WO2021070607A1 - Biological sensor and method for using biological sensor - Google Patents

Biological sensor and method for using biological sensor Download PDF

Info

Publication number
WO2021070607A1
WO2021070607A1 PCT/JP2020/035707 JP2020035707W WO2021070607A1 WO 2021070607 A1 WO2021070607 A1 WO 2021070607A1 JP 2020035707 W JP2020035707 W JP 2020035707W WO 2021070607 A1 WO2021070607 A1 WO 2021070607A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric sheet
cover member
piezoelectric
biosensor
longitudinal direction
Prior art date
Application number
PCT/JP2020/035707
Other languages
French (fr)
Japanese (ja)
Inventor
夕輝 植屋
Original Assignee
ヤマハ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ株式会社 filed Critical ヤマハ株式会社
Publication of WO2021070607A1 publication Critical patent/WO2021070607A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices

Definitions

  • the present invention relates to a biosensor and a method of using the biosensor.
  • vibrations generated inside the living body such as heartbeat, pulse wave, blood flow sound, and breathing sound (not limited to sonic vibration in the audible range, including low frequency vibration and ultrasonic vibration in the non-audible range).
  • sonic vibration in the audible range including low frequency vibration and ultrasonic vibration in the non-audible range.
  • Examples of the biological sensor for detecting the vibration of the living body include a piezoelectric sensor, a foam sheet laminated and integrated on one surface of the piezoelectric sensor, and a shape-retaining plate laminated and integrated on the other surface of the piezoelectric sensor.
  • a weak biovibration such as a pulse wave can be detected by locating the subject's arm or the like on the foam sheet.
  • the piezoelectric sensor is held by the shape-retaining plate so as not to bend, so that when the biosensor is applied to a curved surface such as the surface of the arm to measure the biovibration, the movement of the arm during measurement is used. If the position of the biosensor is displaced, it may be difficult to stably measure the biovibration such as a pulse wave.
  • the present invention is a biosensor and a biosensor capable of easily and stably measuring biovibration even when the biovibration such as a pulse wave is measured by applying it to a curved surface of the skin.
  • the subject is to provide a method of using.
  • the biosensor according to one aspect of the present invention includes a strip-shaped piezoelectric sheet and a cover member that covers the piezoelectric sheet, and the cover member is curved along the longitudinal direction of the piezoelectric sheet. It is located at the curved portion of the cover member.
  • a method of using the biosensor according to another aspect of the present invention includes a step of fixing the biosensor of the present invention on the surface of the forearm so that the longitudinal direction of the band-shaped piezoelectric sheet is orthogonal to the fingertip direction of the forearm.
  • a step of measuring the biological vibration after the fixing step is provided.
  • FIG. 1 is a schematic exploded perspective view showing a biosensor according to an embodiment of the present invention.
  • FIG. 2 is a schematic side view of the biosensor of FIG.
  • FIG. 3 is a schematic cross-sectional view when the biosensor of FIG. 2 is cut along the line AA.
  • FIG. 4 is a schematic exploded perspective view showing a biosensor different from that of FIG.
  • the biosensor according to one aspect of the present invention includes a strip-shaped piezoelectric sheet and a cover member that covers the piezoelectric sheet, and the cover member is curved along the longitudinal direction of the piezoelectric sheet. It is located at the curved portion of the cover member.
  • the cover member is curved along the longitudinal direction of the piezoelectric sheet, and the piezoelectric sheet is located at the curved portion of the cover member. Therefore, it is easy to apply the longitudinal direction of the piezoelectric sheet to the curved surface of the skin. Further, since the piezoelectric sheet has a band shape, the biological sensor can detect the biological vibration if any position in the longitudinal direction of the piezoelectric sheet is in contact with a portion capable of detecting the biological vibration. Therefore, the biosensor can easily and stably measure the biovibration even when the biosensor is applied to the curved surface of the skin to measure the biovibration.
  • the curved portion of the cover member has flexibility along the longitudinal direction.
  • the flexibility of the curved portion of the cover member increases toward one end side in the longitudinal direction.
  • the thickness of the cover member gradually decreases toward one end side in the longitudinal direction.
  • the radius of curvature of the curved portion of the cover member is preferably 20 cm or more and 50 cm or less.
  • the cover member has a recess capable of accommodating a detection circuit for detecting the potential difference of the piezoelectric sheet.
  • a spacer that surrounds the periphery of the piezoelectric sheet is further provided, and the front side surface of the piezoelectric sheet facing the living body to be measured and the front side surface of the spacer are flush with each other, or the front side surface of the piezoelectric sheet is the front surface of the spacer. It is good that it protrudes from the side surface.
  • the length of the piezoelectric sheet in the longitudinal direction is preferably 10 mm or more and 25 mm or less, and the length of the piezoelectric sheet in the width direction is preferably 2 mm or more and 4 mm or less.
  • the biosensor includes a plurality of the piezoelectric sheets, and it is preferable that the plurality of piezoelectric sheets are arranged in parallel so that their longitudinal directions are parallel to each other.
  • a method of using the biosensor according to another aspect of the present invention includes a step of fixing the biosensor of the present invention on the surface of the forearm so that the longitudinal direction of the band-shaped piezoelectric sheet is orthogonal to the fingertip direction of the forearm.
  • a step of measuring the biological vibration after the fixing step is provided.
  • the biosensor 1 shown in FIGS. 1 to 3 includes a sensor unit 20 having a strip-shaped piezoelectric sheet 10, a cover member 30 covering the sensor unit 20, and a detection circuit 40 connected to the sensor unit 20.
  • the biosensor 1 includes a curved portion.
  • the cover member 30 included in the biosensor 1 is curved from the base end ⁇ to the tip end ⁇ in FIG. 2 along the longitudinal direction of the piezoelectric sheet 10 included in the sensor unit 20.
  • the cover member 30 has a curved portion 31 and a flat portion 32 continuous with the base end ⁇ of the curved portion 31 (the end portion opposite to the tip end ⁇ on one end side in the longitudinal direction).
  • the sensor unit 20 is located on the inner surface side of the curved portion 31 of the cover member 30, and the sensor unit 20 is curved along the cover member 30. That is, in the biosensor 1, the piezoelectric sheet 10 is located at the curved portion 31 of the cover member 30.
  • the "inner surface side” refers to the surface side where the inner circumference of the curved portion of the cover member is located.
  • the biological sensor 1 is brought into contact with a living body to acquire biological vibration.
  • the biological sensor 1 In order to measure the pulse wave of the human body, which is one of the biological vibrations, with the biological sensor 1, it is preferable to bring the biological sensor 1 into contact with the forearm W, which easily acquires the pulse wave from the artery.
  • the biosensor 1 can measure a pulse wave by applying a curved portion 31 of the biosensor 1 to a curved surface portion of the surface of the forearm W. At this time, the biosensor 1 is placed so that the curved portion 31 thereof is along the curved surface portion of the surface of the forearm W.
  • the cover member 30 is made of a rectangular plate having a curved portion.
  • the width and length of the cover member 30 are appropriately determined so as to cover the piezoelectric sheet 10.
  • Examples of the material of the cover member 30 include resin, metal, glass, and rubber. Among them, as the material of the cover member 30, a resin whose flexibility is easily controlled is preferable.
  • examples of the resin include acrylic resin, polycarbonate, polypropylene, polyamide, acrylonitrile-butadiene-styrene copolymer (ABS) and the like.
  • examples of the metal include aluminum, copper and the like.
  • the curved portion 31 of the cover member 30 has flexibility along the longitudinal direction of the piezoelectric sheet 10 (hereinafter, also simply referred to as “longitudinal direction”) of the sensor unit 20. That is, the curved portion 31 bends. Since the curved portion 31 of the cover member 30 has flexibility along the longitudinal direction in this way, the curved portion 31 can be brought into contact with the curved surface portion of the surface of the forearm W while bending. That is, the sensor unit 20 can be brought into contact with the forearm W without excessively deforming the curved surface shape.
  • “the curved portion 31 of the cover member 30 has flexibility” means that the curvature indicating the degree of curvature of the curved portion 31 can be changed.
  • the flexibility of the curved portion 31 of the cover member 30 can be adjusted by selecting the material of the cover member 30 and controlling the thickness thereof.
  • the flexibility of the curved portion 31 of the cover member 30 increases toward one end side in the longitudinal direction.
  • the flexibility of the curved portion 31 of the cover member 30 is on the side opposite to the flat portion 32 from the boundary (base end ⁇ ) between the flat portion 32 and the curved portion 31 of the cover member 30. It increases toward one end side (tip ⁇ ) of.
  • the sensor unit 20 is brought into contact with the forearm W while maintaining the curved shape of the forearm W (without strongly pressing the forearm W) and naturally bending the curved portion 31 with respect to the curved surface portion of the forearm W. Can be done.
  • the region where the flexibility increases toward one end side (hereinafter, also referred to as “flexibility increasing region”) is the entire curved portion 31. It may be a part of the curved portion 31.
  • the flexibility increasing region preferably includes a region in which the piezoelectric sheet 10 included in the sensor unit 20 is arranged.
  • the thickness of the cover member 30 gradually decreases toward the one end side (tip ⁇ ) in the longitudinal direction. By gradually reducing the thickness of the cover member 30 toward the tip ⁇ in this way, the flexibility of the cover member 30 can be easily increased toward the tip ⁇ .
  • Notches extending in the direction perpendicular to the longitudinal direction may be made on the inner surface side, the outer surface side, or both sides of the cover member 30. By gradually increasing the density of the cuts toward one end side in the longitudinal direction, the flexibility of the cover member 30 can be increased toward one end side in the longitudinal direction.
  • the lower limit of the radius of curvature of the curved portion 31 of the cover member 30 is preferably 20 cm, more preferably 25 cm.
  • the upper limit of the radius of curvature of the curved portion 31 is preferably 50 cm, more preferably 40 cm. If the radius of curvature of the curved portion 31 is less than the lower limit, it may be too small compared to the curvature of the curved surface of the forearm W, and may hit the skin strongly and press the living body. On the contrary, if the radius of curvature of the curved portion 31 exceeds the upper limit, it may be difficult to bring the piezoelectric sheet 10 into contact with the curved surface of the skin.
  • the flat portion 32 of the cover member 30 is connected to one end side (tip ⁇ ) and the opposite end (base end ⁇ ) of the curved portion 31.
  • the inner surface side of the flat portion 32 is a flat surface.
  • the forearm W has a portion having a large curvature and a portion having a relatively flat portion. Therefore, by providing the curved portion 31 and the flat portion 32 on the cover member 30, the region where the biosensor 1 contacts the forearm W can be made substantially the same as the surface shape of the forearm W. Further, by bringing the flat portion 32 into contact with the relatively flat portion of the forearm W, it is possible to stabilize the fixation of the biosensor 1 to the forearm W.
  • the flat portion 32 is configured to be thicker than the curved portion 31, and the thick portion has a recess 33.
  • the recess 33 is open on the inner surface side (forearm W side) of the flat portion 32.
  • the recess 33 can store the circuit body 41 of the detection circuit 40 that detects the potential difference of the piezoelectric sheet 10.
  • the biosensor 1 can be compactly configured.
  • the circuit main body 41 can be easily stored.
  • the recess 33 is sized to accommodate the circuit body 41. Note that what is stored in the recess 33 is not limited to the detection circuit, and other types of circuits and the like may be stored.
  • the recess 33 may have an outlet 33a capable of drawing out a wiring (not shown) for transmitting a signal detected by the circuit body 41 to the outside.
  • the circuit body 41 and the piezoelectric sheet 10 are also connected by wiring 42 as shown in FIG. 1, but the width and thickness of the wiring 42 are arbitrary as long as they do not affect the measurement of biological vibration. It's fine.
  • the sensor unit 20 is configured to be bendable and has a piezoelectric sheet 10, a covering member 17, and a spacer 18.
  • the piezoelectric sheet 10 is formed of a piezoelectric material that converts pressure into voltage, and converts deformation due to a force applied by a pressure wave of biological vibration into voltage. As shown in FIG. 3, the piezoelectric sheet 10 has a piezoelectric body 11, a first electrode 12, and a second electrode 13.
  • the piezoelectric material forming the piezoelectric body 11 may be, for example, an inorganic material such as lead zirconate titanate, but a polymer piezoelectric material having flexibility so as to be in close contact with the surface of a living body is preferable. Further, by using a porous film in which a large number of pores are formed in the polymer piezoelectric material as the piezoelectric body 11, the flexibility and the piezoelectric constant can be relatively increased.
  • polymer piezoelectric material examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-3 ethylene fluoride copolymer (P (VDF / TrFE)), and vinylidene cyanide-vinyl acetate copolymer (P (VDCN /)). VAc)) and the like can be mentioned. Further, by using these polymer piezoelectric materials as a porous film, it is possible to form a piezoelectric sheet 10 having a larger flexibility and a larger piezoelectric constant.
  • a large number of flat pores are formed in, for example, polytetrafluoroethylene (PTFE), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), etc., which do not have piezoelectric characteristics, and corona discharge or the like is formed. It is also possible to use a product in which the facing surface of the flat pores is polarized and charged to impart piezoelectric characteristics.
  • PTFE polytetrafluoroethylene
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • the lower limit of the average thickness of the piezoelectric body 11 10 ⁇ m is preferable, and 50 ⁇ m is more preferable.
  • the upper limit of the average thickness of the piezoelectric body 11 is preferably 500 ⁇ m, more preferably 200 ⁇ m. If the average thickness of the piezoelectric body 11 is less than the lower limit, the strength of the piezoelectric sheet 10 may be insufficient. On the contrary, if the average thickness of the piezoelectric body 11 exceeds the upper limit, the deformability of the piezoelectric sheet 10 becomes small, and the detection sensitivity may become insufficient.
  • the “average thickness” refers to the average value of the thickness measured at any 10 points of the piezoelectric body 11. Hereinafter, the "average” regarding the length such as the thickness shall be based on the same measurement.
  • the first electrode 12 is an electrode laminated on the first surface of the piezoelectric body 11.
  • the first electrode 12 is used together with the second electrode 13 described later to detect the potential difference between the first surface and the second surface of the piezoelectric body 11.
  • the material of the first electrode 12 may be any material having conductivity, and examples thereof include metals such as aluminum, copper and nickel, carbon and the like.
  • the average thickness of the first electrode 12 is not particularly limited, and may be 0.1 ⁇ m or more and 30 ⁇ m or less, although it depends on the laminating method and the material of the first electrode 12. If the average thickness of the first electrode 12 is less than the lower limit, the strength of the first electrode 12 may be insufficient and the resistivity may increase. On the contrary, if the average thickness of the first electrode 12 exceeds the upper limit, the transmission of vibration to the piezoelectric body 11 may be hindered.
  • the first electrode 12 is laminated on the entire surface of the first surface of the piezoelectric body 11, but may be laminated on a part of the first surface of the piezoelectric body 11 as long as the potential difference can be detected. ..
  • the method of laminating the first electrode 12 on the piezoelectric body 11 is not particularly limited, and examples thereof include metal deposition, printing of carbon conductive ink, application and drying of silver paste, and the like.
  • the piezoelectric body 11 is electrically connected by laminating the first electrode 12 on the signal terminal 14.
  • the second electrode 13 is an electrode laminated on the second surface of the piezoelectric body 11 so that at least a part thereof faces the first electrode 12. That is, the second electrode 13 is arranged at a position where at least a part thereof overlaps with the first electrode 12 in a plan view. In the piezoelectric sheet 10 shown in FIG. 3, the second electrode 13 has substantially the same shape as the first electrode 12, and the entire surface thereof faces the entire surface of the first electrode 12.
  • the material, average thickness, and laminating method of the second electrode 13 can be the same as those of the first electrode 12.
  • the ground terminal 15 arranged so as to surround the signal terminal 14 is electrically connected to the second electrode 13 via the metal foil 16.
  • the signal terminal 14 and the ground terminal 15 described above are used to transmit the potential difference detected by the first electrode 12 and the second electrode 13 of the piezoelectric sheet 10 to the detection circuit 40. Therefore, the signal terminal 14 and the ground terminal 15 are connected to the circuit main body 41 of the detection circuit 40 via the wiring 42.
  • the signal terminal 14, the ground terminal 15, and the metal foil 16 may be any as long as they have conductivity.
  • a film made of a metal such as aluminum, copper, or nickel, or a film containing a conductive material such as carbon. Examples thereof include textiles and non-woven fabrics made of conductive fibers.
  • the piezoelectric sheet 10 has a strip shape as described above.
  • the piezoelectric sheet 10 may have both ends rounded.
  • the lower limit of the length of the piezoelectric sheet 10 in the longitudinal direction 10 mm is preferable, and 12 mm is more preferable.
  • the upper limit of the length of the piezoelectric sheet 10 in the longitudinal direction is preferably 25 mm, more preferably 20 mm. If the length of the piezoelectric sheet 10 in the longitudinal direction is less than the lower limit, the biosensor 1 may not be able to sufficiently detect biovibration when the biosensor 1 is displaced. On the contrary, when the length of the piezoelectric sheet 10 in the longitudinal direction exceeds the upper limit, the area of the piezoelectric body 11 which is not involved in the detection of biological vibration becomes large, and the sensitivity of the biological sensor 1 may be relatively lowered. .. For example, when both ends of the piezoelectric sheet 10 are rounded and are not constant depending on the position, the "length" refers to the average thereof.
  • the lower limit of the length of the piezoelectric sheet 10 in the width direction is preferably 2 mm, more preferably 2.5 mm.
  • the upper limit of the length of the piezoelectric sheet 10 in the width direction 4 mm is preferable, and 3.5 mm is more preferable. If the length of the piezoelectric sheet 10 in the width direction is less than the lower limit, the sensitivity of the biosensor 1 may be insufficient. On the contrary, if the length of the piezoelectric sheet 10 in the width direction exceeds the upper limit, the biosensor 1 may become unnecessarily large and the handleability may be deteriorated.
  • the signal terminal 14, the ground terminal 15, and the spacer 18 described later may be laminated on the surface of a covering member 17 such as a flexible substrate.
  • a covering member 17 such as a flexible substrate.
  • the spacer 18 is arranged on the surface of the covering member 17, and is arranged so as to surround the ground terminal 15 to which the piezoelectric body 11 is connected. As a result, the spacer 18 surrounds the piezoelectric sheet 10.
  • the spacer 18 may continuously surround the ground terminal 15, but as shown in FIG. 3, the spacer 18 is intermittently surrounded so as to have a gap in a part thereof, and the wiring 42 is arranged using the gap. You may.
  • the front side surface of the piezoelectric sheet 10 facing the forearm W to be measured and the front side surface of the spacer 18 are flush with each other, or the front side surface of the piezoelectric sheet 10 protrudes from the front side surface of the spacer 18. .. That is, the height of the spacer 18 is set so that the second electrode 13 side of the piezoelectric sheet 10 described later is in contact with the living body when the biological sensor 1 is used, and the piezoelectric sheet 10 can be fixed by the spacer 18. Specifically, as shown in FIG. 3, the height of the spacer 18 is set to be slightly lower than the surface of the piezoelectric sheet 10 on the second electrode 13 side. By setting the height of the spacer 18 in this way, the piezoelectric sheet 10 can more reliably receive the biological vibration from the forearm W in a state where the front side surface of the spacer 18 is in contact with the forearm W.
  • the spacer 18 is preferably configured by using a flexible substrate or the like in order to secure flexibility.
  • the sensor unit 20 may have a shield layer.
  • the shield layer is arranged so as to wrap the entire sensor unit 20 on the outermost side.
  • the shield layer has an insulating layer and a conductive layer laminated on the surface of the insulating layer.
  • the insulating layer for example, an acrylic resin can be used.
  • the conductive layer can be a coating layer of a conductive paint of silver or copper.
  • the biosensor 1 is used by being fixed to the living body so that the inner surface side of the cover member 30 comes into contact with the living body.
  • FIG. 2 the case where the pulse wave is measured by applying it to the surface of the forearm W will be described, but the application of the biosensor 1 is not limited to the pulse wave measurement with the forearm W. ..
  • the sensor unit 20 has a shield layer, the biosensor 1 comes into contact with the living body via the shield layer.
  • the longitudinal direction of the strip-shaped piezoelectric sheet 10 is fixed to the surface of the forearm W so as to be orthogonal to the fingertip direction of the forearm W. Since the pulse wave is measured by a blood vessel flowing in the forearm W in the fingertip direction, the biosensor 1 is fixed so that the piezoelectric sheet 10 straddles the blood vessel. At this time, as shown in FIG. 2, the biosensor 1 is arranged so that the inner surface side of the curved portion 31 of the cover member 30 is along the curved surface portion of the forearm W.
  • the piezoelectric sheet 10 of the biosensor 1 Since the piezoelectric sheet 10 of the biosensor 1 has a band shape, it is not necessary to perform alignment with high accuracy, and the blood vessel can be relatively easily fixed at a position where the piezoelectric sheet 10 straddles. Further, even if the biosensor 1 is displaced in a direction orthogonal to the fingertip direction of the forearm W, since the piezoelectric sheet 10 is strip-shaped, it is difficult to be removed from the state in which the piezoelectric sheet 10 straddles the blood vessel. That is, the biosensor 1 is resistant to misalignment.
  • the method of fixing to the living body is not particularly limited, but for example, the living body sensor 1 may be sandwiched between the forearm W by a bracelet or a band, or may be attached with a tape or the like.
  • the biosensor 1 After fixing the biosensor 1, measure the biovibration. According to the biosensor 1 fixed as described above, the potential displacement from the piezoelectric sheet 10 can be observed according to the pulse wave. By measuring this potential displacement with a known measuring device, the pulse wave can be known.
  • the cover member 30 is curved along the longitudinal direction of the piezoelectric sheet 10, and the piezoelectric sheet 10 is located at the curved portion 31 of the cover member 30. Therefore, it is easy to apply the longitudinal direction of the piezoelectric sheet 10 to the curved surface of the skin such as the surface of the forearm W. Further, since the piezoelectric sheet 10 has a band shape, the biosensor 1 can detect the biovibration if any position in the longitudinal direction of the piezoelectric sheet 10 is in contact with a portion capable of detecting the biovibration. Therefore, the biosensor 1 can easily and stably measure the biovibration even when the pulse wave is measured by applying it to the curved surface of the skin such as the surface of the forearm W.
  • the biosensor 2 shown in FIG. 4 includes a sensor unit 21 having two strip-shaped piezoelectric sheets 10, a cover member 30 covering the sensor unit 21, and a detection circuit 40 connected to the sensor unit 21.
  • These two piezoelectric sheets 10 are arranged side by side so that their longitudinal directions are parallel to each other. Further, the cover member 30 is curved along the longitudinal direction of the two piezoelectric sheets 10, and the piezoelectric sheet 10 is located at the curved portion of the cover member 30.
  • the biosensor 2 has the same components as the biosensor 1 of the first embodiment except that the sensor unit 21 has two piezoelectric sheets 10. Therefore, the same reference numerals are given and detailed description thereof will be omitted. To do.
  • the two piezoelectric sheets 10 may be connected in series or in parallel, but preferably they are independently connected to the detection circuit 40.
  • the position where the pulse wave is detected is limited, and even if two piezoelectric sheets 10 are similarly parallel to each other perpendicular to the fingertip direction of the forearm, it is not possible to obtain the same signal on both of the two piezoelectric sheets 10. Not exclusively. Therefore, by selecting and measuring one of them with higher sensitivity, it is possible to perform measurement with increased sensitivity while reducing parasitic capacitance.
  • the pulse wave detected from the artery may or may not be detected depending on the position and time even in the fingertip direction of the forearm (longitudinal direction of the artery).
  • the two piezoelectric sheets 10 can be measured side by side in the fingertip direction of the forearm, so that the probability of detecting the pulse wave can be increased.
  • the case where the entire piezoelectric sheet is located at the curved portion of the cover member has been described, but it is not an indispensable constituent requirement that the entire piezoelectric sheet is located at the curved portion of the cover member. That is, the piezoelectric sheet may be partially detached from the curved portion of the cover member. The same effect can be obtained as long as at least a part of the piezoelectric sheet is located at the curved portion of the cover member.
  • the position of the piezoelectric sheet is not limited to the inner surface side, and can be incorporated in the cover member, for example.
  • the position of the piezoelectric sheet is preferably the inner surface side of the cover member.
  • the recess is open to the inner surface side
  • the recess may be open to the outer surface side or the side surface side.
  • the recess is not an essential component and can be omitted.
  • other installation means such as attaching the detection circuit or the like to the surface of the cover member or arranging the detection circuit or the like outside the biosensor can be appropriately used.
  • the cover member has a flat portion
  • the flat portion is not an essential component, and the cover member may be composed of only a curved portion.
  • the number of the piezoelectric sheets to be arranged in parallel is not limited to two, and may be three or more. There may be. However, from the viewpoint of handleability of the biosensor, the number of piezoelectric sheets to be paralleled is preferably 3 or less.
  • the piezoelectric sheet may be directly embedded in the cover member.
  • the cover member around the embedded piezoelectric sheet acts as a spacer.
  • rubber can be mentioned.
  • soft rubber that is soft, highly flexible, and elastic is preferable.
  • the biosensor is applied to the curved surface of the skin, and the shape of the curved surface varies depending on the individual human body.
  • the individual difference absorption mechanism can absorb the individual difference by changing its shape, and the piezoelectric sheet can be suitably applied along the curved surface of the skin.
  • the biosensor according to the present invention can easily and stably measure biovibration even when it is applied to a curved surface of the skin to measure biovibration.

Abstract

A biological sensor (1) according to an aspect of the present invention is provided with: a piezoelectric sheet (10) having a band shape; and a cover member (30) covering the piezoelectric sheet (10), wherein the cover member (30) is curved along the longitudinal direction of the piezoelectric sheet (10), and the piezoelectric sheet (10) is located at a curved section of the cover member (30).

Description

生体センサ及び生体センサの使用方法How to use biosensors and biosensors
 本発明は、生体センサ及び生体センサの使用方法に関する。 The present invention relates to a biosensor and a method of using the biosensor.
 例えば心拍、脈波、血流音、呼吸音等の生体の内部で発生する振動(可聴域の音波振動に限定されず、非可聴域の低周波振動や超音波振動を含む)を測定又は観測することによって、例えば診断、健康管理等を行うことができる。 For example, measurement or observation of vibrations generated inside the living body such as heartbeat, pulse wave, blood flow sound, and breathing sound (not limited to sonic vibration in the audible range, including low frequency vibration and ultrasonic vibration in the non-audible range). By doing so, for example, diagnosis, health management, and the like can be performed.
 生体の振動を検出する生体センサとしては、例えば、圧電センサと、前記圧電センサの一面に積層一体化された発泡シートと、前記圧電センサの他面に積層一体化された保形板とを有するものが公知である(特開2014-147571号公報参照)。この公知の生体センサでは、発泡シート上に被験者の腕などを位置させることで脈波などの微弱な生体振動を検出することができる。 Examples of the biological sensor for detecting the vibration of the living body include a piezoelectric sensor, a foam sheet laminated and integrated on one surface of the piezoelectric sensor, and a shape-retaining plate laminated and integrated on the other surface of the piezoelectric sensor. Is known (see JP-A-2014-147571). In this known biosensor, a weak biovibration such as a pulse wave can be detected by locating the subject's arm or the like on the foam sheet.
 前記従来の生体センサでは、前記保形板により圧電センサが折れ曲がらないように保持されているため、腕の表面のような曲面に当てて生体振動を測定する際に測定時の腕の動きにより生体センサの位置ずれが生じると、安定して脈波等の生体振動を測定することが難しくなる場合がある。 In the conventional biosensor, the piezoelectric sensor is held by the shape-retaining plate so as not to bend, so that when the biosensor is applied to a curved surface such as the surface of the arm to measure the biovibration, the movement of the arm during measurement is used. If the position of the biosensor is displaced, it may be difficult to stably measure the biovibration such as a pulse wave.
特開2014-147571号公報Japanese Unexamined Patent Publication No. 2014-147571
 前記実情に鑑みて、本発明は、肌の曲面に当てて脈波などの生体振動を測定する場合であっても、容易に、かつ安定して生体振動の測定が可能な生体センサ及び生体センサの使用方法の提供を課題とする。 In view of the above circumstances, the present invention is a biosensor and a biosensor capable of easily and stably measuring biovibration even when the biovibration such as a pulse wave is measured by applying it to a curved surface of the skin. The subject is to provide a method of using.
 本発明の一態様に係る生体センサは、帯状の圧電シートと、前記圧電シートを覆うカバー部材とを備え、前記カバー部材が前記圧電シートの長手方向に沿って湾曲しており、前記圧電シートが前記カバー部材の湾曲部分に位置する。 The biosensor according to one aspect of the present invention includes a strip-shaped piezoelectric sheet and a cover member that covers the piezoelectric sheet, and the cover member is curved along the longitudinal direction of the piezoelectric sheet. It is located at the curved portion of the cover member.
 本発明の別の一態様に係る生体センサの使用方法は、本発明の生体センサを、前腕の表面に帯状の圧電シートの長手方向が前腕の指先方向に対して直交するように固定する工程と、前記固定工程後に生体振動を測定する工程とを備える。 A method of using the biosensor according to another aspect of the present invention includes a step of fixing the biosensor of the present invention on the surface of the forearm so that the longitudinal direction of the band-shaped piezoelectric sheet is orthogonal to the fingertip direction of the forearm. A step of measuring the biological vibration after the fixing step is provided.
図1は、本発明の一実施形態に係る生体センサを示す模式的分解斜視図である。FIG. 1 is a schematic exploded perspective view showing a biosensor according to an embodiment of the present invention. 図2は、図1の生体センサの模式的側面図である。FIG. 2 is a schematic side view of the biosensor of FIG. 図3は、図2の生体センサをA-A線で切断した際の模式的断面図である。FIG. 3 is a schematic cross-sectional view when the biosensor of FIG. 2 is cut along the line AA. 図4は、図1とは異なる生体センサを示す模式的分解斜視図である。FIG. 4 is a schematic exploded perspective view showing a biosensor different from that of FIG.
 本発明の一態様に係る生体センサは、帯状の圧電シートと、前記圧電シートを覆うカバー部材とを備え、前記カバー部材が前記圧電シートの長手方向に沿って湾曲しており、前記圧電シートが前記カバー部材の湾曲部分に位置する。 The biosensor according to one aspect of the present invention includes a strip-shaped piezoelectric sheet and a cover member that covers the piezoelectric sheet, and the cover member is curved along the longitudinal direction of the piezoelectric sheet. It is located at the curved portion of the cover member.
 本発明の一態様に係る生体センサは、カバー部材が圧電シートの長手方向に沿って湾曲しており、前記圧電シートが前記カバー部材の湾曲部分に位置している。従って、圧電シートの長手方向を肌の曲面に当て易い。また、前記圧電シートが帯状であるので、圧電シートの長手方向のいずれかの位置が生体振動を検知可能な部位と接していれば、当該生体センサは生体振動を検知することができる。従って、当該生体センサは、肌の曲面に当てて生体振動を測定する場合であっても、容易に、かつ安定して生体振動の測定が可能である。 In the biosensor according to one aspect of the present invention, the cover member is curved along the longitudinal direction of the piezoelectric sheet, and the piezoelectric sheet is located at the curved portion of the cover member. Therefore, it is easy to apply the longitudinal direction of the piezoelectric sheet to the curved surface of the skin. Further, since the piezoelectric sheet has a band shape, the biological sensor can detect the biological vibration if any position in the longitudinal direction of the piezoelectric sheet is in contact with a portion capable of detecting the biological vibration. Therefore, the biosensor can easily and stably measure the biovibration even when the biosensor is applied to the curved surface of the skin to measure the biovibration.
 前記カバー部材の湾曲部分が前記長手方向に沿って可撓性を有するとよい。 It is preferable that the curved portion of the cover member has flexibility along the longitudinal direction.
 前記カバー部材の湾曲部分の可撓性が前記長手方向の一端側に向かって増大するとよい。 It is preferable that the flexibility of the curved portion of the cover member increases toward one end side in the longitudinal direction.
 前記カバー部材の厚さが前記長手方向の一端側に向かって漸減しているとよい。 It is preferable that the thickness of the cover member gradually decreases toward one end side in the longitudinal direction.
 前記カバー部材の湾曲部分の曲率半径としては、20cm以上50cm以下が好ましい。 The radius of curvature of the curved portion of the cover member is preferably 20 cm or more and 50 cm or less.
 前記カバー部材が前記圧電シートの電位差を検出する検出回路を格納可能な凹部を有するとよい。 It is preferable that the cover member has a recess capable of accommodating a detection circuit for detecting the potential difference of the piezoelectric sheet.
 前記圧電シートの周囲を取り囲むスペーサをさらに備え、前記圧電シートの測定対象である生体と対向する表側面と前記スペーサの表側面とが面一又は、前記圧電シートの表側面が、前記スペーサの表側面より突出しているとよい。 A spacer that surrounds the periphery of the piezoelectric sheet is further provided, and the front side surface of the piezoelectric sheet facing the living body to be measured and the front side surface of the spacer are flush with each other, or the front side surface of the piezoelectric sheet is the front surface of the spacer. It is good that it protrudes from the side surface.
 前記圧電シートの長手方向の長さとしては、10mm以上25mm以下が好ましく、前記圧電シートの幅方向の長さとしては、2mm以上4mm以下が好ましい。 The length of the piezoelectric sheet in the longitudinal direction is preferably 10 mm or more and 25 mm or less, and the length of the piezoelectric sheet in the width direction is preferably 2 mm or more and 4 mm or less.
 当該生体センサは、複数の前記圧電シートを備え、これらの複数の圧電シートが、その長手方向が平行となるように並列されているとよい。 The biosensor includes a plurality of the piezoelectric sheets, and it is preferable that the plurality of piezoelectric sheets are arranged in parallel so that their longitudinal directions are parallel to each other.
 本発明の別の一態様に係る生体センサの使用方法は、本発明の生体センサを、前腕の表面に帯状の圧電シートの長手方向が前腕の指先方向に対して直交するように固定する工程と、前記固定工程後に生体振動を測定する工程とを備える。 A method of using the biosensor according to another aspect of the present invention includes a step of fixing the biosensor of the present invention on the surface of the forearm so that the longitudinal direction of the band-shaped piezoelectric sheet is orthogonal to the fingertip direction of the forearm. A step of measuring the biological vibration after the fixing step is provided.
[第1実施形態]
 以下、適宜図面を参照しつつ、本発明の第1実施形態の生体センサ及び生体センサの使用方法を詳説する。
[First Embodiment]
Hereinafter, the biosensor and the method of using the biosensor according to the first embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
 図1から図3に示す生体センサ1は、帯状の圧電シート10を有するセンサユニット20と、センサユニット20を覆うカバー部材30と、センサユニット20と接続される検出回路40とを備える。 The biosensor 1 shown in FIGS. 1 to 3 includes a sensor unit 20 having a strip-shaped piezoelectric sheet 10, a cover member 30 covering the sensor unit 20, and a detection circuit 40 connected to the sensor unit 20.
 図2に示すように、生体センサ1は湾曲部分を備える。具体的には、生体センサ1が備えるカバー部材30が、センサユニット20が有する圧電シート10の長手方向に沿って図2の基端αから先端βまで湾曲している。また、カバー部材30は、湾曲部分31と、この湾曲部分31の基端α(前記長手方向の一端側である先端βとは反対の端部)に連続する平坦部分32とを有する。当該生体センサ1では、センサユニット20がカバー部材30の湾曲部分31の内面側に位置し、センサユニット20はカバー部材30に沿って湾曲している。つまり、当該生体センサ1では、圧電シート10がカバー部材30の湾曲部分31に位置する。なお、本発明において、「内面側」とはカバー部材の湾曲部分の内周がある面側を指す。 As shown in FIG. 2, the biosensor 1 includes a curved portion. Specifically, the cover member 30 included in the biosensor 1 is curved from the base end α to the tip end β in FIG. 2 along the longitudinal direction of the piezoelectric sheet 10 included in the sensor unit 20. Further, the cover member 30 has a curved portion 31 and a flat portion 32 continuous with the base end α of the curved portion 31 (the end portion opposite to the tip end β on one end side in the longitudinal direction). In the biosensor 1, the sensor unit 20 is located on the inner surface side of the curved portion 31 of the cover member 30, and the sensor unit 20 is curved along the cover member 30. That is, in the biosensor 1, the piezoelectric sheet 10 is located at the curved portion 31 of the cover member 30. In the present invention, the "inner surface side" refers to the surface side where the inner circumference of the curved portion of the cover member is located.
 当該生体センサ1は生体へ接触させて生体振動を取得する。生体振動の1つである人体の脈波を生体センサ1で測定するためには、その動脈から脈波を取得しやすい前腕Wに当該生体センサ1を接触させることが好ましい。当該生体センサ1は、図2に示すように、前腕Wの表面の曲面部分に当該生体センサ1の湾曲部分31を当てて脈波を測定することができる。このとき、当該生体センサ1はその湾曲部分31が前腕Wの表面の曲面部分に沿うように載置される。 The biological sensor 1 is brought into contact with a living body to acquire biological vibration. In order to measure the pulse wave of the human body, which is one of the biological vibrations, with the biological sensor 1, it is preferable to bring the biological sensor 1 into contact with the forearm W, which easily acquires the pulse wave from the artery. As shown in FIG. 2, the biosensor 1 can measure a pulse wave by applying a curved portion 31 of the biosensor 1 to a curved surface portion of the surface of the forearm W. At this time, the biosensor 1 is placed so that the curved portion 31 thereof is along the curved surface portion of the surface of the forearm W.
<カバー部材>
 カバー部材30は、図1に示すように、湾曲部分を有する矩形状の板材からなる。なお、カバー部材30の幅及び長さは、圧電シート10を覆えるように適宜決定される。
<Cover member>
As shown in FIG. 1, the cover member 30 is made of a rectangular plate having a curved portion. The width and length of the cover member 30 are appropriately determined so as to cover the piezoelectric sheet 10.
 カバー部材30の材質としては、樹脂、金属、ガラス、ゴムなどを挙げることができる。中でもカバー部材30の材質としては、可撓性が制御し易い樹脂が好ましい。 Examples of the material of the cover member 30 include resin, metal, glass, and rubber. Among them, as the material of the cover member 30, a resin whose flexibility is easily controlled is preferable.
 前記樹脂としては、例えばアクリル樹脂、ポリカーボネート、ポリプロピレン、ポリアミド、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)等を挙げることができる。また、前記金属としては、例えばアルミニウム、銅等を挙げることができる。 Examples of the resin include acrylic resin, polycarbonate, polypropylene, polyamide, acrylonitrile-butadiene-styrene copolymer (ABS) and the like. Further, examples of the metal include aluminum, copper and the like.
 カバー部材30の湾曲部分31は、センサユニット20が有する圧電シート10の長手方向(以下、単に「長手方向」ともいう)に沿って可撓性を有する。つまり、湾曲部分31は撓む。このようにカバー部材30の湾曲部分31が前記長手方向に沿って可撓性を有することで、前腕Wの表面の曲面部分に湾曲部分31を撓ませながら接触させることができる。すなわち、センサユニット20を前腕Wの曲面形状を過度に変形させることなく接触させることができる。なお、「カバー部材30の湾曲部分31が可撓性を有する」とは、湾曲部分31の湾曲度合いを示す曲率が変化し得ることを意味する。 The curved portion 31 of the cover member 30 has flexibility along the longitudinal direction of the piezoelectric sheet 10 (hereinafter, also simply referred to as “longitudinal direction”) of the sensor unit 20. That is, the curved portion 31 bends. Since the curved portion 31 of the cover member 30 has flexibility along the longitudinal direction in this way, the curved portion 31 can be brought into contact with the curved surface portion of the surface of the forearm W while bending. That is, the sensor unit 20 can be brought into contact with the forearm W without excessively deforming the curved surface shape. In addition, "the curved portion 31 of the cover member 30 has flexibility" means that the curvature indicating the degree of curvature of the curved portion 31 can be changed.
 このようなカバー部材30の湾曲部分31の可撓性は、カバー部材30の材質を選択することやその厚さを制御することで調整することができる。 The flexibility of the curved portion 31 of the cover member 30 can be adjusted by selecting the material of the cover member 30 and controlling the thickness thereof.
 カバー部材30の湾曲部分31の可撓性は、長手方向の一端側に向かって増大しているとよい。図2に示す生体センサ1では、カバー部材30の湾曲部分31の可撓性は、カバー部材30の平坦部分32と湾曲部分31との境界(基端α)から、平坦部分32とは反対側の一端側(先端β)へ向かって増大している。このようにカバー部材30の湾曲部分31の可撓性を長手方向の一端側に向かって増大させることで、湾曲部分31をその先端側の撓み易い部分から変形させながら前腕Wの曲面部分に接触させることができる。すなわち、前腕Wの曲面形状を維持しつつ(前腕Wを強く圧迫することなく)、湾曲部分31を前腕Wの曲面部分に対して自然に撓ませながら、センサユニット20を前腕Wに接触させることができる。 It is preferable that the flexibility of the curved portion 31 of the cover member 30 increases toward one end side in the longitudinal direction. In the biosensor 1 shown in FIG. 2, the flexibility of the curved portion 31 of the cover member 30 is on the side opposite to the flat portion 32 from the boundary (base end α) between the flat portion 32 and the curved portion 31 of the cover member 30. It increases toward one end side (tip β) of. By increasing the flexibility of the curved portion 31 of the cover member 30 toward one end side in the longitudinal direction in this way, the curved portion 31 comes into contact with the curved surface portion of the forearm W while being deformed from the easily flexible portion on the tip end side thereof. Can be made to. That is, the sensor unit 20 is brought into contact with the forearm W while maintaining the curved shape of the forearm W (without strongly pressing the forearm W) and naturally bending the curved portion 31 with respect to the curved surface portion of the forearm W. Can be done.
 カバー部材30の湾曲部分31において、一端側(先端β)に向かって可撓性が増大している領域(以下、「可撓性増大領域」ともいう)は、湾曲部分31の全体であってもよいが、湾曲部分31の一部であってもよい。この可撓性増大領域が湾曲部分31の一部である場合、前記可撓性増大領域は、センサユニット20が有する圧電シート10が配置されている領域を包含することが好ましい。 In the curved portion 31 of the cover member 30, the region where the flexibility increases toward one end side (tip β) (hereinafter, also referred to as “flexibility increasing region”) is the entire curved portion 31. It may be a part of the curved portion 31. When the flexibility increasing region is a part of the curved portion 31, the flexibility increasing region preferably includes a region in which the piezoelectric sheet 10 included in the sensor unit 20 is arranged.
 また、カバー部材30の厚さが長手方向の前記一端側(先端β)に向かって漸減しているとよい。このようにカバー部材30の厚さを先端βに向かって漸減させることで、先端βに向かってカバー部材30の可撓性を容易に増加させることができる。 Further, it is preferable that the thickness of the cover member 30 gradually decreases toward the one end side (tip β) in the longitudinal direction. By gradually reducing the thickness of the cover member 30 toward the tip β in this way, the flexibility of the cover member 30 can be easily increased toward the tip β.
 カバー部材30の内面側又は外面側あるいはその両側に、長手方向に対して垂直方向に延びる切れ込みを入れてもよい。この切れ込みの密度を長手方向の一端側に向かって漸増させることで、長手方向の一端側に向かってカバー部材30の可撓性を増加させることもできる。 Notches extending in the direction perpendicular to the longitudinal direction may be made on the inner surface side, the outer surface side, or both sides of the cover member 30. By gradually increasing the density of the cuts toward one end side in the longitudinal direction, the flexibility of the cover member 30 can be increased toward one end side in the longitudinal direction.
 カバー部材30の湾曲部分31の曲率半径の下限としては、20cmが好ましく、25cmがより好ましい。一方、湾曲部分31の曲率半径の上限としては、50cmが好ましく、40cmがより好ましい。湾曲部分31の曲率半径が前記下限未満であると、前腕Wの曲面の曲率に比し小さくなり過ぎて、肌に強く当たり生体を圧迫するおそれがある。逆に、湾曲部分31の曲率半径が前記上限を超えると、圧電シート10を肌の曲面に沿って接触させることが困難となるおそれがある。 The lower limit of the radius of curvature of the curved portion 31 of the cover member 30 is preferably 20 cm, more preferably 25 cm. On the other hand, the upper limit of the radius of curvature of the curved portion 31 is preferably 50 cm, more preferably 40 cm. If the radius of curvature of the curved portion 31 is less than the lower limit, it may be too small compared to the curvature of the curved surface of the forearm W, and may hit the skin strongly and press the living body. On the contrary, if the radius of curvature of the curved portion 31 exceeds the upper limit, it may be difficult to bring the piezoelectric sheet 10 into contact with the curved surface of the skin.
 図2に示すように、カバー部材30の平坦部分32は、湾曲部分31の一端側(先端β)と反対側の端部(基端α)とつながっている。平坦部分32の内面側は平面である。前腕Wは、曲率の大きい部分と、比較的平坦な部分とを有する。従って、カバー部材30に湾曲部分31及び平坦部分32を設けることで、当該生体センサ1が前腕Wに接触する領域を前腕Wの表面形状とほぼ同一にすることができる。また、平坦部分32を前腕Wの比較的平坦な部分に接触させることで、当該生体センサ1の前腕Wへの固定を安定させることができる。 As shown in FIG. 2, the flat portion 32 of the cover member 30 is connected to one end side (tip β) and the opposite end (base end α) of the curved portion 31. The inner surface side of the flat portion 32 is a flat surface. The forearm W has a portion having a large curvature and a portion having a relatively flat portion. Therefore, by providing the curved portion 31 and the flat portion 32 on the cover member 30, the region where the biosensor 1 contacts the forearm W can be made substantially the same as the surface shape of the forearm W. Further, by bringing the flat portion 32 into contact with the relatively flat portion of the forearm W, it is possible to stabilize the fixation of the biosensor 1 to the forearm W.
 図2に示すように、当該生体センサ1のカバー部材30では、平坦部分32は、湾曲部分31よりも厚く構成されており、この厚い部分に凹部33を有する。この凹部33は、平坦部分32の内面側(前腕W側)に開口している。 As shown in FIG. 2, in the cover member 30 of the biosensor 1, the flat portion 32 is configured to be thicker than the curved portion 31, and the thick portion has a recess 33. The recess 33 is open on the inner surface side (forearm W side) of the flat portion 32.
 この凹部33は、図1に示すように、圧電シート10の電位差を検出する検出回路40の回路本体41を格納可能である。この凹部33に、回路本体41を格納することで、当該生体センサ1をコンパクトに構成することができる。また、凹部33を平坦部分32に設けることで、回路本体41の格納を容易に行うことができる。この場合、凹部33は回路本体41を格納できる大きさとされる。なお、凹部33に格納するものは検出回路に限定されるものではなく、他の種類の回路等を格納してもよい。 As shown in FIG. 1, the recess 33 can store the circuit body 41 of the detection circuit 40 that detects the potential difference of the piezoelectric sheet 10. By storing the circuit body 41 in the recess 33, the biosensor 1 can be compactly configured. Further, by providing the recess 33 in the flat portion 32, the circuit main body 41 can be easily stored. In this case, the recess 33 is sized to accommodate the circuit body 41. Note that what is stored in the recess 33 is not limited to the detection circuit, and other types of circuits and the like may be stored.
 また、凹部33は、回路本体41が検出した信号を外部へ伝送するための配線(不図示)を引き出し可能な取出口33aを有するとよい。なお、回路本体41と圧電シート10との間も、図1に示すように配線42で接続されるが、この配線42の幅、厚さは生体振動の測定に影響がない範囲であれば任意でよい。 Further, the recess 33 may have an outlet 33a capable of drawing out a wiring (not shown) for transmitting a signal detected by the circuit body 41 to the outside. The circuit body 41 and the piezoelectric sheet 10 are also connected by wiring 42 as shown in FIG. 1, but the width and thickness of the wiring 42 are arbitrary as long as they do not affect the measurement of biological vibration. It's fine.
<センサユニット>
 センサユニット20は、湾曲可能に構成され、圧電シート10と、被覆部材17と、スペーサ18とを有する。
<Sensor unit>
The sensor unit 20 is configured to be bendable and has a piezoelectric sheet 10, a covering member 17, and a spacer 18.
〔圧電シート〕
 圧電シート10は、圧力を電圧に変換する圧電材料から形成され、生体振動の圧力波によって加えられた力による変形を電圧に変換する。圧電シート10は、図3に示すように、圧電体11と、第一電極12と、第二電極13とを有する。
[Piezoelectric sheet]
The piezoelectric sheet 10 is formed of a piezoelectric material that converts pressure into voltage, and converts deformation due to a force applied by a pressure wave of biological vibration into voltage. As shown in FIG. 3, the piezoelectric sheet 10 has a piezoelectric body 11, a first electrode 12, and a second electrode 13.
(圧電体)
 圧電体11を形成する圧電材料としては、例えばチタン酸ジルコン酸鉛等の無機材料であってもよいが、生体の表面に密着できるよう可撓性を有する高分子圧電材料であることが好ましい。また、圧電体11として、高分子圧電材料に多数の気孔を形成した多孔性フィルムを使用することによって、可撓性及び圧電定数を比較的大きくすることができる。
(Piezoelectric material)
The piezoelectric material forming the piezoelectric body 11 may be, for example, an inorganic material such as lead zirconate titanate, but a polymer piezoelectric material having flexibility so as to be in close contact with the surface of a living body is preferable. Further, by using a porous film in which a large number of pores are formed in the polymer piezoelectric material as the piezoelectric body 11, the flexibility and the piezoelectric constant can be relatively increased.
 前記高分子圧電材料としては、例えばポリフッ化ビニリデン(PVDF)、フッ化ビニリデン-3フッ化エチレン共重合体(P(VDF/TrFE))、シアン化ビニリデン-酢酸ビニル共重合体(P(VDCN/VAc))等を挙げることができる。また、これらの高分子圧電材料を多孔性フィルムとすることによって、より可撓性が大きく、圧電定数の大きい圧電シート10を形成することができる。 Examples of the polymer piezoelectric material include polyvinylidene fluoride (PVDF), vinylidene fluoride-3 ethylene fluoride copolymer (P (VDF / TrFE)), and vinylidene cyanide-vinyl acetate copolymer (P (VDCN /)). VAc)) and the like can be mentioned. Further, by using these polymer piezoelectric materials as a porous film, it is possible to form a piezoelectric sheet 10 having a larger flexibility and a larger piezoelectric constant.
 また、圧電体11として、圧電特性を有しない例えばポリテトラフルオロエチレン(PTFE)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)等に多数の扁平な気孔を形成し、コロナ放電等によって扁平な気孔の対向面を分極して帯電させることによって圧電特性を付与したものを使用することもできる。 Further, as the piezoelectric body 11, a large number of flat pores are formed in, for example, polytetrafluoroethylene (PTFE), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), etc., which do not have piezoelectric characteristics, and corona discharge or the like is formed. It is also possible to use a product in which the facing surface of the flat pores is polarized and charged to impart piezoelectric characteristics.
 圧電体11の平均厚さの下限としては、10μmが好ましく、50μmがより好ましい。一方、圧電体11の平均厚さの上限としては、500μmが好ましく、200μmがより好ましい。圧電体11の平均厚さが前記下限未満であると、圧電シート10の強度が不十分となるおそれがある。逆に、圧電体11の平均厚さが前記上限を超えると、圧電シート10の変形能が小さくなり、検出感度が不十分となるおそれがある。なお、「平均厚さ」とは、圧電体11の任意の10点で測定した厚さの平均値を指す。以下、厚さ等の長さに関する「平均」とは、同様の測定によるものとする。 As the lower limit of the average thickness of the piezoelectric body 11, 10 μm is preferable, and 50 μm is more preferable. On the other hand, the upper limit of the average thickness of the piezoelectric body 11 is preferably 500 μm, more preferably 200 μm. If the average thickness of the piezoelectric body 11 is less than the lower limit, the strength of the piezoelectric sheet 10 may be insufficient. On the contrary, if the average thickness of the piezoelectric body 11 exceeds the upper limit, the deformability of the piezoelectric sheet 10 becomes small, and the detection sensitivity may become insufficient. The "average thickness" refers to the average value of the thickness measured at any 10 points of the piezoelectric body 11. Hereinafter, the "average" regarding the length such as the thickness shall be based on the same measurement.
(第一電極)
 第一電極12は、圧電体11の第一面に積層される電極である。第一電極12は、後述する第二電極13と合わせて、圧電体11の第一面及び第二面間の電位差を検出するために用いられる。
(First electrode)
The first electrode 12 is an electrode laminated on the first surface of the piezoelectric body 11. The first electrode 12 is used together with the second electrode 13 described later to detect the potential difference between the first surface and the second surface of the piezoelectric body 11.
 第一電極12の材質としては、導電性を有するものであればよく、例えばアルミニウム、銅、ニッケル等の金属や、カーボン等を挙げることができる。 The material of the first electrode 12 may be any material having conductivity, and examples thereof include metals such as aluminum, copper and nickel, carbon and the like.
 第一電極12の平均厚さとしては、特に限定されず、積層方法や第一電極12の材質にもよるが、0.1μm以上30μm以下とすることができる。第一電極12の平均厚さが前記下限未満であると、第一電極12の強度が不十分となり、また抵抗率が高くなるおそれがある。逆に、第一電極12の平均厚さが前記上限を超えると、圧電体11への振動の伝達を阻害するおそれがある。 The average thickness of the first electrode 12 is not particularly limited, and may be 0.1 μm or more and 30 μm or less, although it depends on the laminating method and the material of the first electrode 12. If the average thickness of the first electrode 12 is less than the lower limit, the strength of the first electrode 12 may be insufficient and the resistivity may increase. On the contrary, if the average thickness of the first electrode 12 exceeds the upper limit, the transmission of vibration to the piezoelectric body 11 may be hindered.
 圧電シート10では、第一電極12は、圧電体11の第一面の全面に積層されているが、電位差が検出できる限り、圧電体11の第一面の一部に積層されていてもよい。 In the piezoelectric sheet 10, the first electrode 12 is laminated on the entire surface of the first surface of the piezoelectric body 11, but may be laminated on a part of the first surface of the piezoelectric body 11 as long as the potential difference can be detected. ..
 第一電極12の圧電体11への積層方法としては、特に限定されず、金属の蒸着、カーボン導電インクの印刷、銀ペーストの塗布乾燥等が挙げられる。 The method of laminating the first electrode 12 on the piezoelectric body 11 is not particularly limited, and examples thereof include metal deposition, printing of carbon conductive ink, application and drying of silver paste, and the like.
 また、圧電体11は、図3に示すように、信号端子14に第一電極12を積層することで電気的に接続されている。 Further, as shown in FIG. 3, the piezoelectric body 11 is electrically connected by laminating the first electrode 12 on the signal terminal 14.
(第二電極)
 第二電極13は、少なくともその一部が第一電極12と対向するように圧電体11の第二面に積層される電極である。つまり、第二電極13は、平面視で少なくともその一部が第一電極12と重なる位置に配設されている。図3に示す圧電シート10では、第二電極13は、第一電極12と実質的に同形であり、その全面が第一電極12の全面と対向している。
(Second electrode)
The second electrode 13 is an electrode laminated on the second surface of the piezoelectric body 11 so that at least a part thereof faces the first electrode 12. That is, the second electrode 13 is arranged at a position where at least a part thereof overlaps with the first electrode 12 in a plan view. In the piezoelectric sheet 10 shown in FIG. 3, the second electrode 13 has substantially the same shape as the first electrode 12, and the entire surface thereof faces the entire surface of the first electrode 12.
 第二電極13の材質、平均厚さ及び積層方法は、第一電極12と同様とできる。 The material, average thickness, and laminating method of the second electrode 13 can be the same as those of the first electrode 12.
 また、図3に示すように、信号端子14を取り囲むように配置されているグランド端子15は、金属箔16を介して第二電極13と電気的に接続されている。 Further, as shown in FIG. 3, the ground terminal 15 arranged so as to surround the signal terminal 14 is electrically connected to the second electrode 13 via the metal foil 16.
(信号端子及びグランド端子)
 上述の信号端子14及びグランド端子15は、圧電シート10の第一電極12及び第二電極13により検出された電位差を検出回路40に伝えるために用いられる。このため、この信号端子14及びグランド端子15は、検出回路40の回路本体41に配線42を介して接続される。
(Signal terminal and ground terminal)
The signal terminal 14 and the ground terminal 15 described above are used to transmit the potential difference detected by the first electrode 12 and the second electrode 13 of the piezoelectric sheet 10 to the detection circuit 40. Therefore, the signal terminal 14 and the ground terminal 15 are connected to the circuit main body 41 of the detection circuit 40 via the wiring 42.
 信号端子14及びグランド端子15並びに金属箔16としては、導電性を有するものであればよく、例えばアルミニウム、銅、ニッケル等の金属からなるフィルムや、カーボン等の導電性のある材料を含むフィルム、導電性繊維からなる織物や不織布等を挙げることができる。 The signal terminal 14, the ground terminal 15, and the metal foil 16 may be any as long as they have conductivity. For example, a film made of a metal such as aluminum, copper, or nickel, or a film containing a conductive material such as carbon. Examples thereof include textiles and non-woven fabrics made of conductive fibers.
(圧電シートの大きさ)
 圧電シート10は、上述のように帯状である。なお、圧電シート10は、両端が丸みを帯びていてもよい。
(Size of piezoelectric sheet)
The piezoelectric sheet 10 has a strip shape as described above. The piezoelectric sheet 10 may have both ends rounded.
 圧電シート10の長手方向の長さの下限としては、10mmが好ましく、12mmがより好ましい。一方、圧電シート10の長手方向の長さの上限としては、25mmが好ましく、20mmがより好ましい。圧電シート10の長手方向の長さが前記下限未満であると、当該生体センサ1に位置ずれが生じた際に、当該生体センサ1が十分に生体振動を検知できないおそれがある。逆に、圧電シート10の長手方向の長さが前記上限を超えると、生体振動の検知に関与しない圧電体11の面積が大きくなり、当該生体センサ1の感度が相対的に低下するおそれがある。なお、例えば圧電シート10の両端が丸みを帯びており、位置により一定でないような場合の「長さ」とは、その平均を指す。 As the lower limit of the length of the piezoelectric sheet 10 in the longitudinal direction, 10 mm is preferable, and 12 mm is more preferable. On the other hand, the upper limit of the length of the piezoelectric sheet 10 in the longitudinal direction is preferably 25 mm, more preferably 20 mm. If the length of the piezoelectric sheet 10 in the longitudinal direction is less than the lower limit, the biosensor 1 may not be able to sufficiently detect biovibration when the biosensor 1 is displaced. On the contrary, when the length of the piezoelectric sheet 10 in the longitudinal direction exceeds the upper limit, the area of the piezoelectric body 11 which is not involved in the detection of biological vibration becomes large, and the sensitivity of the biological sensor 1 may be relatively lowered. .. For example, when both ends of the piezoelectric sheet 10 are rounded and are not constant depending on the position, the "length" refers to the average thereof.
 圧電シート10の幅方向の長さの下限としては、2mmが好ましく、2.5mmがより好ましい。一方、圧電シート10の幅方向の長さの上限としては、4mmが好ましく、3.5mmがより好ましい。圧電シート10の幅方向の長さが前記下限未満であると、当該生体センサ1の感度が不足するおそれがある。逆に、圧電シート10の幅方向の長さが前記上限を超えると、当該生体センサ1が不必要に大きくなり、取扱性が低下するおそれがある。 The lower limit of the length of the piezoelectric sheet 10 in the width direction is preferably 2 mm, more preferably 2.5 mm. On the other hand, as the upper limit of the length of the piezoelectric sheet 10 in the width direction, 4 mm is preferable, and 3.5 mm is more preferable. If the length of the piezoelectric sheet 10 in the width direction is less than the lower limit, the sensitivity of the biosensor 1 may be insufficient. On the contrary, if the length of the piezoelectric sheet 10 in the width direction exceeds the upper limit, the biosensor 1 may become unnecessarily large and the handleability may be deteriorated.
〔被覆部材〕
 信号端子14、グランド端子15、及び後述のスペーサ18は、図3に示すように、例えばフレキシブル基板等の被覆部材17の表面に積層してもよい。このように被覆部材17を用いて構成することで、センサユニット20に可撓性を持たせることができる。
[Coating member]
As shown in FIG. 3, the signal terminal 14, the ground terminal 15, and the spacer 18 described later may be laminated on the surface of a covering member 17 such as a flexible substrate. By using the covering member 17 in this way, the sensor unit 20 can be made flexible.
〔スペーサ〕
 スペーサ18は、図3に示すように、被覆部材17の表面に配置されており、圧電体11が接続されるグランド端子15の周囲を取り囲むように配置されている。これによりスペーサ18は圧電シート10の周囲を取り囲んでいる。スペーサ18は、グランド端子15の周囲を連続して取り囲んでもよいが、図3に示すように、一部に空隙を有するように断続的に取り囲み、この空隙を利用して配線42を配設してもよい。
〔Spacer〕
As shown in FIG. 3, the spacer 18 is arranged on the surface of the covering member 17, and is arranged so as to surround the ground terminal 15 to which the piezoelectric body 11 is connected. As a result, the spacer 18 surrounds the piezoelectric sheet 10. The spacer 18 may continuously surround the ground terminal 15, but as shown in FIG. 3, the spacer 18 is intermittently surrounded so as to have a gap in a part thereof, and the wiring 42 is arranged using the gap. You may.
 圧電シート10の測定対象である前腕Wと対向する表側面と、スペーサ18の表側面とが面一であるか、又は圧電シート10の表側面がスペーサ18の表側面より突出していることが好ましい。つまり、スペーサ18の高さは、当該生体センサ1の使用時に後述する圧電シート10の第二電極13側が生体と接し、かつスペーサ18により圧電シート10が固定可能となる高さとされる。具体的には、図3に示すように、スペーサ18の高さは圧電シート10の第二電極13側の面よりわずかに低い高さとされる。スペーサ18の高さをこのようにすることで、スペーサ18の表側面が前腕Wに接触した状態で、圧電シート10が前腕Wからの生体振動をより確実に受信することができる。 It is preferable that the front side surface of the piezoelectric sheet 10 facing the forearm W to be measured and the front side surface of the spacer 18 are flush with each other, or the front side surface of the piezoelectric sheet 10 protrudes from the front side surface of the spacer 18. .. That is, the height of the spacer 18 is set so that the second electrode 13 side of the piezoelectric sheet 10 described later is in contact with the living body when the biological sensor 1 is used, and the piezoelectric sheet 10 can be fixed by the spacer 18. Specifically, as shown in FIG. 3, the height of the spacer 18 is set to be slightly lower than the surface of the piezoelectric sheet 10 on the second electrode 13 side. By setting the height of the spacer 18 in this way, the piezoelectric sheet 10 can more reliably receive the biological vibration from the forearm W in a state where the front side surface of the spacer 18 is in contact with the forearm W.
 スペーサ18としては、可撓性を確保するため、フレキシブル基板等を用いて構成することが好ましい。 The spacer 18 is preferably configured by using a flexible substrate or the like in order to secure flexibility.
〔シールド層〕
 センサユニット20はシールド層を有してもよい。この場合、シールド層は、センサユニット20の最外部に全体を包むように配設される。
[Shield layer]
The sensor unit 20 may have a shield layer. In this case, the shield layer is arranged so as to wrap the entire sensor unit 20 on the outermost side.
 前記シールド層は、絶縁層と、この絶縁層の表面に積層される導電層とを有する。前記絶縁層としては、例えばアクリル樹脂を用いることができる。また、前記導電層は、銀や銅の導電塗料の塗布層とすることができる。このように前記シールド層の裏面を絶縁層とし表面を導電性とすることで、圧電シート10との短絡を抑止しつつ、ノイズをシールドできる。 The shield layer has an insulating layer and a conductive layer laminated on the surface of the insulating layer. As the insulating layer, for example, an acrylic resin can be used. Further, the conductive layer can be a coating layer of a conductive paint of silver or copper. By making the back surface of the shield layer an insulating layer and making the front surface conductive in this way, noise can be shielded while suppressing a short circuit with the piezoelectric sheet 10.
<当該生体センサの使用方法>
 当該生体センサ1は、カバー部材30の内面側が生体に接触するように生体に固定して使用する。具体例として、図2に示すように、前腕Wの表面に当てて脈波を測定する場合で説明するが、当該生体センサ1の用途は前腕Wでの脈波測定に限定されるものではない。なお、センサユニット20がシールド層を有する場合は、生体センサ1はシールド層を介して生体に接触することとなる。
<How to use the biosensor>
The biosensor 1 is used by being fixed to the living body so that the inner surface side of the cover member 30 comes into contact with the living body. As a specific example, as shown in FIG. 2, the case where the pulse wave is measured by applying it to the surface of the forearm W will be described, but the application of the biosensor 1 is not limited to the pulse wave measurement with the forearm W. .. When the sensor unit 20 has a shield layer, the biosensor 1 comes into contact with the living body via the shield layer.
 当該生体センサ1を使用する際には、まず前腕Wの表面に帯状の圧電シート10の長手方向が前腕Wの指先方向に対して直交するように固定する。脈波は前腕Wを指先方向に流れる血管により測定されるので、前記血管を圧電シート10が跨ぐように当該生体センサ1を固定する。このとき、図2に示すように、当該生体センサ1は、カバー部材30の湾曲部分31の内面側が前腕Wの曲面部分に沿うように配置されることとなる。 When using the biosensor 1, first, the longitudinal direction of the strip-shaped piezoelectric sheet 10 is fixed to the surface of the forearm W so as to be orthogonal to the fingertip direction of the forearm W. Since the pulse wave is measured by a blood vessel flowing in the forearm W in the fingertip direction, the biosensor 1 is fixed so that the piezoelectric sheet 10 straddles the blood vessel. At this time, as shown in FIG. 2, the biosensor 1 is arranged so that the inner surface side of the curved portion 31 of the cover member 30 is along the curved surface portion of the forearm W.
 当該生体センサ1の圧電シート10は帯状であるので、高い精度で位置合わせを行う必要はなく、比較的容易に前記血管を圧電シート10が跨ぐ位置に固定することができる。また、当該生体センサ1は、前腕Wの指先方向に対して直交する方向にずれたとしても、圧電シート10が帯状であるため、前記血管を圧電シート10が跨いだ状態から外れ難い。つまり、当該生体センサ1は位置ずれに強い。 Since the piezoelectric sheet 10 of the biosensor 1 has a band shape, it is not necessary to perform alignment with high accuracy, and the blood vessel can be relatively easily fixed at a position where the piezoelectric sheet 10 straddles. Further, even if the biosensor 1 is displaced in a direction orthogonal to the fingertip direction of the forearm W, since the piezoelectric sheet 10 is strip-shaped, it is difficult to be removed from the state in which the piezoelectric sheet 10 straddles the blood vessel. That is, the biosensor 1 is resistant to misalignment.
 生体への固定方法は特に限定されないが、例えば腕輪やバンドにより前腕Wとの間に当該生体センサ1を挟み込んでも良いし、テープ等により貼り付けてもよい。 The method of fixing to the living body is not particularly limited, but for example, the living body sensor 1 may be sandwiched between the forearm W by a bracelet or a band, or may be attached with a tape or the like.
 当該生体センサ1を固定した後に生体振動を測定する。上述のように固定された当該生体センサ1によれば、脈波に応じて圧電シート10からの電位変位が観測できる。この電位変位を公知の測定装置により測定することで、脈波を知ることができる。 After fixing the biosensor 1, measure the biovibration. According to the biosensor 1 fixed as described above, the potential displacement from the piezoelectric sheet 10 can be observed according to the pulse wave. By measuring this potential displacement with a known measuring device, the pulse wave can be known.
<利点>
 当該生体センサ1は、カバー部材30が圧電シート10の長手方向に沿って湾曲しており、圧電シート10がカバー部材30の湾曲部分31に位置している。従って、圧電シート10の長手方向を前腕Wの表面のような肌の曲面に当て易い。また、圧電シート10が帯状であるので、圧電シート10の長手方向のいずれかの位置が生体振動を検知可能な部位と接していれば、当該生体センサ1は生体振動を検知することができる。従って、当該生体センサ1は、例えば前腕Wの表面のような肌の曲面に当てて脈波を測定する場合であっても、容易に、かつ安定して生体振動の測定が可能である。
<Advantage>
In the biosensor 1, the cover member 30 is curved along the longitudinal direction of the piezoelectric sheet 10, and the piezoelectric sheet 10 is located at the curved portion 31 of the cover member 30. Therefore, it is easy to apply the longitudinal direction of the piezoelectric sheet 10 to the curved surface of the skin such as the surface of the forearm W. Further, since the piezoelectric sheet 10 has a band shape, the biosensor 1 can detect the biovibration if any position in the longitudinal direction of the piezoelectric sheet 10 is in contact with a portion capable of detecting the biovibration. Therefore, the biosensor 1 can easily and stably measure the biovibration even when the pulse wave is measured by applying it to the curved surface of the skin such as the surface of the forearm W.
[第2実施形態]
 図4に示す生体センサ2は、2つの帯状の圧電シート10を有するセンサユニット21と、センサユニット21を覆うカバー部材30と、センサユニット21と接続される検出回路40とを備える。
[Second Embodiment]
The biosensor 2 shown in FIG. 4 includes a sensor unit 21 having two strip-shaped piezoelectric sheets 10, a cover member 30 covering the sensor unit 21, and a detection circuit 40 connected to the sensor unit 21.
 これらの2つの圧電シート10は、その長手方向が平行となるように並列されている。また、カバー部材30は、2つの圧電シート10の長手方向に沿って湾曲しており、圧電シート10がカバー部材30の湾曲部分に位置する。 These two piezoelectric sheets 10 are arranged side by side so that their longitudinal directions are parallel to each other. Further, the cover member 30 is curved along the longitudinal direction of the two piezoelectric sheets 10, and the piezoelectric sheet 10 is located at the curved portion of the cover member 30.
 当該生体センサ2は、センサユニット21が2つの圧電シート10を有する点を除き、その構成要素は、第1実施形態の生体センサ1と同様であるので、同一符号を付して詳細説明を省略する。 The biosensor 2 has the same components as the biosensor 1 of the first embodiment except that the sensor unit 21 has two piezoelectric sheets 10. Therefore, the same reference numerals are given and detailed description thereof will be omitted. To do.
 2つの圧電シート10は、直列又は並列に接続してもよいが、好ましくはそれぞれ独立させて検出回路40に接続するとよい。脈波が検出される位置は限定され、たとえ2つの圧電シート10を同じように前腕の指先方向に対して垂直に並列させても、2つの圧電シート10の両方で同じよう信号を得るとは限らない。そのため、どちらか感度の高い一方を選んで測定することで、寄生容量を減らしつつ感度を高めた測定をすることができる。 The two piezoelectric sheets 10 may be connected in series or in parallel, but preferably they are independently connected to the detection circuit 40. The position where the pulse wave is detected is limited, and even if two piezoelectric sheets 10 are similarly parallel to each other perpendicular to the fingertip direction of the forearm, it is not possible to obtain the same signal on both of the two piezoelectric sheets 10. Not exclusively. Therefore, by selecting and measuring one of them with higher sensitivity, it is possible to perform measurement with increased sensitivity while reducing parasitic capacitance.
<利点>
 動脈から検出される脈波は、前腕の指先方向(動脈の長手方向)に対しても位置や時間によって検出できたりできなかったりする場合がある。当該生体センサ2では、2つの圧電シート10を、前腕の指先方向に並べて測定することができるので、脈波の検出確率を高めることができる。
<Advantage>
The pulse wave detected from the artery may or may not be detected depending on the position and time even in the fingertip direction of the forearm (longitudinal direction of the artery). In the biosensor 2, the two piezoelectric sheets 10 can be measured side by side in the fingertip direction of the forearm, so that the probability of detecting the pulse wave can be increased.
[その他の実施形態]
 前記実施形態は、本発明の構成を限定するものではない。従って、前記実施形態は、本明細書の記載及び技術常識に基づいて前記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The embodiments do not limit the configuration of the present invention. Therefore, it is possible to omit, replace or add components of each part of the embodiment based on the description of the present specification and common general technical knowledge, and all of them are construed as belonging to the scope of the present invention. Should be.
 前記実施形態では、圧電シートの全部がカバー部材の湾曲部分に位置する場合を説明したが、圧電シートの全部がカバー部材の湾曲部分に位置することは必須の構成要件ではない。つまり、圧電シートが部分的にカバー部材の湾曲部分から外れていてもよい。圧電シートの少なくとも一部がカバー部材の湾曲部分に位置していれば、同様の効果を奏することができる。 In the above-described embodiment, the case where the entire piezoelectric sheet is located at the curved portion of the cover member has been described, but it is not an indispensable constituent requirement that the entire piezoelectric sheet is located at the curved portion of the cover member. That is, the piezoelectric sheet may be partially detached from the curved portion of the cover member. The same effect can be obtained as long as at least a part of the piezoelectric sheet is located at the curved portion of the cover member.
 前記実施形態では、圧電シートがカバー部材の内面側に位置する場合を説明したが、圧電シートの位置は内面側には限定されず、例えばカバー部材に内蔵することも可能である。ただし、感度の観点から圧電シートの位置としては、カバー部材の内面側が好ましい。 In the above embodiment, the case where the piezoelectric sheet is located on the inner surface side of the cover member has been described, but the position of the piezoelectric sheet is not limited to the inner surface side, and can be incorporated in the cover member, for example. However, from the viewpoint of sensitivity, the position of the piezoelectric sheet is preferably the inner surface side of the cover member.
 前記実施形態では、カバー部材が平坦部分に凹部を有する場合を説明したが、この凹部を湾曲部分に設けることも可能である。 In the above embodiment, the case where the cover member has a recess in the flat portion has been described, but it is also possible to provide the recess in the curved portion.
 また、前記実施形態では、凹部が内面側に開口している場合を説明したが、この凹部は外面側や側面側に開口していていもよい。 Further, in the above-described embodiment, the case where the recess is open to the inner surface side has been described, but the recess may be open to the outer surface side or the side surface side.
 前記実施形態では、カバー部材の平坦部分が凹部を有する場合を説明したが、凹部は必須の構成要素ではなく省略可能である。この場合、検出回路等はカバー部材の表面に貼付する、当該生体センサの外部に配置する等、他の設置手段を適宜用いることができる。 In the above embodiment, the case where the flat portion of the cover member has a recess is described, but the recess is not an essential component and can be omitted. In this case, other installation means such as attaching the detection circuit or the like to the surface of the cover member or arranging the detection circuit or the like outside the biosensor can be appropriately used.
 前記実施形態では、カバー部材が平坦部分を有する場合を説明したが、平坦部分は必須の構成要素ではなく、カバー部材は、湾曲部分のみで構成されてもよい。 In the above embodiment, the case where the cover member has a flat portion has been described, but the flat portion is not an essential component, and the cover member may be composed of only a curved portion.
 前記第2実施形態では、2つの圧電シートがその長手方向が平行となるように並列されている場合を説明したが、並列される圧電シートは2つに限定されるものではなく、3以上であってもよい。ただし、当該生体センサの取扱性の観点から、並列される圧電シートは3以下が好ましい。 In the second embodiment, the case where the two piezoelectric sheets are arranged in parallel so that their longitudinal directions are parallel has been described, but the number of the piezoelectric sheets to be arranged in parallel is not limited to two, and may be three or more. There may be. However, from the viewpoint of handleability of the biosensor, the number of piezoelectric sheets to be paralleled is preferably 3 or less.
 前記実施形態では、センサユニットがスペーサを有する場合を説明したが、例えばカバー部材に圧電シートが直接埋設される構成としてもよい。このような構成にあっては、埋設されている圧電シートの周囲のカバー部材がスペーサの役割を果たす。 In the above embodiment, the case where the sensor unit has a spacer has been described, but for example, the piezoelectric sheet may be directly embedded in the cover member. In such a configuration, the cover member around the embedded piezoelectric sheet acts as a spacer.
 前記実施形態では、圧電シートが積層された被覆部材が直接カバー部材に積層されている場合を説明したが、被覆部材とカバー部材との間に配置され、その形状が変化する個体差吸収機構を備えてもよい。 In the above embodiment, the case where the covering member on which the piezoelectric sheet is laminated is directly laminated on the cover member has been described, but an individual difference absorption mechanism which is arranged between the covering member and the cover member and whose shape changes is provided. You may prepare.
 前記個体差吸収機構としては、例えばゴムを挙げることができる。中でも軟らかく屈曲性に富み、弾性のある軟質ゴムが好ましい。 As the individual difference absorption mechanism, for example, rubber can be mentioned. Of these, soft rubber that is soft, highly flexible, and elastic is preferable.
 当該生体センサは、肌の曲面に当てられるが、その曲面の形状は人体個人により千差万別である。前記個体差吸収機構は、その形状が変化することで、この個体差を吸収し、圧電シートを肌の曲面に沿って好適に当てることができる。 The biosensor is applied to the curved surface of the skin, and the shape of the curved surface varies depending on the individual human body. The individual difference absorption mechanism can absorb the individual difference by changing its shape, and the piezoelectric sheet can be suitably applied along the curved surface of the skin.
 本発明に係る生体センサは、肌の曲面に当てて生体振動を測定する場合であっても、容易に、かつ安定して生体振動の測定が可能である。 The biosensor according to the present invention can easily and stably measure biovibration even when it is applied to a curved surface of the skin to measure biovibration.
1、2 生体センサ
10 圧電シート
11 圧電体
12 第一電極
13 第二電極
14 信号端子
15 グランド端子
16 金属箔
17 被覆部材
18 スペーサ
20、21 センサユニット
30 カバー部材
31 湾曲部分
32 平坦部分
33 凹部
33a 取出口
40 検出回路
41 回路本体
42 配線
W 前腕
α 基端
β 先端
1, 2 Biosensor 10 Piezoelectric sheet 11 Piezoelectric body 12 First electrode 13 Second electrode 14 Signal terminal 15 Ground terminal 16 Metal leaf 17 Coating member 18 Spacer 20, 21 Sensor unit 30 Cover member 31 Curved part 32 Flat part 33 Recess 33a Outlet 40 Detection circuit 41 Circuit body 42 Wiring W Forearm α Base end β Tip

Claims (10)

  1.  帯状の圧電シートと、
     前記圧電シートを覆うカバー部材と
     を備え、
     前記カバー部材が前記圧電シートの長手方向に沿って湾曲しており、
     前記圧電シートが前記カバー部材の湾曲部分に位置する生体センサ。
    With a strip-shaped piezoelectric sheet,
    A cover member for covering the piezoelectric sheet is provided.
    The cover member is curved along the longitudinal direction of the piezoelectric sheet.
    A biosensor in which the piezoelectric sheet is located at a curved portion of the cover member.
  2.  前記カバー部材の湾曲部分が前記長手方向に沿って可撓性を有する請求項1に記載の生体センサ。 The biosensor according to claim 1, wherein the curved portion of the cover member has flexibility along the longitudinal direction.
  3.  前記カバー部材の湾曲部分の可撓性が前記長手方向の一端側に向かって増大する請求項2に記載の生体センサ。 The biosensor according to claim 2, wherein the flexibility of the curved portion of the cover member increases toward one end side in the longitudinal direction.
  4.  前記カバー部材の厚さが前記長手方向の一端側に向かって漸減している請求項1、請求項2又は請求項3に記載の生体センサ。 The biosensor according to claim 1, claim 2 or claim 3, wherein the thickness of the cover member gradually decreases toward one end side in the longitudinal direction.
  5.  前記カバー部材の湾曲部分の曲率半径が20cm以上50cm以下である請求項1から請求項4のいずれか1項に記載の生体センサ。 The biosensor according to any one of claims 1 to 4, wherein the radius of curvature of the curved portion of the cover member is 20 cm or more and 50 cm or less.
  6.  前記カバー部材が前記圧電シートの電位差を検出する検出回路を格納可能な凹部を有する請求項1から請求項5のいずれか1項に記載の生体センサ。 The biosensor according to any one of claims 1 to 5, wherein the cover member has a recess capable of accommodating a detection circuit for detecting a potential difference of the piezoelectric sheet.
  7.  前記圧電シートの周囲を取り囲むスペーサをさらに備え、
     前記圧電シートの測定対象である生体と対向する表側面と前記スペーサの表側面とが面一又は、前記圧電シートの表側面が、前記スペーサの表側面より突出している請求項1から請求項6のいずれか1項に記載の生体センサ。
    Further provided with a spacer surrounding the piezoelectric sheet,
    Claims 1 to 6 wherein the front side surface of the piezoelectric sheet facing the living body to be measured and the front side surface of the spacer are flush with each other, or the front side surface of the piezoelectric sheet protrudes from the front side surface of the spacer. The biosensor according to any one of the above.
  8.  前記圧電シートの長手方向の長さが10mm以上25mm以下であり、
     前記圧電シートの幅方向の長さが2mm以上4mm以下である請求項1から請求項7のいずれか1項に記載の生体センサ。
    The length of the piezoelectric sheet in the longitudinal direction is 10 mm or more and 25 mm or less.
    The biosensor according to any one of claims 1 to 7, wherein the length of the piezoelectric sheet in the width direction is 2 mm or more and 4 mm or less.
  9.  複数の前記圧電シートを備え、
     これらの複数の圧電シートが、その長手方向が平行となるように並列されている請求項1から請求項8のいずれか1項に記載の生体センサ。
    With a plurality of the piezoelectric sheets,
    The biosensor according to any one of claims 1 to 8, wherein the plurality of piezoelectric sheets are arranged in parallel so that their longitudinal directions are parallel to each other.
  10.  請求項1から請求項9のいずれか1項に記載の生体センサを、前腕の表面に帯状の圧電シートの長手方向が前腕の指先方向に対して直交するように固定する工程と、
     前記固定工程後に生体振動を測定する工程と
     を備える生体センサの使用方法。
    A step of fixing the biosensor according to any one of claims 1 to 9 to the surface of the forearm so that the longitudinal direction of the strip-shaped piezoelectric sheet is orthogonal to the fingertip direction of the forearm.
    A method of using a biological sensor including a step of measuring biological vibration after the fixing step.
PCT/JP2020/035707 2019-10-11 2020-09-23 Biological sensor and method for using biological sensor WO2021070607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-187585 2019-10-11
JP2019187585A JP2021061971A (en) 2019-10-11 2019-10-11 Biological sensor and usage of biological sensor

Publications (1)

Publication Number Publication Date
WO2021070607A1 true WO2021070607A1 (en) 2021-04-15

Family

ID=75437234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035707 WO2021070607A1 (en) 2019-10-11 2020-09-23 Biological sensor and method for using biological sensor

Country Status (2)

Country Link
JP (1) JP2021061971A (en)
WO (1) WO2021070607A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159457A (en) * 2000-11-27 2002-06-04 Seiko Instruments Inc Body-worn measuring device
JP2003220040A (en) * 2002-01-31 2003-08-05 Seiko Instruments Inc Biological information-observing device
JP2004208711A (en) * 2002-12-26 2004-07-29 Colin Medical Technology Corp Pressure pulse sensor and pressure pulse analyzer
WO2008087870A1 (en) * 2007-01-15 2008-07-24 Citizen Holdings Co., Ltd. Wrist wearing type band for biometric device
WO2019064708A1 (en) * 2017-09-29 2019-04-04 ヤマハ株式会社 Biosensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159457A (en) * 2000-11-27 2002-06-04 Seiko Instruments Inc Body-worn measuring device
JP2003220040A (en) * 2002-01-31 2003-08-05 Seiko Instruments Inc Biological information-observing device
JP2004208711A (en) * 2002-12-26 2004-07-29 Colin Medical Technology Corp Pressure pulse sensor and pressure pulse analyzer
WO2008087870A1 (en) * 2007-01-15 2008-07-24 Citizen Holdings Co., Ltd. Wrist wearing type band for biometric device
WO2019064708A1 (en) * 2017-09-29 2019-04-04 ヤマハ株式会社 Biosensor

Also Published As

Publication number Publication date
JP2021061971A (en) 2021-04-22

Similar Documents

Publication Publication Date Title
US11864948B2 (en) Needle with thin film sensors
US20070049837A1 (en) Acoustic sensor
JPS5825450B2 (en) Biological transducer
EP3903684B1 (en) Stethoscope and electronic stethoscope device
JP2005156531A (en) Pressure sensor and biological information processor
JP2017129417A (en) Strain sensor element
US20200141794A1 (en) Vibration sensor
US6823739B2 (en) Thin pressure sensor and biological information measuring device using same, and biological information measuring method
JP2008253310A (en) Electromyographic-mechanomyographic measurement sensor
WO2019064708A1 (en) Biosensor
WO2021070607A1 (en) Biological sensor and method for using biological sensor
JP2019010240A (en) Vibration sensor
JP6838646B2 (en) Bio-vibration sensor
JPH06319712A (en) Multisensor
JP2018149094A (en) Biological vibration sensor
JP2006212271A (en) Respiration sensor, using method of respiration sensor and respiration state-monitoring device
CN114206221A (en) Stethoscope and method for making same
WO2018168143A1 (en) Living-body vibration sensor, living-body vibration detection system, living-body vibration detection method, and vibration detection element
JP2008132010A (en) Sensing unit and heartbeat detector
JP6090826B2 (en) Eyelid pressure sensor
US20210204812A1 (en) Biosensor
CN114206220A (en) Stethoscope and method for making same
JP2018149095A (en) Biological vibration sensor
Ueya et al. BIOSENSOR
JP2020202357A (en) Piezoelectric sensor and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20874236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20874236

Country of ref document: EP

Kind code of ref document: A1