WO2021070239A1 - Autonomous distributed control system - Google Patents

Autonomous distributed control system Download PDF

Info

Publication number
WO2021070239A1
WO2021070239A1 PCT/JP2019/039594 JP2019039594W WO2021070239A1 WO 2021070239 A1 WO2021070239 A1 WO 2021070239A1 JP 2019039594 W JP2019039594 W JP 2019039594W WO 2021070239 A1 WO2021070239 A1 WO 2021070239A1
Authority
WO
WIPO (PCT)
Prior art keywords
covering
mobile
moving body
control system
boundary
Prior art date
Application number
PCT/JP2019/039594
Other languages
French (fr)
Japanese (ja)
Inventor
允裕 山隅
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020515788A priority Critical patent/JP6742561B1/en
Priority to PCT/JP2019/039594 priority patent/WO2021070239A1/en
Publication of WO2021070239A1 publication Critical patent/WO2021070239A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to an autonomous decentralized control system in which a plurality of mobile bodies cover a predetermined covering region by autonomous and decentralized control.
  • a drone that can move freely in space will regularly search a wide range on behalf of a person.
  • a transport vehicle capable of autonomous driving transports goods in a factory or a distribution warehouse instead of a person.
  • autonomous vehicles capable of highly autonomous driving without human intervention will perform platooning with a reduced inter-vehicle distance in order to alleviate traffic congestion.
  • a control system in which multiple mobiles function as a group of mobiles is one in which information on the entire group of mobiles is centrally processed by a central management device, etc., and one in which local information observed by a certain mobile is processed nearby. It is divided into those that are handed over to the moving body and processed in a decentralized manner.
  • the former control system is a method with excellent control efficiency from the viewpoint of control convergence time and energy optimization, but communication congestion due to information concentration and delay of convergence time due to space expansion, etc. Not suitable for large-scale systems due to physical constraints.
  • autonomous distributed control system each moving body acts by autonomous and decentralized control.
  • the autonomous distributed control system multiple moving objects in the moving body group are arranged at desired positions (agreement), and multiple moving objects in the moving body group are efficiently arranged in space (covering). Do one of the above. It should be noted that, in general, an autonomous distributed control system cannot handle consensus and cover in the same scheme.
  • autonomous distributed control system that handles consensus tends to be effective in relatively small-scale systems.
  • autonomous distributed control systems that handle coverings are expected to be applied to relatively large-scale systems.
  • autonomous distributed control systems dealing with coverings can replace a wide range of cost, resolution, and time-constrained satellite or aircraft observations or surveillance with drones or similar inexpensive mobiles. Therefore, it is expected to build a service that is inexpensive, has a high update frequency, and is highly convenient.
  • an autonomous distributed control system that handles coverings is an efficiency improvement by rectification of mobile objects, or in a delivery system in transportation, electric power infrastructure and shopping malls, or a system composed of 100 or more mobile objects not limited thereto. It is expected that the efficiency will be similar to those.
  • Non-Patent Document 1 in a state where a network connecting information is formed between a plurality of mobile bodies, the global convergence stability is determined from the mathematical structure thereof, and the Voronoi region. It is proposed to define and obtain the command value based on the center of gravity of the Voronoi region.
  • Non-Patent Document 2 proposes that setting the stop point of the gradient function as a control command value is a necessary and sufficient condition for a control command value that satisfies global convergence stability.
  • the gradient function it is proposed to use a function represented by a linear sum of functions whose elements are a set of mobile bodies including any two mobile bodies that form a network and exchange information with each other. ..
  • Patent Document 1 proposes a monitoring system including a flight device and a center device for monitoring the ground from the sky.
  • each mobile must share information about the covering boundary that closes the covering region with each other in order to calculate the Voronoi region. If the information on the covering boundary of each moving body is different, the Voronoi region calculated for each moving body will be different, so that the autonomous distributed control cannot satisfy the global convergence stability. is there.
  • the present invention has been made in view of the above problems, and is a technique capable of satisfying global convergence stability even if the covering region changes dynamically in an autonomous distributed control system.
  • the purpose is to provide.
  • a first mobile body and a plurality of second mobile bodies connected by a network connecting information cover a predetermined covering region by autonomous and decentralized control.
  • the first moving body includes a covering boundary acquisition unit that performs a mapping to generate a virtual moving body on the opposite side of the covering boundary that closes the covering region to the first moving body, and the first moving body. It is assumed that the mobile body, the plurality of second mobile bodies connected to the first mobile body by the network, and the virtual mobile body generated by the covering boundary acquisition unit are connected by the network.
  • a covering control calculation unit that generates a command value indicating control of the first moving body and a moving body that controls the movement of the first moving body based on the command value generated by the covering control calculation unit. It is equipped with a control unit.
  • a mapping is performed to generate a virtual moving body on the side opposite to the first moving body with respect to the covering boundary confining the covering region, and the first moving body, a plurality of second moving bodies, and the virtual moving body are Is connected by a network, a command value indicating control of the first mobile body is generated, and the movement of the first mobile body is controlled based on the command value.
  • FIG. 1 shows typically the structure of the autonomous distributed control system which concerns on Embodiment 1.
  • FIG. 2 is a figure which shows typically the operation of the autonomous distributed control system which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the functional structure of the 1st moving body which concerns on Embodiment 1.
  • FIG. It is a figure which shows typically the operation of the autonomous distributed control system which concerns on Embodiment 1.
  • FIG. It is a figure which shows typically the structure of the autonomous distributed control system which concerns on Embodiment 2.
  • FIG. is a block diagram which shows the functional structure of the 1st moving body which concerns on Embodiment 2.
  • FIG. 2 shows typically the operation of the autonomous distributed control system which concerns on Embodiment 2.
  • FIG. It is a figure which shows typically the operation of the autonomous distributed control system which concerns on Embodiment 2.
  • FIG. It is a figure which shows typically the operation of the autonomous distributed control system which concerns on Embodiment 3.
  • FIG. It is a figure which shows typically the operation of the autonomous distributed control system which concerns on Embodiment 3.
  • FIG. 1 is a diagram schematically showing a configuration of an autonomous distributed control system according to a first embodiment of the present invention. First, an outline of the autonomous distributed control system according to the first embodiment and terms used in the explanation will be described.
  • the autonomous distributed control system includes a mobile group, and the mobile group includes a first mobile body 1, a plurality of second mobile bodies 2, and a plurality of third mobile bodies 3. Includes.
  • Each moving body is, for example, a drone, an autonomous vehicle, and the like, but is not limited to this.
  • the first mobile body 1 and the plurality of second mobile bodies 2 are connected by a network 4 that connects information.
  • the first mobile body 1 and the plurality of second mobile bodies 2 can be referred to as "nodes" of the network 4.
  • nodes of the network 4.
  • the fact that mobiles have a connection of information by connecting networks can be called “adjacent”, and the state of having a connection of information (adjacent state) can be called a "branch" of network 4. it can.
  • the first mobile body 1 is any one mobile body in the mobile body group.
  • the second moving body 2 is a moving body having an information connection with the first moving body 1 in the moving body group.
  • the second mobile body 2 may be a mobile body having an information connection with the first mobile body 1 without communication with another second mobile body 2, or may be a mobile body with another second mobile body 2. It may be a mobile body having a connection of information with the first mobile body 1 via communication.
  • the third mobile body 3 is a mobile body having no information connection with the first mobile body 1 in the mobile body group.
  • the first mobile body 1 and the plurality of second mobile bodies 2 joined by the network 4 cover a predetermined covering region 5 by autonomous and decentralized control.
  • the covering region 5 is a region enclosed by a covering boundary 6 such as a surface or a line, and specifically, is an area occupied by a space enclosed by a curved surface or an area occupied by a plane enclosed by a curve. is there.
  • the number of covering boundaries 6 recognized by the first moving body 1 may be one or may be plural. Unless otherwise specified, the mobile group is intended to cover the same covering region 5.
  • the first mobile body 1 When the covering area 5 is visible, the first mobile body 1 includes a controller that cooperates with a communication device, a sensor, and an arithmetic unit (not shown). As a result, the first mobile body 1 can acquire the state quantity of the second mobile body 2 from the network 4 and cover the covering region 5, that is, the covering of the covering region 5 can be achieved. At this time, the controller of the first mobile body 1 calculates the center of gravity of the Voronoi region from the observation results of the second mobile body 2 around the first mobile body 1 and covers the covering region 5. A control command value, which is a command value indicating the control of 1, is generated.
  • the first moving body 1 calculates the boronoy region based on all the covering boundaries 6 that close the covering region 5, the position of the first moving body 1, and the position of the second moving body 2, and the first A control command value based on the center of gravity of the Boronoi region including the moving body 1 is generated.
  • the second mobile body 2 or the third mobile body 3 is also configured in the same manner as the first mobile body 1, and generates a control command value based on the center of gravity of the Boronoi region including the second mobile body 2 or the third mobile body 3. .. By moving each moving body of the moving body group toward the center of gravity of the Voronoi region indicated by each control command value, it is possible to perform a coating in which global convergence stability is satisfied.
  • each of the first moving body 1, the second moving body 2, and the third moving body 3 shares the same covering region 5 and thus the covering boundary 6. Therefore, when the covering region 5 changes, each moving body needs to share the change with the network 4.
  • high performance is required for the means for forming a network, it is difficult to construct a system suitable for a large-scale mobile group having a large number of mobiles.
  • the first mobile body 1 includes a detector that recognizes the covering boundary 6 and an arithmetic unit that uses the covering boundary 6 as a state quantity. Then, as shown in FIG. 2, the first moving body 1 performs a mapping to generate a virtual moving body 7 on the opposite side of the first moving body 1 with respect to the covering boundary 6 that closes the covering region 5. The first moving body 1 performs the above mapping based on the geometric shape of the covering boundary 6 and the state amount of the first moving body 1 acquired by the first moving body 1, thereby performing the state quantity of the virtual moving body 7. To generate.
  • the first moving body 1 and the virtual moving body 7 are treated as adjacent to each other. That is, it is assumed that the first mobile body 1, the plurality of second mobile bodies 2 connected to the first mobile body 1 by the network 4, and the virtual mobile body 7 are connected by the network 4. Under this assumption, the first mobile body 1 generates a control command value indicating control of the first mobile body 1 by, for example, calculating the center of gravity of the Voronoi region.
  • the first moving body 1 locally acquires the information of the covering boundary 6, treats the information of the covering boundary 6 as the virtual moving body 7, and generates a control command value.
  • the moving body such as the first moving body 1 in the autonomous distributed control system can change the information in the covering area 5 from the network 4 to the state quantity of the virtual moving body 7. Since it can be acquired as a change, global convergence stability can be satisfied.
  • the moving body group can realize a covering that satisfies the global convergence stability.
  • the means for forming the network 4 can be constructed by a simple mechanism. Therefore, the above system can be realized by a relatively simple and relatively small device.
  • FIG. 3 is a block diagram showing a functional configuration of the first mobile body 1 according to the first embodiment.
  • the functional configurations of the second mobile body 2 and the third mobile body 3 may be the same as the functional configurations of the first mobile body 1.
  • the first moving body 1 calculates a path between the current position and the target position so that the first moving body 1 moves autonomously, and controls the drive source of the first moving body 1 along the path. It includes a controller, any of a communication device and a detector forming a network 4 with the second mobile body 2, an arithmetic device, and a detector for detecting the covering boundary 6.
  • the controller that controls the movement of the first mobile body 1 autonomously includes means for observing the state quantity of the first mobile body 1.
  • the means for observing the state quantity of the first moving body 1 is, for example, a speedometer for detecting the speed vector of the first moving body 1.
  • the means for observing the state quantity of the first moving body 1 is not limited to the detection of the velocity vector by the velocity meter, for example, the position estimation by imaging, the positioning by the illuminator (radar, laser, ultrasonic wave), the accelerometer or the angle. Any means may be used for measuring the movement of a moving object, such as integration by an accelerometer or positioning of an absolute position similar to GPS (Global Positioning System).
  • the first mobile body 1 may include a storage device for storing the observed state quantity of the first mobile body 1.
  • the state quantity of the first mobile body 1 observed by the above means is information for the first mobile body 1 to move autonomously.
  • the state quantity of the first moving body 1 is, for example, a velocity vector of the first moving body 1 in a predetermined space.
  • the state quantity of the first moving body 1 is not limited to the velocity vector, and is, for example, a position vector, an acceleration vector, an angular velocity vector, an attitude angle, or other state quantities related to motion similar thereto in a predetermined space. You may.
  • the first mobile body 1 has a functional configuration shown in FIG. 3 in addition to the above hardware functions.
  • the functional configuration of the first mobile body 1 shown in FIG. 3 will be described.
  • the first mobile body 1 in FIG. 3 includes an information acquisition unit 81, a cover boundary detection unit 82 which is a cover boundary acquisition unit, a network calculation unit 83, a graph calculation unit 84, a cover control calculation unit 85, and a mobile body. It includes a control unit 86.
  • the information acquisition unit 81 acquires the state quantities of the plurality of second mobile bodies 2.
  • the information acquisition unit 81 is composed of, for example, one of a communication device and a detector forming the second mobile body 2 and the network 4, and an arithmetic unit.
  • the information acquisition unit 81 includes a transmission / reception unit 81a including a transmitter / receiver that transmits the state amount of the first mobile body 1 to the second mobile body 2 and receives the state amount of the second mobile body 2 from the second mobile body 2. ..
  • the transmission / reception unit 81a is, for example, a communication means using radio waves.
  • the transmission / reception unit 81a is not limited to the communication means using radio waves, and may be, for example, a communication means for imparting information to light, sound, or a carrier wave similar thereto. Further, the transmission / reception unit 81a may be a communication means that converts information into a light amount distribution by an image output device, a lighting device, or a similar device, and restores the information from the light amount distribution by an imaging device.
  • the transmission / reception unit 81a may be any kind of means as long as it is a means for transmitting and receiving information.
  • the transmission / reception unit 81a when the state amount cannot be acquired from one of the second mobile bodies 2 of the plurality of second mobile bodies 2 for a certain period of time, or when the mobile body among the plurality of second mobile bodies 2 is autonomously distributed and controlled. If it is determined that the function of the system is not satisfied, the one second mobile body 2 may be treated as a third mobile body 3 instead of the second mobile body 2. That is, the first mobile body 1 and the one second mobile body may not be connected by a network.
  • the transmission / reception unit 81a was the third mobile body 3 at the initial time, but after that, when the state quantity can be acquired from the third mobile body 3, the third mobile body 3 is used. It may be treated as the second moving body 2.
  • the information acquisition unit 81 includes a measurement unit 81b for observing the state quantity of the second mobile body 2.
  • the measuring unit 81b is a distance direction measuring means including, for example, a detector such as a stereo camera and an arithmetic unit for observing the relative position of the second moving body 2 from the detection result of the detector.
  • the measuring unit 81b is not limited to the distance directional measuring means using a stereo camera.
  • the measuring unit 81b emits an electromagnetic wave, an ultrasonic wave, or a carrier wave similar thereto to the second moving body 2 or its surroundings, and measures the reflected wave. It may be a measuring means.
  • the measuring unit 81b may be any kind of means as long as it is a means for observing the state quantity.
  • the information acquisition unit 81 of FIG. 3 includes both a transmission / reception unit 81a capable of acquiring the state quantity of the second mobile body 2 and a measurement unit 81b capable of acquiring the state quantity of the second mobile body 2.
  • the configuration of the information acquisition unit 81 is not limited to this.
  • the information acquisition unit 81 can acquire the state quantity of the second moving body 2 required for generating the control command value from the transmission / reception unit 81a, the information acquisition unit 81 may not be provided with the measurement unit 81b, or may be provided from the measurement unit 81b. If the state quantity of the second moving body 2 required for generating the control command value can be acquired, the transmission / reception unit 81a may not be provided.
  • the state quantities of the plurality of second mobile bodies 2 combine the positions and velocities of the plurality of second mobile bodies 2 with respect to the covering region 5 and the plurality of second mobile bodies 2. It may include the information of the network 4 that is in operation. Then, the information acquisition unit 81 detects the relative position and relative speed of the second moving body 2 with respect to the first moving body 1, and includes it in the state quantity of the second moving body 2 based on the relative position and the relative speed. The position and speed of the second mobile body 2 are estimated, and the position and speed of the second mobile body 2 included in the state quantity of the second mobile body 2 are received from the second mobile body 2 via the network 4. You may do at least one of the things you do.
  • the covering boundary detection unit 82 detects the covering boundary 6 that closes the covering region 5, and performs a mapping that generates a virtual moving body 7 on the opposite side of the covering region 5 from the first moving body 1.
  • the covering boundary detection unit 82 maps the state of the virtual moving body 7 based on, for example, the geometric shape of the covering boundary 6 and the state quantity of the first moving body 1 acquired by the first moving body 1. Generate a quantity.
  • the covering boundary detection unit 82 is included in, for example, a device for autonomously moving the first mobile body 1.
  • the covering boundary 6 may be, for example, an obstacle similar to a wall or the like.
  • the covering boundary detection unit 82 is, for example, a means for measuring the distance and orientation with respect to the same surface, and detects the measured geometric shape of the obstacle as the geometric shape of the covering boundary 6.
  • the covering boundary detection unit 82 is not limited to the means for measuring the distance direction of the obstacle, and may, for example, estimate the geometric shape of the covering boundary 6 by state estimation by distance measurement.
  • the covering boundary 6 may be, for example, a sign similar to a white line or the like.
  • the covering boundary detection unit 82 extracts a sign included in the environmental information obtained by, for example, imaging, and detects the geometric shape of the sign as the geometric shape of the covering boundary.
  • the covering boundary detection unit 82 is not limited to the means for extracting the label by imaging, and may estimate the geometric shape of the covering boundary 6 by state estimation based on the label posted in the environment.
  • the covering boundary detection unit 82 generates, for example, a virtual moving body 7 having line symmetry with the first moving body 1 by using a plurality of line segment elements that divide the geometric shape of the covering boundary 6 as axes of symmetry. ..
  • the line segment element is derived, for example, by performing an operation on the covering boundary 6 using a predetermined logical formula.
  • the covering boundary detection unit 82 may determine whether the first moving body 1 is located inside or outside the covering region 5 from the state quantity of the first moving body 1. It should be noted that this determination does not have to be performed by the covering boundary detection unit 82.
  • a device that manages a group of moving bodies which is installed separately from the first moving body 1, detects the first moving body 1 and determines whether it is located inside or outside the covering area 5, and determines whether the result is inside or outside. It may be transmitted to the transmission / reception unit 81a or the measurement unit 81b of the first mobile body 1.
  • the state quantity of the virtual moving body 7 When the state quantity of the virtual moving body 7 is generated so as to be line-symmetric with the state quantity of the first moving body 1 with the line segment element of the covering boundary 6 as the axis of symmetry, the first moving body 1 and the virtual moving body 7 The perpendicular bisector with and coincides with the line segment element.
  • the network calculation unit 83 includes the state amount of the first mobile body 1 acquired by the first mobile body 1, the state amount of the plurality of second mobile bodies 2 acquired by the information acquisition unit 81, and the covering boundary detection unit 82. Receives the state quantity of the virtual mobile body 7 generated in.
  • the network calculation unit 83 is included in, for example, a device for autonomously moving the first mobile body 1.
  • the network calculation unit 83 may include a storage device for storing the received state quantity.
  • the network calculation unit 83 includes the first mobile body 1 and the plurality of first moving bodies 1 based on the state quantities of the first mobile body 1, the state quantities of the plurality of second mobile bodies 2, and the state quantities of the virtual mobile body 7. 2
  • the network that connects the mobile body 2 and the virtual mobile body 7 is obtained. That is, the network calculation unit 83 includes the virtual mobile body 7 in the network of the first mobile body 1 assuming that the virtual mobile body 7 has an information connection with the first mobile body 1 and the plurality of second mobile bodies 2 and is adjacent to the virtual mobile body 7.
  • the one mobile body is the first. 1 Estimate whether or not the state quantity of the moving body 1 is acquired. Then, when the network calculation unit 83 estimates that the one mobile body has acquired the state quantity of the first mobile body 1, the network calculation unit 83 has the information connection between the mobile body and the first mobile body 1. 2 It is determined that it is a moving body 2.
  • the network calculation unit 83 is, for example, one of the networks of the mobile group including the first mobile 1, the second mobile 2, and the third mobile 3 from the identifier included in the state quantity of the second mobile 2.
  • the part is estimated to estimate the structure of the network in the set of local mobiles included in the mobile group.
  • the structure of the network is represented by a set of a plurality of moving bodies (nodes) having information connections and adjacent states (branches) in which information is connected between the moving bodies.
  • the network calculation unit 83 further includes the virtual mobile 7 in the network structure of the first mobile 1.
  • the network calculation unit 83 stores, for example, the network information of the first mobile body 1 in a specific buffer and includes it in the state quantity of the first mobile body 1. At this time, the network calculation unit 83 may include the state quantity of the virtual mobile body 7 in the network information of the first mobile body 1.
  • the network calculation unit 83 performs an operation of superimposing the network of the first mobile body 1 and the network of the second mobile body 2. ..
  • the network calculation unit 83 can obtain a network including a set of several mobile bodies having information connections in the mobile body group, that is, a set of mobile bodies in a locally adjacent state.
  • the graph calculation unit 84 generates a control graph for generating a control command value from the network obtained by the network calculation unit 83.
