WO2021070277A1 - Information processing device, identifying method, and identifying program - Google Patents

Information processing device, identifying method, and identifying program Download PDF

Info

Publication number
WO2021070277A1
WO2021070277A1 PCT/JP2019/039792 JP2019039792W WO2021070277A1 WO 2021070277 A1 WO2021070277 A1 WO 2021070277A1 JP 2019039792 W JP2019039792 W JP 2019039792W WO 2021070277 A1 WO2021070277 A1 WO 2021070277A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
repair
damage
degree
unit
Prior art date
Application number
PCT/JP2019/039792
Other languages
French (fr)
Japanese (ja)
Inventor
翔一 小林
隆文 永野
恵美子 倉田
光保 岩波
善和 審良
Original Assignee
三菱電機株式会社
国立大学法人東京工業大学
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 国立大学法人東京工業大学, 国立大学法人 鹿児島大学 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/039792 priority Critical patent/WO2021070277A1/en
Priority to PCT/JP2020/037939 priority patent/WO2021070842A1/en
Priority to JP2021551678A priority patent/JP7229383B2/en
Publication of WO2021070277A1 publication Critical patent/WO2021070277A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D22/00Methods or apparatus for repairing or strengthening existing bridges ; Methods or apparatus for dismantling bridges

Definitions

  • the present invention relates to an information processing device, a specific method, and a specific program.
  • Non-Patent Document 1 describes a procedure for inspecting bridges in Japan.
  • the degree of damage of each of the multiple deformations to the multiple parts can be obtained.
  • civil engineering structures are installed in various environments. Therefore, it is also difficult to determine the judgment procedure and the judgment criteria in advance. In this way, it is difficult to determine the necessity of repair.
  • Patent Document 1 a system for determining the necessity of repair has been proposed (see Patent Document 1).
  • the structure repair construction plan support system of Patent Document 1 constructs a discrimination boundary line using learning data created based on information including a teacher value indicating the necessity of repair.
  • the structure repair construction plan support system calculates the necessity of repair work using the discrimination boundary line, and determines the necessity of repair based on the necessity of repair work.
  • the necessity of repair is determined by creating learning data.
  • the determination of repair may be considered to specify the repair timing.
  • the information including the teacher value indicating the necessity of repair is called teacher data.
  • teacher data for creating learning data is created by an administrator. Creating teacher data increases the burden on administrators. Therefore, it is desirable to specify the repair timing without creating teacher data.
  • the problem is how to specify the repair timing without creating teacher data.
  • An object of the present invention is to specify the repair timing without creating teacher data.
  • the information processing device includes inspection result information indicating a plurality of damage degrees corresponding to each of a plurality of deformations of a plurality of parts of a civil engineering structure inspected in the past and a plurality of service periods corresponding to the plurality of parts.
  • An acquisition unit that acquires repair determination information indicating whether or not to repair according to the combination of damage degrees of each of the plurality of deformations, and the plurality of deformations obtained based on the inspection result information.
  • the generation unit that generates the prediction information indicating the damage degree of the future service time in each of the plurality of deformations, and the repair determination information. It has a specific unit that specifies the repair timing based on the prediction information.
  • the repair timing can be specified without creating teacher data.
  • FIG. 1 It is a functional block diagram which shows the structure of the information processing apparatus of Embodiment 1.
  • FIG. It is a figure which shows the structure of the hardware which the information processing apparatus of Embodiment 1 has. It is a figure which shows the example of the inspection result information of Embodiment 1.
  • FIG. (A) and (B) are diagrams showing an example of repair determination information of the first embodiment. It is a figure which shows the example of the repair method information of Embodiment 1. It is a flowchart which shows the example of the process which the information processing apparatus of Embodiment 1 executes.
  • (A) and (B) are diagrams for explaining a method of calculating a plurality of approximate functions of the first embodiment.
  • FIG. 1 shows the example in the case of correcting the approximate function of Embodiment 1.
  • FIG. 2 is a figure which shows the example in the case of correcting the approximate function of Embodiment 1.
  • FIG. 1 shows the example of the prediction information of Embodiment 1.
  • FIG. It is a figure which shows the example of the repair plan information of Embodiment 1.
  • FIG. It is a functional block diagram which shows the structure of the information processing apparatus of Embodiment 2.
  • It is a figure which shows the example of the repair determination information of Embodiment 2.
  • the civil engineering structure will be a concrete bridge.
  • the civil engineering structure may be a steel bridge, a tunnel, a pavement surface, or the like.
  • FIG. 1 is a functional block diagram showing the configuration of the information processing apparatus according to the first embodiment.
  • the information processing device 100 is a device that executes a specific method.
  • the information processing device 100 includes a storage unit 110, an acquisition unit 120, a calculation unit 130, a generation unit 140, a specific unit 150, and an output unit 160.
  • FIG. 2 is a diagram showing a hardware configuration of the information processing apparatus according to the first embodiment.
  • the information processing device 100 includes a processor 101, a volatile storage device 102, and a non-volatile storage device 103.
  • the processor 101 controls the entire information processing device 100.
  • the processor 101 is a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), or the like.
  • the processor 101 may be a multiprocessor.
  • the information processing apparatus 100 may be realized by a processing circuit, or may be realized by software, firmware, or a combination thereof.
  • the processing circuit may be a single circuit or a composite circuit.
  • the volatile storage device 102 is the main storage device of the information processing device 100.
  • the volatile storage device 102 is a RAM (Random Access Memory).
  • the non-volatile storage device 103 is an auxiliary storage device of the information processing device 100.
  • the non-volatile storage device 103 is an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
  • the storage unit 110 may be realized as a storage area reserved in the volatile storage device 102 or the non-volatile storage device 103.
  • a part or all of the acquisition unit 120, the calculation unit 130, the generation unit 140, the specific unit 150, and the output unit 160 may be realized by the processor 101.
  • a part or all of the acquisition unit 120, the calculation unit 130, the generation unit 140, the specific unit 150, and the output unit 160 may be realized as modules of a program executed by the processor 101.
  • the program executed by the processor 101 is also referred to as a specific program.
  • a specific program is recorded on a recording medium.
  • the storage unit 110 stores the inspection result information 111, the repair determination information 112, and the repair method information 113.
  • the inspection result information 111 may be referred to as an inspection result database.
  • the repair determination information 112 may be referred to as a repair determination database.
  • the repair method information 113 may be referred to as a repair method database. First, the inspection result information 111 will be described.
  • FIG. 3 is a diagram showing an example of inspection result information of the first embodiment.
  • the inspection result information 111 indicates a plurality of damage degrees corresponding to a plurality of deformations of each of a plurality of parts of the civil engineering structure inspected in the past and a plurality of service periods corresponding to the plurality of parts. Further, the inspection result information 111 indicates a plurality of damage degrees corresponding to a plurality of deformations of each of a plurality of parts of the plurality of civil engineering structures inspected in the past and a plurality of service periods corresponding to the plurality of parts. You may.
  • the inspection result information 111 has items of the year of installation, the year of inspection, the number of years of service, the control number, the part, and the degree of damage for each deformation.
  • the erection year item indicates the year of erection.
  • the inspection year item indicates the year of inspection.
  • the item of service years indicates the period from the year of erection to the year of inspection, which is the time when the inspection was carried out.
  • the item of the number of years of service may be changed to the item of the number of months of service or the item of the number of days of service.
  • the number of years of service, the number of months of service, or the number of days of service is also referred to as the service period.
  • the control number item indicates the identifier of the inspected part. Further, the item of the control number may include an identifier of the span.
  • the part item indicates the name of the inspected part.
  • the item of the degree of damage for each deformation shows the inspection result.
  • FIG. 3 shows cracks and exposed rebars as an example of deformation.
  • the deformation may be swelling, corrosion, or the like.
  • the degree of damage is represented by the degree of damage described on page 2 of Appendix-1 of Non-Patent Document 1. That is, the degree of damage is represented by five stages from a to e.
  • the method of expressing the degree of damage is not limited to this. For example, the degree of damage may be expressed numerically. Further, for example, the degree of damage may be classified into the degree of damage obtained by using various sensors, camera images, and image processing techniques.
  • the inspection result information 111 indicates that the part "floor slab” corresponding to the control number "1001-1" was inspected in 2015.
  • the inspection result information 111 indicates that the crack damage degree is b and the peeled reinforcing bar exposure damage degree is a as the inspection result.
  • the inspection result may include specification data.
  • the specification data includes design information of civil engineering structures, environmental information, and the like.
  • the specification data are bridge length, width, material, structural type, salt damage environment classification, intersection, traffic volume, and the like.
  • the specification data does not have to be included in the inspection result. That is, the specification data may be stored in the storage unit 110 as independent data.
  • the specification data may have a correspondence relationship with the civil engineering structure.
  • the information processing device 100 has a function of searching for information in the inspection result information 111 using the specification data as a search condition, and a function of extracting information matching the search condition from the inspection result information 111. You may.
  • the repair determination information 112 indicates whether or not to repair according to the combination of the damage degrees of each of the plurality of deformations.
  • the repair determination information 112 may be expressed as follows.
  • the repair determination information 112 indicates whether or not to repair the target portion according to the combination of the damage degrees of each of the plurality of deformations.
  • the repair determination information 112 in FIG. 4A shows the correspondence between the degree of crack damage and the degree of exposed rebar exposure damage. That is, the repair determination information 112 in FIG. 4 shows the correspondence between the damage degrees of the two deformations.
  • the repair determination information 112 may indicate a correspondence relationship between the damage degrees of three or more deformations.
  • the repair determination information 112 indicates whether or not to repair according to the combination of the degree of damage of each of the two deformations. For example, when the crack damage degree is a and the peeled reinforcing bar exposure damage degree is c, the repair determination information 112 indicates that repair is unnecessary. Further, for example, when the crack damage degree is e and the peeled reinforcing bar exposure damage degree is a, the repair determination information 112 indicates that repair is necessary.
  • the information processing device 100 can determine the necessity of repair by using the repair determination information 112. That is, the information processing device 100 can determine the necessity of repair based on the correspondence relationship between the damage degrees of the two deformations.
  • the repair determination information 112 is created in advance. For example, a highly specialized manager uses a computer to create repair determination information 112. Further, for example, the manager creates the repair determination information 112 in consideration of the knowledge of the deterioration process based on the type, structural type, material characteristics, etc. of the civil engineering structure, and the purpose of creating the repair plan.
  • the repair determination information 112 may be referred to as a repair determination matrix. Therefore, the repair determination information 112 may be considered to include a plurality of cells. Repair judgment information may exist for each civil engineering structure. For example, when the civil engineering structure is a steel bridge, the repair determination information indicates the correspondence between the degree of damage of deterioration and the degree of damage of corrosion. Further, for example, when the civil engineering structure is a concrete wall surface, the repair determination information indicates the correspondence between the degree of damage of cracks and the degree of damage of water leakage.
  • FIG. 4B shows repair determination information 112a of an overpass, which may cause damage to a third party due to the fall of a concrete piece due to the exposure of the peeled reinforcing bar.
  • the repair determination information 112a indicates that even if the degree of exposure damage to the peeled reinforcing bar is small, the repair is performed if cracks are present.
  • FIG. 5 is a diagram showing an example of repair method information of the first embodiment.
  • the repair method information 113 indicates a repair method at the repair timing.
  • the repair method information 113 in FIG. 5 shows the correspondence between the degree of crack damage and the degree of exposed rebar exposure damage.
  • the repair method information 113 may be referred to as a repair method matrix. Therefore, the repair method information 113 may be considered to include a plurality of cells.
  • the repair judgment information 112 indicates that repair is unnecessary, so the repair method information 113 does not indicate the repair method.
  • the crack damage degree is e and the peeled reinforcing bar exposure damage degree is a
  • the crack has progressed, so that the repair method information 113 indicates the crack injection method.
  • the crack damage degree is e and the peeled reinforcing bar exposure damage degree is e
  • the crack and the peeled reinforcing bar are exposed, so that the repair method information 113 indicates replacement.
  • Each repair method indicated by the repair method information 113 may be associated with information such as a repair unit price, a repair effect, and a required period. For example, for the repair effect associated with the repair method corresponding to the crack damage degree e and the peeled reinforcing bar exposed damage degree a, the crack injection method is carried out so that the crack damage degree is a and the peeled reinforcing bar exposed damage is exposed. It is shown that the degree returns to the state of a. Further, each cell indicated by the repair method information 113 may indicate a plurality of methods having different effects. The information processing apparatus 100 may select one repair method from a plurality of methods.
  • the acquisition unit 120 acquires the inspection result information 111, the repair determination information 112, and the repair method information 113.
  • the acquisition unit 120 acquires the inspection result information 111, the repair determination information 112, and the repair method information 113 from the storage unit 110.
  • the inspection result information 111, the repair determination information 112, and the repair method information 113 may be stored in an external device such as a cloud server.
  • the acquisition unit 120 obtains the inspection result information 111, the repair judgment information 112, and the repair method information 113 from the external device. get.
  • the generation unit 140 generates prediction information by using the information obtained based on the inspection result information 111 for deriving the degree of damage in the future service period in each of the plurality of deformations.
  • the prediction information indicates the degree of damage in the future service period in each of the plurality of deformations.
  • the identification unit 150 specifies the repair timing based on the repair determination information 112 and the prediction information. Further, the specifying unit 150 specifies the repair method at the repair timing based on the repair method information 113. The output unit 160 outputs information indicating the repair timing.
  • FIG. 6 is a flowchart showing an example of processing executed by the information processing apparatus of the first embodiment.
  • the acquisition unit 120 acquires the inspection result information 111 from the storage unit 110.
  • the calculation unit 130 calculates a plurality of approximation functions based on the plurality of service years included in the inspection result information 111 and the plurality of damage degrees corresponding to the plurality of deformations.
  • the plurality of approximation functions are also referred to as deterioration models.
  • the plurality of approximation functions may be considered as information for deriving the degree of damage in the future service period in each of the plurality of deformations obtained based on the inspection result information 111. Specifically, a method of calculating a plurality of approximate functions will be described.
  • FIG. 7 (A) and 7 (B) are diagrams for explaining a method of calculating a plurality of approximate functions of the first embodiment.
  • the vertical axis of FIG. 7A shows the degree of crack damage.
  • the vertical axis of FIG. 7A shows a to e.
  • the vertical axis of FIG. 7A may be transformed into 1 to 5.
  • the horizontal axis of FIG. 7A shows the number of years of service.
  • FIG. 7A shows the correspondence between the service life and the degree of crack damage included in the inspection result information 111. That is, each point in FIG. 7A corresponds to each record of the inspection result information 111.
  • the calculation unit 130 calculates an approximation function that approximates each point.
  • the calculation unit 130 may calculate the approximate function by using a known method. For example, the calculation unit 130 calculates a linear approximation straight line by least squares approximation.
  • the vertical axis of FIG. 7B shows the degree of exposed damage to the peeled reinforcing bar.
  • the vertical axis of FIG. 7B shows a to e.
  • the vertical axis of FIG. 7B may be transformed into 1 to 5.
  • the horizontal axis of FIG. 7B shows the number of years of service.
  • FIG. 7B shows the correspondence between the service life included in the inspection result information 111 and the degree of exposure damage of the peeled reinforcing bar. That is, each point in FIG. 7B corresponds to each record of the inspection result information 111.
  • the calculation unit 130 calculates an approximation function that approximates each point.
  • the calculation unit 130 calculates the equation (1) based on the service life and the degree of crack damage included in the inspection result information 111.
  • x indicates the number of years of service.
  • y1 indicates the degree of crack damage.
  • calculation unit 130 calculates the formula (2) based on the service life and the degree of exposure damage of the peeled reinforcing bar included in the inspection result information 111.
  • y2 indicates the degree of exposure damage of the peeled reinforcing bar.
  • calculation unit 130 may correct the approximation function so that the approximation function exists on the point.
  • FIG. 8 is a diagram showing an example in the case of correcting the approximate function of the first embodiment.
  • the calculation unit 130 corrects at least one of the slope and the intercept of the equation (1) so that the equation (1) exists on the point.
  • the acquisition unit 120 may acquire information indicating the civil engineering structure that is the target of the following process. For example, the acquisition unit 120 acquires the information by a user input operation. Further, the information processing apparatus 100 may execute the following processes in the order of the control numbers included in the inspection result information 111. In the following description, a case where processing is performed in the order of control numbers will be described.
  • Step S13 The generation unit 140 generates prediction information based on a plurality of approximation functions.
  • the method of generating the prediction information will be specifically described.
  • the generation unit 140 uses a plurality of approximate functions to specify the correspondence between the service life and the future damage degree.
  • FIG. 9 (A) and 9 (B) are diagrams for explaining a method of specifying the correspondence relationship between the service life of the first embodiment and the future damage degree.
