanodiscs may be formed by lowering the temperature to 90 ° C. or lower. The temperature is preferably 85 ° C. or lower, more preferably 80 ° C. or lower.
 また、本発明に係るナノディスクは、先ずレシチンとリゾレシチンからリポソームを調製し、次にリポペプチドバイオサーファクタントを加えて製造することもできる。即ち、レシチンとリゾレシチンをメタノール、エタノール、イソプロパノールなどの低級アルコール溶媒やクロロホルムなどの有機溶媒に溶解した後に有機溶媒を留去して脂質フィルムとし、水系溶媒を加えて攪拌することによりリポソームを形成させる。この際のリポソーム分散液の濃度は適宜調整すればよいが、例えば、有機溶媒に対して0.01質量%以上、40質量%以下とすることができ、0.05質量%以上、35質量%以下が好ましい。次に、リポペプチドバイオサーファクタントを加えることにより、ナノディスクとすることができる。当該反応液におけるリポペプチドバイオサーファクタントの濃度も適宜調整すればよいが、例えば、リポソーム液量に対して0.01質量%以上、40質量%以下とすることができ、0.05質量%以上、35質量%以下が好ましい。なお、従来のナノディスクを製造する場合にはコール酸などの界面活性剤の使用とその除去が必要であるが、本発明の場合、リポペプチドバイオサーファクタント以外の界面活性剤は特に必要としない。また、リポペプチドバイオサーファクタントを添加する際の温度を比較的高く、例えば40℃以上、80℃以下にすることにより、ナノディスクの形成がより容易になる場合がある。 Further, the nanodisk according to the present invention can also be produced by first preparing liposomes from lecithin and lysolecithin, and then adding lipopeptide biosurfactant. That is, after dissolving lecithin and lysolecithin in a lower alcohol solvent such as methanol, ethanol and isopropanol or an organic solvent such as chloroform, the organic solvent is distilled off to form a lipid film, and an aqueous solvent is added and stirred to form liposomes. .. The concentration of the liposome dispersion liquid at this time may be appropriately adjusted, and for example, it can be 0.01% by mass or more and 40% by mass or less with respect to the organic solvent, and 0.05% by mass or more and 35% by mass or less. The following is preferable. Next, by adding lipopeptide biosurfactant, nanodiscs can be obtained. The concentration of the lipopeptide biosurfactant in the reaction solution may be appropriately adjusted, and may be, for example, 0.01% by mass or more and 40% by mass or less, 0.05% by mass or more, based on the amount of the liposome solution. It is preferably 35% by mass or less. In the case of producing conventional nanodisks, it is necessary to use and remove a surfactant such as cholic acid, but in the case of the present invention, no surfactant other than lipopeptide biosurfactant is particularly required. Further, when the temperature at which the lipopeptide biosurfactant is added is relatively high, for example, 40 ° C. or higher and 80 ° C. or lower, the formation of nanodisks may be facilitated.
 レシチン、リゾレシチンおよびリポペプチドバイオサーファクタント以外の成分は、適時添加すればよい。例えば親水性化合物は、水系溶媒に適時添加すればよい。疎水性化合物、膜タンパク質および水不溶性の親水性化合物は、水系溶媒中で少なくともレシチンおよびリゾレシチンと共存させることが好ましい。疎水性化合物および親水性化合物の量は、それぞれレシチンとリゾレシチンの合計に対して0.1質量%以上、100質量%以下が好ましく、0.5質量%以上、50質量%以下がより好ましく、1質量%以上、20質量%以下がより更に好ましい。生体分子であるレシチンとリゾレシチンは界面活性作用を示すことから、これら化合物の水系溶媒中への分散を補助する。また、膜タンパク質の場合、本発明に係るナノディスクの存在下で膜タンパク質を無細胞合成することにより、膜タンパク質をナノディスクに結合させることも可能である。 Ingredients other than lecithin, lysolecithin and lipopeptide biosurfactant may be added in a timely manner. For example, the hydrophilic compound may be added to the aqueous solvent in a timely manner. Hydrophobic compounds, membrane proteins and water-insoluble hydrophilic compounds are preferably allowed to coexist with at least lecithin and lysolecithin in aqueous solvents. The amounts of the hydrophobic compound and the hydrophilic compound are preferably 0.1% by mass or more and 100% by mass or less, more preferably 0.5% by mass or more and 50% by mass or less, based on the total of lecithin and lysolecithin, respectively. More preferably, it is by mass% or more and 20% by mass or less. Since the biomolecules lecithin and lysolecithin exhibit a surface-active action, they assist the dispersion of these compounds in an aqueous solvent. Further, in the case of a membrane protein, it is also possible to bind the membrane protein to the nanodisk by cell-free synthesis of the membrane protein in the presence of the nanodisk according to the present invention.