  • a graph such as a control graph is a set element of a plurality of nodes and a plurality of branches representing a network, and is a figure in which a node (vertex) and a branch (side) are combined.
  • the graph calculation unit 84 is included in, for example, a controller for autonomously moving the first mobile body 1.
  • the graph calculation unit 84 classifies the attribute information for each graph based on the graph theory and holds it as graph information.
  • the graph calculation unit 84 obtains, for example, a set of combinations of nodes and branches in which two arbitrary moving bodies have information connections with each other and are adjacent to each other as a complete graph from the network obtained by the network calculation unit 83.
  • the graph calculation unit 84 obtains a plurality of complete graphs as a graph set of complete graphs by comprehensively combining nodes and branches.
  • the graph calculation unit 84 classifies a plurality of complete graphs according to the number of nodes of the complete graph (hereinafter, also referred to as “orders”), and generates a control command value for covering control from the plurality of classified complete graphs. Select the control graph for.
  • the graph calculation unit 84 generates a control graph by performing Delaunay triangulation division using the operation of the Delaunay graph based on the network obtained by the network calculation unit 83 will be described below.
  • the graph calculation unit 84 includes the first mobile body 1 from the first mobile body 1, the plurality of second mobile bodies 2, and the virtual mobile body 7 based on the network obtained by the network calculation unit 83. , Find a plurality of triangular complete graphs with a digit of 3. That is, the graph calculation unit 84 obtains a set of complete graphs including the first mobile body 1 and having three mobile bodies having information connections as three nodes.
  • the graph calculation unit 84 selects the control graph from the obtained plurality of triangular complete graphs. For example, the graph calculation unit 84 determines whether or not the nodes of another complete graph are included inside the circumscribed circle of the triangular complete graph, and a plurality of complete graphs in which the nodes of the other complete graph are included in the circumscribed circle. Remove from the complete graph of and select the remaining complete graph as the control graph. When a plurality of control graphs are selected by this, the plurality of control graphs become a triangular graph in which the branches do not intersect each other.
  • FIG. 4 is a diagram showing a control graph 8 obtained by the above calculation.
  • FIG. 4 shows, as an example of the control graph 8, a control graph 8 including a first moving body 1, a second moving body 23, and a virtual moving body 7.
  • the control graph 8 obtained in the above example is equivalent to the above-mentioned drone graph with respect to the first moving body 1, the plurality of second moving bodies 2, and the virtual moving body 7.
  • the control graph obtained in the above example shows the first moving body 1, Not only the plurality of second mobile bodies 2 and the virtual mobile body 7 but also the third mobile body 3 is equivalent to the above-mentioned drone graph.
  • the covering control calculation unit 85 generates a control command value based on the control graph generated by the graph calculation unit 84. As a result, the covering control calculation unit 85 controls the first mobile body 1 on the assumption that the first mobile body 1, the plurality of second mobile bodies 2, and the virtual mobile body 7 are connected by a network. It is possible to generate a control command value indicating.
  • the cover control calculation unit 85 is included in, for example, a device for autonomously moving the first mobile body 1.
  • the covering control calculation unit 85 obtains a control command value using, for example, a gradient function including the state quantity of the first mobile body 1 and the state quantity of the plurality of second mobile bodies 2.
  • the first moving body 1 and the plurality of second moving bodies 1 have a closed region defined based on the first moving body 1 and the plurality of second moving bodies 2.
  • a function of the sum of the squares of the Euclidean norm with an arbitrary point located closer to the first mobile 1 than the two mobile 2 is used.
  • the gradient function is a function capable of determining whether a point on a closed region based on the first mobile body 1 and the plurality of second mobile bodies 2 is closer to the first mobile body 1 or the plurality of second mobile bodies 2. Is. By moving toward the stop point which is the extreme value point of the gradient function, the first moving body 1 can cover any of the plurality of second moving bodies 2 without colliding with each other.
  • the covering control calculation unit 85 determines, for example, a polygonal region having a triangular outer center of the control graph 8 and the first moving body 1 as vertices as a partially closed region for each control graph 8.
  • the covering control calculation unit 85 starts from the node of the control graph 8 to the first moving body 1, the midpoint between the first moving body 1 and the second moving body 21, and the first moving body 1.
  • a partially closed region surrounded by the midpoint between the second moving body 22 and the outer center of the triangular control graph 8 is determined for each control graph 8.
  • the point included in the partially closed region is the first point in the triangular control graph 8 in which the number of digits having the first moving body 1 and the two second moving bodies 2 as nodes is three. It is equivalent to the point included in the area surrounded by the two sides including the moving body 1 and the two vertical bisectors of the two sides.
  • the cover control calculation unit 85 obtains the stop point of the gradient function from the gradient function showing the union of the squares of the Euclidean norms of arbitrary points included in the partially closed region of the plurality of control graphs 8.
  • the cover control calculation unit 85 has the gradient from the gradient function which is the sum of the functions whose elements are the set of the control graph 8 including the plurality of second mobile bodies 2 which are connected and adjacent to each other.
  • the stop point of the gradient function is equivalent to the center of gravity of the closed region. is there. Accordingly, coating control calculation unit 85, the center of gravity g i k of the partial closed area obtained for each control graph 8, the area S i k of the partial closed area, by applying the following equation (2) , The center of gravity cent (C i (x)) of the entire closed area, that is, the stop point of the gradient function can be obtained.
  • the covering control calculation unit 85 obtains a control command value by applying the following equation (3) to the center of gravity of the entire closed region, that is, the stop point of the gradient function.
  • u i of the following equation (3) a control input of a first control of the moving body 1, a control for moving the first moving body 1 in the direction of the position of the centroid of the formula (2) Corresponds to the command value.
  • the mass of the following equation (3) corresponds to the mass when the closed region is assumed to be a rigid body.
  • the first moving body 1 evenly covers the closed region according to the control command value represented by the following equation (3).
  • the covering boundary of the first moving body 1 is equivalent to the boundary of the closed region of the gradient function, and when the control graph 8 is triangular, the covering region of the first moving body 1 is equivalent to the boronoy region.
  • the covering boundary of the first moving body 1 is equivalent to the boundary of the boronoy region.
  • the gradient function may be, for example, a function obtained by multiplying the Euclidean norm by a weight. Weights Specifically, the coating control calculation unit 85, the center of gravity g i k of the partial closed area obtained for each control graph 8, the area S i k of the partial closed area, which is assigned to the partial closed area By applying Ni and to the following equation (4), the stop point of the gradient function may be obtained. The control command value at this time is expressed in the same manner as in the above equation (3).
  • the covering control calculation unit 85 generates a control command value indicating control of the first moving body 1 from the control graph 8 including the first moving body 1, the plurality of second moving bodies 2, and the virtual moving body 7.
  • the virtual moving body 7 may be treated in the same manner as any one of the plurality of second moving bodies 2.
  • the boundary of the closed region described above coincides with the vertical bisector between the first moving body 1 and the virtual moving body 7.
  • the moving body control unit 86 controls the movement of the first moving body 1 based on the control command value generated by the covering control calculation unit 85.
  • the mobile body control unit 86 is included in, for example, a device for autonomously moving the first mobile body 1.
  • the mobile body control unit 86 is, for example, a feedback control system for the drive source of the first mobile body 1.
  • the mobile control unit 86 may be of any type as long as it is a control system that controls the motion of the first mobile body 1 with the control command value of the cover control calculation unit 85 as a target.
  • ⁇ Summary of Embodiment 1> According to the autonomous distributed control system according to the first embodiment, even if the second mobile body 2 dynamically changes with respect to the first mobile body 1, the condition that the global convergence stability is guaranteed is guaranteed. , The virtual moving body 7 generated by the covering boundary detection unit 82 and the second moving body 2 are treated as equivalent. Therefore, since the first moving body 1 can treat the dynamic change of the covering boundary 6 as the change of the state quantity of the virtual moving body 7 which is equivalent to the second moving body 2, the global convergence stability is achieved. Can satisfy the sex. That is, the mobile autonomous distributed control system according to the first embodiment can satisfy the global convergence stability even if the covering region 5 changes dynamically.
  • the means for forming the network 4 shown in FIG. 4 can be constructed by a simple mechanism. Therefore, it is possible to realize an autonomous distributed control system in which the above effects can be obtained with a relatively simple device.
  • the mobile autonomous distributed control system since the mobile autonomous distributed control system according to the first embodiment includes a graph calculation unit 84 that generates a control graph from the network, it is global as described in Non-Patent Document 2. The necessary and sufficient condition of the control command value satisfying the convergence stability can be satisfied.
  • the gradient function of the cover control calculation unit 85 is not limited to the function represented by the above equation (2) as long as it is the sum of the functions based on the control graph.
  • the gradient function of the cover control calculation unit 85 is, for example, a first moving body 1 and an arbitrary point located closer to the first moving body 1 than the plurality of second moving bodies 2 with respect to the closed region included in the control graph. It may be the union of the Euclidean norms of.
  • the gradient function used in the covering control calculation unit 85 is a function obtained by multiplying the Euclidean norm by a weight, the distribution of the moving body group can be arbitrarily designed, so that the moving body group is locally concentrated at a certain position. In addition to the even distribution, the coating can be applied with a distribution suitable for various situations.
  • Covering with a group of mobiles is used, for example, in space sensing applications.
  • the demand for sensing and the improvement in coverage are increasing due to the use of monitoring people and objects in the city and indoors against various terrorist attacks.
  • covering with a mobile group is an important technology in which social demand and technical demand match.
  • the coating of a conventional mobile group satisfies the global convergence stability without dynamically changing the covering region, or the covering against a dynamic change of the covering region although it does not satisfy the convergence stability. Either the method of locally performing the control of giving the command for correction by performing the operation independent of the operation of the control command value was selected.
  • the covering area is treated statically, it becomes a low-performance system in which the robustness of the covering of the mobile group is impaired.
  • the conventional calculation independent of the calculation of the control command value of the covering a big problem may occur if the global convergence stability is not satisfied. For this reason, it has been difficult to put the conventional mobile group covering into practical use widely because it satisfies only either robustness against dynamic change of the covering region and global convergence stability.
  • the autonomous distributed control system according to the first embodiment can satisfy both robustness against dynamic changes in the covering boundary and global convergence stability, and thus contributes widely to society. Can be done.
  • FIG. 5 is a diagram schematically showing a configuration of an autonomous distributed control system according to a second embodiment of the present invention.
  • the components that are the same as or similar to the above-mentioned components are designated by the same or similar reference numerals, and different components will be mainly described.
  • the configuration of the autonomous distributed control system according to the second embodiment is the same as the configuration in which the covering boundary control unit 10 is added to the configuration of the autonomous distributed control system (FIG. 1) according to the first embodiment.
  • the covering boundary control unit 10 virtually changes the geometric shape of the covering boundary 6 while maintaining global convergence stability, and transmits the change information to the first mobile body 1.
  • the covering boundary control unit 10 is provided outside the first moving body 1, but the present invention is not limited to this.
  • the covering boundary detection unit 82 updates the virtual moving body 7 by performing the mapping described in the first embodiment with respect to the covering boundary 6 changed by the covering boundary control unit 10.
  • the update referred to here includes at least one of deleting the virtual moving body 7 and newly generating the virtual moving body 7.
  • the network calculation unit 83, the graph calculation unit 84, the covering control calculation unit 85, and the moving body control unit 86 perform the operations described in the first embodiment with respect to the newly generated virtual moving body 7.
  • FIG. 6 is a block diagram showing a functional configuration of the first mobile body 1 according to the second embodiment.
  • the covering boundary control unit 10 of FIG. 5 transmits change information of the covering boundary 6 to the covering boundary detecting unit 82 of the first mobile body 1.
  • the covering boundary control unit 10 is provided in, for example, an arithmetic unit that manages the covering region 5 of the mobile group.
  • the covering boundary control unit 10 uses, for example, a calculation unit for virtually changing the covering area 5 and a moving body located in the vicinity of the covering boundary 6 of the changed covering area 5 as the first moving body 1.
  • the cover boundary detection unit 82 of the first moving body 1 has a communication unit that transmits change information of the cover boundary 6. At least a part of the calculation unit and the communication unit of the covering boundary control unit 10 may be provided inside the first mobile body 1.
  • the communication unit of the covering boundary control unit 10 detects information related to the change operation for the covering boundary 6 by using a sign recognition device that recognizes a traffic sign or the like as the covering boundary 6 by imaging or the like, and based on the information.
  • the change information of the covering boundary 6 may be acquired.
  • the communication unit of the covering boundary control unit 10 detects information related to the change operation for the covering boundary 6 by, for example, determining the internal processing using a predetermined logical formula, and the covering boundary is based on the information.
  • the change information of 6 may be acquired.
  • the calculation unit of the covering boundary control unit 10 translates a part of the covering boundary 6 in the normal direction, for example, in order to translate the first moving body 1 in the normal direction of a part of the covering boundary 6.
  • the moved virtual covering element is given to the covering boundary detection unit 82 of the first moving body 1.
  • FIG. 7 is a diagram showing a principle of giving an operation of translating the first moving body 1 in the normal direction of a part of the covering boundary 6 by the covering boundary control unit 10.
  • the covering boundary detection unit 82 performs a virtual translation of a line segment element that is a part of the covering boundary 6 from the virtual covering element given by the covering boundary control unit 10, that is, the change information of the covering boundary 6.
  • Ask. By such an operation of the covering boundary detecting unit 82, the covering boundary control unit 10 substantially moves the line segment element which is a part of the geometric shape of the covering boundary 6 to the inside or the outside of the covering region 5. , The geometric shape of the covering boundary 6 can be changed.
  • FIG. 7 shows a virtual moving body 7a generated based on the line segment element 16a before the virtual moving and the state quantity of the first moving body 1.
  • a new virtual moving body 7b is generated at the position of the inner or outer dividing point between the first moving body 1 and the virtual moving body 7a. , Gives an instruction to the covering boundary detection unit 82 of the first moving body 1.
  • the covering boundary detecting unit 82 Upon receiving an instruction from the covering boundary control unit 10, the covering boundary detecting unit 82 removes the virtual moving body 7a and performs mapping based on the line segment element 16b after the virtual moving and the state quantity of the first moving body 1. , Generates a new state quantity of the virtual moving body 7b. At this time, the covering boundary detection unit 82 virtually moves so that the vertical bisectors of the first moving body 1 and the virtual moving body 7b coincide with the covering boundary 6 (line segment element 16b) after the virtual movement. The position of the body 7b (the position of the inner or outer division point) is calculated.
  • the covering boundary control unit 10 performs the same operation as the above operation for all the moving bodies that detect the covering boundary 6.
  • the first mobile body 1 may hold the input of the first mobile body 1 to the covering boundary detection unit 82 as the state quantity of the first mobile body 1 in the buffer, or may transmit the input to the second mobile body 2. Good.
  • the configuration in which the covering boundary control unit 10 substantially moves the line segment element, which is a part of the geometric shape of the covering boundary 6, to the inside or the outside of the covering region 5 has been described above.
  • the covering boundary control unit 10 performs an operation of increasing or decreasing the covering boundary 6 of the covering region 5 so as to avoid the failure when a failure that the moving body needs to avoid occurs in the vicinity of the covering boundary 6, for example. May be given. This case will be described below.
  • the covering boundary control unit 10 transmits, for example, information on a line segment element to be added to the covering boundary 6 or a line segment element to be deleted from the covering boundary 6 to the covering boundary detecting unit 82. That is, the covering boundary control unit 10 changes the geometric shape of the covering boundary 6 by adding or deleting a plurality of line segment elements that divide the geometric shape of the covering boundary 6.
  • the covering boundary detection unit 82 updates the virtual moving body 7 by mapping the covering boundary 6 changed by the covering boundary control unit 10 based on the information transmitted from the covering boundary control unit 10. As a result, the first mobile body 1 recognizes the new covering boundary 6.
  • FIG. 8 is a diagram showing a principle of giving an operation of increasing the covering boundary 6 of the covering region 5.
  • the first moving body 1a corresponds to the second moving body 2 when viewed from the first moving body 1b
  • the first moving body 1b corresponds to the second moving body 2 when viewed from the first moving body 1a.
  • the first moving body 1a generates a virtual moving body 7c with respect to the covering boundary 6, and the first moving body 1b generates a virtual moving body 7d with respect to the covering boundary 6.
  • the covering boundary control unit 10 newly forms a triangle surrounding the obstacle with a part of the covering boundary 6 as an edge in order to avoid a certain obstacle.
  • a triangle composed of a two-dot chain line and covering boundaries 6a and 6b added as line segment elements is shown.
  • the first moving body 1a is close to the covering boundary 6a, and the first moving body 1b is close to the covering boundary 6b.
  • the covering boundary control unit 10 transmits information on the covering boundary 6a, which is a line segment element close to the first moving body 1a, to the covering boundary detecting unit 82 of the first moving body 1a.
  • the covering boundary detection unit 82 of the first moving body 1a newly generates a virtual moving body 7e from the covering boundary 6a. Since the first moving body 1a stays inside the area surrounded by the covering boundary 6 excluding the alternate long and short dash line which is the reference of the virtual moving body 7c and the covering boundary 6a which is the reference of the virtual moving body 7e, the first moving body 1a moves.
  • the body 1a covers a new covering region 5 having a covering boundary 6 excluding the alternate long and short dash line and a covering boundary 6a as a boundary.
  • the covering boundary control unit 10 transmits information on the covering boundary 6b, which is a line segment element close to the first moving body 1b, to the covering boundary detecting unit 82 of the first moving body 1b.
  • the covering boundary detection unit 82 of the first moving body 1a newly generates a virtual moving body 7e from the covering boundary 6a. Since the first moving body 1b stays inside the area surrounded by the covering boundary 6 excluding the alternate long and short dash line which is the reference of the virtual moving body 7d and the covering boundary 6b which is the reference of the virtual moving body 7e, the first moving body 1b moves.
  • the body 1b covers a new covering region 5 having a covering boundary 6 excluding the alternate long and short dash line and a covering boundary 6b as a boundary.
  • the first moving body 1a Since the first moving body 1a is surrounded by the perpendicular bisector with the first moving body 1b, the covering boundary 6, and the covering boundary 6a, it does not invade the inside of the triangle surrounding the obstacle. Similarly, since the first mobile body 1b is surrounded by the perpendicular bisector with the first mobile body 1a, the covering boundary 6 and the covering boundary 6b, it does not invade the inside of the triangle surrounding the obstacle. ..
  • the calculation unit of the covering boundary control unit 10 assumes, for example, a virtual moving body in order to increase the covering boundary 6, and has a first moving body 1b and a first moving body 1b that are close to both the first moving body 1a and the covering boundary 6.
  • a vertical bisector may be derived for the moving body 1a.
  • the calculation unit of the covering boundary control unit 10 may use the line segments cut by the two vertical bisectors of the covering boundary 6 as the covering boundary 6a and the covering boundary 6b. Further, the operation of increasing the covering boundary 6 by the covering boundary control unit 10 is not limited to the above.
  • the covering region shared by the mobile group can be changed by locally giving information from the outside or the like.
  • the cover area of a mobile group is static information, and the autonomous distributed control system cannot change the cover area during cover control.
  • the operation of changing the covering area during the control of the covering is performed as a non-stationary command such as a command for giving an instruction to prohibit intrusion when a problem occurs in a part of the covering area.
  • a non-stationary command such as a command for giving an instruction to prohibit intrusion when a problem occurs in a part of the covering area.
  • an autonomous distributed control system that shares non-stationary commands as a whole, it takes a relatively long time for the commands to be reflected in the covering because it is necessary to re-share the new covering area as a whole. Further, in the autonomous distributed control system, it is necessary to stop the control of all the moving bodies until the information is shared. Further, a new function of determining whether or not the information is shared is required. When these are satisfied, the autonomous distributed control system is satisfied with global convergence stability for unsteady commands.
  • the covering area is corrected only for moving objects in the vicinity of the covering boundary that require a change in the covering area.
  • the command can be reflected on the coating in a shorter time than that.
  • the control of the moving body may be stopped locally, so that the covering can be continued as a whole.
  • the autonomous distributed control system since the mobile group is divided into two or more groups having different covering regions and discontinuity occurs at the interface, the autonomous distributed control system has global convergence stability with respect to unsteady commands. Is not satisfied.
  • the conventional autonomous distributed control system was one of the two autonomous distributed control systems having a trade-off relationship with each other as described above. For this reason, in conventional autonomous distributed control systems, it is necessary to sacrifice either the time until the command is reflected in the cover or the global convergence stability, depending on the problem to be applied.
  • the autonomous distributed control system since the unsteady command is locally shared, the time until the command is reflected in the covering can be shortened, and the virtual movement can be performed. It is possible to prevent the global convergence stability from being impaired by the formation of the body.
  • the covering area can be dynamically handled by the covering boundary control unit 10
  • the observation area changes from moment to moment, for example, for monitoring forest fires. It can be applied to monitor the phenomenon of fire.
  • an autonomous driving vehicle that detects an obstacle generated in a traveling lane transmits obstacle information to surrounding autonomous vehicles, thereby causing an obstacle. It can be applied to systems that share the coverage area modified by. In this case, it is possible to realize safe control in which the robustness is not impaired in the platooning of the autonomous driving vehicle. As described above, according to the second embodiment, it is possible to realize an autonomous distributed control system in which robustness is not impaired by changing the covering region with time, and it is safe in autonomous distributed control of various mobile groups. And reliability can be improved.
  • FIG. 6 shows the functional configuration of the first mobile body 1 according to the second embodiment.
  • FIG. 6 shows the functional configuration of the first mobile body 1 according to the second embodiment.
  • the covering boundary control unit 10 changes the geometric shape of the covering boundary 6 by merging a plurality of adjacent covering regions into one covering region. That is, in the autonomous distributed control system according to the third embodiment, it is possible to perform an operation of coupling the mobile group corresponding to the confluence of the covering regions.
  • the covering boundary control unit 10 changes the geometric shape of the covering boundary 6 by branching one covering region into a plurality of adjacent covering regions. That is, in the autonomous distributed control system according to the third embodiment, it is possible to perform an operation of dividing the mobile group corresponding to the branching of the covering region.
  • FIG. 9 shows a first mobile group surrounded by the covering region 5c and a second mobile group surrounded by the covering region 5d.
  • the first mobile group surrounded by the covering region 5c includes a first mobile 1c and a plurality of second mobiles 2c connected by a network 4c, and has a system similar to the autonomous distributed control system according to the second embodiment. It is configured.
  • the second mobile group surrounded by the covering region 5d includes a first mobile 1d and a plurality of second mobiles 2d connected by a network 4d, and has a system similar to the autonomous distributed control system according to the second embodiment. It is configured.
  • the covering boundary control unit 10 is commonly used in the first mobile group and the second mobile group.
  • FIG. 10 shows a third mobile group surrounded by a covering region 5e.
  • the third mobile group surrounded by the covering region 5e includes the first mobile group and the second mobile group similar to those in FIG. 9, and some of them are connected by the network 4e to form the second embodiment. It constitutes a system similar to the autonomous distributed control system related to.
  • the information acquisition unit 81 (FIG. 6) of the first moving bodies 1c and 1d provides information including a state quantity from the moving body when a new moving body appears in the vicinity of a network that does not include the moving body.
  • the mobile By receiving the mobile, it is possible to include the mobile in the network.
  • the first mobile body 1c included in the first mobile body group and the first mobile body 1d included in the second mobile body group form a network via their respective information acquisition units 81.
  • the covering boundary control unit 10 operates the covering boundary detection unit 82 (FIG. 6) and the network calculation unit 83 (FIG. 6) of the first mobile bodies 1c and 1d, respectively, to operate the first mobile unit 1c and FIG.
  • the mobile group and the second mobile group may be combined into one giant third mobile group in FIG.
  • an example of binding of the mobile group will be described.
  • the network calculation unit 83 of the first mobile body 1c or the network calculation unit 83 of the first mobile body 1d determines the first mobile body 1c based on the state quantities of the first mobile bodies 1c and 1d, respectively. It is determined whether and the first mobile body 1d have a connection of information and can be adjacent to each other.
  • the covering boundary control unit 10 causes the virtual moving body 7f (FIG. 9) generated on the second moving body group side with respect to the covering boundary detecting unit 82 of the first moving body 1c. Give a command to delete.
  • the covering boundary control unit 10 gives a command to the covering boundary detecting unit 82 of the first moving body 1d to delete the virtual moving body 7g (FIG. 9) generated on the first moving body group side. Then, the covering boundary control unit 10 connects the first mobile body 1c and the first mobile body 1d to the network calculation unit 83 of the first mobile body 1c and the network calculation unit 83 of the first mobile body 1d. Command to form 4e (FIG. 10).
  • the covering boundary control unit 10 connects the first mobile body group and the second mobile body group to the third mobile body group.
  • the determination of whether or not to combine the first mobile group and the second mobile group may be performed by the first mobile 1c or the first mobile 1d instead of the covering boundary control unit 10.
  • the third mobile group formed by combining the first mobile group and the second mobile group covers the covering region 5e, which is the union of the covering region 5c and the covering region 5d.
  • the covering boundary control unit 10 operates the covering boundary detection unit 82 and the network calculation unit 83 of the first mobile bodies 1c and 1d to obtain one third mobile body group in FIG. 9 may be divided into a first mobile group and a second mobile group.
  • an example of division of the mobile group will be described.
  • the covering boundary control unit 10 determines whether the closed region including all the first mobile group and the closed region including all the second mobile group intersect each other. When it is determined that the covering boundary control unit 10 does not intersect, the first moving body issues a command to delete the network 4e (FIG. 10) connecting the first moving body 1c and the first moving body 1d. A command to add a new covering boundary 6c (FIG. 9) to the network calculation unit 83 of 1c and generate a new virtual moving body 7f using the covering boundary 6c is issued to detect the covering boundary of the first moving body 1c. Give to part 82. Further, the covering boundary control unit 10 gives a command to the network calculation unit 83 of the first mobile body 1d to delete the network 4e (FIG.
  • a new covering boundary 6d (FIG. 9) is added, and a command to generate a new virtual moving body 7g using the covering boundary 6d is given to the covering boundary detection unit 82 of the first moving body 1d.
  • the covering boundary control unit 10 divides the third mobile body group into a first mobile body group and a second mobile body group.
  • the first moving body 1c of the first moving body group transmits the covering boundary 6c as a state quantity to the information acquisition unit 81 of the second moving body 2c, and the covering boundary of the second moving body 2c of the first moving body group.
  • the detection unit 82 may generate the virtual mobile 7f from the state quantity of the covering boundary 6c obtained by the information acquisition unit 81. This also applies to the second mobile group.
  • the autonomous distributed control system according to the third embodiment it was necessary to stop the autonomous distributed control both when combining the mobile group and when dividing the mobile group.
  • the autonomous distributed control system according to the third embodiment it is possible to perform an operation related to combining or separating the covering regions of the regions where the covering regions of different mobile groups overlap.
  • the autonomous distributed control since it is not necessary to transmit the change of the covering area to the entire moving body to be controlled, the autonomous distributed control is performed regardless of the scale of the moving body group or the covering area. It is possible to satisfy the global convergence stability while continuing.
  • Non-Patent Document 1 when covering a space where merging or branching is performed, the covering region is accompanied by a complicated shape such as a recess, so that the global convergence stability may not be satisfied.
  • a method of combining two mobile groups into one in the case of merging and a method of dividing one moving body group into two in the case of branching.
  • the covering area cannot be updated during the control of the binding or separation of the mobile group, so that the actual operation is difficult. For this reason, it is not realistic to perform the coating described in Non-Patent Document 1 with an autonomous distributed control system, and it is difficult to deploy the moving body in a complicated shape.
  • the mobile body in the autonomous distributed control system according to the third embodiment, can be deployed in a complicated shape in order to realize the coupling or separation of the mobile body group. For example, it can be expected to be used for quick rescue by deploying a large number of drones in a complicated environment caused by damage to a building due to an earthquake or tsunami.
  • FIG. 11 is a block diagram showing a functional configuration of the first mobile body 1 in the autonomous distributed control system according to the fourth embodiment of the present invention.
  • the same or similar components as those described above will be designated by the same or similar reference numerals, and different components will be mainly described.
  • the cover control calculation unit 85 according to the fourth embodiment is different from the method of the cover control calculation unit 85 described in the first embodiment for a part of the moving body group as long as the global convergence stability is satisfied. It is configured to calculate.
  • the graph calculation unit 84 has a plurality of mobile bodies having a plurality of mobile bodies having information connections as a plurality of nodes based on the network obtained by the network calculation unit 83. Find the complete graph. Then, the graph calculation unit 84 obtains a graph having the minimum configuration necessary for the covering control calculation unit 85 to obtain the control command value by a method different from that of the first embodiment from the plurality of complete graphs.
  • the graph calculation unit 84 may obtain, for example, a plurality of complete graphs having four or more nodes, and select a control graph from the plurality of complete graphs. Further, a complete graph other than the Delaunay triangle may be used as a control graph.
  • the covering control calculation unit 85 may generate a control command value from the gradient function, for example, using the sum of arbitrary functions having a complete graph included in the control graph, which is the minimum configuration graph, as an argument as a gradient function.
  • the cover control calculation unit 85 performs an calculation based on a part of the cover boundary 6 detected by the cover boundary detection unit 82, for example, when the virtual moving body 7 is included in the node of the control graph which is the minimum configuration graph.
  • the obtained result may be replaced with the stationary value of the gradient function and thus the control command value.
  • Non-Patent Document 2 describes that global convergence safety is ensured by performing an operation of replacing a gradient function having one of the complete graphs as an element or its stationary value with another complete graph. It is clear from.
  • the covering control calculation unit 85 performs Voronoi division based on the control graph to obtain the Voronoi region, and obtains the Voronoi region.
  • the control command value may be obtained based on the center of gravity and the area of the region.
  • the cover control calculation unit 85 may add, for example, a new gradient function having a complete graph as an element to the gradient function provided in advance.
  • the uses and scope of application of an autonomous distributed control system in which a plurality of mobile bodies make autonomous decisions based on local information are not limited to covering, and may be agreed.
  • the platooning is realized by an autonomous distributed control system in which a large number of moving bodies form a network with each other.
  • An autonomous distributed control system that performs platooning agrees to form a formation for a specific shape if the distance between vehicles can be defined in advance, and if the size of the platoon can be defined in advance, multiple movements.
  • a coating is applied to maintain the coverage area so that the body does not collide. That is, an autonomous distributed control system that performs platooning handles both consensus and cover problems, depending on the given situation.
  • the gradient function can be arbitrarily designed by a complete graph.
  • Non-Patent Document 2 describes that the consensus problem can be handled by the gradient function based on the complete graph
  • the autonomous distributed control system according to the fourth embodiment has both the consensus problem and the covering problem. Can be handled.
  • a system for platooning has been described as an example of an autonomous distributed control system that handles both the consensus problem and the cover problem, but the present invention is not limited to this.
  • each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.

Abstract

The purpose of the present invention is to provide a technology with which global convergence stability can be satisfied even when a coverage region changes dynamically in an autonomous distributed control system. A first mobile body is provided with: a coverage boundary acquiring unit that performs mapping for generating a virtual mobile body on the opposite side from the first mobile body with respect to the coverage boundary; a coverage control computing unit that assumes that the first mobile body, a plurality of second mobile bodies, and the virtual mobile body are coupled by a network and generates a command value which indicates a control of the first mobile body; and a mobile body control unit that controls the movement of the first mobile body on the basis of the command value.

Description

自律分散制御システムAutonomous distributed control system
 本発明は、複数の移動体が自律的かつ分散的な制御によって予め定められた被覆領域を被覆する自律分散制御システムに関する。 The present invention relates to an autonomous decentralized control system in which a plurality of mobile bodies cover a predetermined covering region by autonomous and decentralized control.
 近年、複数の移動する物体(以下、それぞれを「移動体」と記す)が編隊を組んで、一定の目的を達成する制御技術が提案されており、その制御技術によって、人が社会性をもって解決してきた問題を解決することが期待されている。 In recent years, a control technology has been proposed in which a plurality of moving objects (hereinafter, each of which is referred to as a "moving body") form a formation to achieve a certain purpose, and the control technology solves the problem with sociality. It is expected to solve the problems that have been solved.
 例えば、空間を自在に移動できるドローンが、人の代わりに広い範囲を定期的に探索する業務を行うことが期待されている。また、例えば、自律走行が可能な搬送車両が、人の代わりに工場や物流倉庫の物資を搬送することが実現されつつある。さらに、人の手を介在しない高度自動運転が可能な自動運転車両が、渋滞緩和化のために車間距離を縮めた隊列走行を行うことなどが期待されている。 For example, it is expected that a drone that can move freely in space will regularly search a wide range on behalf of a person. Further, for example, it is being realized that a transport vehicle capable of autonomous driving transports goods in a factory or a distribution warehouse instead of a person. Furthermore, it is expected that autonomous vehicles capable of highly autonomous driving without human intervention will perform platooning with a reduced inter-vehicle distance in order to alleviate traffic congestion.
 しかしながら上記技術では、複数の移動体に対して密集して行動することや互いの動きを同期させることが要求されるため、移動体群の制御が不安定であると大きな不具合が生じてしまう可能性がある。そのため、各移動体が各自の情報を使用していた従来の制御システムを、複数の移動体が移動体群として機能するように、複数の移動体が複数の移動体全体の情報を使用する新しい制御システムが提案されている。 However, in the above technology, it is required to act densely with respect to a plurality of moving bodies and to synchronize their movements with each other. Therefore, if the control of the moving body group is unstable, a big problem may occur. There is sex. Therefore, the conventional control system in which each moving body uses its own information is replaced with a new control system in which a plurality of moving bodies use the information of a plurality of moving bodies as a whole so that a plurality of moving bodies function as a moving body group. A control system has been proposed.
 複数の移動体が移動体群として機能する制御システムは、移動体群全体の情報を中央管理装置などで中央集権的に処理するものと、ある移動体が観測した局所的な情報を近くの別の移動体との間で受け渡して分散的に処理するものと、に分けられる。ここで、前者の制御システムは、制御の収束時間やエネルギーの最適化などの観点から制御効率に優れた手法であるが、情報集中による通信の混雑化や空間の拡大による収束時間の遅延化などの物理的な制約を受けるため、大規模なシステムには適さない。一方、後者の制御システム(以下「自律分散制御システム」と記す)は、各移動体が自律的かつ分散的な制御によって行動する。この自律分散制御システムは、各移動体が局所的な情報しか処理しないため、収束性や安定性には多少の課題がある。しかしながら、小規模に情報を処理する集団が互いに連携して全体の制御システムの機能を実現するため、大規模なシステムに適している。 A control system in which multiple mobiles function as a group of mobiles is one in which information on the entire group of mobiles is centrally processed by a central management device, etc., and one in which local information observed by a certain mobile is processed nearby. It is divided into those that are handed over to the moving body and processed in a decentralized manner. Here, the former control system is a method with excellent control efficiency from the viewpoint of control convergence time and energy optimization, but communication congestion due to information concentration and delay of convergence time due to space expansion, etc. Not suitable for large-scale systems due to physical constraints. On the other hand, in the latter control system (hereinafter referred to as "autonomous distributed control system"), each moving body acts by autonomous and decentralized control. In this autonomous distributed control system, since each moving body processes only local information, there are some problems in convergence and stability. However, it is suitable for a large-scale system because a group that processes information on a small scale cooperates with each other to realize the function of the entire control system.
 自律分散制御システムは、移動体群内の複数の移動体を所望の位置に配置すること(合意)と、移動体群内の複数の移動体を空間に効率的に配置すること(被覆)と、のいずれかを行う。なお、一般的に、自律分散制御システムは、合意と被覆とを同一のスキームで扱えないとされている。 In the autonomous distributed control system, multiple moving objects in the moving body group are arranged at desired positions (agreement), and multiple moving objects in the moving body group are efficiently arranged in space (covering). Do one of the above. It should be noted that, in general, an autonomous distributed control system cannot handle consensus and cover in the same scheme.
 合意を扱う自律分散制御システムは、比較的小規模なシステムにおいて効果が発揮されやすい。一方、被覆を扱う自律分散制御システムは、比較的大規模なシステムに適用されることが期待されている。例えば、被覆を扱う自律分散制御システムは、費用、解像度、及び、時間に制約が大きい衛星または航空機による広範囲の観測または監視を、ドローン群またはそれに類する安価な移動体群で置き換えることができる。このため、安価で更新頻度及び利便性が高いサービスの構築が期待されている。また、被覆を扱う自律分散制御システムは、交通、電力インフラ及びショッピングモールでの配送システム、またはそれらに限らない100以上の移動体で構成されるシステムにおいて、移動体の整流化による効率化、またはそれらに類する効率化が期待されている。 The autonomous distributed control system that handles consensus tends to be effective in relatively small-scale systems. On the other hand, autonomous distributed control systems that handle coverings are expected to be applied to relatively large-scale systems. For example, autonomous distributed control systems dealing with coverings can replace a wide range of cost, resolution, and time-constrained satellite or aircraft observations or surveillance with drones or similar inexpensive mobiles. Therefore, it is expected to build a service that is inexpensive, has a high update frequency, and is highly convenient. In addition, an autonomous distributed control system that handles coverings is an efficiency improvement by rectification of mobile objects, or in a delivery system in transportation, electric power infrastructure and shopping malls, or a system composed of 100 or more mobile objects not limited thereto. It is expected that the efficiency will be similar to those.
 しかしながら、自律分散制御システムは、局所的な情報で移動体群の全体を制御するため、大域的な収束安定性が課題とされている。特に、被覆を扱う自律分散制御システムは大規模なシステムとなることが想定されるため、制御則の収束安定性を高めることは、信頼性及び安全性にとって必要不可欠である。また、近年普及しつつある機械学習、またはそれらに類するヒューリスティックな制御手法は、自律分散制御システムにおける収束安定性の改善には適さない。 However, since the autonomous distributed control system controls the entire mobile group with local information, global convergence stability is an issue. In particular, since the autonomous distributed control system that handles the covering is expected to be a large-scale system, it is indispensable for reliability and safety to improve the convergence stability of the control law. In addition, machine learning, which has become widespread in recent years, or similar heuristic control methods, are not suitable for improving convergence stability in autonomous distributed control systems.
 以上のような問題に対して、これまでに自律分散制御システムにおいて、大域的な収束安定性を改善するための設計方法がいくつか提案されている。 For the above problems, some design methods for improving global convergence stability have been proposed in autonomous distributed control systems.
 例えば、非特許文献1には、複数の移動体の間で情報を繋ぐネットワークが形成されている状態で、その数理的な構造から、大域的な収束安定性を判定すること、及び、ボロノイ領域を定義して、当該ボロノイ領域の重心に基づく指令値を求めることが提案されている。例えば、非特許文献2には、勾配関数の停留点を制御の指令値とすることが、大域的な収束安定性を満たす制御指令値の必要十分条件であると提案されている。なお、勾配関数には、ネットワークを構成し、互いに情報をやりとりする任意の2つの移動体を含む移動体の集合を要素とする関数の線形和で表される関数を用いることが提案されている。例えば、特許文献1には、上空から地上を監視する飛行装置とセンタ装置とから構成される監視システムが提案されている。 For example, in Non-Patent Document 1, in a state where a network connecting information is formed between a plurality of mobile bodies, the global convergence stability is determined from the mathematical structure thereof, and the Voronoi region. It is proposed to define and obtain the command value based on the center of gravity of the Voronoi region. For example, Non-Patent Document 2 proposes that setting the stop point of the gradient function as a control command value is a necessary and sufficient condition for a control command value that satisfies global convergence stability. As the gradient function, it is proposed to use a function represented by a linear sum of functions whose elements are a set of mobile bodies including any two mobile bodies that form a network and exchange information with each other. .. For example, Patent Document 1 proposes a monitoring system including a flight device and a center device for monitoring the ground from the sky.
特開2019-20992号公報Japanese Unexamined Patent Publication No. 2019-20992
 しかしながら、ボロノイ領域を定義する従来の被覆制御では、制御対象とする全ての移動体が、被覆領域に関する情報を共有しなければならない。具体的には、各移動体は、ボロノイ領域を計算するために、被覆領域を閉包する被覆境界の情報を互いに共有しなければならない。もし、各移動体が有する被覆境界の情報が異なる場合、移動体ごとに算出されるボロノイ領域が異なることになるため、自律分散制御は大域的な収束安定性を満たすことができなくなるという問題がある。 However, in the conventional covering control that defines the Voronoi region, all the moving objects to be controlled must share the information about the covering region. Specifically, each mobile must share information about the covering boundary that closes the covering region with each other in order to calculate the Voronoi region. If the information on the covering boundary of each moving body is different, the Voronoi region calculated for each moving body will be different, so that the autonomous distributed control cannot satisfy the global convergence stability. is there.
 被覆領域に関する情報を共有しなければならないという以上のような制約により、従来の被覆制御は、被覆境界の一部を動的に変化させることが困難であり、被覆領域を静的に扱わなければならないという問題があった。この結果、従来の被覆制御では、被覆領域の一部を変形する、2つの被覆領域を1つに結合する、1つの被覆領域を2つ以上に分割する、またはそれらに類する被覆領域の動的な変化を扱うことが難しいため、実環境への適用が困難であるという問題があった。 Due to the above constraints of having to share information about the covering area, it is difficult for conventional covering control to dynamically change a part of the covering boundary, and the covering area must be treated statically. There was a problem that it did not become. As a result, in conventional coating control, a part of the coating region is deformed, two coating regions are combined into one, one coating region is divided into two or more, or a similar coating region is dynamically dynamic. There was a problem that it was difficult to apply it to the real environment because it was difficult to handle such changes.
 そこで、本発明は、上記のような問題点を鑑みてなされたものであり、自律分散制御システムにおいて、被覆領域が動的に変化しても大域的な収束安定性を満たすことが可能な技術を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and is a technique capable of satisfying global convergence stability even if the covering region changes dynamically in an autonomous distributed control system. The purpose is to provide.
 本発明に係る自律分散制御システムは、情報を繋ぐネットワークで結合された第1移動体及び複数の第2移動体が、予め定められた被覆領域を、自律的かつ分散的な制御によって被覆する自律分散制御システムであって、前記第1移動体は、前記被覆領域を閉包する被覆境界に関して前記第1移動体と反対側に仮想移動体を生成する写像を行う被覆境界取得部と、前記第1移動体と、前記第1移動体と前記ネットワークによって結合された前記複数の第2移動体と、前記被覆境界取得部で生成された前記仮想移動体とが、前記ネットワークによって結合されていると仮定して、前記第1移動体の制御を示す指令値を生成する被覆制御演算部と、前記被覆制御演算部で生成された前記指令値に基づいて前記第1移動体の移動を制御する移動体制御部とを備える。 In the autonomous decentralized control system according to the present invention, a first mobile body and a plurality of second mobile bodies connected by a network connecting information cover a predetermined covering region by autonomous and decentralized control. In the dispersion control system, the first moving body includes a covering boundary acquisition unit that performs a mapping to generate a virtual moving body on the opposite side of the covering boundary that closes the covering region to the first moving body, and the first moving body. It is assumed that the mobile body, the plurality of second mobile bodies connected to the first mobile body by the network, and the virtual mobile body generated by the covering boundary acquisition unit are connected by the network. Then, a covering control calculation unit that generates a command value indicating control of the first moving body and a moving body that controls the movement of the first moving body based on the command value generated by the covering control calculation unit. It is equipped with a control unit.
 本発明によれば、被覆領域を閉包する被覆境界に関して第1移動体と反対側に仮想移動体を生成する写像を行い、第1移動体と、複数の第2移動体と、仮想移動体とがネットワークによって結合されていると仮定して、第1移動体の制御を示す指令値を生成し、当該指令値に基づいて第1移動体の移動を制御する。このような構成によれば、自律分散制御システムにおいて、被覆領域が動的に変化しても大域的な収束安定性を満たすことができる。 According to the present invention, a mapping is performed to generate a virtual moving body on the side opposite to the first moving body with respect to the covering boundary confining the covering region, and the first moving body, a plurality of second moving bodies, and the virtual moving body are Is connected by a network, a command value indicating control of the first mobile body is generated, and the movement of the first mobile body is controlled based on the command value. According to such a configuration, in the autonomous distributed control system, it is possible to satisfy the global convergence stability even if the covering region changes dynamically.
 本発明の目的、特徴、態様及び利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The object, features, aspects and advantages of the present invention will be made clearer by the following detailed description and accompanying drawings.
実施の形態1に係る自律分散制御システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the autonomous distributed control system which concerns on Embodiment 1. FIG. 実施の形態1に係る自律分散制御システムの動作を模式的に示す図である。It is a figure which shows typically the operation of the autonomous distributed control system which concerns on Embodiment 1. FIG. 実施の形態1に係る第1移動体の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the 1st moving body which concerns on Embodiment 1. FIG. 実施の形態1に係る自律分散制御システムの動作を模式的に示す図である。It is a figure which shows typically the operation of the autonomous distributed control system which concerns on Embodiment 1. FIG. 実施の形態2に係る自律分散制御システムの構成を模式的に示す図である。It is a figure which shows typically the structure of the autonomous distributed control system which concerns on Embodiment 2. FIG. 実施の形態2に係る第1移動体の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the 1st moving body which concerns on Embodiment 2. 実施の形態2に係る自律分散制御システムの動作を模式的に示す図である。It is a figure which shows typically the operation of the autonomous distributed control system which concerns on Embodiment 2. FIG. 実施の形態2に係る自律分散制御システムの動作を模式的に示す図である。It is a figure which shows typically the operation of the autonomous distributed control system which concerns on Embodiment 2. FIG. 実施の形態3に係る自律分散制御システムの動作を模式的に示す図である。It is a figure which shows typically the operation of the autonomous distributed control system which concerns on Embodiment 3. 実施の形態3に係る自律分散制御システムの動作を模式的に示す図である。It is a figure which shows typically the operation of the autonomous distributed control system which concerns on Embodiment 3. 実施の形態4に係る第1移動体の機能構成を示すブロック図である。It is a block diagram which shows the functional structure of the 1st moving body which concerns on Embodiment 4.
 <実施の形態1>
 図1は、本発明の実施の形態1に係る自律分散制御システムの構成を模式的に示す図である。まず、本実施の形態1に係る自律分散制御システムの概要、及び、その説明に用いられる用語について説明する。
<Embodiment 1>
FIG. 1 is a diagram schematically showing a configuration of an autonomous distributed control system according to a first embodiment of the present invention. First, an outline of the autonomous distributed control system according to the first embodiment and terms used in the explanation will be described.
 本実施の形態1に係る自律分散制御システムは、移動体群を備えており、移動体群は、第1移動体1と、複数の第2移動体2と、複数の第3移動体3とを含んでいる。第1移動体1、複数の第2移動体2、及び、複数の第3移動体3のそれぞれ、つまり各移動体は、自律分散的に編隊行動を指示された場合に、自律的に移動する機能を有する複数の機械の集団を成す移動体である。各移動体は、例えば、ドローン、自動運転車両などであるが、これに限ったものではない。 The autonomous distributed control system according to the first embodiment includes a mobile group, and the mobile group includes a first mobile body 1, a plurality of second mobile bodies 2, and a plurality of third mobile bodies 3. Includes. Each of the first mobile body 1, the plurality of second mobile bodies 2, and the plurality of third mobile bodies 3, that is, each mobile body, moves autonomously when instructed to perform formation actions in an autonomously decentralized manner. It is a mobile body that forms a group of multiple functional machines. Each moving body is, for example, a drone, an autonomous vehicle, and the like, but is not limited to this.
 第1移動体1及び複数の第2移動体2は、情報を繋ぐネットワーク4で結合されている。この場合、第1移動体1及び複数の第2移動体2を、ネットワーク4の「節点」と呼ぶことができる。また、移動体同士がネットワークの結合によって情報の繋がりを持つことを、「隣接する」と呼ぶことができ、情報の繋がりを持つ状態(隣接状態)を、ネットワーク4の「枝」と呼ぶことができる。 The first mobile body 1 and the plurality of second mobile bodies 2 are connected by a network 4 that connects information. In this case, the first mobile body 1 and the plurality of second mobile bodies 2 can be referred to as "nodes" of the network 4. Further, the fact that mobiles have a connection of information by connecting networks can be called "adjacent", and the state of having a connection of information (adjacent state) can be called a "branch" of network 4. it can.
 ここで、第1移動体1は、移動体群のうちの任意の1つの移動体である。 Here, the first mobile body 1 is any one mobile body in the mobile body group.
 第2移動体2は、移動体群のうち、第1移動体1と情報の繋がりを持つ移動体である。第2移動体2は、他の第2移動体2との通信を介さずに第1移動体1と情報の繋がりを持つ移動体であってもよいし、他の第2移動体2との通信を介して第1移動体1と情報の繋がりを持つ移動体であってもよい。 The second moving body 2 is a moving body having an information connection with the first moving body 1 in the moving body group. The second mobile body 2 may be a mobile body having an information connection with the first mobile body 1 without communication with another second mobile body 2, or may be a mobile body with another second mobile body 2. It may be a mobile body having a connection of information with the first mobile body 1 via communication.
 第3移動体3は、移動体群のうち、第1移動体1と情報の繋がりを持たない移動体である。 The third mobile body 3 is a mobile body having no information connection with the first mobile body 1 in the mobile body group.
 ネットワーク4で接合された第1移動体1及び複数の第2移動体2は、予め定められた被覆領域5を、自律的かつ分散的な制御によって被覆する。被覆領域5とは、例えば面や線などの被覆境界6で閉包された領域であり、具体的には、曲面で閉包された空間の占める範囲、または、曲線で閉包された平面の占める範囲である。第1移動体1に認識される被覆境界6は1つであってもよいし、複数であってもよい。なお、特に記載がない限り、移動体群は同一の被覆領域5を被覆することを目的としているものとする。 The first mobile body 1 and the plurality of second mobile bodies 2 joined by the network 4 cover a predetermined covering region 5 by autonomous and decentralized control. The covering region 5 is a region enclosed by a covering boundary 6 such as a surface or a line, and specifically, is an area occupied by a space enclosed by a curved surface or an area occupied by a plane enclosed by a curve. is there. The number of covering boundaries 6 recognized by the first moving body 1 may be one or may be plural. Unless otherwise specified, the mobile group is intended to cover the same covering region 5.
 被覆領域5が可視である場合、第1移動体1は、いずれも図示しない通信装置、センサ及び演算装置と協働する制御器を備える。これにより、第1移動体1は、ネットワーク4から第2移動体2の状態量を取得して被覆領域5を被覆すること、つまり被覆領域5の被覆の達成が可能である。この際、第1移動体1の制御器は、第1移動体1周囲の第2移動体2の観測結果からボロノイ領域の重心を演算して、被覆領域5を被覆するための第1移動体1の制御を示す指令値である制御指令値を生成する。つまり、第1移動体1は、被覆領域5を閉包する全ての被覆境界6と、第1移動体1の位置と、第2移動体2の位置とに基づいてボロノイ領域を演算し、第1移動体1が含まれるボロノイ領域の重心に基づく制御指令値を生成する。 When the covering area 5 is visible, the first mobile body 1 includes a controller that cooperates with a communication device, a sensor, and an arithmetic unit (not shown). As a result, the first mobile body 1 can acquire the state quantity of the second mobile body 2 from the network 4 and cover the covering region 5, that is, the covering of the covering region 5 can be achieved. At this time, the controller of the first mobile body 1 calculates the center of gravity of the Voronoi region from the observation results of the second mobile body 2 around the first mobile body 1 and covers the covering region 5. A control command value, which is a command value indicating the control of 1, is generated. That is, the first moving body 1 calculates the boronoy region based on all the covering boundaries 6 that close the covering region 5, the position of the first moving body 1, and the position of the second moving body 2, and the first A control command value based on the center of gravity of the Boronoi region including the moving body 1 is generated.
 第2移動体2または第3移動体3も、第1移動体1と同様に構成され、第2移動体2または第3移動体3が含まれるボロノイ領域の重心に基づく制御指令値を生成する。移動体群の各移動体は、各制御指令値が示すボロノイ領域の重心に向かって移動することで、大域的な収束安定性が満たされた被覆を行うことができる。 The second mobile body 2 or the third mobile body 3 is also configured in the same manner as the first mobile body 1, and generates a control command value based on the center of gravity of the Boronoi region including the second mobile body 2 or the third mobile body 3. .. By moving each moving body of the moving body group toward the center of gravity of the Voronoi region indicated by each control command value, it is possible to perform a coating in which global convergence stability is satisfied.
 上記被覆制御による収束安定性では、第1移動体1、第2移動体2及び第3移動体3の各々が同じ被覆領域5ひいては被覆境界6を共有することを必要要件とする。このため、被覆領域5が変化する場合、各移動体はその変化をネットワーク4で共有する必要がある。しかしながら、ネットワークを構成する手段に高い性能が要求されるため、移動体の数が多い大規模な移動体群に適したシステムを構成することは困難である。 In the convergence stability by the coating control, it is a necessary requirement that each of the first moving body 1, the second moving body 2, and the third moving body 3 shares the same covering region 5 and thus the covering boundary 6. Therefore, when the covering region 5 changes, each moving body needs to share the change with the network 4. However, since high performance is required for the means for forming a network, it is difficult to construct a system suitable for a large-scale mobile group having a large number of mobiles.
 このことに鑑みて、第1移動体1は、上記構成に加えて、被覆境界6を認識する検出器と、被覆境界6を状態量とする演算装置とを備える。そして、図2に示すように、第1移動体1は、被覆領域5を閉包する被覆境界6に関して第1移動体1と反対側に仮想移動体7を生成する写像を行う。第1移動体1は、被覆境界6の幾何形状と、第1移動体1で取得された第1移動体1の状態量とに基づいて上記写像を行うことにより、仮想移動体7の状態量を生成する。 In view of this, in addition to the above configuration, the first mobile body 1 includes a detector that recognizes the covering boundary 6 and an arithmetic unit that uses the covering boundary 6 as a state quantity. Then, as shown in FIG. 2, the first moving body 1 performs a mapping to generate a virtual moving body 7 on the opposite side of the first moving body 1 with respect to the covering boundary 6 that closes the covering region 5. The first moving body 1 performs the above mapping based on the geometric shape of the covering boundary 6 and the state amount of the first moving body 1 acquired by the first moving body 1, thereby performing the state quantity of the virtual moving body 7. To generate.
 この際、第1移動体1と仮想移動体7とは隣接するものとして扱う。すなわち、第1移動体1と、第1移動体1とネットワーク4によって結合された複数の第2移動体2と、仮想移動体7とがネットワーク4によって結合されていると仮定する。第1移動体1は、この仮定下で、例えばボロノイ領域の重心の演算などを行うことによって、第1移動体1の制御を示す制御指令値を生成する。 At this time, the first moving body 1 and the virtual moving body 7 are treated as adjacent to each other. That is, it is assumed that the first mobile body 1, the plurality of second mobile bodies 2 connected to the first mobile body 1 by the network 4, and the virtual mobile body 7 are connected by the network 4. Under this assumption, the first mobile body 1 generates a control command value indicating control of the first mobile body 1 by, for example, calculating the center of gravity of the Voronoi region.
 以上の構成によれば、第1移動体1は、被覆境界6の情報を局所的に取得し、当該被覆境界6の情報を仮想移動体7として扱って制御指令値を生成する。これにより、自律分散制御システムにおける第1移動体1などの移動体は、被覆領域5が動的に変化しても、被覆領域5の情報の変化をネットワーク4から仮想移動体7の状態量の変化として取得できるため、大域的な収束安定性を満たすことができる。 According to the above configuration, the first moving body 1 locally acquires the information of the covering boundary 6, treats the information of the covering boundary 6 as the virtual moving body 7, and generates a control command value. As a result, even if the covering area 5 dynamically changes, the moving body such as the first moving body 1 in the autonomous distributed control system can change the information in the covering area 5 from the network 4 to the state quantity of the virtual moving body 7. Since it can be acquired as a change, global convergence stability can be satisfied.
 以上により、被覆領域5が動的に変化しても、移動体群は、大域的な収束安定性を満たす被覆を実現することができる。このとき、各移動体は、局所的な情報のみで制御指令値を生成するため、ネットワーク4を構成する手段を簡素な仕組みで構築できる。したがって、比較的簡素でかつ比較的小型の機器によって、上記システムを実現することができる。 From the above, even if the covering region 5 changes dynamically, the moving body group can realize a covering that satisfies the global convergence stability. At this time, since each mobile body generates a control command value only with local information, the means for forming the network 4 can be constructed by a simple mechanism. Therefore, the above system can be realized by a relatively simple and relatively small device.
 次に、本実施の形態1に係る自律分散制御システムの詳細について説明する。図3は、本実施の形態1に係る第1移動体1の機能構成を示すブロック図である。なお、第2移動体2及び第3移動体3の機能構成も、第1移動体1の機能構成と同様であってもよい。 Next, the details of the autonomous distributed control system according to the first embodiment will be described. FIG. 3 is a block diagram showing a functional configuration of the first mobile body 1 according to the first embodiment. The functional configurations of the second mobile body 2 and the third mobile body 3 may be the same as the functional configurations of the first mobile body 1.
 図3に示される第1移動体1の機能構成について説明する前に、第1移動体1のハードウェア構成について説明する。第1移動体1は、第1移動体1が自律的に移動するように、現在の位置と目標の位置との経路を演算し、経路にそって第1移動体1の駆動源を制御する制御器と、第2移動体2とネットワーク4を形成する通信装置及び検出器のいずれか及び演算装置と、被覆境界6を検出する検出器と、を備える。 Before explaining the functional configuration of the first mobile body 1 shown in FIG. 3, the hardware configuration of the first mobile body 1 will be described. The first moving body 1 calculates a path between the current position and the target position so that the first moving body 1 moves autonomously, and controls the drive source of the first moving body 1 along the path. It includes a controller, any of a communication device and a detector forming a network 4 with the second mobile body 2, an arithmetic device, and a detector for detecting the covering boundary 6.
 第1移動体1が自律的に移動するための制御を行う上記制御器は、第1移動体1の状態量を観測する手段を含む。第1移動体1の状態量を観測する手段は、例えば、第1移動体1の速度ベクトルを検出する速度計である。第1移動体1の状態量を観測する手段は、速度計による速度ベクトルの検出に限定されず、例えば、撮像による位置推定、照射体(レーダー、レーザー、超音波)による測位、加速度計や角加速度計による積分、GPS(Global Positioning System)に類する絶対位置の測位などの、移動体の運動を計測する手段であればよい。なお、第1移動体1は、観測された第1移動体1の状態量を格納する記憶装置を備えていてもよい。 The controller that controls the movement of the first mobile body 1 autonomously includes means for observing the state quantity of the first mobile body 1. The means for observing the state quantity of the first moving body 1 is, for example, a speedometer for detecting the speed vector of the first moving body 1. The means for observing the state quantity of the first moving body 1 is not limited to the detection of the velocity vector by the velocity meter, for example, the position estimation by imaging, the positioning by the illuminator (radar, laser, ultrasonic wave), the accelerometer or the angle. Any means may be used for measuring the movement of a moving object, such as integration by an accelerometer or positioning of an absolute position similar to GPS (Global Positioning System). The first mobile body 1 may include a storage device for storing the observed state quantity of the first mobile body 1.
 上記手段により観測される第1移動体1の状態量は、第1移動体1が自律的に移動するための情報である。第1移動体1の状態量は、例えば、所定の空間における第1移動体1の速度ベクトルである。なお、第1移動体1の状態量は、速度ベクトルに限定されず、例えば、所定の空間における位置ベクトルや加速度ベクトル、角速度ベクトル、姿勢角、またはそれらに類する運動に係るその他の状態量であってもよい。 The state quantity of the first mobile body 1 observed by the above means is information for the first mobile body 1 to move autonomously. The state quantity of the first moving body 1 is, for example, a velocity vector of the first moving body 1 in a predetermined space. The state quantity of the first moving body 1 is not limited to the velocity vector, and is, for example, a position vector, an acceleration vector, an angular velocity vector, an attitude angle, or other state quantities related to motion similar thereto in a predetermined space. You may.
 第1移動体1は、上記ハードウェアの機能に加えて、図3に示される機能構成を備える。図3に示される第1移動体1の機能構成について説明する。図3の第1移動体1は、情報取得部81と、被覆境界取得部である被覆境界検出部82と、ネットワーク演算部83と、グラフ演算部84と、被覆制御演算部85と、移動体制御部86とを備える。 The first mobile body 1 has a functional configuration shown in FIG. 3 in addition to the above hardware functions. The functional configuration of the first mobile body 1 shown in FIG. 3 will be described. The first mobile body 1 in FIG. 3 includes an information acquisition unit 81, a cover boundary detection unit 82 which is a cover boundary acquisition unit, a network calculation unit 83, a graph calculation unit 84, a cover control calculation unit 85, and a mobile body. It includes a control unit 86.
 <情報取得部81>
 情報取得部81は、複数の第2移動体2の状態量を取得する。情報取得部81は、例えば、第2移動体2とネットワーク4を形成する通信装置及び検出器のいずれかと演算装置とによって構成される。
<Information acquisition unit 81>
The information acquisition unit 81 acquires the state quantities of the plurality of second mobile bodies 2. The information acquisition unit 81 is composed of, for example, one of a communication device and a detector forming the second mobile body 2 and the network 4, and an arithmetic unit.
 情報取得部81は、第1移動体1の状態量を第2移動体2に送信し、第2移動体2の状態量を第2移動体2から受信する送受信器からなる送受信部81aを備える。 The information acquisition unit 81 includes a transmission / reception unit 81a including a transmitter / receiver that transmits the state amount of the first mobile body 1 to the second mobile body 2 and receives the state amount of the second mobile body 2 from the second mobile body 2. ..
 送受信部81aは、例えば、電波を用いる通信手段である。なお、送受信部81aは、電波を用いる通信手段に限定されず、例えば、光や音、それらに類する搬送波に情報を付与する通信手段であってもよい。また、送受信部81aは、画像出力装置や照明装置またはそれに類する装置で情報を光量の分布に変換し、撮像機器により光量の分布から情報を復元する通信手段であってもよい。なお、送受信部81aは、情報を送信および受信する手段であれば、どのような種類の手段であってもよい。 The transmission / reception unit 81a is, for example, a communication means using radio waves. The transmission / reception unit 81a is not limited to the communication means using radio waves, and may be, for example, a communication means for imparting information to light, sound, or a carrier wave similar thereto. Further, the transmission / reception unit 81a may be a communication means that converts information into a light amount distribution by an image output device, a lighting device, or a similar device, and restores the information from the light amount distribution by an imaging device. The transmission / reception unit 81a may be any kind of means as long as it is a means for transmitting and receiving information.
 送受信部81aは、複数の第2移動体2の1つの第2移動体2から状態量が一定時間取得できなかった場合、または、複数の第2移動体2のうちの移動体が自律分散制御システムの機能を満たさないと判定した場合には、当該1つの第2移動体2を、第2移動体2としてではなく第3移動体3として扱ってもよい。つまり、第1移動体1と上記1つの第2移動体とがネットワークによって結合されていないとしてもよい。 In the transmission / reception unit 81a, when the state amount cannot be acquired from one of the second mobile bodies 2 of the plurality of second mobile bodies 2 for a certain period of time, or when the mobile body among the plurality of second mobile bodies 2 is autonomously distributed and controlled. If it is determined that the function of the system is not satisfied, the one second mobile body 2 may be treated as a third mobile body 3 instead of the second mobile body 2. That is, the first mobile body 1 and the one second mobile body may not be connected by a network.