  • FIG. 9A is a diagram for explaining a method of specifying a correspondence relationship between the service life and the degree of crack damage in the future.
  • the generation unit 140 uses the formula (1) to specify the correspondence between the service life and the future degree of crack damage.
  • FIG. 9B is a diagram for explaining a method of specifying the correspondence relationship between the service life and the degree of exposure damage of the peeled reinforcing bar in the future.
  • the generation unit 140 uses the formula (2) to specify the correspondence between the service life and the degree of exposure damage to the peeled reinforcing bar in the future.
  • the generation unit 140 may round up, round off, or the like to determine the damage degree classification obtained by the approximate straight line into one classification. For example, in the case of FIG. 9B, the service life “25” to “40” is determined as the damage degree a.
  • the generation unit 140 uses a plurality of approximate functions to specify the correspondence between the service life and the degree of damage in the future.
  • the generation unit 140 generates prediction information using the correspondence between the service life and the future damage degree.
  • FIG. 10 is a diagram showing an example of the prediction information of the first embodiment.
  • the prediction information 200 has items of control number, year, service life, crack damage degree, and peeled reinforcing bar exposure damage degree.
  • the item of the number of years of service may be expressed as the future service period.
  • the prediction information 200 indicates the future damage degree of the part of the control number “1001-1”.
  • Prediction information 200 shows the degree of damage every 5 years. However, the prediction information 200 may indicate the degree of damage for each year. For the service life of the forecast information 200, the current year (2015 in FIG. 10) is expressed as 0 year, and the degree of damage from the final year of the plan (for example, 2070) minus the current year is shown. May be good.
  • the specifying unit 150 specifies the repair timing based on the repair determination information 112 and the prediction information 200. For example, the specific unit 150 identifies that 2035 is the repair timing based on the repair determination information 112 and the prediction information 200.
  • the specifying unit 150 specifies the repair method based on the degree of crack damage and the degree of exposed rebar exposed damage at the repair timing and the repair method information 113.
  • the specific portion 150 specifies the cross-section repair (small) based on the crack damage degree “c” and the peeled reinforcing bar exposure damage degree “c” in 2035 and the repair method information 113. In this way, the information processing apparatus 100 can specify the repair method at the repair timing by using the repair method information 113.
  • the generation unit 140 generates repair plan information based on the information specified by the specific unit 150. Here, the repair plan information will be illustrated.
  • FIG. 11 is a diagram showing an example of repair plan information of the first embodiment.
  • the repair plan information 210 has items of control number, repair implementation year, part, repair method, repair cost, crack damage degree at the time of repair, and peeling reinforcing bar exposure damage degree at the time of repair.
  • the repair plan information 210 in FIG. 11 indicates that the repair timing of the portion of the control number “1001-1” is 2035.
  • the generation unit 140 may include the repair cost, the required period, etc. in the repair plan information 210. Good.
  • the generation unit 140 may include the repair cost and the like in the repair plan information 210. ..
  • the cost is not limited to the repair cost. For example, when the service is continued in a damaged state, costs for countermeasures, costs for compensation for damages, and the like may be incurred based on the magnitude and probability of damages that may occur due to the damages.
  • the calculation unit 130 calculates the repair cost based on the information for calculating the repair cost. Specifically, the calculation unit 130 calculates the repair cost using the equation (3).
  • the repair unit price is the cost required for repair per square meter.
  • the quantity is the number of items to be repaired per square meter.
  • the repair unit price may include expenses such as scaffolding.
  • the output unit 160 outputs the repair plan information 210.
  • the output unit 160 outputs the repair plan information 210 to the display.
  • the output unit 160 outputs the repair plan information 210 to an external device that can be connected to the information processing device 100.
  • the output unit 160 outputs the repair plan information 210 to the paper medium via the printing device. In this way, the information processing device 100 can notify the user of the repair timing by outputting the repair plan information 210. Further, when the repair cost is calculated, the information processing apparatus 100 can also inform the user of the repair cost.
  • the information processing apparatus 100 can specify the repair timing without creating the teacher data.
  • the information processing apparatus 100 may specify the timing and repair method for repairing future re-deterioration after the repair is performed by using the above technique. Further, when the deterioration rate before repair and the deterioration rate after repair are different, the information processing apparatus 100 may adjust the parameters of the deterioration model.
  • FIG. 12 is a functional block diagram showing the configuration of the information processing apparatus according to the second embodiment.
  • the configuration of FIG. 12, which is the same as the configuration shown in FIG. 1, has the same reference numerals as those shown in FIG.
  • the information processing device 100a has a calculation unit 130a, a generation unit 140a, and a specific unit 150a. The functions of the calculation unit 130a, the generation unit 140a, and the specific unit 150a will be described later.
  • FIG. 13 is a diagram showing an example of repair determination information according to the second embodiment.
  • the repair determination information 112 of the second embodiment may be referred to as a deformation matrix.
  • the repair determination information 112 may be considered to include a plurality of cells.
  • the content indicated by the repair determination information 112 is omitted.
  • the cell showing the correspondence relationship between the degree of crack damage and the degree of exposed rebar exposed damage is expressed as (a, a).
  • the existence probability is the probability that it exists in a certain cell after x years.
  • the existence probability existing in (c, c) after x + 1 years is expressed using the equation (4).
  • P indicates the existence probability.
  • “Cc” of P (cc, x + 1) is a simplification of (c, c). Further, “cc” of P (cc, x + 1) indicates a state.
  • “X + 1” of P (cc, x + 1) indicates the year. So, for example, P (cc, x + 1) indicates the probability of existence in (c, c) after x + 1 years. Further, for example, P (ca, x) indicates the existence probability of existence in (c, a) after x years.
  • P indicates the transition probability.
  • the transition probability is the probability of transitioning to an adjacent cell.
  • Cc of p (cc, dc) indicates the transition source state.
  • Dc of p (cc, dc) indicates the transition destination state. Therefore, for example, p (cc, dc) indicates the probability of transition from (c, c) to (d, c). Further, for example, p (cc, ce) indicates the probability of transition from (c, c) to (c, e).
  • the existence probability matrix N (x) which is a set of existence probabilities in x years of each cell of the deformation matrix.
  • the existence probability matrix N (x) indicates the probability of being in each state of a plurality of combinations of damage degrees of each of the plurality of variants in the future service period.
  • the existence probability matrix N (x) may be expressed as follows.
  • the existence probability matrix N (x) indicates the probability that each state of a plurality of combinations of damage degrees of each of a plurality of deformations does not change without transition during the future service period.
  • the existence probability matrix N (x) is specifically shown.
  • FIG. 14 is a diagram showing the existence probability matrix N (x) of the second embodiment.
  • the transition probability matrix M which is a set of transition probabilities of the states corresponding to each cell of the deformation matrix.
  • the transition probability matrix M indicates the probability that each state of a plurality of combinations of damage degrees of each of a plurality of variants will transition to the state of another combination during the future service period.
  • the transition probability matrix M is specifically shown.
  • FIG. 15 is a diagram showing a transition probability matrix M of the second embodiment.
  • the existence probability matrix N (x + 1) for x + 1 years is expressed by the equation (5) using the existence probability matrix N (x) and the transition probability matrix M.
  • Equation (6) can be obtained by modifying equation (5). Equation (6) may be expressed as a deterioration model.
  • the existence probability matrix of an arbitrary number of years of service can be calculated.
  • damage does not heal spontaneously unless it is repaired. Therefore, the transition direction in the deformation matrix is fixed.
  • FIG. 16 is a diagram showing a transition direction of the second embodiment. As shown in FIG. 16, the transition direction is fixed. Therefore, the transition probability matrix M in which the transition direction shown in FIG. 16 is taken into consideration is shown.
  • FIG. 17 is a diagram showing a transition probability matrix M in which the transition direction of the second embodiment is taken into consideration.
  • the transition probability matrix M can be expressed as follows. In the transition probability matrix M, the direction in which each state of the plurality of combinations of the respective damage degrees of the plurality of deformations transitions is determined, and each state of the plurality of combinations becomes another combination in the future service period. Shows the probability of transitioning to the state of.
  • the deterioration model may be assumed to maintain Markov property, which is a property that future behavior is determined only by the current value and has nothing to do with past behavior. That is, the deterioration model can use the transition probability matrix M regardless of the number of years of service.
  • the information of the existence probability matrix N (x) and the information of the transition probability matrix M are stored in the storage unit 110. Further, the information of the existence probability matrix N (x) and the information of the transition probability matrix M may be stored in an external device such as a cloud server.
  • FIG. 18 is a flowchart showing an example of processing executed by the information processing apparatus of the second embodiment.
  • the acquisition unit 120 acquires the inspection result information 111 from the storage unit 110. Further, the acquisition unit 120 acquires the information of the existence probability matrix N (x) and the information of the transition probability matrix M from the storage unit 110.
  • the transition probability matrix M is also referred to as a first transition probability matrix.
  • the calculation unit 130a totals the combination of the crack damage degree and the peeled reinforcing bar exposure damage degree in a predetermined period unit. An example of aggregation is shown.
  • FIG. 19 is a diagram showing an example of the aggregation method of the second embodiment.
  • the tabulation table 300 shows the relationship between the combination of the crack damage degree and the peeled reinforcing bar exposure damage degree and the period unit.
  • the period unit in FIG. 19 is 5 years. The reason is that it is inspected every five years.
  • the period unit is not limited to 5 years.
  • the calculation unit 130a calculates the ratio based on the number of cases so that the total in the horizontal direction becomes 1 for each period unit. For example, when the service life is 0 to 5 years, the ratio of the number of combinations of the crack damage degree “a” and the peeled reinforcing bar exposure damage degree “a” is 0.8.
  • the calculation unit 130a may increase the number of records of the inspection result information 111 and total the combination of the crack damage degree and the peeled reinforcing bar exposure damage degree in units of periods. For example, the calculation unit 130a duplicates 10 records of the control number “1001-1”. The calculation unit 130a executes the aggregation process including the duplicated record.
  • Step S23 The calculation unit 130a calculates the transition probability matrix M in which the transition probability matrix M is adjusted based on the inspection result information 111. Specifically, the calculation unit 130a uses the transition probability matrix M of the equation (6) so that the ratio value calculated in step S22 and the value of the existence probability matrix N (x) of the equation (6) approximate each other. Adjust the value of.
  • the transition probability matrix M is the transition probability matrix M of FIG.
  • the calculation unit 130a can adjust the value of the transition probability matrix M by using the matrix operation and the calculation library. Further, for example, the calculation unit 130a can adjust the value of the transition probability matrix M by minimizing the sum of the square errors by using the least squares method under the constraint condition.
  • the constraint condition is "each transition probability is 0 or more and 1 or less, the transition probability in the direction in which the transition is not allowed is 0, and the total of the probability of transition from a certain cell and the probability of remaining is 1". Is.
  • the value of the transition probability matrix M may be adjusted by the solver, which is a function provided by Excel of Microsoft (registered trademark). For example, a solver is used to adjust the value of the transition probability matrix M so that the least squares error is minimized.
  • the adjusted transition probability matrix M is also referred to as a second transition probability matrix. Further, the adjusted transition probability matrix M may be considered as information for deriving the degree of damage in the future service period in each of the plurality of deformations obtained based on the inspection result information 111.
  • Step S24 The calculation unit 130a calculates the existence probability for each service period using the formula (7).
  • M in Eq. (7) is the transition probability matrix adjusted in step S23.
  • x (0) indicates the current year. That is, x (0) indicates the year in which the process of step S24 is executed. Therefore, N (x (0)) indicates the current existence probability matrix.
  • Step S25 The generation unit 140a generates prediction information. Forecast information is illustrated.
  • FIG. 20 is a diagram showing the prediction information of the second embodiment.
  • the prediction information 310 is information indicating the calculation result of the calculation unit 130a. As for the number of years of service, the current year may be expressed as 0 year, and the degree of damage from 0 year to the year obtained by subtracting the current year from the final year of the plan may be indicated. In this way, the generation unit 140a generates the prediction information 310 based on the adjusted transition probability matrix M and the existence probability matrix N (x).
  • the identification unit 150a specifies the state for each service period by using the prediction information 310.
  • the specific unit 150a specifies the state of the maximum value.
  • the specific unit 150a specifies the maximum value (d, c) in the service life of “35 years”. Further, when the maximum value is equal to or greater than the threshold value, the specific unit 150a may specify the state of the maximum value. Further, the identification unit 150a may specify the state based on the average value or the median value of the existence probability matrix.
  • the specifying unit 150a specifies the repair timing based on the repair determination information 112 and the prediction information 310. For example, the specific unit 150a specifies that the service life "35 years" is the repair timing based on the repair determination information 112 and the prediction information 310.
  • the specifying portion 150a specifies the repair method based on the degree of crack damage and the degree of exposed rebar exposed damage at the repair timing and the repair method information 113.
  • Step S29 The generation unit 140a generates the repair plan information 210 based on the information specified by the specific unit 150a.
  • the output unit 160 outputs the repair plan information 210.
  • the administrator may create the repair determination information 112 and the repair method information 113 by using a computer with reference to the prediction information 310.
  • the manager creates the repair determination information 112 that requires repair of a minor damage stage.
  • the manager creates repair determination information 112 for suppressing the rapid progress of the peeled reinforcing bar exposure with reference to the prediction information 310.
  • the manager may create the repair determination information 112 corresponding to the civil engineering structure with reference to the prediction information 310.
  • the output unit 160 may output that the fatigue of concrete is large when the downward transition probability is large. Further, for example, the output unit 160 may output that the influence of the alkaline aggregate reaction is large when the transition probability in the right direction is large.
  • the information processing apparatus 100a can specify the repair timing without creating the teacher data.
  • the transition direction is taken into consideration in the transition probability matrix M.
  • the information processing device 100a can generate repair plan information 210 having a high effect of preventive maintenance.
  • the calculation unit 130a may multiply the value of each cell of the existence probability matrix N (x) by the number of civil engineering structures. Then, the output unit 160 may output the number of structures existing in each cell as a prediction result of the deterioration state. As a result, the user can recognize the number of civil engineering structures that need to be repaired at an arbitrary service life by referring to the prediction result of the deterioration state.
  • the generation unit 140a includes the repair cost obtained by multiplying the average value of the widths and lengths of the plurality of civil engineering structures by the repair unit price associated with the repair method information 113 in the repair plan information 210. May be good.
  • FIG. 21 is a functional block diagram showing the configuration of the information processing apparatus according to the third embodiment.
  • the configuration of FIG. 21, which is the same as the configuration shown in FIG. 1, has the same reference numerals as those shown in FIG.
  • the information processing device 100a has a generation unit 140b, a specific unit 150b, and an output unit 160b. The functions of the generation unit 140b, the specific unit 150b, and the output unit 160b will be described later.
  • the repair timing was specified.
  • the generation unit 140b generates planning information indicating the plan up to the end year of the planning period regardless of the presence or absence of repair. Therefore, the specific unit 150b specifies whether or not to repair at a future service period within a predetermined period based on the repair determination information 112 and the prediction information.
  • the predetermined period is the above-mentioned planned period.
  • the information indicating whether or not to repair during the future service period within the period is the plan information. Illustrate planning information.
  • FIG. 22 is a diagram showing an example of the plan information of the third embodiment.
  • the plan information 400 may be referred to as a repair plan primary list.
  • the plan information 400 of FIG. 22 shows the plan of the control number “1001-1”.
  • the generation unit 140b generates the plan information 400 based on the prediction information 200, the repair determination information 112, and the repair method information 113. Further, for example, the generation unit 140b generates the plan information 400 based on the prediction information 310, the repair determination information 112, and the repair method information 113.
  • FIG. 23 is a flowchart showing an example of processing executed by the information processing apparatus according to the third embodiment.
  • the generation unit 140b generates planning information of a plurality of civil engineering structures.
  • the generation method is as described above.
  • the generation unit 140b stores the planning information of a plurality of civil engineering structures in the storage unit 110.
  • the specific unit 150b acquires the planning information of one civil engineering structure.
  • the identification unit 150b uses the planning information to specify the repair timing when a predetermined constraint condition is satisfied and the life cycle cost in the planning period is minimized by the objective function.
  • constraints include a budget limit per year, an acceptable damage limit, and so on.
  • the identification unit 150b may use an optimization method such as a steepest descent method or a genetic algorithm.
  • the specific portion 150b specifies the repair timing for all the civil engineering structures.
  • the output unit 160b outputs the repair timing of all the civil engineering structures.
  • the information processing apparatus 100b can specify the repair timing in consideration of the constraint conditions.
  • 2035 was specified as the repair timing.
  • the year after 2035 is specified as the repair timing by considering the constraint condition.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