 ナノディスクは、凍結乾燥した後、凍結乾燥したナノディスクを再び水系溶媒に溶解させてもよい。再溶解液のナノディスク濃度は、任意に調整することができる。 The nanodisks may be freeze-dried and then the freeze-dried nanodisks may be dissolved again in an aqueous solvent. The nanodisc concentration of the redissolved solution can be adjusted arbitrarily.
 本発明に係るナノディスクは、特に疎水性化合物をその内部に取り込み、水系溶媒中に良好に分散させることができる上に、非常に微細であることから、その水系溶媒中分散液は目視上十分に透明に見え、また、皮膚組織などへの浸透性も高いと考えられる。なお、特に化粧品業界においては、一般的に、分散質が目視で確認できなくなり、分散液が目視上透明になった状態を「可溶化」という場合がある。よって本発明に係るナノディスクは、特に疎水性化合物を有効成分とする化粧料などのパーソナルケア組成物や医薬組成物の成分として、非常に有効であるといえる。 Since the nanodisc according to the present invention can take in a hydrophobic compound therein and disperse it well in an aqueous solvent and is extremely fine, the dispersion in the aqueous solvent is visually sufficient. It looks transparent and is considered to have high permeability to skin tissues. In the cosmetics industry in particular, in general, a state in which the dispersoid cannot be visually confirmed and the dispersion liquid becomes visually transparent may be referred to as "solubilization". Therefore, it can be said that the nanodisc according to the present invention is particularly effective as a component of a personal care composition such as a cosmetic or a pharmaceutical composition containing a hydrophobic compound as an active ingredient.
 本願は、2019年10月10日に出願された日本国特許出願第2019-186835号に基づく優先権の利益を主張するものである。2019年10月10日に出願された日本国特許出願第2019-186835号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2019-186835 filed on October 10, 2019. The entire contents of the specification of Japanese Patent Application No. 2019-186835 filed on October 10, 2019 are incorporated herein by reference.
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples as well as the present invention, and appropriate modifications are made to the extent that it can be adapted to the gist of the above and the following. Of course, it is possible to carry out, and all of them are included in the technical scope of the present invention.
 実施例1: コエンザイムQ10を含むナノディスクの製造
 表1に示す組成に従って、大豆レシチン(「ベイシスLP-20」日清オイリオグループ社製)のみ、或いは大豆レシチンと水添リゾレシチン(「SLP-LPC70H」辻製油社製)との組み合わせ、およびコエンザイムQ10(カネカ社製)と適量のクロロホルムを、ボルテックスミキサーにて攪拌混合し、溶液を調製した。ドラフト中、得られた溶液に窒素ガスを吹き付けることによりクロロホルムを留去し、乾燥させた。得られた乾燥体にリン酸緩衝液の一部と防腐剤としてパラベンを加え、60~70℃に加温し、ボルテックスミキサーにて攪拌混合し、溶液を得た。得られた溶液にサーファクチンナトリウムとリン酸緩衝液の残量を加え、60~70℃に加温し、ボルテックスミキサーにて攪拌混合し、溶液を得た。
 なお、使用した水添リゾレシチン製品には、約70質量%のリゾホスファチジルコリンがリゾレシチンとして含まれている。
Example 1: Production of Nanodiscs Containing Coenzyme Q10 According to the composition shown in Table 1, only soy lecithin (“Basis LP-20” manufactured by Nisshin Oillio Group) or soy lecithin and hydrogenated lysolecithin (“SLP-LPC70H”” A solution was prepared by stirring and mixing a combination with Tsuji Oil Co., Ltd.), coenzyme Q10 (manufactured by Kaneka Co., Ltd.) and an appropriate amount of chloroform with a vortex mixer. During the draft, chloroform was distilled off by spraying nitrogen gas on the obtained solution, and the solution was dried. A part of the phosphate buffer solution and paraben as a preservative were added to the obtained dried product, the mixture was heated to 60 to 70 ° C., and the mixture was stirred and mixed with a vortex mixer to obtain a solution. Sodium surfactin and the remaining amount of phosphate buffer were added to the obtained solution, the mixture was heated to 60 to 70 ° C., and stirred and mixed with a vortex mixer to obtain a solution.
The hydrogenated lysolecithin product used contains about 70% by mass of lysophosphatidylcholine as lysolecithin.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 試験例1: ナノディスクの粒子径の測定
 表2に示す組成に従って、大豆レシチン(「ベイシスLP-20」日清オイリオグループ社製)のみ、或いは大豆レシチンと水添リゾレシチン(「SLP-LPC70H」辻製油社製)との組み合わせ、および適量のクロロホルムを、ボルテックスミキサーにて攪拌混合し、溶液を調製した。ドラフト中、得られた溶液に窒素ガスを吹き付けることによりクロロホルムを留去し、乾燥させた。得られた乾燥体にサーファクチンナトリウムとリン酸緩衝液を加え、60~70℃に加温し、ボルテックスミキサーにて攪拌混合し、溶液を得た。
 得られた各溶液に含まれる粒子の平均径を、ダイナミック光散乱光度計(「DLS-7000」大塚電子社製)を用いて測定した。結果を表2に示す。
Test Example 1: Measurement of Nanodisc Particle Size According to the composition shown in Table 2, soy lecithin (“Basis LP-20” manufactured by Nisshin Oillio Group) alone, or soy lecithin and hydrogenated chloroform (“SLP-LPC70H” Tsuji) A solution was prepared by stirring and mixing the combination with (manufactured by Oil & Refinery Co., Ltd.) and an appropriate amount of chloroform with a vortex mixer. During the draft, chloroform was distilled off by spraying nitrogen gas on the obtained solution, and the solution was dried. Sodium surfactin and a phosphate buffer were added to the obtained dried product, heated to 60 to 70 ° C., and stirred and mixed with a vortex mixer to obtain a solution.
The average diameter of the particles contained in each of the obtained solutions was measured using a dynamic light scattering photometer (“DLS-7000” manufactured by Otsuka Electronics Co., Ltd.). The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に示される結果の通り、リゾレシチンの割合が高まるほど粒子径が大きくなるが、リゾレシチン/(リゾレシチン+レシチン)の割合が25質量%以下であれば混合液の外観は透明で、平均粒子径も100nm未満であり、ナノディスクが形成されていた。リポソームには約100μmのジャンボリポソームもあるが、一般的なリポソームの粒子径は0.1~0.2μmといわれており、混合液もやや不透明であったため、リゾレシチン/(リゾレシチン+レシチン)の割合が30質量%以上である場合の主要成分はリポソームであると考えられた。 As shown in the results shown in Table 2, the particle size increases as the proportion of lysolecithin increases, but if the proportion of lysolecithin / (lysolecithin + lecithin) is 25% by mass or less, the appearance of the mixed solution is transparent and the average particle size. Was less than 100 nm, and nanodisks were formed. There are also jumbo liposomes with a size of about 100 μm, but the particle size of general liposomes is said to be 0.1 to 0.2 μm, and the mixed solution was somewhat opaque, so the ratio of lysolecithin / (lysolecithin + lecithin). When the content was 30% by mass or more, the main component was considered to be liposomes.
 試験例2: ナノディスクの粒子径の測定
 表3に示す組成に従って、水添レシチン(「SLP-PC70HS」辻製油社製)のみ、或いは水添レシチンと水添リゾレシチン(「SLP-LPC70H」辻製油社製)との組み合わせ、および適量のクロロホルムを、ボルテックスミキサーにて攪拌混合し、溶液を調製した。ドラフト中、得られた溶液に窒素ガスを吹き付けることによりクロロホルムを留去し、乾燥させた。得られた乾燥体にサーファクチンナトリウムとリン酸緩衝液を加え、室温で10分間静置した後、ボルテックスミキサーにて3分間攪拌混合し、不透明液を得た。この不透明液を30℃で一晩静置し、外観を目視で確認した。更に、70℃で加熱して得られた各液の外観を目視で確認した後、これらに含まれる粒子の平均径を、ダイナミック光散乱光度計(「DLS-7000」大塚電子社製)を用いて測定した。結果を表3に示す。
Test Example 2: Measurement of particle size of nanodisc According to the composition shown in Table 3, hydrogenated lecithin (“SLP-PC70HS” manufactured by Tsuji Oil Co., Ltd.) only, or hydrogenated lecithin and hydrogenated chloroform (“SLP-LPC70H” Tsuji Oil Co., Ltd.) A solution was prepared by stirring and mixing the combination with (manufactured by the company) and an appropriate amount of chloroform with a vortex mixer. During the draft, chloroform was distilled off by spraying nitrogen gas on the obtained solution, and the solution was dried. Sodium surfactin and a phosphate buffer solution were added to the obtained dried product, and the mixture was allowed to stand at room temperature for 10 minutes and then stirred and mixed with a vortex mixer for 3 minutes to obtain an opaque solution. The opaque solution was allowed to stand at 30 ° C. overnight, and the appearance was visually confirmed. Further, after visually confirming the appearance of each liquid obtained by heating at 70 ° C., the average diameter of the particles contained therein was measured using a dynamic light scattering photometer (“DLS-7000” manufactured by Otsuka Electronics Co., Ltd.). Was measured. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3に示される結果の通り、水添レシチンを用いると溶解性が低下するが、70℃に加熱することにより透明な溶液が得られることがわかった。その理由としては、水添レシチンにより分子のパッキングがより強固になることが考えられる。また、粒子の平均粒子径が100nm未満であることから、ナノディスクが形成されていることが確認された。水添リゾレシチンを添加しない場合のみ、70℃加熱後1日静置で濁りが生じたことから、リゾレシチンの添加によりナノディスクが安定化することが分かった。 As shown in the results shown in Table 3, it was found that the solubility decreased when hydrogenated lecithin was used, but a transparent solution could be obtained by heating to 70 ° C. The reason may be that hydrogenated lecithin strengthens the packing of molecules. Moreover, since the average particle size of the particles was less than 100 nm, it was confirmed that nanodiscs were formed. Only when hydrogenated lysolecithin was not added, turbidity occurred after heating at 70 ° C. for 1 day. Therefore, it was found that the addition of lysolecithin stabilizes the nanodiscs.
 試験例3: 粉体から直接ナノディスクを得る方法
 表3に示す組成に従って、水添レシチン(「SLP-PC70HS」辻製油社製)と水添レゾレシチン(「SLP-LPC70H」辻製油社製)との組み合わせ、およびサーファクチンナトリウムの粉体に、リン酸緩衝液を直接加え、ボルテックスで5分間攪拌した後、振とう機(「TAITEC BioShakerBR-23FP」)を使って180rpm,25℃で20時間攪拌した。ボルテックスミキサーにて3分間攪拌混合し、不透明液を得た。この不透明液を恒温槽で25℃から70℃まで、5℃刻みで温度を上げ、溶液の変化を観察した。その結果、70℃まで加熱することによりいずれも透明な溶液が得られ、溶媒を使用することなくナノディスクが得られることが分かった。
Test Example 3: Method of obtaining nanodiscs directly from powder According to the composition shown in Table 3, hydrogenated lecithin (“SLP-PC70HS” manufactured by Tsuji Oil Co., Ltd.) and hydrogenated lecithin (“SLP-LPC70H” manufactured by Tsuji Oil Co., Ltd.) The phosphate buffer solution was directly added to the powder of sodium surfactin, and the mixture was stirred with a vortex for 5 minutes, and then stirred at 180 rpm and 25 ° C. for 20 hours using a shaker (“TAITEC BioShaker BR-23FP”). did. The mixture was stirred and mixed with a vortex mixer for 3 minutes to obtain an opaque liquid. The temperature of this opaque solution was raised in a constant temperature bath from 25 ° C. to 70 ° C. in 5 ° C. increments, and changes in the solution were observed. As a result, it was found that a transparent solution was obtained by heating to 70 ° C., and nanodiscs could be obtained without using a solvent.
 試験例4: 異なる水添レシチンを用いたナノディスクの形成
 表4に示す組成に従って、水添レシチン(「SLP-PC92H」辻製油社製)と水添レゾレシチン(「SLP-LPC70H」辻製油社製)との組み合わせでナノディスクを調製した。具体的には、水添レシチンと水添リゾレシチン、および適量のクロロホルムをボルテックスミキサーにて攪拌混合し、溶液を調製した。ドラフト中、得られた溶液に窒素ガスを吹き付けることによりクロロホルムを留去し、乾燥させた。得られた乾燥体にサーファクチンナトリウムとリン酸緩衝液を加え、室温で10分間静置した後、ボルテックスミキサーにて3分間攪拌混合し、不透明な液を得た。この不透明液を60℃に加熱した後、一日静置し、外観を目視で確認した。得られた各溶液に含まれる粒子の平均径を、ダイナミック光散乱光度計(「DLS-7000」大塚電子社製)を用いて測定した。結果を表4に示す。
Test Example 4: Formation of Nanodiscs Using Different Hydrogenated Lecithin According to the composition shown in Table 4, hydrogenated lecithin (“SLP-PC92H” manufactured by Tsuji Oil Co., Ltd.) and hydrogenated lecithin (“SLP-LPC70H” manufactured by Tsuji Oil Co., Ltd.) ) Was used to prepare nanodiscs. Specifically, hydrogenated lecithin, hydrogenated lysolecithin, and an appropriate amount of chloroform were stirred and mixed with a vortex mixer to prepare a solution. During the draft, chloroform was distilled off by spraying nitrogen gas on the obtained solution, and the solution was dried. Sodium surfactin and a phosphate buffer solution were added to the obtained dried product, and the mixture was allowed to stand at room temperature for 10 minutes and then stirred and mixed with a vortex mixer for 3 minutes to obtain an opaque solution. After heating this opaque liquid to 60 ° C., it was allowed to stand for one day, and the appearance was visually confirmed. The average diameter of the particles contained in each of the obtained solutions was measured using a dynamic light scattering photometer (“DLS-7000” manufactured by Otsuka Electronics Co., Ltd.). The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4に示される結果の通り、水添レシチンの種類を変更しても、60℃に加熱することにより透明な溶液が得られることがわかった。平均粒子径は100nm未満であることからナノディスクを形成することが明らかとなった。 As shown in the results shown in Table 4, it was found that a transparent solution can be obtained by heating to 60 ° C. even if the type of hydrogenated lecithin is changed. Since the average particle size was less than 100 nm, it was clarified that nanodiscs were formed.
 試験例5: 異なる大豆レシチンを用いたナノディスクの形成
 表5に示す組成に従って、大豆レシチン(「SLP-ホワイト」辻製油社製)と水添レゾレシチン(「SLP-LPC70H」辻製油社製)との組み合わせでナノディスクを調製した。具体的には、大豆レシチンと水添リゾレシチン、および適量のクロロホルムをボルテックスミキサーにて攪拌混合し、溶液を調製した。ドラフト中、得られた溶液に窒素ガスを吹き付けることによりクロロホルムを留去し、乾燥させた。得られた乾燥体にサーファクチンナトリウムとリン酸緩衝液を加え、室温で10分間静置した後、ボルテックスミキサーにて3分間攪拌混合した。
 得られた各混合液に含まれる粒子の平均径を、ダイナミック光散乱光度計(「DLS-7000」大塚電子社製)を用いて測定した。結果を表5に示す。
Test Example 5: Formation of Nanodiscs Using Different Soy Lecithin According to the composition shown in Table 5, soy lecithin (“SLP-White” manufactured by Tsuji Oil Co., Ltd.) and hydrogenated lecithin (“SLP-LPC70H” manufactured by Tsuji Oil Co., Ltd.) Nanodiscs were prepared with the combination of. Specifically, soybean lecithin, hydrogenated lysolecithin, and an appropriate amount of chloroform were stirred and mixed with a vortex mixer to prepare a solution. During the draft, chloroform was distilled off by spraying nitrogen gas on the obtained solution, and the solution was dried. Sodium surfactin and a phosphate buffer were added to the obtained dried product, allowed to stand at room temperature for 10 minutes, and then stirred and mixed with a vortex mixer for 3 minutes.
The average diameter of the particles contained in each of the obtained mixed solutions was measured using a dynamic light scattering photometer (“DLS-7000” manufactured by Otsuka Electronics Co., Ltd.). The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表5に示される結果の通り、水添リゾレシチン/(水添リゾレシチン+レシチン)の割合が25質量%以下であれば透明なナノディスク溶液が得られることがわかった。 As shown in the results shown in Table 5, it was found that a transparent nanodisc solution can be obtained when the ratio of hydrogenated lysolecithin / (hydrogenated lysolecithin + lecithin) is 25% by mass or less.
 試験例6: 安定性試験
 実施例1で調製した混合液(10mL)を50mLファルコンチューブに入れ、恒温恒湿機(ヤマト社製)中、50℃、25℃または5℃で30日間(1M)または60日間(2M)保管するか、或いは-5℃~45℃の範囲で昇温から降温するサイクルを2日間で3回繰り返す条件下でも30日間または60日間保管した。30日後または60日後に外観を観察し、以下の基準で安定性を評価した。結果を表6に示す。また、大豆レシチン0.95質量%と水添リゾレシチン0.05質量%を含む混合液(リゾレシチン/(リゾレシチン+レシチン)=3.5%)の60日後の外観写真を図1に、大豆レシチン0.60質量%と水添リゾレシチン0.40質量%を含む混合液(リゾレシチン/(リゾレシチン+レシチン)=28.0%)の60日後の外観写真を図2に示す。
 〇: 透明
 △: やや透明性の低下が認められるが、全体的に透明
 ×: 明確な濁りや沈殿が認められる
Test Example 6: Stability test The mixture (10 mL) prepared in Example 1 was placed in a 50 mL falcon tube and placed in a constant temperature and humidity chamber (manufactured by Yamato) at 50 ° C, 25 ° C or 5 ° C for 30 days (1M). Alternatively, it was stored for 60 days (2M), or it was stored for 30 days or 60 days even under the condition that the cycle of raising and lowering the temperature in the range of −5 ° C. to 45 ° C. was repeated 3 times in 2 days. The appearance was observed after 30 days or 60 days, and the stability was evaluated according to the following criteria. The results are shown in Table 6. In addition, a photograph of the appearance of a mixed solution containing 0.95% by mass of soybean lecithin and 0.05% by mass of hydrogenated lysolecithin (lysolecithin / (lysolecithin + lecithin) = 3.5%) after 60 days is shown in FIG. 1, soybean lecithin 0. FIG. 2 shows a photograph of the appearance of a mixed solution containing .60% by mass and 0.40% by mass of hydrogenated lysolecithin (lysolecithin / (lysolecithin + lecithin) = 28.0%) after 60 days.
〇: Transparent △: Slightly reduced transparency is observed, but overall transparent ×: Clear turbidity and precipitation are observed.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表6に示される結果の通り、リゾレシチン/(リゾレシチン+レシチン)の割合が20質量%以下であればナノディスク溶液の透明性は50℃という比較的高温でも30日間維持され、当該比が20質量%以下であれば50℃または25℃で保持した場合以外は60日間後の時点でも透明性が維持され、10質量%以下では50℃で保持した場合も60日間後の時点で透明性が維持されたことから、本発明に係るナノディスクの安定性が実証された。 As shown in the results shown in Table 6, if the ratio of lysolecithin / (lysolecithin + lecithin) is 20% by mass or less, the transparency of the nanodisc solution is maintained for 30 days even at a relatively high temperature of 50 ° C., and the ratio is 20% by mass. If it is% or less, the transparency is maintained even after 60 days except when it is held at 50 ° C. or 25 ° C., and if it is 10% by mass or less, the transparency is maintained after 60 days even if it is held at 50 ° C. Therefore, the stability of the nanodisk according to the present invention was demonstrated.

Claims (9)

  1.  脂質二重層およびリポペプチドバイオサーファクタントを含み、
     上記脂質二重層がレシチンとリゾレシチンを含み、
     上記レシチンと上記リゾレシチンの合計に対する上記リゾレシチンの割合が、1質量%以上、20質量%以下であることを特徴とするナノディスク。
    Contains lipid bilayer and lipopeptide biosurfactant
    The lipid bilayer contains lecithin and lysolecithin,
    A nanodisk characterized in that the ratio of the lysolecithin to the total of the lecithin and the lysolecithin is 1% by mass or more and 20% by mass or less.
  2.  上記脂質二重膜の側面に上記リポペプチドバイオサーファクタントが膜スキャフォールドタンパク質として結合している請求項1に記載のナノディスク。 The nanodisc according to claim 1, wherein the lipopeptide biosurfactant is bound as a membrane scaffold protein to the side surface of the lipid bilayer membrane.
  3.  厚さが2nm以上、10nm以下である請求項1または2に記載のナノディスク。 The nanodisc according to claim 1 or 2, which has a thickness of 2 nm or more and 10 nm or less.
  4.  直径が6nm以上、40nm以下である請求項1~3のいずれかに記載のナノディスク。 The nanodisc according to any one of claims 1 to 3, which has a diameter of 6 nm or more and 40 nm or less.
  5.  上記割合が10質量%以下である請求項1~4のいずれかに記載のナノディスク。 The nanodisc according to any one of claims 1 to 4, wherein the ratio is 10% by mass or less.
  6.  上記リポペプチドバイオサーファクタントが、下記式(I)で表されるサーファクチンまたはその塩である請求項1~5のいずれかに記載のナノディスク。
    Figure JPOXMLDOC01-appb-C000001

    [式中、
     Xは、ロイシン、イソロイシンおよびバリンから選択されるアミノ酸残基を示し;
     R1はC9-18アルキル基を示す]
    The nanodisc according to any one of claims 1 to 5, wherein the lipopeptide biosurfactant is a surfactin represented by the following formula (I) or a salt thereof.
    Figure JPOXMLDOC01-appb-C000001

    [During the ceremony,
    X indicates an amino acid residue selected from leucine, isoleucine and valine;
    R 1 represents a C 9-18 alkyl group]
  7.  更に疎水性化合物を含む請求項1~6のいずれかに記載のナノディスク。 The nanodisc according to any one of claims 1 to 6, further comprising a hydrophobic compound.
  8.  更に親水性化合物を含む請求項1~7のいずれかに記載のナノディスク。 The nanodisc according to any one of claims 1 to 7, further comprising a hydrophilic compound.
  9.  請求項1~8のいずれかに記載のナノディスクを含むことを特徴とする化粧料。 A cosmetic comprising the nanodisc according to any one of claims 1 to 8.
PCT/JP2020/037729 2019-10-10 2020-10-05 Nanodisc WO2021070778A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-186835 2019-10-10
JP2019186835 2019-10-10

Publications (1)

Publication Number Publication Date
WO2021070778A1 true WO2021070778A1 (en) 2021-04-15

Family

ID=75438175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037729 WO2021070778A1 (en) 2019-10-10 2020-10-05 Nanodisc

Country Status (1)

Country Link
WO (1) WO2021070778A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023161179A1 (en) * 2022-02-24 2023-08-31 Evonik Operations Gmbh New composition containing liposomes and biosurfactants

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511032A (en) * 2006-11-29 2010-04-08 マルベルン コスメセウチクス リミテッド Composition comprising a polymer aggregate of lipid and surfactant
JP2013034829A (en) * 2011-07-08 2013-02-21 Dunlop Sports Co Ltd Golf ball resin composition and golf ball
WO2017090740A1 (en) * 2015-11-26 2017-06-01 株式会社コーセー Bicell structure-containing composition
WO2018169954A1 (en) * 2017-03-13 2018-09-20 Sdg, Inc. Lipid-based nanoparticles with enhanced stability
WO2018181538A1 (en) * 2017-03-31 2018-10-04 株式会社カネカ Nanodisc and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511032A (en) * 2006-11-29 2010-04-08 マルベルン コスメセウチクス リミテッド Composition comprising a polymer aggregate of lipid and surfactant
JP2013034829A (en) * 2011-07-08 2013-02-21 Dunlop Sports Co Ltd Golf ball resin composition and golf ball
WO2017090740A1 (en) * 2015-11-26 2017-06-01 株式会社コーセー Bicell structure-containing composition
WO2018169954A1 (en) * 2017-03-13 2018-09-20 Sdg, Inc. Lipid-based nanoparticles with enhanced stability
WO2018181538A1 (en) * 2017-03-31 2018-10-04 株式会社カネカ Nanodisc and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023161179A1 (en) * 2022-02-24 2023-08-31 Evonik Operations Gmbh New composition containing liposomes and biosurfactants

Similar Documents

Publication Publication Date Title
WO2018181538A1 (en) Nanodisc and method for producing same
KR101789132B1 (en) Cosmetic base comprising collagen-modified liposome and skin cosmetic containing the same
US6780430B2 (en) Stabilzation method of nano-sized emulsion using tocopheryl derivatives and external application for skin containing the same
US8541010B2 (en) Cosmetic composition comprising double-shell nano-structure
JP6139206B2 (en) Translucent or transparent composition
US10426715B2 (en) Liposome composition
JP4304352B2 (en) Transdermal absorption control agent containing sophorolipid and method for producing the same
JP2006131567A (en) Method for producing liposome suspension and application using liposome
WO2021070778A1 (en) Nanodisc
KR20070120972A (en) Enhanced delivery of skin benefit agents
JP2005179313A (en) Method for producing base agent for skin cosmetic, and skin cosmetic
CN113365700B (en) Method for producing gel-like composition
JPH07108166A (en) Liposome
WO2018020903A1 (en) External agent for skin
KR100768151B1 (en) Nanoliposome using esterified lecithin
JP4669665B2 (en) Polycation-modified liposome having no cytotoxicity and method for producing the same
JP6192047B2 (en) Lecithin organogel former
JP2016056198A (en) Cosmetic
KR101787556B1 (en) Method for producing of nano-flexible vesicles containing active components, and cosmetical composition using thereof
JPWO2019111415A1 (en) Cationized vesicles and compositions thereof
WO2022202880A1 (en) Lipid bilayer disc and method for producing same
JP3287941B2 (en) Aqueous dispersion of stable liposomes
KR20220109059A (en) Nanoliposome combined with metal amino clay, manufacturing method thereof, and cosmetic using same
WO2022107622A1 (en) Reverse nanodisc
Liang et al. Improving the Physicochemical Stability of Soy Phospholipid-Stabilized Emulsions Loaded with Lutein by the Addition of Sphingomyelin and Cholesterol: Inspired by a Milk Fat Globule Membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP