WO2021070414A1 - Wireless charging solid battery module - Google Patents

Wireless charging solid battery module Download PDF

Info

Publication number
WO2021070414A1
WO2021070414A1 PCT/JP2020/023356 JP2020023356W WO2021070414A1 WO 2021070414 A1 WO2021070414 A1 WO 2021070414A1 JP 2020023356 W JP2020023356 W JP 2020023356W WO 2021070414 A1 WO2021070414 A1 WO 2021070414A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
circuit
state battery
wireless charging
voltage
Prior art date
Application number
PCT/JP2020/023356
Other languages
French (fr)
Japanese (ja)
Inventor
清和 山田
達也 細谷
友裕 加藤
西出 充良
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021551136A priority Critical patent/JP7375824B2/en
Publication of WO2021070414A1 publication Critical patent/WO2021070414A1/en
Priority to US17/716,294 priority patent/US20220231539A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/1243Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure characterised by the internal coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a module including a solid state battery.
  • Patent Document 1 proposes a non-contact charging compatible secondary battery having a secondary battery and a wireless power transmission circuit in the housing.
  • a power receiving circuit that includes an alkaline secondary battery, a power receiving coil, and a resonance capacitor connected in parallel to the power receiving coil and receives AC power via a magnetic field from a power transmitting device, and a power receiving circuit that receives power.
  • a rectifying circuit that rectifies the AC power to be generated, a current limiting circuit that limits the charging current from the rectifying circuit to the alkaline secondary battery, and a cylindrical exterior body including a positive electrode terminal and a negative electrode terminal connected to the alkaline secondary battery. , Equipped with. Then, the configuration in which the power receiving coil is provided along the inner peripheral surface of the exterior body is shown.
  • the non-contact charging compatible secondary battery described in Patent Document 1 has a cylindrical housing, and is assumed to be an alkaline secondary battery that can replace a dry battery. Such a non-contact charging compatible secondary battery cannot be miniaturized, and it is difficult to mount it on a small device such as a wearable device.
  • an object of the present invention is to provide a small wireless charging solid-state battery module that can be wirelessly charged in any of a single state, a mounted state on a circuit board, and a state mounted on a device.
  • the wireless rechargeable solid-state battery module as an example of the present disclosure is With solid-state batteries
  • An internal structure provided with an internal circuit electrically connected to the solid-state battery, Positive electrode terminals and negative electrode terminals that are electrically connected to the solid-state battery, are exposed on the outer surface, and are arranged so as to be mounted on a mounting board.
  • a barrier layer that isolates the solid-state battery from the outside air environment, With
  • the internal circuit has a wireless charging circuit that receives electric power from the outside via a magnetic field for power transmission and controls charging of the solid-state battery.
  • a wireless charging solid-state battery module capable of wireless charging can be obtained in any of a single state, a mounted state on a circuit board, and a mounted state on a device.
  • the electronic circuit board on which the wireless charging solid-state battery module according to the present invention is mounted can receive electric power from the outside through an electromagnetic field or a magnetic field generated by power transmission from the outside in the wireless charging solid-state battery module. Therefore, it is not necessary to configure a wireless charging circuit in the electronic circuit board.
  • the solid-state battery and the wireless charging circuit can be connected with a short wiring, power loss in the wiring can be reduced, and malfunction due to an external magnetic field can be suppressed.
  • the mounted electronic circuit board can be made smaller and lighter, thinner, and more efficient. Further, the mounted electronic circuit board itself can be used as a mounted electronic circuit board having an all-solid-state battery and a wireless charging function, and it is possible to reduce the size and weight of electronic devices and electric devices and improve their efficiency.
  • FIG. 1 is a cross-sectional view of the wireless charging solid-state battery module 101 according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the basic configuration of the solid-state battery 1 according to the first embodiment.
  • FIG. 3 is a plan view showing the configuration of the power receiving coil 31.
  • FIG. 4 is a bottom view of the wireless charging solid-state battery module 101.
  • FIG. 5 is a circuit diagram of the wireless charging solid-state battery module 101.
  • FIG. 6 is a perspective view showing an example of the positional relationship between the state in which the wireless charging solid-state battery module 101 is mounted on the mounting substrate 80 and the power transmission coil 900 of the power transmission device.
  • FIG. 1 is a cross-sectional view of the wireless charging solid-state battery module 101 according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the basic configuration of the solid-state battery 1 according to the first embodiment.
  • FIG. 3 is a plan view showing the configuration of the power receiving coil 31.
  • FIG. 7 is a perspective view showing another example of the positional relationship between the state in which the wireless charging solid-state battery module 101 is mounted on the mounting board 80 and the power transmission device 201A.
  • FIG. 8 is a perspective view showing a state in which power is transmitted from the power transmission device 201B to the plurality of wireless charging solid-state battery modules 101A, 101B, 101C.
  • FIG. 9 is a cross-sectional view of another wireless charging solid-state battery module 101M according to the first embodiment.
  • FIG. 10 is a circuit diagram of the wireless charging solid-state battery module 102 of the second embodiment.
  • FIG. 11 is a circuit diagram of the wireless charging solid-state battery module 103 of the third embodiment.
  • FIG. 12 is a circuit diagram of the wireless charging solid-state battery module 104 of the fourth embodiment.
  • FIG. 13 is a circuit diagram of the wireless charging solid-state battery module 105 and the like according to the fifth embodiment.
  • 14 (A), 14 (B), 14 (C), and 14 (D) are circuit diagrams showing specific examples of the power receiving protection circuit 58.
  • FIG. 15 is another circuit diagram of the wireless charging solid-state battery module 105 and the like.
  • 16 (A) and 16 (B) are diagrams for explaining the operation of the cutoff circuit 58C during normal power reception.
  • 17 (A) and 17 (B) are diagrams for explaining the operation of the cutoff circuit 58C in a state where the received voltage exceeds a specified value.
  • 18 (A) and 18 (B) are diagrams showing a configuration example of the received voltage detection circuit 58D shown in FIG. FIG.
  • FIG. 19 is a circuit diagram showing a specific example of the protection circuit 56.
  • FIG. 20 is a diagram showing a configuration of a cutoff circuit of the wireless charging solid-state battery module according to the sixth embodiment.
  • FIG. 21 is a diagram showing a configuration of a cutoff circuit of another wireless charging solid-state battery module according to the sixth embodiment.
  • FIG. 22 is a partial circuit diagram of the wireless charging solid-state battery module and the power transmission device according to the seventh embodiment.
  • FIG. 23 is a partial circuit diagram of another wireless charging solid-state battery module and power transmission device according to the eighth embodiment.
  • FIG. 1 is a cross-sectional view of the wireless charging solid-state battery module 101 according to the first embodiment.
  • the wireless charging solid-state battery module 101 is electrically connected to the solid-state battery 1, the internal structures 11 and 12, the barrier layer 14 that isolates the solid-state battery 1 from the outside air environment, and the solid-state battery 1 for wireless charging. It includes a positive electrode terminal E3 and a negative electrode terminal E5 that are exposed on the outer surface of the solid-state battery module 101, respectively.
  • the internal structures 11 and 12 are located so as to sandwich the solid-state battery 1 in the stacking direction, and the internal structures 11 and 12 overlap with the solid-state battery 1 when viewed in the stacking direction.
  • the internal structures 11 and 12 are provided with internal circuits that are electrically connected to the solid-state battery 1.
  • Barrier layers 14 are provided on both sides of the internal structures 11 and 12.
  • a magnetic material layer 16 is provided on the lower surface of the internal structure 12 (the surface on the solid-state battery 1 side).
  • the positive electrode terminal E3 and the negative electrode terminal E5 are arranged so as to be mounted on the mounting board 80 together with other terminals. That is, it is arranged on the surface (lower surface) facing the mounting board 80.
  • the mounting board 80 is configured with a circuit that uses the wireless charging solid-state battery module 101 as a power supply module.
  • the internal circuit has a wireless charging circuit that receives electric power from the outside via a magnetic field for power transmission and controls charging of the solid-state battery 1.
  • a buffer layer 15 that suppresses peeling of the barrier layer 14 is formed between the upper surface of the internal structure 12 and the barrier layer 14.
  • the internal structure 11 is composed of a first circuit board 20 on which a plurality of electronic components are mounted, and the internal structure 12 is composed of a second circuit board 30 on which a plurality of electronic components are mounted.
  • the first circuit board 20 and the second circuit board 30 are in a positional relationship in which the solid-state battery 1 is sandwiched in the stacking direction.
  • the solid-state battery 1 is a battery having a rectangular parallelepiped outer shape, and in the orientation shown in FIG. 1, a positive electrode 1P is formed on the left side surface and a negative electrode 1N is formed on the right side surface.
  • the solid-state battery 1 is arranged between the first circuit board 20 and the second circuit board 30, and the periphery of the solid-state battery 1 is filled with the mold resin portion 13.
  • the mold resin portion 13 is, for example, polyimide, which enhances the impact resistance of the solid-state battery 1.
  • the mold resin portion 13 corresponds to the "impact mitigation member" according to the present invention.
  • the first circuit board 20 is, for example, an LTCC substrate (LTCC: Low Temperature Co-fired Ceramics). Alternatively, it may be an HTCC substrate (HTCC: High Temperature Co-fired Ceramics). Although it is merely an example, the thickness of the first circuit board 20 may be 20 ⁇ m or more and 1000 ⁇ m or less, for example, 100 ⁇ m or more and 300 ⁇ m or less.
  • Electronic components 23a, 23b and the like are mounted on the inner surface (the surface on the solid-state battery 1 side) of the first circuit board 20.
  • the second circuit board 30 is, for example, a flexible substrate based on polyimide (PI) or polyethylene terephthalate (PET), or a flexible resin substrate based on a liquid crystal polymer (LCP).
  • PI polyimide
  • PET polyethylene terephthalate
  • LCP liquid crystal polymer
  • the thickness of the second circuit board 30 may be 20 ⁇ m or more and 1000 ⁇ m or less, for example, 100 ⁇ m or more and 300 ⁇ m or less.
  • a power receiving coil 31 and the like are formed on the outer surface of the second circuit board 30 (the surface opposite to the solid-state battery 1).
  • Electronic components such as DC-DC converter ICs and capacitors 33a and 33b are mounted on the outer surface of the second circuit board 30.
  • the second circuit board 30 includes a power receiving coil 31, a rectifier circuit 52, and a DC-DC converter 54 shown in FIG. Further, other circuit units are configured on the first circuit board 20.
  • the magnetic material layer 16 acts as a magnetic path of magnetic flux passing through the coil opening of the power receiving coil 31, and also acts as a shield material that magnetically shields the solid-state battery 1.
  • the magnetic field coupling between the power receiving coil 31 and the power transmission coil of the power transmission device can be easily enhanced. Further, it is possible to suppress the eddy current generated in the conductor portion of the solid-state battery 1 when receiving the magnetic field from the power transmission coil.
  • Wiring 7A and 7B which are conductor portions by printing Ag paste, are formed between the first circuit board 20 and the second circuit board 30.
  • the distance between the first circuit board 20 and the second circuit board 30 may be, for example, 3 mm or more and 10 mm or less, for example, 5 mm.
  • a metal thin film 4 such as copper foil is formed on the side surface of the wireless charging solid-state battery module 101.
  • the positive electrode terminal E3 and the negative electrode terminal E5 formed on the outer surface (lower surface) of the first circuit board 20 are connected to the pad electrodes formed on the mounting board 80 via solder or the like. As a result, the wireless charging solid-state battery module 101 is surface-mounted on the mounting board 80.
  • solid-state battery refers to a battery whose components are composed of solids in a broad sense, and in a narrow sense, all of its components (particularly preferably all components) are composed of solids. Refers to a solid-state battery.
  • the solid-state battery in the present invention is a laminated solid-state battery in which the layers forming the battery building unit are laminated to each other, and preferably such layers are made of a sintered body.
  • FIG. 2 is a cross-sectional view showing the basic configuration of the solid-state battery 1 in the present embodiment.
  • the configuration of the solid-state battery described here is merely an example for understanding the invention, and does not limit the invention.
  • the solid-state battery 1 has a solid-state battery laminate in which a plurality of battery building blocks having a positive electrode layer 110, a negative electrode layer 120, and a solid electrolyte 130 are laminated.
  • Each layer constituting the solid-state battery 1 is formed by firing, and has a sintered layer such as a positive electrode layer 110, a negative electrode layer 120, and a solid electrolyte 130.
  • a sintered layer such as a positive electrode layer 110, a negative electrode layer 120, and a solid electrolyte 130.
  • the positive electrode layer 110, the negative electrode layer 120, and the solid electrolyte 130 are integrally fired with each other.
  • the positive electrode layer 110 is an electrode layer including at least a positive electrode active material.
  • the positive electrode layer 110 may further contain a solid electrolyte.
  • the positive electrode layer 110 is composed of a sintered body containing at least positive electrode active material particles and solid electrolyte particles.
  • the negative electrode layer 120 is an electrode layer including at least a negative electrode active material.
  • the negative electrode layer 120 may further include a solid electrolyte.
  • the negative electrode layer 120 is composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles.
  • the positive electrode active material and the negative electrode active material are substances involved in the transfer of electrons in a solid-state battery. Ions move (conduct) between the positive electrode layer 110 and the negative electrode layer 120 via the solid electrolyte, and electrons are transferred to perform charging and discharging.
  • the positive electrode layer 110 and the negative electrode layer 120 are particularly preferably layers capable of occluding and releasing lithium ions. That is, the solid-state battery is preferably an all-solid-state secondary battery in which lithium ions move between the positive electrode layer 110 and the negative electrode layer 120 via the solid electrolyte to charge and discharge the battery.
  • Examples of the positive electrode active material contained in the positive electrode layer 110 include a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and lithium having a spinel-type structure. At least one selected from the group consisting of contained oxides and the like can be mentioned.
  • Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 .
  • Examples of the lithium-containing phosphoric acid compound having an olivine-type structure include Li 3 Fe 2 (PO 4 ) 3 , LiFePO 4, and LiMnPO 4 .
  • lithium-containing layered oxides examples include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, and the like.
  • Examples of the lithium-containing oxide having a spinel-type structure include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4, and the like.
  • Examples of the negative electrode active material contained in the negative electrode layer 120 include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, graphite-lithium compounds, and lithium alloys. At least one selected from the group consisting of a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing oxide having a spinel-type structure, and the like can be mentioned.
  • An example of a lithium alloy is Li—Al or the like.
  • lithium-containing phosphoric acid compound having a pear-con type structure examples include Li 3 V 2 (PO 4 ) 3 , LiTi 2 (PO 4 ) 3, and the like.
  • lithium-containing phosphoric acid compound having an olivine-type structure examples include Li 3 Fe 2 (PO 4 ) 3 , LiCuPO 4, and the like.
  • lithium-containing oxides having a spinel-type structure include Li 4 Ti 5 O 12 and the like.
  • One or both of the positive electrode layer 110 and the negative electrode layer 120 may contain a conductive auxiliary agent.
  • the conductive auxiliary agent contained in the positive electrode layer 110 and the negative electrode layer 120 include at least one type made of a metal material such as silver, palladium, gold, platinum, aluminum, copper and nickel, carbon and the like.
  • copper is preferable because it does not easily react with the positive electrode active material, the negative electrode active material, the solid electrolyte material, and the like, and is effective in reducing the internal resistance of the solid battery.
  • one or both of the positive electrode layer 110 and the negative electrode layer 120 may contain a sintering aid.
  • a sintering aid at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide and phosphorus oxide can be mentioned.
  • the solid electrolyte 130 is a material capable of conducting lithium ions.
  • the solid electrolyte that forms a battery constituent unit in a solid-state battery forms a layer in which lithium ions can be conducted between the positive electrode layer 110 and the negative electrode layer 120.
  • Specific examples of the solid electrolyte include a lithium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and the like.
  • Examples of the lithium-containing phosphoric acid compound having a pear-con structure include Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 .
  • Examples of oxides having a perovskite structure include La 0.55 Li 0.35 TiO 3 and the like.
  • oxides having a garnet-type or garnet-type similar structure include Li 7 La 3 Zr 2 O 12 and the like.
  • the solid electrolyte 130 may contain a sintering aid.
  • the sintering aid contained in the solid electrolyte 130 may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer and the negative electrode layer.
  • the positive electrode layer 110 and the negative electrode layer 120 may include a positive electrode current collector layer and a negative electrode current collector layer, respectively.
  • the positive electrode current collector layer and the negative electrode current collector layer may each have a foil form, but from the viewpoint of reducing the manufacturing cost of the solid-state battery and reducing the internal resistance of the solid-state battery by integral firing, the form of the sintered body is adopted. You may have.
  • the positive electrode current collector layer and the negative electrode current collector layer have the form of a sintered body, they may be composed of a sintered body containing a conductive auxiliary agent and a sintered auxiliary agent.
  • the conductive auxiliary agent contained in the positive electrode current collector layer and the negative electrode current collector layer may be selected from, for example, the same materials as the conductive auxiliary agent that can be contained in the positive electrode layer 110 and the negative electrode layer 120.
  • the sintering aid contained in the positive electrode current collector layer and the negative electrode current collector layer may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer 110 and the negative electrode layer 120. In the solid-state battery, the positive electrode current collector layer and the negative electrode current collector layer are not indispensable.
  • the solid-state battery 1 is provided with an end face electrode as a positive electrode 1P and an end face electrode as a negative electrode 1N.
  • These end face electrodes preferably include a material having a high conductivity.
  • the specific material of the end face electrode is not particularly limited, but at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin and nickel can be mentioned.
  • FIG. 3 is a plan view showing the configuration of the power receiving coil 31.
  • the power receiving coil 31 has a rectangular spiral shape that is wound a plurality of times, and a coil opening CO is formed in the center. Spiral coils are also formed in the power transmission device, and magnetic fields are coupled to each other.
  • FIG. 4 is a bottom view of the wireless charging solid-state battery module 101. In this example, it has eight terminals E1 to E8.
  • E1 VBAT + battery voltage output terminal (2.0V-4.35V)
  • E2 CSO charge status monitoring terminal
  • E3 VOUT positive electrode terminal (1.8V or 3.0V or 3.3V)
  • E4 CE regulator Enable input terminal
  • E5 GND negative electrode terminal
  • E6 ISET charging current control input terminal
  • E7 THIN NTC thermistor input terminal for temperature monitoring
  • E8 VIN voltage input terminal
  • the battery voltage output terminal E1 is the positive electrode of the solid-state battery 1. It is an output terminal.
  • the charge status monitoring terminal E2 outputs a signal indicating the charge status of the solid-state battery 1.
  • the positive electrode terminal E3 is an output terminal of the output voltage stabilizing circuit.
  • the regulator Enable input terminal E4 is an enable / disable switching signal terminal for the operation of the output voltage stabilization circuit.
  • the negative electrode terminal E5 is a terminal having a ground potential.
  • the charging current control input terminal E6 is an input terminal for controlling the charging current.
  • the temperature monitoring NTC thermistor input terminal E7 is a terminal for detecting an overheated state by connecting an NTC (negative characteristic) thermistor and performing processing accordingly.
  • the voltage input terminal E8 is a terminal for inputting, for example, 5 V as a power supply voltage from the outside when wireless charging is not performed, and corresponds to the "voltage input terminal" according to the present invention.
  • FIG. 5 is a circuit diagram of the wireless charging solid-state battery module 101.
  • the wireless charging solid-state battery module 101 includes a wireless charging circuit 50.
  • the wireless charging circuit 50 includes a power receiving coil 31 that receives a transmission magnetic field, a rectifier circuit 52 that rectifies the induced current of the power receiving coil 31, and a DC that converts the output voltage of the rectifier circuit 52 into a voltage to generate a charging voltage.
  • a DC converter 54 and a charge control circuit 55 that inputs the output voltage of the DC-DC converter 54 to control the charge of the solid-state battery 1 are provided.
  • the DC-DC converter 54 corresponds to the "voltage conversion circuit" in the present invention.
  • the power receiving coil 31 is represented by an inductor 31L and an equivalent resistor 31R.
  • a resonance capacitor 51 constituting the resonance circuit LC1 is connected to the power receiving coil 31 together with the power receiving coil 31.
  • a capacitor 531 is connected to the output of the rectifier circuit 52.
  • a capacitor 532 is connected to the output of the DC-DC converter 54.
  • a protection circuit 56 is provided between the charge control circuit 55 and the solid-state battery 1.
  • a voltage regulator 57 is provided between the connection point between the charge control circuit 55 and the protection circuit 56 and the positive electrode terminal E3 and the negative electrode terminal E5.
  • the voltage regulator 57 is, for example, an LDO (Low Dropout regulator), which is a linear regulator composed of a MOS-FET and an operational amplifier.
  • the voltage regulator 57 stabilizes the voltage of the solid-state battery 1 and outputs it to the positive electrode terminal E3 and the negative electrode terminal E5.
  • the voltage regulator 57 corresponds to the "output voltage stabilizing circuit" in the present invention.
  • the power receiving coil 31 and the rectifier circuit 52 are configured on the second circuit board 30 shown in FIG. Further, other circuits are configured on the first circuit board 20.
  • the resonance circuit LC1 resonates in the frequency band of the magnetic field received from the power transmission device, for example, the frequency band of 6.78 MHz or 13.56 MHz. These frequency bands are ISM (Industrial Science and Medical) bands and are superior in EMC (Electromagnetic Compatibility) design.
  • the power receiving coil 31 outputs the received power to the rectifier circuit 52.
  • the rectifier circuit 52 rectifies the AC received voltage to DC.
  • the capacitor 531 smoothes the output voltage of the rectifier circuit 52 and outputs it to the DC-DC converter 54.
  • the DC-DC converter 54 performs voltage conversion and outputs the voltage to the charge control circuit 55.
  • Capacitor 532 smoothes the output voltage of the DC-DC converter 54.
  • the charge control circuit 55 charges the solid-state battery 1 with a DC power receiving voltage that is rectified and voltage-converted from alternating current.
  • the voltage regulator 57 converts the output voltage of the solid-state battery 1 into a voltage and outputs the voltage between the positive electrode terminal E3 and the negative electrode terminal E5.
  • the protection circuit 56 protects the solid-state battery 1 during charging and discharging, and protects the solid-state battery 1 from overvoltage input. Further, the protection circuit 56 provides overheat protection according to the resistance value of the NTC thermistor connected to the terminal E7. For example, the protection circuit 56 limits the charge / discharge current to the solid-state battery 1 when it exceeds a specified value. Further, the protection circuit 56 limits the charging current when the voltage of the solid-state battery 1 exceeds a predetermined value. Further, the protection circuit 56 suppresses charging or discharging when the temperature or ambient temperature of the solid-state battery 1 is out of the predetermined value range.
  • a voltage input terminal E8 for inputting a voltage is connected to the input unit of the DC-DC converter 54.
  • the wireless charging solid-state battery module 101 operates by inputting a voltage of a certain value or more (for example, 5V) from the voltage input terminal E8.
  • the voltage input terminal E8 may be connected to the input portion of the rectifier circuit 52.
  • the battery voltage output terminal E1 is connected to the positive electrode of the solid-state battery 1 via the protection circuit 56.
  • the voltage of the solid-state battery 1 can be detected via the battery voltage output terminal E1.
  • the charge control circuit 55 has a monitor signal output unit 55M that outputs a signal indicating a charge control state for the solid-state battery 1.
  • the charge status monitoring terminal E2 is connected to the monitor signal output unit 55M.
  • the charge control state of the solid-state battery 1 can be detected via the charge state monitoring terminal E2.
  • FIG. 6 is a perspective view showing an example of the positional relationship between the state in which the wireless charging solid-state battery module 101 of the present embodiment is mounted on the mounting substrate 80 and the power transmission coil 900 of the power transmission device.
  • the mounting board 80 on which the wireless charging solid-state battery module 101 is mounted is housed in the housing of the electronic device.
  • the power transmission coil 900 is housed in the housing of the power transmission device.
  • the coil opening of the power receiving coil (power receiving coil 31 shown in FIGS. 1 and 3) of the wireless charging solid-state battery module 101 and the coil opening of the power transmission coil 900 overlap each other in a plan view.
  • the power receiving coil 31 and the power transmitting coil 900 are close to each other within a predetermined distance, they are magnetically coupled to each other, and electric power is transmitted and received via this magnetic field.
  • FIG. 7 is a perspective view showing another example of the positional relationship between the state in which the wireless charging solid-state battery module 101 of the present embodiment is mounted on the mounting substrate 80 and the power transmission device 201A.
  • the power transmission device 201A has an opening OP, and a power transmission coil is formed around the opening OP.
  • the coil opening of the power receiving coil and the coil opening of the power transmission coil overlap in a plan view. Electric power is exchanged through this magnetic field.
  • FIG. 8 is a perspective view showing a state in which power is transmitted from the power transmission device 201B to the plurality of wireless charging solid-state battery modules 101A, 101B, 101C.
  • the power transmission device 201B has a recess RE, and a power transmission coil is formed around the recess RE.
  • the coil openings of the power receiving coil and the coil openings of the power transmission coil of each wireless charging solid-state battery module overlap in a plan view. Electric power is exchanged through this magnetic field.
  • FIG. 9 is a cross-sectional view of another wireless charging solid-state battery module 101M according to the first embodiment.
  • the wireless charging solid-state battery module 101M includes a solid-state battery 1, internal structures 11, 12, a barrier layer 14, a buffer layer 15, a mold resin portion 13, a positive electrode terminal E3, and a negative electrode terminal E5.
  • a mold resin portion 13 is provided above the internal structure 12.
  • Electronic components 33a, 33b, etc. such as a DC-DC converter IC and a capacitor are mounted on the outer surface (the surface opposite to the solid-state battery 1) of the second circuit board 30.
  • the second circuit board 30 is a flexible resin substrate having water resistance, the stress due to expansion and contraction of the solid-state battery 1 is relaxed by the flexible resin substrate while maintaining water resistance, and the charge / discharge cycle is reduced. Increased reliability.
  • the second embodiment shows a wireless charging solid-state battery module having a circuit configuration different from that of the example shown in the first embodiment.
  • FIG. 10 is a circuit diagram of the wireless charging solid-state battery module 102 of the second embodiment.
  • the wireless charging solid-state battery module 102 includes a power receiving coil 31, a rectifier circuit 52, a voltage regulator 53, a charging control circuit 55, and a solid-state battery 1.
  • the voltage regulator 53 is, for example, an LDO (Low Dropout regulator), which is a linear regulator composed of a MOS-FET and an operational amplifier.
  • the voltage regulator 53 stabilizes the output voltage of the rectifier circuit 52.
  • the circuit configuration other than the voltage regulator 53 is the same as the example shown in FIG. However, in the example shown in FIG. 10, the voltage regulator 57 is not provided.
  • the rectified voltage may be stabilized by a linear regulator. This enables voltage regulation even in a range where the voltage induced in the power receiving coil 31 is lower.
  • the third embodiment shows a wireless charging solid-state battery module having a circuit configuration different from that of the example shown in the first embodiment.
  • the circuit configuration of the power transmission device is also shown.
  • FIG. 11 is a circuit diagram of the wireless charging solid-state battery module 103 of the third embodiment.
  • the wireless charging solid-state battery module 103 includes a power receiving coil 31, a rectifier circuit 52, a DC-DC converter 54, a charging control circuit 55, a solid-state battery 1, and a protection circuit 56.
  • the rectifier circuit 52 is represented by a diode bridge circuit.
  • the power transmission device 90 includes a power transmission control circuit 91, a power transmission coil 900, and a resonance capacitor 92.
  • the power transmission coil 900 is represented by an inductor 900L and an equivalent resistor 900R.
  • the power transmission coil 900 and the resonance capacitor 92 form a resonance circuit that resonates in the power transmission frequency band. For example, it resonates in the frequency band of 6.78 MHz or 13.56 MHz. These frequency bands are ISM (Industrial Science and Medical) bands and are superior in EMC (Electromagnetic Compatibility) design.
  • the resonance on the power transmission device side and the resonance circuit by the power receiving coil 31 and the resonance capacitor 51 on the wireless charging solid-state battery module side are coupled to cause magnetic field resonance.
  • the control circuit 91 of the power transmission device 90 generates an alternating magnetic field from the power transmission coil 900 by interrupting the direct current to the power transmission coil 900. As a result, power is transmitted from the power transmission device to the wireless charging solid-state battery module 103 using the DC resonance technology.
  • the wireless charging solid-state battery module 103 outputs, for example, 3.7 V as the discharge voltage of the solid-state battery 1.
  • power is transmitted from the power transmission device to the wireless charging solid-state battery module using DC resonance technology, so that highly efficient charging is possible. Therefore, the degree of freedom in the positional relationship between the power transmission device and the wireless charging solid-state battery module is increased.
  • a fourth embodiment shows a wireless charging solid-state battery module that transmits a communication signal to a power transmission device.
  • FIG. 12 is a circuit diagram of the wireless charging solid-state battery module 104 of the fourth embodiment.
  • the wireless charging solid-state battery module 104 includes a power receiving coil 31, a rectifier circuit 52, a DC-DC converter 54, a charging control circuit 55, a solid-state battery 1, a protection circuit 56, a transmission control circuit 70, and a transmission circuit 59.
  • the transmission circuit 59 transmits a communication signal according to a change in the power consumption of the circuit connected to the power receiving coil 31. That is, binary ASK (amplitude-shift keying) is performed by varying the load on the power receiving side by backscatter modulation similar to the passive RFID tag.
  • the transmission circuit 59 changes the resonance conditions of the resonance circuit by the power receiving coil 31 and the resonance capacitor 51, and transmits a signal by this change.
  • the resonant capacitor 51 and the transmitting circuit 59 change the equivalent resonant capacitance and change the resonant frequency of the resonant circuit.
  • the impedance of the resonant circuit seen from the power transmission device on the power receiving side changes, so that the power transmission device receives the communication signal.
  • the transmission circuit 59 corresponds to the "signal transmission circuit" according to the present invention.
  • the transmission control circuit 70 inputs the output voltage of the rectifier circuit 52, the voltage of the solid-state battery 1, and the like, and generates transmission data based on those values. For example, the difference between the required amount of power received, the request to stop power transmission, the power being received, the charge rate of the solid-state battery 1, and the like.
  • a fifth embodiment shows a wireless charging solid-state battery module including a power receiving protection circuit that stops receiving power when the receiving voltage exceeds a predetermined voltage range.
  • FIG. 13 is a circuit diagram of the wireless charging solid-state battery module 105 and the like.
  • FIG. 6 also shows the circuit of the power transmission device 90.
  • the wireless charging solid-state battery module 105 includes a solid-state battery 1 and a wireless charging circuit 50 connected to the solid-state battery 1.
  • the wireless charging circuit 50 is a DC-DC that generates a charging voltage by converting the output voltage of the power receiving coil 31, the power receiving protection circuit 58, and the smoothing circuit in the power receiving protection circuit 58 that receives the power transmission magnetic field or the power transmission electromagnetic field.
  • the converter 54, the charge control circuit 55 that controls the charge of the solid cell 1 by inputting the output voltage of the DC-DC converter 54, the protection circuit 56 that protects the solid cell 1, and the current of the solid cell 1 are used as a general-purpose battery.
  • a voltage regulator 57 for converting the output voltage of the above is provided.
  • the power receiving protection circuit 58 rectifies the induced current of the power receiving coil 31 and stops receiving power to the DC-DC converter 54 when the power receiving voltage exceeds a predetermined voltage range.
  • the power receiving coil 31 is represented by an inductor 31L and an equivalent resistor 31R.
  • a resonance capacitor 51 forming a resonance circuit is connected to the power receiving coil 31 together with the power receiving coil 31.
  • the rectifier circuit 52 includes a smoothing capacitor C3.
  • a capacitor 532 is connected to the output of the DC-DC converter 54.
  • the voltage regulator 57 is, for example, an LDO (Low Dropout regulator), which is a linear regulator composed of a MOS-FET and an operational amplifier. The voltage regulator 57 stabilizes the voltage of the solid-state battery 1 and outputs it to the positive electrode terminal E3 and the negative electrode terminal E5.
  • LDO Low Dropout regulator
  • the power transmission device 90 includes a power transmission control circuit 91, a power transmission coil 900, and a resonance capacitor 92.
  • the power transmission coil 900 is represented by an inductor 900L and an equivalent resistor 900R.
  • the power transmission coil 900 and the resonance capacitor 92 form a resonance circuit that resonates in the power transmission frequency band. For example, it resonates in the frequency band of 6.78 MHz or 13.56 MHz. These frequency bands are ISM (Industrial Science and Medical) bands and are superior in EMC (Electromagnetic Compatibility) design.
  • the resonance on the power transmission device side and the resonance circuit by the power receiving coil 31 and the resonance capacitor 51 on the wireless charging solid-state battery module 105 side are coupled to cause magnetic field resonance.
  • the resonance circuit by the power receiving coil 31 and the resonance capacitor 51 resonates in the frequency band of the electromagnetic field or the magnetic field received from the power transmission device 90, for example, the frequency band of 6.78 MHz or 13.56 MHz.
  • the power receiving coil 31 outputs the received power to the rectifier circuit 52.
  • the power receiving protection circuit 58 rectifies the alternating current receiving voltage to direct current, and stops receiving power to the DC-DC converter 54 when the receiving voltage exceeds a predetermined voltage range.
  • the DC-DC converter 54 performs voltage conversion and outputs the voltage to the charge control circuit 55.
  • Capacitor 532 smoothes the output voltage of the DC-DC converter 54.
  • the charge control circuit 55 charges the solid-state battery 1 with a DC power receiving voltage that is rectified and voltage-converted from alternating current.
  • the voltage regulator 57 converts the output voltage of the solid-state battery 1 into a voltage and outputs the voltage between the positive electrode terminal E3 and the negative electrode terminal E5.
  • the protection circuit 56 protects the solid-state battery 1 during charging and discharging, and protects the solid-state battery 1 from overvoltage input. Further, the protection circuit 56 provides overheat protection according to the resistance value of the NTC thermistor. For example, the protection circuit 56 limits the charge / discharge current to the solid-state battery 1 when it exceeds a specified value. Further, the protection circuit 56 limits the charging current when the voltage of the solid-state battery 1 exceeds a predetermined value. Further, the protection circuit 56 suppresses charging or discharging when the temperature or ambient temperature of the solid-state battery 1 is out of the predetermined value range.
  • 14 (A), 14 (B), 14 (C), and 14 (D) are circuit diagrams showing specific examples of the power receiving protection circuit 58.
  • the diode D1 and the capacitor C3 form a rectifying smoothing circuit.
  • the received voltage exceeds the Zener voltage of the Zener diodes ZD1 and ZD2
  • both ends of the connection circuit of the Zener diodes ZD1 and ZD2 become conductive, and the received voltage is limited to the Zener voltage.
  • a rectifying and smoothing circuit is formed by the diode D1 and the capacitor C3, and when the divided voltage of the resistors R1 and R2 exceeds the Zener voltage of the Zener diode ZD, the Zener diode ZD becomes conductive. The received voltage is limited by the series circuit of this Zener diode and the resistor.
  • a rectifying and smoothing circuit is formed by the diode D1 and the capacitor C3, and when the rectifying and smoothing voltage exceeds the Zener voltage of the Zener diode ZD, the FET Q conducts, and the FET Q and the resistor The receiving voltage is limited by the series circuit of.
  • a rectifying smoothing circuit is formed by the diode D1 and the capacitor C3, and when the rectifying smoothing voltage exceeds the Zener voltage of the Zener diode ZD, the Zener diode ZD becomes conductive and the received voltage becomes the Zener voltage. Limited to.
  • the power receiving protection circuit 58 protects the DC-DC converter 54 when the receiving voltage exceeds a predetermined voltage range.
  • FIG. 15 is another circuit diagram of the wireless charging solid-state battery module 105 and the like according to the fifth embodiment.
  • the wireless charging solid-state battery module 105 includes a solid-state battery 1 and a wireless charging circuit 50 connected to the solid-state battery 1.
  • the wireless charging circuit 50 includes a power receiving coil 31 that receives a transmission magnetic field, a rectifier circuit 52 that rectifies the induced current of the power receiving coil 31, and a cutoff that stops power reception to the rectifier circuit 52 when the received voltage exceeds a predetermined voltage range.
  • the wireless charging solid-state battery module 105 further includes a protection circuit 56 that protects the solid-state battery 1 and a voltage regulator 57 that converts the current of the solid-state battery 1 into the output voltage of a general-purpose battery.
  • the cutoff circuit 58C, the power receiving voltage detection circuit 58D, and the resistance voltage dividing circuit 58R constitute the power receiving protection circuit 58.
  • the power receiving voltage detection circuit 58D detects that the output voltage of the resistance voltage dividing circuit 58R exceeds a predetermined value, the power receiving voltage detection circuit 58D outputs the detection signal to the cutoff circuit 58C.
  • the cutoff circuit 58C receives the detection signal from the power receiving voltage detection circuit 58D, the cutoff circuit 58C stops receiving power to the rectifier circuit 52.
  • 16 (A) and 16 (B) are diagrams for explaining the operation of the cutoff circuit 58C at the time of normal power reception.
  • the FET Q2 of the cutoff circuit 58C is in the off state.
  • 17 (A) and 17 (B) are diagrams for explaining the operation of the cutoff circuit 58C in a state where the received voltage exceeds a specified value.
  • the FET Q2 is turned on by the detection signal output from the received voltage detection circuit 58D shown in FIG.
  • FIG. 17 (A) When a voltage is induced in the power receiving coil 31 and the first end of the power receiving coil 31 becomes positive, as shown in FIG. 17 (A), a current flows from the power receiving coil 31 through the path of the resonance capacitor 51 and the FET Q2. As shown in FIG. 17B, when the second end of the power receiving coil 31 is positive, a current flows from the power receiving coil 31 through the body diode of the FET Q2 to the capacitor 51. When the received voltage exceeds the specified value, the state shown in FIG. 17A and the state shown in FIG. 17B are alternately repeated. That is, the received voltage is not output to the rectifier circuit 52.
  • the power receiving coil 31 receives a magnetic field larger than the specified value, the power can be cut off by cutting off the power received by the rectifier circuit 52, and heat is generated by receiving a large amount of power in the rectifier circuit 52 and subsequent circuits. Etc. can be suppressed.
  • 18 (A) and 18 (B) are diagrams showing a configuration example of the received voltage detection circuit 58D shown in FIG.
  • the received voltage detection circuit 58D includes comparators 25A and 25B and a control unit 25C.
  • the comparator 25A compares the received voltage Va with the threshold voltage Va1 and outputs an H level signal (H) when Va> Va1 and outputs an L level signal (L) when Va ⁇ Va1.
  • the comparator 25B compares the received voltage Va with the threshold voltage Va2, outputs an H level signal when Va> Va2, and outputs an L level signal (L) when Va ⁇ Va2.
  • the control unit 25C outputs a gate signal to the FET Q2 based on the output signals of the comparators 25A and 25B. Specifically, the control unit 25C turns off the FET Q2 when the output signals of the comparators 25A and 25B are both L, that is, when Va ⁇ Va1.
  • the control unit 25C outputs a pulse signal to the gate of the FET Q2 and turns the FET Q2 on and off.
  • the control unit 25C turns on the FET Q2 when the output signals of the comparators 25A and 25B are both H, that is, when Va2 ⁇ Va.
  • the cutoff circuit 58C has a series circuit of the resistor R1 and the FET Q21 for driving the FET Q2.
  • the connection point between the resistor R1 and the FET Q21 is connected to the gate of the FET Q2.
  • the cutoff circuit 58C of FIG. 18B includes a resistor R2 and an FET Q21.
  • the received voltage detection circuit 58D has a series circuit of the resistor R2 and the Zener diode Dz1.
  • the connection point A between the resistor R2 and the Zener diode Dz1 is connected to the gate of the FET Q21.
  • the received voltage Va when the received voltage Va is less than the Zener voltage of the Zener diode Dz1, the potential of the connection point A is H and the FET Q21 is turned on. Then, the potential at the connection point between the resistor R1 and the FET Q21 is L, and the FET Q2 is turned off.
  • the received voltage Va becomes high and exceeds the Zener voltage
  • the potential of the connection point A becomes L
  • the FET Q21 is turned off
  • the FET Q2 is turned on.
  • the Zener voltage is set so that the FET Q2 is turned off when the received voltage Va is equal to or less than the threshold voltage Va1.
  • the FET Q2 When the power receiving voltage Va is higher than the specified value (when the threshold voltage Va2 or more), the FET Q2 is turned on and the power receiving cutoff state is established. Then, the cutoff circuit 58C maintains the cutoff state until the power receiving voltage Va becomes lower than the Zener voltage, and the power receiving is stopped.
  • FIG. 19 is a circuit diagram showing a specific example of the protection circuit 56.
  • the protection circuit 56 is composed of a protection IC for detecting the voltage across the solid-state battery 1 and FETs Q61 and Q62. When the applied voltage of the solid-state battery 1 exceeds a predetermined voltage, the protection IC controls the gate voltage of the FETs Q61 and Q62 to cut off the charging current path to the solid-state battery 1.
  • ⁇ 6th Embodiment an example of a circuit that cuts off power reception by controlling a rectifying element is shown.
  • FIG. 20 and 21 are diagrams showing the configuration of the cutoff circuit of the wireless charging solid-state battery module according to the sixth embodiment.
  • a synchronous rectifier circuit is configured by FETs Q2 and Q31.
  • the received voltage detection circuit 58D controls the synchronous rectification operation by controlling the FETs Q2 and Q31. That is, when the power reception is cut off, the FET Q2 is turned on and the FET Q31 is turned off.
  • the rectifier circuit is composed of the FET Q32 and the diode D12.
  • the received voltage detection circuit 58D controls the rectification operation by controlling the FET Q32. That is, when the power reception is cut off, the FET Q32 is turned off.
  • 22 and 23 are circuit diagrams of a part of the wireless charging solid-state battery module and the power transmission device according to the seventh embodiment.
  • the power transmission device includes a power transmission side resonance circuit 111 and a power transmission circuit 122A.
  • the power transmission circuit 122A is configured by connecting the series circuit of the FETs Q11 and Q12 and the series circuit of the FETs Q13 and Q14 in parallel. By alternately turning on and off the FETs Q11 and Q14 and the FETs Q12 and Q13, the DC voltage from the DC power supply is converted into an AC voltage and supplied to the power transmission side resonance circuit 111.
  • a series circuit of the FET Q51 and the diode D31 and a series circuit of the FET Q52 and the diode D32 are connected in parallel to form a rectifier circuit.
  • the FETs Q51 and Q52 are switched and controlled by the received voltage detection circuit 58D (FIG. 13).
  • FIG. 23 a diode bridge rectifier circuit using diodes D31, D32, D33, and D34 and FETs Q51 and 52 are provided.
  • the direction of the drain source of the FETs Q51 and 52 is different from the example shown in FIG.

Abstract

A wireless charging solid battery module (101) is provided with: a solid battery (1); internal structures (11, 12) provided with an inner circuit which is electrically connected to the solid battery (1); a barrier layer (14) that isolates the solid battery (1) from an external air environment; and a positive electrode terminal (E3) and a negative electrode terminal (E5) that are electrically connected to the solid battery (1) , that are each exposed to an outer surface, and that are arranged so as to be mountable to a mounting substrate (80). The inner circuit has a wireless charging circuit that receives power from the outside through an electromagnetic field or a magnetic field generated by power transmission from the outside, and controls charging of the solid battery (1).

Description

ワイヤレス充電固体電池モジュールWireless charging solid state battery module
 本発明は、固体電池を備えるモジュールに関する。 The present invention relates to a module including a solid state battery.
 特許文献1には、筐体の中に二次電池とワイヤレス送電回路を備えた非接触充電対応二次電池が提案されている。具体的には、アルカリ二次電池と、受電コイルと、受電コイルに並列接続された共振コンデンサとを含み、送電装置からの磁界を介して交流電力を受電する受電回路と、この受電回路で受電する交流電力を整流する整流回路と、整流回路からアルカリ二次電池への充電電流を制限する電流制限回路と、アルカリ二次電池に接続される正極端子及び負極端子を含む円柱形状の外装体と、を備える。そして、受電コイルが外装体の内周面に沿って設けられた構成が示されている。 Patent Document 1 proposes a non-contact charging compatible secondary battery having a secondary battery and a wireless power transmission circuit in the housing. Specifically, a power receiving circuit that includes an alkaline secondary battery, a power receiving coil, and a resonance capacitor connected in parallel to the power receiving coil and receives AC power via a magnetic field from a power transmitting device, and a power receiving circuit that receives power. A rectifying circuit that rectifies the AC power to be generated, a current limiting circuit that limits the charging current from the rectifying circuit to the alkaline secondary battery, and a cylindrical exterior body including a positive electrode terminal and a negative electrode terminal connected to the alkaline secondary battery. , Equipped with. Then, the configuration in which the power receiving coil is provided along the inner peripheral surface of the exterior body is shown.
特許第5798407号公報Japanese Patent No. 5798407
 特許文献1に記載の非接触充電対応二次電池では、その筐体は円筒型であって、乾電池と代替可能なアルカリ二次電池を想定している。このような非接触充電対応二次電池では、小型化できず、例えばウェアラブル機器等の小型の機器への搭載は困難である。 The non-contact charging compatible secondary battery described in Patent Document 1 has a cylindrical housing, and is assumed to be an alkaline secondary battery that can replace a dry battery. Such a non-contact charging compatible secondary battery cannot be miniaturized, and it is difficult to mount it on a small device such as a wearable device.
 一方、例えば補聴器などのように、小型の機器であるほど、電池単体での取り扱いが困難になり、高い自由度のもとで充電できることが望まれる。 On the other hand, the smaller the device, such as a hearing aid, the more difficult it is to handle the battery alone, and it is desirable that the battery can be charged with a high degree of freedom.
 そこで、本発明の目的は、単体状態、回路基板への実装状態、機器に搭載された状態のいずれにおいてもワイヤレス充電可能とした、小型のワイヤレス充電固体電池モジュールを提供することにある。 Therefore, an object of the present invention is to provide a small wireless charging solid-state battery module that can be wirelessly charged in any of a single state, a mounted state on a circuit board, and a state mounted on a device.
 本開示の一例としてのワイヤレス充電固体電池モジュールは、
 固体電池と、
 前記固体電池に電気的に接続された内部回路が設けられた内部構造体と、
 前記固体電池に対して電気的に接続され、外面にそれぞれ露出し、実装基板へ実装可能に配置された正極端子及び負極端子と、
 前記固体電池を外気環境から隔離するバリア層と、
 を備え、
 前記内部回路は、送電用磁界を介して外部から電力を受電し、前記固体電池への充電を制御するワイヤレス充電回路を有する。
The wireless rechargeable solid-state battery module as an example of the present disclosure is
With solid-state batteries
An internal structure provided with an internal circuit electrically connected to the solid-state battery,
Positive electrode terminals and negative electrode terminals that are electrically connected to the solid-state battery, are exposed on the outer surface, and are arranged so as to be mounted on a mounting board.
A barrier layer that isolates the solid-state battery from the outside air environment,
With
The internal circuit has a wireless charging circuit that receives electric power from the outside via a magnetic field for power transmission and controls charging of the solid-state battery.
 本発明によれば、単体状態、回路基板への実装状態、機器に搭載された状態のいずれにおいてもワイヤレス充電可能としたワイヤレス充電固体電池モジュールが得られる。 According to the present invention, a wireless charging solid-state battery module capable of wireless charging can be obtained in any of a single state, a mounted state on a circuit board, and a mounted state on a device.
 本発明によるワイヤレス充電固体電池モジュールを実装した電子回路基板は、ワイヤレス充電固体電池モジュールにおいて、外部からの送電による電磁界または磁界を通して外部から電力を受電することができる。このため、電子回路基板においてワイヤレス充電回路を構成する必要がない。また、固体電池とワイヤレス充電回路とを短い配線で接続でき、配線における電力損失を低減し、外部磁界による誤動作を抑制できる。また、実装された電子回路基板の小型軽量化、薄型化、高効率化を図ることができる。さらに、実装電子回路基板そのものを、全固体電池とワイヤレス充電機能とを備えた実装電子回路基板として利用でき、電子機器や電気機器の小型軽量化、高効率化を図ることができる。 The electronic circuit board on which the wireless charging solid-state battery module according to the present invention is mounted can receive electric power from the outside through an electromagnetic field or a magnetic field generated by power transmission from the outside in the wireless charging solid-state battery module. Therefore, it is not necessary to configure a wireless charging circuit in the electronic circuit board. In addition, the solid-state battery and the wireless charging circuit can be connected with a short wiring, power loss in the wiring can be reduced, and malfunction due to an external magnetic field can be suppressed. In addition, the mounted electronic circuit board can be made smaller and lighter, thinner, and more efficient. Further, the mounted electronic circuit board itself can be used as a mounted electronic circuit board having an all-solid-state battery and a wireless charging function, and it is possible to reduce the size and weight of electronic devices and electric devices and improve their efficiency.
図1は第1の実施形態に係るワイヤレス充電固体電池モジュール101の断面図である。FIG. 1 is a cross-sectional view of the wireless charging solid-state battery module 101 according to the first embodiment. 図2は第1の本実施形態における固体電池1の基本的構成を示す断面図である。FIG. 2 is a cross-sectional view showing the basic configuration of the solid-state battery 1 according to the first embodiment. 図3は受電コイル31の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of the power receiving coil 31. 図4はワイヤレス充電固体電池モジュール101の下面図である。FIG. 4 is a bottom view of the wireless charging solid-state battery module 101. 図5はワイヤレス充電固体電池モジュール101の回路図である。FIG. 5 is a circuit diagram of the wireless charging solid-state battery module 101. 図6は、ワイヤレス充電固体電池モジュール101が実装基板80に実装された状態と、送電装置の送電コイル900との位置関係の例を示す斜視図である。FIG. 6 is a perspective view showing an example of the positional relationship between the state in which the wireless charging solid-state battery module 101 is mounted on the mounting substrate 80 and the power transmission coil 900 of the power transmission device. 図7は、ワイヤレス充電固体電池モジュール101が実装基板80に実装された状態と、送電装置201Aとの位置関係の別の例を示す斜視図である。FIG. 7 is a perspective view showing another example of the positional relationship between the state in which the wireless charging solid-state battery module 101 is mounted on the mounting board 80 and the power transmission device 201A. 図8は、複数のワイヤレス充電固体電池モジュール101A,101B,101Cに対して送電装置201Bから送電を行う状態を示す斜視図である。FIG. 8 is a perspective view showing a state in which power is transmitted from the power transmission device 201B to the plurality of wireless charging solid- state battery modules 101A, 101B, 101C. 図9は第1の実施形態に係る別のワイヤレス充電固体電池モジュール101Mの断面図である。FIG. 9 is a cross-sectional view of another wireless charging solid-state battery module 101M according to the first embodiment. 図10は第2の実施形態のワイヤレス充電固体電池モジュール102の回路図である。FIG. 10 is a circuit diagram of the wireless charging solid-state battery module 102 of the second embodiment. 図11は第3の実施形態のワイヤレス充電固体電池モジュール103の回路図である。FIG. 11 is a circuit diagram of the wireless charging solid-state battery module 103 of the third embodiment. 図12は第4の実施形態のワイヤレス充電固体電池モジュール104の回路図である。FIG. 12 is a circuit diagram of the wireless charging solid-state battery module 104 of the fourth embodiment. 図13は第5の実施形態に係るワイヤレス充電固体電池モジュール105等の回路図である。FIG. 13 is a circuit diagram of the wireless charging solid-state battery module 105 and the like according to the fifth embodiment. 図14(A)、図14(B)、図14(C)、図14(D)は、受電保護回路58の具体例を示す回路図である。14 (A), 14 (B), 14 (C), and 14 (D) are circuit diagrams showing specific examples of the power receiving protection circuit 58. 図15はワイヤレス充電固体電池モジュール105等の別の回路図である。FIG. 15 is another circuit diagram of the wireless charging solid-state battery module 105 and the like. 図16(A)、図16(B)は、遮断回路58Cの、通常受電時の動作を説明するための図である。16 (A) and 16 (B) are diagrams for explaining the operation of the cutoff circuit 58C during normal power reception. 図17(A)、図17(B)は、受電電圧が規定値を超える状態での、遮断回路58Cの動作を説明するための図である。17 (A) and 17 (B) are diagrams for explaining the operation of the cutoff circuit 58C in a state where the received voltage exceeds a specified value. 図18(A)、図18(B)は、図6に示した受電電圧検出回路58Dの構成例を示す図である。18 (A) and 18 (B) are diagrams showing a configuration example of the received voltage detection circuit 58D shown in FIG. 図19は保護回路56の具体例を示す回路図である。FIG. 19 is a circuit diagram showing a specific example of the protection circuit 56. 図20は第6の実施形態に係るワイヤレス充電固体電池モジュールの遮断回路の構成を示す図である。FIG. 20 is a diagram showing a configuration of a cutoff circuit of the wireless charging solid-state battery module according to the sixth embodiment. 図21は第6の実施形態に係る別のワイヤレス充電固体電池モジュールの遮断回路の構成を示す図である。FIG. 21 is a diagram showing a configuration of a cutoff circuit of another wireless charging solid-state battery module according to the sixth embodiment. 図22は第7の実施形態に係るワイヤレス充電固体電池モジュール及び送電装置の一部の回路図である。FIG. 22 is a partial circuit diagram of the wireless charging solid-state battery module and the power transmission device according to the seventh embodiment. 図23は第8の実施形態に係る別のワイヤレス充電固体電池モジュール及び送電装置の一部の回路図である。FIG. 23 is a partial circuit diagram of another wireless charging solid-state battery module and power transmission device according to the eighth embodiment.
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を説明の便宜上、複数の実施形態に分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。 Hereinafter, a plurality of embodiments for carrying out the present invention will be shown with reference to the drawings with reference to some specific examples. The same reference numerals are given to the same parts in each figure. Although the embodiments are divided into a plurality of embodiments for convenience of explanation in consideration of the explanation of the main points or the ease of understanding, partial replacement or combination of the configurations shown in the different embodiments is possible. In the second and subsequent embodiments, the description of matters common to the first embodiment will be omitted, and only the differences will be described. In particular, the same action and effect due to the same configuration will not be mentioned sequentially for each embodiment.
《第1の実施形態》
 図1は第1の実施形態に係るワイヤレス充電固体電池モジュール101の断面図である。このワイヤレス充電固体電池モジュール101は、固体電池1と、内部構造体11,12と、固体電池1を外気環境から隔離するバリア層14と、固体電池1に対して電気的に接続され、ワイヤレス充電固体電池モジュール101の外面にそれぞれ露出する正極端子E3及び負極端子E5と、を備える。
<< First Embodiment >>
FIG. 1 is a cross-sectional view of the wireless charging solid-state battery module 101 according to the first embodiment. The wireless charging solid-state battery module 101 is electrically connected to the solid-state battery 1, the internal structures 11 and 12, the barrier layer 14 that isolates the solid-state battery 1 from the outside air environment, and the solid-state battery 1 for wireless charging. It includes a positive electrode terminal E3 and a negative electrode terminal E5 that are exposed on the outer surface of the solid-state battery module 101, respectively.
 内部構造体11,12は、固体電池1を積層方向に挟む位置にあり、この積層方向に視て、内部構造体11,12は固体電池1と重なる。内部構造体11,12には、固体電池1に電気的に接続される内部回路が設けられている。内部構造体11,12の両面にはバリア層14が設けられている。内部構造体12の下面(固体電池1側の面)には磁性体層16が設けられている。 The internal structures 11 and 12 are located so as to sandwich the solid-state battery 1 in the stacking direction, and the internal structures 11 and 12 overlap with the solid-state battery 1 when viewed in the stacking direction. The internal structures 11 and 12 are provided with internal circuits that are electrically connected to the solid-state battery 1. Barrier layers 14 are provided on both sides of the internal structures 11 and 12. A magnetic material layer 16 is provided on the lower surface of the internal structure 12 (the surface on the solid-state battery 1 side).
 正極端子E3及び負極端子E5は、他の端子と共に、実装基板80へ実装可能に配置されている。つまり、実装基板80に対面する面(下面)に配置されている。実装基板80には、ワイヤレス充電固体電池モジュール101を電源モジュールとして用いる回路が構成されている。 The positive electrode terminal E3 and the negative electrode terminal E5 are arranged so as to be mounted on the mounting board 80 together with other terminals. That is, it is arranged on the surface (lower surface) facing the mounting board 80. The mounting board 80 is configured with a circuit that uses the wireless charging solid-state battery module 101 as a power supply module.
 上記内部回路は、送電用磁界を介して外部から電力を受電し、固体電池1への充電を制御するワイヤレス充電回路を有する。 The internal circuit has a wireless charging circuit that receives electric power from the outside via a magnetic field for power transmission and controls charging of the solid-state battery 1.
 内部構造体12の上面とバリア層14との間には、バリア層14の剥離を抑制する緩衝層15が形成されている。 A buffer layer 15 that suppresses peeling of the barrier layer 14 is formed between the upper surface of the internal structure 12 and the barrier layer 14.
 内部構造体11は、複数の電子部品が実装された第1回路基板20で構成されていて、内部構造体12は、複数の電子部品が実装された第2回路基板30で構成されている。第1回路基板20と第2回路基板30とは、固体電池1を積層方向に挟む位置関係にある。 The internal structure 11 is composed of a first circuit board 20 on which a plurality of electronic components are mounted, and the internal structure 12 is composed of a second circuit board 30 on which a plurality of electronic components are mounted. The first circuit board 20 and the second circuit board 30 are in a positional relationship in which the solid-state battery 1 is sandwiched in the stacking direction.
 固体電池1は、外形が直方体状の電池であり、図1に示す向きでは、左側面に正極1P、右側面に負極1Nがそれぞれ形成されている。この固体電池1は、第1回路基板20と第2回路基板30との間に配置された状態で、固体電池1の周囲がモールド樹脂部13で充填されている。このモールド樹脂部13は例えばポリイミドであり、固体電池1の耐衝撃性を高める。モールド樹脂部13は本発明に係る「衝撃緩和部材」に相当する。 The solid-state battery 1 is a battery having a rectangular parallelepiped outer shape, and in the orientation shown in FIG. 1, a positive electrode 1P is formed on the left side surface and a negative electrode 1N is formed on the right side surface. The solid-state battery 1 is arranged between the first circuit board 20 and the second circuit board 30, and the periphery of the solid-state battery 1 is filled with the mold resin portion 13. The mold resin portion 13 is, for example, polyimide, which enhances the impact resistance of the solid-state battery 1. The mold resin portion 13 corresponds to the "impact mitigation member" according to the present invention.
 第1回路基板20は、例えばLTCC基板(LTCC:Low Temperature Co-fired Ceramics)である。または、HTCC基板(HTCC:High TemperatureCo-fired Ceramics)であってもよい。あくまでも例示にすぎないが、第1回路基板20の厚さは、20μm以上1000μm以下であってよく、例えば100μm以上300μm以下である。 The first circuit board 20 is, for example, an LTCC substrate (LTCC: Low Temperature Co-fired Ceramics). Alternatively, it may be an HTCC substrate (HTCC: High Temperature Co-fired Ceramics). Although it is merely an example, the thickness of the first circuit board 20 may be 20 μm or more and 1000 μm or less, for example, 100 μm or more and 300 μm or less.
 第1回路基板20の内面(固体電池1側の面)には電子部品23a,23b等が実装されている。 Electronic components 23a, 23b and the like are mounted on the inner surface (the surface on the solid-state battery 1 side) of the first circuit board 20.
 第2回路基板30は、例えばポリイミド(PI)やポリエチレンテレフタレート(PET)ベースのフレキシブル基板、又は液晶ポリマー(LCP)ベースのフレキシブル樹脂基板である。あくまでも例示にすぎないが、第2回路基板30の厚さは、20μm以上1000μm以下であってよく、例えば100μm以上300μm以下である。 The second circuit board 30 is, for example, a flexible substrate based on polyimide (PI) or polyethylene terephthalate (PET), or a flexible resin substrate based on a liquid crystal polymer (LCP). Although it is merely an example, the thickness of the second circuit board 30 may be 20 μm or more and 1000 μm or less, for example, 100 μm or more and 300 μm or less.
 第2回路基板30の外面(固体電池1とは反対側の面)には受電コイル31等が形成されている。第2回路基板30の外面には、DC-DCコンバータ用IC、キャパシタ等の電子部品33a,33b等が実装されている。この第2回路基板30には、図5に示した受電コイル31、整流回路52及びDC-DCコンバータ54が構成されている。また、その他の回路部は第1回路基板20に構成されている。 A power receiving coil 31 and the like are formed on the outer surface of the second circuit board 30 (the surface opposite to the solid-state battery 1). Electronic components such as DC-DC converter ICs and capacitors 33a and 33b are mounted on the outer surface of the second circuit board 30. The second circuit board 30 includes a power receiving coil 31, a rectifier circuit 52, and a DC-DC converter 54 shown in FIG. Further, other circuit units are configured on the first circuit board 20.
 磁性体層16は、受電コイル31のコイル開口を通る磁束の磁路として作用し、また、固体電池1を磁気シールドするシールド材として作用する。この磁性体層16を備えることにより、受電コイル31と送電装置の送電コイルとの磁界結合を容易に高めることができる。また、送電コイルからの磁界を受けた際に固体電池1の導体部に生じる渦電流を抑制できる。 The magnetic material layer 16 acts as a magnetic path of magnetic flux passing through the coil opening of the power receiving coil 31, and also acts as a shield material that magnetically shields the solid-state battery 1. By providing the magnetic material layer 16, the magnetic field coupling between the power receiving coil 31 and the power transmission coil of the power transmission device can be easily enhanced. Further, it is possible to suppress the eddy current generated in the conductor portion of the solid-state battery 1 when receiving the magnetic field from the power transmission coil.
 第1回路基板20と第2回路基板30との間には、Agペーストの印刷による導体部である配線7A,7Bが形成されている。第1回路基板20と第2回路基板30との間隔は、例えば3mm以上10mm以下であってよく、例えば5mmである。 Wiring 7A and 7B, which are conductor portions by printing Ag paste, are formed between the first circuit board 20 and the second circuit board 30. The distance between the first circuit board 20 and the second circuit board 30 may be, for example, 3 mm or more and 10 mm or less, for example, 5 mm.
 ワイヤレス充電固体電池モジュール101の側面には銅箔などの金属薄膜4が被膜形成されている。 A metal thin film 4 such as copper foil is formed on the side surface of the wireless charging solid-state battery module 101.
 第1回路基板20の外面(下面)に形成されている正極端子E3、負極端子E5は、実装基板80に形成されているパッド電極に、はんだ等を介して接続される。このことにより、ワイヤレス充電固体電池モジュール101は実装基板80に表面実装される。 The positive electrode terminal E3 and the negative electrode terminal E5 formed on the outer surface (lower surface) of the first circuit board 20 are connected to the pad electrodes formed on the mounting board 80 via solder or the like. As a result, the wireless charging solid-state battery module 101 is surface-mounted on the mounting board 80.
 本発明でいう「固体電池」は、広義にはその構成要素が固体から構成されている電池を指し、狭義にはその構成要素(特に好ましくは全ての構成要素)が固体から構成されている全固体電池を指す。ある好適な態様では、本発明における固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼結体から成っている。 The "solid-state battery" as used in the present invention refers to a battery whose components are composed of solids in a broad sense, and in a narrow sense, all of its components (particularly preferably all components) are composed of solids. Refers to a solid-state battery. In one preferred embodiment, the solid-state battery in the present invention is a laminated solid-state battery in which the layers forming the battery building unit are laminated to each other, and preferably such layers are made of a sintered body.
 図2は本実施形態における固体電池1の基本的構成を示す断面図である。ここで説明される固体電池の構成は、あくまでも発明の理解のための例示にすぎず、発明を限定するものではない。 FIG. 2 is a cross-sectional view showing the basic configuration of the solid-state battery 1 in the present embodiment. The configuration of the solid-state battery described here is merely an example for understanding the invention, and does not limit the invention.
[固体電池の基本的構成]
 図2に示すように、固体電池1は、正極層110、負極層120及び固体電解質130を有する電池構成単位が複数単位積層された固体電池積層体を有する。
[Basic configuration of solid-state battery]
As shown in FIG. 2, the solid-state battery 1 has a solid-state battery laminate in which a plurality of battery building blocks having a positive electrode layer 110, a negative electrode layer 120, and a solid electrolyte 130 are laminated.
 固体電池1は、それを構成する各層が焼成によって形成され、正極層110、負極層120及び固体電解質130などの焼結層を有する。好ましくは、正極層110、負極層120及び固体電解質130は、それぞれが互いに一体焼成されている。 Each layer constituting the solid-state battery 1 is formed by firing, and has a sintered layer such as a positive electrode layer 110, a negative electrode layer 120, and a solid electrolyte 130. Preferably, the positive electrode layer 110, the negative electrode layer 120, and the solid electrolyte 130 are integrally fired with each other.
 正極層110は、少なくとも正極活物質を含んで成る電極層である。正極層110は、更に固体電解質を含んで成っていてよい。ある好適な態様では、正極層110は、正極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されている。一方、負極層120は、少なくとも負極活物質を含んで成る電極層である。負極層120は、さらに固体電解質を含んで成っていてもよい。ある好適な態様では、負極層120は、負極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されている。 The positive electrode layer 110 is an electrode layer including at least a positive electrode active material. The positive electrode layer 110 may further contain a solid electrolyte. In one preferred embodiment, the positive electrode layer 110 is composed of a sintered body containing at least positive electrode active material particles and solid electrolyte particles. On the other hand, the negative electrode layer 120 is an electrode layer including at least a negative electrode active material. The negative electrode layer 120 may further include a solid electrolyte. In one preferred embodiment, the negative electrode layer 120 is composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles.
 正極活物質及び負極活物質は、固体電池において電子の受け渡しに関与する物質である。固体電解質を介してイオンは正極層110と負極層120との間で移動(伝導)して電子の受け渡しが行われることで充放電がなされる。正極層110及び負極層120は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、固体電池は、固体電解質を介してリチウムイオンが正極層110と負極層120との間で移動して電池の充放電が行われる全固体型二次電池であることが好ましい。 The positive electrode active material and the negative electrode active material are substances involved in the transfer of electrons in a solid-state battery. Ions move (conduct) between the positive electrode layer 110 and the negative electrode layer 120 via the solid electrolyte, and electrons are transferred to perform charging and discharging. The positive electrode layer 110 and the negative electrode layer 120 are particularly preferably layers capable of occluding and releasing lithium ions. That is, the solid-state battery is preferably an all-solid-state secondary battery in which lithium ions move between the positive electrode layer 110 and the negative electrode layer 120 via the solid electrolyte to charge and discharge the battery.
〈正極活物質〉
 正極層110に含まれる正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、及び、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO、LiFePO4、LiMnPO等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO、LiCo1/3Ni1/3Mn1/3等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn、LiNi0.5Mn1.5等が挙げられる。
<Positive electrode active material>
Examples of the positive electrode active material contained in the positive electrode layer 110 include a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and lithium having a spinel-type structure. At least one selected from the group consisting of contained oxides and the like can be mentioned. Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 . Examples of the lithium-containing phosphoric acid compound having an olivine-type structure include Li 3 Fe 2 (PO 4 ) 3 , LiFePO 4, and LiMnPO 4 . Examples of lithium-containing layered oxides include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, and the like. Examples of the lithium-containing oxide having a spinel-type structure include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4, and the like.
〈負極活物質〉
 負極層120に含まれる負極活物質としては、例えば、Ti、Si、Sn、Cr、Fe、Nb及びMoから成る群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、ならびに、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO、LiTi(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO、LiCuPO等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiTi12等が挙げられる。
<Negative electrode active material>
Examples of the negative electrode active material contained in the negative electrode layer 120 include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, graphite-lithium compounds, and lithium alloys. At least one selected from the group consisting of a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing oxide having a spinel-type structure, and the like can be mentioned. An example of a lithium alloy is Li—Al or the like. Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 , LiTi 2 (PO 4 ) 3, and the like. Examples of the lithium-containing phosphoric acid compound having an olivine-type structure include Li 3 Fe 2 (PO 4 ) 3 , LiCuPO 4, and the like. Examples of lithium-containing oxides having a spinel-type structure include Li 4 Ti 5 O 12 and the like.
 正極層110と負極層120の一方又は両方は、導電助剤を含んでいてもよい。正極層110及び負極層120に含まれる導電助剤として、銀、パラジウム、金、プラチナ、アルミニウム、銅及びニッケル等の金属材料、ならびに炭素などから成る少なくとも1種を挙げることができる。特に限定されるわけではないが、銅は、正極活物質、負極活物質及び固体電解質材などと反応し難く、固体電池の内部抵抗の低減に効果を奏するのでその点で好ましい。 One or both of the positive electrode layer 110 and the negative electrode layer 120 may contain a conductive auxiliary agent. Examples of the conductive auxiliary agent contained in the positive electrode layer 110 and the negative electrode layer 120 include at least one type made of a metal material such as silver, palladium, gold, platinum, aluminum, copper and nickel, carbon and the like. Although not particularly limited, copper is preferable because it does not easily react with the positive electrode active material, the negative electrode active material, the solid electrolyte material, and the like, and is effective in reducing the internal resistance of the solid battery.
 さらに、正極層110と負極層120の一方又は両方は、焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマス及び酸化リンから成る群から選択される少なくとも1種を挙げることができる。 Further, one or both of the positive electrode layer 110 and the negative electrode layer 120 may contain a sintering aid. As the sintering aid, at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide and phosphorus oxide can be mentioned.
〈固体電解質〉
 固体電解質130はリチウムイオンが伝導可能な材質である。特に、固体電池で電池構成単位を成す固体電解質は、正極層110と負極層120との間においてリチウムイオンが伝導可能な層を成している。具体的な固体電解質としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型又はガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、Ga及びZrから成る群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型又はガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。
<Solid electrolyte>
The solid electrolyte 130 is a material capable of conducting lithium ions. In particular, the solid electrolyte that forms a battery constituent unit in a solid-state battery forms a layer in which lithium ions can be conducted between the positive electrode layer 110 and the negative electrode layer 120. Specific examples of the solid electrolyte include a lithium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and the like. As the lithium-containing phosphoric acid compound having a NASICON structure, Li x M y (PO 4 ) 3 (1 ≦ x ≦ 2,1 ≦ y ≦ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr At least one selected). Examples of the lithium-containing phosphoric acid compound having a pear-con structure include Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 . Examples of oxides having a perovskite structure include La 0.55 Li 0.35 TiO 3 and the like. Examples of oxides having a garnet-type or garnet-type similar structure include Li 7 La 3 Zr 2 O 12 and the like.
 固体電解質130は、焼結助剤を含んでいてもよい。固体電解質130に含まれる焼結助剤は、例えば、正極層・負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。 The solid electrolyte 130 may contain a sintering aid. The sintering aid contained in the solid electrolyte 130 may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer and the negative electrode layer.
〈正極集電層及び負極集電層〉
 正極層110及び負極層120は、それぞれ正極集電層及び負極集電層を備えていてもよい。正極集電層及び負極集電層はそれぞれ箔の形態を有していてもよいが、一体焼成による固体電池の製造コスト低減及び固体電池の内部抵抗低減などの観点から、焼結体の形態を有していてもよい。なお、正極集電層及び負極集電層が焼結体の形態を有する場合、導電助剤及び焼結助剤を含む焼結体により構成されてもよい。正極集電層及び負極集電層に含まれる導電助剤は、例えば、正極層110及び負極層120に含まれ得る導電助剤と同様の材料から選択されてよい。正極集電層及び負極集電層に含まれる焼結助剤は、例えば、正極層110・負極層120に含まれ得る焼結助剤と同様の材料から選択されてよい。なお、固体電池において、正極集電層及び負極集電層は必須ではない。
<Positive current collector layer and negative electrode current collector layer>
The positive electrode layer 110 and the negative electrode layer 120 may include a positive electrode current collector layer and a negative electrode current collector layer, respectively. The positive electrode current collector layer and the negative electrode current collector layer may each have a foil form, but from the viewpoint of reducing the manufacturing cost of the solid-state battery and reducing the internal resistance of the solid-state battery by integral firing, the form of the sintered body is adopted. You may have. When the positive electrode current collector layer and the negative electrode current collector layer have the form of a sintered body, they may be composed of a sintered body containing a conductive auxiliary agent and a sintered auxiliary agent. The conductive auxiliary agent contained in the positive electrode current collector layer and the negative electrode current collector layer may be selected from, for example, the same materials as the conductive auxiliary agent that can be contained in the positive electrode layer 110 and the negative electrode layer 120. The sintering aid contained in the positive electrode current collector layer and the negative electrode current collector layer may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer 110 and the negative electrode layer 120. In the solid-state battery, the positive electrode current collector layer and the negative electrode current collector layer are not indispensable.
〈端面電極〉
 固体電池1には、正極1Pとしての端面電極、及び負極1Nとしての端面電極が設けられている。これら端面電極は、導電率が大きい材料を含んで成ることが好ましい。端面電極の具体的な材質としては、特に制限されるわけではないが、銀、金、プラチナ、アルミニウム、銅、スズ及びニッケルから成る群から選択される少なくとも一種を挙げることができる。
<End face electrode>
The solid-state battery 1 is provided with an end face electrode as a positive electrode 1P and an end face electrode as a negative electrode 1N. These end face electrodes preferably include a material having a high conductivity. The specific material of the end face electrode is not particularly limited, but at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin and nickel can be mentioned.
 図3は受電コイル31の構成を示す平面図である。図3においては、特に受電コイル31についてのみ表している。受電コイル31は、複数回巻回された方形スパイラル状であり、中央にコイル開口COが形成されている。送電装置にもスパイラル状のコイルが形成されていて、互いに磁界結合する。 FIG. 3 is a plan view showing the configuration of the power receiving coil 31. In FIG. 3, only the power receiving coil 31 is shown in particular. The power receiving coil 31 has a rectangular spiral shape that is wound a plurality of times, and a coil opening CO is formed in the center. Spiral coils are also formed in the power transmission device, and magnetic fields are coupled to each other.
 図4はワイヤレス充電固体電池モジュール101の下面図である。この例では8個の端子E1~E8を有する。ワイヤレス充電固体電池モジュール101の平面寸法はX=10mm、Y=11mmであり、各端子E1~E8の寸法は1.8mm×1.2mmである。 FIG. 4 is a bottom view of the wireless charging solid-state battery module 101. In this example, it has eight terminals E1 to E8. The plane dimensions of the wireless charging solid-state battery module 101 are X = 10 mm and Y = 11 mm, and the dimensions of the terminals E1 to E8 are 1.8 mm × 1.2 mm.
 各端子の名称・機能・役割は次のとおりである。 The names, functions, and roles of each terminal are as follows.
 E1:VBAT+  電池電圧出力端子(2.0V~4.35V)
 E2:CSO    充電状態監視用端子
 E3:VOUT   正極端子(1.8V or 3.0V or 3.3V)
 E4:CE     レギュレータEnable入力端子
 E5:GND    負極端子
 E6:ISET   充電電流制御入力端子
 E7:THIN   温度監視用NTCサーミスタ入力端子
 E8:VIN    電圧入力端子
 ここで、電池電圧出力端子E1は固体電池1の正極出力端子である。充電状態監視用端子E2は固体電池1の充電状態を示す信号を出力する。また、正極端子E3は、出力電圧安定化回路の出力端子である。レギュレータEnable入力端子E4は出力電圧安定化回路の動作の有効/無効の切替信号端子である。負極端子E5はグランド電位の端子である。充電電流制御入力端子E6は充電電流を制御するための入力端子である。温度監視用NTCサーミスタ入力端子E7は、NTC(負特性)サーミスタを接続することによって、過熱状態を検知して、それに応じた処理を行うための端子である。電圧入力端子E8はワイヤレス充電を行わない場合に外部から電源電圧として例えば5Vを入力するための端子であり、本発明に係る「電圧入力端子」に相当する。
E1: VBAT + battery voltage output terminal (2.0V-4.35V)
E2: CSO charge status monitoring terminal E3: VOUT positive electrode terminal (1.8V or 3.0V or 3.3V)
E4: CE regulator Enable input terminal E5: GND negative electrode terminal E6: ISET charging current control input terminal E7: THIN NTC thermistor input terminal for temperature monitoring E8: VIN voltage input terminal Here, the battery voltage output terminal E1 is the positive electrode of the solid-state battery 1. It is an output terminal. The charge status monitoring terminal E2 outputs a signal indicating the charge status of the solid-state battery 1. Further, the positive electrode terminal E3 is an output terminal of the output voltage stabilizing circuit. The regulator Enable input terminal E4 is an enable / disable switching signal terminal for the operation of the output voltage stabilization circuit. The negative electrode terminal E5 is a terminal having a ground potential. The charging current control input terminal E6 is an input terminal for controlling the charging current. The temperature monitoring NTC thermistor input terminal E7 is a terminal for detecting an overheated state by connecting an NTC (negative characteristic) thermistor and performing processing accordingly. The voltage input terminal E8 is a terminal for inputting, for example, 5 V as a power supply voltage from the outside when wireless charging is not performed, and corresponds to the "voltage input terminal" according to the present invention.
 なお、端子E4,E6,E7は外部に露出させない構成も可能である。 It is also possible to configure the terminals E4, E6, and E7 so that they are not exposed to the outside.
 図5はワイヤレス充電固体電池モジュール101の回路図である。このワイヤレス充電固体電池モジュール101はワイヤレス充電回路50を備える。このワイヤレス充電回路50は、送電用磁界を受ける受電コイル31と、この受電コイル31の誘導電流を整流する整流回路52と、この整流回路52の出力電圧を電圧変換して充電電圧を生成するDC-DCコンバータ54と、このDC-DCコンバータ54の出力電圧を入力して固体電池1の充電制御を行う充電制御回路55、を備える。ここで、DC-DCコンバータ54は本発明における「電圧変換回路」に相当する。受電コイル31はインダクタ31Lと等価抵抗31Rとで表される。受電コイル31には、受電コイル31と共に共振回路LC1を構成する共振キャパシタ51が接続されている。整流回路52の出力にはキャパシタ531が接続されている。DC-DCコンバータ54の出力にはキャパシタ532が接続されている。また、充電制御回路55と固体電池1との間に保護回路56が設けられている。さらに、充電制御回路55と保護回路56との接続箇所と、正極端子E3及び負極端子E5との間には電圧レギュレータ57が設けられている。電圧レギュレータ57は、例えばLDO(Low Dropoutレギュレータ)であり、MOS-FETとオペアンプとで構成されたリニアレギュレータである。この電圧レギュレータ57は、固体電池1の電圧を安定化して正極端子E3及び負極端子E5へ出力する。ここで、電圧レギュレータ57は本発明における「出力電圧安定化回路」に相当する。 FIG. 5 is a circuit diagram of the wireless charging solid-state battery module 101. The wireless charging solid-state battery module 101 includes a wireless charging circuit 50. The wireless charging circuit 50 includes a power receiving coil 31 that receives a transmission magnetic field, a rectifier circuit 52 that rectifies the induced current of the power receiving coil 31, and a DC that converts the output voltage of the rectifier circuit 52 into a voltage to generate a charging voltage. A DC converter 54 and a charge control circuit 55 that inputs the output voltage of the DC-DC converter 54 to control the charge of the solid-state battery 1 are provided. Here, the DC-DC converter 54 corresponds to the "voltage conversion circuit" in the present invention. The power receiving coil 31 is represented by an inductor 31L and an equivalent resistor 31R. A resonance capacitor 51 constituting the resonance circuit LC1 is connected to the power receiving coil 31 together with the power receiving coil 31. A capacitor 531 is connected to the output of the rectifier circuit 52. A capacitor 532 is connected to the output of the DC-DC converter 54. Further, a protection circuit 56 is provided between the charge control circuit 55 and the solid-state battery 1. Further, a voltage regulator 57 is provided between the connection point between the charge control circuit 55 and the protection circuit 56 and the positive electrode terminal E3 and the negative electrode terminal E5. The voltage regulator 57 is, for example, an LDO (Low Dropout regulator), which is a linear regulator composed of a MOS-FET and an operational amplifier. The voltage regulator 57 stabilizes the voltage of the solid-state battery 1 and outputs it to the positive electrode terminal E3 and the negative electrode terminal E5. Here, the voltage regulator 57 corresponds to the "output voltage stabilizing circuit" in the present invention.
 受電コイル31及び整流回路52は、図1に示した第2回路基板30に構成されている。また、その他の回路は第1回路基板20に構成されている。 The power receiving coil 31 and the rectifier circuit 52 are configured on the second circuit board 30 shown in FIG. Further, other circuits are configured on the first circuit board 20.
 共振回路LC1は送電装置から受ける磁界の周波数帯、例えば6.78MHzや13.56MHzの周波数帯で共振する。これら周波数帯は、ISM(産業科学医療用)バンドであり、EMC(電磁両立性)に関する設計において、優位となる。受電コイル31は、受電電力を整流回路52へ出力する。整流回路52は、交流の受電電圧を直流に整流する。キャパシタ531は整流回路52の出力電圧を平滑化してDC-DCコンバータ54へ出力する。DC-DCコンバータ54は、電圧変換を行って、充電制御回路55へ出力する。キャパシタ532は、DC-DCコンバータ54の出力電圧を平滑化する。充電制御回路55は、交流から整流及び電圧変換された直流の受電電圧によって、固体電池1を充電する。電圧レギュレータ57は、固体電池1の出力電圧を電圧変換して、正極端子E3及び負極端子E5間へ出力する。 The resonance circuit LC1 resonates in the frequency band of the magnetic field received from the power transmission device, for example, the frequency band of 6.78 MHz or 13.56 MHz. These frequency bands are ISM (Industrial Science and Medical) bands and are superior in EMC (Electromagnetic Compatibility) design. The power receiving coil 31 outputs the received power to the rectifier circuit 52. The rectifier circuit 52 rectifies the AC received voltage to DC. The capacitor 531 smoothes the output voltage of the rectifier circuit 52 and outputs it to the DC-DC converter 54. The DC-DC converter 54 performs voltage conversion and outputs the voltage to the charge control circuit 55. Capacitor 532 smoothes the output voltage of the DC-DC converter 54. The charge control circuit 55 charges the solid-state battery 1 with a DC power receiving voltage that is rectified and voltage-converted from alternating current. The voltage regulator 57 converts the output voltage of the solid-state battery 1 into a voltage and outputs the voltage between the positive electrode terminal E3 and the negative electrode terminal E5.
 上記保護回路56は、固体電池1の充放電時の過電流保護、固体電池1への過電圧入力保護をそれぞれ行う。さらに、保護回路56は、端子E7に接続されるNTCサーミスタの抵抗値に応じて過熱保護を行う。例えば、保護回路56は固体電池1への充放電電流が規定値を超えるとき、その電流を制限する。また、保護回路56は固体電池1の電圧が既定値を超えるとき、充電電流を制限する。さらに、保護回路56は固体電池1の温度又は周囲温度が既定値範囲外であるとき、充電又は放電を抑制する。 The protection circuit 56 protects the solid-state battery 1 during charging and discharging, and protects the solid-state battery 1 from overvoltage input. Further, the protection circuit 56 provides overheat protection according to the resistance value of the NTC thermistor connected to the terminal E7. For example, the protection circuit 56 limits the charge / discharge current to the solid-state battery 1 when it exceeds a specified value. Further, the protection circuit 56 limits the charging current when the voltage of the solid-state battery 1 exceeds a predetermined value. Further, the protection circuit 56 suppresses charging or discharging when the temperature or ambient temperature of the solid-state battery 1 is out of the predetermined value range.
 図5に示す例では、DC-DCコンバータ54の入力部に電圧を入力する電圧入力端子E8が接続されている。受電コイル31で受電を行わない状態では、この電圧入力端子E8から一定値以上(例えば5V)の電圧を入力することでワイヤレス充電固体電池モジュール101は動作する。この電圧入力端子E8は整流回路52の入力部に接続してもよい。 In the example shown in FIG. 5, a voltage input terminal E8 for inputting a voltage is connected to the input unit of the DC-DC converter 54. When the power receiving coil 31 does not receive power, the wireless charging solid-state battery module 101 operates by inputting a voltage of a certain value or more (for example, 5V) from the voltage input terminal E8. The voltage input terminal E8 may be connected to the input portion of the rectifier circuit 52.
 固体電池1の正極には、保護回路56を介して電池電圧出力端子E1が接続されている。この電池電圧出力端子E1を介して固体電池1の電圧を検知できる。 The battery voltage output terminal E1 is connected to the positive electrode of the solid-state battery 1 via the protection circuit 56. The voltage of the solid-state battery 1 can be detected via the battery voltage output terminal E1.
 充電制御回路55は、固体電池1に対する充電制御状態を示す信号を出力するモニター信号出力部55Mを有する。このモニター信号出力部55Mに充電状態監視用端子E2が接続されている。この充電状態監視用端子E2を介して固体電池1の充電制御状態を検知できる。 The charge control circuit 55 has a monitor signal output unit 55M that outputs a signal indicating a charge control state for the solid-state battery 1. The charge status monitoring terminal E2 is connected to the monitor signal output unit 55M. The charge control state of the solid-state battery 1 can be detected via the charge state monitoring terminal E2.
 図6は、本実施形態のワイヤレス充電固体電池モジュール101が実装基板80に実装された状態と、送電装置の送電コイル900との位置関係の例を示す斜視図である。実際には、ワイヤレス充電固体電池モジュール101が実装された実装基板80は電子機器の筐体内に収められている。同様に、送電コイル900は送電装置の筐体内に収められている。ワイヤレス充電固体電池モジュール101の受電コイル(図1、図3に示した受電コイル31)のコイル開口と送電コイル900のコイル開口とは、平面視で重なる。受電コイル31と送電コイル900とが所定距離内に接近した状態で、両者は磁界結合し、この磁界を介して電力の授受が行われる。図示は省略するが、同様に、受電コイル31及び送電コイル900をそれぞれ電極に替えて、所定距離内に接近した状態で、両者を電界結合させることも可能である。 FIG. 6 is a perspective view showing an example of the positional relationship between the state in which the wireless charging solid-state battery module 101 of the present embodiment is mounted on the mounting substrate 80 and the power transmission coil 900 of the power transmission device. Actually, the mounting board 80 on which the wireless charging solid-state battery module 101 is mounted is housed in the housing of the electronic device. Similarly, the power transmission coil 900 is housed in the housing of the power transmission device. The coil opening of the power receiving coil (power receiving coil 31 shown in FIGS. 1 and 3) of the wireless charging solid-state battery module 101 and the coil opening of the power transmission coil 900 overlap each other in a plan view. In a state where the power receiving coil 31 and the power transmitting coil 900 are close to each other within a predetermined distance, they are magnetically coupled to each other, and electric power is transmitted and received via this magnetic field. Although not shown, it is also possible to replace the power receiving coil 31 and the power transmitting coil 900 with electrodes, and to electrically couple the two in a state of being close to each other within a predetermined distance.
 図7は、本実施形態のワイヤレス充電固体電池モジュール101が実装基板80に実装された状態と、送電装置201Aとの位置関係の別の例を示す斜視図である。この例では、送電装置201Aは開口OPを有し、この開口OPの周囲に送電コイルが周回形成されている。送電装置201Aの開口OPをワイヤレス充電固体電池モジュール101に被せることによって、受電コイルのコイル開口と送電コイルのコイル開口とが、平面視で重なる。この磁界を通して電力の授受が行われる。図示は省略するが、同様に、受電コイル及び送電コイルをそれぞれ電極に替えて、電界を通して電力の授受を行うことも可能である。 FIG. 7 is a perspective view showing another example of the positional relationship between the state in which the wireless charging solid-state battery module 101 of the present embodiment is mounted on the mounting substrate 80 and the power transmission device 201A. In this example, the power transmission device 201A has an opening OP, and a power transmission coil is formed around the opening OP. By covering the wireless charging solid-state battery module 101 with the opening OP of the power transmission device 201A, the coil opening of the power receiving coil and the coil opening of the power transmission coil overlap in a plan view. Electric power is exchanged through this magnetic field. Although not shown, it is also possible to replace the power receiving coil and the power transmitting coil with electrodes and transfer power through an electric field.
 図8は、複数のワイヤレス充電固体電池モジュール101A,101B,101Cに対して送電装置201Bから送電を行う状態を示す斜視図である。この例では、送電装置201Bは凹部REを有し、この凹部REの周囲に送電コイルが周回形成されている。送電装置201Bの凹部RE内に複数のそれぞれ単体のワイヤレス充電固体電池モジュール101を入れることによって、各ワイヤレス充電固体電池モジュールの受電コイルのコイル開口と送電コイルのコイル開口とが、平面視で重なる。この磁界を通して電力の授受が行われる。図示は省略するが、同様に、受電コイル及び送電コイルをそれぞれ電極に替えて、電界を通して電力の授受を行うことも可能である。 FIG. 8 is a perspective view showing a state in which power is transmitted from the power transmission device 201B to the plurality of wireless charging solid- state battery modules 101A, 101B, 101C. In this example, the power transmission device 201B has a recess RE, and a power transmission coil is formed around the recess RE. By inserting a plurality of individual wireless charging solid-state battery modules 101 into the recess RE of the power transmission device 201B, the coil openings of the power receiving coil and the coil openings of the power transmission coil of each wireless charging solid-state battery module overlap in a plan view. Electric power is exchanged through this magnetic field. Although not shown, it is also possible to replace the power receiving coil and the power transmitting coil with electrodes and transfer power through an electric field.
 図9は第1の実施形態に係る別のワイヤレス充電固体電池モジュール101Mの断面図である。このワイヤレス充電固体電池モジュール101Mは、固体電池1、内部構造体11,12、バリア層14、緩衝層15、モールド樹脂部13、正極端子E3及び負極端子E5、を備える。内部構造体12より上部にはモールド樹脂部13が設けられている。 FIG. 9 is a cross-sectional view of another wireless charging solid-state battery module 101M according to the first embodiment. The wireless charging solid-state battery module 101M includes a solid-state battery 1, internal structures 11, 12, a barrier layer 14, a buffer layer 15, a mold resin portion 13, a positive electrode terminal E3, and a negative electrode terminal E5. A mold resin portion 13 is provided above the internal structure 12.
 第2回路基板30の外面(固体電池1とは反対側の面)にはDC-DCコンバータ用IC、キャパシタ等の電子部品33a,33b等が実装されている。 Electronic components 33a, 33b, etc. such as a DC-DC converter IC and a capacitor are mounted on the outer surface (the surface opposite to the solid-state battery 1) of the second circuit board 30.
 その他の構成は図1に示したワイヤレス充電固体電池モジュール101と同様である。図9に示したワイヤレス充電固体電池モジュール101Mでは、内部構造体12を構成する第2回路基板30の外面にモールド樹脂部13を設けるので、第2回路基板30の外面に電子部品を実装できる。このことにより、第2回路基板30の両面をより有効に利用できる。 Other configurations are the same as the wireless charging solid-state battery module 101 shown in FIG. In the wireless charging solid-state battery module 101M shown in FIG. 9, since the mold resin portion 13 is provided on the outer surface of the second circuit board 30 constituting the internal structure 12, electronic components can be mounted on the outer surface of the second circuit board 30. As a result, both sides of the second circuit board 30 can be used more effectively.
 以上に示したワイヤレス充電固体電池モジュール101,101Mの特徴を列挙すると、次のとおりである。 The features of the wireless charging solid- state battery modules 101 and 101M shown above are as follows.
(1)固体電池1に接続される回路(周辺回路)を構成する箇所が、平面視で固体電池1と重なるため、固体電池1とほぼ同面積でありながら、周辺回路を備えたワイヤレス充電固体電池モジュールが得られる。 (1) Since the portion constituting the circuit (peripheral circuit) connected to the solid-state battery 1 overlaps with the solid-state battery 1 in a plan view, the area is almost the same as that of the solid-state battery 1, but the wireless charging solid with the peripheral circuit is provided. A battery module is obtained.
(2)固体電池1の特性に応じた周辺回路を組み込むことによって、ユーザサイドで、個々の固体電池の特性に合わせた設計が不要となり、利便性が高まる。 (2) By incorporating peripheral circuits according to the characteristics of the solid-state battery 1, it becomes unnecessary for the user to design according to the characteristics of each solid-state battery, and the convenience is enhanced.
(3)第2回路基板30が、耐水性を有するフレキシブル樹脂基板であることにより、そのフレキシブル樹脂基板によって固体電池1の膨張収縮による応力が、耐水性を維持しつつ緩和され、充放電サイクルに対する信頼性が高まる。 (3) Since the second circuit board 30 is a flexible resin substrate having water resistance, the stress due to expansion and contraction of the solid-state battery 1 is relaxed by the flexible resin substrate while maintaining water resistance, and the charge / discharge cycle is reduced. Increased reliability.
(4)正極端子及び負極端子を、直方体形状のパッケージの広面積である下面に配置したことにより、実装基板へのリフローはんだ法による表面実装が可能である。 (4) By arranging the positive electrode terminal and the negative electrode terminal on the lower surface of the rectangular parallelepiped package, which has a large area, surface mounting on the mounting substrate by the reflow soldering method is possible.
(5)ワイヤレス送電を行うので、充電端子が不要であり、このワイヤレス充電固体電池モジュールを搭載する電子機器の耐水設計を簡略化できる。 (5) Since wireless power transmission is performed, a charging terminal is not required, and the water resistance design of the electronic device equipped with this wireless charging solid-state battery module can be simplified.
《第2の実施形態》
 第2の実施形態では、第1の実施形態で示した例とは回路構成の異なるワイヤレス充電固体電池モジュールについて示す。
<< Second Embodiment >>
The second embodiment shows a wireless charging solid-state battery module having a circuit configuration different from that of the example shown in the first embodiment.
 図10は第2の実施形態のワイヤレス充電固体電池モジュール102の回路図である。このワイヤレス充電固体電池モジュール102は、受電コイル31、整流回路52、電圧レギュレータ53、充電制御回路55、及び固体電池1を備える。 FIG. 10 is a circuit diagram of the wireless charging solid-state battery module 102 of the second embodiment. The wireless charging solid-state battery module 102 includes a power receiving coil 31, a rectifier circuit 52, a voltage regulator 53, a charging control circuit 55, and a solid-state battery 1.
 電圧レギュレータ53は、例えばLDO(Low Dropoutレギュレータ)であり、MOS-FETとオペアンプとで構成されたリニアレギュレータである。この電圧レギュレータ53は整流回路52の出力電圧を安定化させる。この電圧レギュレータ53以外の回路構成は図5に示した例と同じである。但し、図10に示す例では、電圧レギュレータ57は設けていない。 The voltage regulator 53 is, for example, an LDO (Low Dropout regulator), which is a linear regulator composed of a MOS-FET and an operational amplifier. The voltage regulator 53 stabilizes the output voltage of the rectifier circuit 52. The circuit configuration other than the voltage regulator 53 is the same as the example shown in FIG. However, in the example shown in FIG. 10, the voltage regulator 57 is not provided.
 このように、整流電圧をリニアレギュレータで安定化させてもよい。このことにより、受電コイル31に誘起される電圧がより低い範囲でも電圧レギュレーションが可能となる。 In this way, the rectified voltage may be stabilized by a linear regulator. This enables voltage regulation even in a range where the voltage induced in the power receiving coil 31 is lower.
《第3の実施形態》
 第3の実施形態では、第1の実施形態で示した例とは回路構成の異なるワイヤレス充電固体電池モジュールについて示す。また、送電装置の回路構成についても示す。
<< Third Embodiment >>
The third embodiment shows a wireless charging solid-state battery module having a circuit configuration different from that of the example shown in the first embodiment. The circuit configuration of the power transmission device is also shown.
 図11は第3の実施形態のワイヤレス充電固体電池モジュール103の回路図である。このワイヤレス充電固体電池モジュール103は、受電コイル31、整流回路52、DC-DCコンバータ54、充電制御回路55、固体電池1及び保護回路56を備える。 FIG. 11 is a circuit diagram of the wireless charging solid-state battery module 103 of the third embodiment. The wireless charging solid-state battery module 103 includes a power receiving coil 31, a rectifier circuit 52, a DC-DC converter 54, a charging control circuit 55, a solid-state battery 1, and a protection circuit 56.
 ワイヤレス充電固体電池モジュール103では、電圧レギュレータ57が無く、固体電池1の出力部に正極端子E3及び負極端子E5が接続されている。その他の構成は図5に示した例と同様である。ただし、図11では整流回路52をダイオードブリッジ回路で表している。 In the wireless charging solid-state battery module 103, there is no voltage regulator 57, and the positive electrode terminal E3 and the negative electrode terminal E5 are connected to the output portion of the solid-state battery 1. Other configurations are the same as the example shown in FIG. However, in FIG. 11, the rectifier circuit 52 is represented by a diode bridge circuit.
 送電装置90は、送電制御回路91、送電コイル900及び共振キャパシタ92を備える。送電コイル900はインダクタ900Lと等価抵抗900Rとで表される。送電コイル900と共振キャパシタ92とで、送電周波数帯で共振する共振回路が構成されている。例えば6.78MHzや13.56MHzの周波数帯で共振する。これら周波数帯は、ISM(産業科学医療用)バンドであり、EMC(電磁両立性)に関する設計において、優位となる。この送電装置側の共振と、ワイヤレス充電固体電池モジュール側の受電コイル31及び共振キャパシタ51による共振回路とが結合して、磁界共鳴する。 The power transmission device 90 includes a power transmission control circuit 91, a power transmission coil 900, and a resonance capacitor 92. The power transmission coil 900 is represented by an inductor 900L and an equivalent resistor 900R. The power transmission coil 900 and the resonance capacitor 92 form a resonance circuit that resonates in the power transmission frequency band. For example, it resonates in the frequency band of 6.78 MHz or 13.56 MHz. These frequency bands are ISM (Industrial Science and Medical) bands and are superior in EMC (Electromagnetic Compatibility) design. The resonance on the power transmission device side and the resonance circuit by the power receiving coil 31 and the resonance capacitor 51 on the wireless charging solid-state battery module side are coupled to cause magnetic field resonance.
 送電装置90の制御回路91は送電コイル900に対して直流電流の断続によって送電コイル900から交番磁界を発生させる。このことにより、送電装置からワイヤレス充電固体電池モジュール103へ直流共鳴技術を用いて電力伝送される。 The control circuit 91 of the power transmission device 90 generates an alternating magnetic field from the power transmission coil 900 by interrupting the direct current to the power transmission coil 900. As a result, power is transmitted from the power transmission device to the wireless charging solid-state battery module 103 using the DC resonance technology.
 ワイヤレス充電固体電池モジュール103では、固体電池1の放電電圧として、例えば3.7Vを出力する。 The wireless charging solid-state battery module 103 outputs, for example, 3.7 V as the discharge voltage of the solid-state battery 1.
 本実施形態によれば、送電装置からワイヤレス充電固体電池モジュールへ、直流共鳴技術を用いて電力伝送されるので、高効率な充電が可能となる。また、そのため、送電装置とワイヤレス充電固体電池モジュールとの位置関係の自由度が高まる。 According to this embodiment, power is transmitted from the power transmission device to the wireless charging solid-state battery module using DC resonance technology, so that highly efficient charging is possible. Therefore, the degree of freedom in the positional relationship between the power transmission device and the wireless charging solid-state battery module is increased.
《第4の実施形態》
 第4の実施形態では、送電装置に対して通信信号を送信するワイヤレス充電固体電池モジュールについて示す。
<< Fourth Embodiment >>
A fourth embodiment shows a wireless charging solid-state battery module that transmits a communication signal to a power transmission device.
 図12は第4の実施形態のワイヤレス充電固体電池モジュール104の回路図である。このワイヤレス充電固体電池モジュール104は、受電コイル31、整流回路52、DC-DCコンバータ54、充電制御回路55、固体電池1、保護回路56、送信制御回路70及び送信回路59を備える。 FIG. 12 is a circuit diagram of the wireless charging solid-state battery module 104 of the fourth embodiment. The wireless charging solid-state battery module 104 includes a power receiving coil 31, a rectifier circuit 52, a DC-DC converter 54, a charging control circuit 55, a solid-state battery 1, a protection circuit 56, a transmission control circuit 70, and a transmission circuit 59.
 送信回路59は受電コイル31に接続される回路の消費電力の変化によって通信信号を送信する。つまり、パッシブRFIDタグと同様の後方散乱変調によって、受電側での負荷を変動させることによる2値ASK(amplitude-shift keying)を行う。または、送信回路59は、受電コイル31と共振キャパシタ51による共振回路の共振条件を変化させ、この変化によって信号を伝送する。例えば、共振キャパシタ51と送信回路59は等価的な共振キャパシタンスを変化させ、共振回路の共振周波数を変化させる。このことにより、送電装置から受電側をみた共振回路のインピーダンスが変化するので、そのことで、送電装置は通信信号を受信する。送信回路59は本発明に係る「信号伝送回路」に相当する。 The transmission circuit 59 transmits a communication signal according to a change in the power consumption of the circuit connected to the power receiving coil 31. That is, binary ASK (amplitude-shift keying) is performed by varying the load on the power receiving side by backscatter modulation similar to the passive RFID tag. Alternatively, the transmission circuit 59 changes the resonance conditions of the resonance circuit by the power receiving coil 31 and the resonance capacitor 51, and transmits a signal by this change. For example, the resonant capacitor 51 and the transmitting circuit 59 change the equivalent resonant capacitance and change the resonant frequency of the resonant circuit. As a result, the impedance of the resonant circuit seen from the power transmission device on the power receiving side changes, so that the power transmission device receives the communication signal. The transmission circuit 59 corresponds to the "signal transmission circuit" according to the present invention.
 送信制御回路70は、整流回路52の出力電圧及び固体電池1の電圧等を入力し、それらの値に基づいて送信データを生成する。例えば、受電量の必要量に対する差分、送電停止要求、受電中の電力、固体電池1への充電率等である。 The transmission control circuit 70 inputs the output voltage of the rectifier circuit 52, the voltage of the solid-state battery 1, and the like, and generates transmission data based on those values. For example, the difference between the required amount of power received, the request to stop power transmission, the power being received, the charge rate of the solid-state battery 1, and the like.
《第5の実施形態》
 第5の実施形態では、受電電圧が所定の電圧範囲を超える場合に受電を停止する受電保護回路を備えるワイヤレス充電固体電池モジュールについて示す。
<< Fifth Embodiment >>
A fifth embodiment shows a wireless charging solid-state battery module including a power receiving protection circuit that stops receiving power when the receiving voltage exceeds a predetermined voltage range.
 図13はワイヤレス充電固体電池モジュール105等の回路図である。図6においては、送電装置90の回路も示している。 FIG. 13 is a circuit diagram of the wireless charging solid-state battery module 105 and the like. FIG. 6 also shows the circuit of the power transmission device 90.
 ワイヤレス充電固体電池モジュール105は、固体電池1と、この固体電池1に接続されたワイヤレス充電回路50とを備える。ワイヤレス充電回路50は、送電用磁界又は送電用電磁界を受ける受電コイル31、受電保護回路58、受電保護回路58内の整平滑回路の出力電圧を電圧変換して充電電圧を生成するDC-DCコンバータ54、このDC-DCコンバータ54の出力電圧を入力して固体電池1の充電制御を行う充電制御回路55、固体電池1の保護を行う保護回路56、及び、固体電池1の電流を汎用電池の出力電圧に変換する電圧レギュレータ57を備える。受電保護回路58は、受電コイル31の誘導電流を整流し、及び受電電圧が所定の電圧範囲を超える場合にDC-DCコンバータ54への受電を停止する。 The wireless charging solid-state battery module 105 includes a solid-state battery 1 and a wireless charging circuit 50 connected to the solid-state battery 1. The wireless charging circuit 50 is a DC-DC that generates a charging voltage by converting the output voltage of the power receiving coil 31, the power receiving protection circuit 58, and the smoothing circuit in the power receiving protection circuit 58 that receives the power transmission magnetic field or the power transmission electromagnetic field. The converter 54, the charge control circuit 55 that controls the charge of the solid cell 1 by inputting the output voltage of the DC-DC converter 54, the protection circuit 56 that protects the solid cell 1, and the current of the solid cell 1 are used as a general-purpose battery. A voltage regulator 57 for converting the output voltage of the above is provided. The power receiving protection circuit 58 rectifies the induced current of the power receiving coil 31 and stops receiving power to the DC-DC converter 54 when the power receiving voltage exceeds a predetermined voltage range.
 受電コイル31はインダクタ31Lと等価抵抗31Rとで表される。受電コイル31には、受電コイル31と共に共振回路を構成する共振キャパシタ51が接続されている。整流回路52は平滑用キャパシタC3を備える。DC-DCコンバータ54の出力にはキャパシタ532が接続されている。電圧レギュレータ57は、例えばLDO(Low Dropoutレギュレータ)であり、MOS-FETとオペアンプとで構成されたリニアレギュレータである。この電圧レギュレータ57は、固体電池1の電圧を安定化して正極端子E3及び負極端子E5へ出力する。 The power receiving coil 31 is represented by an inductor 31L and an equivalent resistor 31R. A resonance capacitor 51 forming a resonance circuit is connected to the power receiving coil 31 together with the power receiving coil 31. The rectifier circuit 52 includes a smoothing capacitor C3. A capacitor 532 is connected to the output of the DC-DC converter 54. The voltage regulator 57 is, for example, an LDO (Low Dropout regulator), which is a linear regulator composed of a MOS-FET and an operational amplifier. The voltage regulator 57 stabilizes the voltage of the solid-state battery 1 and outputs it to the positive electrode terminal E3 and the negative electrode terminal E5.
 送電装置90は、送電制御回路91、送電コイル900及び共振キャパシタ92を備える。送電コイル900はインダクタ900Lと等価抵抗900Rとで表される。送電コイル900と共振キャパシタ92とで、送電周波数帯で共振する共振回路が構成されている。例えば6.78MHzや13.56MHzの周波数帯で共振する。これら周波数帯は、ISM(産業科学医療用)バンドであり、EMC(電磁両立性)に関する設計において、優位となる。この送電装置側の共振と、ワイヤレス充電固体電池モジュール105側の受電コイル31及び共振キャパシタ51による共振回路とが結合して、磁界共鳴する。 The power transmission device 90 includes a power transmission control circuit 91, a power transmission coil 900, and a resonance capacitor 92. The power transmission coil 900 is represented by an inductor 900L and an equivalent resistor 900R. The power transmission coil 900 and the resonance capacitor 92 form a resonance circuit that resonates in the power transmission frequency band. For example, it resonates in the frequency band of 6.78 MHz or 13.56 MHz. These frequency bands are ISM (Industrial Science and Medical) bands and are superior in EMC (Electromagnetic Compatibility) design. The resonance on the power transmission device side and the resonance circuit by the power receiving coil 31 and the resonance capacitor 51 on the wireless charging solid-state battery module 105 side are coupled to cause magnetic field resonance.
 受電コイル31及び共振キャパシタ51による共振回路は、送電装置90から受ける電磁界又は磁界の周波数帯、例えば6.78MHzや13.56MHzの周波数帯で共振する。受電コイル31は、受電電力を整流回路52へ出力する。受電保護回路58は、交流の受電電圧を直流に整流し、また、受電電圧が所定の電圧範囲を超える場合にDC-DCコンバータ54への受電を停止する。DC-DCコンバータ54は、電圧変換を行って、充電制御回路55へ出力する。キャパシタ532は、DC-DCコンバータ54の出力電圧を平滑化する。充電制御回路55は、交流から整流及び電圧変換された直流の受電電圧によって、固体電池1を充電する。電圧レギュレータ57は、固体電池1の出力電圧を電圧変換して、正極端子E3及び負極端子E5間へ出力する。 The resonance circuit by the power receiving coil 31 and the resonance capacitor 51 resonates in the frequency band of the electromagnetic field or the magnetic field received from the power transmission device 90, for example, the frequency band of 6.78 MHz or 13.56 MHz. The power receiving coil 31 outputs the received power to the rectifier circuit 52. The power receiving protection circuit 58 rectifies the alternating current receiving voltage to direct current, and stops receiving power to the DC-DC converter 54 when the receiving voltage exceeds a predetermined voltage range. The DC-DC converter 54 performs voltage conversion and outputs the voltage to the charge control circuit 55. Capacitor 532 smoothes the output voltage of the DC-DC converter 54. The charge control circuit 55 charges the solid-state battery 1 with a DC power receiving voltage that is rectified and voltage-converted from alternating current. The voltage regulator 57 converts the output voltage of the solid-state battery 1 into a voltage and outputs the voltage between the positive electrode terminal E3 and the negative electrode terminal E5.
 上記保護回路56は、固体電池1の充放電時の過電流保護、固体電池1への過電圧入力保護をそれぞれ行う。さらに、保護回路56は、NTCサーミスタの抵抗値に応じて過熱保護を行う。例えば、保護回路56は固体電池1への充放電電流が規定値を超えるとき、その電流を制限する。また、保護回路56は固体電池1の電圧が既定値を超えるとき、充電電流を制限する。さらに、保護回路56は固体電池1の温度又は周囲温度が既定値範囲外であるとき、充電又は放電を抑制する。 The protection circuit 56 protects the solid-state battery 1 during charging and discharging, and protects the solid-state battery 1 from overvoltage input. Further, the protection circuit 56 provides overheat protection according to the resistance value of the NTC thermistor. For example, the protection circuit 56 limits the charge / discharge current to the solid-state battery 1 when it exceeds a specified value. Further, the protection circuit 56 limits the charging current when the voltage of the solid-state battery 1 exceeds a predetermined value. Further, the protection circuit 56 suppresses charging or discharging when the temperature or ambient temperature of the solid-state battery 1 is out of the predetermined value range.
 図14(A)、図14(B)、図14(C)、図14(D)は、上記受電保護回路58の具体例を示す回路図である。 14 (A), 14 (B), 14 (C), and 14 (D) are circuit diagrams showing specific examples of the power receiving protection circuit 58.
 図14(A)に示す例では、ダイオードD1とキャパシタC3とで整流平滑回路が構成される。受電電圧がツェナーダイオードZD1,ZD2のツェナー電圧を超えると、ツェナーダイオードZD1,ZD2の接続回路の両端が導通し、受電電圧がツェナー電圧に制限される。 In the example shown in FIG. 14 (A), the diode D1 and the capacitor C3 form a rectifying smoothing circuit. When the received voltage exceeds the Zener voltage of the Zener diodes ZD1 and ZD2, both ends of the connection circuit of the Zener diodes ZD1 and ZD2 become conductive, and the received voltage is limited to the Zener voltage.
 図14(B)に示す例では、ダイオードD1とキャパシタC3とで整流平滑回路が構成され、抵抗R1,R2の分圧電圧がツェナーダイオードZDのツェナー電圧を超えると、ツェナーダイオードZDが導通し、このツェナーダイオードと抵抗との直列回路によって受電電圧が制限される。 In the example shown in FIG. 14B, a rectifying and smoothing circuit is formed by the diode D1 and the capacitor C3, and when the divided voltage of the resistors R1 and R2 exceeds the Zener voltage of the Zener diode ZD, the Zener diode ZD becomes conductive. The received voltage is limited by the series circuit of this Zener diode and the resistor.
 図14(C)に示す例では、ダイオードD1とキャパシタC3とで整流平滑回路が構成され、整流平滑電圧がツェナーダイオードZDのツェナー電圧を超えると、FET Qが導通し、このFET Qと抵抗との直列回路によって受電電圧が制限される。 In the example shown in FIG. 14C, a rectifying and smoothing circuit is formed by the diode D1 and the capacitor C3, and when the rectifying and smoothing voltage exceeds the Zener voltage of the Zener diode ZD, the FET Q conducts, and the FET Q and the resistor The receiving voltage is limited by the series circuit of.
 図14(D)に示す例では、ダイオードD1とキャパシタC3とで整流平滑回路が構成され、整流平滑電圧がツェナーダイオードZDのツェナー電圧を超えると、ツェナーダイオードZDが導通し、受電電圧がツェナー電圧に制限される。 In the example shown in FIG. 14D, a rectifying smoothing circuit is formed by the diode D1 and the capacitor C3, and when the rectifying smoothing voltage exceeds the Zener voltage of the Zener diode ZD, the Zener diode ZD becomes conductive and the received voltage becomes the Zener voltage. Limited to.
 このようにして、受電保護回路58によって、受電電圧が所定の電圧範囲を超える場合に、DC-DCコンバータ54が保護される。 In this way, the power receiving protection circuit 58 protects the DC-DC converter 54 when the receiving voltage exceeds a predetermined voltage range.
 図15は第5の実施形態に係るワイヤレス充電固体電池モジュール105等の別の回路図である。このワイヤレス充電固体電池モジュール105は、固体電池1と、この固体電池1に接続されたワイヤレス充電回路50とを備える。ワイヤレス充電回路50は、送電用磁界を受ける受電コイル31、この受電コイル31の誘導電流を整流する整流回路52、受電電圧が所定の電圧範囲を超える場合に整流回路52への受電を停止する遮断回路58C、抵抗分圧回路58R、受電電圧検出回路58D、整流回路52の出力電圧を電圧変換して充電電圧を生成するDC-DCコンバータ54、及びこのDC-DCコンバータ54の出力電圧を入力して固体電池1の充電制御を行う充電制御回路55を備える。ワイヤレス充電固体電池モジュール105は、固体電池1の保護を行う保護回路56、及び、固体電池1の電流を汎用電池の出力電圧に変換する電圧レギュレータ57を更に備える。遮断回路58C、受電電圧検出回路58D及び抵抗分圧回路58Rは受電保護回路58を構成する。 FIG. 15 is another circuit diagram of the wireless charging solid-state battery module 105 and the like according to the fifth embodiment. The wireless charging solid-state battery module 105 includes a solid-state battery 1 and a wireless charging circuit 50 connected to the solid-state battery 1. The wireless charging circuit 50 includes a power receiving coil 31 that receives a transmission magnetic field, a rectifier circuit 52 that rectifies the induced current of the power receiving coil 31, and a cutoff that stops power reception to the rectifier circuit 52 when the received voltage exceeds a predetermined voltage range. Input the output voltage of the circuit 58C, the resistance voltage dividing circuit 58R, the received voltage detection circuit 58D, the DC-DC converter 54 that converts the output voltage of the rectifier circuit 52 into a voltage to generate a charging voltage, and the DC-DC converter 54. The charge control circuit 55 that controls the charge of the solid-state battery 1 is provided. The wireless charging solid-state battery module 105 further includes a protection circuit 56 that protects the solid-state battery 1 and a voltage regulator 57 that converts the current of the solid-state battery 1 into the output voltage of a general-purpose battery. The cutoff circuit 58C, the power receiving voltage detection circuit 58D, and the resistance voltage dividing circuit 58R constitute the power receiving protection circuit 58.
 受電電圧検出回路58Dは抵抗分圧回路58Rの出力電圧が所定値を超えることを検出したとき、遮断回路58Cへその検出信号を出力する。遮断回路58Cは受電電圧検出回路58Dから検出信号を受けると、整流回路52への受電を停止する。 When the power receiving voltage detection circuit 58D detects that the output voltage of the resistance voltage dividing circuit 58R exceeds a predetermined value, the power receiving voltage detection circuit 58D outputs the detection signal to the cutoff circuit 58C. When the cutoff circuit 58C receives the detection signal from the power receiving voltage detection circuit 58D, the cutoff circuit 58C stops receiving power to the rectifier circuit 52.
 図16(A)、図16(B)は、上記遮断回路58Cの、通常受電時の動作を説明するための図である。通常受電時は、遮断回路58CのFET Q2はオフ状態である。 16 (A) and 16 (B) are diagrams for explaining the operation of the cutoff circuit 58C at the time of normal power reception. During normal power reception, the FET Q2 of the cutoff circuit 58C is in the off state.
 図16(A)に示すように、キャパシタ51側の受電コイル31の第1端が正となると、受電コイル31からキャパシタ51、ダイオードD1、キャパシタC3の経路で電流が流れる。この場合、受電コイル31に誘起される電圧に、キャパシタ51に充電される電圧が足し合わされた電圧が、キャパシタC3に充電される。つまり、この電圧が整流回路52へ供給される。 As shown in FIG. 16A, when the first end of the power receiving coil 31 on the capacitor 51 side becomes positive, a current flows from the power receiving coil 31 through the path of the capacitor 51, the diode D1, and the capacitor C3. In this case, the voltage obtained by adding the voltage induced in the power receiving coil 31 to the voltage charged in the capacitor 51 is charged in the capacitor C3. That is, this voltage is supplied to the rectifier circuit 52.
 図16(B)に示すように、受電コイル31の第2端が正である場合、受電コイル31から、FET Q2のボディーダイオードをとおり、キャパシタ51へ電流が流れる。そして、キャパシタ51は充電される。 As shown in FIG. 16B, when the second end of the power receiving coil 31 is positive, a current flows from the power receiving coil 31 through the body diode of the FET Q2 to the capacitor 51. Then, the capacitor 51 is charged.
 通常受電時では、図16(A)に示す状態と、図16(B)に示す状態とが交互に繰り返されて、整流回路52へ受電電圧が出力される。 During normal power reception, the state shown in FIG. 16 (A) and the state shown in FIG. 16 (B) are alternately repeated, and the received voltage is output to the rectifier circuit 52.
 図17(A)、図17(B)は、受電電圧が規定値を超える状態での、遮断回路58Cの動作を説明するための図である。図13に示した受電電圧検出回路58Dから出力される上記検出信号によってFET Q2はオン状態となる。 17 (A) and 17 (B) are diagrams for explaining the operation of the cutoff circuit 58C in a state where the received voltage exceeds a specified value. The FET Q2 is turned on by the detection signal output from the received voltage detection circuit 58D shown in FIG.
 受電コイル31に電圧が誘起され、図17(A)に示すように、受電コイル31の第1端が正となると、受電コイル31から共振キャパシタ51、FET Q2の経路で電流が流れる。図17(B)に示すように、受電コイル31の第2端が正である場合、受電コイル31から、FET Q2のボディーダイオードをとおり、キャパシタ51へ電流が流れる。受電電圧が規定値を超える状態では、図17(A)に示す状態と、図17(B)に示す状態とが交互に繰り返される。つまり、整流回路52へは受電電圧が出力されない。 When a voltage is induced in the power receiving coil 31 and the first end of the power receiving coil 31 becomes positive, as shown in FIG. 17 (A), a current flows from the power receiving coil 31 through the path of the resonance capacitor 51 and the FET Q2. As shown in FIG. 17B, when the second end of the power receiving coil 31 is positive, a current flows from the power receiving coil 31 through the body diode of the FET Q2 to the capacitor 51. When the received voltage exceeds the specified value, the state shown in FIG. 17A and the state shown in FIG. 17B are alternately repeated. That is, the received voltage is not output to the rectifier circuit 52.
 これにより、受電コイル31が規定値よりも大きな磁界を受けても、整流回路52への受電を遮断することで、電力を遮断でき、整流回路52及びそれ以降の回路における大電力の受電による発熱等の影響を抑制できる。 As a result, even if the power receiving coil 31 receives a magnetic field larger than the specified value, the power can be cut off by cutting off the power received by the rectifier circuit 52, and heat is generated by receiving a large amount of power in the rectifier circuit 52 and subsequent circuits. Etc. can be suppressed.
 図18(A)、図18(B)は、図13に示した受電電圧検出回路58Dの構成例を示す図である。 18 (A) and 18 (B) are diagrams showing a configuration example of the received voltage detection circuit 58D shown in FIG.
 図18(A)に示す例では、受電電圧検出回路58Dは、コンパレータ25A,25Bと、制御部25Cと、を備える。コンパレータ25Aは、受電電圧Vaと、閾値電圧Va1とを比較し、Va>Va1のときにHレベル信号(H)を出力し、Va≦Va1のときにLレベル信号(L)を出力する。コンパレータ25Bは、受電電圧Vaと、閾値電圧Va2とを比較し、Va>Va2のときにHレベル信号を出力し、Va≦Va2のときにLレベル信号(L)を出力する。 In the example shown in FIG. 18A, the received voltage detection circuit 58D includes comparators 25A and 25B and a control unit 25C. The comparator 25A compares the received voltage Va with the threshold voltage Va1 and outputs an H level signal (H) when Va> Va1 and outputs an L level signal (L) when Va ≦ Va1. The comparator 25B compares the received voltage Va with the threshold voltage Va2, outputs an H level signal when Va> Va2, and outputs an L level signal (L) when Va ≦ Va2.
 制御部25Cは、コンパレータ25A,25Bの出力信号に基づいて、FET Q2にゲート信号を出力する。詳しくは、制御部25Cは、コンパレータ25A,25Bの出力信号がいずれもLのとき、つまり、Va<Va1のとき、FET Q2をオフにする。制御部25Cは、コンパレータ25Aの出力信号がH、かつ、コンパレータ25Bの出力信号がLのとき、つまり、Va1<Va<Va2のとき、FET Q2のゲートにパルス信号を出力し、FET Q2をオンオフにする。制御部25Cは、コンパレータ25A,25Bの出力信号がいずれもHのとき、つまり、Va2<Vaの場合、FET Q2をオンにする。 The control unit 25C outputs a gate signal to the FET Q2 based on the output signals of the comparators 25A and 25B. Specifically, the control unit 25C turns off the FET Q2 when the output signals of the comparators 25A and 25B are both L, that is, when Va <Va1. When the output signal of the comparator 25A is H and the output signal of the comparator 25B is L, that is, when Va1 <Va <Va2, the control unit 25C outputs a pulse signal to the gate of the FET Q2 and turns the FET Q2 on and off. To. The control unit 25C turns on the FET Q2 when the output signals of the comparators 25A and 25B are both H, that is, when Va2 <Va.
 図18(B)に示す例では、遮断回路58Cは、FET Q2を駆動するための抵抗R1及びFET Q21の直列回路を有する。抵抗R1とFET Q21との接続点は、FET Q2のゲートに接続されている。 In the example shown in FIG. 18B, the cutoff circuit 58C has a series circuit of the resistor R1 and the FET Q21 for driving the FET Q2. The connection point between the resistor R1 and the FET Q21 is connected to the gate of the FET Q2.
 図18(B)の遮断回路58Cは、抵抗R2とFET Q21を備える。受電電圧検出回路58Dは、抵抗R2とツェナーダイオードDz1の直列回路を有する。抵抗R2とツェナーダイオードDz1の接続点Aは、FET Q21のゲートに接続されている。 The cutoff circuit 58C of FIG. 18B includes a resistor R2 and an FET Q21. The received voltage detection circuit 58D has a series circuit of the resistor R2 and the Zener diode Dz1. The connection point A between the resistor R2 and the Zener diode Dz1 is connected to the gate of the FET Q21.
 この構成において、受電電圧VaがツェナーダイオードDz1のツェナー電圧未満である場合、接続点Aの電位はHであり、FET Q21はオンする。そうすると、抵抗R1とFET Q21との接続点の電位はLであり、FET Q2はオフする。受電電圧Vaが高くなり、ツェナー電圧を超えると、接続点Aの電位はLとなり、FET Q21はオフし、FET Q2はオンする。ツェナー電圧は、受電電圧Vaが閾値電圧Va1以下のときに、FET Q2がオフされるように設定される。 In this configuration, when the received voltage Va is less than the Zener voltage of the Zener diode Dz1, the potential of the connection point A is H and the FET Q21 is turned on. Then, the potential at the connection point between the resistor R1 and the FET Q21 is L, and the FET Q2 is turned off. When the received voltage Va becomes high and exceeds the Zener voltage, the potential of the connection point A becomes L, the FET Q21 is turned off, and the FET Q2 is turned on. The Zener voltage is set so that the FET Q2 is turned off when the received voltage Va is equal to or less than the threshold voltage Va1.
 受電電圧Vaがツェナー電圧を超えて、FET Q2がオンされる場合、受電遮断状態となる。このことにより、キャパシタC3は放電し、受電電圧Vaは低下する。受電電圧Vaがツェナー電圧より低くなると、接続点Aの電位はHとなり、FET Q2は再度オフする。そして、再び受電電圧Vaがツェナー電圧を超えると、FET Q2はオンする。これが繰り返されることで、過大な受電電圧が抑制される。 When the power receiving voltage Va exceeds the Zener voltage and the FET Q2 is turned on, the power receiving cutoff state is established. As a result, the capacitor C3 is discharged and the received voltage Va is lowered. When the received voltage Va becomes lower than the Zener voltage, the potential of the connection point A becomes H, and the FET Q2 is turned off again. Then, when the received voltage Va exceeds the Zener voltage again, the FET Q2 is turned on. By repeating this, an excessive power receiving voltage is suppressed.
 受電電圧Vaが規定値より高いと(閾値電圧Va2以上であると)、FET Q2はオンされて、受電遮断状態となる。そして、受電電圧Vaがツェナー電圧より低下するまで、遮断回路58Cが遮断状態を維持し、受電が停止される。 When the power receiving voltage Va is higher than the specified value (when the threshold voltage Va2 or more), the FET Q2 is turned on and the power receiving cutoff state is established. Then, the cutoff circuit 58C maintains the cutoff state until the power receiving voltage Va becomes lower than the Zener voltage, and the power receiving is stopped.
 図19は保護回路56の具体例を示す回路図である。この保護回路56は固体電池1の両端電圧を検出する保護ICとFET Q61,Q62とで構成されている。保護ICは、固体電池1の印加電圧が所定電圧を超えるとき、FET Q61,Q62のゲート電圧を制御して固体電池1への充電電流経路を遮断する。 FIG. 19 is a circuit diagram showing a specific example of the protection circuit 56. The protection circuit 56 is composed of a protection IC for detecting the voltage across the solid-state battery 1 and FETs Q61 and Q62. When the applied voltage of the solid-state battery 1 exceeds a predetermined voltage, the protection IC controls the gate voltage of the FETs Q61 and Q62 to cut off the charging current path to the solid-state battery 1.
《第6の実施形態》
 第6の実施形態では、整流素子の制御によって受電遮断を行う回路の例を示す。
<< 6th Embodiment >>
In the sixth embodiment, an example of a circuit that cuts off power reception by controlling a rectifying element is shown.
 図20、図21は、第6の実施形態に係るワイヤレス充電固体電池モジュールの遮断回路の構成を示す図である。図20において、FET Q2,Q31によって同期整流回路を構成する。受電電圧検出回路58DはFET Q2,Q31を制御することによって、同期整流動作を制御する。つまり、受電遮断を行い場合には、FET Q2をオン状態にし、FET Q31をオフ状態にする。 20 and 21 are diagrams showing the configuration of the cutoff circuit of the wireless charging solid-state battery module according to the sixth embodiment. In FIG. 20, a synchronous rectifier circuit is configured by FETs Q2 and Q31. The received voltage detection circuit 58D controls the synchronous rectification operation by controlling the FETs Q2 and Q31. That is, when the power reception is cut off, the FET Q2 is turned on and the FET Q31 is turned off.
 図21においては、FET Q32及びダイオードD12によって整流回路を構成している。受電電圧検出回路58DはFET Q32を制御することによって整流動作を制御する。つまり、受電遮断を行い場合には、FET Q32をオフ状態にする。 In FIG. 21, the rectifier circuit is composed of the FET Q32 and the diode D12. The received voltage detection circuit 58D controls the rectification operation by controlling the FET Q32. That is, when the power reception is cut off, the FET Q32 is turned off.
《第7の実施形態》
 第7の実施形態では、ブリッジ整流回路を備える場合の受電保護回路の構成例を示す。
<< Seventh Embodiment >>
In the seventh embodiment, a configuration example of the power receiving protection circuit when the bridge rectifier circuit is provided is shown.
 図22、図23は第7の実施形態に係るワイヤレス充電固体電池モジュール及び送電装置の一部の回路図である。 22 and 23 are circuit diagrams of a part of the wireless charging solid-state battery module and the power transmission device according to the seventh embodiment.
 図22において、送電装置は、送電側共振回路111と、送電回路122Aとを備えている。送電回路122Aは、FET Q11,Q12の直列回路と、FET Q13,Q14の直列回路とが並列に接続されて構成されている。FET Q11,Q14と、FET Q12,Q13と、が交互にオンオフされることで、直流電源からの直流電圧が交流電圧に変換されて、送電側共振回路111に供給される。 In FIG. 22, the power transmission device includes a power transmission side resonance circuit 111 and a power transmission circuit 122A. The power transmission circuit 122A is configured by connecting the series circuit of the FETs Q11 and Q12 and the series circuit of the FETs Q13 and Q14 in parallel. By alternately turning on and off the FETs Q11 and Q14 and the FETs Q12 and Q13, the DC voltage from the DC power supply is converted into an AC voltage and supplied to the power transmission side resonance circuit 111.
 図22において、FET Q51とダイオードD31との直列回路と、FET Q52とダイオードD32との直列回路とが並列に接続されて整流回路が構成されている。FET Q51,Q52は、受電電圧検出回路58D(図13)によりスイッチング制御される。 In FIG. 22, a series circuit of the FET Q51 and the diode D31 and a series circuit of the FET Q52 and the diode D32 are connected in parallel to form a rectifier circuit. The FETs Q51 and Q52 are switched and controlled by the received voltage detection circuit 58D (FIG. 13).
 図23においては、ダイオードD31,D32,D33,D34によるダイオードブリッジ整流回路及びFET Q51,52が設けられている。図22に示した例とはFET Q51,52のドレイン・ソースの方向が異なる。 In FIG. 23, a diode bridge rectifier circuit using diodes D31, D32, D33, and D34 and FETs Q51 and 52 are provided. The direction of the drain source of the FETs Q51 and 52 is different from the example shown in FIG.
 図21、図22に示したいずれにおいても、受電遮断する場合はFET Q51,52がオフ状態となって、ダイオードD31,D32,D33,D34による整流が阻止される。 In either of the cases shown in FIGS. 21 and 22, when the power reception is cut off, the FETs Q51 and 52 are turned off and the rectification by the diodes D31, D32, D33 and D34 is prevented.
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。 Finally, the above description of the embodiment is exemplary in all respects and is not restrictive. Modifications and changes can be made as appropriate for those skilled in the art. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims. Further, the scope of the present invention includes modifications from the embodiment within the scope of the claims and within the scope of the claims.
CO…コイル開口
D1,D12…ダイオード
E1…電池電圧出力端子
E2…充電状態監視用端子
E3…正極端子
E4…レギュレータEnable入力端子
E5…負極端子
E6…充電電流制御入力端子
E7…NTCサーミスタ入力端子
E8…電圧入力端子
LC1…共振回路
OP…開口
RE…凹部
1…固体電池
1N…負極
1P…正極
4…金属薄膜
7A,7B…配線
11,12…内部構造体
13…モールド樹脂部
14…バリア層
15…緩衝層
16…磁性体層
20…第1回路基板
23a,23b…電子部品
30…第2回路基板
31…受電コイル
31L…インダクタ
31R…等価抵抗
33a,33b…電子部品
50…ワイヤレス充電回路
51…共振キャパシタ
52…整流回路
53…電圧レギュレータ
54…DC-DCコンバータ(電圧変換回路)
55…充電制御回路
55M…モニター信号出力部
56…保護回路
57…電圧レギュレータ(出力電圧安定化回路)
58…受電保護回路
59…送信回路
70…送信制御回路
80…実装基板
90…送電装置
91…送電制御回路
92…共振キャパシタ
101,101M,102,103,104,105…ワイヤレス充電固体電池モジュール
110…正極層
120…負極層
130…固体電解質
201A,201B…送電装置
531,532…キャパシタ
900…送電コイル
900L…インダクタ
900R…等価抵抗
CO ... Coil openings D1, D12 ... Diode E1 ... Battery voltage output terminal E2 ... Charge status monitoring terminal E3 ... Positive terminal E4 ... Regulator Enable input terminal E5 ... Negative terminal E6 ... Charging current control input terminal E7 ... NTC thermista input terminal E8 ... Voltage input terminal LC1 ... Resonant circuit OP ... Opening RE ... Concave 1 ... Solid battery 1N ... Negative negative 1P ... Positive value 4 ... Metal thin films 7A, 7B ... Wiring 11, 12 ... Internal structure 13 ... Mold resin part 14 ... Barrier layer 15 ... Buffer layer 16 ... Magnetic layer 20 ... First circuit board 23a, 23b ... Electronic component 30 ... Second circuit board 31 ... Power receiving coil 31L ... Capacitor 31R ... Equivalent resistor 33a, 33b ... Electronic component 50 ... Wireless charging circuit 51 ... Resonant capacitor 52 ... Rectifier circuit 53 ... Voltage regulator 54 ... DC-DC converter (voltage conversion circuit)
55 ... Charge control circuit 55M ... Monitor signal output unit 56 ... Protection circuit 57 ... Voltage regulator (output voltage stabilization circuit)
58 ... Power receiving protection circuit 59 ... Transmission circuit 70 ... Transmission control circuit 80 ... Mounting board 90 ... Transmission device 91 ... Transmission control circuit 92 ... Resonant capacitors 101, 101M, 102, 103, 104, 105 ... Wireless charging solid battery module 110 ... Positive electrode layer 120 ... Negative electrode layer 130 ... Solid electrolytes 201A, 201B ... Transmission device 531 and 532 ... Capacitor 900 ... Transmission coil 900L ... Inductor 900R ... Equivalent resistance

Claims (14)

  1.  固体電池と、
     前記固体電池に電気的に接続された内部回路が設けられた内部構造体と、
     前記固体電池に対して電気的に接続され、外面にそれぞれ露出し、部品実装回路基板へ実装可能な配置となる正極端子及び負極端子と、
     前記固体電池を外気環境から隔離するバリア層と、
     を備え、
     前記内部回路は、外部からの送電による電磁界または磁界を通して外部から電力を受電し、前記固体電池を充電制御するワイヤレス充電回路を有する、
     ワイヤレス充電固体電池モジュール。
    With solid-state batteries
    An internal structure provided with an internal circuit electrically connected to the solid-state battery,
    Positive electrode terminals and negative electrode terminals that are electrically connected to the solid-state battery, are exposed on the outer surface, and can be mounted on a component mounting circuit board.
    A barrier layer that isolates the solid-state battery from the outside air environment,
    With
    The internal circuit has a wireless charging circuit that receives electric power from the outside through an electromagnetic field or a magnetic field transmitted from the outside and controls charging of the solid-state battery.
    Wireless charging solid-state battery module.
  2.  前記内部回路は、前記固体電池と前記正極端子及び前記負極端子との間に接続され、前記固体電池の放電電圧を安定化する出力電圧安定化回路を備える、
     請求項1に記載のワイヤレス充電固体電池モジュール。
    The internal circuit includes an output voltage stabilizing circuit that is connected between the solid-state battery and the positive electrode terminal and the negative electrode terminal to stabilize the discharge voltage of the solid-state battery.
    The wireless charging solid-state battery module according to claim 1.
  3.  前記内部回路は、前記固体電池の充放電時の過電流、過電圧、過熱の少なくともいずれかに対する保護を行う保護回路を備える、
     請求項1又は2に記載のワイヤレス充電固体電池モジュール。
    The internal circuit includes a protection circuit that protects against at least one of overcurrent, overvoltage, and overheating during charging and discharging of the solid-state battery.
    The wireless charging solid-state battery module according to claim 1 or 2.
  4.  前記バリア層と前記内部構造体との間に前記バリア層の剥離を抑制する緩衝層を備える、
     請求項1から3のいずれかに記載のワイヤレス充電固体電池モジュール。
    A buffer layer that suppresses peeling of the barrier layer is provided between the barrier layer and the internal structure.
    The wireless charging solid-state battery module according to any one of claims 1 to 3.
  5.  前記固体電池の周囲をモールドする衝撃緩和部材を備える、
     請求項1から4のいずれかに記載のワイヤレス充電固体電池モジュール。
    A shock absorbing member that molds around the solid-state battery is provided.
    The wireless charging solid-state battery module according to any one of claims 1 to 4.
  6.  前記ワイヤレス充電回路は、外部からの送電による前記電磁界または磁界を受ける受電コイルと、当該受電コイルの誘導電流を整流する整流回路と、当該整流回路の出力電圧を電圧変換して充電電圧を生成する電圧変換回路と、当該電圧変換回路の出力電圧を入力して前記固体電池の充電制御を行う充電制御回路と、を備える、
     請求項1から5のいずれかに記載のワイヤレス充電固体電池モジュール。
    The wireless charging circuit generates a charging voltage by voltage-converting a power receiving coil that receives the electromagnetic field or magnetic field transmitted from the outside, a rectifying circuit that rectifies the induced current of the power receiving coil, and an output voltage of the rectifying circuit. A voltage conversion circuit for performing charging and a charging control circuit for inputting the output voltage of the voltage conversion circuit to control charging of the solid-state battery are provided.
    The wireless charging solid-state battery module according to any one of claims 1 to 5.
  7.  前記ワイヤレス充電回路は、前記受電コイルに接続されて前記受電コイルと共に共振回路を構成する共振キャパシタを有する、
     請求項6に記載のワイヤレス充電固体電池モジュール。
    The wireless charging circuit has a resonance capacitor connected to the power receiving coil to form a resonance circuit together with the power receiving coil.
    The wireless charging solid-state battery module according to claim 6.
  8.  前記整流回路の入力部又は前記電圧変換回路の入力部に対する外面に露出した充電入力端子を備える、
     請求項7に記載のワイヤレス充電固体電池モジュール。
    A charging input terminal exposed on the outer surface of the input unit of the rectifier circuit or the input unit of the voltage conversion circuit is provided.
    The wireless charging solid-state battery module according to claim 7.
  9.  前記充電制御回路は、前記固体電池に対する充電制御状態を示す信号を出力するモニター信号出力部を有し、
     前記モニター信号出力部に繋がる充電状態監視用端子を備える、
     請求項7又は8に記載のワイヤレス充電固体電池モジュール。
    The charge control circuit has a monitor signal output unit that outputs a signal indicating a charge control state for the solid-state battery.
    A terminal for monitoring the charging status connected to the monitor signal output unit is provided.
    The wireless rechargeable solid-state battery module according to claim 7 or 8.
  10.  前記受電コイルに接続される回路の消費電力の変化によって信号を伝送する信号伝送回路をさらに備える、
     請求項7から9のいずれかに記載のワイヤレス充電固体電池モジュール。
    A signal transmission circuit for transmitting a signal according to a change in power consumption of the circuit connected to the power receiving coil is further provided.
    The wireless charging solid-state battery module according to any one of claims 7 to 9.
  11.  前記共振回路の共振条件の変化によって信号を伝送する信号伝送回路をさらに備える、
     請求項7から9のいずれかに記載のワイヤレス充電固体電池モジュール。
    A signal transmission circuit for transmitting a signal according to a change in the resonance condition of the resonance circuit is further provided.
    The wireless charging solid-state battery module according to any one of claims 7 to 9.
  12.  前記整流回路への受電電圧が所定の電圧範囲を超える場合に、前記整流回路への受電を停止する受電保護回路を備える、
     請求項6から11のいずれかに記載のワイヤレス充電固体電池モジュール。
    A power receiving protection circuit for stopping power reception to the rectifier circuit when the power received voltage to the rectifier circuit exceeds a predetermined voltage range is provided.
    The wireless charging solid-state battery module according to any one of claims 6 to 11.
  13.  前記内部構造体は、前記固体電池を積層方向に挟み込む、第1回路基板及び第2回路基板で構成された、
     請求項1から12のいずれかに記載のワイヤレス充電固体電池モジュール。
    The internal structure is composed of a first circuit board and a second circuit board that sandwich the solid-state battery in the stacking direction.
    The wireless charging solid-state battery module according to any one of claims 1 to 12.
  14.  前記第1回路基板の外面に前記正極端子及び負極端子が露出し、前記第2回路基板の外面側にモールド樹脂層が設けられた、
     請求項13に記載のワイヤレス充電固体電池モジュール。
    The positive electrode terminal and the negative electrode terminal are exposed on the outer surface of the first circuit board, and a mold resin layer is provided on the outer surface side of the second circuit board.
    The wireless charging solid-state battery module according to claim 13.
PCT/JP2020/023356 2019-10-11 2020-06-15 Wireless charging solid battery module WO2021070414A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021551136A JP7375824B2 (en) 2019-10-11 2020-06-15 wireless charging solid state battery module
US17/716,294 US20220231539A1 (en) 2019-10-11 2022-04-08 Wireless rechargeable solid-state battery module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019188229 2019-10-11
JP2019-188229 2019-10-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/716,294 Continuation US20220231539A1 (en) 2019-10-11 2022-04-08 Wireless rechargeable solid-state battery module

Publications (1)

Publication Number Publication Date
WO2021070414A1 true WO2021070414A1 (en) 2021-04-15

Family

ID=75437094

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/023356 WO2021070414A1 (en) 2019-10-11 2020-06-15 Wireless charging solid battery module
PCT/JP2020/035480 WO2021070598A1 (en) 2019-10-11 2020-09-18 Wireless rechargeable solid-state battery module and wireless power supply module

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035480 WO2021070598A1 (en) 2019-10-11 2020-09-18 Wireless rechargeable solid-state battery module and wireless power supply module

Country Status (3)

Country Link
US (2) US20220231347A1 (en)
JP (2) JP7375824B2 (en)
WO (2) WO2021070414A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042927A1 (en) * 2022-08-25 2024-02-29 株式会社村田製作所 Solid-state battery module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020205153A1 (en) * 2020-04-23 2021-10-28 Sivantos Pte. Ltd. Battery module and hearing aid
WO2024014345A1 (en) * 2022-07-13 2024-01-18 株式会社村田製作所 Solid-state battery module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146297A (en) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd Solid battery
JP2005176551A (en) * 2003-12-12 2005-06-30 Canon Inc Battery pack
JP2010029006A (en) * 2008-07-23 2010-02-04 Alps Electric Co Ltd Charger for coping with antenna rectifer
JP2013165584A (en) * 2012-02-10 2013-08-22 Canon Inc Electronic apparatus
JP2015088376A (en) * 2013-10-31 2015-05-07 日立マクセル株式会社 Battery unit and charging system
JP2019507564A (en) * 2015-12-23 2019-03-14 リクリッス カンパニー リミテッド Self-powered element and flexible device including the same
JP2019110760A (en) * 2010-02-08 2019-07-04 フィリップス アイピー ベンチャーズ ビー ヴィ Input parasitic metal detection
WO2019164006A1 (en) * 2018-02-26 2019-08-29 株式会社村田製作所 All-solid-state battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10664020B2 (en) * 2015-04-23 2020-05-26 Semiconductor Energy Laboratory Co., Ltd. Electronic device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146297A (en) * 2002-10-28 2004-05-20 Matsushita Electric Ind Co Ltd Solid battery
JP2005176551A (en) * 2003-12-12 2005-06-30 Canon Inc Battery pack
JP2010029006A (en) * 2008-07-23 2010-02-04 Alps Electric Co Ltd Charger for coping with antenna rectifer
JP2019110760A (en) * 2010-02-08 2019-07-04 フィリップス アイピー ベンチャーズ ビー ヴィ Input parasitic metal detection
JP2013165584A (en) * 2012-02-10 2013-08-22 Canon Inc Electronic apparatus
JP2015088376A (en) * 2013-10-31 2015-05-07 日立マクセル株式会社 Battery unit and charging system
JP2019507564A (en) * 2015-12-23 2019-03-14 リクリッス カンパニー リミテッド Self-powered element and flexible device including the same
WO2019164006A1 (en) * 2018-02-26 2019-08-29 株式会社村田製作所 All-solid-state battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024042927A1 (en) * 2022-08-25 2024-02-29 株式会社村田製作所 Solid-state battery module

Also Published As

Publication number Publication date
JP7375824B2 (en) 2023-11-08
US20220231539A1 (en) 2022-07-21
WO2021070598A1 (en) 2021-04-15
JP7226574B2 (en) 2023-02-21
JPWO2021070598A1 (en) 2021-04-15
US20220231347A1 (en) 2022-07-21
JPWO2021070414A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2021070414A1 (en) Wireless charging solid battery module
US11670807B2 (en) Flexible battery and electronic device
KR100928119B1 (en) Printed Circuit Board and Secondary Battery Using the Same
EP3186843B1 (en) Battery pack including an indicator circuit
KR102324342B1 (en) Battery pack with wireless charging and near field communication functions
KR101548730B1 (en) Battery pack including NFC antenna structure
EP2982004B1 (en) Electrochemical cell including an integrated circuit
US20220013846A1 (en) Solid-state battery
KR20110053255A (en) Battery cell and monitoring device for assembled battery
WO2012141231A1 (en) Solid state battery
WO2014165369A1 (en) Electrochemical cell including an integrated circuit
US20190341657A1 (en) Smart-battery-protection plate, smart battery, and mobile platform
JP2008103219A (en) Circuit module
JP2011142083A (en) Secondary battery
US20190363399A1 (en) Power storage sheet and battery
US20220231348A1 (en) Universal-battery-outer-shape wirelessly chargeable battery
US20220013816A1 (en) Solid-state battery
JP4329489B2 (en) Secondary battery and battery pack
WO2024014345A1 (en) Solid-state battery module
JP2002298829A (en) Protective element for electrochemical device
WO2024042927A1 (en) Solid-state battery module
KR102161289B1 (en) External battery
JP2015220108A (en) Electronic device with built-in non-contact electric power transmission mechanism
CN104769764A (en) Electrode assembly and secondary battery including same
CN117897879A (en) Battery coil module with enhanced design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551136

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875505

Country of ref document: EP

Kind code of ref document: A1