An information processing device (100) includes: an acquiring unit (120) for acquiring inspection result information (111) indicating a plurality of degrees of damage corresponding to a plurality of deformations of each of a plurality of parts of a civil engineering structure inspected in the past, and a plurality of in-service periods corresponding to the plurality of parts, and maintenance determination information (112) indicating whether maintenance is to be performed, in accordance with a combination of the respective degrees of damage of the plurality of deformations; a generating unit (140) for generating predicted information indicating the degree of damage in a future in-service period, for each of the plurality of deformations, using information for deriving the degree of damage in a future in-service period for each of the plurality of deformations, obtained on the basis of the inspection result information (111); and an identifying unit (150) for identifying the maintenance timing on the basis of the maintenance determination information (112) and the predicted information.

Description

情報処理装置、特定方法、及び特定プログラムInformation processing device, specific method, and specific program
 本発明は、情報処理装置、特定方法、及び特定プログラムに関する。 The present invention relates to an information processing device, a specific method, and a specific program.
 土木構造物の補修工事計画を立案する場合、土木構造物の点検により得た点検データに基づいて補修の要否が決定される場合がある。
 例えば、土木構造物は、橋梁である。ここで、非特許文献1には、日本における橋梁の点検要領が記載されている。土木構造物を点検することで、複数の部分に対する複数の変状のそれぞれの損傷度が得られる。しかし、損傷度に基づいて、一意に補修の要否を決定することはできない。理由は、高度な専門性を有する管理者が構造形式、材料、交通量、劣化速度などの条件を基に補修の要否を判断する必要があるからである。また、土木構造物は、様々な環境に設置されている。そのため、判断手順及び判断基準を予め決めることも、困難である。このように、補修の要否を判断することは、難しい。
When formulating a repair work plan for civil engineering structures, the necessity of repairs may be determined based on the inspection data obtained from the inspection of civil engineering structures.
For example, a civil engineering structure is a bridge. Here, Non-Patent Document 1 describes a procedure for inspecting bridges in Japan. By inspecting the civil engineering structure, the degree of damage of each of the multiple deformations to the multiple parts can be obtained. However, it is not possible to uniquely determine the necessity of repair based on the degree of damage. The reason is that a highly specialized manager needs to judge the necessity of repair based on conditions such as structural type, material, traffic volume, and deterioration rate. In addition, civil engineering structures are installed in various environments. Therefore, it is also difficult to determine the judgment procedure and the judgment criteria in advance. In this way, it is difficult to determine the necessity of repair.
 そこで、補修の要否を判定するシステムが提案されている(特許文献1を参照)。特許文献1の構造物補修施工計画支援システムは、補修の要否を示す教師値を含む情報に基づいて作成された学習データを用いて、判別境界線を構築する。構造物補修施工計画支援システムは、判別境界線を用いて補修工事の必要度を演算し、補修工事の必要度に基づいて補修の要否を判定する。 Therefore, a system for determining the necessity of repair has been proposed (see Patent Document 1). The structure repair construction plan support system of Patent Document 1 constructs a discrimination boundary line using learning data created based on information including a teacher value indicating the necessity of repair. The structure repair construction plan support system calculates the necessity of repair work using the discrimination boundary line, and determines the necessity of repair based on the necessity of repair work.
特開2007-140608号公報JP-A-2007-140608
 上記のシステムでは、学習データが作成されることで、補修の要否が判定される。補修が判定されることは、補修タイミングが特定されると考えてもよい。
 ここで、補修の要否を示す教師値を含む情報は、教師データと呼ぶ。例えば、学習データを作成するための教師データは、管理者によって作成される。教師データを作成することは、管理者の負担を大きくする。そのため、教師データを作成しないで、補修タイミングを特定することが、望ましい。しかし、教師データを作成しないで、補修タイミングをどのように特定するのかが問題である。
In the above system, the necessity of repair is determined by creating learning data. The determination of repair may be considered to specify the repair timing.
Here, the information including the teacher value indicating the necessity of repair is called teacher data. For example, teacher data for creating learning data is created by an administrator. Creating teacher data increases the burden on administrators. Therefore, it is desirable to specify the repair timing without creating teacher data. However, the problem is how to specify the repair timing without creating teacher data.
 本発明の目的は、教師データを作成しないで、補修タイミングを特定することである。 An object of the present invention is to specify the repair timing without creating teacher data.
 本発明の一態様に係る情報処理装置が提供される。情報処理装置は、過去に点検された土木構造物の複数の部分のそれぞれの複数の変状に対応する複数の損傷度と前記複数の部分に対応する複数の供用期間とを示す点検結果情報と、前記複数の変状のそれぞれの損傷度の組合せに応じて補修するか否かを示す補修判定情報とを取得する取得部と、前記点検結果情報に基づいて得られた、前記複数の変状のそれぞれにおける将来の供用時期の損傷度を導くための情報を用いて、前記複数の変状のそれぞれにおける将来の供用時期の損傷度を示す予測情報を生成する生成部と、前記補修判定情報と前記予測情報とに基づいて、補修タイミングを特定する特定部と、を有する。 An information processing device according to one aspect of the present invention is provided. The information processing device includes inspection result information indicating a plurality of damage degrees corresponding to each of a plurality of deformations of a plurality of parts of a civil engineering structure inspected in the past and a plurality of service periods corresponding to the plurality of parts. , An acquisition unit that acquires repair determination information indicating whether or not to repair according to the combination of damage degrees of each of the plurality of deformations, and the plurality of deformations obtained based on the inspection result information. Using the information for deriving the damage degree of the future service time in each of the above, the generation unit that generates the prediction information indicating the damage degree of the future service time in each of the plurality of deformations, and the repair determination information. It has a specific unit that specifies the repair timing based on the prediction information.
 本発明によれば、教師データを作成しないで、補修タイミングを特定できる。 According to the present invention, the repair timing can be specified without creating teacher data.
実施の形態1の情報処理装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the information processing apparatus of Embodiment 1. FIG. 実施の形態1の情報処理装置が有するハードウェアの構成を示す図である。It is a figure which shows the structure of the hardware which the information processing apparatus of Embodiment 1 has. 実施の形態1の点検結果情報の例を示す図である。It is a figure which shows the example of the inspection result information of Embodiment 1. FIG. (A),(B)は、実施の形態1の補修判定情報の例を示す図である。(A) and (B) are diagrams showing an example of repair determination information of the first embodiment. 実施の形態1の補修工法情報の例を示す図である。It is a figure which shows the example of the repair method information of Embodiment 1. 実施の形態1の情報処理装置が実行する処理の例を示すフローチャートである。It is a flowchart which shows the example of the process which the information processing apparatus of Embodiment 1 executes. (A),(B)は、実施の形態1の複数の近似関数を算出する方法を説明するための図である。(A) and (B) are diagrams for explaining a method of calculating a plurality of approximate functions of the first embodiment. 実施の形態1の近似関数を補正する場合の例を示す図である。It is a figure which shows the example in the case of correcting the approximate function of Embodiment 1. (A),(B)は、実施の形態1の供用年数と将来の損傷度との対応関係を特定する方法を説明するための図である。(A) and (B) are diagrams for explaining a method of specifying a correspondence relationship between the service life of the first embodiment and the future damage degree. 実施の形態1の予測情報の例を示す図である。It is a figure which shows the example of the prediction information of Embodiment 1. FIG. 実施の形態1の補修計画情報の例を示す図である。It is a figure which shows the example of the repair plan information of Embodiment 1. FIG. 実施の形態2の情報処理装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the information processing apparatus of Embodiment 2. 実施の形態2の補修判定情報の例を示す図である。It is a figure which shows the example of the repair determination information of Embodiment 2. 実施の形態2の存在確率行列N(x)を示す図である。It is a figure which shows the existence probability matrix N (x) of Embodiment 2. 実施の形態2の遷移確率行列Mを示す図である。It is a figure which shows the transition probability matrix M of Embodiment 2. 実施の形態2の遷移方向を示す図である。It is a figure which shows the transition direction of Embodiment 2. 実施の形態2の遷移方向が考慮された遷移確率行列Mを示す図である。It is a figure which shows the transition probability matrix M in consideration of the transition direction of Embodiment 2. 実施の形態2の情報処理装置が実行する処理の例を示すフローチャートである。It is a flowchart which shows the example of the process which the information processing apparatus of Embodiment 2 executes. 実施の形態2の集計方法の例を示す図である。It is a figure which shows the example of the aggregation method of Embodiment 2. 実施の形態2の予測情報を示す図である。It is a figure which shows the prediction information of Embodiment 2. 実施の形態3の情報処理装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the information processing apparatus of Embodiment 3. 実施の形態3の計画情報の例を示す図である。It is a figure which shows the example of the plan information of Embodiment 3. 実施の形態3の情報処理装置が実行する処理の例を示すフローチャートである。It is a flowchart which shows the example of the process which the information processing apparatus of Embodiment 3 executes.
 以下、図面を参照しながら実施の形態を説明する。以下の実施の形態は、例にすぎず、本発明の範囲内で種々の変更が可能である。また、以下の説明では、土木構造物は、コンクリート橋梁とする。しかし、土木構造物は、鋼橋、トンネル、舗装面などでもよい。 Hereinafter, embodiments will be described with reference to the drawings. The following embodiments are merely examples, and various modifications can be made within the scope of the present invention. Further, in the following description, the civil engineering structure will be a concrete bridge. However, the civil engineering structure may be a steel bridge, a tunnel, a pavement surface, or the like.
実施の形態1.
 図1は、実施の形態1の情報処理装置の構成を示す機能ブロック図である。情報処理装置100は、特定方法を実行する装置である。情報処理装置100は、記憶部110、取得部120、算出部130、生成部140、特定部150、及び出力部160を有する。
Embodiment 1.
FIG. 1 is a functional block diagram showing the configuration of the information processing apparatus according to the first embodiment. The information processing device 100 is a device that executes a specific method. The information processing device 100 includes a storage unit 110, an acquisition unit 120, a calculation unit 130, a generation unit 140, a specific unit 150, and an output unit 160.
 ここで、情報処理装置100が有するハードウェアについて説明する。
 図2は、実施の形態1の情報処理装置が有するハードウェアの構成を示す図である。情報処理装置100は、プロセッサ101、揮発性記憶装置102、及び不揮発性記憶装置103を有する。
Here, the hardware included in the information processing apparatus 100 will be described.
FIG. 2 is a diagram showing a hardware configuration of the information processing apparatus according to the first embodiment. The information processing device 100 includes a processor 101, a volatile storage device 102, and a non-volatile storage device 103.
 プロセッサ101は、情報処理装置100全体を制御する。例えば、プロセッサ101は、CPU(Central Processing Unit)、又はFPGA(Field Programmable Gate Array)などである。プロセッサ101は、マルチプロセッサでもよい。情報処理装置100は、処理回路によって実現されてもよく、又は、ソフトウェア、ファームウェア若しくはそれらの組み合わせによって実現されてもよい。なお、処理回路は、単一回路又は複合回路でもよい。 The processor 101 controls the entire information processing device 100. For example, the processor 101 is a CPU (Central Processing Unit), an FPGA (Field Programmable Gate Array), or the like. The processor 101 may be a multiprocessor. The information processing apparatus 100 may be realized by a processing circuit, or may be realized by software, firmware, or a combination thereof. The processing circuit may be a single circuit or a composite circuit.
 揮発性記憶装置102は、情報処理装置100の主記憶装置である。例えば、揮発性記憶装置102は、RAM(Random Access Memory)である。不揮発性記憶装置103は、情報処理装置100の補助記憶装置である。例えば、不揮発性記憶装置103は、HDD(Hard Disk Drive)、又はSSD(Solid State Drive)である。 The volatile storage device 102 is the main storage device of the information processing device 100. For example, the volatile storage device 102 is a RAM (Random Access Memory). The non-volatile storage device 103 is an auxiliary storage device of the information processing device 100. For example, the non-volatile storage device 103 is an HDD (Hard Disk Drive) or an SSD (Solid State Drive).
 図1に戻って、情報処理装置100が有する機能ブロックを説明する。
 記憶部110は、揮発性記憶装置102又は不揮発性記憶装置103に確保した記憶領域として実現してもよい。
 取得部120、算出部130、生成部140、特定部150、及び出力部160の一部又は全部は、プロセッサ101によって実現してもよい。取得部120、算出部130、生成部140、特定部150、及び出力部160の一部又は全部は、プロセッサ101が実行するプログラムのモジュールとして実現してもよい。例えば、プロセッサ101が実行するプログラムは、特定プログラムとも言う。例えば、特定プログラムは、記録媒体に記録されている。
Returning to FIG. 1, the functional block included in the information processing apparatus 100 will be described.
The storage unit 110 may be realized as a storage area reserved in the volatile storage device 102 or the non-volatile storage device 103.
A part or all of the acquisition unit 120, the calculation unit 130, the generation unit 140, the specific unit 150, and the output unit 160 may be realized by the processor 101. A part or all of the acquisition unit 120, the calculation unit 130, the generation unit 140, the specific unit 150, and the output unit 160 may be realized as modules of a program executed by the processor 101. For example, the program executed by the processor 101 is also referred to as a specific program. For example, a specific program is recorded on a recording medium.
 記憶部110は、点検結果情報111、補修判定情報112、及び補修工法情報113を記憶する。点検結果情報111は、点検結果データベースと呼んでもよい。補修判定情報112は、補修判定データベースと呼んでもよい。補修工法情報113は、補修工法データベースと呼んでもよい。まず、点検結果情報111を説明する。 The storage unit 110 stores the inspection result information 111, the repair determination information 112, and the repair method information 113. The inspection result information 111 may be referred to as an inspection result database. The repair determination information 112 may be referred to as a repair determination database. The repair method information 113 may be referred to as a repair method database. First, the inspection result information 111 will be described.
 図3は、実施の形態1の点検結果情報の例を示す図である。点検結果情報111は、過去に点検された土木構造物の複数の部分のそれぞれの複数の変状に対応する複数の損傷度と複数の部分に対応する複数の供用期間とを示す。また、点検結果情報111は、過去に点検された複数の土木構造物の複数の部分のそれぞれの複数の変状に対応する複数の損傷度と複数の部分に対応する複数の供用期間とを示してもよい。 FIG. 3 is a diagram showing an example of inspection result information of the first embodiment. The inspection result information 111 indicates a plurality of damage degrees corresponding to a plurality of deformations of each of a plurality of parts of the civil engineering structure inspected in the past and a plurality of service periods corresponding to the plurality of parts. Further, the inspection result information 111 indicates a plurality of damage degrees corresponding to a plurality of deformations of each of a plurality of parts of the plurality of civil engineering structures inspected in the past and a plurality of service periods corresponding to the plurality of parts. You may.
 詳細には、点検結果情報111は、架設年、点検年、供用年数、管理番号、部分、及び変状毎の損傷度の項目を有する。
 架設年の項目は、架設された年を示す。点検年の項目は、点検された年を示す。供用年数の項目は、架設年から、点検が行われた時点である点検実施年までの期間を示す。供用年数の項目は、供用月数の項目又は供用日数の項目に変更されてもよい。ここで、供用年数、供用月数、又は供用日数は、供用期間とも言う。
Specifically, the inspection result information 111 has items of the year of installation, the year of inspection, the number of years of service, the control number, the part, and the degree of damage for each deformation.
The erection year item indicates the year of erection. The inspection year item indicates the year of inspection. The item of service years indicates the period from the year of erection to the year of inspection, which is the time when the inspection was carried out. The item of the number of years of service may be changed to the item of the number of months of service or the item of the number of days of service. Here, the number of years of service, the number of months of service, or the number of days of service is also referred to as the service period.
 管理番号の項目は、点検された部分の識別子を示す。また、管理番号の項目には、径間の識別子が含まれてもよい。部分の項目は、点検された部分の名称を示す。
 変状毎の損傷度の項目は、点検結果を示す。図3は、変状の例として、ひび割れ、及び剥離鉄筋露出を示している。例えば、変状は、うき、腐食などでもよい。損傷度は、非特許文献1の付録-1の2頁に記載されている損傷度で表される。すなわち、損傷度は、a~eの5段階で表される。損傷度の表現方法は、これに限らない。例えば、損傷度は、数字で表されてもよい。また、例えば、損傷度は、各種センサ、カメラ画像、画像処理技術を用いることで得られる損傷度の区分でもよい。
The control number item indicates the identifier of the inspected part. Further, the item of the control number may include an identifier of the span. The part item indicates the name of the inspected part.
The item of the degree of damage for each deformation shows the inspection result. FIG. 3 shows cracks and exposed rebars as an example of deformation. For example, the deformation may be swelling, corrosion, or the like. The degree of damage is represented by the degree of damage described on page 2 of Appendix-1 of Non-Patent Document 1. That is, the degree of damage is represented by five stages from a to e. The method of expressing the degree of damage is not limited to this. For example, the degree of damage may be expressed numerically. Further, for example, the degree of damage may be classified into the degree of damage obtained by using various sensors, camera images, and image processing techniques.
 例えば、点検結果情報111は、管理番号“1001-1”に対応する部分“床版”が2015年に点検されたことを示す。そして、点検結果情報111は、点検結果として、ひび割れ損傷度がb、剥離鉄筋露出損傷度がaであることを示している。 For example, the inspection result information 111 indicates that the part "floor slab" corresponding to the control number "1001-1" was inspected in 2015. The inspection result information 111 indicates that the crack damage degree is b and the peeled reinforcing bar exposure damage degree is a as the inspection result.
 また、点検結果には、諸元データが含まれてもよい。諸元データとは、土木構造物の設計情報、環境情報などである。例えば、諸元データとは、橋梁長さ、幅員、材料、構造形式、塩害環境区分、交差物、交通量などである。また、諸元データは、点検結果に含まれていなくてもよい。すなわち、諸元データは、独立したデータとして、記憶部110に格納されてもよい。また、諸元データは、土木構造物と対応関係を有してもよい。また、情報処理装置100は、諸元データを検索条件として、点検結果情報111の中の情報を検索する機能、及び点検結果情報111の中から当該検索条件に合致する情報を抽出する機能を有してもよい。 In addition, the inspection result may include specification data. The specification data includes design information of civil engineering structures, environmental information, and the like. For example, the specification data are bridge length, width, material, structural type, salt damage environment classification, intersection, traffic volume, and the like. Further, the specification data does not have to be included in the inspection result. That is, the specification data may be stored in the storage unit 110 as independent data. In addition, the specification data may have a correspondence relationship with the civil engineering structure. Further, the information processing device 100 has a function of searching for information in the inspection result information 111 using the specification data as a search condition, and a function of extracting information matching the search condition from the inspection result information 111. You may.
 次に、補修判定情報112を説明する。
 図4(A),(B)は、実施の形態1の補修判定情報の例を示す図である。補修判定情報112は、複数の変状のそれぞれの損傷度の組合せに応じて補修するか否かを示す。補修判定情報112は、次のように表現してもよい。補修判定情報112は、複数の変状のそれぞれの損傷度の組合せに応じて対象部分を補修するか否かを示す。具体的には、図4(A)の補修判定情報112は、ひび割れ損傷度と剥離鉄筋露出損傷度との対応関係を示している。すなわち、図4の補修判定情報112は、2つの変状の損傷度の対応関係を示している。補修判定情報112は、3つ以上の変状の損傷度の対応関係を示してもよい。
Next, the repair determination information 112 will be described.
4 (A) and 4 (B) are diagrams showing an example of repair determination information according to the first embodiment. The repair determination information 112 indicates whether or not to repair according to the combination of the damage degrees of each of the plurality of deformations. The repair determination information 112 may be expressed as follows. The repair determination information 112 indicates whether or not to repair the target portion according to the combination of the damage degrees of each of the plurality of deformations. Specifically, the repair determination information 112 in FIG. 4A shows the correspondence between the degree of crack damage and the degree of exposed rebar exposure damage. That is, the repair determination information 112 in FIG. 4 shows the correspondence between the damage degrees of the two deformations. The repair determination information 112 may indicate a correspondence relationship between the damage degrees of three or more deformations.
 補修判定情報112は、2つの変状のそれぞれの損傷度の組合せに応じて補修するか否かを示す。例えば、ひび割れ損傷度がa、剥離鉄筋露出損傷度がcである場合、補修判定情報112は、補修不要を示す。また、例えば、ひび割れ損傷度がe、剥離鉄筋露出損傷度がaである場合、補修判定情報112は、補修が必要であることを示す。 The repair determination information 112 indicates whether or not to repair according to the combination of the degree of damage of each of the two deformations. For example, when the crack damage degree is a and the peeled reinforcing bar exposure damage degree is c, the repair determination information 112 indicates that repair is unnecessary. Further, for example, when the crack damage degree is e and the peeled reinforcing bar exposure damage degree is a, the repair determination information 112 indicates that repair is necessary.
 情報処理装置100は、補修判定情報112を用いて、補修の要否を判定できる。すなわち、情報処理装置100は、2つの変状の損傷度の対応関係に基づいて、補修の要否を判定できる。
 なお、補修判定情報112は、予め作成される。例えば、高度な専門性を有する管理者は、コンピュータを用いて、補修判定情報112を作成する。また、例えば、管理者は、土木構造物の種類、構造形式、材料の特性などに基づく劣化プロセスの知見、及び補修計画を作成する目的を考慮して、補修判定情報112を作成する。
The information processing device 100 can determine the necessity of repair by using the repair determination information 112. That is, the information processing device 100 can determine the necessity of repair based on the correspondence relationship between the damage degrees of the two deformations.
The repair determination information 112 is created in advance. For example, a highly specialized manager uses a computer to create repair determination information 112. Further, for example, the manager creates the repair determination information 112 in consideration of the knowledge of the deterioration process based on the type, structural type, material characteristics, etc. of the civil engineering structure, and the purpose of creating the repair plan.
 ここで、補修判定情報112は、補修判定マトリクスと呼んでもよい。そのため、補修判定情報112は、複数のセルを含んでいると考えてもよい。
 土木構造物毎に補修判定情報が、存在してもよい。例えば、土木構造物が鋼橋である場合、補修判定情報は、劣化の損傷度と腐食の損傷度との対応関係を示す。また、例えば、土木構造物がコンクリート壁面である場合、補修判定情報は、ひび割れの損傷度と漏水の損傷度との対応関係を示す。
Here, the repair determination information 112 may be referred to as a repair determination matrix. Therefore, the repair determination information 112 may be considered to include a plurality of cells.
Repair judgment information may exist for each civil engineering structure. For example, when the civil engineering structure is a steel bridge, the repair determination information indicates the correspondence between the degree of damage of deterioration and the degree of damage of corrosion. Further, for example, when the civil engineering structure is a concrete wall surface, the repair determination information indicates the correspondence between the degree of damage of cracks and the degree of damage of water leakage.
 土木構造物毎の補修判定情報では、土木構造物の構造形式、使用材料、使用環境などの条件により、補修の要否がそれぞれ異なってもよい。例えば、図4(B)は、剥離鉄筋露出が生じることでコンクリート片の落下によって第3者に被害が発生する可能性がある跨道橋の補修判定情報112aを示している。補修判定情報112aは、剥離鉄筋露出損傷度が小さい場合でも、ひび割れが存在する場合は補修することを示している。 In the repair judgment information for each civil engineering structure, the necessity of repair may differ depending on the conditions such as the structural type of the civil engineering structure, the materials used, and the environment in which it is used. For example, FIG. 4B shows repair determination information 112a of an overpass, which may cause damage to a third party due to the fall of a concrete piece due to the exposure of the peeled reinforcing bar. The repair determination information 112a indicates that even if the degree of exposure damage to the peeled reinforcing bar is small, the repair is performed if cracks are present.
 次に、補修工法情報113を説明する。
 図5は、実施の形態1の補修工法情報の例を示す図である。補修工法情報113は、補修タイミングの補修工法を示す。具体的には、図5の補修工法情報113は、ひび割れ損傷度と剥離鉄筋露出損傷度との対応関係を示している。補修工法情報113は、補修工法マトリクスと呼んでもよい。そのため、補修工法情報113は、複数のセルを含んでいると考えてもよい。
Next, the repair method information 113 will be described.
FIG. 5 is a diagram showing an example of repair method information of the first embodiment. The repair method information 113 indicates a repair method at the repair timing. Specifically, the repair method information 113 in FIG. 5 shows the correspondence between the degree of crack damage and the degree of exposed rebar exposure damage. The repair method information 113 may be referred to as a repair method matrix. Therefore, the repair method information 113 may be considered to include a plurality of cells.
 例えば、ひび割れ損傷度がa、剥離鉄筋露出損傷度がcである場合、補修判定情報112が補修不要を示しているので、補修工法情報113には、補修工法が示されていない。また、例えば、ひび割れ損傷度がe、剥離鉄筋露出損傷度がaである場合、ひび割れが進んでいるので、補修工法情報113は、ひび割れ注入工法を示している。また、例えば、ひび割れ損傷度がe、剥離鉄筋露出損傷度がeである場合、ひび割れ及び剥離鉄筋露出が進んでいるので、補修工法情報113は、打替えを示している。 For example, when the crack damage degree is a and the peeled reinforcing bar exposure damage degree is c, the repair judgment information 112 indicates that repair is unnecessary, so the repair method information 113 does not indicate the repair method. Further, for example, when the crack damage degree is e and the peeled reinforcing bar exposure damage degree is a, the crack has progressed, so that the repair method information 113 indicates the crack injection method. Further, for example, when the crack damage degree is e and the peeled reinforcing bar exposure damage degree is e, the crack and the peeled reinforcing bar are exposed, so that the repair method information 113 indicates replacement.
 補修工法情報113が示す各補修工法には、補修単価、補修効果、所要期間などの情報が対応付けられてもよい。例えば、ひび割れ損傷度がe、剥離鉄筋露出損傷度がaに対応する補修工法に対応付けられている補修効果には、ひび割れ注入工法を実施することで、ひび割れ損傷度がa、剥離鉄筋露出損傷度がaである状態に戻ることが示される。
 また、補修工法情報113が示す各セルは、効果の異なる複数の工法を示してもよい。情報処理装置100は、複数の工法の中から1つの補修工法を選択してもよい。
Each repair method indicated by the repair method information 113 may be associated with information such as a repair unit price, a repair effect, and a required period. For example, for the repair effect associated with the repair method corresponding to the crack damage degree e and the peeled reinforcing bar exposed damage degree a, the crack injection method is carried out so that the crack damage degree is a and the peeled reinforcing bar exposed damage is exposed. It is shown that the degree returns to the state of a.
Further, each cell indicated by the repair method information 113 may indicate a plurality of methods having different effects. The information processing apparatus 100 may select one repair method from a plurality of methods.
 取得部120は、点検結果情報111、補修判定情報112、及び補修工法情報113を取得する。例えば、取得部120は、点検結果情報111、補修判定情報112、及び補修工法情報113を記憶部110から取得する。ここで、例えば、点検結果情報111、補修判定情報112、及び補修工法情報113は、クラウドサーバなどの外部装置に格納されてもよい。点検結果情報111、補修判定情報112、及び補修工法情報113が、外部装置に格納されている場合、取得部120は、点検結果情報111、補修判定情報112、及び補修工法情報113を外部装置から取得する。 The acquisition unit 120 acquires the inspection result information 111, the repair determination information 112, and the repair method information 113. For example, the acquisition unit 120 acquires the inspection result information 111, the repair determination information 112, and the repair method information 113 from the storage unit 110. Here, for example, the inspection result information 111, the repair determination information 112, and the repair method information 113 may be stored in an external device such as a cloud server. When the inspection result information 111, the repair judgment information 112, and the repair method information 113 are stored in the external device, the acquisition unit 120 obtains the inspection result information 111, the repair judgment information 112, and the repair method information 113 from the external device. get.
 算出部130の機能は、後で説明する。
 生成部140は、点検結果情報111に基づいて得られた、複数の変状のそれぞれにおける将来の供用時期の損傷度を導くための情報を用いて、予測情報を生成する。なお、予測情報は、複数の変状のそれぞれにおける将来の供用時期の損傷度を示す。
The function of the calculation unit 130 will be described later.
The generation unit 140 generates prediction information by using the information obtained based on the inspection result information 111 for deriving the degree of damage in the future service period in each of the plurality of deformations. In addition, the prediction information indicates the degree of damage in the future service period in each of the plurality of deformations.
 特定部150は、補修判定情報112と予測情報とに基づいて、補修タイミングを特定する。また、特定部150は、補修工法情報113に基づいて、補修タイミングの補修工法を特定する。
 出力部160は、補修タイミングを示す情報を出力する。
The identification unit 150 specifies the repair timing based on the repair determination information 112 and the prediction information. Further, the specifying unit 150 specifies the repair method at the repair timing based on the repair method information 113.
The output unit 160 outputs information indicating the repair timing.
 次に、情報処理装置100が実行する処理について、フローチャートを用いて説明する。
 図6は、実施の形態1の情報処理装置が実行する処理の例を示すフローチャートである。
 (ステップS11)取得部120は、点検結果情報111を記憶部110から取得する。
 (ステップS12)算出部130は、点検結果情報111に含まれている複数の供用年数と複数の変状に対応する複数の損傷度とに基づいて、複数の近似関数を算出する。ここで、複数の近似関数は、劣化モデルとも言う。また、複数の近似関数は、点検結果情報111に基づいて得られた、複数の変状のそれぞれにおける将来の供用時期の損傷度を導くための情報と考えてもよい。具体的に複数の近似関数を算出する方法を説明する。
Next, the process executed by the information processing apparatus 100 will be described with reference to a flowchart.
FIG. 6 is a flowchart showing an example of processing executed by the information processing apparatus of the first embodiment.
(Step S11) The acquisition unit 120 acquires the inspection result information 111 from the storage unit 110.
(Step S12) The calculation unit 130 calculates a plurality of approximation functions based on the plurality of service years included in the inspection result information 111 and the plurality of damage degrees corresponding to the plurality of deformations. Here, the plurality of approximation functions are also referred to as deterioration models. Further, the plurality of approximation functions may be considered as information for deriving the degree of damage in the future service period in each of the plurality of deformations obtained based on the inspection result information 111. Specifically, a method of calculating a plurality of approximate functions will be described.
 図7(A),(B)は、実施の形態1の複数の近似関数を算出する方法を説明するための図である。図7(A)の縦軸は、ひび割れ損傷度を示している。説明の便宜上、図7(A)の縦軸は、a~eを示している。しかし、図7(A)の縦軸は、1~5に変形してもよい。図7(A)の横軸は、供用年数を示している。 7 (A) and 7 (B) are diagrams for explaining a method of calculating a plurality of approximate functions of the first embodiment. The vertical axis of FIG. 7A shows the degree of crack damage. For convenience of explanation, the vertical axis of FIG. 7A shows a to e. However, the vertical axis of FIG. 7A may be transformed into 1 to 5. The horizontal axis of FIG. 7A shows the number of years of service.
 図7(A)は、点検結果情報111に含まれている供用年数とひび割れ損傷度との対応関係を示している。すなわち、図7(A)の各点は、点検結果情報111の各レコードに対応している。算出部130は、各点に近似する近似関数を算出する。算出部130は、公知の手法を用いて、近似関数を算出してもよい。例えば、算出部130は、最小二乗近似による1次近似直線を算出する。 FIG. 7A shows the correspondence between the service life and the degree of crack damage included in the inspection result information 111. That is, each point in FIG. 7A corresponds to each record of the inspection result information 111. The calculation unit 130 calculates an approximation function that approximates each point. The calculation unit 130 may calculate the approximate function by using a known method. For example, the calculation unit 130 calculates a linear approximation straight line by least squares approximation.
 図7(B)の縦軸は、剥離鉄筋露出損傷度を示している。説明の便宜上、図7(B)の縦軸は、a~eを示している。しかし、図7(B)の縦軸は、1~5に変形してもよい。図7(B)の横軸は、供用年数を示している。図7(B)は、点検結果情報111に含まれている供用年数と剥離鉄筋露出損傷度との対応関係を示している。すなわち、図7(B)の各点は、点検結果情報111の各レコードに対応している。算出部130は、各点に近似する近似関数を算出する。 The vertical axis of FIG. 7B shows the degree of exposed damage to the peeled reinforcing bar. For convenience of explanation, the vertical axis of FIG. 7B shows a to e. However, the vertical axis of FIG. 7B may be transformed into 1 to 5. The horizontal axis of FIG. 7B shows the number of years of service. FIG. 7B shows the correspondence between the service life included in the inspection result information 111 and the degree of exposure damage of the peeled reinforcing bar. That is, each point in FIG. 7B corresponds to each record of the inspection result information 111. The calculation unit 130 calculates an approximation function that approximates each point.
 このように、算出部130は、点検結果情報111に含まれている供用年数とひび割れ損傷度とに基づいて、式(1)を算出する。なお、xは、供用年数を示す。y1は、ひび割れ損傷度を示す。 In this way, the calculation unit 130 calculates the equation (1) based on the service life and the degree of crack damage included in the inspection result information 111. In addition, x indicates the number of years of service. y1 indicates the degree of crack damage.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、算出部130は、点検結果情報111に含まれている供用年数と剥離鉄筋露出損傷度とに基づいて、式(2)を算出する。なお、y2は、剥離鉄筋露出損傷度を示す。 Further, the calculation unit 130 calculates the formula (2) based on the service life and the degree of exposure damage of the peeled reinforcing bar included in the inspection result information 111. In addition, y2 indicates the degree of exposure damage of the peeled reinforcing bar.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、算出部130は、近似関数が点上に存在するように、近似関数を補正してもよい。 Further, the calculation unit 130 may correct the approximation function so that the approximation function exists on the point.
 図8は、実施の形態1の近似関数を補正する場合の例を示す図である。算出部130は、式(1)が点上に存在するように、式(1)の傾きと切片とのうちの少なくとも1つを補正する。 FIG. 8 is a diagram showing an example in the case of correcting the approximate function of the first embodiment. The calculation unit 130 corrects at least one of the slope and the intercept of the equation (1) so that the equation (1) exists on the point.
 次の処理を実行する前に、取得部120は、以下の処理の対象である土木構造物を示す情報を取得してもよい。例えば、取得部120は、ユーザの入力操作により、当該情報を取得する。また、情報処理装置100は、点検結果情報111に含まれている管理番号順に以下の処理を実行してもよい。以下の説明では、管理番号順に処理される場合を説明する。 Before executing the next process, the acquisition unit 120 may acquire information indicating the civil engineering structure that is the target of the following process. For example, the acquisition unit 120 acquires the information by a user input operation. Further, the information processing apparatus 100 may execute the following processes in the order of the control numbers included in the inspection result information 111. In the following description, a case where processing is performed in the order of control numbers will be described.
 (ステップS13)生成部140は、複数の近似関数に基づいて、予測情報を生成する。予測情報の生成方法を具体的に説明する。
 まず、生成部140は、複数の近似関数を用いて、供用年数と将来の損傷度との対応関係を特定する。
(Step S13) The generation unit 140 generates prediction information based on a plurality of approximation functions. The method of generating the prediction information will be specifically described.
First, the generation unit 140 uses a plurality of approximate functions to specify the correspondence between the service life and the future damage degree.
 図9(A),(B)は、実施の形態1の供用年数と将来の損傷度との対応関係を特定する方法を説明するための図である。図9(A)は、供用年数と将来のひび割れ損傷度との対応関係を特定する方法を説明するための図である。生成部140は、式(1)を用いて、供用年数と将来のひび割れ損傷度との対応関係を特定する。 9 (A) and 9 (B) are diagrams for explaining a method of specifying the correspondence relationship between the service life of the first embodiment and the future damage degree. FIG. 9A is a diagram for explaining a method of specifying a correspondence relationship between the service life and the degree of crack damage in the future. The generation unit 140 uses the formula (1) to specify the correspondence between the service life and the future degree of crack damage.
 図9(B)は、供用年数と将来の剥離鉄筋露出損傷度との対応関係を特定する方法を説明するための図である。生成部140は、式(2)を用いて、供用年数と将来の剥離鉄筋露出損傷度との対応関係を特定する。 FIG. 9B is a diagram for explaining a method of specifying the correspondence relationship between the service life and the degree of exposure damage of the peeled reinforcing bar in the future. The generation unit 140 uses the formula (2) to specify the correspondence between the service life and the degree of exposure damage to the peeled reinforcing bar in the future.
 図9(A),(B)の点線が示すように、生成部140は、切り上げ、四捨五入などを行い、近似直線によって得られる損傷度の区分を1つの区分に決定してもよい。例えば、図9(B)の場合、供用年数“25”~“40”が損傷度aに決定される。 As shown by the dotted lines in FIGS. 9A and 9B, the generation unit 140 may round up, round off, or the like to determine the damage degree classification obtained by the approximate straight line into one classification. For example, in the case of FIG. 9B, the service life “25” to “40” is determined as the damage degree a.
 このように、生成部140は、複数の近似関数を用いて、供用年数と将来の損傷度との対応関係を特定する。生成部140は、供用年数と将来の損傷度との対応関係を用いて、予測情報を生成する。 In this way, the generation unit 140 uses a plurality of approximate functions to specify the correspondence between the service life and the degree of damage in the future. The generation unit 140 generates prediction information using the correspondence between the service life and the future damage degree.
 図10は、実施の形態1の予測情報の例を示す図である。予測情報200は、管理番号、年度、供用年数、ひび割れ損傷度、及び剥離鉄筋露出損傷度の項目を有する。また、供用年数の項目は、将来の供用時期と表現してもよい。
 予測情報200は、管理番号“1001-1”の部分の将来の損傷度を示している。予測情報200は、5年毎の損傷度を示している。しかし、予測情報200は、1年毎の損傷度を示してもよい。予測情報200の供用年数は、現時点の年度(図10では、2015年)を0年と表記し、計画最終年(例えば、2070年)から現時点の年度を減算した年までの損傷度を示してもよい。
FIG. 10 is a diagram showing an example of the prediction information of the first embodiment. The prediction information 200 has items of control number, year, service life, crack damage degree, and peeled reinforcing bar exposure damage degree. In addition, the item of the number of years of service may be expressed as the future service period.
The prediction information 200 indicates the future damage degree of the part of the control number “1001-1”. Prediction information 200 shows the degree of damage every 5 years. However, the prediction information 200 may indicate the degree of damage for each year. For the service life of the forecast information 200, the current year (2015 in FIG. 10) is expressed as 0 year, and the degree of damage from the final year of the plan (for example, 2070) minus the current year is shown. May be good.
 (ステップS14)特定部150は、補修判定情報112と予測情報200とに基づいて、補修タイミングを特定する。例えば、特定部150は、補修判定情報112と予測情報200とに基づいて、2035年が補修タイミングであることを特定する。 (Step S14) The specifying unit 150 specifies the repair timing based on the repair determination information 112 and the prediction information 200. For example, the specific unit 150 identifies that 2035 is the repair timing based on the repair determination information 112 and the prediction information 200.
 (ステップS15)特定部150は、補修タイミングにおける、ひび割れ損傷度及び剥離鉄筋露出損傷度と、補修工法情報113とに基づいて、補修工法を特定する。例えば、特定部150は、2035年における、ひび割れ損傷度“c”及び剥離鉄筋露出損傷度“c”と、補修工法情報113とに基づいて、断面修復(小)を特定する。
 このように、情報処理装置100は、補修工法情報113を用いることで、補修タイミングの補修工法を特定できる。
 (ステップS16)生成部140は、特定部150が特定した情報に基づいて、補修計画情報を生成する。ここで、補修計画情報を例示する。
(Step S15) The specifying unit 150 specifies the repair method based on the degree of crack damage and the degree of exposed rebar exposed damage at the repair timing and the repair method information 113. For example, the specific portion 150 specifies the cross-section repair (small) based on the crack damage degree “c” and the peeled reinforcing bar exposure damage degree “c” in 2035 and the repair method information 113.
In this way, the information processing apparatus 100 can specify the repair method at the repair timing by using the repair method information 113.
(Step S16) The generation unit 140 generates repair plan information based on the information specified by the specific unit 150. Here, the repair plan information will be illustrated.
 図11は、実施の形態1の補修計画情報の例を示す図である。補修計画情報210は、管理番号、補修実施年、部分、補修工法、補修費用、補修実施時のひび割れ損傷度、及び補修実施時の剥離鉄筋露出損傷度の項目を有する。図11の補修計画情報210は、管理番号“1001-1”の部分の補修タイミングが2035年であることを示している。 FIG. 11 is a diagram showing an example of repair plan information of the first embodiment. The repair plan information 210 has items of control number, repair implementation year, part, repair method, repair cost, crack damage degree at the time of repair, and peeling reinforcing bar exposure damage degree at the time of repair. The repair plan information 210 in FIG. 11 indicates that the repair timing of the portion of the control number “1001-1” is 2035.
 補修単価、補修効果、所要期間などの情報が、補修工法情報113が示す各補修工法に対応付けられている場合、生成部140は、補修費用、所要期間などを補修計画情報210に含めてもよい。言い換えれば、補修工法情報113が示す補修タイミングの補修工法に、補修費用を算出するための情報が対応付けられている場合、生成部140は、補修費用などを補修計画情報210に含めてもよい。また、費用は、補修費用に限らない。例えば、損傷が生じた状態で供用を継続する場合に、損傷により生じうる損害の大きさと確率に基づいて、対策のための費用、損害の補償のための費用などが発生するとしてもよい。 When information such as the repair unit price, the repair effect, and the required period is associated with each repair method indicated by the repair method information 113, the generation unit 140 may include the repair cost, the required period, etc. in the repair plan information 210. Good. In other words, when the repair method of the repair timing indicated by the repair method information 113 is associated with the information for calculating the repair cost, the generation unit 140 may include the repair cost and the like in the repair plan information 210. .. Moreover, the cost is not limited to the repair cost. For example, when the service is continued in a damaged state, costs for countermeasures, costs for compensation for damages, and the like may be incurred based on the magnitude and probability of damages that may occur due to the damages.
 補修費用の算出方法を説明する。算出部130は、補修費用を算出するための情報に基づいて、補修費用を算出する。詳細には、算出部130は、式(3)を用いて補修費用を算出する。 Explain how to calculate the repair cost. The calculation unit 130 calculates the repair cost based on the information for calculating the repair cost. Specifically, the calculation unit 130 calculates the repair cost using the equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、例えば、補修単価は、1平方メートル当たりの補修に要する費用である。数量は、1平方メートル当たりの補修対象数である。補修単価には、足場架設などの経費が含まれてもよい。数量は、面積(=土木構造物の幅×長さ)でもよい。損傷が土木構造物の面積に占める割合を示す情報が記憶部110に格納されている場合、生成部140は、数量に当該割合を乗じても良い。 For example, the repair unit price is the cost required for repair per square meter. The quantity is the number of items to be repaired per square meter. The repair unit price may include expenses such as scaffolding. The quantity may be an area (= width of civil engineering structure x length). When information indicating the ratio of damage to the area of the civil engineering structure is stored in the storage unit 110, the generation unit 140 may multiply the quantity by the ratio.
 (ステップS17)出力部160は、補修計画情報210を出力する。例えば、出力部160は、補修計画情報210をディスプレイに出力する。また、例えば、出力部160は、情報処理装置100に接続可能な外部装置に補修計画情報210を出力する。また、例えば、出力部160は、印刷装置を介して、紙媒体に補修計画情報210を出力する。
 このように、情報処理装置100は、補修計画情報210を出力することで、ユーザに補修タイミングを知らせることができる。また、補修費用が算出された場合、情報処理装置100は、補修費用もユーザに知らせることができる。
(Step S17) The output unit 160 outputs the repair plan information 210. For example, the output unit 160 outputs the repair plan information 210 to the display. Further, for example, the output unit 160 outputs the repair plan information 210 to an external device that can be connected to the information processing device 100. Further, for example, the output unit 160 outputs the repair plan information 210 to the paper medium via the printing device.
In this way, the information processing device 100 can notify the user of the repair timing by outputting the repair plan information 210. Further, when the repair cost is calculated, the information processing apparatus 100 can also inform the user of the repair cost.
 このように、実施の形態1によれば、情報処理装置100は、教師データを作成しないで、補修タイミングを特定できる。
 また、情報処理装置100は、上記の技術を用いて、補修を実行した後の将来の再劣化を補修するタイミング及び補修工法を特定してもよい。さらに、補修前の劣化速度と補修後の劣化速度が異なる場合、情報処理装置100は、劣化モデルのパラメータを調整してもよい。
As described above, according to the first embodiment, the information processing apparatus 100 can specify the repair timing without creating the teacher data.
In addition, the information processing apparatus 100 may specify the timing and repair method for repairing future re-deterioration after the repair is performed by using the above technique. Further, when the deterioration rate before repair and the deterioration rate after repair are different, the information processing apparatus 100 may adjust the parameters of the deterioration model.
実施の形態2.
 次に、実施の形態2を説明する。実施の形態1と相違する事項を主に説明する。そして、実施の形態2と共通する事項の説明を省略する。実施の形態2は、図1~5を参照する。
 図12は、実施の形態2の情報処理装置の構成を示す機能ブロック図である。図1に示される構成と同じ図12の構成は、図1に示される符号と同じ符号を付している。情報処理装置100aは、算出部130a、生成部140a、及び特定部150aを有する。算出部130a、生成部140a、及び特定部150aの機能については、後で説明する。
Embodiment 2.
Next, the second embodiment will be described. Matters different from the first embodiment will be mainly described. Then, the description of the matters common to the second embodiment will be omitted. The second embodiment refers to FIGS. 1 to 5.
FIG. 12 is a functional block diagram showing the configuration of the information processing apparatus according to the second embodiment. The configuration of FIG. 12, which is the same as the configuration shown in FIG. 1, has the same reference numerals as those shown in FIG. The information processing device 100a has a calculation unit 130a, a generation unit 140a, and a specific unit 150a. The functions of the calculation unit 130a, the generation unit 140a, and the specific unit 150a will be described later.
 図13は、実施の形態2の補修判定情報の例を示す図である。実施の形態2の補修判定情報112は、変状マトリクスと呼んでもよい。補修判定情報112は、複数のセルを含んでいると考えてもよい。図13では、補修判定情報112が示す内容は、省略している。
 ここで、例えば、ひび割れ損傷度と剥離鉄筋露出損傷度との対応関係を示すセルは、(a,a)と表現する。
FIG. 13 is a diagram showing an example of repair determination information according to the second embodiment. The repair determination information 112 of the second embodiment may be referred to as a deformation matrix. The repair determination information 112 may be considered to include a plurality of cells. In FIG. 13, the content indicated by the repair determination information 112 is omitted.
Here, for example, the cell showing the correspondence relationship between the degree of crack damage and the degree of exposed rebar exposed damage is expressed as (a, a).
 次に、存在確率を説明する。存在確率は、x年後に、あるセルに存在している確率である。例えば、x+1年後に、(c,c)に存在する存在確率は、式(4)を用いて表現される。 Next, the existence probability will be explained. The existence probability is the probability that it exists in a certain cell after x years. For example, the existence probability existing in (c, c) after x + 1 years is expressed using the equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 Pは、存在確率を示している。P(cc,x+1)の“cc”は、(c,c)を簡略化したものである。また、P(cc,x+1)の“cc”は、状態を示している。P(cc,x+1)の“x+1”は、年を示している。よって、例えば、P(cc,x+1)は、x+1年後に、(c,c)に存在する存在確率を示している。また、例えば、P(ca,x)は、x年後に、(c,a)に存在する存在確率を示している。 P indicates the existence probability. “Cc” of P (cc, x + 1) is a simplification of (c, c). Further, "cc" of P (cc, x + 1) indicates a state. “X + 1” of P (cc, x + 1) indicates the year. So, for example, P (cc, x + 1) indicates the probability of existence in (c, c) after x + 1 years. Further, for example, P (ca, x) indicates the existence probability of existence in (c, a) after x years.
 pは、遷移確率を示している。遷移確率は、隣接するセルに遷移する確率である。p(cc,dc)の“cc”は、遷移元状態を示している。p(cc,dc)の“dc”は、遷移先状態を示している。よって、例えば、p(cc,dc)は、(c,c)から(d,c)に遷移する確率を示している。また、例えば、p(cc,ce)は、(c,c)から(c,e)に遷移する確率を示している。 P indicates the transition probability. The transition probability is the probability of transitioning to an adjacent cell. “Cc” of p (cc, dc) indicates the transition source state. “Dc” of p (cc, dc) indicates the transition destination state. Therefore, for example, p (cc, dc) indicates the probability of transition from (c, c) to (d, c). Further, for example, p (cc, ce) indicates the probability of transition from (c, c) to (c, e).
 次に、変状マトリクスの各セルのx年における存在確率の集合である存在確率行列N(x)を説明する。存在確率行列N(x)は、将来の供用時期に、複数の変状のそれぞれの損傷度の複数の組合せのそれぞれの状態である確率を示す。存在確率行列N(x)は、次のように表現してもよい。存在確率行列N(x)は、将来の供用時期に、複数の変状のそれぞれの損傷度の複数の組合せのそれぞれの状態が遷移せずに変わらない確率を示す。存在確率行列N(x)を具体的に示す。 Next, the existence probability matrix N (x), which is a set of existence probabilities in x years of each cell of the deformation matrix, will be described. The existence probability matrix N (x) indicates the probability of being in each state of a plurality of combinations of damage degrees of each of the plurality of variants in the future service period. The existence probability matrix N (x) may be expressed as follows. The existence probability matrix N (x) indicates the probability that each state of a plurality of combinations of damage degrees of each of a plurality of deformations does not change without transition during the future service period. The existence probability matrix N (x) is specifically shown.
 図14は、実施の形態2の存在確率行列N(x)を示す図である。
 次に、変状マトリクスの各セルに対応する状態の遷移確率の集合である遷移確率行列Mを説明する。遷移確率行列Mは、将来の供用時期に、複数の変状のそれぞれの損傷度の複数の組合せのそれぞれの状態が他の組合せの状態に遷移する確率を示す。遷移確率行列Mを具体的に示す。
FIG. 14 is a diagram showing the existence probability matrix N (x) of the second embodiment.
Next, the transition probability matrix M, which is a set of transition probabilities of the states corresponding to each cell of the deformation matrix, will be described. The transition probability matrix M indicates the probability that each state of a plurality of combinations of damage degrees of each of a plurality of variants will transition to the state of another combination during the future service period. The transition probability matrix M is specifically shown.
 図15は、実施の形態2の遷移確率行列Mを示す図である。
 x+1年の存在確率行列N(x+1)は、存在確率行列N(x)と遷移確率行列Mとを用いて、式(5)のように表現される。
FIG. 15 is a diagram showing a transition probability matrix M of the second embodiment.
The existence probability matrix N (x + 1) for x + 1 years is expressed by the equation (5) using the existence probability matrix N (x) and the transition probability matrix M.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(5)を変形することで、式(6)が得られる。式(6)は、劣化モデルと表現してもよい。 Equation (6) can be obtained by modifying equation (5). Equation (6) may be expressed as a deterioration model.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 このように、遷移確率行列と存在確率行列の初期値を用いることで、任意の供用年数の存在確率行列が算出できる。
 ここで、一般的に、損傷は、補修がされない限り自然に回復しない。そのため、変状マトリクスにおける遷移方向は、決まっている。
In this way, by using the initial values of the transition probability matrix and the existence probability matrix, the existence probability matrix of an arbitrary number of years of service can be calculated.
Here, in general, damage does not heal spontaneously unless it is repaired. Therefore, the transition direction in the deformation matrix is fixed.
 図16は、実施の形態2の遷移方向を示す図である。図16で示すように、遷移方向は、決まっている。そこで、図16が示す遷移方向が考慮された遷移確率行列Mを示す。 FIG. 16 is a diagram showing a transition direction of the second embodiment. As shown in FIG. 16, the transition direction is fixed. Therefore, the transition probability matrix M in which the transition direction shown in FIG. 16 is taken into consideration is shown.
 図17は、実施の形態2の遷移方向が考慮された遷移確率行列Mを示す図である。例えば、図15のp(ac,aa)の場合、状態は、(a,c)から(a,a)に遷移しない。そのため、図17のp(ac,aa)は、0になる。
 このように、遷移確率行列Mには、遷移方向が考慮される。よって、遷移確率行列Mは、次のように表現できる。遷移確率行列Mは、複数の変状のそれぞれの損傷度の複数の組合せのそれぞれの状態が遷移する方向が定められており、かつ将来の供用時期に複数の組合せのそれぞれの状態が他の組合せの状態に遷移する確率を示す。
FIG. 17 is a diagram showing a transition probability matrix M in which the transition direction of the second embodiment is taken into consideration. For example, in the case of p (ac, aa) in FIG. 15, the state does not transition from (a, c) to (a, a). Therefore, p (ac, aa) in FIG. 17 becomes 0.
In this way, the transition direction is taken into consideration in the transition probability matrix M. Therefore, the transition probability matrix M can be expressed as follows. In the transition probability matrix M, the direction in which each state of the plurality of combinations of the respective damage degrees of the plurality of deformations transitions is determined, and each state of the plurality of combinations becomes another combination in the future service period. Shows the probability of transitioning to the state of.
 なお、劣化モデルは、未来の挙動は現在の値だけで決定され、過去の挙動とは関係しないという性質であるマルコフ性を保つと仮定してよい。すなわち、劣化モデルは、供用年数によらず遷移確率行列Mを用いることができる。 It should be noted that the deterioration model may be assumed to maintain Markov property, which is a property that future behavior is determined only by the current value and has nothing to do with past behavior. That is, the deterioration model can use the transition probability matrix M regardless of the number of years of service.
 ここで、存在確率行列N(x)の情報と遷移確率行列Mの情報とは、記憶部110に格納されている。また、存在確率行列N(x)の情報と遷移確率行列Mの情報は、クラウドサーバなどの外部装置に格納されてもよい。 Here, the information of the existence probability matrix N (x) and the information of the transition probability matrix M are stored in the storage unit 110. Further, the information of the existence probability matrix N (x) and the information of the transition probability matrix M may be stored in an external device such as a cloud server.
 次に、情報処理装置100aが実行する処理について、フローチャートを用いて説明する。
 図18は、実施の形態2の情報処理装置が実行する処理の例を示すフローチャートである。
 (ステップS21)取得部120は、点検結果情報111を記憶部110から取得する。また、取得部120は、存在確率行列N(x)の情報と遷移確率行列Mの情報を記憶部110から取得する。ここで、当該遷移確率行列Mは、第1の遷移確率行列とも言う。
 (ステップS22)算出部130aは、ひび割れ損傷度と剥離鉄筋露出損傷度との組合せを、予め決められた期間単位に集計する。集計の例を示す。
Next, the process executed by the information processing apparatus 100a will be described with reference to a flowchart.
FIG. 18 is a flowchart showing an example of processing executed by the information processing apparatus of the second embodiment.
(Step S21) The acquisition unit 120 acquires the inspection result information 111 from the storage unit 110. Further, the acquisition unit 120 acquires the information of the existence probability matrix N (x) and the information of the transition probability matrix M from the storage unit 110. Here, the transition probability matrix M is also referred to as a first transition probability matrix.
(Step S22) The calculation unit 130a totals the combination of the crack damage degree and the peeled reinforcing bar exposure damage degree in a predetermined period unit. An example of aggregation is shown.
 図19は、実施の形態2の集計方法の例を示す図である。集計表300は、ひび割れ損傷度と剥離鉄筋露出損傷度との組合せと、期間単位との関係を示している。図19の期間単位は、5年である。理由は、5年周期で点検するからである。期間単位は、5年に限らない。
 算出部130aは、期間単位毎に、横方向の合計が1になるように、件数に基づいて割合を算出する。例えば、供用年数が0~5年である場合、ひび割れ損傷度“a”と剥離鉄筋露出損傷度“a”との組合せの件数の割合は、0.8である。
FIG. 19 is a diagram showing an example of the aggregation method of the second embodiment. The tabulation table 300 shows the relationship between the combination of the crack damage degree and the peeled reinforcing bar exposure damage degree and the period unit. The period unit in FIG. 19 is 5 years. The reason is that it is inspected every five years. The period unit is not limited to 5 years.
The calculation unit 130a calculates the ratio based on the number of cases so that the total in the horizontal direction becomes 1 for each period unit. For example, when the service life is 0 to 5 years, the ratio of the number of combinations of the crack damage degree “a” and the peeled reinforcing bar exposure damage degree “a” is 0.8.
 算出部130aは、点検結果情報111のレコードを増やして、ひび割れ損傷度と剥離鉄筋露出損傷度との組合せを期間単位に集計してもよい。例えば、算出部130aは、管理番号“1001-1”のレコードを10件、複製する。算出部130aは、複製されたレコードを含めて、集計処理を実行する。 The calculation unit 130a may increase the number of records of the inspection result information 111 and total the combination of the crack damage degree and the peeled reinforcing bar exposure damage degree in units of periods. For example, the calculation unit 130a duplicates 10 records of the control number “1001-1”. The calculation unit 130a executes the aggregation process including the duplicated record.
 (ステップS23)算出部130aは、点検結果情報111に基づいて遷移確率行列Mが調整された遷移確率行列Mを算出する。詳細には、算出部130aは、ステップS22で算出された割合の値と、式(6)の存在確率行列N(x)の値とが近似するように、式(6)の遷移確率行列Mの値を調整する。なお、遷移確率行列Mは、図17の遷移確率行列Mである。 (Step S23) The calculation unit 130a calculates the transition probability matrix M in which the transition probability matrix M is adjusted based on the inspection result information 111. Specifically, the calculation unit 130a uses the transition probability matrix M of the equation (6) so that the ratio value calculated in step S22 and the value of the existence probability matrix N (x) of the equation (6) approximate each other. Adjust the value of. The transition probability matrix M is the transition probability matrix M of FIG.
 例えば、算出部130aは、行列演算及び演算ライブラリを用いて、遷移確率行列Mの値を調整できる。また、例えば、算出部130aは、制約条件の下で最小二乗法を用いて二乗誤差の総和を最小とすることで、遷移確率行列Mの値を調整できる。なお、例えば、制約条件は、“それぞれの遷移確率は0以上1以下、かつ、遷移を許していない方向の遷移確率は0、かつ、あるセルから遷移する確率と残留する確率の合計が1”である。 For example, the calculation unit 130a can adjust the value of the transition probability matrix M by using the matrix operation and the calculation library. Further, for example, the calculation unit 130a can adjust the value of the transition probability matrix M by minimizing the sum of the square errors by using the least squares method under the constraint condition. For example, the constraint condition is "each transition probability is 0 or more and 1 or less, the transition probability in the direction in which the transition is not allowed is 0, and the total of the probability of transition from a certain cell and the probability of remaining is 1". Is.
 また、遷移確率行列Mの値は、Microsoft(登録商標)のExcelで提供されている機能であるソルバによって、調整されてもよい。例えば、ソルバを用いて、最小二乗誤差が最小となるように遷移確率行列Mの値が調整される。 Further, the value of the transition probability matrix M may be adjusted by the solver, which is a function provided by Excel of Microsoft (registered trademark). For example, a solver is used to adjust the value of the transition probability matrix M so that the least squares error is minimized.
 ここで、調整された遷移確率行列Mは、第2の遷移確率行列とも言う。また、調整された遷移確率行列Mは、点検結果情報111に基づいて得られた、複数の変状のそれぞれにおける将来の供用時期の損傷度を導くための情報と考えてもよい。 Here, the adjusted transition probability matrix M is also referred to as a second transition probability matrix. Further, the adjusted transition probability matrix M may be considered as information for deriving the degree of damage in the future service period in each of the plurality of deformations obtained based on the inspection result information 111.
 (ステップS24)算出部130aは、式(7)を用いて、供用年数毎の存在確率を算出する。なお、式(7)のMは、ステップS23で調整された遷移確率行列である。また、x(0)は、現在の年を示している。すなわち、x(0)は、ステップS24の処理を実行している年を示している。よって、N(x(0))は、現時点の存在確率行列を示している。 (Step S24) The calculation unit 130a calculates the existence probability for each service period using the formula (7). Note that M in Eq. (7) is the transition probability matrix adjusted in step S23. Further, x (0) indicates the current year. That is, x (0) indicates the year in which the process of step S24 is executed. Therefore, N (x (0)) indicates the current existence probability matrix.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 (ステップS25)生成部140aは、予測情報を生成する。予測情報を例示する。
 図20は、実施の形態2の予測情報を示す図である。予測情報310は、算出部130aの算出結果を示す情報である。供用年数は、現時点の年度を0年と表記し、0年から、計画最終年から現時点の年度を減算した年までの損傷度を示してもよい。
 このように、生成部140aは、調整された遷移確率行列Mと存在確率行列N(x)とに基づいて、予測情報310を生成する。
(Step S25) The generation unit 140a generates prediction information. Forecast information is illustrated.
FIG. 20 is a diagram showing the prediction information of the second embodiment. The prediction information 310 is information indicating the calculation result of the calculation unit 130a. As for the number of years of service, the current year may be expressed as 0 year, and the degree of damage from 0 year to the year obtained by subtracting the current year from the final year of the plan may be indicated.
In this way, the generation unit 140a generates the prediction information 310 based on the adjusted transition probability matrix M and the existence probability matrix N (x).
 (ステップS26)特定部150aは、予測情報310を用いて、供用年数毎の状態を特定する。例えば、特定部150aは、最大値の状態を特定する。例えば、特定部150aは、供用年数“35年”で最大値の(d,c)を特定する。
 また、特定部150aは、最大値が閾値以上である場合、当該最大値の状態を特定してもよい。さらに、特定部150aは、存在確率行列の平均値又は中央値に基づいて状態を特定してもよい。
(Step S26) The identification unit 150a specifies the state for each service period by using the prediction information 310. For example, the specific unit 150a specifies the state of the maximum value. For example, the specific unit 150a specifies the maximum value (d, c) in the service life of “35 years”.
Further, when the maximum value is equal to or greater than the threshold value, the specific unit 150a may specify the state of the maximum value. Further, the identification unit 150a may specify the state based on the average value or the median value of the existence probability matrix.
 (ステップS27)特定部150aは、補修判定情報112と予測情報310とに基づいて、補修タイミングを特定する。例えば、特定部150aは、補修判定情報112と予測情報310とに基づいて、供用年数“35年”が補修タイミングであることを特定する。
 (ステップS28)特定部150aは、補修タイミングにおける、ひび割れ損傷度及び剥離鉄筋露出損傷度と、補修工法情報113とに基づいて、補修工法を特定する。
(Step S27) The specifying unit 150a specifies the repair timing based on the repair determination information 112 and the prediction information 310. For example, the specific unit 150a specifies that the service life "35 years" is the repair timing based on the repair determination information 112 and the prediction information 310.
(Step S28) The specifying portion 150a specifies the repair method based on the degree of crack damage and the degree of exposed rebar exposed damage at the repair timing and the repair method information 113.
 (ステップS29)生成部140aは、特定部150aが特定した情報に基づいて、補修計画情報210を生成する。
 (ステップS30)出力部160は、補修計画情報210を出力する。
(Step S29) The generation unit 140a generates the repair plan information 210 based on the information specified by the specific unit 150a.
(Step S30) The output unit 160 outputs the repair plan information 210.
 ここで、例えば、管理者は、予測情報310を参考にして、コンピュータを用いて、補修判定情報112及び補修工法情報113を作成してもよい。例えば、右方向の遷移確率が大きい、かつ剥離鉄筋露出による被害を抑制しなければならない環境である場合、管理者は、軽微な損傷段階を補修必要とした補修判定情報112を作成する。また、例えば、管理者は、予測情報310を参考にして、剥離鉄筋露出の急速な進行を抑制するための補修判定情報112を作成する。また、例えば、ひとたび損傷が発生することで、劣化の進行速度が著しく速くなる土木構造物が存在する。管理者は、予測情報310を参考にして、当該土木構造物に対応する補修判定情報112を作成してもよい。 Here, for example, the administrator may create the repair determination information 112 and the repair method information 113 by using a computer with reference to the prediction information 310. For example, in an environment where the transition probability in the right direction is large and the damage caused by the exposure of the peeled reinforcing bar must be suppressed, the manager creates the repair determination information 112 that requires repair of a minor damage stage. Further, for example, the manager creates repair determination information 112 for suppressing the rapid progress of the peeled reinforcing bar exposure with reference to the prediction information 310. In addition, for example, there are civil engineering structures in which the rate of deterioration is significantly increased once damage occurs. The manager may create the repair determination information 112 corresponding to the civil engineering structure with reference to the prediction information 310.
 また、例えば、出力部160は、下方向の遷移確率が大きい場合、コンクリートの疲労が大きいことを出力してもよい。また、例えば、出力部160は、右方向の遷移確率が大きい場合、アルカリ骨材反応の影響が大きいことを出力してもよい。 Further, for example, the output unit 160 may output that the fatigue of concrete is large when the downward transition probability is large. Further, for example, the output unit 160 may output that the influence of the alkaline aggregate reaction is large when the transition probability in the right direction is large.
 このように、実施の形態2によれば、情報処理装置100aは、教師データを作成しないで、補修タイミングを特定できる。
 遷移確率行列Mには、遷移方向が考慮されている。情報処理装置100aは、遷移確率行列Mを用いることで、予防保全の効果が高い補修計画情報210を生成できる。
As described above, according to the second embodiment, the information processing apparatus 100a can specify the repair timing without creating the teacher data.
The transition direction is taken into consideration in the transition probability matrix M. By using the transition probability matrix M, the information processing device 100a can generate repair plan information 210 having a high effect of preventive maintenance.
 また、算出部130aは、存在確率行列N(x)の各セルの値に土木構造物数を乗じてもよい。そして、出力部160は、各セルに存在する構造物の数を劣化状態の予測結果として出力してもよい。これにより、ユーザは、劣化状態の予測結果を参照することで、任意の供用年数で補修が必要となる土木構造物の数を認識できる。 Further, the calculation unit 130a may multiply the value of each cell of the existence probability matrix N (x) by the number of civil engineering structures. Then, the output unit 160 may output the number of structures existing in each cell as a prediction result of the deterioration state. As a result, the user can recognize the number of civil engineering structures that need to be repaired at an arbitrary service life by referring to the prediction result of the deterioration state.
 また、生成部140aは、複数の土木構造物の幅及び長さの平均値に、補修工法情報113に対応付けられている補修単価を乗じることで得られる補修費用を補修計画情報210に含めてもよい。 Further, the generation unit 140a includes the repair cost obtained by multiplying the average value of the widths and lengths of the plurality of civil engineering structures by the repair unit price associated with the repair method information 113 in the repair plan information 210. May be good.
実施の形態3.
 次に、実施の形態3を説明する。実施の形態1と相違する事項を主に説明する。そして、実施の形態3と共通する事項の説明を省略する。実施の形態3は、図1~20を参照する。
 図21は、実施の形態3の情報処理装置の構成を示す機能ブロック図である。図1に示される構成と同じ図21の構成は、図1に示される符号と同じ符号を付している。情報処理装置100aは、生成部140b、特定部150b、及び出力部160bを有する。生成部140b、特定部150b、及び出力部160bの機能については、後で説明する。
Embodiment 3.
Next, the third embodiment will be described. Matters different from the first embodiment will be mainly described. Then, the description of the matters common to the third embodiment will be omitted. The third embodiment refers to FIGS. 1 to 20.
FIG. 21 is a functional block diagram showing the configuration of the information processing apparatus according to the third embodiment. The configuration of FIG. 21, which is the same as the configuration shown in FIG. 1, has the same reference numerals as those shown in FIG. The information processing device 100a has a generation unit 140b, a specific unit 150b, and an output unit 160b. The functions of the generation unit 140b, the specific unit 150b, and the output unit 160b will be described later.
 実施の形態1,2では、補修タイミングが特定された。実施の形態3では、生成部140bは、補修の有無に関わらず、計画期間終了年までの計画を示す計画情報を生成する。そのため、特定部150bは、補修判定情報112と予測情報とに基づいて、予め決められた期間内の将来の供用時期に補修するか否かを特定する。なお、予め決められた期間は、上記の計画期間である。また、期間内の将来の供用時期に補修するか否かを示す情報は、計画情報である。計画情報を例示する。 In the first and second embodiments, the repair timing was specified. In the third embodiment, the generation unit 140b generates planning information indicating the plan up to the end year of the planning period regardless of the presence or absence of repair. Therefore, the specific unit 150b specifies whether or not to repair at a future service period within a predetermined period based on the repair determination information 112 and the prediction information. The predetermined period is the above-mentioned planned period. In addition, the information indicating whether or not to repair during the future service period within the period is the plan information. Illustrate planning information.
 図22は、実施の形態3の計画情報の例を示す図である。計画情報400は、補修計画1次リストと呼んでもよい。図22の計画情報400は、管理番号“1001-1”の計画を示す。
 例えば、生成部140bは、予測情報200と補修判定情報112と補修工法情報113とに基づいて、計画情報400を生成する。また、例えば、生成部140bは、予測情報310と補修判定情報112と補修工法情報113とに基づいて、計画情報400を生成する。
FIG. 22 is a diagram showing an example of the plan information of the third embodiment. The plan information 400 may be referred to as a repair plan primary list. The plan information 400 of FIG. 22 shows the plan of the control number “1001-1”.
For example, the generation unit 140b generates the plan information 400 based on the prediction information 200, the repair determination information 112, and the repair method information 113. Further, for example, the generation unit 140b generates the plan information 400 based on the prediction information 310, the repair determination information 112, and the repair method information 113.
 次に、情報処理装置100bが実行する処理について、フローチャートを用いて説明する。
 図23は、実施の形態3の情報処理装置が実行する処理の例を示すフローチャートである。
 (ステップS31)生成部140bは、複数の土木構造物の計画情報を生成する。生成方法は、上述の通りである。生成部140bは、複数の土木構造物の計画情報を記憶部110に格納する。
Next, the process executed by the information processing apparatus 100b will be described with reference to a flowchart.
FIG. 23 is a flowchart showing an example of processing executed by the information processing apparatus according to the third embodiment.
(Step S31) The generation unit 140b generates planning information of a plurality of civil engineering structures. The generation method is as described above. The generation unit 140b stores the planning information of a plurality of civil engineering structures in the storage unit 110.
 (ステップS32)特定部150bは、1つの土木構造物の計画情報を取得する。特定部150bは、計画情報を用いて、予め定められている制約条件を満たし、かつ目的関数によって計画期間におけるライフサイクルコストが最小になるときの補修タイミングを特定する。例えば、制約条件は、1年当たりの予算の上限、許容可能な損傷度の上限などである。また、特定するための演算アルゴリズムとして、特定部150bは、最急降下法、遺伝的アルゴリズムなどの最適化手法を用いてもよい。
 特定部150bは、同様に、全ての土木構造物に対して、補修タイミングを特定する。
 (ステップS33)出力部160bは、全ての土木構造物の補修タイミングを出力する。
(Step S32) The specific unit 150b acquires the planning information of one civil engineering structure. The identification unit 150b uses the planning information to specify the repair timing when a predetermined constraint condition is satisfied and the life cycle cost in the planning period is minimized by the objective function. For example, constraints include a budget limit per year, an acceptable damage limit, and so on. Further, as the arithmetic algorithm for identification, the identification unit 150b may use an optimization method such as a steepest descent method or a genetic algorithm.
Similarly, the specific portion 150b specifies the repair timing for all the civil engineering structures.
(Step S33) The output unit 160b outputs the repair timing of all the civil engineering structures.
 実施の形態3によれば、情報処理装置100bは、制約条件が考慮された補修タイミングを特定できる。例えば、実施の形態1では、2035年が補修タイミングに特定された。しかし、実施の形態3では、制約条件が考慮されることで、2035年以降の年が補修タイミングに特定される。 According to the third embodiment, the information processing apparatus 100b can specify the repair timing in consideration of the constraint conditions. For example, in Embodiment 1, 2035 was specified as the repair timing. However, in the third embodiment, the year after 2035 is specified as the repair timing by considering the constraint condition.
 以上に説明した各実施の形態における特徴は、互いに適宜組み合わせることができる。 The features in each of the embodiments described above can be combined with each other as appropriate.
 100、100a、100b 情報処理装置、 101 プロセッサ、 102 揮発性記憶装置、 103 不揮発性記憶装置、 110 記憶部、 111 点検結果情報、 112、112a 補修判定情報、 113 補修工法情報、 120 取得部、 130、130a 算出部、 140、140a、140b 生成部、 150、150a、150b 特定部、 160、160b 出力部、 200 予測情報、 210 補修計画情報、 300 集計表、 310 予測情報、 400 計画情報。 100, 100a, 100b information processing device, 101 processor, 102 volatile storage device, 103 non-volatile storage device, 110 storage unit, 111 inspection result information, 112, 112a repair judgment information, 113 repair method information, 120 acquisition unit, 130 , 130a calculation unit, 140, 140a, 140b generation unit, 150, 150a, 150b specific unit, 160, 160b output unit, 200 forecast information, 210 repair plan information, 300 summary table, 310 forecast information, 400 plan information.

Claims (10)

  1.  過去に点検された土木構造物の複数の部分のそれぞれの複数の変状に対応する複数の損傷度と前記複数の部分に対応する複数の供用期間とを示す点検結果情報と、前記複数の変状のそれぞれの損傷度の組合せに応じて補修するか否かを示す補修判定情報とを取得する取得部と、
     前記点検結果情報に基づいて得られた、前記複数の変状のそれぞれにおける将来の供用時期の損傷度を導くための情報を用いて、前記複数の変状のそれぞれにおける将来の供用時期の損傷度を示す予測情報を生成する生成部と、
     前記補修判定情報と前記予測情報とに基づいて、補修タイミングを特定する特定部と、
     を有する情報処理装置。
    Inspection result information indicating a plurality of damage degrees corresponding to a plurality of deformations of each of a plurality of parts of a civil engineering structure inspected in the past and a plurality of service periods corresponding to the plurality of parts, and the plurality of changes. An acquisition unit that acquires repair judgment information indicating whether or not to repair according to the combination of the degree of damage of each shape, and an acquisition unit.
    Using the information obtained based on the inspection result information for deriving the degree of damage in the future service period in each of the plurality of variants, the degree of damage in the future service period in each of the plurality of variants. A generator that generates forecast information indicating
    A specific unit that specifies the repair timing based on the repair determination information and the prediction information, and
    Information processing device with.
  2.  前記複数の供用期間と前記複数の損傷度とに基づいて、複数の近似関数を算出する算出部をさらに有し、
     前記生成部は、前記複数の近似関数に基づいて、前記予測情報を生成する、
     請求項1に記載の情報処理装置。
    It further has a calculation unit that calculates a plurality of approximate functions based on the plurality of service periods and the plurality of damage degrees.
    The generation unit generates the prediction information based on the plurality of approximation functions.
    The information processing device according to claim 1.
  3.  算出部をさらに有し、
     前記取得部は、
     将来の供用時期に複数の前記組合せのそれぞれの状態である確率を示す存在確率行列の情報と、将来の供用時期に複数の前記組合せのそれぞれの状態が他の組合せの状態に遷移する確率を示す第1の遷移確率行列の情報とを取得し、
     前記算出部は、
     前記点検結果情報に基づいて、前記第1の遷移確率行列が調整された第2の遷移確率行列を算出し、
     前記生成部は、
     前記第2の遷移確率行列と前記存在確率行列とに基づいて、前記予測情報を生成する、
     請求項1に記載の情報処理装置。
    It also has a calculation unit
    The acquisition unit
    Information of the existence probability matrix showing the probability of each state of the plurality of combinations in the future service period, and the probability that each state of the plurality of combinations transitions to the state of another combination in the future service period. Obtain the information of the first transition probability matrix and
    The calculation unit
    Based on the inspection result information, a second transition probability matrix adjusted by the first transition probability matrix is calculated.
    The generator
    The prediction information is generated based on the second transition probability matrix and the existence probability matrix.
    The information processing device according to claim 1.
  4.  前記第1の遷移確率行列は、複数の前記組合せのそれぞれの状態が遷移する方向が定められており、かつ将来の供用時期に複数の前記組合せのそれぞれの状態が他の組合せの状態に遷移する確率を示す、
     請求項3に記載の情報処理装置。
    In the first transition probability matrix, the direction in which each state of the plurality of combinations transitions is defined, and each state of the plurality of combinations transitions to the state of another combination in the future service period. Show the probability,
    The information processing device according to claim 3.
  5.  前記特定部は、
     前記補修判定情報と前記予測情報とに基づいて、予め決められた期間内の将来の供用時期に補修するか否かを特定し、
     前記期間内の将来の供用時期に補修するか否かを示す情報を用いて、予め定められた制約条件を満たし、かつ目的関数によって前記期間におけるライフサイクルコストが最小になるときの補修タイミングを特定する、
     請求項1から4のいずれか1項に記載の情報処理装置。
    The specific part is
    Based on the repair determination information and the prediction information, it is specified whether or not to repair at a future service period within a predetermined period.
    The repair timing is specified when the life cycle cost in the period is minimized by the objective function while satisfying the predetermined constraints by using the information indicating whether or not the repair is performed in the future service period within the period. To do
    The information processing device according to any one of claims 1 to 4.
  6.  前記取得部は、前記補修タイミングの補修工法を示す補修工法情報を取得し、
     前記特定部は、前記補修工法情報に基づいて、前記補修工法を特定する、
     請求項1から5のいずれか1項に記載の情報処理装置。
    The acquisition unit acquires repair method information indicating the repair method at the repair timing, and obtains the repair method information.
    The specific unit specifies the repair method based on the repair method information.
    The information processing device according to any one of claims 1 to 5.
  7.  前記取得部は、前記補修タイミングの補修工法を示す補修工法情報を取得し、
     前記補修工法情報が示す前記補修タイミングの補修工法には、補修費用を算出するための情報が対応付けられており、
     前記補修費用を算出するための情報に基づいて、前記補修費用を算出する算出部をさらに有する、
     請求項1に記載の情報処理装置。
    The acquisition unit acquires repair method information indicating the repair method at the repair timing, and obtains the repair method information.
    Information for calculating the repair cost is associated with the repair method at the repair timing indicated by the repair method information.
    It further has a calculation unit for calculating the repair cost based on the information for calculating the repair cost.
    The information processing device according to claim 1.
  8.  前記補修タイミングを示す情報を出力する出力部をさらに有する、
     請求項1から7のいずれか1項に記載の情報処理装置。
    Further having an output unit for outputting information indicating the repair timing.
    The information processing device according to any one of claims 1 to 7.
  9.  情報処理装置が、
     過去に点検された土木構造物の複数の部分のそれぞれの複数の変状に対応する複数の損傷度と前記複数の部分に対応する複数の供用期間とを示す点検結果情報に基づいて得られた、前記複数の変状のそれぞれにおける将来の供用時期の損傷度を導くための情報を用いて、前記複数の変状のそれぞれにおける将来の供用時期の損傷度を示す予測情報を生成し、
     前記複数の変状のそれぞれの損傷度の組合せに応じて補修するか否かを示す補修判定情報と前記予測情報とに基づいて、補修タイミングを特定する、
     特定方法。
    Information processing device
    Obtained based on inspection result information indicating a plurality of damage degrees corresponding to each of a plurality of deformations of a plurality of parts of a civil engineering structure inspected in the past and a plurality of service periods corresponding to the plurality of parts. Using the information for deriving the degree of damage in the future service period in each of the plurality of variants, predictive information indicating the degree of damage in the future service period in each of the plurality of variants is generated.
    The repair timing is specified based on the repair determination information indicating whether or not the repair is performed according to the combination of the damage degrees of each of the plurality of deformations and the prediction information.
    Specific method.
  10.  情報処理装置に、
     過去に点検された土木構造物の複数の部分のそれぞれの複数の変状に対応する複数の損傷度と前記複数の部分に対応する複数の供用期間とを示す点検結果情報に基づいて得られた、前記複数の変状のそれぞれにおける将来の供用時期の損傷度を導くための情報を用いて、前記複数の変状のそれぞれにおける将来の供用時期の損傷度を示す予測情報を生成し、
     前記複数の変状のそれぞれの損傷度の組合せに応じて補修するか否かを示す補修判定情報と前記予測情報とに基づいて、補修タイミングを特定する、
     処理を実行させる特定プログラム。
    For information processing equipment
    Obtained based on inspection result information indicating a plurality of damage degrees corresponding to each of a plurality of deformations of a plurality of parts of a civil engineering structure inspected in the past and a plurality of service periods corresponding to the plurality of parts. Using the information for deriving the degree of damage in the future service period in each of the plurality of variants, predictive information indicating the degree of damage in the future service period in each of the plurality of variants is generated.
    The repair timing is specified based on the repair determination information indicating whether or not the repair is performed according to the combination of the damage degrees of each of the plurality of deformations and the prediction information.
    A specific program that executes processing.
PCT/JP2019/039792 2019-10-09 2019-10-09 Information processing device, identifying method, and identifying program WO2021070277A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/039792 WO2021070277A1 (en) 2019-10-09 2019-10-09 Information processing device, identifying method, and identifying program
PCT/JP2020/037939 WO2021070842A1 (en) 2019-10-09 2020-10-07 Information processing device, specification method, and specification program
JP2021551678A JP7229383B2 (en) 2019-10-09 2020-10-07 Information processing device, identification method, and identification program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039792 WO2021070277A1 (en) 2019-10-09 2019-10-09 Information processing device, identifying method, and identifying program

Publications (1)

Publication Number Publication Date
WO2021070277A1 true WO2021070277A1 (en) 2021-04-15

Family

ID=75436733

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/039792 WO2021070277A1 (en) 2019-10-09 2019-10-09 Information processing device, identifying method, and identifying program
PCT/JP2020/037939 WO2021070842A1 (en) 2019-10-09 2020-10-07 Information processing device, specification method, and specification program

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037939 WO2021070842A1 (en) 2019-10-09 2020-10-07 Information processing device, specification method, and specification program

Country Status (2)

Country Link
JP (1) JP7229383B2 (en)
WO (2) WO2021070277A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7490164B1 (en) 2023-01-23 2024-05-24 三菱電機株式会社 Repair content determination device, repair device, learning device, inference device, repair content determination system, and repair method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276019A1 (en) * 2021-06-30 2023-01-05 日本電気株式会社 Road surface management device, road surface management method, and recording medium
WO2024013878A1 (en) * 2022-07-13 2024-01-18 三菱電機株式会社 Crack inspection device, crack monitoring system, and crack inspection method
JP7422845B1 (en) 2022-11-10 2024-01-26 株式会社パスコ Damage diagram analysis device, damage diagram analysis method and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0844421A (en) * 1994-07-29 1996-02-16 Toshiba Corp Device for supporting maintenance and management of equipment
JP2006063537A (en) * 2004-08-24 2006-03-09 Jfe Engineering Kk Method, apparatus and program for optimizing plan for maintenance of structure
JP2007140608A (en) * 2005-11-14 2007-06-07 Yamaguchi Univ Structure repair construction plan support system
US20070276627A1 (en) * 2006-05-25 2007-11-29 Westerman Everett A Repair determination for heat damaged composite structures
JP2008297764A (en) * 2007-05-30 2008-12-11 Fuji Electric Systems Co Ltd Road information control device
JP2014164322A (en) * 2013-02-21 2014-09-08 Mitsubishi Heavy Ind Ltd Maintenance work timing determination device, maintenance work timing determination system, maintenance work timing determination method and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0844421A (en) * 1994-07-29 1996-02-16 Toshiba Corp Device for supporting maintenance and management of equipment
JP2006063537A (en) * 2004-08-24 2006-03-09 Jfe Engineering Kk Method, apparatus and program for optimizing plan for maintenance of structure
JP2007140608A (en) * 2005-11-14 2007-06-07 Yamaguchi Univ Structure repair construction plan support system
US20070276627A1 (en) * 2006-05-25 2007-11-29 Westerman Everett A Repair determination for heat damaged composite structures
JP2008297764A (en) * 2007-05-30 2008-12-11 Fuji Electric Systems Co Ltd Road information control device
JP2014164322A (en) * 2013-02-21 2014-09-08 Mitsubishi Heavy Ind Ltd Maintenance work timing determination device, maintenance work timing determination system, maintenance work timing determination method and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7490164B1 (en) 2023-01-23 2024-05-24 三菱電機株式会社 Repair content determination device, repair device, learning device, inference device, repair content determination system, and repair method

Also Published As

Publication number Publication date
JPWO2021070842A1 (en) 2021-04-15
WO2021070842A1 (en) 2021-04-15
JP7229383B2 (en) 2023-02-27

Similar Documents

Publication Publication Date Title
WO2021070277A1 (en) Information processing device, identifying method, and identifying program
Biondini et al. Deteriorating beam finite element for nonlinear analysis of concrete structures under corrosion
Smith Studies of sensor data interpretation for asset management of the built environment
US20150073834A1 (en) Damage-scale catastrophe insurance product design and servicing systems
Dang et al. Bridge assessment for PSC girder bridge using digital twins model
Kermanshachi et al. Sensitivity analysis of construction schedule performance due to increased change orders and decreased labor productivity
JP7307691B2 (en) DAMAGE IDENTIFICATION DEVICE, DAMAGE IDENTIFICATION METHOD AND DAMAGE IDENTIFICATION PROGRAM
Chauhan et al. Deciding between prefabrication and on-site construction: a choosing-by-advantage approach
Zhang et al. Cost modelling in maintenance strategy optimisation for infrastructure assets with limited data
Song et al. An efficient structural reliability analysis method with active learning Kriging-assisted robust adaptive importance sampling
Mullard et al. Stochastic assessment of timing and efficiency of maintenance for corroding RC structures
Bertola et al. Sensing the structural behavior: A perspective on the usefulness of monitoring information for bridge examination
Riveros et al. Predicting future deterioration of hydraulic steel structures with Markov chain and multivariate samples of statistical distributions
Palacios-Munoz et al. Influence of refurbishment and service life of reinforced concrete buildings structures on the estimation of environmental impact
Yang et al. A Theoretical Framework for Risk–Cost-Optimized Maintenance Strategy for Structures
KR20230136011A (en) Ai based predicting method of bridge management method and costs according to damage types
Chang-Richards et al. A system dynamics model of post-earthquake reconstruction pathways
Baird et al. How cost effective is machine learning/AI applied to leak detection and pipe replacement prioritization?
JP5503361B2 (en) Failure cause prediction system for conduit network
Rafiq Structural health monitoring for maintenance management of deteriorating structures: Current practice and state of the art
JP5606647B1 (en) Existing bridge restoration design system
Flint et al. A probabilistic framework for performance-based durability engineering
Bertola et al. Adaptive approach for sensor placement combining a quantitative strategy with engineering practice
Huang Lifecycle Assessment of Maintenance, Repair and Rehabilitation Costs: A Deterioration Modeling Approach for Bridge Components
Jaberi et al. Development of manual for enhanced service life of abc projects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP