WO2021070622A1 - Film for production of optical film, method for producing optical film, and optical film - Google Patents

Film for production of optical film, method for producing optical film, and optical film Download PDF

Info

Publication number
WO2021070622A1
WO2021070622A1 PCT/JP2020/036028 JP2020036028W WO2021070622A1 WO 2021070622 A1 WO2021070622 A1 WO 2021070622A1 JP 2020036028 W JP2020036028 W JP 2020036028W WO 2021070622 A1 WO2021070622 A1 WO 2021070622A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
group
pva
producing
Prior art date
Application number
PCT/JP2020/036028
Other languages
French (fr)
Japanese (ja)
Inventor
さやか 清水
喬士 練苧
慎二 中井
匡希 中谷
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN202080070727.0A priority Critical patent/CN114450329A/en
Priority to JP2021551156A priority patent/JPWO2021070622A1/ja
Priority to KR1020227007705A priority patent/KR20220074860A/en
Publication of WO2021070622A1 publication Critical patent/WO2021070622A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a film for producing an optical film, a method for producing an optical film, and an optical film.
  • a polarizing plate having a function of transmitting and shielding light is a basic component of a liquid crystal display (LCD) together with a liquid crystal that changes the polarization state of light.
  • LCD liquid crystal display
  • Many polarizing plates have a structure in which a protective film such as a cellulose triacetate (TAC) film is bonded to the surface of a polarizing film.
  • TAC cellulose triacetate
  • the polarizing film a polyvinyl alcohol film (hereinafter, the "polyvinyl alcohol” may be abbreviated as "PVA”.)
  • Matrix produced by uniaxially stretching a (stretched film) to iodine dye (I 3 - and I 5 - Etc.) and dichroic dyes such as dichroic organic dyes are mainly adsorbed.
  • LCDs are widely used in small devices such as calculators and wristwatches, smartphones, laptop computers, LCD monitors, LCD color projectors, LCD TVs, in-vehicle navigation systems, mobile phones, and measuring devices used indoors and outdoors. In recent years, these devices have been required to improve display quality.
  • the polarizing film is also required to have high performance, and specifically, a polarizing film having excellent optical performance such as polarization degree and transmittance is required. Durability is also important for polarizing films, and it is required that good performance be maintained even in a high temperature and high humidity environment, for example. Optical performance and durability are also required for optical films other than polarizing films.
  • Patent Document 1 a polarizing film using PVA having a high degree of polymerization is known (Patent Document 1).
  • film formation is performed using a PVA film formation solution in which PVA having a high degree of polymerization is dissolved in a solvent containing dimethyl sulfoxide as a main component.
  • PVA aqueous solution in which water is used as a solvent as a film-forming solution in consideration of environmental aspects, economic efficiency, and the like.
  • PVA having a high degree of polymerization has poor film-forming property because the viscosity of the aqueous solution increases, which is not preferable for industrial production. Therefore, a method for improving the optical performance and moisture heat resistance of the optical film is desired other than the method for increasing the degree of polymerization of PVA.
  • the present invention has been made based on the above circumstances, and an object thereof is optical performance and moisture heat resistance as compared with the case of using non-modified PVA having good productivity and the same degree of polymerization. It is an object of the present invention to provide a film for producing an optical film capable of obtaining an excellent optical film, a method for producing an optical film using such a film for producing an optical film, and an optical film.
  • a group containing polyvinyl alcohol having a silicon-containing group, and the silicon-containing group can be converted into a silanol group or a silanol group in the presence of water, and the viscosity average degree of polymerization of the polyvinyl alcohol is 1,000 or more.
  • a film for producing an optical film which has a saponification degree of 98.7 mol% or more and a silicon-containing group content of 0.01 mol% or more and 1.0 mol% or less with respect to all structural units; [2] The film for producing an optical film according to [1], which has a saponification degree of 99.5 mol% or more; [3] The film for producing an optical film according to [1] or [2], wherein the product of the viscosity average degree of polymerization and the content of the silicon-containing group is 100 mol% or more and 2,000 mol% or less; [4] A film for producing an optical film according to any one of [1] to [3], which has an average thickness of 1 ⁇ m or more and 75 ⁇ m or less; [5] A film for producing an optical film according to any one of [1] to [4], which has a swelling degree of 140% or more and 400% or less.
  • [6] The film for producing an optical film according to any one of [1] to [5], wherein the optical film is a polarizing film; [7] A film for producing an optical film according to any one of [1] to [6], which is a non-stretched film; [8] A method for producing an optical film, comprising a step of uniaxially stretching the film for producing an optical film according to any one of [1] to [7]; [9] The method for producing an optical film according to [8], wherein the optical film is a polarizing film; [10] A group containing polyvinyl alcohol having a silicon-containing group, and the silicon-containing group can be converted into a silanol group or a silanol group in the presence of water, and the viscosity average degree of polymerization of the polyvinyl alcohol is 1,000 or more.
  • an optical film manufacturing film capable of obtaining an optical film having good productivity and excellent optical performance and moisture heat resistance as compared with the case of using non-modified PVA having the same degree of polymerization, It is possible to provide an optical film manufacturing method and an optical film using such an optical film manufacturing film.
  • the film for producing an optical film of the present invention contains polyvinyl alcohol having a silicon-containing group (hereinafter, may be referred to as "silanol-modified PVA").
  • the silanol-modified PVA is a polymer having a vinyl alcohol unit (-CH 2- CH (OH)-) as a structural unit, and has a silicon-containing group.
  • the silanol-modified PVA may contain a structural unit containing a silicon-containing group, and may further have a vinyl ester unit such as a vinyl acetate unit or another structural unit.
  • the lower limit of the viscosity average degree of polymerization of silanol-modified PVA is 1,000, preferably 2,000, and more preferably 2,500.
  • the film for producing an optical film of the present invention has excellent stretchability, and an optical film having excellent optical performance and moisture heat resistance can be obtained. it can.
  • the upper limit of the viscosity average degree of polymerization is 6,000, preferably 5,000, and more preferably 4,000.
  • the lower limit of the saponification degree of silanol-modified PVA is 98.7 mol%, preferably 99.0 mol%, more preferably 99.5 mol%, further preferably 99.8 mol%, and 99.9 mol%. Especially preferable.
  • the saponification degree is at least the above lower limit, an optical film having excellent optical performance and moisture heat resistance can be obtained.
  • the upper limit of the saponification degree is not particularly limited, but is preferably 99.99 mol% or less from the viewpoint of productivity of silanol-modified PVA.
  • the degree of saponification of PVA is the ratio of the number of moles of vinyl alcohol units to the total number of moles of structural units (typically vinyl ester units) and vinyl alcohol units that can be converted into vinyl alcohol units by saponification (PVA). Mol%).
  • the degree of saponification of PVA can be measured according to the description of JIS K6726-1994.
  • Silanol-modified PVA has a silicon-containing group.
  • This silicon-containing group is a silanol group or a group that can be converted to a silanol group in the presence of water.
  • the silanol group refers to a group having a silicon atom and at least one hydroxy group bonded to the silicon atom.
  • the number of hydroxy groups contained in the silanol group is usually any one of 1 to 3, and is preferably 3.
  • the hydroxy group contained in the silanol group may exist in the state of a salt (for example, -ONa, -OK, etc.).
  • a group that can be converted to a silanol group in the presence of water means a group that can be converted to a silanol group when PVA is hydrolyzed in water under conditions of a reaction time of 2 hours and a reaction temperature of 150 ° C.
  • Examples of the group that can be converted to a silanol group in the presence of water include a group in which at least one alkoxy group or an acyloxy group is bonded to a silicon atom, and specifically, a trimethoxysilyl group and a triethoxysilyl group.
  • Triisopropoxysilyl group dimethoxymethylsilyl group, diethoxymethylsilyl group, methoxydimethylsilyl group, ethoxydimethylsilyl group, triacetoxysilyl group and the like.
  • Examples of the silicon-containing group that is, a silanol group or a group that can be converted to a silanol group in the presence of water, include a group represented by any of the following formulas (1) to (3). Among these, the group represented by the following formula (1) is preferable.
  • R 1 is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or a substituted or unsubstituted acyl group having 1 to 20 carbon atoms. It is a group.
  • R 2 is an independently substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms represented by R 1 and R 2 include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group (cyclohexyl group, etc.), an aromatic hydrocarbon group (phenyl group, etc.) and the like.
  • the aliphatic hydrocarbon group is preferable.
  • Examples of the aliphatic hydrocarbon group include an alkyl group such as a methyl group, an ethyl group and a propyl group, an alkenyl group such as a vinyl group and an alkynyl group such as an ethynyl group, and an alkyl group is preferable.
  • the number of carbon atoms of the hydrocarbon group represented by R 1 and R 2 is preferably 1 to 6, and more preferably 1 to 3. At least a part of the hydrogen atom contained in the hydrocarbon group represented by R 1 and R 2 may be substituted with a halogen atom, a carboxy group, an alkoxy group (methoxy group, ethoxy group, etc.) and the like.
  • Examples of the acyl group having 1 to 20 carbon atoms represented by R 1 include a group in which a carbonyl group ( ⁇ CO ⁇ ) is bonded to the above-mentioned hydrocarbon group having 1 to 20 carbon atoms. Specific examples thereof include an acetyl group, a propionyl group, and a benzoyl group.
  • the number of carbon atoms of the acyl group represented by R 1 is preferably 1 to 6, and more preferably 1 to 3.
  • At least a part of the hydrogen atom of the acyl group represented by R 1 may be substituted with a halogen atom, a carboxy group, an alkoxy group (methoxy group or the like) or the like.
  • R 1 when at least one of R 1 is a hydrogen atom, this group is a silanol group. Further, in the group represented by any of the above formulas (1) to (3), when all R 1s are not hydrogen atoms, this group is a group that can be converted into a silanol group in the presence of water.
  • R 1 is preferably a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • the silicon-containing group is directly bonded to the carbon atom in the polymer main chain by the silicon-carbon bond.
  • the content of silicon-containing groups with respect to all structural units of silanol-modified PVA is 0.01 mol% or more and 1.0 mol% or less.
  • silanol-modified PVA having a predetermined amount of silicon-containing groups the optical performance and moist heat resistance of the obtained optical film can be obtained by using non-modified PVA having the same degree of polymerization. Significantly improved compared to film.
  • the non-modified PVA is PVA obtained by saponifying a homopolymer of vinyl ester.
  • the silanol-modified PVA has a lower viscosity of the aqueous solution at a high temperature (for example, 80 ° C.) than the PVA having a high degree of polymerization having the same optical performance of the obtained optical film. Therefore, by using silanol-modified PVA, the optical performance and moist heat resistance of the obtained optical film can be improved while the film for producing the optical film has good productivity (film forming property). Alternatively, by using silanol-modified PVA, the productivity (film-forming property) of the optical film-making film can be improved while the obtained optical film exhibits excellent optical performance and moisture-heat resistance.
  • the lower limit of the content of silicon-containing groups with respect to all structural units of silanol-modified PVA is 0.01 mol%, preferably 0.05 mol%, more preferably 0.1 mol%, further 0.25 mol%. preferable.
  • the upper limit of the content of the silicon-containing group with respect to all the structural units of the silanol-modified PVA is 1.0 mol%, preferably 0.8 mol%, and more preferably 0.6 mol%.
  • the content of the silicon-containing group By setting the content of the silicon-containing group to the above upper limit or less, the water solubility of the silanol-modified PVA and the viscosity stability of the aqueous solution are improved, and the film productivity (film-forming property) can be improved.
  • the content (mol%) of silicon-containing groups can be determined, for example, by proton NMR of the vinyl ester polymer before saponification.
  • the vinyl ester polymer is reprecipitated and purified with hexane-acetone to completely remove unreacted monomers from the polymer, and then at 90 ° C. After drying under reduced pressure for 2 days, it is dissolved in a CDCl 3 solvent and subjected to analysis.
  • the lower limit of the product of the viscosity average degree of polymerization of silanol-modified PVA and the content of silicon-containing groups is preferably 100 mol%, more preferably 300 mol%, further preferably 500 mol%, and particularly preferably 700 mol%.
  • the upper limit of the product is preferably 2,000 mol%, more preferably 1,500, and even more preferably 1,200.
  • the water solubility of the silanol-modified PVA can be further increased, and the productivity of the film for producing the optical film can be further increased.
  • the silanol-modified PVA preferably has a structural unit having a silicon-containing group.
  • Examples of the structural unit having a silicon-containing group include a structural unit represented by the following formula (4).
  • R 3 is a hydrogen atom or a methyl group.
  • R 4 is a single bond or divalent linking group.
  • R 5 is a silicon-containing group.
  • R 3 a hydrogen atom is preferred.
  • R 7 is a group represented by- (CH 2 ) n- above, or a divalent hydrocarbon group containing at least one of an oxygen atom and a nitrogen atom.) The group represented by can be mentioned.
  • Examples of the divalent hydrocarbon group containing at least one oxygen atom and a nitrogen atom -CH 2 CH 2 NHCH 2 CH 2 CH 2 -, - CH 2 CH 2 NHCH 2 CH 2 -, - CH 2 CH 2 NHCH 2 -, -CH 2 CH 2 N (CH 3 ) CH 2 CH 2- , -CH 2 CH 2 N (CH 3 ) CH 2- , -CH 2 CH 2 OCH 2 CH 2 CH 2- , -CH 2 CH 2 OCH 2 CH 2- , -CH 2 CH 2 OCH 2-, etc.
  • the number of carbon atoms of the divalent hydrocarbon group containing at least one of an oxygen atom and a nitrogen atom can be, for example, 2 or more and 6 or less.
  • R 4 is preferably a single bond.
  • silicon-containing group represented by R 5 are as described above, and a group represented by any of the above formulas (1) to (3) can be mentioned, and the above formula (1) can be used.
  • the group represented is preferred.
  • the number of silicon-containing groups contained in the structural unit having silicon-containing groups is not particularly limited, but may be 1.
  • the range of the content of the structural unit having a silicon-containing group with respect to all the structural units of the silanol-modified PVA may be the range of the content of the silicon-containing group with respect to all the structural units described above.
  • the range of the product of the viscosity average degree of polymerization of silanol-modified PVA and the content of the structural unit having a silicon-containing group may be the range of the product of the above-mentioned viscosity average degree of polymerization and the content of the silicon-containing group. ..
  • the silanol-modified PVA may have other structural units other than the vinyl alcohol unit, the vinyl ester unit, and the structural unit having a silicon-containing group.
  • the content of the above other structural units with respect to all the structural units of silanol-modified PVA is preferably 15 mol% or less, more preferably 5 mol% or less, further preferably 1 mol% or less, and 0.1 mol% or less. It may be even more preferable.
  • the silanol-modified PVA is substantially composed of a vinyl alcohol unit, a vinyl ester unit, and a structural unit having a silicon-containing group, the effects of the present invention may be more fully exhibited.
  • the film for producing an optical film may contain one kind of silanol-modified PVA alone, or contains two or more kinds of silanol-modified PVA having different degrees of polymerization, saponification, silicon-containing group content and the like. May be good.
  • the lower limit of the content of silanol-modified PVA in the film for producing an optical film is not particularly limited, but is preferably 50% by mass, more preferably 80% by mass, and even more preferably 85% by mass.
  • the upper limit of this content is not particularly limited, and may be 100% by mass, preferably 99% by mass, and more preferably 95% by mass.
  • the method for producing silanol-modified PVA is not particularly limited. For example, it can be produced by copolymerizing a vinyl ester monomer and a monomer having a silicon-containing group and saponifying the obtained vinyl ester polymer.
  • vinyl ester monomer examples include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerianate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like. it can. Among these, vinyl acetate is preferable.
  • Examples of the monomer having a silicon-containing group include vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyldimethylethoxysilane, allyltrimethoxysilane, and allylmethyldimethoxysilane.
  • the method for copolymerizing the vinyl ester monomer and the monomer having a silicon-containing group is not particularly limited, and examples thereof include known methods such as a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Among these methods, a massive polymerization method performed without a solvent and a solution polymerization method performed using a solvent such as alcohol are preferable.
  • the solvent used as a solvent in solution polymerization include esters such as methyl acetate and ethyl acetate; aromatic hydrocarbons such as benzene and toluene; lower alcohols such as methanol and ethanol.
  • azo-based initiators As the initiator used in the copolymerization reaction, conventionally known azo-based initiators, peroxide-based initiators, redox-based initiators and the like are appropriately selected.
  • the azo initiator include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy-2,4-). Dimethylvaleronitrile) and the like.
  • Peroxide-based initiators include percarbonate compounds such as dinormalpropyl peroxydicarbonate, diisopropylperoxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethylperoxydicarbonate; t-butylper.
  • Perester compounds such as oxyneodecanate, ⁇ -cumylperoxyneodecanate, t-butylperoxyneodecanate; acetylcyclohexylsulfonyl peroxide, diisobutyryl peroxide; 2,4,4-trimethylpentyl-2- Examples thereof include peroxyphenoxyacetate.
  • potassium persulfate, ammonium persulfate, hydrogen peroxide and the like can be combined with the above-exemplified peroxide-based initiator to prepare the initiator.
  • the redox-based initiator include a combination of the above-mentioned peroxide and a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, and longalit.
  • the polymerization temperature when the copolymerization reaction is carried out is not particularly limited, but is preferably 0 ° C. or higher and 180 ° C. or lower, more preferably 20 ° C. or higher and 160 ° C. or lower, and further preferably 30 ° C. or higher and 150 ° C. or lower.
  • Acrylic acid esters such as i-propyl, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid or a salt thereof; methacryl Methyl acidate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, methacryl Methacrylate esters such as octadecyl acid; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamide propanesulfonic acid
  • Methacrylate derivatives such as N-vinylformamide, N-vinylacetamide, N-vinylamide such as N-vinylpyrrolidone; methylvinyl ether, ethylvinyl ether, n-propylvinyl ether, i-propylvinyl ether, n-butylvinyl ether, i-butyl Vinyl ethers such as vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; vinyl cyanide such as acrylonitrile and methacrylonitrile; vinyl halide such as vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride; allyl acetate, chloride Allyl compounds such as allyl; maleic acid or a salt thereof, ester or acid anhydride; itaconic acid or a salt thereof, ester or acid anhydride; isopropenyl acetate
  • the proportion of structural units derived from the above-mentioned other monomers (monomers other than the vinyl ester monomer and the monomer having a silicon-containing group) in the vinyl ester polymer is not necessarily limited as long as the effect of the present invention is not impaired, but the vinyl ester weight Based on the number of moles of all structural units constituting the coalescence, 15 mol% or less is preferable, 5 mol% or less is more preferable, 1 mol% or less is further preferable, and 0.1 mol% or less may be further preferable. ..
  • the vinyl ester polymer is then saponified in a solvent according to a known method, leading to silanol-modified PVA.
  • Alcohol is preferable as the solvent used for the saponification reaction.
  • the alcohol include lower alcohols such as methanol and ethanol, and methanol is particularly preferably used.
  • the solvent used in the saponification reaction may further contain acetone, an ester such as methyl acetate or ethyl acetate, or an organic solvent such as toluene.
  • the catalyst used in the saponification reaction include hydroxides of alkali metals such as potassium hydroxide and sodium hydroxide, alkaline catalysts such as sodium methylate, and acid catalysts such as mineral acid.
  • the temperature of the saponification reaction can be, for example, 20 ° C. or higher and 60 ° C. or lower.
  • the product is pulverized at that time, washed, and dried to obtain silanol-modified PVA.
  • the film for producing an optical film of the present invention preferably contains a plasticizer. Since the film for producing an optical film contains a plasticizer, the stretchability can be improved.
  • a polyhydric alcohol is preferable as the plasticizer. Examples of the polyhydric alcohol include ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane and the like. Among these, glycerin is preferable from the viewpoint of improving stretchability.
  • the plasticizer one kind or two or more kinds can be used.
  • the lower limit of the content of the plasticizer in the film for producing an optical film of the present invention is preferably 1 part by mass, more preferably 3 parts by mass, and even more preferably 5 parts by mass with respect to 100 parts by mass of silanol-modified PVA.
  • the content of the plasticizer is at least the above lower limit, the stretchability of the film is improved, and the optical performance of the obtained optical film can be further improved.
  • the upper limit of the content of this plasticizer is preferably 20 parts by mass, more preferably 17 parts by mass, and even more preferably 15 parts by mass with respect to 100 parts by mass of silanol-modified PVA.
  • the content of the plasticizer is not more than the above upper limit, it is possible to prevent the film from becoming too flexible and the handleability from being lowered.
  • the film for producing an optical film preferably contains a surfactant.
  • a surfactant By forming a film using a film-forming stock solution containing a surfactant, the film-forming property is improved and the occurrence of thickness unevenness of the film is suppressed, and the film is peeled off from the metal roll or belt used for film-forming. Becomes easier.
  • the resulting film may contain a surfactant.
  • the type of surfactant is not particularly limited, but an anionic surfactant and a nonionic surfactant are preferable from the viewpoint of peelability from a metal roll or a belt.
  • anionic surfactant examples include a carboxylic acid type such as potassium laurate; a sulfate ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate; and a sulfonic acid type such as dodecylbenzene sulfonate.
  • carboxylic acid type such as potassium laurate
  • a sulfate ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate
  • a sulfonic acid type such as dodecylbenzene sulfonate.
  • nonionic surfactant examples include an alkyl ether type such as polyoxyethylene oleyl ether; an alkylphenyl ether type such as polyoxyethylene octylphenyl ether; an alkyl ester type such as polyoxyethylene laurate; and a polyoxyethylene lauryl amino ether.
  • Alkylamine type such as; alkylamide type such as polyoxyethylene lauric acid amide; polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; alkanolamide type such as laurate diethanolamide and oleic acid diethanolamide; polyoxyalkylene Examples thereof include an allylphenyl ether type such as allylphenyl ether.
  • the surfactant can be used alone or in combination of two or more.
  • the lower limit of the content thereof is preferably 0.01 part by mass, more preferably 0.02 part by mass, and 0.05 part by mass with respect to 100 parts by mass of silanol-modified PVA. Parts by mass are even more preferred.
  • the upper limit of this content is preferably 0.5 parts by mass, more preferably 0.3 parts by mass, and even more preferably 0.1 parts by mass with respect to 100 parts by mass of silanol-modified PVA.
  • the film for producing an optical film of the present invention includes a filler, a processing stabilizer such as a copper compound, a weather resistance stabilizer, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, and a flame retardant.
  • a processing stabilizer such as a copper compound, a weather resistance stabilizer, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, and a flame retardant.
  • a processing stabilizer such as a copper compound, a weather resistance stabilizer, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, and a flame retardant.
  • a processing stabilizer such as a copper compound, a weather resistance stabilizer, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, and a flame retardant.
  • the film for producing an optical film of the present invention may contain PVA other than the silanol-modified PVA described above.
  • the total proportion of all PVA including silanol-modified PVA, the plasticizer and the surfactant in the film for producing an optical film of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass. The above is more preferable, and in some cases, 99% by mass or more is even more preferable.
  • the film for producing an optical film of the present invention is substantially composed of PVA, a plasticizer and a surfactant, the effects of the present invention can be more fully exhibited.
  • the content ratio of the above-mentioned silanol-modified PVA in all PVA contained in the film for producing an optical film of the present invention is preferably 50% by mass or more, more preferably 80% by mass or more, more preferably 90% by mass or more, and more preferably 90% by mass or more. 95% by mass or more is further preferable, and 99% by mass or more is even more preferable.
  • the total proportion of the silanol-modified PVA, the plasticizer and the surfactant in the film for producing an optical film of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more. In some cases, 99% by mass or more is even more preferable.
  • the film for producing an optical film of the present invention is substantially composed of silanol-modified PVA, a plasticizer and a surfactant, the effects of the present invention can be more fully exhibited.
  • the film for producing an optical film of the present invention is a so-called raw film used as a material for an optical film.
  • the film for producing an optical film of the present invention is not limited to a roll-shaped film.
  • the average thickness of the film for producing an optical film of the present invention is not particularly limited, but the lower limit is preferably 1 ⁇ m, more preferably 5 ⁇ m, and even more preferably 10 ⁇ m. When the average thickness is at least the above lower limit, it is possible to suppress breakage during the uniaxial stretching process when manufacturing an optical film.
  • the upper limit of the average thickness is preferably 75 ⁇ m, more preferably 60 ⁇ m, further preferably 45 ⁇ m, and even more preferably 35 ⁇ m. When the average thickness is not more than the above upper limit, stretching spots during the uniaxial stretching treatment can be suppressed.
  • the "average thickness” refers to the average value of the thickness measured at any five points (hereinafter, the same applies to the average thickness).
  • the film for producing an optical film of the present invention may be a single-layer film composed of one PVA layer (a layer containing silanol-modified PVA) or a multilayer film including one PVA layer. However, when it is used for producing a polarizing film, it is preferably a single-layer film.
  • the lower limit of the average thickness of the PVA layer contained in the film for producing an optical film of the present invention is preferably 1 ⁇ m, more preferably 5 ⁇ m, still more preferably 10 ⁇ m. When the average thickness is at least the above lower limit, it is possible to suppress breakage during the uniaxial stretching process when manufacturing an optical film.
  • the upper limit of the average thickness is preferably 75 ⁇ m, more preferably 60 ⁇ m, further preferably 45 ⁇ m, and even more preferably 35 ⁇ m.
  • the average thickness is not more than the above upper limit, stretching spots during the uniaxial stretching treatment can be suppressed.
  • the average thickness is preferably 20 ⁇ m or more, more preferably 30 ⁇ m or more, in order to ensure handleability.
  • the average thickness of the PVA layer can be 20 ⁇ m or less, or 15 ⁇ m or less.
  • a multilayer film is a film having two or more layers.
  • the number of layers of the multilayer film may be 5 or less, and may be 3 or less.
  • Examples of the multilayer film include a film for producing an optical film having a laminated structure of a base resin layer and a PVA layer.
  • the average thickness of the base resin layer is, for example, 20 ⁇ m or more and 500 ⁇ m or less.
  • the base resin layer in the multilayer film is preferably one that can be uniaxially stretched together with the PVA layer.
  • polyester, polyolefin or the like can be used as the resin constituting the base resin layer.
  • an amorphous polyester resin is preferable, and polyethylene terephthalate and an amorphous polyester resin obtained by copolymerizing polyethylene terephthalate with a copolymerization component such as isophthalic acid and 1,4-cyclohexanedimethanol are preferably used.
  • An adhesive layer may be provided between the base resin layer and the PVA layer.
  • the width of the film for producing an optical film of the present invention is not particularly limited and can be determined according to its application and the like.
  • the lower limit of the width of the optical film manufacturing film is preferably 3 m.
  • the upper limit of the width of the optical film manufacturing film is preferably 7 m.
  • the degree of swelling of the optical film manufacturing film of the present invention is preferably in the range of 140% or more and 400% or less from the viewpoint of the productivity of the optical film and the optical performance.
  • the lower limit of the degree of swelling is more preferably 180% and even more preferably 190%.
  • the upper limit of the degree of swelling is more preferably 220% and even more preferably 210%.
  • the degree of swelling of the film can be adjusted to a smaller value, for example, by increasing the heat treatment conditions.
  • N represents the mass (g) of the sample after immersing the sample collected from the film in distilled water at 30 ° C. for 30 minutes and then removing the water on the surface.
  • M represents the mass (g) of the sample after drying the sample in a dryer at 105 ° C. for 16 hours.
  • the film for producing an optical film of the present invention is usually a film that is not substantially stretched (non-stretched film, unstretched film).
  • the in-plane phase difference of the raw film for manufacturing an optical film is preferably 100 nm or less, more preferably 50 nm or less.
  • an optical film can be obtained by stretching a film for producing an optical film of the present invention (uniaxial stretching treatment or biaxial stretching treatment).
  • the film for producing an optical film of the present invention it is possible to obtain an optical film having good productivity and excellent optical performance and moisture heat resistance as compared with the case of using non-modified PVA having the same degree of polymerization. ..
  • the optical performance includes light transmission, polarization, and the like.
  • Examples of the optical film that can be produced by the optical film manufacturing film include a polarizing film, a retardation film, a viewing angle improving film, a brightness improving film, and the like, and a polarizing film is preferable.
  • the method for producing the film for producing an optical film of the present invention is not particularly limited, but a method for producing a film having a more uniform thickness and width after film formation can be preferably adopted.
  • it can be produced using silanol-modified PVA and, if necessary, a film-forming stock solution in which one or more of plasticizers, surfactants and other additives are dissolved in a liquid medium. it can.
  • the film-forming stock solution contains at least one of a plasticizer, a surfactant and other additives, it is preferable that these components are uniformly mixed.
  • liquid medium used for preparing the film-forming stock solution examples include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and tri.
  • examples thereof include methylolpropane, ethylenediamine, and diethylenetriamine, and one or more of these can be used. Of these, water is preferable from the viewpoint of environmental load and recoverability.
  • the silanol-modified PVA described above has good water solubility, and an increase in viscosity when used as an aqueous solution at a relatively high temperature (for example, 80 ° C.) is suppressed. From this point as well, water can be preferably used as the liquid medium.
  • the volatile content of the film-forming stock solution (the content of volatile components such as a liquid medium removed by volatilization or evaporation during film-forming in the film-forming stock solution) is preferably, for example, 50% by mass or more and 95% by mass or less, and 55% by mass. % Or more and 90% by mass or less is more preferable, and 60% by mass or more and 85% by mass or less is further preferable.
  • the volatile content of the membrane-forming stock solution is 50% by mass or more, the viscosity of the membrane-forming stock solution does not become too high, filtration and defoaming during preparation of the membrane-forming stock solution are smoothly performed, and a film with few foreign substances and defects. Is easy to manufacture.
  • the volatile fraction of the film-forming stock solution is 95% by mass or less, the concentration of the film-forming stock solution does not become too low, and industrial film production becomes easy.
  • the temperature of the film-forming stock solution at the time of film-forming can be, for example, 70 ° C. or higher and 90 ° C. or lower.
  • Examples of the film forming method when forming a film using the undiluted film forming solution include a cast film forming method, an extrusion film forming method, a wet film forming method, and a gel film forming method. These film forming methods may adopt only one kind or a combination of two or more kinds. Among these film-forming methods, the cast film-forming method and the extrusion film-forming method are preferable because a film having a uniform thickness and width and good physical characteristics can be obtained. The formed film can be dried or heat-treated as needed.
  • Examples of a specific manufacturing method for the optical film manufacturing film of the present invention include the following examples. Using a T-shaped slit die, hopper plate, I-die, lip coater die, etc., the film-forming stock solution is uniformly discharged or uniformly discharged onto the peripheral surface of the rotating heated first roll (or belt) located on the most upstream side. Disseminate. Volatile components are evaporated and dried from one surface of the membrane discharged or cast on the peripheral surface of the first roll (or belt). Subsequently, it is further dried on the peripheral surface of one or more rotating heated rolls arranged on the downstream side thereof, or is further dried by passing through a hot air drying device. Then, the film is wound by the winding device. Drying with a heated roll and drying with a hot air drying device may be carried out in an appropriate combination.
  • a multilayer film can be produced, for example, by applying a film-forming stock solution on a base resin film (base resin layer).
  • base resin layer a base resin film
  • the surface of the base resin film may be modified or an adhesive may be applied to the surface of the base resin film. Good.
  • the method for producing an optical film of the present invention includes a step of uniaxially stretching the above-mentioned film for producing an optical film.
  • a method for producing a polarizing film will be specifically described as an example of a method for producing an optical film.
  • Examples of the method for producing a polarizing film include a dyeing step of dyeing a film for manufacturing an optical film (hereinafter, also referred to as “PVA film”), a stretching step of uniaxially stretching, and a swelling step of further swelling, if necessary.
  • Examples thereof include a method including a cross-linking step for cross-linking, a fixing treatment step for fixing treatment, a washing step for washing, a drying step for drying, and a heat treatment step for heat treatment.
  • the order of each step is not particularly limited, but for example, the swelling step, the dyeing step, the cross-linking step, the stretching step, the fixing treatment step, and the like can be performed in this order. Further, one or more steps can be performed at the same time, and each step can be performed twice or more.
  • the swelling step can be performed by immersing the PVA film in water.
  • the temperature of the water when immersed in water is preferably 20 ° C. or higher and 55 ° C. or lower, more preferably 22 ° C. or higher and 50 ° C. or lower, and further preferably 25 ° C. or higher and 45 ° C. or lower.
  • the time for immersion in water is, for example, preferably 0.1 minutes or more and 5 minutes or less, and more preferably 0.5 minutes or more and 3 minutes or less.
  • the water when immersed in water is not limited to pure water, and may be an aqueous solution in which various components are dissolved, or a mixture of water and an aqueous medium.
  • the dyeing step can be performed by bringing the dichroic dye into contact with the PVA film.
  • Iodine-based pigments are generally used as the dichroic pigments.
  • the timing of dyeing may be any stage before uniaxial stretching, during uniaxial stretching, and after uniaxial stretching.
  • a method of dyeing is preferably performed by immersing the PVA film in a solution (particularly an aqueous solution) containing iodine-potassium iodide, which is a dyeing bath.
  • the concentration of iodine in the dyeing bath is preferably 0.01% by mass or more and 0.5% by mass or less, and the concentration of potassium iodide is preferably 0.01% by mass or more and 10% by mass or less.
  • the temperature of the dyeing bath is preferably 20 ° C. or higher and 50 ° C. or lower, particularly preferably 25 ° C. or higher and 40 ° C. or lower.
  • a suitable dyeing time is 0.2 minutes or more and 5 minutes
  • the cross-linking step is preferably performed after the dyeing step and before the stretching step.
  • the cross-linking step can be performed by immersing the PVA film in an aqueous solution containing a cross-linking agent.
  • a cross-linking agent one or more boron compounds such as borate such as boric acid and borax can be used.
  • the concentration of the cross-linking agent in the aqueous solution containing the cross-linking agent is preferably 1% by mass or more and 15% by mass or less, more preferably 1.5% by mass or more and 7% by mass or less, and further preferably 2% by mass or more and 6% by mass or less. Sufficient stretchability can be maintained when the concentration of the cross-linking agent is within the above range.
  • the aqueous solution containing the cross-linking agent may contain potassium iodide or the like.
  • the temperature of the aqueous solution containing the cross-linking agent is preferably 20 ° C. or higher and 60 ° C. or lower, particularly 25 ° C. or higher and 55 ° C. or lower. By keeping the temperature within the above range, cross-linking can be performed efficiently.
  • the stretching step of uniaxially stretching the PVA film may be performed by either a wet stretching method or a dry stretching method.
  • the wet stretching method it can be carried out in an aqueous solution containing boric acid, in the above-mentioned dyeing bath or in the fixing treatment bath described later.
  • stretching may be carried out at room temperature, stretching may be carried out while heating, or may be carried out in air using a PVA film after water absorption.
  • the wet stretching method is preferable because it can be stretched with high uniformity in the width direction, and uniaxial stretching is more preferable in an aqueous solution containing boric acid.
  • the concentration of boric acid in the boric acid aqueous solution is preferably 0.5% by mass or more and 6.0% by mass or less, more preferably 1.0% by mass or more and 5.0% by mass or less, and 1.5% by mass or more and 4. 0% by mass or less is particularly preferable.
  • the boric acid aqueous solution may contain potassium iodide, and the concentration of potassium iodide is preferably 0.01% by mass or more and 10% by mass or less.
  • the stretching temperature in uniaxial stretching is preferably 30 ° C. or higher and 90 ° C. or lower, more preferably 40 ° C. or higher and 80 ° C. or lower, and particularly preferably 50 ° C. or higher and 75 ° C. or lower.
  • the draw ratio in uniaxial stretching is preferably 5 times or more, and more preferably 5.5 times or more from the viewpoint of the polarization performance of the obtained polarizing film.
  • the upper limit of the draw ratio is not particularly limited, but the draw ratio is preferably 8 times or less.
  • uniaxial stretching in the long direction can be adopted. Since a polarizing film having excellent polarization performance can be obtained, uniaxial stretching in the long direction is preferable.
  • Uniaxial stretching in the long direction can be performed by using a stretching device including a plurality of rolls parallel to each other and changing the peripheral speed between the rolls.
  • the lateral uniaxial stretching can be performed using a tenter type stretching machine.
  • a fixing treatment step can be performed after the stretching step in order to strengthen the adsorption of the dichroic dye (iodine dye, etc.) on the PVA film.
  • the fixing treatment bath used for the fixing treatment an aqueous solution containing one or more kinds of boron compounds such as boric acid and borax can be used. Further, if necessary, an iodine compound or a metal compound may be added to the fixing treatment bath.
  • the concentration of the boron compound in the fixing treatment bath is preferably 2% by mass or more and 15% by mass or less, particularly preferably 3% by mass or more and 10% by mass or less.
  • the temperature of the fixing treatment bath is preferably 15 ° C. or higher and 60 ° C. or lower, particularly preferably 25 ° C. or higher and 40 ° C. or lower.
  • the cleaning process is generally performed by immersing the film in distilled water, pure water, an aqueous solution, or the like.
  • an aqueous solution containing iodide such as potassium iodide
  • concentration of iodide is preferably 0.5% by mass or more and 10% by mass or less.
  • the temperature of the aqueous solution in the cleaning treatment is generally 5 ° C. or higher and 50 ° C. or lower, preferably 10 ° C. or higher and 45 ° C. or lower, and further preferably 15 ° C. or higher and 40 ° C. or lower.
  • the conditions of the drying step are not particularly limited, but it is preferable to dry the PVA film at a temperature of 30 ° C. or higher and 150 ° C. or lower, particularly 50 ° C. or higher and 130 ° C. or lower. By drying at a temperature within the above range, a polarizing film having excellent dimensional stability can be easily obtained.
  • An optical film other than the polarizing film, such as a retardation film, can also be produced by a method including a step of uniaxially stretching the film for producing an optical film of the present invention.
  • a specific manufacturing method a conventionally known method can be adopted except that the film for manufacturing an optical film of the present invention is used.
  • the optical film of the present invention contains PVA (silanol-modified PVA) having a silicon-containing group, and the silicon-containing group is a group that can be converted into a silanol group in the presence of silanol group or water, and the silanol-modified PVA
  • the viscosity average degree of polymerization is 1,000 or more and 6,000 or less
  • the degree of saponification is 98.7 mol% or more
  • the content of the silicon-containing group with respect to all structural units is 0.01 mol% or more and 1.0 mol% or less.
  • the optical film of the present invention may be an optical film obtained by the above-mentioned manufacturing method using the film for manufacturing the optical film of the present invention.
  • the specific structure, content, and the like of the silanol-modified PVA contained in the optical film of the present invention are the same as those of the silanol-modified PVA contained in the film for producing an optical film of the present invention.
  • the optical film of the present invention may contain other components similar to the film for producing an optical film of the present invention.
  • the optical film of the present invention may be a polarizing film, a retardation film, a viewing angle improving film, a brightness improving film, or the like, and is preferably a polarizing film.
  • the polarizing film usually contains a dichroic dye, and the silanol-modified PVA may be crosslinked.
  • the optical film of the present invention is preferably a stretched film, more preferably a uniaxially stretched film. Further, the optical film of the present invention may be a single-layer film or a multilayer film, but a single-layer film is preferable. In the case of such a film, the optical film of the present invention can be more preferably used as a polarizing film or the like.
  • the dichroism ratio (R) of the polarizing film is preferably 100 or more.
  • a polarizing film having such a high dichroism ratio (R) can be produced with high productivity.
  • the dichroism ratio (R) is more preferably 150 or more, and even more preferably 190 or more.
  • the upper limit of the dichroism ratio (R) is, for example, 350 and may be 300.
  • the polarizing film is usually used as a polarizing plate by laminating a protective film that is optically transparent and has mechanical strength on both sides or one side thereof.
  • a protective film a cellulose triacetate (TAC) film, a cycloolefin polymer (COP) film, a cellulose acetate / butyrate (CAB) film, an acrylic film, a polyester film, or the like is used.
  • the adhesive for bonding include a PVA-based adhesive, a urethane-based adhesive, and an acrylate-based ultraviolet curable adhesive. That is, the polarizing plate has a polarizing film and a protective film laminated directly or via an adhesive layer on one side or both sides of the polarizing film.
  • the polarizing plate can be used as an LCD component by, for example, coating it with an adhesive such as acrylic and then adhering it to a glass substrate.
  • a retardation film, a viewing angle improving film, a brightness improving film, or the like may be further attached to the polarizing plate.
  • the dichroism ratio (R) of the polarizing film was calculated by solving the following equations (a) and (b) from the obtained simple substance transmittance (T) and polarization degree (V) values.
  • T transmittance
  • V polarization degree
  • T' T / (1-0.04) 2
  • R ⁇ -ln [T'(1-V)] ⁇ / ⁇ -ln [T'(1 + V)] ⁇ ... (b)
  • the polymerization reaction was carried out for 3 hours while adding 135 g of methanol containing 2.5% by mass of vinylmethoxysilane into the system, and the polymerization was stopped at that time.
  • the polymerization rate at the time when the polymerization reaction was stopped was 26.8%.
  • the polymerization temperature was maintained at 60 ° C. during the polymerization.
  • unreacted vinyl acetate was removed under reduced pressure to obtain a methanol solution of polyvinyl acetate (hereinafter, may be abbreviated as PVAc).
  • the concentration of the obtained PVAC methanol solution was adjusted to 23.5%, and the NaOH methanol solution (10) so that the alkali molar ratio (the number of moles of NaOH / the number of moles of vinyl ester units in PVAc) was 0.04. % Concentration) was added and the mixture was saponified.
  • the obtained polyvinyl alcohol was washed with methanol.
  • the degree of polymerization (viscosity average degree of polymerization) of PVA-1 obtained by the above operation was 2,400, the degree of saponification was 99.9 mol%, the content of silicon-containing groups was 0.2 mol%, and the temperature was 80 ° C.
  • the viscosity of the 10 mass% aqueous solution was 920 mPa ⁇ s.
  • Example 1 An aqueous solution containing 100 parts by mass of PVA-1, 10 parts by mass of glycerin as a plasticizer, and 0.1 parts by mass of polyoxyethylene lauryl ether sodium sulfate as a surfactant, and having a PVA content of 9.5% by mass is formed into a film. Prepared as undiluted solution. This film-forming stock solution is dried on a metal roll at 80 ° C., and the obtained film is heat-treated at a temperature of 120 ° C. for 10 minutes in a hot air dryer to adjust the degree of swelling to 200% and have an average thickness. A PVA film (film for producing an optical film) having a thickness of 30 ⁇ m was produced.
  • a sample having a width of 5 cm and a length of 9 cm was cut from the central portion of the obtained PVA film in the width direction so that a range of 5 cm in width ⁇ 5 cm in length could be uniaxially stretched.
  • This sample was uniaxially stretched 2.0 times in the length direction while being immersed in pure water at 30 ° C. for 60 seconds for swelling treatment. Subsequently, it was immersed in an aqueous solution containing 0.05% by mass of iodine and 5.0% by mass of potassium iodide (dyeing treatment bath: temperature 32 ° C.) for 120 seconds while being 1.2 times longer (2.4 times as a whole). Iodine was adsorbed by uniaxial stretching in the longitudinal direction.
  • the boric acid was uniaxially stretched 1.25 times (3.0 times in total) while being immersed in an aqueous solution containing 2.6% by mass of boric acid (boric acid cross-linking treatment bath: temperature 32 ° C.) for 120 seconds. .. Further, while immersing in an aqueous solution (uniaxial stretching treatment bath) at 58 ° C. containing 2.8% by mass of boric acid and 5% by mass of potassium iodide, the whole is uniaxially stretched up to 6.0 times in the length direction. did. Then, the film was washed by immersing it in a potassium iodide aqueous solution (washing bath) having a temperature of 22 ° C. containing 1.5% by mass of boric acid and 3.5% by mass of potassium iodide for 5 seconds. Finally, it was dried at 80 ° C. for 4 minutes to obtain a polarizing film.
  • boric acid boric acid cross-linking treatment bath: temperature 32 ° C.
  • Examples 2 to 5 and Comparative Examples 1 to 4 Using the PVAs (PVA-2 to PVA-9) listed in Tables 1 to 3, the PVA content and heat treatment temperature of the film-forming stock solution so that the average thickness of the PVA film is 30 ⁇ m and the swelling degree is 200%.
  • the PVA film was prepared and evaluated in the same manner as in Example 1 except that the above was adjusted.
  • a polarizing film was produced and evaluated in the same manner as in Example 1. The results are shown in Tables 1 to 3.
  • PVA-10 was used as PVA, and PVA was adjusted in the same manner as in Example 1 except that the PVA content of the film-forming stock solution and the heat treatment temperature were adjusted so that the average thickness of the PVA film was 30 ⁇ m and the swelling degree was 200%. A film was prepared. However, it broke in the uniaxial stretching treatment bath, and a polarizing film could not be obtained.
  • the PVA1 to PVA-5 used in Examples 1 to 5 have sufficient water solubility, so that a film-forming stock solution can be prepared, and the obtained PVA film can be prepared. (Film for manufacturing an optical film) could be sufficiently stretched to obtain a polarizing film. As described above, it can be seen that the PVA films of Examples 1 to 5 have good productivity. Further, the polarizing films obtained from the PVA films of Examples 1 to 5 are superior in optical performance (dichroism ratio) and moisture heat resistance as compared with the polarizing films using non-modified PVA having the same degree of polymerization. It was.
  • the polarizing films of Examples 1 to 3 using silanol-modified PVA having a degree of polymerization of 2,400 were compared using non-modified PVA having a degree of polymerization of 2,400.
  • the dichroism ratio was high and the amount of decrease in degree of polymerization was small.
  • the polarizing film of Example 4 using a silanol-modified PVA having a degree of polymerization of 3,300 has a higher dichroism ratio than the polarizing film of Comparative Example 2 using a non-modified PVA having a degree of polymerization of 3,300.
  • the amount of increase in transparency and the amount of decrease in degree of polarization were small.
  • the polarizing film of Example 5 using the silanol-modified PVA having a degree of polymerization of 1,700 has two colors as compared with the polarizing films of Comparative Example 3 and Comparative Example 4 using the non-modified PVA having a degree of polymerization of 1,700.
  • the sex ratio was high, and the amount of increase in transparency and the amount of decrease in degree of polarization were small.
  • Comparative Example 2 uses PVA having a higher degree of polymerization than Comparative Example 1.
  • Example 1 uses PVA modified with silanol with respect to Comparative Example 1.
  • the dichroism ratio of Comparative Example 2 is 201, and the dichroism ratio of Example 1 is 208, both of which have the same dichroism ratio as that of Comparative Example 1 having a dichroism ratio of 162. It is increasing.
  • the viscosity of PVA in Comparative Example 1 was 910 mPa ⁇ s, whereas the viscosity of PVA in Comparative Example 2 was 2,740 mPa ⁇ s, which was significantly increased.
  • the viscosity of PVA of Example 1 is 920 mPa ⁇ s, and the increase in viscosity is suppressed. That is, according to the silanol-modified PVA of the example, it can be said that the optical performance and the heat resistance to moisture and heat of the optical film can be improved while maintaining good film forming property (productivity).
  • the film for producing an optical film of the present invention can be suitably used as a material such as a polarizing film which is a constituent material of an LCD.

Abstract

The present invention provides: a film for the production of an optical film, said film having good productivity, while enabling the achievement of an optical film that exhibits excellent optical performance and wet heat resistance in comparison to those cases where a non-modified PVA having the same degree of polymerization is used; a method for producing an optical film, said method using this film for the production of an optical film; and an optical film. The present invention is a film for the production of an optical film, said film containing a polyvinyl alcohol having a silicon-containing group, wherein: the silicon-containing group is a silanol group or a group that is able to be converted into a silanol group in the presence of water; the polyvinyl alcohol has a viscosity-average degree of polymerization of from 1,000 to 6,000 and a saponification degree of 98.7% by mole or more; and the content of the silicon-containing group relative to all structural units is from 0.01% by mole to 1.0% by mole.

Description

光学フィルム製造用フィルム、光学フィルムの製造方法、及び光学フィルムOptical film manufacturing film, optical film manufacturing method, and optical film
 本発明は、光学フィルム製造用フィルム、光学フィルムの製造方法、及び光学フィルムに関する。 The present invention relates to a film for producing an optical film, a method for producing an optical film, and an optical film.
 光の透過及び遮蔽機能を有する偏光板は、光の偏光状態を変化させる液晶と共に液晶ディスプレイ(LCD)の基本的な構成要素である。多くの偏光板は、偏光フィルムの表面に三酢酸セルロース(TAC)フィルムなどの保護フィルムが貼り合わされた構造を有している。偏光フィルムとしては、ポリビニルアルコールフィルム(以下、「ポリビニルアルコール」を「PVA」と略記することがある。)を一軸延伸してなるマトリクス(延伸フィルム)にヨウ素系色素(I やI 等)や二色性有機染料といった二色性色素が吸着しているものが主流となっている。 A polarizing plate having a function of transmitting and shielding light is a basic component of a liquid crystal display (LCD) together with a liquid crystal that changes the polarization state of light. Many polarizing plates have a structure in which a protective film such as a cellulose triacetate (TAC) film is bonded to the surface of a polarizing film. The polarizing film, a polyvinyl alcohol film (hereinafter, the "polyvinyl alcohol" may be abbreviated as "PVA".) Matrix produced by uniaxially stretching a (stretched film) to iodine dye (I 3 - and I 5 - Etc.) and dichroic dyes such as dichroic organic dyes are mainly adsorbed.
 LCDは、電卓及び腕時計などの小型機器、スマートフォン、ノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、携帯電話、屋内外で用いられる計測機器など広範囲で用いられている。近年、これらの機器には表示品質の向上が求められている。これに伴い、偏光フィルムに対しても高性能化が求められており、具体的には、偏光度、透過度などの光学性能に優れる偏光フィルムが求められている。また、偏光フィルムにおいては耐久性も重要であり、例えば高温多湿の環境下においても良好な性能が維持されることなどが求められる。偏光フィルム以外の光学フィルムにおいても、同様に光学性能や耐久性が求められている。 LCDs are widely used in small devices such as calculators and wristwatches, smartphones, laptop computers, LCD monitors, LCD color projectors, LCD TVs, in-vehicle navigation systems, mobile phones, and measuring devices used indoors and outdoors. In recent years, these devices have been required to improve display quality. Along with this, the polarizing film is also required to have high performance, and specifically, a polarizing film having excellent optical performance such as polarization degree and transmittance is required. Durability is also important for polarizing films, and it is required that good performance be maintained even in a high temperature and high humidity environment, for example. Optical performance and durability are also required for optical films other than polarizing films.
 光学性能及び耐湿熱性等が改善された偏光フィルムとして、重合度が高いPVAが用いられた偏光フィルムが知られている(特許文献1)。この特許文献1においては、高重合度のPVAがジメチルスルホキシドを主成分とする溶媒に溶解されたPVA製膜溶液を用いて、製膜が行われている。 As a polarizing film having improved optical performance, moisture and heat resistance, etc., a polarizing film using PVA having a high degree of polymerization is known (Patent Document 1). In Patent Document 1, film formation is performed using a PVA film formation solution in which PVA having a high degree of polymerization is dissolved in a solvent containing dimethyl sulfoxide as a main component.
特開平1-105204号公報Japanese Unexamined Patent Publication No. 1-105204
 工業的なPVAフィルムの製造には、環境面、経済性等を考慮し、溶媒として水が用いられたPVA水溶液を製膜溶液として使用することが一般的である。しかし、重合度の高いPVAは、その水溶液の粘度が上昇するため、製膜性が悪く、工業生産上好ましくない。従って、PVAの重合度を高める方法以外によって、光学フィルムの光学性能や耐湿熱性を高める方法が望まれている。 In the production of industrial PVA films, it is common to use a PVA aqueous solution in which water is used as a solvent as a film-forming solution in consideration of environmental aspects, economic efficiency, and the like. However, PVA having a high degree of polymerization has poor film-forming property because the viscosity of the aqueous solution increases, which is not preferable for industrial production. Therefore, a method for improving the optical performance and moisture heat resistance of the optical film is desired other than the method for increasing the degree of polymerization of PVA.
 本発明は以上のような事情に基づいてなされたものであり、その目的は、良好な生産性を有し、同じ重合度を有する非変性のPVAを用いた場合と比べて光学性能及び耐湿熱性が優れる光学フィルムを得ることができる光学フィルム製造用フィルム、このような光学フィルム製造用フィルムを用いた光学フィルムの製造方法及び光学フィルムを提供することを目的とする。 The present invention has been made based on the above circumstances, and an object thereof is optical performance and moisture heat resistance as compared with the case of using non-modified PVA having good productivity and the same degree of polymerization. It is an object of the present invention to provide a film for producing an optical film capable of obtaining an excellent optical film, a method for producing an optical film using such a film for producing an optical film, and an optical film.
 上記の目的は、
[1]ケイ素含有基を有するポリビニルアルコールを含み、上記ケイ素含有基が、シラノール基又は水の存在下でシラノール基に転化し得る基であり、上記ポリビニルアルコールの粘度平均重合度が1,000以上6,000以下、けん化度が98.7モル%以上、且つ全構造単位に対する上記ケイ素含有基の含有量が0.01モル%以上1.0モル%以下である、光学フィルム製造用フィルム;
[2]上記けん化度が99.5モル%以上である、[1]の光学フィルム製造用フィルム;
[3]上記粘度平均重合度と上記ケイ素含有基の含有量との積が100モル%以上2,000モル%以下である、[1]又は[2]の光学フィルム製造用フィルム;
[4]平均厚さが1μm以上75μm以下である、[1]~[3]のいずれかの光学フィルム製造用フィルム;
[5]膨潤度が140%以上400%以下である、[1]~[4]のいずれかの光学フィルム製造用フィルム;
[6]上記光学フィルムが偏光フィルムである、[1]~[5]のいずれかの光学フィルム製造用フィルム;
[7]非延伸フィルムである、[1]~[6]のいずれかの光学フィルム製造用フィルム;
[8][1]~[7]のいずれかの光学フィルム製造用フィルムを一軸延伸する工程を備える、光学フィルムの製造方法;
[9]上記光学フィルムが偏光フィルムである、[8]の光学フィルムの製造方法;
[10]ケイ素含有基を有するポリビニルアルコールを含み、上記ケイ素含有基が、シラノール基又は水の存在下でシラノール基に転化し得る基であり、上記ポリビニルアルコールの粘度平均重合度が1,000以上6,000以下、けん化度が98.7モル%以上、且つ全構造単位に対する上記ケイ素含有基の含有量が0.01モル%以上1.0モル%以下である、光学フィルム;
[11]偏光フィルムである、[10]の光学フィルム;及び
[12]単層フィルムである、[10]又は[11]の光学フィルム;
のいずれかを提供することで達成される。
The above purpose is
[1] A group containing polyvinyl alcohol having a silicon-containing group, and the silicon-containing group can be converted into a silanol group or a silanol group in the presence of water, and the viscosity average degree of polymerization of the polyvinyl alcohol is 1,000 or more. A film for producing an optical film, which has a saponification degree of 98.7 mol% or more and a silicon-containing group content of 0.01 mol% or more and 1.0 mol% or less with respect to all structural units;
[2] The film for producing an optical film according to [1], which has a saponification degree of 99.5 mol% or more;
[3] The film for producing an optical film according to [1] or [2], wherein the product of the viscosity average degree of polymerization and the content of the silicon-containing group is 100 mol% or more and 2,000 mol% or less;
[4] A film for producing an optical film according to any one of [1] to [3], which has an average thickness of 1 μm or more and 75 μm or less;
[5] A film for producing an optical film according to any one of [1] to [4], which has a swelling degree of 140% or more and 400% or less.
[6] The film for producing an optical film according to any one of [1] to [5], wherein the optical film is a polarizing film;
[7] A film for producing an optical film according to any one of [1] to [6], which is a non-stretched film;
[8] A method for producing an optical film, comprising a step of uniaxially stretching the film for producing an optical film according to any one of [1] to [7];
[9] The method for producing an optical film according to [8], wherein the optical film is a polarizing film;
[10] A group containing polyvinyl alcohol having a silicon-containing group, and the silicon-containing group can be converted into a silanol group or a silanol group in the presence of water, and the viscosity average degree of polymerization of the polyvinyl alcohol is 1,000 or more. An optical film having a saponification degree of 98.7 mol% or more and a silicon-containing group content of 0.01 mol% or more and 1.0 mol% or less with respect to all structural units;
[11] The optical film of [10] which is a polarizing film; and the optical film of [10] or [11] which is a [12] monolayer film;
Achieved by providing one of the above.
 本発明によれば、良好な生産性を有し、同じ重合度を有する非変性のPVAを用いた場合と比べて光学性能及び耐湿熱性が優れる光学フィルムを得ることができる光学フィルム製造用フィルム、このような光学フィルム製造用フィルムを用いた光学フィルムの製造方法及び光学フィルムを提供することができる。 According to the present invention, an optical film manufacturing film capable of obtaining an optical film having good productivity and excellent optical performance and moisture heat resistance as compared with the case of using non-modified PVA having the same degree of polymerization, It is possible to provide an optical film manufacturing method and an optical film using such an optical film manufacturing film.
<光学フィルム製造用フィルム>
 本発明の光学フィルム製造用フィルムは、ケイ素含有基を有するポリビニルアルコール(以下、「シラノール変性PVA」と称することがある。)を含む。
<Film for manufacturing optical film>
The film for producing an optical film of the present invention contains polyvinyl alcohol having a silicon-containing group (hereinafter, may be referred to as "silanol-modified PVA").
(シラノール変性PVA)
 シラノール変性PVAは、ビニルアルコール単位(-CH-CH(OH)-)を構造単位として有する重合体であって、かつケイ素含有基を有する。シラノール変性PVAは、ケイ素含有基を含む構造単位を含んでいてよく、酢酸ビニル単位等のビニルエステル単位やその他の構造単位をさらに有していてもよい。
(Silanol-modified PVA)
The silanol-modified PVA is a polymer having a vinyl alcohol unit (-CH 2- CH (OH)-) as a structural unit, and has a silicon-containing group. The silanol-modified PVA may contain a structural unit containing a silicon-containing group, and may further have a vinyl ester unit such as a vinyl acetate unit or another structural unit.
 シラノール変性PVAの粘度平均重合度の下限は1,000であり、2,000が好ましく、2,500がより好ましい。シラノール変性PVAの粘度平均重合度が上記下限以上であることにより、本発明の光学フィルム製造用フィルムは延伸加工性に優れたものとなり、優れた光学性能及び耐湿熱性を有する光学フィルムを得ることができる。一方、上記粘度平均重合度の上限は、6,000であり、5,000が好ましく、4,000がより好ましい。シラノール変性PVAの粘度平均重合度が上記上限以下であることにより、良好な水溶性を発揮し、また、水溶液の粘度の上昇が抑制される。このため、シラノール変性PVAの粘度平均重合度が上記上限以下であることで、良好な製膜性が発揮され、本発明の光学フィルム製造用フィルムの生産性を高めることができる。 The lower limit of the viscosity average degree of polymerization of silanol-modified PVA is 1,000, preferably 2,000, and more preferably 2,500. When the viscosity average degree of polymerization of the silanol-modified PVA is at least the above lower limit, the film for producing an optical film of the present invention has excellent stretchability, and an optical film having excellent optical performance and moisture heat resistance can be obtained. it can. On the other hand, the upper limit of the viscosity average degree of polymerization is 6,000, preferably 5,000, and more preferably 4,000. When the viscosity average degree of polymerization of silanol-modified PVA is not more than the above upper limit, good water solubility is exhibited and an increase in the viscosity of the aqueous solution is suppressed. Therefore, when the viscosity average degree of polymerization of silanol-modified PVA is not more than the above upper limit, good film-forming property can be exhibited and the productivity of the film for producing an optical film of the present invention can be enhanced.
 粘度平均重合度とは、JIS K6726-1994の記載に準じて測定される平均重合度を意味する。すなわち、本明細書中において、粘度平均重合度は、PVAの残存ビニルエステル基を再けん化し、精製した後、30℃の水中で測定した極限粘度[η](単位:デシリットル/g)から、下記式により求められる。
 粘度平均重合度Po=([η]×10/8.29)(1/0.62)
The viscosity average degree of polymerization means the average degree of polymerization measured according to the description of JIS K6726-1994. That is, in the present specification, the viscosity average degree of polymerization is determined from the extreme viscosity [η] (unit: decylliter / g) measured in water at 30 ° C. after reseminating and purifying the residual vinyl ester group of PVA. It is calculated by the following formula.
Viscosity Average Degree of Polymerization Po = ([η] × 10 4 / 8.29) (1 / 0.62)
 シラノール変性PVAのけん化度の下限は、98.7モル%であり、99.0モル%が好ましく、99.5モル%がより好ましく、99.8モル%がさらに好ましく、99.9モル%が特に好ましい。けん化度が上記下限以上であることにより、光学性能及び耐湿熱性に優れた光学フィルムが得られる。一方、けん化度の上限に特に制限はないが、シラノール変性PVAの生産性の観点から、99.99モル%以下が好ましい。 The lower limit of the saponification degree of silanol-modified PVA is 98.7 mol%, preferably 99.0 mol%, more preferably 99.5 mol%, further preferably 99.8 mol%, and 99.9 mol%. Especially preferable. When the saponification degree is at least the above lower limit, an optical film having excellent optical performance and moisture heat resistance can be obtained. On the other hand, the upper limit of the saponification degree is not particularly limited, but is preferably 99.99 mol% or less from the viewpoint of productivity of silanol-modified PVA.
 PVAのけん化度とは、PVAが有する、けん化によってビニルアルコール単位に変換されうる構造単位(典型的にはビニルエステル単位)とビニルアルコール単位との合計モル数に対するビニルアルコール単位のモル数の割合(モル%)をいう。PVAのけん化度はJIS K6726-1994の記載に準じて測定することができる。 The degree of saponification of PVA is the ratio of the number of moles of vinyl alcohol units to the total number of moles of structural units (typically vinyl ester units) and vinyl alcohol units that can be converted into vinyl alcohol units by saponification (PVA). Mol%). The degree of saponification of PVA can be measured according to the description of JIS K6726-1994.
 シラノール変性PVAは、ケイ素含有基を有する。このケイ素含有基は、シラノール基又は水の存在下でシラノール基に転化し得る基である。シラノール基とは、ケイ素原子とこのケイ素原子に結合する少なくとも1つのヒドロキシ基とを有する基をいう。シラノール基が有するヒドロキシ基の数は、通常1~3のいずれかであり、3であることが好ましい。シラノール基が有するヒドロキシ基は、塩(例えば、-ONa、-OK等)の状態で存在していてもよい。 Silanol-modified PVA has a silicon-containing group. This silicon-containing group is a silanol group or a group that can be converted to a silanol group in the presence of water. The silanol group refers to a group having a silicon atom and at least one hydroxy group bonded to the silicon atom. The number of hydroxy groups contained in the silanol group is usually any one of 1 to 3, and is preferably 3. The hydroxy group contained in the silanol group may exist in the state of a salt (for example, -ONa, -OK, etc.).
 水の存在下でシラノール基に転化し得る基とは、PVAを水中で、反応時間2時間、反応温度150℃の条件下に加水分解した場合に、シラノール基に転化し得る基を意味する。水の存在下でシラノール基に転化し得る基としては、ケイ素原子に少なくとも1つのアルコキシ基又はアシロキシ基が結合した基等を挙げることができ、具体的にはトリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、メトキシジメチルシリル基、エトキシジメチルシリル基、トリアセトキシシリル基等を挙げることができる。 A group that can be converted to a silanol group in the presence of water means a group that can be converted to a silanol group when PVA is hydrolyzed in water under conditions of a reaction time of 2 hours and a reaction temperature of 150 ° C. Examples of the group that can be converted to a silanol group in the presence of water include a group in which at least one alkoxy group or an acyloxy group is bonded to a silicon atom, and specifically, a trimethoxysilyl group and a triethoxysilyl group. , Triisopropoxysilyl group, dimethoxymethylsilyl group, diethoxymethylsilyl group, methoxydimethylsilyl group, ethoxydimethylsilyl group, triacetoxysilyl group and the like.
 ケイ素含有基、すなわちシラノール基又は水の存在下でシラノール基に転化し得る基としては、下記式(1)~(3)のいずれかで表される基を挙げることができる。これらの中でも、下記式(1)で表される基が好ましい。 Examples of the silicon-containing group, that is, a silanol group or a group that can be converted to a silanol group in the presence of water, include a group represented by any of the following formulas (1) to (3). Among these, the group represented by the following formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)~(3)中、Rは、それぞれ独立して、水素原子、置換若しくは非置換の炭素数1~20の炭化水素基、又は置換若しくは非置換の炭素数1~20のアシル基である。Rは、それぞれ独立して、置換又は非置換の炭素数1~20の炭化水素基である。 In formulas (1) to (3), R 1 is independently a hydrogen atom, a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, or a substituted or unsubstituted acyl group having 1 to 20 carbon atoms. It is a group. R 2 is an independently substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
 R及びRで表される炭素数1~20の炭化水素基としては、脂肪族炭化水素基、脂環式炭化水素基(シクロヘキシル基等)、芳香族炭化水素基(フェニル基等)等を挙げることができ、脂肪族炭化水素基が好ましい。脂肪族炭化水素基としては、メチル基、エチル基、プロピル基等のアルキル基、ビニル基等のアルケニル基、エチニル基等のアルキニル基等を挙げることができ、アルキル基が好ましい。R及びRで表される炭化水素基の炭素数としては、1~6が好ましく、1~3がより好ましい。R及びRで表される炭化水素基が有する水素原子の少なくとも一部は、ハロゲン原子、カルボキシ基、アルコキシ基(メトキシ基、エトキシ基等)等で置換されていてもよい。 Examples of the hydrocarbon group having 1 to 20 carbon atoms represented by R 1 and R 2 include an aliphatic hydrocarbon group, an alicyclic hydrocarbon group (cyclohexyl group, etc.), an aromatic hydrocarbon group (phenyl group, etc.) and the like. The aliphatic hydrocarbon group is preferable. Examples of the aliphatic hydrocarbon group include an alkyl group such as a methyl group, an ethyl group and a propyl group, an alkenyl group such as a vinyl group and an alkynyl group such as an ethynyl group, and an alkyl group is preferable. The number of carbon atoms of the hydrocarbon group represented by R 1 and R 2 is preferably 1 to 6, and more preferably 1 to 3. At least a part of the hydrogen atom contained in the hydrocarbon group represented by R 1 and R 2 may be substituted with a halogen atom, a carboxy group, an alkoxy group (methoxy group, ethoxy group, etc.) and the like.
 Rで表される炭素数1~20のアシル基としては、上述した炭素数1~20の炭化水素基にカルボニル基(-CO-)が結合した基を挙げることができる。具体的には、アセチル基、プロピオニル基、ベンゾイル基等を挙げることができる。Rで表されるアシル基の炭素数としては、1~6が好ましく、1~3がより好ましい。Rで表されるアシル基が有する水素原子の少なくとも一部は、ハロゲン原子、カルボキシ基、アルコキシ基(メトキシ基等)等で置換されていてもよい。 Examples of the acyl group having 1 to 20 carbon atoms represented by R 1 include a group in which a carbonyl group (−CO−) is bonded to the above-mentioned hydrocarbon group having 1 to 20 carbon atoms. Specific examples thereof include an acetyl group, a propionyl group, and a benzoyl group. The number of carbon atoms of the acyl group represented by R 1 is preferably 1 to 6, and more preferably 1 to 3. At least a part of the hydrogen atom of the acyl group represented by R 1 may be substituted with a halogen atom, a carboxy group, an alkoxy group (methoxy group or the like) or the like.
 上記式(1)~(3)のいずれかで表される基において、Rの少なくとも一つが水素原子である場合、この基はシラノール基である。また、上記式(1)~(3)のいずれかで表される基において、全てのRが水素原子では無い場合、この基は水の存在下でシラノール基に転化し得る基である。Rとしては、水素原子、又は置換若しくは非置換の炭素数1~20の炭化水素基であることが好ましい。 In the group represented by any of the above formulas (1) to (3), when at least one of R 1 is a hydrogen atom, this group is a silanol group. Further, in the group represented by any of the above formulas (1) to (3), when all R 1s are not hydrogen atoms, this group is a group that can be converted into a silanol group in the presence of water. R 1 is preferably a hydrogen atom or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
 得られる光学フィルムの光学性能の観点などから、ケイ素含有基はケイ素-炭素結合により、重合体主鎖中の炭素原子に直接結合していることが好ましい。 From the viewpoint of the optical performance of the obtained optical film, it is preferable that the silicon-containing group is directly bonded to the carbon atom in the polymer main chain by the silicon-carbon bond.
 シラノール変性PVAの全構造単位に対するケイ素含有基の含有量は、0.01モル%以上1.0モル%以下である。このように、所定量のケイ素含有基を有するシラノール変性PVAを用いることにより、得られる光学フィルムの光学性能及び耐湿熱性が、重合度が同じである非変性のPVAを用いて得られる従来の光学フィルムと比較して、顕著に向上する。なお、非変性のPVAとは、ビニルエステルの単独重合体をけん化して得られるPVAである。一方で、得られる光学フィルムの光学性能が同じである高重合度のPVAと比較すると、上記シラノール変性PVAは、高温(例えば80℃)での水溶液の粘度が低い。従って、シラノール変性PVAを用いることで、当該光学フィルム製造用フィルムは良好な生産性(製膜性)を有しながら、得られる光学フィルムの光学性能及び耐湿熱性を高めることができる。あるいは、シラノール変性PVAを用いることで、得られる光学フィルムが優れた光学性能及び耐湿熱性を発揮しつつ、当該光学フィルム製造用フィルムの生産性(製膜性)を改善することができる。 The content of silicon-containing groups with respect to all structural units of silanol-modified PVA is 0.01 mol% or more and 1.0 mol% or less. As described above, by using silanol-modified PVA having a predetermined amount of silicon-containing groups, the optical performance and moist heat resistance of the obtained optical film can be obtained by using non-modified PVA having the same degree of polymerization. Significantly improved compared to film. The non-modified PVA is PVA obtained by saponifying a homopolymer of vinyl ester. On the other hand, the silanol-modified PVA has a lower viscosity of the aqueous solution at a high temperature (for example, 80 ° C.) than the PVA having a high degree of polymerization having the same optical performance of the obtained optical film. Therefore, by using silanol-modified PVA, the optical performance and moist heat resistance of the obtained optical film can be improved while the film for producing the optical film has good productivity (film forming property). Alternatively, by using silanol-modified PVA, the productivity (film-forming property) of the optical film-making film can be improved while the obtained optical film exhibits excellent optical performance and moisture-heat resistance.
 シラノール変性PVAの全構造単位に対するケイ素含有基の含有量の下限は、0.01モル%であり、0.05モル%が好ましく、0.1モル%がより好ましく、0.25モル%がさらに好ましい。ケイ素含有基の含有量を上記下限以上とすることで、シラノール変性させることによる上記効果を十分に発揮させることができる。一方、シラノール変性PVAの全構造単位に対するケイ素含有基の含有量の上限は、1.0モル%であり、0.8モル%が好ましく、0.6モル%がより好ましい。ケイ素含有基の含有量を上記上限以下とすることで、シラノール変性PVAの水溶性及び水溶液の粘度安定性が良好となり、フィルム生産性(製膜性)を高めることなどができる。 The lower limit of the content of silicon-containing groups with respect to all structural units of silanol-modified PVA is 0.01 mol%, preferably 0.05 mol%, more preferably 0.1 mol%, further 0.25 mol%. preferable. By setting the content of the silicon-containing group to the above lower limit or more, the above effect by silanol modification can be sufficiently exhibited. On the other hand, the upper limit of the content of the silicon-containing group with respect to all the structural units of the silanol-modified PVA is 1.0 mol%, preferably 0.8 mol%, and more preferably 0.6 mol%. By setting the content of the silicon-containing group to the above upper limit or less, the water solubility of the silanol-modified PVA and the viscosity stability of the aqueous solution are improved, and the film productivity (film-forming property) can be improved.
 シラノール変性PVAにおいて、ケイ素含有基の含有量(モル%)は、例えば、けん化する前のビニルエステル重合体のプロトンNMRから求められる。ここで、けん化する前のビニルエステル重合体のプロトンNMRを測定するに際しては、ビニルエステル重合体をヘキサン-アセトンにより再沈精製して重合体中から未反応のモノマーを完全に取り除き、次いで90℃減圧乾燥を2日間行った後、CDCl溶媒に溶解して分析に供する。 In silanol-modified PVA, the content (mol%) of silicon-containing groups can be determined, for example, by proton NMR of the vinyl ester polymer before saponification. Here, when measuring the proton NMR of the vinyl ester polymer before saponification, the vinyl ester polymer is reprecipitated and purified with hexane-acetone to completely remove unreacted monomers from the polymer, and then at 90 ° C. After drying under reduced pressure for 2 days, it is dissolved in a CDCl 3 solvent and subjected to analysis.
 シラノール変性PVAの粘度平均重合度とケイ素含有基の含有量との積の下限は、100モル%が好ましく、300モル%がより好ましく、500モル%がさらに好ましく、700モル%が特に好ましい。上記積が上記下限以上であることにより、得られる光学フィルムの光学性能及び耐湿熱性がより優れたものとなる。一方、上記積の上限は、2,000モル%が好ましく、1,500がより好ましく、1,200がさらに好ましい。上記積が上記上限以下であることにより、シラノール変性PVAの水溶性をより高め、当該光学フィルム製造用フィルムの生産性をより高めることなどができる。 The lower limit of the product of the viscosity average degree of polymerization of silanol-modified PVA and the content of silicon-containing groups is preferably 100 mol%, more preferably 300 mol%, further preferably 500 mol%, and particularly preferably 700 mol%. When the product is at least the above lower limit, the optical performance and moisture heat resistance of the obtained optical film become more excellent. On the other hand, the upper limit of the product is preferably 2,000 mol%, more preferably 1,500, and even more preferably 1,200. When the product is not more than the above upper limit, the water solubility of the silanol-modified PVA can be further increased, and the productivity of the film for producing the optical film can be further increased.
 シラノール変性PVAは、ケイ素含有基を有する構造単位を有することが好ましい。ケイ素含有基を有する構造単位としては、下記式(4)で表される構造単位を挙げることができる。 The silanol-modified PVA preferably has a structural unit having a silicon-containing group. Examples of the structural unit having a silicon-containing group include a structural unit represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(4)中、Rは、水素原子又はメチル基である。Rは、単結合又は2価の連結基である。Rは、ケイ素含有基である。 In formula (4), R 3 is a hydrogen atom or a methyl group. R 4 is a single bond or divalent linking group. R 5 is a silicon-containing group.
 Rとしては、水素原子が好ましい。 As R 3, a hydrogen atom is preferred.
 Rで表される2価の連結基としては、-(CH-(nは、1~5の整数である。)又は-CONR-R-(Rは、水素原子又は炭素数1~5のアルキル基である。Rは、上記-(CH-で表される基、又は酸素原子及び窒素原子の少なくとも一方を含む2価の炭化水素基である。)で表される基を挙げることができる。 Examples of the divalent linking group represented by R 4, - (CH 2) n - (. N is an integer of 1-5), or -CONR 6 -R 7 - (R 6 is a hydrogen atom or It is an alkyl group having 1 to 5 carbon atoms. R 7 is a group represented by- (CH 2 ) n- above, or a divalent hydrocarbon group containing at least one of an oxygen atom and a nitrogen atom.) The group represented by can be mentioned.
 酸素原子及び窒素原子の少なくとも一方を含む2価の炭化水素基としては、-CHCHNHCHCHCH-、-CHCHNHCHCH-、-CHCHNHCH-、-CHCHN(CH)CHCH-、-CHCHN(CH)CH-、-CHCHOCHCHCH-、-CHCHOCHCH-、-CHCHOCH-等を挙げることができる。酸素原子及び窒素原子の少なくとも一方を含む2価の炭化水素基の炭素数としては、例えば2以上6以下とすることができる。 Examples of the divalent hydrocarbon group containing at least one oxygen atom and a nitrogen atom, -CH 2 CH 2 NHCH 2 CH 2 CH 2 -, - CH 2 CH 2 NHCH 2 CH 2 -, - CH 2 CH 2 NHCH 2 -, -CH 2 CH 2 N (CH 3 ) CH 2 CH 2- , -CH 2 CH 2 N (CH 3 ) CH 2- , -CH 2 CH 2 OCH 2 CH 2 CH 2- , -CH 2 CH 2 OCH 2 CH 2- , -CH 2 CH 2 OCH 2-, etc. can be mentioned. The number of carbon atoms of the divalent hydrocarbon group containing at least one of an oxygen atom and a nitrogen atom can be, for example, 2 or more and 6 or less.
 Rは、単結合であることが好ましい。 R 4 is preferably a single bond.
 Rで表されるケイ素含有基の具体例としては、上述したとおりであり、上記式(1)~(3)のいずれかで表される基を挙げることができ、上記式(1)で表される基が好ましい。 Specific examples of the silicon-containing group represented by R 5 are as described above, and a group represented by any of the above formulas (1) to (3) can be mentioned, and the above formula (1) can be used. The group represented is preferred.
 ケイ素含有基を有する構造単位に含まれるケイ素含有基の数は、特に限定されないが、1であってよい。シラノール変性PVAの全構造単位に対するケイ素含有基を有する構造単位の含有量の範囲は、上述した全構造単位に対するケイ素含有基の含有量の範囲であってよい。また、シラノール変性PVAの粘度平均重合度とケイ素含有基を有する構造単位の含有量との積の範囲は、上述した粘度平均重合度とケイ素含有基の含有量との積の範囲であってよい。 The number of silicon-containing groups contained in the structural unit having silicon-containing groups is not particularly limited, but may be 1. The range of the content of the structural unit having a silicon-containing group with respect to all the structural units of the silanol-modified PVA may be the range of the content of the silicon-containing group with respect to all the structural units described above. Further, the range of the product of the viscosity average degree of polymerization of silanol-modified PVA and the content of the structural unit having a silicon-containing group may be the range of the product of the above-mentioned viscosity average degree of polymerization and the content of the silicon-containing group. ..
 シラノール変性PVAは、ビニルアルコール単位、ビニルエステル単位及びケイ素含有基を有する構造単位以外のその他の構造単位を有していてもよい。但し、シラノール変性PVAの全構造単位に対する上記その他の構造単位の含有量は、15モル%以下が好ましく、5モル%以下がより好ましく、1モル%以下がさらに好ましく、0.1モル%以下がよりさらに好ましい場合もある。シラノール変性PVAが、実質的にビニルアルコール単位、ビニルエステル単位及びケイ素含有基を有する構造単位から構成されていることで、本発明の効果がより十分に奏される場合がある。 The silanol-modified PVA may have other structural units other than the vinyl alcohol unit, the vinyl ester unit, and the structural unit having a silicon-containing group. However, the content of the above other structural units with respect to all the structural units of silanol-modified PVA is preferably 15 mol% or less, more preferably 5 mol% or less, further preferably 1 mol% or less, and 0.1 mol% or less. It may be even more preferable. When the silanol-modified PVA is substantially composed of a vinyl alcohol unit, a vinyl ester unit, and a structural unit having a silicon-containing group, the effects of the present invention may be more fully exhibited.
 当該光学フィルム製造用フィルムは、1種のシラノール変性PVAを単独で含有してもよく、重合度、けん化度及びケイ素含有基の含有量等が互いに異なる2種以上のシラノール変性PVAを含有してもよい。 The film for producing an optical film may contain one kind of silanol-modified PVA alone, or contains two or more kinds of silanol-modified PVA having different degrees of polymerization, saponification, silicon-containing group content and the like. May be good.
 当該光学フィルム製造用フィルムにおけるシラノール変性PVAの含有量の下限は特に限定されないが、50質量%が好ましく、80質量%がより好ましく、85質量%がさらに好ましい。シラノール変性PVAの含有量を上記下限以上とすることで、本発明の効果をより高めることができる。一方、この含有量の上限は特に限定されず、100質量%であってよく、99質量%が好ましく、95質量%がより好ましい。 The lower limit of the content of silanol-modified PVA in the film for producing an optical film is not particularly limited, but is preferably 50% by mass, more preferably 80% by mass, and even more preferably 85% by mass. By setting the content of silanol-modified PVA to the above lower limit or more, the effect of the present invention can be further enhanced. On the other hand, the upper limit of this content is not particularly limited, and may be 100% by mass, preferably 99% by mass, and more preferably 95% by mass.
(シラノール変性PVAの製造方法)
 シラノール変性PVAの製造方法は特に限定されない。例えば、ビニルエステルモノマーと、ケイ素含有基を有するモノマーとを共重合させ、得られるビニルエステル重合体をけん化することにより製造することができる。
(Method for producing silanol-modified PVA)
The method for producing silanol-modified PVA is not particularly limited. For example, it can be produced by copolymerizing a vinyl ester monomer and a monomer having a silicon-containing group and saponifying the obtained vinyl ester polymer.
 ビニルエステルモノマーとしては、例えばギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリアン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル等を挙げることができる。これらの中でも、酢酸ビニルが好ましい。 Examples of the vinyl ester monomer include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerianate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, vinyl versatic acid and the like. it can. Among these, vinyl acetate is preferable.
 ケイ素含有基を有するモノマーとしては、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、アリルトリメトキシシラン、アリルメチルジメトキシシラン、アリルジメチルメトキシシラン、アリルトリエトキシシラン、アリルメチルジエトキシシラン、アリルジメチルエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、ビニルイソブチルジメトキシシラン、ビニルエチルジメトキシシラン、ビニルメトキシジブトキシシラン、ビニルジメトキシブトキシシラン、ビニルトリブトキシシラン、ビニルメトキシジヘキシロキシシラン、ビニルジメトキシヘキシロキシシラン、ビニルトリヘキシロキシシラン、ビニルメトキシジオクチロキシシラン、ビニルジメトキシオクチロキシシラン、ビニルトリオクチロキシシラン、ビニルメトキシジラウリロキシシラン、ビニルジメトキシラウリロキシシラン、ビニルメトキシジオレイロキシシラン、ビニルジメトキシオレイロキシシラン、3-(メタ)アクリルアミド-プロピルトリメトキシシラン、3-(メタ)アクリルアミド-プロピルトリエトキシシラン、3-(メタ)アクリルアミド-プロピルトリ(β-メトキシエトキシ)シラン、2-(メタ)アクリルアミド-エチルトリメトキシシラン、1-(メタ)アクリルアミド-メチルトリメトキシシラン、2-(メタ)アクリルアミド-2-メチルプロピルトリメトキシシラン、2-(メタ)アクリルアミド-イソプロピルトリメトキシシラン、N-(2-(メタ)アクリルアミド-エチル)-アミノプロピルトリメトキシシラン、(3-(メタ)アクリルアミド-プロピル)-オキシプロピルトリメトキシシラン、3-(メタ)アクリルアミド-プロピルトリアセトキシシラン、2-(メタ)アクリルアミド-エチルトリアセトキシシラン、4-(メタ)アクリルアミド-ブチルトリアセトキシシラン、3-(メタ)アクリルアミド-プロピルトリプロピオニルオキシシラン、2-(メタ)アクリルアミド-2-メチルプロピルトリアセトキシシラン、N-(2-(メタ)アクリルアミド-エチル)-アミノプロピルトリアセトキシシラン、3-(メタ)アクリルアミド-プロピルイソブチルジメトキシシラン、2-(メタ)アクリルアミド-エチルジメチルメトキシシラン、3-(メタ)アクリルアミド-プロピルメチルジアセトキシシラン、2-(メタ)アクリルアミド-2-メチルプロピルハイドロジェンジメトキシシラン、3-(N-メチル-(メタ)アクリルアミド)-プロピルトリメトキシシラン、2-(N-エチル-(メタ)アクリルアミド)-エチルトリアセトキシシラン等を挙げることができる。 Examples of the monomer having a silicon-containing group include vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyldimethylethoxysilane, allyltrimethoxysilane, and allylmethyldimethoxysilane. Allyldimethylmethoxysilane, Allyltriethoxysilane, Allylmethyldiethoxysilane, Allyldimethylethoxysilane, Vinyltris (β-methoxyethoxy) silane, Vinylisobutyldimethoxysilane, Vinylethyldimethoxysilane, Vinylmethoxydibutoxysilane, Vinyldimethoxybutoxysilane , Vinyl tributoxysilane, vinylmethoxydihexyloxysilane, vinyldimethoxyhexyloxysilane, vinyltrihexyloxysilane, vinylmethoxydioctyloxysilane, vinyldimethoxyoctyloxysilane, vinyltrioctyloxysilane, vinylmethoxydilauryloxysilane , Vinyldimethoxylauryloxysilane, vinylmethoxydioleyloxysilane, vinyldimethoxyoleyloxysilane, 3- (meth) acrylamide-propyltrimethoxysilane, 3- (meth) acrylamide-propyltriethoxysilane, 3- (meth) acrylamide -Propyltri (β-methoxyethoxy) silane, 2- (meth) acrylamide-ethyltrimethoxysilane, 1- (meth) acrylamide-methyltrimethoxysilane, 2- (meth) acrylamide-2-methylpropyltrimethoxysilane, 2- (Meta) acrylamide-isopropyltrimethoxysilane, N- (2- (meth) acrylamide-ethyl) -aminopropyltrimethoxysilane, (3- (meth) acrylamide-propyl) -oxypropyltrimethoxysilane, 3- (Meta) acrylamide-propyltriacetoxysilane, 2- (meth) acrylamide-ethyltriacetoxysilane, 4- (meth) acrylamide-butyltriacetoxysilane, 3- (meth) acrylamide-propyltripropionyloxysilane, 2-( Meta) acrylamide-2-methylpropyltriacetoxysilane, N- (2- (meth) acrylamide-ethyl) -aminopropyltriacetoxysilane, 3- (meth) acrylamide-propylisobutyldimethoxysilane, 2- (meth) acrylamide- Ethyldimethylmethoxy Silane, 3- (meth) acrylamide-propylmethyldiacetoxysilane, 2- (meth) acrylamide-2-methylpropylhydrogendimethoxysilane, 3- (N-methyl- (meth) acrylamide) -propyltrimethoxysilane, 2 -(N-Ethyl- (meth) acrylamide) -ethyltriacetoxysilane and the like can be mentioned.
 ビニルエステルモノマーとケイ素含有基を有するモノマーとを共重合させる方法としては特に限定されず、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の公知の方法が挙げられる。これらの方法の中でも、無溶媒で行う塊状重合法、及びアルコール等の溶媒を用いて行う溶液重合法が好ましい。溶液重合時に溶媒として使用される溶媒としては、酢酸メチル、酢酸エチル等のエステル;ベンゼン、トルエン等の芳香族炭化水素;メタノール、エタノール等の低級アルコール等が挙げられる。 The method for copolymerizing the vinyl ester monomer and the monomer having a silicon-containing group is not particularly limited, and examples thereof include known methods such as a massive polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Among these methods, a massive polymerization method performed without a solvent and a solution polymerization method performed using a solvent such as alcohol are preferable. Examples of the solvent used as a solvent in solution polymerization include esters such as methyl acetate and ethyl acetate; aromatic hydrocarbons such as benzene and toluene; lower alcohols such as methanol and ethanol.
 共重合反応に使用される開始剤としては、従来公知のアゾ系開始剤、過酸化物系開始剤、レドックス系開始剤等が適宜選ばれる。アゾ系開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等を挙げることができる。過酸化物系開始剤としては、ジノルマルプロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジエトキシエチルパーオキシジカーボネート等のパーカーボネート化合物;t-ブチルパーオキシネオデカネート、α-クミルパーオキシネオデカネート、t-ブチルパーオキシネオデカネート等のパーエステル化合物;アセチルシクロヘキシルスルホニルパーオキシド、ジイソブチリルパーオキシド;2,4,4-トリメチルペンチル-2-パーオキシフェノキシアセテート等が挙げられる。さらには、例示した上記過酸化物系開始剤に過硫酸カリウム、過硫酸アンモニウム、過酸化水素等を組み合わせて開始剤とすることができる。レドックス系開始剤としては、上記の過酸化物と亜硫酸水素ナトリウム、炭酸水素ナトリウム、酒石酸、L-アスコルビン酸、ロンガリット等の還元剤とを組み合わせたものが挙げられる。 As the initiator used in the copolymerization reaction, conventionally known azo-based initiators, peroxide-based initiators, redox-based initiators and the like are appropriately selected. Examples of the azo initiator include 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy-2,4-). Dimethylvaleronitrile) and the like. Peroxide-based initiators include percarbonate compounds such as dinormalpropyl peroxydicarbonate, diisopropylperoxydicarbonate, di-2-ethylhexyl peroxydicarbonate, and diethoxyethylperoxydicarbonate; t-butylper. Perester compounds such as oxyneodecanate, α-cumylperoxyneodecanate, t-butylperoxyneodecanate; acetylcyclohexylsulfonyl peroxide, diisobutyryl peroxide; 2,4,4-trimethylpentyl-2- Examples thereof include peroxyphenoxyacetate. Further, potassium persulfate, ammonium persulfate, hydrogen peroxide and the like can be combined with the above-exemplified peroxide-based initiator to prepare the initiator. Examples of the redox-based initiator include a combination of the above-mentioned peroxide and a reducing agent such as sodium hydrogen sulfite, sodium hydrogen carbonate, tartaric acid, L-ascorbic acid, and longalit.
 共重合反応を行う際の重合温度については特に制限はないが、0℃以上180℃以下が好ましく、20℃以上160℃以下がより好ましく、30℃以上150℃以下がさらに好ましい。 The polymerization temperature when the copolymerization reaction is carried out is not particularly limited, but is preferably 0 ° C. or higher and 180 ° C. or lower, more preferably 20 ° C. or higher and 160 ° C. or lower, and further preferably 30 ° C. or higher and 150 ° C. or lower.
 ビニルエステルモノマーとケイ素含有基を有するモノマーとを共重合させる際には、本発明の効果が損なわれない範囲であれば、必要に応じて、共重合可能な他のモノマーを共重合させることができる。この他のモノマーとしては、例えば、エチレン;プロピレン、1-ブテン、イソブテン等の炭素数3~30のオレフィン;アクリル酸又はその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルへキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル;メタクリル酸又はその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルへキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸又はその塩、アクリルアミドプロピルジメチルアミン又はその塩、N-メチロールアクリルアミド又はその誘導体等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸又はその塩、メタクリルアミドプロピルジメチルアミン又はその塩、N-メチロールメタクリルアミド又はその誘導体等のメタクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;アクリロニトリル、メタクリロニトリル等のシアン化ビニル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸又はその塩、エステル若しくは酸無水物;イタコン酸又はその塩、エステル若しくは酸無水物;酢酸イソプロペニル等が挙げられる。ビニルエステル重合体は、上述の他のモノマーのうちの1種又は2種以上に由来する構造単位を有することができる。 When copolymerizing a vinyl ester monomer and a monomer having a silicon-containing group, it is possible to copolymerize another copolymerizable monomer, if necessary, as long as the effect of the present invention is not impaired. it can. Other monomers include, for example, ethylene; olefins having 3 to 30 carbon atoms such as propylene, 1-butyl, and isobutene; acrylate or a salt thereof; methyl acrylate, ethyl acrylate, n-propyl acrylate, acrylate, and the like. Acrylic acid esters such as i-propyl, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid or a salt thereof; methacryl Methyl acidate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, methacryl Methacrylate esters such as octadecyl acid; acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamide propanesulfonic acid or its salts, acrylamidepropyldimethylamine or its salts, N-methylol Acrylamide derivatives such as acrylamide or derivatives thereof; methacrylamide, N-methylmethacrylate, N-ethylmethacrylate, methacrylamide propanesulfonic acid or a salt thereof, methacrylamidepropyldimethylamine or a salt thereof, N-methylolmethacrylate or a derivative thereof. Methacrylate derivatives such as N-vinylformamide, N-vinylacetamide, N-vinylamide such as N-vinylpyrrolidone; methylvinyl ether, ethylvinyl ether, n-propylvinyl ether, i-propylvinyl ether, n-butylvinyl ether, i-butyl Vinyl ethers such as vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; vinyl cyanide such as acrylonitrile and methacrylonitrile; vinyl halide such as vinyl chloride, vinylidene chloride, vinyl fluoride and vinylidene fluoride; allyl acetate, chloride Allyl compounds such as allyl; maleic acid or a salt thereof, ester or acid anhydride; itaconic acid or a salt thereof, ester or acid anhydride; isopropenyl acetate and the like can be mentioned. The vinyl ester polymer can have a structural unit derived from one or more of the other monomers described above.
 ビニルエステル重合体に占める上記他のモノマー(ビニルエステルモノマー及びケイ素含有基を有するモノマー以外のモノマー)に由来する構造単位の割合は、本発明の効果を妨げない限り必ずしも制限されないが、ビニルエステル重合体を構成する全構造単位のモル数に基づいて、15モル%以下が好ましく、5モル%以下がより好ましく、1モル%以下がさらに好ましく、0.1モル%以下がよりさらに好ましい場合もある。 The proportion of structural units derived from the above-mentioned other monomers (monomers other than the vinyl ester monomer and the monomer having a silicon-containing group) in the vinyl ester polymer is not necessarily limited as long as the effect of the present invention is not impaired, but the vinyl ester weight Based on the number of moles of all structural units constituting the coalescence, 15 mol% or less is preferable, 5 mol% or less is more preferable, 1 mol% or less is further preferable, and 0.1 mol% or less may be further preferable. ..
 ビニルエステル重合体は、次いで、公知の方法に従って溶媒中でけん化され、シラノール変性PVAへと導かれる。けん化反応に使用される溶媒としては、アルコールが好ましい。アルコールとしては、メタノール、エタノール等の低級アルコールが挙げられ、メタノールが特に好適に使用される。けん化反応に使用される溶媒には、アルコールの他、アセトン、酢酸メチルや酢酸エチル等のエステル、トルエン等の有機溶媒がさらに含有されていてもよい。けん化反応に用いられる触媒としては、例えば水酸化カリウム、水酸化ナトリウム等のアルカリ金属の水酸化物、ナトリウムメチラート等のアルカリ触媒、鉱酸等の酸触媒等が挙げられる。けん化反応の温度としては、例えば20℃以上60℃以下とすることができる。けん化反応の進行に伴って、ゲル状生成物が析出してくる場合には、その時点で生成物を粉砕し、洗浄後、乾燥することにより、シラノール変性PVAが得られる。 The vinyl ester polymer is then saponified in a solvent according to a known method, leading to silanol-modified PVA. Alcohol is preferable as the solvent used for the saponification reaction. Examples of the alcohol include lower alcohols such as methanol and ethanol, and methanol is particularly preferably used. In addition to alcohol, the solvent used in the saponification reaction may further contain acetone, an ester such as methyl acetate or ethyl acetate, or an organic solvent such as toluene. Examples of the catalyst used in the saponification reaction include hydroxides of alkali metals such as potassium hydroxide and sodium hydroxide, alkaline catalysts such as sodium methylate, and acid catalysts such as mineral acid. The temperature of the saponification reaction can be, for example, 20 ° C. or higher and 60 ° C. or lower. When a gel-like product is precipitated as the saponification reaction progresses, the product is pulverized at that time, washed, and dried to obtain silanol-modified PVA.
(可塑剤)
 本発明の光学フィルム製造用フィルムは、可塑剤を含むことが好ましい。光学フィルム製造用フィルムが可塑剤を含むことにより、延伸性を高めることなどができる。可塑剤としては多価アルコールが好ましい。多価アルコールとしては、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、ジグリセリン、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパンなどが挙げられる。これらの中でも、延伸性の向上効果の点からグリセリンが好ましい。可塑剤は、1種又は2種以上を用いることができる。
(Plasticizer)
The film for producing an optical film of the present invention preferably contains a plasticizer. Since the film for producing an optical film contains a plasticizer, the stretchability can be improved. A polyhydric alcohol is preferable as the plasticizer. Examples of the polyhydric alcohol include ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, trimethylolpropane and the like. Among these, glycerin is preferable from the viewpoint of improving stretchability. As the plasticizer, one kind or two or more kinds can be used.
 本発明の光学フィルム製造用フィルムにおける可塑剤の含有量の下限としては、シラノール変性PVA100質量部に対して、1質量部が好ましく、3質量部がより好ましく、5質量部がさらに好ましい。可塑剤の含有量が上記下限以上であることにより、フィルムの延伸性が向上し、得られる光学フィルムの光学性能をより高めることなどができる。一方、この可塑剤の含有量の上限としては、シラノール変性PVA100質量部に対して、20質量部が好ましく、17質量部がより好ましく、15質量部がさらに好ましい。可塑剤の含有量が上記上限以下であることにより、フィルムが柔軟になり過ぎて取り扱い性が低下するのを抑制することなどができる。 The lower limit of the content of the plasticizer in the film for producing an optical film of the present invention is preferably 1 part by mass, more preferably 3 parts by mass, and even more preferably 5 parts by mass with respect to 100 parts by mass of silanol-modified PVA. When the content of the plasticizer is at least the above lower limit, the stretchability of the film is improved, and the optical performance of the obtained optical film can be further improved. On the other hand, the upper limit of the content of this plasticizer is preferably 20 parts by mass, more preferably 17 parts by mass, and even more preferably 15 parts by mass with respect to 100 parts by mass of silanol-modified PVA. When the content of the plasticizer is not more than the above upper limit, it is possible to prevent the film from becoming too flexible and the handleability from being lowered.
(界面活性剤)
 当該光学フィルム製造用フィルムは、界面活性剤を含むことが好ましい。界面活性剤を含む製膜原液を用いて製膜することにより、製膜性が向上してフィルムの厚み斑の発生が抑制されると共に、製膜に使用する金属ロールやベルトからのフィルムの剥離が容易になる。界面活性剤を含む製膜原液から光学フィルム製造用フィルムを製造した場合には、得られるフィルム中には界面活性剤が含有され得る。
(Surfactant)
The film for producing an optical film preferably contains a surfactant. By forming a film using a film-forming stock solution containing a surfactant, the film-forming property is improved and the occurrence of thickness unevenness of the film is suppressed, and the film is peeled off from the metal roll or belt used for film-forming. Becomes easier. When a film for producing an optical film is produced from a film-forming stock solution containing a surfactant, the resulting film may contain a surfactant.
 界面活性剤の種類は特に限定されないが、金属ロールやベルトからの剥離性の観点などから、アニオン性界面活性剤及びノニオン性界面活性剤が好ましい。 The type of surfactant is not particularly limited, but an anionic surfactant and a nonionic surfactant are preferable from the viewpoint of peelability from a metal roll or a belt.
 アニオン性界面活性剤としては、例えばラウリン酸カリウム等のカルボン酸型;ポリオキシエチレンラウリルエーテル硫酸塩、オクチルサルフェート等の硫酸エステル型;ドデシルベンゼンスルホネート等のスルホン酸型などを挙げることができる。 Examples of the anionic surfactant include a carboxylic acid type such as potassium laurate; a sulfate ester type such as polyoxyethylene lauryl ether sulfate and octyl sulfate; and a sulfonic acid type such as dodecylbenzene sulfonate.
 ノニオン性界面活性剤としては、例えばポリオキシエチレンオレイルエーテル等のアルキルエーテル型;ポリオキシエチレンオクチルフェニルエーテル等のアルキルフェニルエーテル型;ポリオキシエチレンラウレート等のアルキルエステル型;ポリオキシエチレンラウリルアミノエーテル等のアルキルアミン型;ポリオキシエチレンラウリン酸アミド等のアルキルアミド型;ポリオキシエチレンポリオキシプロピレンエーテル等のポリプロピレングリコールエーテル型;ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等のアルカノールアミド型;ポリオキシアルキレンアリルフェニルエーテル等のアリルフェニルエーテル型などを挙げることができる。 Examples of the nonionic surfactant include an alkyl ether type such as polyoxyethylene oleyl ether; an alkylphenyl ether type such as polyoxyethylene octylphenyl ether; an alkyl ester type such as polyoxyethylene laurate; and a polyoxyethylene lauryl amino ether. Alkylamine type such as; alkylamide type such as polyoxyethylene lauric acid amide; polypropylene glycol ether type such as polyoxyethylene polyoxypropylene ether; alkanolamide type such as laurate diethanolamide and oleic acid diethanolamide; polyoxyalkylene Examples thereof include an allylphenyl ether type such as allylphenyl ether.
 界面活性剤は、1種を単独で又は2種以上を組み合わせて使用することができる。 The surfactant can be used alone or in combination of two or more.
 当該光学フィルム製造用フィルムが界面活性剤を含む場合、その含有量の下限は、シラノール変性PVA100質量部に対して、0.01質量部が好ましく、0.02質量部がより好ましく、0.05質量部がさらに好ましい。界面活性剤の含有量を上記下限以上とすることで、製膜性及び剥離性がより向上する。一方、この含有量の上限は、シラノール変性PVA100質量部に対して、0.5質量部が好ましく、0.3質量部がより好ましく、0.1質量部がさらに好ましい。界面活性剤の含有量を上記上限以下とすることで、界面活性剤がフィルムの表面にブリードアウトしてブロッキングが生じ、取り扱い性が低下することを抑制することができる。 When the film for producing an optical film contains a surfactant, the lower limit of the content thereof is preferably 0.01 part by mass, more preferably 0.02 part by mass, and 0.05 part by mass with respect to 100 parts by mass of silanol-modified PVA. Parts by mass are even more preferred. By setting the content of the surfactant to the above lower limit or more, the film-forming property and the peelability are further improved. On the other hand, the upper limit of this content is preferably 0.5 parts by mass, more preferably 0.3 parts by mass, and even more preferably 0.1 parts by mass with respect to 100 parts by mass of silanol-modified PVA. By setting the content of the surfactant to the above upper limit or less, it is possible to prevent the surfactant from bleeding out to the surface of the film, causing blocking and deteriorating the handleability.
(他の添加剤等)
 本発明の光学フィルム製造用フィルムには、さらに、充填剤、銅化合物などの加工安定剤、耐候性安定剤、着色剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、難燃剤、他の熱可塑性樹脂、潤滑剤、香料、消泡剤、消臭剤、増量剤、剥離剤、離型剤、補強剤、架橋剤、防かび剤、防腐剤、結晶化速度遅延剤などの添加剤が必要に応じて適宜含有されていてもよい。
(Other additives, etc.)
Further, the film for producing an optical film of the present invention includes a filler, a processing stabilizer such as a copper compound, a weather resistance stabilizer, a colorant, an ultraviolet absorber, a light stabilizer, an antioxidant, an antistatic agent, and a flame retardant. , Other thermoplastic resins, lubricants, fragrances, defoamers, deodorants, bulking agents, release agents, mold release agents, reinforcing agents, cross-linking agents, fungicides, preservatives, crystallization rate retarders, etc. Additives may be appropriately contained as needed.
 本発明の光学フィルム製造用フィルムには、上述したシラノール変性PVA以外のPVAが含まれていてもよい。本発明の光学フィルム製造用フィルムにおける、シラノール変性PVAを含む全てのPVA、可塑剤及び界面活性剤の合計の占める割合は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、99質量%以上がよりさらに好ましい場合もある。本発明の光学フィルム製造用フィルムが、PVA、可塑剤及び界面活性剤から実質的に構成されていることで、本発明の効果がより十分に発揮できる。 The film for producing an optical film of the present invention may contain PVA other than the silanol-modified PVA described above. The total proportion of all PVA including silanol-modified PVA, the plasticizer and the surfactant in the film for producing an optical film of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more, and 95% by mass. The above is more preferable, and in some cases, 99% by mass or more is even more preferable. When the film for producing an optical film of the present invention is substantially composed of PVA, a plasticizer and a surfactant, the effects of the present invention can be more fully exhibited.
 本発明の光学フィルム製造用フィルムに含まれる全てのPVAに占める上述したシラノール変性PVAの含有割合としては、50質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、99質量%以上がよりさらに好ましい。本発明の光学フィルム製造用フィルムにおいて、PVAとしてシラノール変性PVAを主に用いることで、本発明の効果がより十分に発揮できる。
 本発明の光学フィルム製造用フィルムにおける、シラノール変性PVA、可塑剤及び界面活性剤の合計の占める割合は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、99質量%以上がよりさらに好ましい場合もある。本発明の光学フィルム製造用フィルムが、シラノール変性PVA、可塑剤及び界面活性剤から実質的に構成されていることで、本発明の効果がより十分に発揮できる。
The content ratio of the above-mentioned silanol-modified PVA in all PVA contained in the film for producing an optical film of the present invention is preferably 50% by mass or more, more preferably 80% by mass or more, more preferably 90% by mass or more, and more preferably 90% by mass or more. 95% by mass or more is further preferable, and 99% by mass or more is even more preferable. By mainly using silanol-modified PVA as PVA in the film for producing an optical film of the present invention, the effect of the present invention can be more fully exhibited.
The total proportion of the silanol-modified PVA, the plasticizer and the surfactant in the film for producing an optical film of the present invention is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more. In some cases, 99% by mass or more is even more preferable. When the film for producing an optical film of the present invention is substantially composed of silanol-modified PVA, a plasticizer and a surfactant, the effects of the present invention can be more fully exhibited.
(形状・物性等)
 本発明の光学フィルム製造用フィルムは、光学フィルムの材料として用いられる、いわゆる原反フィルムである。但し、本発明の光学フィルム製造用フィルムは、ロール状になっているものに限定されるものではない。
(Shape, physical properties, etc.)
The film for producing an optical film of the present invention is a so-called raw film used as a material for an optical film. However, the film for producing an optical film of the present invention is not limited to a roll-shaped film.
 本発明の光学フィルム製造用フィルムの平均厚さは特に制限されないが、下限としては1μmが好ましく、5μmがより好ましく、10μmがさらに好ましい。平均厚さが上記下限以上であることで、光学フィルムを製造するときの一軸延伸処理の際の切れを抑制することができる。また、この平均厚さの上限としては、75μmが好ましく、60μmがより好ましく、45μmがさらに好ましく、35μmがよりさらに好ましい。平均厚さが上記上限以下であることで、一軸延伸処理の際の延伸斑を抑制することができる。なお、「平均厚さ」とは、任意の5点で測定した厚さの平均値をいう(以下、平均厚さについて同様である。)。 The average thickness of the film for producing an optical film of the present invention is not particularly limited, but the lower limit is preferably 1 μm, more preferably 5 μm, and even more preferably 10 μm. When the average thickness is at least the above lower limit, it is possible to suppress breakage during the uniaxial stretching process when manufacturing an optical film. The upper limit of the average thickness is preferably 75 μm, more preferably 60 μm, further preferably 45 μm, and even more preferably 35 μm. When the average thickness is not more than the above upper limit, stretching spots during the uniaxial stretching treatment can be suppressed. The "average thickness" refers to the average value of the thickness measured at any five points (hereinafter, the same applies to the average thickness).
 本発明の光学フィルム製造用フィルムは、1層のPVA層(シラノール変性PVAを含む層)からなる単層フィルムであってもよいし、1層のPVA層を含む多層フィルムであってもよい。但し、偏光フィルムの製造に用いる場合などは、単層フィルムであることが好ましい。本発明の光学フィルム製造用フィルムが有するPVA層の平均厚さの下限としては、1μmが好ましく、5μmがより好ましく、10μmがさらに好ましい。平均厚さが上記下限以上であることで、光学フィルムを製造するときの一軸延伸処理の際の切れを抑制することができる。また、この平均厚さの上限としては、75μmが好ましく、60μmがより好ましく、45μmがさらに好ましく、35μmがよりさらに好ましい。平均厚さが上記上限以下であることで、一軸延伸処理の際の延伸斑を抑制することができる。 The film for producing an optical film of the present invention may be a single-layer film composed of one PVA layer (a layer containing silanol-modified PVA) or a multilayer film including one PVA layer. However, when it is used for producing a polarizing film, it is preferably a single-layer film. The lower limit of the average thickness of the PVA layer contained in the film for producing an optical film of the present invention is preferably 1 μm, more preferably 5 μm, still more preferably 10 μm. When the average thickness is at least the above lower limit, it is possible to suppress breakage during the uniaxial stretching process when manufacturing an optical film. The upper limit of the average thickness is preferably 75 μm, more preferably 60 μm, further preferably 45 μm, and even more preferably 35 μm. When the average thickness is not more than the above upper limit, stretching spots during the uniaxial stretching treatment can be suppressed.
 光学フィルム製造用フィルムにおけるPVA層の具体的組成及び好適組成は、上述した光学フィルム製造用フィルム自体の具体的組成及び好適組成の記載を引用することができる。 As the specific composition and suitable composition of the PVA layer in the film for producing an optical film, the above-mentioned description of the specific composition and the suitable composition of the film for producing an optical film itself can be cited.
 本発明の光学フィルム製造用フィルムが単層フィルムである場合、ハンドリング性を確保するために、平均厚さは20μm以上が好ましく、30μm以上がより好ましい。一方、本発明の光学フィルム製造用フィルムが多層フィルムの場合、PVA層の平均厚さを20μm以下にすることもできるし、15μm以下にすることもできる。 When the film for producing an optical film of the present invention is a single-layer film, the average thickness is preferably 20 μm or more, more preferably 30 μm or more, in order to ensure handleability. On the other hand, when the film for producing an optical film of the present invention is a multilayer film, the average thickness of the PVA layer can be 20 μm or less, or 15 μm or less.
 多層フィルムとは、2層以上の層を有するフィルムをいう。多層フィルムの層数は、5層以下であってよく、3層以下であってよい。多層フィルムとしては、基材樹脂層とPVA層との積層構造を有する光学フィルム製造用フィルムが挙げられる。基材樹脂層の平均厚さは、例えば20μm以上500μm以下である。多層フィルムにおける基材樹脂層は、PVA層とともに一軸延伸できるものであることが好ましい。基材樹脂層を構成する樹脂としては、ポリエステル、ポリオレフィン等を用いることができる。なかでも、非晶質ポリエステル樹脂が好ましく、ポリエチレンテレフタレート、及びポリエチレンテレフタレートにイソフタル酸、1,4-シクロヘキサンジメタノールなどの共重合成分を共重合させた非晶質ポリエステル樹脂が好適に用いられる。基材樹脂層とPVA層との間には、接着剤層が設けられていてもよい。 A multilayer film is a film having two or more layers. The number of layers of the multilayer film may be 5 or less, and may be 3 or less. Examples of the multilayer film include a film for producing an optical film having a laminated structure of a base resin layer and a PVA layer. The average thickness of the base resin layer is, for example, 20 μm or more and 500 μm or less. The base resin layer in the multilayer film is preferably one that can be uniaxially stretched together with the PVA layer. As the resin constituting the base resin layer, polyester, polyolefin or the like can be used. Of these, an amorphous polyester resin is preferable, and polyethylene terephthalate and an amorphous polyester resin obtained by copolymerizing polyethylene terephthalate with a copolymerization component such as isophthalic acid and 1,4-cyclohexanedimethanol are preferably used. An adhesive layer may be provided between the base resin layer and the PVA layer.
 本発明の光学フィルム製造用フィルムの幅は特に制限されず、その用途などに応じて決めることができる。例えば、光学フィルム製造用フィルムの幅の下限は3mが好ましい。近年、液晶テレビや液晶モニターの大画面化が進行している点から光学フィルム製造用フィルムの幅を3m以上にしておくと、これらを最終製品とする用途に好適である。一方、光学フィルム製造用フィルムの幅の上限は7mが好ましい。幅を7m以下とすることで、実用化されている装置で光学フィルムを製造する場合に、効率的に一軸延伸処理を行うことなどができる。 The width of the film for producing an optical film of the present invention is not particularly limited and can be determined according to its application and the like. For example, the lower limit of the width of the optical film manufacturing film is preferably 3 m. In recent years, since the screen size of liquid crystal televisions and liquid crystal monitors has been increasing, if the width of the film for producing an optical film is set to 3 m or more, it is suitable for applications in which these are final products. On the other hand, the upper limit of the width of the optical film manufacturing film is preferably 7 m. By setting the width to 7 m or less, it is possible to efficiently perform the uniaxial stretching process when manufacturing an optical film with a practical device.
 本発明の光学フィルム製造用フィルムの膨潤度は、光学フィルムの生産性や光学性能の観点などから、140%以上400%以下の範囲内であることが好ましい。この膨潤度の下限は、180%がより好ましく、190%がさらに好ましい。また、膨潤度の上限は、220%がより好ましく、210%がさらに好ましい。フィルムの膨潤度は、例えば、熱処理の条件を強くすることによって、より小さい値に調整することなどができる。 The degree of swelling of the optical film manufacturing film of the present invention is preferably in the range of 140% or more and 400% or less from the viewpoint of the productivity of the optical film and the optical performance. The lower limit of the degree of swelling is more preferably 180% and even more preferably 190%. The upper limit of the degree of swelling is more preferably 220% and even more preferably 210%. The degree of swelling of the film can be adjusted to a smaller value, for example, by increasing the heat treatment conditions.
 ここで、「フィルムの膨潤度」とは、次式により求めた値をいう。
 膨潤度(%)=100×N/M
 式中、Nはフィルムから採取したサンプルを30℃の蒸留水中に30分間浸漬後、表面の水を除去した後のサンプルの質量(g)を表す。Mはそのサンプルを105℃の乾燥機で16時間乾燥した後のサンプルの質量(g)を表す。
Here, the "film swelling degree" means a value obtained by the following equation.
Swelling degree (%) = 100 x N / M
In the formula, N represents the mass (g) of the sample after immersing the sample collected from the film in distilled water at 30 ° C. for 30 minutes and then removing the water on the surface. M represents the mass (g) of the sample after drying the sample in a dryer at 105 ° C. for 16 hours.
 本発明の光学フィルム製造用フィルムは、通常、実質的に延伸されていないフィルム(非延伸フィルム、未延伸フィルム)である。当該光学フィルム製造用原反フィルムの面内位相差は、好ましくは100nm以下であり、更に好ましくは50nm以下である。通常、本発明の光学フィルム製造用フィルムを延伸処理(一軸延伸処理又は二軸延伸処理)することなどにより、光学フィルムを得ることができる。 The film for producing an optical film of the present invention is usually a film that is not substantially stretched (non-stretched film, unstretched film). The in-plane phase difference of the raw film for manufacturing an optical film is preferably 100 nm or less, more preferably 50 nm or less. Usually, an optical film can be obtained by stretching a film for producing an optical film of the present invention (uniaxial stretching treatment or biaxial stretching treatment).
 本発明の光学フィルム製造用フィルムによれば、良好な生産性を有し、同じ重合度を有する非変性のPVAを用いた場合と比べて光学性能及び耐湿熱性が優れる光学フィルムを得ることができる。なお、光学性能とは、光透過性、偏光性等が挙げられる。当該光学フィルム製造用フィルムにより製造できる光学フィルムとしては、偏光フィルム、位相差フィルム、視野角向上フィルム、輝度向上フィルム等が挙げられ、偏光フィルムであることが好ましい。 According to the film for producing an optical film of the present invention, it is possible to obtain an optical film having good productivity and excellent optical performance and moisture heat resistance as compared with the case of using non-modified PVA having the same degree of polymerization. .. The optical performance includes light transmission, polarization, and the like. Examples of the optical film that can be produced by the optical film manufacturing film include a polarizing film, a retardation film, a viewing angle improving film, a brightness improving film, and the like, and a polarizing film is preferable.
<光学フィルム製造用フィルムの製造方法>
 本発明の光学フィルム製造用フィルムの製造方法は特に限定されないが、製膜後のフィルムの厚み及び幅がより均一になる製造方法を好ましく採用することができる。例えば、シラノール変性PVA、並びに必要に応じてさらに可塑剤、界面活性剤及びその他の添加剤などのうちの1種又は2種以上が液体媒体中に溶解した製膜原液を用いて製造することができる。製膜原液が可塑剤、界面活性剤及びその他の添加剤の少なくとも1種を含有する場合、それらの成分が均一に混合されていることが好ましい。
<Manufacturing method of film for manufacturing optical film>
The method for producing the film for producing an optical film of the present invention is not particularly limited, but a method for producing a film having a more uniform thickness and width after film formation can be preferably adopted. For example, it can be produced using silanol-modified PVA and, if necessary, a film-forming stock solution in which one or more of plasticizers, surfactants and other additives are dissolved in a liquid medium. it can. When the film-forming stock solution contains at least one of a plasticizer, a surfactant and other additives, it is preferable that these components are uniformly mixed.
 製膜原液の調製に使用される液体媒体としては、例えば水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン、エチレンジアミン、ジエチレントリアミンなどを挙げることができ、これらのうちの1種又は2種以上を使用することができる。これらの中でも、環境に与える負荷や回収性の点から水が好ましい。また、上述したシラノール変性PVAは、水溶性も良好であり、また、比較的高温(例えば80℃)の水溶液とした場合の粘度上昇も抑制されている。この点からも、液体媒体として水を好適に用いることができる。 Examples of the liquid medium used for preparing the film-forming stock solution include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, and tri. Examples thereof include methylolpropane, ethylenediamine, and diethylenetriamine, and one or more of these can be used. Of these, water is preferable from the viewpoint of environmental load and recoverability. In addition, the silanol-modified PVA described above has good water solubility, and an increase in viscosity when used as an aqueous solution at a relatively high temperature (for example, 80 ° C.) is suppressed. From this point as well, water can be preferably used as the liquid medium.
 製膜原液の揮発分率(製膜時に揮発や蒸発によって除去される液体媒体などの揮発性成分の製膜原液中における含有割合)は、例えば50質量%以上95質量%以下が好ましく、55質量%以上90質量%以下がより好ましく、60質量%以上85質量%以下がさらに好ましい。製膜原液の揮発分率が50質量%以上であることにより、製膜原液の粘度が高くなり過ぎず、製膜原液調製時の濾過や脱泡が円滑に行われ、異物や欠点の少ないフィルムの製造が容易になる。一方、製膜原液の揮発分率が95質量%以下であることにより、製膜原液の濃度が低くなり過ぎず、工業的なフィルムの製造が容易になる。 The volatile content of the film-forming stock solution (the content of volatile components such as a liquid medium removed by volatilization or evaporation during film-forming in the film-forming stock solution) is preferably, for example, 50% by mass or more and 95% by mass or less, and 55% by mass. % Or more and 90% by mass or less is more preferable, and 60% by mass or more and 85% by mass or less is further preferable. When the volatile content of the membrane-forming stock solution is 50% by mass or more, the viscosity of the membrane-forming stock solution does not become too high, filtration and defoaming during preparation of the membrane-forming stock solution are smoothly performed, and a film with few foreign substances and defects. Is easy to manufacture. On the other hand, when the volatile fraction of the film-forming stock solution is 95% by mass or less, the concentration of the film-forming stock solution does not become too low, and industrial film production becomes easy.
 製膜の際の製膜原液の温度としては、例えば70℃以上90℃以下とすることができる。シラノール変性PVAを用い、かつこのような比較的高温で製膜を行うことで、製膜原液の粘度を比較的低く抑えられ、製膜性を高めることができる。 The temperature of the film-forming stock solution at the time of film-forming can be, for example, 70 ° C. or higher and 90 ° C. or lower. By using silanol-modified PVA and performing film formation at such a relatively high temperature, the viscosity of the film-forming stock solution can be suppressed to a relatively low level, and the film-forming property can be improved.
 製膜原液を用いて製膜する際の製膜方法としては、例えばキャスト製膜法、押出製膜法、湿式製膜法、ゲル製膜法などが挙げられる。これらの製膜方法は1種のみを採用しても2種以上を組み合わせて採用してもよい。これらの製膜方法の中でも、キャスト製膜法及び押出製膜法が、厚み及び幅が均一で物性の良好なフィルムが得られることから好ましい。製膜されたフィルムには必要に応じて乾燥や熱処理を行うことができる。 Examples of the film forming method when forming a film using the undiluted film forming solution include a cast film forming method, an extrusion film forming method, a wet film forming method, and a gel film forming method. These film forming methods may adopt only one kind or a combination of two or more kinds. Among these film-forming methods, the cast film-forming method and the extrusion film-forming method are preferable because a film having a uniform thickness and width and good physical characteristics can be obtained. The formed film can be dried or heat-treated as needed.
 本発明の光学フィルム製造用フィルムの具体的な製造方法の例としては、例えば以下の例を挙げることができる。T型スリットダイ、ホッパープレート、I-ダイ、リップコーターダイ等を用いて、製膜原液を最上流側に位置する回転する加熱した第1ロール(あるいはベルト)の周面上に均一に吐出又は流延する。この第1ロール(あるいはベルト)の周面上に吐出又は流延された膜の一方の面から揮発性成分を蒸発させて乾燥させる。続いてその下流側に配置した1個又は複数個の回転する加熱したロールの周面上でさらに乾燥するか、又は熱風乾燥装置の中を通過させてさらに乾燥させる。その後、巻き取り装置により、フィルムを巻き取る。加熱したロールによる乾燥と熱風乾燥装置による乾燥とは、適宜組み合わせて実施してもよい。 Examples of a specific manufacturing method for the optical film manufacturing film of the present invention include the following examples. Using a T-shaped slit die, hopper plate, I-die, lip coater die, etc., the film-forming stock solution is uniformly discharged or uniformly discharged onto the peripheral surface of the rotating heated first roll (or belt) located on the most upstream side. Disseminate. Volatile components are evaporated and dried from one surface of the membrane discharged or cast on the peripheral surface of the first roll (or belt). Subsequently, it is further dried on the peripheral surface of one or more rotating heated rolls arranged on the downstream side thereof, or is further dried by passing through a hot air drying device. Then, the film is wound by the winding device. Drying with a heated roll and drying with a hot air drying device may be carried out in an appropriate combination.
 なお、本発明の光学フィルム製造用フィルムが多層フィルムである場合、例えば基材樹脂フィルム(基材樹脂層)上に製膜原液を塗布することによって多層フィルムを製造することができる。このとき、PVA層と基材樹脂層との間の接着性を改善するために、基材樹脂フィルムの表面を改質したり、基材樹脂フィルムの表面に接着剤を塗布したりしてもよい。 When the film for producing an optical film of the present invention is a multilayer film, a multilayer film can be produced, for example, by applying a film-forming stock solution on a base resin film (base resin layer). At this time, in order to improve the adhesiveness between the PVA layer and the base resin layer, the surface of the base resin film may be modified or an adhesive may be applied to the surface of the base resin film. Good.
<光学フィルムの製造方法>
 本発明の光学フィルムの製造方法は、上述した光学フィルム製造用フィルムを一軸延伸する工程を備える。以下には、光学フィルムの製造方法の一例として、偏光フィルムの製造方法を挙げて具体的に説明する。
<Manufacturing method of optical film>
The method for producing an optical film of the present invention includes a step of uniaxially stretching the above-mentioned film for producing an optical film. Hereinafter, a method for producing a polarizing film will be specifically described as an example of a method for producing an optical film.
 偏光フィルムの製造方法としては、光学フィルム製造用フィルム(以下、「PVAフィルム」とも称する。)をそれぞれ、染色する染色工程、一軸延伸する延伸工程、及び必要に応じてさらに、膨潤させる膨潤工程、架橋させる架橋工程、固定処理する固定処理工程、洗浄する洗浄工程、乾燥させる乾燥工程、熱処理する熱処理工程などを備える方法が挙げられる。この場合、各工程の順としては特に限定されないが、例えば、膨潤工程、染色工程、架橋工程、延伸工程、固定処理工程などの順に行うことができる。また、1つ又は2つ以上の工程を同時に行うこともでき、各工程を2回又はそれ以上行うこともできる。 Examples of the method for producing a polarizing film include a dyeing step of dyeing a film for manufacturing an optical film (hereinafter, also referred to as “PVA film”), a stretching step of uniaxially stretching, and a swelling step of further swelling, if necessary. Examples thereof include a method including a cross-linking step for cross-linking, a fixing treatment step for fixing treatment, a washing step for washing, a drying step for drying, and a heat treatment step for heat treatment. In this case, the order of each step is not particularly limited, but for example, the swelling step, the dyeing step, the cross-linking step, the stretching step, the fixing treatment step, and the like can be performed in this order. Further, one or more steps can be performed at the same time, and each step can be performed twice or more.
 膨潤工程は、PVAフィルムを水に浸漬することにより行うことができる。水に浸漬する際の水の温度としては、20℃以上55℃以下が好ましく、22℃以上50℃以下がより好ましく、25℃以上45℃以下がさらに好ましい。また、水に浸漬する時間としては、例えば0.1分以上5分以下が好ましく、0.5分以上3分以下がより好ましい。なお、水に浸漬する際の水は純水に限定されず、各種成分が溶解した水溶液であってもよいし、水と水性媒体との混合物であってもよい。 The swelling step can be performed by immersing the PVA film in water. The temperature of the water when immersed in water is preferably 20 ° C. or higher and 55 ° C. or lower, more preferably 22 ° C. or higher and 50 ° C. or lower, and further preferably 25 ° C. or higher and 45 ° C. or lower. The time for immersion in water is, for example, preferably 0.1 minutes or more and 5 minutes or less, and more preferably 0.5 minutes or more and 3 minutes or less. The water when immersed in water is not limited to pure water, and may be an aqueous solution in which various components are dissolved, or a mixture of water and an aqueous medium.
 染色工程は、PVAフィルムに対して二色性色素を接触させることにより行うことができる。二色性色素としてはヨウ素系色素を用いるのが一般的である。染色のタイミングとしては、一軸延伸前、一軸延伸時及び一軸延伸後のいずれの段階であってもよい。染色はPVAフィルムを染色浴であるヨウ素-ヨウ化カリウムを含有する溶液(特に水溶液)中に浸漬させることにより行う方法が好適に採用される。染色浴におけるヨウ素の濃度は0.01質量%以上0.5質量%以下が好ましく、ヨウ化カリウムの濃度は0.01質量%以上10質量%以下が好ましい。また、染色浴の温度は20℃以上50℃以下、特に25℃以上40℃以下とすることが好ましい。好適な染色時間は0.2分以上5分以下である。 The dyeing step can be performed by bringing the dichroic dye into contact with the PVA film. Iodine-based pigments are generally used as the dichroic pigments. The timing of dyeing may be any stage before uniaxial stretching, during uniaxial stretching, and after uniaxial stretching. A method of dyeing is preferably performed by immersing the PVA film in a solution (particularly an aqueous solution) containing iodine-potassium iodide, which is a dyeing bath. The concentration of iodine in the dyeing bath is preferably 0.01% by mass or more and 0.5% by mass or less, and the concentration of potassium iodide is preferably 0.01% by mass or more and 10% by mass or less. The temperature of the dyeing bath is preferably 20 ° C. or higher and 50 ° C. or lower, particularly preferably 25 ° C. or higher and 40 ° C. or lower. A suitable dyeing time is 0.2 minutes or more and 5 minutes or less.
 PVAフィルム中のシラノール変性PVAを架橋させる架橋工程を行うことにより、高温で湿式延伸する際にシラノール変性PVAが水へ溶出するのを効果的に抑制することができる。この観点から架橋工程は染色工程の後であって延伸工程の前に行うのが好ましい。架橋工程は、架橋剤を含む水溶液にPVAフィルムを浸漬することにより行うことができる。架橋剤としては、ホウ酸、ホウ砂等のホウ酸塩などのホウ素化合物の1種又は2種以上を使用することができる。架橋剤を含む水溶液における架橋剤の濃度は1質量%以上15質量%以下が好ましく、1.5質量%以上7質量%以下がより好ましく、2質量%以上6質量%以下がさらに好ましい。架橋剤の濃度が上記範囲内にあることで十分な延伸性を維持することができる。架橋剤を含む水溶液はヨウ化カリウム等を含有してもよい。架橋剤を含む水溶液の温度は、20℃以上60℃以下、特に25℃以上55℃以下とすることが好ましい。温度を上記範囲内にすることで効率良く架橋することができる。 By performing a cross-linking step of cross-linking silanol-modified PVA in the PVA film, it is possible to effectively suppress elution of silanol-modified PVA into water during wet stretching at a high temperature. From this point of view, the cross-linking step is preferably performed after the dyeing step and before the stretching step. The cross-linking step can be performed by immersing the PVA film in an aqueous solution containing a cross-linking agent. As the cross-linking agent, one or more boron compounds such as borate such as boric acid and borax can be used. The concentration of the cross-linking agent in the aqueous solution containing the cross-linking agent is preferably 1% by mass or more and 15% by mass or less, more preferably 1.5% by mass or more and 7% by mass or less, and further preferably 2% by mass or more and 6% by mass or less. Sufficient stretchability can be maintained when the concentration of the cross-linking agent is within the above range. The aqueous solution containing the cross-linking agent may contain potassium iodide or the like. The temperature of the aqueous solution containing the cross-linking agent is preferably 20 ° C. or higher and 60 ° C. or lower, particularly 25 ° C. or higher and 55 ° C. or lower. By keeping the temperature within the above range, cross-linking can be performed efficiently.
 PVAフィルムを一軸延伸する延伸工程は、湿式延伸法又は乾式延伸法のいずれで行ってもよい。湿式延伸法の場合は、ホウ酸を含む水溶液中で行うこともできるし、上述した染色浴中や後述する固定処理浴中で行うこともできる。また、乾式延伸法の場合は、室温のまま延伸を行ってもよいし、加熱しながら延伸してもよいし、吸水後のPVAフィルムを用いて空気中で行うこともできる。これらの中でも、幅方向に均一性高く延伸することができることから湿式延伸法が好ましく、ホウ酸を含む水溶液中で一軸延伸するのがより好ましい。ホウ酸水溶液中におけるホウ酸の濃度は、0.5質量%以上6.0質量%以下が好ましく、1.0質量%以上5.0質量%以下がより好ましく、1.5質量%以上4.0質量%以下が特に好ましい。また、ホウ酸水溶液はヨウ化カリウムを含有してもよく、ヨウ化カリウムの濃度は0.01質量%以上10質量%以下が好ましい。一軸延伸における延伸温度は、30℃以上90℃以下が好ましく、40℃以上80℃以下がより好ましく、50℃以上75℃以下が特に好ましい。 The stretching step of uniaxially stretching the PVA film may be performed by either a wet stretching method or a dry stretching method. In the case of the wet stretching method, it can be carried out in an aqueous solution containing boric acid, in the above-mentioned dyeing bath or in the fixing treatment bath described later. Further, in the case of the dry stretching method, stretching may be carried out at room temperature, stretching may be carried out while heating, or may be carried out in air using a PVA film after water absorption. Among these, the wet stretching method is preferable because it can be stretched with high uniformity in the width direction, and uniaxial stretching is more preferable in an aqueous solution containing boric acid. The concentration of boric acid in the boric acid aqueous solution is preferably 0.5% by mass or more and 6.0% by mass or less, more preferably 1.0% by mass or more and 5.0% by mass or less, and 1.5% by mass or more and 4. 0% by mass or less is particularly preferable. Further, the boric acid aqueous solution may contain potassium iodide, and the concentration of potassium iodide is preferably 0.01% by mass or more and 10% by mass or less. The stretching temperature in uniaxial stretching is preferably 30 ° C. or higher and 90 ° C. or lower, more preferably 40 ° C. or higher and 80 ° C. or lower, and particularly preferably 50 ° C. or higher and 75 ° C. or lower.
 一軸延伸における延伸倍率(非延伸のPVAフィルムからの全延伸倍率)は、得られる偏光フィルムの偏光性能の点から5倍以上であることが好ましく、5.5倍以上であることがより好ましい。延伸倍率の上限は特に制限されないが、延伸倍率は8倍以下であることが好ましい。 The draw ratio in uniaxial stretching (total draw ratio from the non-stretched PVA film) is preferably 5 times or more, and more preferably 5.5 times or more from the viewpoint of the polarization performance of the obtained polarizing film. The upper limit of the draw ratio is not particularly limited, but the draw ratio is preferably 8 times or less.
 長尺のPVAフィルムを一軸延伸する場合における一軸延伸の方向に特に制限はなく、長尺方向への一軸延伸や横一軸延伸を採用することができる。偏光性能に優れる偏光フィルムが得られることから、長尺方向への一軸延伸が好ましい。長尺方向への一軸延伸は、互いに平行な複数のロールを備える延伸装置を使用して、各ロール間の周速を変えることにより行うことができる。一方、横一軸延伸はテンター型延伸機を用いて行うことができる。 There is no particular limitation on the direction of uniaxial stretching when the long PVA film is uniaxially stretched, and uniaxial stretching or lateral uniaxial stretching in the long direction can be adopted. Since a polarizing film having excellent polarization performance can be obtained, uniaxial stretching in the long direction is preferable. Uniaxial stretching in the long direction can be performed by using a stretching device including a plurality of rolls parallel to each other and changing the peripheral speed between the rolls. On the other hand, the lateral uniaxial stretching can be performed using a tenter type stretching machine.
 偏光フィルムの製造にあたっては、PVAフィルムへの二色性色素(ヨウ素系色素等)の吸着を強固にするために、延伸工程の後に固定処理工程を行うことができる。固定処理に使用する固定処理浴としては、ホウ酸、硼砂等のホウ素化合物の1種又は2種以上を含む水溶液を使用することができる。また、必要に応じて、固定処理浴中にヨウ素化合物や金属化合物を添加してもよい。固定処理浴におけるホウ素化合物の濃度は、2質量%以上15質量%以下、特に3質量%以上10質量%以下であることが好ましい。ホウ素化合物の濃度を上記範囲内にすることで二色性色素の吸着をより強固にすることができる。固定処理浴の温度は、15℃以上60℃以下、特に25℃以上40℃以下が好ましい。 In the production of the polarizing film, a fixing treatment step can be performed after the stretching step in order to strengthen the adsorption of the dichroic dye (iodine dye, etc.) on the PVA film. As the fixing treatment bath used for the fixing treatment, an aqueous solution containing one or more kinds of boron compounds such as boric acid and borax can be used. Further, if necessary, an iodine compound or a metal compound may be added to the fixing treatment bath. The concentration of the boron compound in the fixing treatment bath is preferably 2% by mass or more and 15% by mass or less, particularly preferably 3% by mass or more and 10% by mass or less. By keeping the concentration of the boron compound within the above range, the adsorption of the dichroic dye can be further strengthened. The temperature of the fixing treatment bath is preferably 15 ° C. or higher and 60 ° C. or lower, particularly preferably 25 ° C. or higher and 40 ° C. or lower.
 洗浄工程は、蒸留水、純水、水溶液等にフィルムを浸漬して行われることが一般的である。このとき、偏光性能向上の点からヨウ化カリウム等のヨウ化物を助剤として含有する水溶液を用いることが好ましく、ヨウ化物の濃度は0.5質量%以上10質量%以下とすることが好ましい。また、洗浄処理における水溶液の温度は一般的に5℃以上50℃以下であり、10℃以上45℃以下が好ましく、15℃以上40℃以下がさらに好ましい。水溶液の温度を上記範囲とすることで、偏光性能をより高めることなどができる。 The cleaning process is generally performed by immersing the film in distilled water, pure water, an aqueous solution, or the like. At this time, from the viewpoint of improving the polarization performance, it is preferable to use an aqueous solution containing iodide such as potassium iodide as an auxiliary agent, and the concentration of iodide is preferably 0.5% by mass or more and 10% by mass or less. The temperature of the aqueous solution in the cleaning treatment is generally 5 ° C. or higher and 50 ° C. or lower, preferably 10 ° C. or higher and 45 ° C. or lower, and further preferably 15 ° C. or higher and 40 ° C. or lower. By setting the temperature of the aqueous solution within the above range, the polarization performance can be further improved.
 乾燥工程の条件は特に制限されないが、30℃以上150℃以下、特に50℃以上130℃以下の温度でPVAフィルムの乾燥を行うことが好ましい。上記範囲内の温度で乾燥することで寸法安定性に優れる偏光フィルムが得られやすい。 The conditions of the drying step are not particularly limited, but it is preferable to dry the PVA film at a temperature of 30 ° C. or higher and 150 ° C. or lower, particularly 50 ° C. or higher and 130 ° C. or lower. By drying at a temperature within the above range, a polarizing film having excellent dimensional stability can be easily obtained.
 なお、位相差フィルム等、偏光フィルム以外の光学フィルムも、本発明の光学フィルム製造用フィルムを一軸延伸する工程を備える方法により製造することができる。具体的な製造方法は、本発明の光学フィルム製造用フィルムを用いること以外は、従来公知の方法を採用することができる。 An optical film other than the polarizing film, such as a retardation film, can also be produced by a method including a step of uniaxially stretching the film for producing an optical film of the present invention. As a specific manufacturing method, a conventionally known method can be adopted except that the film for manufacturing an optical film of the present invention is used.
<光学フィルム>
 本発明の光学フィルムは、ケイ素含有基を有するPVA(シラノール変性PVA)を含み、上記ケイ素含有基が、シラノール基又は水の存在下でシラノール基に転化し得る基であり、上記シラノール変性PVAの粘度平均重合度が1,000以上6,000以下、けん化度が98.7モル%以上、且つ全構造単位に対する上記ケイ素含有基の含有量が0.01モル%以上1.0モル%以下である光学フィルムである。
<Optical film>
The optical film of the present invention contains PVA (silanol-modified PVA) having a silicon-containing group, and the silicon-containing group is a group that can be converted into a silanol group in the presence of silanol group or water, and the silanol-modified PVA When the viscosity average degree of polymerization is 1,000 or more and 6,000 or less, the degree of saponification is 98.7 mol% or more, and the content of the silicon-containing group with respect to all structural units is 0.01 mol% or more and 1.0 mol% or less. An optical film.
 本発明の光学フィルムは、本発明の光学フィルム製造用フィルムを用いて上述した製造方法により得られた光学フィルムであってよい。本発明の光学フィルムに含まれるシラノール変性PVAの具体的構造や含有量等の詳細は、本発明の光学フィルム製造用フィルムに含まれるシラノール変性PVAと同様である。また、本発明の光学フィルムには、本発明の光学フィルム製造用フィルムと同様の他の成分が含まれていてよい。 The optical film of the present invention may be an optical film obtained by the above-mentioned manufacturing method using the film for manufacturing the optical film of the present invention. The specific structure, content, and the like of the silanol-modified PVA contained in the optical film of the present invention are the same as those of the silanol-modified PVA contained in the film for producing an optical film of the present invention. Further, the optical film of the present invention may contain other components similar to the film for producing an optical film of the present invention.
 本発明の光学フィルムは、偏光フィルム、位相差フィルム、視野角向上フィルム、輝度向上フィルム等であってよく、偏光フィルムであることが好ましい。この場合、偏光フィルムには、通常、二色性色素が含まれており、また、シラノール変性PVAは架橋されていてよい。 The optical film of the present invention may be a polarizing film, a retardation film, a viewing angle improving film, a brightness improving film, or the like, and is preferably a polarizing film. In this case, the polarizing film usually contains a dichroic dye, and the silanol-modified PVA may be crosslinked.
 本発明の光学フィルムは、延伸フィルムであることが好ましく、一軸延伸フィルムであることがより好ましい。また、本発明の光学フィルムは、単層フィルムであってもよく、多層フィルムであってもよいが、単層フィルムであることが好ましい。このようなフィルムである場合、本発明の光学フィルムは、偏光フィルムなどとしてより好適に用いることができる。 The optical film of the present invention is preferably a stretched film, more preferably a uniaxially stretched film. Further, the optical film of the present invention may be a single-layer film or a multilayer film, but a single-layer film is preferable. In the case of such a film, the optical film of the present invention can be more preferably used as a polarizing film or the like.
 本発明の光学フィルムが偏光フィルムである場合、偏光フィルムの二色性比(R)が100以上であることが好ましい。上述したシラノール変性PVAを含むことにより、このような高い二色性比(R)を有する偏光フィルムを生産性良く製造することができる。二色性比(R)は150以上がより好ましく、190以上がさらに好ましい。この二色性比(R)の上限としては、例えば350であり、300であってもよい。 When the optical film of the present invention is a polarizing film, the dichroism ratio (R) of the polarizing film is preferably 100 or more. By including the silanol-modified PVA described above, a polarizing film having such a high dichroism ratio (R) can be produced with high productivity. The dichroism ratio (R) is more preferably 150 or more, and even more preferably 190 or more. The upper limit of the dichroism ratio (R) is, for example, 350 and may be 300.
 偏光フィルムの二色性比(R)の算出方法は以下のとおりである。まず、表面反射を排除した透過率(T’)と単体透過率(T)との関係は式(a)で示される。このとき、偏光フィルムの屈折率は1.5であるとし、表面での反射率は4%であるとする。透過率(T’)と偏光度(V)と二色性比(R)との関係は式(b)で示される。したがって、単体透過率(T)及び偏光度(V)を計測した上で、それらの値を用いて式(a)及び(b)を解くことで偏光フィルムの二色性比(R)を算出することができる。
 T’=T/(1-0.04) ・・・(a)
 R={-ln[T’(1-V)]}/{-ln[T’(1+V)]} ・・・(b)
The method for calculating the dichroism ratio (R) of the polarizing film is as follows. First, the relationship between the transmittance (T') excluding surface reflection and the simple substance transmittance (T) is expressed by the formula (a). At this time, it is assumed that the refractive index of the polarizing film is 1.5 and the reflectance on the surface is 4%. The relationship between the transmittance (T'), the degree of polarization (V) and the dichroism ratio (R) is expressed by the formula (b). Therefore, after measuring the simple substance transmittance (T) and the degree of polarization (V), the dichroism ratio (R) of the polarizing film is calculated by solving the equations (a) and (b) using these values. can do.
T'= T / (1-0.04) 2 ... (a)
R = {-ln [T'(1-V)]} / {-ln [T'(1 + V)]} ... (b)
 偏光フィルムは、通常、その両面又は片面に、光学的に透明で且つ機械的強度を有する保護膜を貼り合わせて偏光板にして使用される。保護膜としては、三酢酸セルロース(TAC)フィルム、シクロオレフィンポリマー(COP)フィルム、酢酸・酪酸セルロース(CAB)フィルム、アクリル系フィルム、ポリエステル系フィルムなどが使用される。また、貼り合わせのための接着剤としては、PVA系接着剤、ウレタン系接着剤、アクリレート系紫外線硬化型接着剤などを挙げることができる。すなわち、偏光板は、偏光フィルムと、この偏光フィルムの片面又は両面に直接又は接着剤層を介して積層された保護膜とを有する。 The polarizing film is usually used as a polarizing plate by laminating a protective film that is optically transparent and has mechanical strength on both sides or one side thereof. As the protective film, a cellulose triacetate (TAC) film, a cycloolefin polymer (COP) film, a cellulose acetate / butyrate (CAB) film, an acrylic film, a polyester film, or the like is used. In addition, examples of the adhesive for bonding include a PVA-based adhesive, a urethane-based adhesive, and an acrylate-based ultraviolet curable adhesive. That is, the polarizing plate has a polarizing film and a protective film laminated directly or via an adhesive layer on one side or both sides of the polarizing film.
 偏光板は、例えば、アクリル系等の粘着剤をコートした後、ガラス基板に貼り合わせてLCDの部品として使用することができる。なお、偏光板には、さらに、位相差フィルム、視野角向上フィルム、輝度向上フィルム等が貼り合わせられていてもよい。 The polarizing plate can be used as an LCD component by, for example, coating it with an adhesive such as acrylic and then adhering it to a glass substrate. A retardation film, a viewing angle improving film, a brightness improving film, or the like may be further attached to the polarizing plate.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されない。各測定及び評価の方法は以下のとおりである。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. The methods of each measurement and evaluation are as follows.
[PVAの重合度(粘度平均重合度)]
 以下の合成例で合成されたPVAについて、JIS K6726-1994の記載に準じて、粘度平均重合度を測定した。
[PVA Polymerization Degree (Viscosity Average Degree of Polymerization)]
For the PVA synthesized in the following synthesis example, the viscosity average degree of polymerization was measured according to the description of JIS K6726-1994.
[PVAのけん化度]
 以下の合成例で合成されたPVAについて、JIS K6726-1994の記載に準じて、けん化度を測定した。
[Saponification degree of PVA]
The degree of saponification of PVA synthesized in the following synthetic examples was measured according to the description of JIS K6726-1994.
[PVAにおけるケイ素含有基の含有量]
 以下の合成例で合成されたPVAについて、全構造単位に対するケイ素含有基の含有量をけん化する前のビニルエステル重合体のプロトンNMRから測定した。けん化する前のビニルエステル重合体のプロトンNMRを測定するに際しては、ビニルエステル重合体をヘキサン-アセトンにより再沈精製して重合体中から未反応のモノマーを完全に取り除き、次いで90℃減圧乾燥を2日間行った後、CDCl溶媒に溶解して分析に供した。
[Content of silicon-containing groups in PVA]
The PVA synthesized in the following synthesis example was measured by proton NMR of the vinyl ester polymer before saponification of the content of silicon-containing groups with respect to all structural units. When measuring the proton NMR of the vinyl ester polymer before saponification, the vinyl ester polymer is reprecipitated with hexane-acetone to completely remove unreacted monomers from the polymer, and then dried under reduced pressure at 90 ° C. After 2 days, it was dissolved in CDCl 3 solvent and subjected to analysis.
[10質量%PVA水溶液粘度]
 以下の合成例で合成されたPVA10gをサンプル瓶に秤量し、合計100gとなるように純水を加えた。これをスターラーで撹拌しながら95℃水浴中で4時間溶解した後、80℃乾燥機で終夜静置脱泡した。得られた10質量%PVA水溶液の80℃における粘度をB型粘度計で測定した。
[Viscosity of 10% by mass PVA aqueous solution]
10 g of PVA synthesized in the following synthesis example was weighed in a sample bottle, and pure water was added so as to have a total of 100 g. This was dissolved in a water bath at 95 ° C. for 4 hours while stirring with a stirrer, and then allowed to stand overnight in a dryer at 80 ° C. for defoaming. The viscosity of the obtained 10 mass% PVA aqueous solution at 80 ° C. was measured with a B-type viscometer.
[フィルムの膨潤度]
 以下の実施例及び比較例で得られたフィルム(光学フィルム製造用フィルム)を1.5gとなるようにカットし、30℃の蒸留水1000g中に30分間浸漬した。30分間浸漬後にフィルムを取り出し、濾紙で表面の水を吸い取った後、その質量(N)を測定した。続いて、そのフィルムを105℃の乾燥機で16時間乾燥した後、乾燥後の質量(M)を測定した。得られた質量(N)及び質量(M)から、以下の式によって、フィルムの膨潤度を求めた。
  膨潤度(%)=100×N/M
[Film swelling degree]
The films (films for producing optical films) obtained in the following Examples and Comparative Examples were cut to 1.5 g and immersed in 1000 g of distilled water at 30 ° C. for 30 minutes. After soaking for 30 minutes, the film was taken out, water on the surface was absorbed with a filter paper, and the mass (N) was measured. Subsequently, the film was dried in a dryer at 105 ° C. for 16 hours, and then the mass (M) after drying was measured. From the obtained mass (N) and mass (M), the degree of swelling of the film was determined by the following formula.
Swelling degree (%) = 100 x N / M
[偏光フィルムの二色性比(光学性能)]
 以下の実施例及び比較例で得られた偏光フィルムの幅方向の中央部から、偏光フィルムの長さ方向に4cmの長方形のサンプルを採取した。このサンプルに対して、積分球付き分光光度計(日本分光株式会社製「V7100」)を用いて、JIS Z8722(物体色の測定方法)に準拠し、C光源、2°視野の可視光領域の視感度補正を行った上で、単体透過率(T)及び偏光度(V)を測定した。
[Dichroism ratio of polarizing film (optical performance)]
A rectangular sample of 4 cm in the length direction of the polarizing film was taken from the central portion in the width direction of the polarizing films obtained in the following Examples and Comparative Examples. For this sample, a spectrophotometer with an integrating sphere (“V7100” manufactured by JASCO Corporation) was used, and in accordance with JIS Z8722 (measurement method of object color), a C light source and a visible light region with a 2 ° field of view. After correcting the visual sensitivity, the single transmittance (T) and the degree of polarization (V) were measured.
 得られた単体透過率(T)及び偏光度(V)の値から下記式(a)及び(b)を解くことで、偏光フィルムの二色性比(R)を算出した。ここで、偏光フィルムの屈折率は1.5であるとし、表面での反射率は4%であるとした。
 T’=T/(1-0.04) ・・・(a)
 R={-ln[T’(1-V)]}/{-ln[T’(1+V)]} ・・・(b)
The dichroism ratio (R) of the polarizing film was calculated by solving the following equations (a) and (b) from the obtained simple substance transmittance (T) and polarization degree (V) values. Here, the refractive index of the polarizing film is assumed to be 1.5, and the reflectance on the surface is assumed to be 4%.
T'= T / (1-0.04) 2 ... (a)
R = {-ln [T'(1-V)]} / {-ln [T'(1 + V)]} ... (b)
[偏光フィルムの耐湿熱性]
 以下の実施例及び比較例で得られた偏光フィルムを金枠に固定し、積分球付き分光光度計(日本分光株式会社製「V7100」)を用いて、JIS Z8722(物体色の測定方法)に準拠し、C光源、2°視野の可視光領域の視感度補正を行った上で、単体透過率(T)及び偏光度(V)を測定した。さらに、金枠に固定した偏光フィルムを60℃90%RHの雰囲気下で12時間湿熱処理した後、同様に分光光度計で12時間後の透過率(T12)および偏光度(V12)を測定した。湿熱処理後の透過度の増加量(T12-T:%)及び偏光度の減少量(V-V12:%)を耐湿熱性の指標とした。
[Moisture resistance of polarizing film]
The polarizing films obtained in the following examples and comparative examples were fixed to a gold frame, and a spectrophotometer with an integrating sphere (“V7100” manufactured by JASCO Corporation) was used to make JIS Z8722 (measurement method of object color). According to this, the single transmittance (T 0 ) and the degree of polarization (V 0 ) were measured after correcting the visual sensitivity of the visible light region of the C light source and the 2 ° field. Further, the polarizing film fixed to the metal frame is subjected to a wet heat treatment for 12 hours in an atmosphere of 60 ° C. and 90% RH, and then the transmittance (T 12 ) and the degree of polarization (V 12 ) after 12 hours are similarly measured with a spectrophotometer. It was measured. The amount of increase in transmittance (T 12- T 0 :%) and the amount of decrease in polarization (V 0- V 12 :%) after the moist heat treatment were used as indicators of moist heat resistance.
[合成例1]PVA-1の合成
 撹拌機、窒素導入口、添加剤導入口および開始剤添加口を備えた6Lの反応槽に酢酸ビニル2590g、メタノール410gおよびビニルトリメトキシシラン5.3gを仕込み、60℃に昇温した後30分間窒素バブリングにより系中を窒素置換した。反応槽内の温度を60℃に調整し、2,2’-アゾビス(イソブチロニトリル)0.32g加えて、重合を開始した。重合開始時時点よりビニルメトキシシランを2.5質量%含有するメタノール135gを系内に添加しながら3時間重合反応を行い、その時点で重合を停止した。重合反応を停止した時点における重合率は26.8%であった。なお、重合中は重合温度を60℃に維持した。次いで、減圧下にて未反応の酢酸ビニルを除去し、ポリ酢酸ビニル(以下、PVAcと略記することがある)のメタノール溶液を得た。
 得られたPVAcのメタノール溶液の濃度を23.5%に調整し、アルカリモル比(NaOHのモル数/PVAc中のビニルエステル単位のモル数)が0.04になるようにNaOHメタノール溶液(10%濃度)を添加して、けん化した。得られたポリビニルアルコールはメタノールで洗浄した。
 以上の操作により得られたPVA-1の重合度(粘度平均重合度)は2,400、けん化度は99.9モル%、ケイ素含有基の含有量は0.2モル%、80℃での10質量%水溶液粘度は920mPa・sであった。
[Synthesis Example 1] Synthesis of PVA-1 2590 g of vinyl acetate, 410 g of methanol and 5.3 g of vinyl trimethoxysilane are charged into a 6 L reaction vessel equipped with a stirrer, a nitrogen inlet, an additive inlet and an initiator additive. After the temperature was raised to 60 ° C., the inside of the system was replaced with nitrogen by nitrogen bubbling for 30 minutes. The temperature in the reaction vessel was adjusted to 60 ° C., and 0.32 g of 2,2'-azobis (isobutyronitrile) was added to initiate polymerization. From the start of the polymerization, the polymerization reaction was carried out for 3 hours while adding 135 g of methanol containing 2.5% by mass of vinylmethoxysilane into the system, and the polymerization was stopped at that time. The polymerization rate at the time when the polymerization reaction was stopped was 26.8%. The polymerization temperature was maintained at 60 ° C. during the polymerization. Then, unreacted vinyl acetate was removed under reduced pressure to obtain a methanol solution of polyvinyl acetate (hereinafter, may be abbreviated as PVAc).
The concentration of the obtained PVAC methanol solution was adjusted to 23.5%, and the NaOH methanol solution (10) so that the alkali molar ratio (the number of moles of NaOH / the number of moles of vinyl ester units in PVAc) was 0.04. % Concentration) was added and the mixture was saponified. The obtained polyvinyl alcohol was washed with methanol.
The degree of polymerization (viscosity average degree of polymerization) of PVA-1 obtained by the above operation was 2,400, the degree of saponification was 99.9 mol%, the content of silicon-containing groups was 0.2 mol%, and the temperature was 80 ° C. The viscosity of the 10 mass% aqueous solution was 920 mPa · s.
[合成例2~11]PVA-2~PVA-11の合成
 合成例1に準じ、且つ用いたモノマーの割合、重合条件及びけん化条件を適宜調整し、表1~3に記載の重合度(粘度平均重合度)、けん化度及びSiOH基含有量(ケイ素含有基の含有量)を有するPVA-2~PVA-11を得た。
[Synthesis Examples 2 to 11] Synthesis of PVA-2 to PVA-11 According to Synthesis Example 1, the proportion of the monomers used, the polymerization conditions and the saponification conditions were appropriately adjusted, and the degree of polymerization (viscosity) shown in Tables 1 to 3 was adjusted as appropriate. PVA-2 to PVA-11 having a degree of polymerization), a degree of saponification and a content of SiOH groups (content of silicon-containing groups) were obtained.
[実施例1]
 PVA-1 100質量部、可塑剤としてグリセリン10質量部、及び界面活性剤としてポリオキシエチレンラウリルエーテル硫酸ナトリウム0.1質量部を含み、PVA含有率が9.5質量%である水溶液を製膜原液として調製した。この製膜原液を80℃の金属ロール上で乾燥し、得られたフィルムを熱風乾燥機中で120℃の温度で10分間熱処理をすることにより膨潤度を200%に調整して、平均厚さが30μmのPVAフィルム(光学フィルム製造用フィルム)を作製した。
[Example 1]
An aqueous solution containing 100 parts by mass of PVA-1, 10 parts by mass of glycerin as a plasticizer, and 0.1 parts by mass of polyoxyethylene lauryl ether sodium sulfate as a surfactant, and having a PVA content of 9.5% by mass is formed into a film. Prepared as undiluted solution. This film-forming stock solution is dried on a metal roll at 80 ° C., and the obtained film is heat-treated at a temperature of 120 ° C. for 10 minutes in a hot air dryer to adjust the degree of swelling to 200% and have an average thickness. A PVA film (film for producing an optical film) having a thickness of 30 μm was produced.
 得られたPVAフィルムの幅方向中央部から、幅5cm×長さ5cmの範囲が一軸延伸できるように幅5cm×長さ9cmのサンプルをカットした。このサンプルを30℃の純水に60秒間浸漬しつつ2.0倍に長さ方向に一軸延伸して、膨潤処理した。続いてヨウ素0.05質量%及びヨウ化カリウム5.0質量%を含有する水溶液(染色処理浴:温度32℃)に120秒間浸漬しつつ1.2倍(全体で2.4倍)に長さ方向に一軸延伸してヨウ素を吸着させた。次いで、ホウ酸2.6質量%を含有する水溶液(ホウ酸架橋処理浴:温度32℃)に120秒浸漬しつつ1.25倍(全体で3.0倍)に長さ方向に一軸延伸した。さらにホウ酸を2.8質量%及びヨウ化カリウムを5質量%の割合で含有する58℃の水溶液(一軸延伸処理浴)に浸漬しつつ、全体で6.0倍まで長さ方向に一軸延伸した。その後、ホウ酸を1.5質量%及びヨウ化カリウムを3.5質量%の濃度で含有する温度22℃のヨウ化カリウム水溶液(洗浄浴)中に5秒間浸漬することによりフィルムを洗浄した。最後に80℃で4分間乾燥して偏光フィルムを得た。 A sample having a width of 5 cm and a length of 9 cm was cut from the central portion of the obtained PVA film in the width direction so that a range of 5 cm in width × 5 cm in length could be uniaxially stretched. This sample was uniaxially stretched 2.0 times in the length direction while being immersed in pure water at 30 ° C. for 60 seconds for swelling treatment. Subsequently, it was immersed in an aqueous solution containing 0.05% by mass of iodine and 5.0% by mass of potassium iodide (dyeing treatment bath: temperature 32 ° C.) for 120 seconds while being 1.2 times longer (2.4 times as a whole). Iodine was adsorbed by uniaxial stretching in the longitudinal direction. Next, the boric acid was uniaxially stretched 1.25 times (3.0 times in total) while being immersed in an aqueous solution containing 2.6% by mass of boric acid (boric acid cross-linking treatment bath: temperature 32 ° C.) for 120 seconds. .. Further, while immersing in an aqueous solution (uniaxial stretching treatment bath) at 58 ° C. containing 2.8% by mass of boric acid and 5% by mass of potassium iodide, the whole is uniaxially stretched up to 6.0 times in the length direction. did. Then, the film was washed by immersing it in a potassium iodide aqueous solution (washing bath) having a temperature of 22 ° C. containing 1.5% by mass of boric acid and 3.5% by mass of potassium iodide for 5 seconds. Finally, it was dried at 80 ° C. for 4 minutes to obtain a polarizing film.
 得られた偏光フィルムを用いて上記した方法により、単体透過率(T)及び偏光度(V)を測定し、二色性比(R)を求めた。また、上記方法により、偏光フィルムの耐湿熱性を評価した。結果を表1に示す。 Using the obtained polarizing film, the simple substance transmittance (T) and the degree of polarization (V) were measured by the above-mentioned method, and the dichroism ratio (R) was determined. In addition, the moisture and heat resistance of the polarizing film was evaluated by the above method. The results are shown in Table 1.
[実施例2~5及び比較例1~4]
 表1~3に記載されたPVA(PVA-2~PVA-9)を用い、PVAフィルムの平均厚さが30μm、膨潤度が200%になるように、製膜原液のPVA含有率及び熱処理温度を調整した以外は実施例1と同様にしてPVAフィルムの作製及び評価を行った。得られたPVAフィルムを用いて、実施例1と同様にして偏光フィルムの製造及び評価を行った。結果を表1~3に示す。
[Examples 2 to 5 and Comparative Examples 1 to 4]
Using the PVAs (PVA-2 to PVA-9) listed in Tables 1 to 3, the PVA content and heat treatment temperature of the film-forming stock solution so that the average thickness of the PVA film is 30 μm and the swelling degree is 200%. The PVA film was prepared and evaluated in the same manner as in Example 1 except that the above was adjusted. Using the obtained PVA film, a polarizing film was produced and evaluated in the same manner as in Example 1. The results are shown in Tables 1 to 3.
[比較例5]
 PVAとしてPVA-10を用い、PVAフィルムの平均厚さが30μm、膨潤度が200%になるように、製膜原液のPVA含有率及び熱処理温度を調整した以外は実施例1と同様にしてPVAフィルムの作製を行った。しかし、一軸延伸処理浴中で破断し、偏光フィルムを得ることができなかった。
[Comparative Example 5]
PVA-10 was used as PVA, and PVA was adjusted in the same manner as in Example 1 except that the PVA content of the film-forming stock solution and the heat treatment temperature were adjusted so that the average thickness of the PVA film was 30 μm and the swelling degree was 200%. A film was prepared. However, it broke in the uniaxial stretching treatment bath, and a polarizing film could not be obtained.
[比較例6]
 PVAとしてPVA-11を用い、製膜原液及び10質量%PVA水溶液を作成しようとしたが、PVAが溶解せず、製膜原液を作製することができなかった。
[Comparative Example 6]
Using PVA-11 as PVA, an attempt was made to prepare a film-forming stock solution and a 10% by mass PVA aqueous solution, but PVA did not dissolve and the film-forming stock solution could not be prepared.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1~3に示されるように、実施例1~5で用いられたPVA1~PVA-5は、水溶性が十分であるため製膜原液を調製することができ、また、得られたPVAフィルム(光学フィルム製造用フィルム)は偏光フィルムを得るための十分な延伸が可能であった。このように、実施例1~5のPVAフィルムは生産性が良好であることがわかる。また、実施例1~5のPVAフィルムから得られた偏光フィルムは、同じ重合度を有する非変性のPVAが用いられた偏光フィルムと比べて光学性能(二色性比)及び耐湿熱性が優れていた。具体的には、表1に示されるように、重合度が2,400のシラノール変性PVAを用いた実施例1~3の偏光フィルムは、重合度が2,400の非変性PVAを用いた比較例1の偏光フィルムと比べて、二色性比が高く、偏光度減少量が小さかった。重合度が3,300のシラノール変性PVAを用いた実施例4の偏光フィルムは、重合度が3,300の非変性PVAを用いた比較例2の偏光フィルムと比べて、二色性比が高く、透過度増加量及び偏光度減少量が小さかった。重合度が1,700のシラノール変性PVAを用いた実施例5の偏光フィルムは、重合度が1,700の非変性PVAを用いた比較例3及び比較例4の偏光フィルムと比べて、二色性比が高く、透過度増加量及び偏光度減少量が小さかった。 As shown in Tables 1 to 3, the PVA1 to PVA-5 used in Examples 1 to 5 have sufficient water solubility, so that a film-forming stock solution can be prepared, and the obtained PVA film can be prepared. (Film for manufacturing an optical film) could be sufficiently stretched to obtain a polarizing film. As described above, it can be seen that the PVA films of Examples 1 to 5 have good productivity. Further, the polarizing films obtained from the PVA films of Examples 1 to 5 are superior in optical performance (dichroism ratio) and moisture heat resistance as compared with the polarizing films using non-modified PVA having the same degree of polymerization. It was. Specifically, as shown in Table 1, the polarizing films of Examples 1 to 3 using silanol-modified PVA having a degree of polymerization of 2,400 were compared using non-modified PVA having a degree of polymerization of 2,400. Compared with the polarizing film of Example 1, the dichroism ratio was high and the amount of decrease in degree of polymerization was small. The polarizing film of Example 4 using a silanol-modified PVA having a degree of polymerization of 3,300 has a higher dichroism ratio than the polarizing film of Comparative Example 2 using a non-modified PVA having a degree of polymerization of 3,300. , The amount of increase in transparency and the amount of decrease in degree of polarization were small. The polarizing film of Example 5 using the silanol-modified PVA having a degree of polymerization of 1,700 has two colors as compared with the polarizing films of Comparative Example 3 and Comparative Example 4 using the non-modified PVA having a degree of polymerization of 1,700. The sex ratio was high, and the amount of increase in transparency and the amount of decrease in degree of polarization were small.
 また、例えば、重合度が2,400である非変性のPVAを用いた比較例1を基準として、比較例2と実施例1とを比較すると以下のことがわかる。比較例2は、比較例1に対して、重合度の大きいPVAを用いたものである。実施例1は、比較例1に対してシラノール変性させたPVAを用いたものである。比較例2の二色性比は201であり、実施例1の二色性比は208であり、どちらも二色性比が162である比較例1と比べて同程度に二色性比が高まっている。しかし、PVAの水溶液粘度で比較すると、比較例1のPVAの粘度が910mPa・sであるのに対し、比較例2のPVAの粘度は2,740mPa・sと大幅に増加している。一方、実施例1のPVAの粘度は920mPa・sであり、粘度の上昇が抑えられている。すなわち、実施例のシラノール変性PVAによれば、良好な製膜性(生産性)を維持しつつ、光学フィルムの光学性能及び耐湿熱性を高めることができるといえる。 Further, for example, when Comparative Example 2 and Example 1 are compared with reference to Comparative Example 1 using non-modified PVA having a degree of polymerization of 2,400, the following can be found. Comparative Example 2 uses PVA having a higher degree of polymerization than Comparative Example 1. Example 1 uses PVA modified with silanol with respect to Comparative Example 1. The dichroism ratio of Comparative Example 2 is 201, and the dichroism ratio of Example 1 is 208, both of which have the same dichroism ratio as that of Comparative Example 1 having a dichroism ratio of 162. It is increasing. However, when compared with the viscosity of the aqueous solution of PVA, the viscosity of PVA in Comparative Example 1 was 910 mPa · s, whereas the viscosity of PVA in Comparative Example 2 was 2,740 mPa · s, which was significantly increased. On the other hand, the viscosity of PVA of Example 1 is 920 mPa · s, and the increase in viscosity is suppressed. That is, according to the silanol-modified PVA of the example, it can be said that the optical performance and the heat resistance to moisture and heat of the optical film can be improved while maintaining good film forming property (productivity).
 本発明の光学フィルム製造用フィルムは、LCDの構成材料である偏光フィルム等の材料として好適に用いることができる。
 
The film for producing an optical film of the present invention can be suitably used as a material such as a polarizing film which is a constituent material of an LCD.

Claims (12)

  1.  ケイ素含有基を有するポリビニルアルコールを含み、
     上記ケイ素含有基が、シラノール基又は水の存在下でシラノール基に転化し得る基であり、
     上記ポリビニルアルコールの粘度平均重合度が1,000以上6,000以下、けん化度が98.7モル%以上、且つ全構造単位に対する上記ケイ素含有基の含有量が0.01モル%以上1.0モル%以下である、光学フィルム製造用フィルム。
    Contains polyvinyl alcohol with silicon-containing groups
    The silicon-containing group is a silanol group or a group that can be converted to a silanol group in the presence of water.
    The viscosity average degree of polymerization of the polyvinyl alcohol is 1,000 or more and 6,000 or less, the saponification degree is 98.7 mol% or more, and the content of the silicon-containing group with respect to all structural units is 0.01 mol% or more and 1.0. A film for producing an optical film having a molar% or less.
  2.  上記けん化度が99.5モル%以上である、請求項1に記載の光学フィルム製造用フィルム。 The film for producing an optical film according to claim 1, wherein the saponification degree is 99.5 mol% or more.
  3.  上記粘度平均重合度と上記ケイ素含有基の含有量との積が100モル%以上2,000モル%以下である、請求項1又は請求項2に記載の光学フィルム製造用フィルム。 The film for producing an optical film according to claim 1 or 2, wherein the product of the viscosity average degree of polymerization and the content of the silicon-containing group is 100 mol% or more and 2,000 mol% or less.
  4.  平均厚さが1μm以上75μm以下である、請求項1~請求項3のいずれか1項に記載の光学フィルム製造用フィルム。 The film for producing an optical film according to any one of claims 1 to 3, wherein the average thickness is 1 μm or more and 75 μm or less.
  5.  膨潤度が140%以上400%以下である、請求項1~請求項4のいずれか1項に記載の光学フィルム製造用フィルム。 The film for producing an optical film according to any one of claims 1 to 4, wherein the degree of swelling is 140% or more and 400% or less.
  6.  上記光学フィルムが偏光フィルムである、請求項1~請求項5のいずれか1項に記載の光学フィルム製造用フィルム。 The film for producing an optical film according to any one of claims 1 to 5, wherein the optical film is a polarizing film.
  7.  非延伸フィルムである、請求項1~請求項6のいずれか1項に記載の光学フィルム製造用フィルム。 The film for producing an optical film according to any one of claims 1 to 6, which is a non-stretched film.
  8.  請求項1~請求項7のいずれか1項に記載の光学フィルム製造用フィルムを一軸延伸する工程を備える、光学フィルムの製造方法。 A method for producing an optical film, comprising a step of uniaxially stretching the film for producing an optical film according to any one of claims 1 to 7.
  9.  上記光学フィルムが偏光フィルムである、請求項8に記載の光学フィルムの製造方法。 The method for manufacturing an optical film according to claim 8, wherein the optical film is a polarizing film.
  10.  ケイ素含有基を有するポリビニルアルコールを含み、
     上記ケイ素含有基が、シラノール基又は水の存在下でシラノール基に転化し得る基であり、
     上記ポリビニルアルコールの粘度平均重合度が1,000以上6,000以下、けん化度が98.7モル%以上、且つ全構造単位に対する上記ケイ素含有基の含有量が0.01モル%以上1.0モル%以下である、光学フィルム。
    Contains polyvinyl alcohol with silicon-containing groups
    The silicon-containing group is a silanol group or a group that can be converted to a silanol group in the presence of water.
    The viscosity average degree of polymerization of the polyvinyl alcohol is 1,000 or more and 6,000 or less, the saponification degree is 98.7 mol% or more, and the content of the silicon-containing group with respect to all structural units is 0.01 mol% or more and 1.0. An optical film that is less than or equal to a molar percentage.
  11.  偏光フィルムである、請求項10に記載の光学フィルム。 The optical film according to claim 10, which is a polarizing film.
  12.  単層フィルムである、請求項10又は請求項11に記載の光学フィルム。
     
    The optical film according to claim 10 or 11, which is a single-layer film.
PCT/JP2020/036028 2019-10-08 2020-09-24 Film for production of optical film, method for producing optical film, and optical film WO2021070622A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080070727.0A CN114450329A (en) 2019-10-08 2020-09-24 Film for producing optical film, method for producing optical film, and optical film
JP2021551156A JPWO2021070622A1 (en) 2019-10-08 2020-09-24
KR1020227007705A KR20220074860A (en) 2019-10-08 2020-09-24 Film for manufacturing optical film, manufacturing method of optical film, and optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-185526 2019-10-08
JP2019185526 2019-10-08

Publications (1)

Publication Number Publication Date
WO2021070622A1 true WO2021070622A1 (en) 2021-04-15

Family

ID=75437272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036028 WO2021070622A1 (en) 2019-10-08 2020-09-24 Film for production of optical film, method for producing optical film, and optical film

Country Status (5)

Country Link
JP (1) JPWO2021070622A1 (en)
KR (1) KR20220074860A (en)
CN (1) CN114450329A (en)
TW (1) TW202126703A (en)
WO (1) WO2021070622A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097336A1 (en) * 2020-11-09 2022-05-12 株式会社クラレ Film for producing optical film, method for producing optical film, and optical film
WO2022102185A1 (en) * 2020-11-11 2022-05-19 株式会社クラレ Film for manufacturing optical film, and method for manufacturing optical film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI788127B (en) 2021-12-03 2022-12-21 財團法人工業技術研究院 Hydrophobic polyvinyl alcohol and method for preparing hydrophobic polyvinyl alcohol

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818624A (en) * 1986-12-19 1989-04-04 Polaroid Corporation, Patent Department Stabilized light-polarizing material
JP2011053234A (en) * 2008-01-11 2011-03-17 Nippon Kayaku Co Ltd Dye-based polarizer, polarizing plate, and method for producing them
WO2014112625A1 (en) * 2013-01-21 2014-07-24 日本合成化学工業株式会社 Silyl group-containing poly(vinyl alcohol)-based resin and use thereof
US20160152876A1 (en) * 2014-11-28 2016-06-02 Samsung Sdi Co., Ltd. Adhesive composition for polarizing plate, adhesive film for polarizing plate prepared using the same, polarizing plate comprising the same and optical display comprising the same
JP2019015926A (en) * 2017-07-10 2019-01-31 株式会社クラレ Polarization film and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2543748B2 (en) 1987-07-03 1996-10-16 株式会社クラレ Polarizing film and manufacturing method thereof
JP4869644B2 (en) * 2005-06-30 2012-02-08 日本合成化学工業株式会社 Process for producing polyvinyl alcohol film for optical film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818624A (en) * 1986-12-19 1989-04-04 Polaroid Corporation, Patent Department Stabilized light-polarizing material
JP2011053234A (en) * 2008-01-11 2011-03-17 Nippon Kayaku Co Ltd Dye-based polarizer, polarizing plate, and method for producing them
WO2014112625A1 (en) * 2013-01-21 2014-07-24 日本合成化学工業株式会社 Silyl group-containing poly(vinyl alcohol)-based resin and use thereof
US20160152876A1 (en) * 2014-11-28 2016-06-02 Samsung Sdi Co., Ltd. Adhesive composition for polarizing plate, adhesive film for polarizing plate prepared using the same, polarizing plate comprising the same and optical display comprising the same
JP2019015926A (en) * 2017-07-10 2019-01-31 株式会社クラレ Polarization film and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022097336A1 (en) * 2020-11-09 2022-05-12 株式会社クラレ Film for producing optical film, method for producing optical film, and optical film
WO2022102185A1 (en) * 2020-11-11 2022-05-19 株式会社クラレ Film for manufacturing optical film, and method for manufacturing optical film

Also Published As

Publication number Publication date
TW202126703A (en) 2021-07-16
JPWO2021070622A1 (en) 2021-04-15
KR20220074860A (en) 2022-06-03
CN114450329A (en) 2022-05-06

Similar Documents

Publication Publication Date Title
TWI639618B (en) Production method of vinyl alcohol polymer film and optical film using the same
JP6788673B2 (en) Polarizing film and its manufacturing method
WO2021070622A1 (en) Film for production of optical film, method for producing optical film, and optical film
TWI648330B (en) Blank film for manufacturing optical film and manufacturing method of optical film using same
TWI636066B (en) Blank film for optical film manufacturing and manufacturing method of optical film
JP5931125B2 (en) Manufacturing method of polarizing film
WO2022102185A1 (en) Film for manufacturing optical film, and method for manufacturing optical film
JP6858499B2 (en) Optical film manufacturing method
WO2022097336A1 (en) Film for producing optical film, method for producing optical film, and optical film
JP7042583B2 (en) Raw film for manufacturing optical film and method for manufacturing optical film using it
JP6776129B2 (en) the film
JP6255300B2 (en) Method for producing polyvinyl alcohol resin
JP6792456B2 (en) the film
JP2023056678A (en) Polyvinyl alcohol film, method of producing polyvinyl alcohol film, stretched film and polarizing film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873541

Country of ref document: EP

Kind code of ref document: A1