 一方、送受信部81aは、当初の時点では第3移動体3であったが、その後、第3移動体3から状態量を取得することができた場合などには、当該第3移動体3を第2移動体2として扱ってもよい。 On the other hand, the transmission / reception unit 81a was the third mobile body 3 at the initial time, but after that, when the state quantity can be acquired from the third mobile body 3, the third mobile body 3 is used. It may be treated as the second moving body 2.
 情報取得部81は、第2移動体2の状態量を観測する測定部81bを備える。 The information acquisition unit 81 includes a measurement unit 81b for observing the state quantity of the second mobile body 2.
 測定部81bは、例えば、ステレオカメラなどの検出器と、検出器の検出結果から第2移動体2の相対位置を観測する演算装置とからなる距離方位測定手段である。なお、測定部81bは、ステレオカメラを用いる距離方位測定手段に限定されず、例えば、電磁波や超音波またはそれに類する搬送波を第2移動体2や周囲に放出し、その反射波を計測する距離方位測定手段であってもよい。なお、測定部81bは、状態量を観測する手段であれば、どのような種類の手段であってもよい。 The measuring unit 81b is a distance direction measuring means including, for example, a detector such as a stereo camera and an arithmetic unit for observing the relative position of the second moving body 2 from the detection result of the detector. The measuring unit 81b is not limited to the distance directional measuring means using a stereo camera. For example, the measuring unit 81b emits an electromagnetic wave, an ultrasonic wave, or a carrier wave similar thereto to the second moving body 2 or its surroundings, and measures the reflected wave. It may be a measuring means. The measuring unit 81b may be any kind of means as long as it is a means for observing the state quantity.
 なお、図3の情報取得部81は、第2移動体2の状態量を取得可能な送受信部81aと、第2移動体2の状態量を取得可能な測定部81bとの両方を備えているが、情報取得部81の構成はこれに限定されない。例えば、情報取得部81は、送受信部81aから制御指令値の生成に必要な第2移動体2の状態量を取得できる場合には、測定部81bを備えなくてもよいし、測定部81bから制御指令値の生成に必要な第2移動体2の状態量を取得できる場合には、送受信部81aを備えなくてもよい。 The information acquisition unit 81 of FIG. 3 includes both a transmission / reception unit 81a capable of acquiring the state quantity of the second mobile body 2 and a measurement unit 81b capable of acquiring the state quantity of the second mobile body 2. However, the configuration of the information acquisition unit 81 is not limited to this. For example, if the information acquisition unit 81 can acquire the state quantity of the second moving body 2 required for generating the control command value from the transmission / reception unit 81a, the information acquisition unit 81 may not be provided with the measurement unit 81b, or may be provided from the measurement unit 81b. If the state quantity of the second moving body 2 required for generating the control command value can be acquired, the transmission / reception unit 81a may not be provided.
 なお本実施の形態1では、複数の第2移動体2の状態量は、被覆領域5を基準とする複数の第2移動体2の位置及び速度、並びに、複数の第2移動体2を結合しているネットワーク4の情報を含んでもよい。そして、情報取得部81は、第1移動体1に対する第2移動体2の相対位置及び相対速度を検出し、当該相対位置及び当該相対速度に基づいて、第2移動体2の状態量に含まれる第2移動体2の位置及び速度を推定すること、及び、第2移動体2からネットワーク4を介して第2移動体2の状態量に含まれる第2移動体2の位置及び速度を受信すること、の少なくともいずれか一方を行ってもよい。 In the first embodiment, the state quantities of the plurality of second mobile bodies 2 combine the positions and velocities of the plurality of second mobile bodies 2 with respect to the covering region 5 and the plurality of second mobile bodies 2. It may include the information of the network 4 that is in operation. Then, the information acquisition unit 81 detects the relative position and relative speed of the second moving body 2 with respect to the first moving body 1, and includes it in the state quantity of the second moving body 2 based on the relative position and the relative speed. The position and speed of the second mobile body 2 are estimated, and the position and speed of the second mobile body 2 included in the state quantity of the second mobile body 2 are received from the second mobile body 2 via the network 4. You may do at least one of the things you do.
 <被覆境界検出部82>
 被覆境界検出部82は、被覆領域5を閉包する被覆境界6を検出し、当該被覆領域5に関して第1移動体1と反対側に仮想移動体7を生成する写像を行う。被覆境界検出部82は、例えば、被覆境界6の幾何形状と、第1移動体1で取得された第1移動体1の状態量とに基づいて写像を行うことにより、仮想移動体7の状態量を生成する。なお、被覆境界検出部82は、例えば、第1移動体1が自律的に移動するための装置に含まれる。
<Covering boundary detection unit 82>
The covering boundary detection unit 82 detects the covering boundary 6 that closes the covering region 5, and performs a mapping that generates a virtual moving body 7 on the opposite side of the covering region 5 from the first moving body 1. The covering boundary detection unit 82 maps the state of the virtual moving body 7 based on, for example, the geometric shape of the covering boundary 6 and the state quantity of the first moving body 1 acquired by the first moving body 1. Generate a quantity. The covering boundary detection unit 82 is included in, for example, a device for autonomously moving the first mobile body 1.
 被覆境界6は、例えば、壁等に類する障害物であってもよい。被覆境界検出部82は、例えば、同一面に対する距離方位測定手段であり、測定した障害物の幾何形状を被覆境界6の幾何形状として検出する。なお、被覆境界検出部82は、障害物の距離方位を測定する手段に限定されず、例えば、測距による状態推定によって被覆境界6の幾何形状を推定するものであってもよい。 The covering boundary 6 may be, for example, an obstacle similar to a wall or the like. The covering boundary detection unit 82 is, for example, a means for measuring the distance and orientation with respect to the same surface, and detects the measured geometric shape of the obstacle as the geometric shape of the covering boundary 6. The covering boundary detection unit 82 is not limited to the means for measuring the distance direction of the obstacle, and may, for example, estimate the geometric shape of the covering boundary 6 by state estimation by distance measurement.
 また被覆境界6は、例えば、白線等に類する標識であってもよい。被覆境界検出部82は、例えば、撮像等によって得られた環境情報に含まれる標識を抽出し、標識の幾何形状を被覆境界の幾何形状として検出する。なお、被覆境界検出部82は、撮像により標識を抽出する手段に限定されず、環境に掲示された標識に基づく状態推定によって被覆境界6の幾何形状を推定するものであってもよい。 Further, the covering boundary 6 may be, for example, a sign similar to a white line or the like. The covering boundary detection unit 82 extracts a sign included in the environmental information obtained by, for example, imaging, and detects the geometric shape of the sign as the geometric shape of the covering boundary. The covering boundary detection unit 82 is not limited to the means for extracting the label by imaging, and may estimate the geometric shape of the covering boundary 6 by state estimation based on the label posted in the environment.
 被覆境界検出部82は、例えば、被覆境界6の幾何形状を区分してなる複数の線分要素を対称軸として、第1移動体1と線対称となる仮想移動体7を上記写像によって生成する。線分要素は、例えば、予め規定された論理式を用いた演算を被覆境界6に行うことにより導出される。被覆境界検出部82は、第1移動体1の状態量から第1移動体1が被覆領域5の内外のいずれに位置するかを判定してもよい。なお、この判定は、被覆境界検出部82で行われてなくてもよい。例えば、第1移動体1とは別に設置された、移動体群を管理する装置が、第1移動体1を検出して被覆領域5の内外のいずれに位置するかを判定し、その結果を第1移動体1の送受信部81aまたは測定部81bに送信してもよい。 The covering boundary detection unit 82 generates, for example, a virtual moving body 7 having line symmetry with the first moving body 1 by using a plurality of line segment elements that divide the geometric shape of the covering boundary 6 as axes of symmetry. .. The line segment element is derived, for example, by performing an operation on the covering boundary 6 using a predetermined logical formula. The covering boundary detection unit 82 may determine whether the first moving body 1 is located inside or outside the covering region 5 from the state quantity of the first moving body 1. It should be noted that this determination does not have to be performed by the covering boundary detection unit 82. For example, a device that manages a group of moving bodies, which is installed separately from the first moving body 1, detects the first moving body 1 and determines whether it is located inside or outside the covering area 5, and determines whether the result is inside or outside. It may be transmitted to the transmission / reception unit 81a or the measurement unit 81b of the first mobile body 1.
 仮想移動体7の状態量が、被覆境界6の線分要素を対称軸として第1移動体1の状態量と線対称となるように生成される場合、第1移動体1と仮想移動体7との垂直二等分線は、当該線分要素と一致する。 When the state quantity of the virtual moving body 7 is generated so as to be line-symmetric with the state quantity of the first moving body 1 with the line segment element of the covering boundary 6 as the axis of symmetry, the first moving body 1 and the virtual moving body 7 The perpendicular bisector with and coincides with the line segment element.
 <ネットワーク演算部83>
 ネットワーク演算部83は、第1移動体1で取得された第1移動体1の状態量と、情報取得部81で取得された複数の第2移動体2の状態量と、被覆境界検出部82で生成された仮想移動体7の状態量とを受け取る。ネットワーク演算部83は、例えば、第1移動体1が自律的に移動するための装置に含まれる。なお、ネットワーク演算部83は、受け取った状態量を格納する記憶装置を備えてもよい。
<Network calculation unit 83>
The network calculation unit 83 includes the state amount of the first mobile body 1 acquired by the first mobile body 1, the state amount of the plurality of second mobile bodies 2 acquired by the information acquisition unit 81, and the covering boundary detection unit 82. Receives the state quantity of the virtual mobile body 7 generated in. The network calculation unit 83 is included in, for example, a device for autonomously moving the first mobile body 1. The network calculation unit 83 may include a storage device for storing the received state quantity.
 ネットワーク演算部83は、第1移動体1の状態量と、複数の第2移動体2の状態量と、仮想移動体7の状態量とに基づいて、第1移動体1と、複数の第2移動体2と、仮想移動体7とを結合するネットワークを求める。つまり、ネットワーク演算部83は、仮想移動体7が第1移動体1及び複数の第2移動体2と情報の繋がりを有して隣接するものとして、第1移動体1のネットワークに含める。 The network calculation unit 83 includes the first mobile body 1 and the plurality of first moving bodies 1 based on the state quantities of the first mobile body 1, the state quantities of the plurality of second mobile bodies 2, and the state quantities of the virtual mobile body 7. 2 The network that connects the mobile body 2 and the virtual mobile body 7 is obtained. That is, the network calculation unit 83 includes the virtual mobile body 7 in the network of the first mobile body 1 assuming that the virtual mobile body 7 has an information connection with the first mobile body 1 and the plurality of second mobile bodies 2 and is adjacent to the virtual mobile body 7.
 ネットワーク演算部83は、例えば、第1移動体1の状態量に含まれる位置情報と、仮想ではない1つの移動体の状態量に含まれる位置情報とに基づいて、当該1つの移動体が第1移動体1の状態量を取得しているか否かを推定する。そして、ネットワーク演算部83は、当該1つの移動体が第1移動体1の状態量を取得していると推定した場合に、当該移動体を、第1移動体1と情報の繋がりを有する第2移動体2であると判定する。 In the network calculation unit 83, for example, based on the position information included in the state amount of the first mobile body 1 and the position information included in the state amount of one non-virtual mobile body, the one mobile body is the first. 1 Estimate whether or not the state quantity of the moving body 1 is acquired. Then, when the network calculation unit 83 estimates that the one mobile body has acquired the state quantity of the first mobile body 1, the network calculation unit 83 has the information connection between the mobile body and the first mobile body 1. 2 It is determined that it is a moving body 2.
 また、ネットワーク演算部83は、例えば、第2移動体2の状態量に含まれる識別子から、第1移動体1、第2移動体2及び第3移動体3を含む移動体群のネットワークの一部を推定して、移動体群に含まれる局所的な移動体の集合におけるネットワークの構造を推定する。なお、ネットワークの構造は、情報の繋がりを有する複数の移動体(節点)と、移動体の間の情報の繋がりの状態である隣接状態(枝)との集合によって表される。同様に、ネットワーク演算部83は、第1移動体1のネットワークの構造に、仮想移動体7をさらに含める。 Further, the network calculation unit 83 is, for example, one of the networks of the mobile group including the first mobile 1, the second mobile 2, and the third mobile 3 from the identifier included in the state quantity of the second mobile 2. The part is estimated to estimate the structure of the network in the set of local mobiles included in the mobile group. The structure of the network is represented by a set of a plurality of moving bodies (nodes) having information connections and adjacent states (branches) in which information is connected between the moving bodies. Similarly, the network calculation unit 83 further includes the virtual mobile 7 in the network structure of the first mobile 1.
 また、ネットワーク演算部83は、例えば、第1移動体1のネットワークの情報を特定のバッファに格納し、第1移動体1の状態量に含める。このとき、ネットワーク演算部83は、第1移動体1のネットワークの情報に、仮想移動体7の状態量を含めてもよい。 Further, the network calculation unit 83 stores, for example, the network information of the first mobile body 1 in a specific buffer and includes it in the state quantity of the first mobile body 1. At this time, the network calculation unit 83 may include the state quantity of the virtual mobile body 7 in the network information of the first mobile body 1.
 また、ネットワーク演算部83は、例えば、送受信部81aが第2移動体2のネットワークの情報を取得した場合、第1移動体1のネットワークと第2移動体2のネットワークとを重ね合わせる演算を行う。この演算により、ネットワーク演算部83は、移動体群のうち情報の繋がりを有するいくつかの移動体の集合、つまり局所的な隣接状態の移動体の集合からなるネットワークを求めることができる。 Further, for example, when the transmission / reception unit 81a acquires the information of the network of the second mobile body 2, the network calculation unit 83 performs an operation of superimposing the network of the first mobile body 1 and the network of the second mobile body 2. .. By this calculation, the network calculation unit 83 can obtain a network including a set of several mobile bodies having information connections in the mobile body group, that is, a set of mobile bodies in a locally adjacent state.
 <グラフ演算部84>
 グラフ演算部84は、ネットワーク演算部83で求められたネットワークから、制御指令値を生成するための制御グラフを生成する。なお、制御グラフなどのグラフは、ネットワークを表す複数の節点及び複数の枝の集合要素であり、節点(頂点)と、枝(辺)とを組み合わせた図形である。グラフ演算部84は、例えば、第1移動体1が自律的に移動するための制御器に含まれる。グラフ演算部84は、各々のグラフに対してグラフ理論に基づいて属性情報を分類し、グラフの情報として保持する。
<Graph calculation unit 84>
The graph calculation unit 84 generates a control graph for generating a control command value from the network obtained by the network calculation unit 83. A graph such as a control graph is a set element of a plurality of nodes and a plurality of branches representing a network, and is a figure in which a node (vertex) and a branch (side) are combined. The graph calculation unit 84 is included in, for example, a controller for autonomously moving the first mobile body 1. The graph calculation unit 84 classifies the attribute information for each graph based on the graph theory and holds it as graph information.
 グラフ演算部84は、例えば、ネットワーク演算部83で求められたネットワークから、任意の2つ移動体が互いに情報の繋がりを有して隣接する節点及び枝の組み合わせの集合を、完全グラフとして求める。なお、グラフ演算部84は、節点及び枝を網羅的に組み合わせることにより、完全グラフのグラフ集合として複数の完全グラフを求める。グラフ演算部84は、完全グラフの節点の数(以下「位数」と記すこともある)によって複数の完全グラフを分類し、分類された複数の完全グラフから被覆制御の制御指令値を生成するための制御グラフを選別する。 The graph calculation unit 84 obtains, for example, a set of combinations of nodes and branches in which two arbitrary moving bodies have information connections with each other and are adjacent to each other as a complete graph from the network obtained by the network calculation unit 83. The graph calculation unit 84 obtains a plurality of complete graphs as a graph set of complete graphs by comprehensively combining nodes and branches. The graph calculation unit 84 classifies a plurality of complete graphs according to the number of nodes of the complete graph (hereinafter, also referred to as “orders”), and generates a control command value for covering control from the plurality of classified complete graphs. Select the control graph for.
 グラフ演算部84が、ネットワーク演算部83で求められたネットワークに基づいて、ドロネー(Delaunay)グラフの演算を用いたドロネー三角形分割を行うことによって、制御グラフを生成する例について以下説明する。 An example in which the graph calculation unit 84 generates a control graph by performing Delaunay triangulation division using the operation of the Delaunay graph based on the network obtained by the network calculation unit 83 will be described below.
 まず、グラフ演算部84は、ネットワーク演算部83で求められたネットワークに基づいて、第1移動体1、複数の第2移動体2、及び、仮想移動体7から、第1移動体1を含み、位数が3である複数の三角形状の完全グラフを求める。すなわち、グラフ演算部84は、第1移動体1を含み、任意の2つの移動体が情報の繋がりを有する3つの移動体を3つの節点として有する完全グラフの集合を求める。 First, the graph calculation unit 84 includes the first mobile body 1 from the first mobile body 1, the plurality of second mobile bodies 2, and the virtual mobile body 7 based on the network obtained by the network calculation unit 83. , Find a plurality of triangular complete graphs with a digit of 3. That is, the graph calculation unit 84 obtains a set of complete graphs including the first mobile body 1 and having three mobile bodies having information connections as three nodes.
 そして、グラフ演算部84は、求めた複数の三角形状の完全グラフから制御グラフを選別する。例えば、グラフ演算部84は、三角形状の完全グラフの外接円の内部に他の完全グラフの節点が含まれないか判定し、他の完全グラフの節点が外接円に含まれた完全グラフを複数の完全グラフから取除き、残った完全グラフを制御グラフとして選別する。これにより複数の制御グラフが選別された場合、複数の制御グラフは、それらの枝が互いに交わらない三角形状のグラフとなる。 Then, the graph calculation unit 84 selects the control graph from the obtained plurality of triangular complete graphs. For example, the graph calculation unit 84 determines whether or not the nodes of another complete graph are included inside the circumscribed circle of the triangular complete graph, and a plurality of complete graphs in which the nodes of the other complete graph are included in the circumscribed circle. Remove from the complete graph of and select the remaining complete graph as the control graph. When a plurality of control graphs are selected by this, the plurality of control graphs become a triangular graph in which the branches do not intersect each other.
 図4は、上述の演算で得られる制御グラフ8を示す図である。図4には、制御グラフ8の一例として、第1移動体1と、第2移動体23と、仮想移動体7とを含む制御グラフ8などが図示されている。なお、上述の例で得られる制御グラフ8は、第1移動体1、複数の第2移動体2、及び、仮想移動体7に関して上記ドロネーグラフと等価である。複数の第2移動体2に含まれるすべての移動体が、第1移動体1に対して第3移動体3よりも近いとき、上述の例で得られる制御グラフは、第1移動体1、複数の第2移動体2及び仮想移動体7だけでなく、第3移動体3に関しても上記ドロネーグラフと等価となる。 FIG. 4 is a diagram showing a control graph 8 obtained by the above calculation. FIG. 4 shows, as an example of the control graph 8, a control graph 8 including a first moving body 1, a second moving body 23, and a virtual moving body 7. The control graph 8 obtained in the above example is equivalent to the above-mentioned drone graph with respect to the first moving body 1, the plurality of second moving bodies 2, and the virtual moving body 7. When all the moving bodies included in the plurality of second moving bodies 2 are closer to the first moving body 1 than the third moving body 3, the control graph obtained in the above example shows the first moving body 1, Not only the plurality of second mobile bodies 2 and the virtual mobile body 7 but also the third mobile body 3 is equivalent to the above-mentioned drone graph.
 <被覆制御演算部85>
 被覆制御演算部85は、グラフ演算部84で生成された制御グラフに基づいて制御指令値を生成する。この結果、被覆制御演算部85は、第1移動体1と、複数の第2移動体2と、仮想移動体7とがネットワークによって結合されていると仮定して、第1移動体1の制御を示す制御指令値を生成することが可能となっている。なお、被覆制御演算部85は、例えば、第1移動体1が自律的に移動するための装置に含まれる。
<Cover control calculation unit 85>
The covering control calculation unit 85 generates a control command value based on the control graph generated by the graph calculation unit 84. As a result, the covering control calculation unit 85 controls the first mobile body 1 on the assumption that the first mobile body 1, the plurality of second mobile bodies 2, and the virtual mobile body 7 are connected by a network. It is possible to generate a control command value indicating. The cover control calculation unit 85 is included in, for example, a device for autonomously moving the first mobile body 1.
 まず、被覆制御演算部85が、第1移動体1と複数の第2移動体2とを含むが仮想移動体7を含まない制御グラフ8から、第1移動体1の制御を示す制御指令値を生成する場合について説明する。この場合、被覆制御演算部85は、例えば、第1移動体1の状態量と複数の第2移動体2の状態量とを含む勾配関数を用いて制御指令値を求める。 First, from the control graph 8 in which the covering control calculation unit 85 includes the first moving body 1 and the plurality of second moving bodies 2 but does not include the virtual moving body 7, the control command value indicating the control of the first moving body 1 is shown. Will be described in the case of generating. In this case, the covering control calculation unit 85 obtains a control command value using, for example, a gradient function including the state quantity of the first mobile body 1 and the state quantity of the plurality of second mobile bodies 2.
 勾配関数には、例えば次式(1)に示すように、第1移動体1と複数の第2移動体2とに基づいて規定される閉領域に関して、第1移動体1と、複数の第2移動体2より第1移動体1に近い位置にある任意の点とのユークリッドノルムの2乗の集合和の関数が用いられる。 In the gradient function, for example, as shown in the following equation (1), the first moving body 1 and the plurality of second moving bodies 1 have a closed region defined based on the first moving body 1 and the plurality of second moving bodies 2. A function of the sum of the squares of the Euclidean norm with an arbitrary point located closer to the first mobile 1 than the two mobile 2 is used.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 勾配関数は、第1移動体1と複数の第2移動体2とに基づく閉領域上の点が、第1移動体1または複数の第2移動体2のいずれに近いかを判定可能な関数である。第1移動体1は、勾配関数の極値点である停留点に向かって移動することで、複数の第2移動体2のいずれとも衝突することなく被覆することが可能である。 The gradient function is a function capable of determining whether a point on a closed region based on the first mobile body 1 and the plurality of second mobile bodies 2 is closer to the first mobile body 1 or the plurality of second mobile bodies 2. Is. By moving toward the stop point which is the extreme value point of the gradient function, the first moving body 1 can cover any of the plurality of second moving bodies 2 without colliding with each other.
 以下、第1移動体1と複数の第2移動体2とに基づく閉領域のうち、1つの制御グラフ8を構成する第1移動体1と2つの第2移動体2とに基づく領域を「部分閉領域」と記す。被覆制御演算部85は、例えば、制御グラフ8の三角形状の外心と第1移動体1とを頂点として有する多角形の領域を、部分閉領域として制御グラフ8ごとに決定する。 Hereinafter, among the closed regions based on the first mobile body 1 and the plurality of second mobile bodies 2, the region based on the first mobile body 1 and the two second mobile bodies 2 constituting one control graph 8 is referred to as ". Partially closed area ". The covering control calculation unit 85 determines, for example, a polygonal region having a triangular outer center of the control graph 8 and the first moving body 1 as vertices as a partially closed region for each control graph 8.
 この例の場合、被覆制御演算部85は、制御グラフ8の節点から、第1移動体1と、第1移動体1と第2移動体21との間の中点と、第1移動体1と第2移動体22との間の中点と、三角形状の制御グラフ8の外心と、で囲われる部分閉領域を、制御グラフ8ごとに決定することになる。また、この例の場合、部分閉領域に含まれる点は、第1移動体1と2つの第2移動体2とを節点とする位数が3である三角形状の制御グラフ8において、第1移動体1を含む2つの辺と、当該2つの辺の2つの垂直二等分線とで囲われる領域に含まれる点と等価である。そして、被覆制御演算部85は、複数の制御グラフ8の部分閉領域に含まれる任意の点のユークリッドノルムの2乗の集合和を示す勾配関数から、当該勾配関数の停留点を求める。 In the case of this example, the covering control calculation unit 85 starts from the node of the control graph 8 to the first moving body 1, the midpoint between the first moving body 1 and the second moving body 21, and the first moving body 1. A partially closed region surrounded by the midpoint between the second moving body 22 and the outer center of the triangular control graph 8 is determined for each control graph 8. Further, in the case of this example, the point included in the partially closed region is the first point in the triangular control graph 8 in which the number of digits having the first moving body 1 and the two second moving bodies 2 as nodes is three. It is equivalent to the point included in the area surrounded by the two sides including the moving body 1 and the two vertical bisectors of the two sides. Then, the cover control calculation unit 85 obtains the stop point of the gradient function from the gradient function showing the union of the squares of the Euclidean norms of arbitrary points included in the partially closed region of the plurality of control graphs 8.
 以上のように、被覆制御演算部85が、情報の繋がりを有して隣接する複数の第2移動体2を含む制御グラフ8の集合を要素とする関数の総和である勾配関数から、当該勾配関数の停留点を求める場合には、大域的に収束安定な被覆を実現することができる。 As described above, the cover control calculation unit 85 has the gradient from the gradient function which is the sum of the functions whose elements are the set of the control graph 8 including the plurality of second mobile bodies 2 which are connected and adjacent to each other. When finding the stop point of a function, it is possible to realize a globally convergent and stable cover.
 ここで、複数の部分閉領域からなる閉領域において任意の点のユークリッドノルムの2乗の集合和とする関数を勾配関数とするとき、勾配関数の停留点は、当該閉領域の重心と等価である。このため、被覆制御演算部85は、制御グラフ8ごとに得られる上記部分閉領域の重心g と、上記部分閉領域の面積S とを、次式(2)に適用することによって、閉領域全体の重心cent(C(x))、つまり勾配関数の停留点を求めることができる。 Here, when the gradient function is a function that is the union of the squares of the Euclidean norms of arbitrary points in a closed region consisting of a plurality of partially closed regions, the stop point of the gradient function is equivalent to the center of gravity of the closed region. is there. Accordingly, coating control calculation unit 85, the center of gravity g i k of the partial closed area obtained for each control graph 8, the area S i k of the partial closed area, by applying the following equation (2) , The center of gravity cent (C i (x)) of the entire closed area, that is, the stop point of the gradient function can be obtained.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 被覆制御演算部85は、閉領域全体の重心、つまり勾配関数の停留点に、次式(3)を適用することによって制御指令値を求める。なお、次式(3)のuは、第1移動体1の制御を示す制御入力であり、第1移動体1を式(2)で表される重心の位置の方向に動かすための制御指令値に相当する。また、次式(3)のmassは、閉領域を剛体と仮定したときの質量に相当する。次式(3)で表される制御指令値により、第1移動体1は閉領域を均等に被覆する。 The covering control calculation unit 85 obtains a control command value by applying the following equation (3) to the center of gravity of the entire closed region, that is, the stop point of the gradient function. Note that u i of the following equation (3), a control input of a first control of the moving body 1, a control for moving the first moving body 1 in the direction of the position of the centroid of the formula (2) Corresponds to the command value. Further, the mass of the following equation (3) corresponds to the mass when the closed region is assumed to be a rigid body. The first moving body 1 evenly covers the closed region according to the control command value represented by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 第1移動体1の被覆境界は、勾配関数の閉領域の境界と等価であり、制御グラフ8が三角形状である場合には、第1移動体1の被覆領域はボロノイ領域と等価であり、第1移動体1の被覆境界は、ボロノイ領域の境界と等価である。 The covering boundary of the first moving body 1 is equivalent to the boundary of the closed region of the gradient function, and when the control graph 8 is triangular, the covering region of the first moving body 1 is equivalent to the boronoy region. The covering boundary of the first moving body 1 is equivalent to the boundary of the boronoy region.
 なお、勾配関数は、例えば、ユークリッドノルムに重みを乗じた関数であってもよい。具体的には、被覆制御演算部85は、制御グラフ8ごとに得られる上記部分閉領域の重心g と、上記部分閉領域の面積S と、上記部分閉領域に割り当てられた重みNとを、次式(4)に適用することによって、勾配関数の停留点を求めてもよい。なお、このときの制御指令値は、上式(3)と同様に表される。 The gradient function may be, for example, a function obtained by multiplying the Euclidean norm by a weight. Weights Specifically, the coating control calculation unit 85, the center of gravity g i k of the partial closed area obtained for each control graph 8, the area S i k of the partial closed area, which is assigned to the partial closed area By applying Ni and to the following equation (4), the stop point of the gradient function may be obtained. The control command value at this time is expressed in the same manner as in the above equation (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 以上、被覆制御演算部85が、第1移動体1と複数の第2移動体2とを含むが仮想移動体7を含まない制御グラフ8から、第1移動体1の制御を示す制御指令値を生成する場合について説明した。被覆制御演算部85が、第1移動体1と、複数の第2移動体2と、仮想移動体7とを含む制御グラフ8から、第1移動体1の制御を示す制御指令値を生成する場合には、仮想移動体7を、上記複数の第2移動体2のいずれか1つと同様に扱えばよい。制御グラフ8に仮想移動体7が含まれる場合、上述の閉領域の境界は、第1移動体1と仮想移動体7との垂直二等分線と一致する。 As described above, the control command value indicating the control of the first moving body 1 from the control graph 8 in which the covering control calculation unit 85 includes the first moving body 1 and the plurality of second moving bodies 2 but does not include the virtual moving body 7. The case of generating is described. The covering control calculation unit 85 generates a control command value indicating control of the first moving body 1 from the control graph 8 including the first moving body 1, the plurality of second moving bodies 2, and the virtual moving body 7. In this case, the virtual moving body 7 may be treated in the same manner as any one of the plurality of second moving bodies 2. When the virtual moving body 7 is included in the control graph 8, the boundary of the closed region described above coincides with the vertical bisector between the first moving body 1 and the virtual moving body 7.
 <移動体制御部86>
 移動体制御部86は、被覆制御演算部85で生成された制御指令値に基づいて第1移動体1の移動を制御する。移動体制御部86は、例えば、第1移動体1が自律的に移動するための装置に含まれる。移動体制御部86は、例えば、第1移動体1の駆動源に対するフィードバック制御系である。なお、移動体制御部86は、被覆制御演算部85の制御指令値を目標として第1移動体1の運動制御を行う制御系であれば、どのような種類のものであってもよい。
<Mobile control unit 86>
The moving body control unit 86 controls the movement of the first moving body 1 based on the control command value generated by the covering control calculation unit 85. The mobile body control unit 86 is included in, for example, a device for autonomously moving the first mobile body 1. The mobile body control unit 86 is, for example, a feedback control system for the drive source of the first mobile body 1. The mobile control unit 86 may be of any type as long as it is a control system that controls the motion of the first mobile body 1 with the control command value of the cover control calculation unit 85 as a target.
 <実施の形態1のまとめ>
 実施の形態1に係る自律分散制御システムによれば、第1移動体1について第2移動体2が動的に変化しても、大域的な収束安定性を満たすことが保障される条件下で、被覆境界検出部82で生成された仮想移動体7と、第2移動体2とを等価として扱う。このため、第1移動体1は、被覆境界6の動的な変化を、第2移動体2と等価である仮想移動体7の状態量の変化として扱うことができるので、大域的な収束安定性を満たすことができる。すなわち、本実施の形態1に係る移動体の自律分散制御システムは、被覆領域5が動的に変化しても大域的な収束安定性を満たすことができる。
<Summary of Embodiment 1>
According to the autonomous distributed control system according to the first embodiment, even if the second mobile body 2 dynamically changes with respect to the first mobile body 1, the condition that the global convergence stability is guaranteed is guaranteed. , The virtual moving body 7 generated by the covering boundary detection unit 82 and the second moving body 2 are treated as equivalent. Therefore, since the first moving body 1 can treat the dynamic change of the covering boundary 6 as the change of the state quantity of the virtual moving body 7 which is equivalent to the second moving body 2, the global convergence stability is achieved. Can satisfy the sex. That is, the mobile autonomous distributed control system according to the first embodiment can satisfy the global convergence stability even if the covering region 5 changes dynamically.
 また、本実施の形態1に係る移動体の自律分散制御システムは、図4に示すネットワーク4を構成する手段を簡素な仕組みで構築できる。したがって、比較的簡素な機器によって、上記効果が得られる自律分散制御システムを実現することができる。 Further, in the mobile autonomous distributed control system according to the first embodiment, the means for forming the network 4 shown in FIG. 4 can be constructed by a simple mechanism. Therefore, it is possible to realize an autonomous distributed control system in which the above effects can be obtained with a relatively simple device.
 また、本実施の形態1に係る移動体の自律分散制御システムは、ネットワークから制御グラフを生成するグラフ演算部84を備えているため、非特許文献2に記載されているように、大域的な収束安定性を満たす制御指令値の必要十分条件を満たすことができる。 Further, since the mobile autonomous distributed control system according to the first embodiment includes a graph calculation unit 84 that generates a control graph from the network, it is global as described in Non-Patent Document 2. The necessary and sufficient condition of the control command value satisfying the convergence stability can be satisfied.
 なお、被覆制御演算部85の勾配関数は、制御グラフを基底とする関数の総和であれば、上式(2)で表される関数に限らない。被覆制御演算部85の勾配関数は、例えば、制御グラフに含まれる閉領域に関して、第1移動体1と、複数の第2移動体2より第1移動体1に近い位置にある任意の点とのユークリッドノルムの集合和であってもよい。また、被覆制御演算部85で用いる勾配関数が、ユークリッドノルムに重みを乗じた関数である場合には、移動体群の分布を任意に設計できるため、ある位置に局所的に移動体群を集中させるなど、均等分布以外に様々な状況に適合した分布で被覆を行うことができる。 The gradient function of the cover control calculation unit 85 is not limited to the function represented by the above equation (2) as long as it is the sum of the functions based on the control graph. The gradient function of the cover control calculation unit 85 is, for example, a first moving body 1 and an arbitrary point located closer to the first moving body 1 than the plurality of second moving bodies 2 with respect to the closed region included in the control graph. It may be the union of the Euclidean norms of. Further, when the gradient function used in the covering control calculation unit 85 is a function obtained by multiplying the Euclidean norm by a weight, the distribution of the moving body group can be arbitrarily designed, so that the moving body group is locally concentrated at a certain position. In addition to the even distribution, the coating can be applied with a distribution suitable for various situations.
 次に、本実施の形態1に係る自律分散制御システムの社会的意義について述べる。移動体群による被覆は、例えば、空間をセンシングする用途に用いられる。様々なテロ事件に対する街中や屋内の人や物を監視する用途のため、センシングの需要、及び、被覆率の向上は高まっている。 Next, the social significance of the autonomous distributed control system according to the first embodiment will be described. Covering with a group of mobiles is used, for example, in space sensing applications. The demand for sensing and the improvement in coverage are increasing due to the use of monitoring people and objects in the city and indoors against various terrorist attacks.
 一方、ロボットの自律走行技術や自動車の自動運転技術の高まりにより、自律制御された移動体が世間に普及しつつある。従来、移動体は目的ごとに独立した自律制御を備えていたが、適用される領域が拡大するに伴い、協調作業またはそれに類する高度な作業の需要が増えている。 On the other hand, autonomously controlled mobile objects are becoming widespread due to the rise in autonomous driving technology for robots and automatic driving technology for automobiles. Traditionally, mobiles have been equipped with independent autonomous controls for each purpose, but as the area of application expands, the demand for collaborative work or similar advanced work is increasing.
 以上のことから、移動体群による被覆は、社会的な需要と技術的な需要とが一致する重要な技術である。しかしながら、従来の移動体群の被覆は、被覆領域を動的に変化させずに大域的な収束安定性を満たすか、収束安定性を満たさないけれども被覆領域の動的な変化に対して被覆の制御指令値の演算と独立した演算を行うことで補正用の指令を与える制御を局所的に行うか、のいずれかの方法が選択されていた。 From the above, covering with a mobile group is an important technology in which social demand and technical demand match. However, the coating of a conventional mobile group satisfies the global convergence stability without dynamically changing the covering region, or the covering against a dynamic change of the covering region although it does not satisfy the convergence stability. Either the method of locally performing the control of giving the command for correction by performing the operation independent of the operation of the control command value was selected.
 しかしながら、被覆領域が静的に扱われると、移動体群の被覆のロバスト性が損なわれた低性能のシステムとなる。一方、被覆の制御指令値の演算と独立した従来の演算では、大域的な収束安定性を満たさないと大きな不具合が生じる可能性がある。このため、従来の移動体群の被覆は、被覆領域の動的な変化に対するロバスト性と大域的な収束安定性とのいずれかしか満たさないため、広く実用化することが困難であった。これに対して本実施の形態1に係る自律分散制御システムは、被覆境界の動的な変化に対するロバスト性と大域的な収束安定性との両方を満たすことができるため、広く社会に貢献することができる。 However, if the covering area is treated statically, it becomes a low-performance system in which the robustness of the covering of the mobile group is impaired. On the other hand, in the conventional calculation independent of the calculation of the control command value of the covering, a big problem may occur if the global convergence stability is not satisfied. For this reason, it has been difficult to put the conventional mobile group covering into practical use widely because it satisfies only either robustness against dynamic change of the covering region and global convergence stability. On the other hand, the autonomous distributed control system according to the first embodiment can satisfy both robustness against dynamic changes in the covering boundary and global convergence stability, and thus contributes widely to society. Can be done.
 <実施の形態2>
 図5は、本発明の実施の形態2に係る自律分散制御システムの構成を模式的に示す図である。以下、本実施の形態2に係る構成要素のうち、上述の構成要素と同じまたは類似する構成要素については同じまたは類似する参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 2>
FIG. 5 is a diagram schematically showing a configuration of an autonomous distributed control system according to a second embodiment of the present invention. Hereinafter, among the components according to the second embodiment, the components that are the same as or similar to the above-mentioned components are designated by the same or similar reference numerals, and different components will be mainly described.
 本実施の形態2に係る自律分散制御システムの構成は、実施の形態1に係る自律分散制御システム(図1)の構成に、被覆境界制御部10が追加された構成と同様である。この被覆境界制御部10は、大域的な収束安定性を保ちながら、被覆境界6の幾何形状を仮想的に変更し、変更情報を第1移動体1に送信する。なお、図5では、被覆境界制御部10は、第1移動体1の外部に設けられているが、これに限定されるものではない。 The configuration of the autonomous distributed control system according to the second embodiment is the same as the configuration in which the covering boundary control unit 10 is added to the configuration of the autonomous distributed control system (FIG. 1) according to the first embodiment. The covering boundary control unit 10 virtually changes the geometric shape of the covering boundary 6 while maintaining global convergence stability, and transmits the change information to the first mobile body 1. In FIG. 5, the covering boundary control unit 10 is provided outside the first moving body 1, but the present invention is not limited to this.
 本実施の形態2に係る被覆境界検出部82は、被覆境界制御部10によって変更された被覆境界6に関して実施の形態1で説明した写像を行うことによって仮想移動体7を更新する。ここでいう更新とは、仮想移動体7を削除すること、及び、仮想移動体7を新たに生成すること、の少なくともいずれか1つを含む。ネットワーク演算部83、グラフ演算部84、被覆制御演算部85及び移動体制御部86は、新たに生成された仮想移動体7に関して実施の形態1で説明した動作を行う。 The covering boundary detection unit 82 according to the second embodiment updates the virtual moving body 7 by performing the mapping described in the first embodiment with respect to the covering boundary 6 changed by the covering boundary control unit 10. The update referred to here includes at least one of deleting the virtual moving body 7 and newly generating the virtual moving body 7. The network calculation unit 83, the graph calculation unit 84, the covering control calculation unit 85, and the moving body control unit 86 perform the operations described in the first embodiment with respect to the newly generated virtual moving body 7.
 次に、本実施の形態2に係る自律分散制御システムの詳細について説明する。図6は、本実施の形態2に係る第1移動体1の機能構成を示すブロック図である。図6に示すように、図5の被覆境界制御部10は、第1移動体1の被覆境界検出部82へ被覆境界6の変更情報を送信する。 Next, the details of the autonomous distributed control system according to the second embodiment will be described. FIG. 6 is a block diagram showing a functional configuration of the first mobile body 1 according to the second embodiment. As shown in FIG. 6, the covering boundary control unit 10 of FIG. 5 transmits change information of the covering boundary 6 to the covering boundary detecting unit 82 of the first mobile body 1.
 第1移動体1の機能構成について説明する前に、上記において簡単に説明した被覆境界制御部10について詳細に説明する。 Before explaining the functional configuration of the first mobile body 1, the covering boundary control unit 10 briefly described above will be described in detail.
 被覆境界制御部10は、例えば、移動体群の被覆領域5を管理する演算装置に備えられる。被覆境界制御部10は、例えば、被覆領域5を仮想的に変更するための演算部と、変更された被覆領域5の被覆境界6の近傍に位置する移動体を第1移動体1として、当該第1移動体1の被覆境界検出部82に被覆境界6の変更情報を送信する通信部とを有する。なお、被覆境界制御部10の演算部及び通信部の少なくとも一部が、第1移動体1の内部に設けられてもよい。 The covering boundary control unit 10 is provided in, for example, an arithmetic unit that manages the covering region 5 of the mobile group. The covering boundary control unit 10 uses, for example, a calculation unit for virtually changing the covering area 5 and a moving body located in the vicinity of the covering boundary 6 of the changed covering area 5 as the first moving body 1. The cover boundary detection unit 82 of the first moving body 1 has a communication unit that transmits change information of the cover boundary 6. At least a part of the calculation unit and the communication unit of the covering boundary control unit 10 may be provided inside the first mobile body 1.
 被覆境界制御部10の通信部は、例えば、交通標識などを撮像などによって被覆境界6として認識する標識認識装置を用いて、被覆境界6に対する変更操作に係る情報を検出し、当該情報に基づいて被覆境界6の変更情報を取得してもよい。また、被覆境界制御部10の通信部は、例えば、事前に規定された論理式を用いた内部処理の判定により、被覆境界6に対する変更操作に係る情報を検出し、当該情報に基づいて被覆境界6の変更情報を取得してもよい。 The communication unit of the covering boundary control unit 10 detects information related to the change operation for the covering boundary 6 by using a sign recognition device that recognizes a traffic sign or the like as the covering boundary 6 by imaging or the like, and based on the information. The change information of the covering boundary 6 may be acquired. Further, the communication unit of the covering boundary control unit 10 detects information related to the change operation for the covering boundary 6 by, for example, determining the internal processing using a predetermined logical formula, and the covering boundary is based on the information. The change information of 6 may be acquired.
 被覆境界制御部10の演算部は、例えば、一部の被覆境界6の法線方向に第1移動体1を平行移動させる操作を与えるために、被覆境界6の一部を法線方向に平行移動させた仮想的な被覆要素を、第1移動体1の被覆境界検出部82に与える。 The calculation unit of the covering boundary control unit 10 translates a part of the covering boundary 6 in the normal direction, for example, in order to translate the first moving body 1 in the normal direction of a part of the covering boundary 6. The moved virtual covering element is given to the covering boundary detection unit 82 of the first moving body 1.
 図7は、被覆境界制御部10により一部の被覆境界6の法線方向に第1移動体1を平行移動させる操作を与える原理を示す図である。被覆境界検出部82は、例えば、被覆境界制御部10よって与えられる仮想的な被覆要素、つまり被覆境界6の変更情報から、被覆境界6の一部である線分要素の仮想的な平行移動を求める。このような被覆境界検出部82の動作により、被覆境界制御部10は、実質的に、被覆境界6の幾何形状の一部である線分要素を被覆領域5の内側または外側に移動することによって、被覆境界6の幾何形状を変更可能となっている。 FIG. 7 is a diagram showing a principle of giving an operation of translating the first moving body 1 in the normal direction of a part of the covering boundary 6 by the covering boundary control unit 10. For example, the covering boundary detection unit 82 performs a virtual translation of a line segment element that is a part of the covering boundary 6 from the virtual covering element given by the covering boundary control unit 10, that is, the change information of the covering boundary 6. Ask. By such an operation of the covering boundary detecting unit 82, the covering boundary control unit 10 substantially moves the line segment element which is a part of the geometric shape of the covering boundary 6 to the inside or the outside of the covering region 5. , The geometric shape of the covering boundary 6 can be changed.
 以下、仮想的な移動前の被覆境界6の一部である線分要素を、仮想移動前の線分要素16aと記し、仮想的な移動後の被覆境界6の一部である線分要素を、仮想移動後の線分要素16bと記す。なお、図7には、仮想移動前の線分要素16aと第1移動体1の状態量とに基づいて生成された仮想移動体7aが図示されている。 Hereinafter, the line segment element that is a part of the covering boundary 6 before the virtual movement is referred to as the line segment element 16a before the virtual movement, and the line segment element that is a part of the covering boundary 6 after the virtual movement is referred to. , It is described as a line segment element 16b after virtual movement. Note that FIG. 7 shows a virtual moving body 7a generated based on the line segment element 16a before the virtual moving and the state quantity of the first moving body 1.
 被覆境界制御部10は、被覆境界6の変更情報を取得すると、第1移動体1と仮想移動体7aとの内分点または外分点の位置に新たな仮想移動体7bを生成するように、第1移動体1の被覆境界検出部82へ指示を与える。 When the covering boundary control unit 10 acquires the change information of the covering boundary 6, a new virtual moving body 7b is generated at the position of the inner or outer dividing point between the first moving body 1 and the virtual moving body 7a. , Gives an instruction to the covering boundary detection unit 82 of the first moving body 1.
 被覆境界検出部82は被覆境界制御部10から指示を受けると、仮想移動体7aを取り除き、仮想移動後の線分要素16bと第1移動体1の状態量とに基づいて写像を行うことにより、新たな仮想移動体7bの状態量を生成する。この際、被覆境界検出部82は、第1移動体1と、仮想移動体7bの垂直二等分線が、仮想移動後の被覆境界6(線分要素16b)と一致するように、仮想移動体7bの位置(上記内分点または外分点の位置)を算出する。 Upon receiving an instruction from the covering boundary control unit 10, the covering boundary detecting unit 82 removes the virtual moving body 7a and performs mapping based on the line segment element 16b after the virtual moving and the state quantity of the first moving body 1. , Generates a new state quantity of the virtual moving body 7b. At this time, the covering boundary detection unit 82 virtually moves so that the vertical bisectors of the first moving body 1 and the virtual moving body 7b coincide with the covering boundary 6 (line segment element 16b) after the virtual movement. The position of the body 7b (the position of the inner or outer division point) is calculated.
 被覆境界制御部10は、被覆境界6を検出する全ての移動体に対して、以上の動作と同様の動作を実施する。第1移動体1は、第1移動体1の被覆境界検出部82への入力を第1移動体1の状態量としてバッファに保持してもよいし、第2移動体2へ送信してもよい。 The covering boundary control unit 10 performs the same operation as the above operation for all the moving bodies that detect the covering boundary 6. The first mobile body 1 may hold the input of the first mobile body 1 to the covering boundary detection unit 82 as the state quantity of the first mobile body 1 in the buffer, or may transmit the input to the second mobile body 2. Good.
 以上により、被覆境界6を検出する全ての移動体は、被覆境界6を仮想移動後の被覆境界6と認識して被覆を行う。ここで、被覆境界6を検出しない移動体は、被覆境界制御部10の指令を受けない、または指令を受けてもその影響が及ばないため、大域的な収束安定性は満たされる。 From the above, all the moving bodies that detect the covering boundary 6 recognize the covering boundary 6 as the covering boundary 6 after the virtual movement and perform coating. Here, since the moving body that does not detect the covering boundary 6 does not receive the command of the covering boundary control unit 10 or is not affected by the command, the global convergence stability is satisfied.
 以上、被覆境界制御部10が、実質的に、被覆境界6の幾何形状の一部である線分要素を被覆領域5の内側または外側に移動する構成について説明した。なお、被覆境界制御部10は、例えば、被覆境界6近傍で移動体が避ける必要がある障害が発生した場合にその障害を避けるように被覆領域5の被覆境界6を増やしたり減らしたりする操作を与えてもよい。以下、この場合について説明する。 The configuration in which the covering boundary control unit 10 substantially moves the line segment element, which is a part of the geometric shape of the covering boundary 6, to the inside or the outside of the covering region 5 has been described above. The covering boundary control unit 10 performs an operation of increasing or decreasing the covering boundary 6 of the covering region 5 so as to avoid the failure when a failure that the moving body needs to avoid occurs in the vicinity of the covering boundary 6, for example. May be given. This case will be described below.
 被覆境界制御部10は、例えば、被覆境界6に追加すべき線分要素、または、被覆境界6から削除すべき線分要素の情報を被覆境界検出部82に送信する。つまり、被覆境界制御部10は、被覆境界6の幾何形状を区分してなる複数の線分要素を追加または削除することによって、被覆境界6の幾何形状を変更する。被覆境界検出部82は、被覆境界制御部10から送信された情報に基づいて、被覆境界制御部10によって変更された被覆境界6に関して写像を行うことによって仮想移動体7を更新する。これにより、第1移動体1は新たな被覆境界6を認識する。 The covering boundary control unit 10 transmits, for example, information on a line segment element to be added to the covering boundary 6 or a line segment element to be deleted from the covering boundary 6 to the covering boundary detecting unit 82. That is, the covering boundary control unit 10 changes the geometric shape of the covering boundary 6 by adding or deleting a plurality of line segment elements that divide the geometric shape of the covering boundary 6. The covering boundary detection unit 82 updates the virtual moving body 7 by mapping the covering boundary 6 changed by the covering boundary control unit 10 based on the information transmitted from the covering boundary control unit 10. As a result, the first mobile body 1 recognizes the new covering boundary 6.
 図8は、被覆領域5の被覆境界6を増やす操作を与える原理を示す図である。第1移動体1aは、第1移動体1bからみれば第2移動体2に相当し、第1移動体1bは、第1移動体1aからみれば第2移動体2に相当する。第1移動体1aは被覆境界6に関して仮想移動体7cを生成し、第1移動体1bは被覆境界6に関して仮想移動体7dを生成している。 FIG. 8 is a diagram showing a principle of giving an operation of increasing the covering boundary 6 of the covering region 5. The first moving body 1a corresponds to the second moving body 2 when viewed from the first moving body 1b, and the first moving body 1b corresponds to the second moving body 2 when viewed from the first moving body 1a. The first moving body 1a generates a virtual moving body 7c with respect to the covering boundary 6, and the first moving body 1b generates a virtual moving body 7d with respect to the covering boundary 6.
 被覆境界制御部10は、ある障害を回避するために、一部の被覆境界6を辺とし障害を囲む三角形を新たに構成する。図8の例では、この三角形として、二点鎖線と、線分要素として追加される被覆境界6a,6bとからなる三角形が示されている。なお、第1移動体1aは被覆境界6aに近接し、第1移動体1bは被覆境界6bに近接している。 The covering boundary control unit 10 newly forms a triangle surrounding the obstacle with a part of the covering boundary 6 as an edge in order to avoid a certain obstacle. In the example of FIG. 8, as this triangle, a triangle composed of a two-dot chain line and covering boundaries 6a and 6b added as line segment elements is shown. The first moving body 1a is close to the covering boundary 6a, and the first moving body 1b is close to the covering boundary 6b.
 被覆境界制御部10は、第1移動体1aの被覆境界検出部82に対して、第1移動体1aに近接する線分要素である被覆境界6aの情報を送信する。第1移動体1aの被覆境界検出部82は、被覆境界6aから仮想移動体7eを新たに生成する。第1移動体1aは、仮想移動体7cの基準となる二点鎖線を除く被覆境界6と、仮想移動体7eの基準となる被覆境界6aとで囲まれる領域の内部に留まるため、第1移動体1aは二点鎖線を除く被覆境界6と被覆境界6aとを境界とする新たな被覆領域5を被覆する。 The covering boundary control unit 10 transmits information on the covering boundary 6a, which is a line segment element close to the first moving body 1a, to the covering boundary detecting unit 82 of the first moving body 1a. The covering boundary detection unit 82 of the first moving body 1a newly generates a virtual moving body 7e from the covering boundary 6a. Since the first moving body 1a stays inside the area surrounded by the covering boundary 6 excluding the alternate long and short dash line which is the reference of the virtual moving body 7c and the covering boundary 6a which is the reference of the virtual moving body 7e, the first moving body 1a moves. The body 1a covers a new covering region 5 having a covering boundary 6 excluding the alternate long and short dash line and a covering boundary 6a as a boundary.
 同様に、被覆境界制御部10は、第1移動体1bの被覆境界検出部82に対して、第1移動体1bに近接する線分要素である被覆境界6bの情報を送信する。第1移動体1aの被覆境界検出部82は、被覆境界6aから仮想移動体7eを新たに生成する。第1移動体1bは、仮想移動体7dの基準となる二点鎖線を除く被覆境界6と、仮想移動体7eの基準となる被覆境界6bとで囲まれる領域の内部に留まるため、第1移動体1bは二点鎖線を除く被覆境界6と被覆境界6bとを境界とする新たな被覆領域5を被覆する。 Similarly, the covering boundary control unit 10 transmits information on the covering boundary 6b, which is a line segment element close to the first moving body 1b, to the covering boundary detecting unit 82 of the first moving body 1b. The covering boundary detection unit 82 of the first moving body 1a newly generates a virtual moving body 7e from the covering boundary 6a. Since the first moving body 1b stays inside the area surrounded by the covering boundary 6 excluding the alternate long and short dash line which is the reference of the virtual moving body 7d and the covering boundary 6b which is the reference of the virtual moving body 7e, the first moving body 1b moves. The body 1b covers a new covering region 5 having a covering boundary 6 excluding the alternate long and short dash line and a covering boundary 6b as a boundary.
 第1移動体1aは、第1移動体1bとの垂直二等分線と、被覆境界6と、被覆境界6aとにより囲まれるため、障害を囲む三角形の内側に侵入することはない。同様に、第1移動体1bは、第1移動体1aとの垂直二等分線と、被覆境界6と、被覆境界6bとにより囲まれるため、障害を囲む三角形の内側に侵入することはない。 Since the first moving body 1a is surrounded by the perpendicular bisector with the first moving body 1b, the covering boundary 6, and the covering boundary 6a, it does not invade the inside of the triangle surrounding the obstacle. Similarly, since the first mobile body 1b is surrounded by the perpendicular bisector with the first mobile body 1a, the covering boundary 6 and the covering boundary 6b, it does not invade the inside of the triangle surrounding the obstacle. ..
 被覆境界制御部10の演算部は、例えば、被覆境界6を増やすために仮想移動体を仮定して、第1移動体1a及び被覆境界6の両方と近接する第1移動体1bと、第1移動体1aとについて垂直二等分線を導出してもよい。そして、被覆境界制御部10の演算部は、被覆境界6のうち当該2つ垂直二等分線で切取られる線分を被覆境界6a及び被覆境界6bとしてもよい。また、被覆境界制御部10による被覆境界6を増やす操作は上記に限らない。 The calculation unit of the covering boundary control unit 10 assumes, for example, a virtual moving body in order to increase the covering boundary 6, and has a first moving body 1b and a first moving body 1b that are close to both the first moving body 1a and the covering boundary 6. A vertical bisector may be derived for the moving body 1a. Then, the calculation unit of the covering boundary control unit 10 may use the line segments cut by the two vertical bisectors of the covering boundary 6 as the covering boundary 6a and the covering boundary 6b. Further, the operation of increasing the covering boundary 6 by the covering boundary control unit 10 is not limited to the above.
 <実施の形態2のまとめ>
 次に、本実施の形態2に係る自律分散制御システムの社会的意義について述べる。本実施の形態2に係る自律分散制御システムによれば、外部などから局所的に情報を与えることで、移動体群が共有する被覆領域を変更できる。従来、移動体群の被覆領域は静的な情報であり、自律分散制御システムは被覆領域を被覆の制御中に変更できなかった。
<Summary of Embodiment 2>
Next, the social significance of the autonomous distributed control system according to the second embodiment will be described. According to the autonomous distributed control system according to the second embodiment, the covering region shared by the mobile group can be changed by locally giving information from the outside or the like. Traditionally, the cover area of a mobile group is static information, and the autonomous distributed control system cannot change the cover area during cover control.
 被覆の制御中に被覆領域を変更する操作は、例えば、被覆領域の一部で問題が発生した場合に侵入禁止の指示を与える指令など、非定常な指令として行われることが想定される。このための操作として、非定常な指令を全体で共有する操作と、問題が発生した一部で非定常な指令を局所的に共有する操作と、のいずれかの操作が考えられる。 It is assumed that the operation of changing the covering area during the control of the covering is performed as a non-stationary command such as a command for giving an instruction to prohibit intrusion when a problem occurs in a part of the covering area. As an operation for this purpose, either an operation of sharing a non-stationary command as a whole or an operation of locally sharing a non-stationary command in a part where a problem has occurred can be considered.
 非定常な指令を全体で共有する自律分散制御システムでは、新しい被覆領域を全体で共有し直す必要があるために、被覆に指令が反映されるまでに比較的長い時間を要する。また、当該自律分散制御システムでは、情報が共有されるまで全ての移動体の制御を停止する必要がある。さらに、情報が共有されたか否かを判定する機能が新たに要求される。これらが満たされるとき、当該自律分散制御システムでは、非定常な指令に対して大域的な収束安定性が満たされる。 In an autonomous distributed control system that shares non-stationary commands as a whole, it takes a relatively long time for the commands to be reflected in the covering because it is necessary to re-share the new covering area as a whole. Further, in the autonomous distributed control system, it is necessary to stop the control of all the moving bodies until the information is shared. Further, a new function of determining whether or not the information is shared is required. When these are satisfied, the autonomous distributed control system is satisfied with global convergence stability for unsteady commands.
 一方、非定常な指令を局所的に共有する自律分散制御システムでは、被覆領域の変化を必要とする被覆境界の近傍の移動体のみ被覆領域を修正するため、全体で被覆領域を共有する場合に比べて短い時間で、被覆に指令を反映させることができる。また、当該自律分散制御システムでは、局所的に移動体の制御を停止すればよいため、全体として被覆を実行し続けることができる。しかしながら、移動体群は、被覆領域が異なる2つ以上の群に分かれ、その界面で不連続性が発生するため、当該自律分散制御システムでは、非定常な指令に対して大域的な収束安定性が満たされない。 On the other hand, in an autonomous distributed control system that locally shares non-stationary commands, the covering area is corrected only for moving objects in the vicinity of the covering boundary that require a change in the covering area. The command can be reflected on the coating in a shorter time than that. Further, in the autonomous distributed control system, the control of the moving body may be stopped locally, so that the covering can be continued as a whole. However, since the mobile group is divided into two or more groups having different covering regions and discontinuity occurs at the interface, the autonomous distributed control system has global convergence stability with respect to unsteady commands. Is not satisfied.
 従来の自律分散制御システムは、上記のように互いにトレードオフの関係にある2つの自律分散制御システムのいずれかであった。このため、従来の自律分散制御システムでは、適用する問題に応じて、被覆に指令が反映されるまでの時間と、大域的な収束安定性と、のいずれかを犠牲にする必要があった。 The conventional autonomous distributed control system was one of the two autonomous distributed control systems having a trade-off relationship with each other as described above. For this reason, in conventional autonomous distributed control systems, it is necessary to sacrifice either the time until the command is reflected in the cover or the global convergence stability, depending on the problem to be applied.
 これに対して本実施の形態2に係る自律分散制御システムでは、非定常な指令を局所的に共有するため、被覆に指令が反映されるまでの時間を短くすることができ、かつ、仮想移動体の生成により大域的な収束安定性が損なわれることを抑制することができる。 On the other hand, in the autonomous distributed control system according to the second embodiment, since the unsteady command is locally shared, the time until the command is reflected in the covering can be shortened, and the virtual movement can be performed. It is possible to prevent the global convergence stability from being impaired by the formation of the body.
 このような本実施の形態2に係る自律分散制御システムは、被覆境界制御部10により被覆領域を動的に扱うことができるため、例えば、森林火災の監視などの、観測領域が時々刻々と変化する現象の監視に適用できる。 In such an autonomous distributed control system according to the second embodiment, since the covering area can be dynamically handled by the covering boundary control unit 10, the observation area changes from moment to moment, for example, for monitoring forest fires. It can be applied to monitor the phenomenon of fire.
 また、本実施の形態2に係る自律分散制御システムは、例えば、走行車線中に生じる障害物を検知した自動運転車両が、周囲の自動運転車両に障害物の情報を送信することにより、障害物によって変更された被覆領域を共有するシステムに適用することができる。この場合、自動運転車両の隊列走行においてロバスト性が損なわれない安全な制御を実現することができる。このように本実施の形態2によれば、被覆領域を時変とすることでロバスト性が損なわれない自律分散制御システムを実現することができ、様々な移動体群の自律分散制御において安全性や信頼性を高めることができる。 Further, in the autonomous distributed control system according to the second embodiment, for example, an autonomous driving vehicle that detects an obstacle generated in a traveling lane transmits obstacle information to surrounding autonomous vehicles, thereby causing an obstacle. It can be applied to systems that share the coverage area modified by. In this case, it is possible to realize safe control in which the robustness is not impaired in the platooning of the autonomous driving vehicle. As described above, according to the second embodiment, it is possible to realize an autonomous distributed control system in which robustness is not impaired by changing the covering region with time, and it is safe in autonomous distributed control of various mobile groups. And reliability can be improved.
 <実施の形態3>
 図9及び図10は、本発明の実施の形態3に係る自律分散制御システムの動作を模式的に示す図である。なお、本実施の形態3に係る第1移動体1の機能構成を示すブロック図は、実施の形態2に係る第1移動体1の機能構成を示すブロック図(図6)と同様である。以下、本実施の形態3に係る構成要素のうち、上述の構成要素と同じまたは類似する構成要素については同じまたは類似する参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 3>
9 and 10 are diagrams schematically showing the operation of the autonomous distributed control system according to the third embodiment of the present invention. The block diagram showing the functional configuration of the first mobile body 1 according to the third embodiment is the same as the block diagram (FIG. 6) showing the functional configuration of the first mobile body 1 according to the second embodiment. Hereinafter, among the components according to the third embodiment, the components that are the same as or similar to the above-mentioned components are designated by the same or similar reference numerals, and different components will be mainly described.
 本実施の形態3では、被覆境界制御部10は、隣り合う複数の被覆領域を1つの被覆領域に合流することによって、被覆境界6の幾何形状を変更する。つまり、本実施の形態3における自律分散制御システムでは、被覆領域の合流に対応する移動体群の結合を行う操作が可能となっている。 In the third embodiment, the covering boundary control unit 10 changes the geometric shape of the covering boundary 6 by merging a plurality of adjacent covering regions into one covering region. That is, in the autonomous distributed control system according to the third embodiment, it is possible to perform an operation of coupling the mobile group corresponding to the confluence of the covering regions.
 または、本実施の形態3では、被覆境界制御部10は、1つの被覆領域を隣り合う複数の被覆領域に分岐することによって、被覆境界6の幾何形状を変更する。つまり、本実施の形態3における自律分散制御システムでは、被覆領域の分岐に対応する移動体群の分割を行う操作が可能となっている。 Alternatively, in the third embodiment, the covering boundary control unit 10 changes the geometric shape of the covering boundary 6 by branching one covering region into a plurality of adjacent covering regions. That is, in the autonomous distributed control system according to the third embodiment, it is possible to perform an operation of dividing the mobile group corresponding to the branching of the covering region.
 図9は、被覆領域5cで囲われる第1移動体群と、被覆領域5dで囲われる第2移動体群とを示す。被覆領域5cで囲われる第1移動体群は、ネットワーク4cで結合された第1移動体1c及び複数の第2移動体2cを含み、実施の形態2に係る自律分散制御システムと同様のシステムを構成している。被覆領域5dで囲われる第2移動体群は、ネットワーク4dで結合された第1移動体1d及び複数の第2移動体2dを含み、実施の形態2に係る自律分散制御システムと同様のシステムを構成している。被覆境界制御部10は、第1移動体群と第2移動体群とに共通に用いられる。 FIG. 9 shows a first mobile group surrounded by the covering region 5c and a second mobile group surrounded by the covering region 5d. The first mobile group surrounded by the covering region 5c includes a first mobile 1c and a plurality of second mobiles 2c connected by a network 4c, and has a system similar to the autonomous distributed control system according to the second embodiment. It is configured. The second mobile group surrounded by the covering region 5d includes a first mobile 1d and a plurality of second mobiles 2d connected by a network 4d, and has a system similar to the autonomous distributed control system according to the second embodiment. It is configured. The covering boundary control unit 10 is commonly used in the first mobile group and the second mobile group.
 図10は、被覆領域5eで囲われる第3移動体群を示す。被覆領域5eで囲われる第3移動体群は、図9と同様の第1移動体群及び第2移動体群を含み、それらのいくつかがネットワーク4eで結合されることによって、実施の形態2に係る自律分散制御システムと同様のシステムを構成している。 FIG. 10 shows a third mobile group surrounded by a covering region 5e. The third mobile group surrounded by the covering region 5e includes the first mobile group and the second mobile group similar to those in FIG. 9, and some of them are connected by the network 4e to form the second embodiment. It constitutes a system similar to the autonomous distributed control system related to.
 ここで、第1移動体1c,1dの情報取得部81(図6)は、新たな移動体が、当該移動体を含まないネットワーク近傍に現れた場合に、当該移動体から状態量を含む情報を受け取ることによって、当該移動体を当該ネットワークに含めることが可能となっている。その一例として、図9において、第1移動体群に含まれる第1移動体1cと、第2移動体群に含まれる第1移動体1dとが、各々の情報取得部81を介してネットワークを形成できる場合を想定する。この場合に、被覆境界制御部10は、第1移動体1c,1dのそれぞれの被覆境界検出部82(図6)とネットワーク演算部83(図6)とを操作して、図9の第1移動体群と第2移動体群とを、図10の1つの巨大な第3移動体群に結合してもよい。以下、移動体群の結合の例について説明する。 Here, the information acquisition unit 81 (FIG. 6) of the first moving bodies 1c and 1d provides information including a state quantity from the moving body when a new moving body appears in the vicinity of a network that does not include the moving body. By receiving the mobile, it is possible to include the mobile in the network. As an example, in FIG. 9, the first mobile body 1c included in the first mobile body group and the first mobile body 1d included in the second mobile body group form a network via their respective information acquisition units 81. Imagine a case where it can be formed. In this case, the covering boundary control unit 10 operates the covering boundary detection unit 82 (FIG. 6) and the network calculation unit 83 (FIG. 6) of the first mobile bodies 1c and 1d, respectively, to operate the first mobile unit 1c and FIG. The mobile group and the second mobile group may be combined into one giant third mobile group in FIG. Hereinafter, an example of binding of the mobile group will be described.
 被覆境界制御部10は、第1移動体1cのネットワーク演算部83または第1移動体1dのネットワーク演算部83が、各第1移動体1c,1dの状態量に基づいて、第1移動体1cと第1移動体1dとが情報の繋がりを有して隣接できるかを判定する。被覆境界制御部10は、隣接できると判定した場合に、第1移動体1cの被覆境界検出部82に対して、第2移動体群側に生成されていた仮想移動体7f(図9)を削除する指令を与える。また、被覆境界制御部10は、第1移動体1dの被覆境界検出部82に対して、第1移動体群側に生成されていた仮想移動体7g(図9)を削除する指令を与える。そして、被覆境界制御部10は、第1移動体1cのネットワーク演算部83と第1移動体1dのネットワーク演算部83に対して、第1移動体1cと第1移動体1dとを結合するネットワーク4e(図10)を形成するように指令を与える。 In the covering boundary control unit 10, the network calculation unit 83 of the first mobile body 1c or the network calculation unit 83 of the first mobile body 1d determines the first mobile body 1c based on the state quantities of the first mobile bodies 1c and 1d, respectively. It is determined whether and the first mobile body 1d have a connection of information and can be adjacent to each other. When it is determined that the covering boundary control unit 10 can be adjacent to the covering boundary detecting unit 82 of the first moving body 1c, the covering boundary control unit 10 causes the virtual moving body 7f (FIG. 9) generated on the second moving body group side with respect to the covering boundary detecting unit 82 of the first moving body 1c. Give a command to delete. Further, the covering boundary control unit 10 gives a command to the covering boundary detecting unit 82 of the first moving body 1d to delete the virtual moving body 7g (FIG. 9) generated on the first moving body group side. Then, the covering boundary control unit 10 connects the first mobile body 1c and the first mobile body 1d to the network calculation unit 83 of the first mobile body 1c and the network calculation unit 83 of the first mobile body 1d. Command to form 4e (FIG. 10).
 以上の手順によって、被覆境界制御部10は、第1移動体群と第2移動体群とを、第3移動体群に結合する。なお、第1移動体群と第2移動体群とを結合するか否かの判定は、被覆境界制御部10の代わりに、第1移動体1cまたは第1移動体1dが行ってもよい。第1移動体群と第2移動体群とが結合してできる第3移動体群は、被覆領域5cと被覆領域5dとの和集合である被覆領域5eを被覆する。 By the above procedure, the covering boundary control unit 10 connects the first mobile body group and the second mobile body group to the third mobile body group. The determination of whether or not to combine the first mobile group and the second mobile group may be performed by the first mobile 1c or the first mobile 1d instead of the covering boundary control unit 10. The third mobile group formed by combining the first mobile group and the second mobile group covers the covering region 5e, which is the union of the covering region 5c and the covering region 5d.
 以上、移動体群の結合の例について説明した。次に、第1移動体群を全て含む閉領域と、第2移動体群を全て含む閉領域とが互いに交差していない場合を想定する。この場合に、被覆境界制御部10は、第1移動体1c,1dのそれぞれの被覆境界検出部82とネットワーク演算部83とを操作して、図10の1つの第3移動体群を、図9の第1移動体群と第2移動体群とに分割してもよい。以下、移動体群の分割の例について説明する。 The example of binding of mobile groups has been explained above. Next, it is assumed that the closed region including all the first mobile group and the closed region including all the second mobile group do not intersect with each other. In this case, the covering boundary control unit 10 operates the covering boundary detection unit 82 and the network calculation unit 83 of the first mobile bodies 1c and 1d to obtain one third mobile body group in FIG. 9 may be divided into a first mobile group and a second mobile group. Hereinafter, an example of division of the mobile group will be described.
 被覆境界制御部10は、第1移動体群を全て含む閉領域と、第2移動体群を全て含む閉領域とが互いに交差していないかを判定する。被覆境界制御部10は、交差していないと判定した場合に、第1移動体1cと第1移動体1dとを結合しているネットワーク4e(図10)を削除する指令を、第1移動体1cのネットワーク演算部83に与え、新たな被覆境界6c(図9)を追加し、当該被覆境界6cを用いて新たな仮想移動体7fを生成する指令を、第1移動体1cの被覆境界検出部82に与える。また、被覆境界制御部10は、第1移動体1cと第1移動体1dとを結合しているネットワーク4e(図10)を削除する指令を、第1移動体1dのネットワーク演算部83に与え、新たな被覆境界6d(図9)を追加し、当該被覆境界6dを用いて新たな仮想移動体7gを生成する指令を、第1移動体1dの被覆境界検出部82に与える。 The covering boundary control unit 10 determines whether the closed region including all the first mobile group and the closed region including all the second mobile group intersect each other. When it is determined that the covering boundary control unit 10 does not intersect, the first moving body issues a command to delete the network 4e (FIG. 10) connecting the first moving body 1c and the first moving body 1d. A command to add a new covering boundary 6c (FIG. 9) to the network calculation unit 83 of 1c and generate a new virtual moving body 7f using the covering boundary 6c is issued to detect the covering boundary of the first moving body 1c. Give to part 82. Further, the covering boundary control unit 10 gives a command to the network calculation unit 83 of the first mobile body 1d to delete the network 4e (FIG. 10) connecting the first mobile body 1c and the first mobile body 1d. , A new covering boundary 6d (FIG. 9) is added, and a command to generate a new virtual moving body 7g using the covering boundary 6d is given to the covering boundary detection unit 82 of the first moving body 1d.
 以上の手順によって、被覆境界制御部10は、第3移動体群を、第1移動体群と第2移動体群とに分割する。なお、第1移動体群の第1移動体1cが、被覆境界6cを状態量として第2移動体2cの情報取得部81に送信し、第1移動体群の第2移動体2cの被覆境界検出部82が、情報取得部81で得られた被覆境界6cの状態量から仮想移動体7fを生成してもよい。このことは、第2移動体群についても同様である。 According to the above procedure, the covering boundary control unit 10 divides the third mobile body group into a first mobile body group and a second mobile body group. The first moving body 1c of the first moving body group transmits the covering boundary 6c as a state quantity to the information acquisition unit 81 of the second moving body 2c, and the covering boundary of the second moving body 2c of the first moving body group. The detection unit 82 may generate the virtual mobile 7f from the state quantity of the covering boundary 6c obtained by the information acquisition unit 81. This also applies to the second mobile group.
 <実施の形態3のまとめ>
 次に、本実施の形態3に係る自律分散制御システムの社会的意義について述べる。
<Summary of Embodiment 3>
Next, the social significance of the autonomous distributed control system according to the third embodiment will be described.
 従来の自律分散制御システムでは、移動体群を結合する場合にも移動体群を分割する場合にも、自律分散制御を停止する必要があった。これに対して、本実施の形態3に係る自律分散制御システムでは、異なる移動体群の被覆領域が重なる領域を対象として、被覆領域の結合または分離に係る操作を行うことができる。この際、本実施の形態3に係る自律分散制御システムでは、被覆領域の変更を制御対象の移動体全体に伝達する必要がないため、移動体群や被覆領域の規模によらず、自律分散制御を継続しながら大域的な収束安定性を満たすことができる。 In the conventional autonomous distributed control system, it was necessary to stop the autonomous distributed control both when combining the mobile group and when dividing the mobile group. On the other hand, in the autonomous distributed control system according to the third embodiment, it is possible to perform an operation related to combining or separating the covering regions of the regions where the covering regions of different mobile groups overlap. At this time, in the autonomous distributed control system according to the third embodiment, since it is not necessary to transmit the change of the covering area to the entire moving body to be controlled, the autonomous distributed control is performed regardless of the scale of the moving body group or the covering area. It is possible to satisfy the global convergence stability while continuing.
 なお、非特許文献1によれば、合流または分岐が行われた空間を被覆する場合、被覆領域が凹部などの入り組んだ形状を伴うため、大域的な収束安定性を満たさない場合がある。その解決策として、合流の場合は2つの移動体群を1つに結合する方法があり、分岐の場合は1つの移動体群を2つに分ける方法がある。 According to Non-Patent Document 1, when covering a space where merging or branching is performed, the covering region is accompanied by a complicated shape such as a recess, so that the global convergence stability may not be satisfied. As a solution, there is a method of combining two mobile groups into one in the case of merging, and a method of dividing one moving body group into two in the case of branching.
 しかしながら、従来の自律分散制御システムでは、移動体群の結合または分離の制御中に被覆領域を更新できないため、実運用が困難であった。このため、非特許文献1に記載の被覆を自律分散制御システムで行うことは現実的ではなく、入り組んだ形状に対して移動体を展開することが困難であった。これに対して、本実施の形態3に係る自律分散制御システムでは、移動体群の結合または分離を実現するため、入り組んだ形状に移動体を展開することができる。例えば、地震や津波などによる建物の破損で生じる入り組んだ環境において多数のドローンを展開して迅速な救助を行うなどの用途が期待できる。 However, in the conventional autonomous distributed control system, the covering area cannot be updated during the control of the binding or separation of the mobile group, so that the actual operation is difficult. For this reason, it is not realistic to perform the coating described in Non-Patent Document 1 with an autonomous distributed control system, and it is difficult to deploy the moving body in a complicated shape. On the other hand, in the autonomous distributed control system according to the third embodiment, the mobile body can be deployed in a complicated shape in order to realize the coupling or separation of the mobile body group. For example, it can be expected to be used for quick rescue by deploying a large number of drones in a complicated environment caused by damage to a building due to an earthquake or tsunami.
 <実施の形態4>
 図11は、本発明の実施の形態4に係る自律分散制御システムにおける第1移動体1の機能構成を示すブロック図である。以下、本実施の形態4に係る構成要素のうち、上述の構成要素と同じまたは類似する構成要素については同じまたは類似する参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 4>
FIG. 11 is a block diagram showing a functional configuration of the first mobile body 1 in the autonomous distributed control system according to the fourth embodiment of the present invention. Hereinafter, among the components according to the fourth embodiment, the same or similar components as those described above will be designated by the same or similar reference numerals, and different components will be mainly described.
 本実施の形態4に係る被覆制御演算部85は、大域的な収束安定性を満たす限りにおいて、移動体群の一部について実施の形態1に記載の被覆制御演算部85の方式と異なる方式で演算するように構成されている。 The cover control calculation unit 85 according to the fourth embodiment is different from the method of the cover control calculation unit 85 described in the first embodiment for a part of the moving body group as long as the global convergence stability is satisfied. It is configured to calculate.
 本実施の形態4に係るグラフ演算部84は、ネットワーク演算部83で求められたネットワークに基づいて、任意の2つの移動体が情報の繋がりを有する複数の移動体を複数の節点として有する複数の完全グラフを求める。そして、グラフ演算部84は、複数の完全グラフから、被覆制御演算部85が実施の形態1と異なる方式で制御指令値を求めるために必要な最小構成のグラフを求める。 The graph calculation unit 84 according to the fourth embodiment has a plurality of mobile bodies having a plurality of mobile bodies having information connections as a plurality of nodes based on the network obtained by the network calculation unit 83. Find the complete graph. Then, the graph calculation unit 84 obtains a graph having the minimum configuration necessary for the covering control calculation unit 85 to obtain the control command value by a method different from that of the first embodiment from the plurality of complete graphs.
 グラフ演算部84は、例えば、4つ以上の節点として有する複数の完全グラフを求め、複数の完全グラフから制御グラフを選別してもよい。また、ドロネー三角形以外の完全グラフを制御グラフとしてもよい。 The graph calculation unit 84 may obtain, for example, a plurality of complete graphs having four or more nodes, and select a control graph from the plurality of complete graphs. Further, a complete graph other than the Delaunay triangle may be used as a control graph.
 被覆制御演算部85は、例えば、最小構成のグラフである制御グラフに含まれる完全グラフを引数とする任意の関数の総和を勾配関数として、当該勾配関数から制御指令値を生成してもよい。 The covering control calculation unit 85 may generate a control command value from the gradient function, for example, using the sum of arbitrary functions having a complete graph included in the control graph, which is the minimum configuration graph, as an argument as a gradient function.
 また、被覆制御演算部85は、例えば、最小構成のグラフである制御グラフの節点に仮想移動体7が含まれる場合に、被覆境界検出部82が検出した被覆境界6の一部に基づく演算により得られた結果を勾配関数の停留値ひいては制御指令値と置換えてもよい。なお、完全グラフの1つを要素とする勾配関数またはその停留値を、別の完全グラフで置換える操作を行うことにより、大域的な収束安全性が確保されることは非特許文献2の記載から明らかである。 Further, the cover control calculation unit 85 performs an calculation based on a part of the cover boundary 6 detected by the cover boundary detection unit 82, for example, when the virtual moving body 7 is included in the node of the control graph which is the minimum configuration graph. The obtained result may be replaced with the stationary value of the gradient function and thus the control command value. It should be noted that Non-Patent Document 2 describes that global convergence safety is ensured by performing an operation of replacing a gradient function having one of the complete graphs as an element or its stationary value with another complete graph. It is clear from.
 また、被覆制御演算部85は、例えば、最小構成のグラフである制御グラフの節点に仮想移動体7が含まれる場合に、当該制御グラフに基づいてボロノイ分割を施してボロノイ領域を求め、当該ボロノイ領域の重心及び面積に基づいて制御指令値を求めてもよい。 Further, for example, when the virtual moving body 7 is included in the node of the control graph which is the minimum configuration graph, the covering control calculation unit 85 performs Voronoi division based on the control graph to obtain the Voronoi region, and obtains the Voronoi region. The control command value may be obtained based on the center of gravity and the area of the region.
 被覆制御演算部85は、例えば、予め備わる勾配関数に完全グラフを要素とする新たな勾配関数を足し合わせてもよい。 The cover control calculation unit 85 may add, for example, a new gradient function having a complete graph as an element to the gradient function provided in advance.
 <実施の形態4のまとめ>
 以上のように構成された本実施の形態4によれば、曲線や細かな不連続な線から構成された被覆境界6を線形要素に近似すると仮想移動体7の数が多くなり、処理のための計算の負荷が重くなる場合に、実施の形態1に記載の方式と異なる方式を行う。このような構成によれば計算負荷を軽くすることができる。
<Summary of Embodiment 4>
According to the fourth embodiment configured as described above, if the covering boundary 6 composed of curves and fine discontinuous lines is approximated to a linear element, the number of virtual moving bodies 7 increases, and for processing. When the load of calculation becomes heavy, a method different from the method described in the first embodiment is performed. With such a configuration, the calculation load can be reduced.
 次に、本実施の形態4に係る自律分散制御システムの社会的意義について述べる。複数の移動体が局所的な情報に基づいて自律的な意思決定を行う自律分散制御システムの、目的を達成する用途や適用範囲は、被覆に限られず、合意の場合もある。 Next, the social significance of the autonomous distributed control system according to the fourth embodiment will be described. The uses and scope of application of an autonomous distributed control system in which a plurality of mobile bodies make autonomous decisions based on local information are not limited to covering, and may be agreed.
 例えば、自律制御を備える移動体である自動運転車両の社会普及によって、高速道路の隊列走行などを用いた効率的で高速な物資搬送の実現化が期待されている。隊列走行は、多数の移動体が互いにネットワークを形成して構成する自律分散制御システムで実現される。隊列走行を行う自律分散制御システムは、事前に車間を定義できる場合には、特定の形状に対してフォーメーションを形成する合意を行い、事前に隊列の大きさを定義できる場合には、複数の移動体が衝突しないように被覆領域を維持する被覆を行う。すなわち、隊列走行を行う自律分散制御システムは、与えられた状況によって、合意問題と被覆問題の両方を扱う。 For example, with the social spread of autonomous vehicles, which are mobiles equipped with autonomous control, it is expected that efficient and high-speed transportation of goods using platooning on highways will be realized. The platooning is realized by an autonomous distributed control system in which a large number of moving bodies form a network with each other. An autonomous distributed control system that performs platooning agrees to form a formation for a specific shape if the distance between vehicles can be defined in advance, and if the size of the platoon can be defined in advance, multiple movements. A coating is applied to maintain the coverage area so that the body does not collide. That is, an autonomous distributed control system that performs platooning handles both consensus and cover problems, depending on the given situation.
 しかしながら、従来の自律分散制御システムでは、合意問題の扱い方と被覆問題の扱い方とが数理的に異なっている。そのため、従来の自律分散制御システムでは、合意問題及び被覆問題の両方を扱うことができなかった。 However, in the conventional autonomous distributed control system, the handling of the consensus problem and the handling of the cover problem are mathematically different. Therefore, the conventional autonomous distributed control system cannot handle both the consensus problem and the cover problem.
 これに対して、本実施の形態4に係る自律分散制御システムでは、完全グラフにより勾配関数を任意に設計することができる。非特許文献2に、完全グラフを基底とする勾配関数により合意問題が扱えることが記載されていることに鑑みれば、本実施の形態4に係る自律分散制御システムは、合意問題及び被覆問題の両方を扱うことができる。なお、以上では、合意問題と被覆問題の両方を扱う自律分散制御システムの例として、隊列走行を行うシステムを説明したが、これに限らない。 On the other hand, in the autonomous distributed control system according to the fourth embodiment, the gradient function can be arbitrarily designed by a complete graph. Considering that Non-Patent Document 2 describes that the consensus problem can be handled by the gradient function based on the complete graph, the autonomous distributed control system according to the fourth embodiment has both the consensus problem and the covering problem. Can be handled. In the above, a system for platooning has been described as an example of an autonomous distributed control system that handles both the consensus problem and the cover problem, but the present invention is not limited to this.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 In the present invention, each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.
 本発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、本発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is exemplary in all embodiments and the present invention is not limited thereto. It is understood that innumerable variations not illustrated can be assumed without departing from the scope of the present invention.
 1 第1移動体、2 第2移動体、4 ネットワーク、5 被覆領域、6 被覆境界、7 仮想移動体、8 制御グラフ、10 被覆境界制御部、81 情報取得部、82 被覆境界検出部、83 ネットワーク演算部、84 グラフ演算部、85 被覆制御演算部、86 移動体制御部。 1 1st mobile, 2 2nd mobile, 4 network, 5 covering area, 6 covering boundary, 7 virtual moving body, 8 control graph, 10 covering boundary control unit, 81 information acquisition unit, 82 coating boundary detection unit, 83 Network calculation unit, 84 graph calculation unit, 85 covering control calculation unit, 86 mobile control unit.

Claims (11)

  1.  情報を繋ぐネットワークで結合された第1移動体及び複数の第2移動体が、予め定められた被覆領域を、自律的かつ分散的な制御によって被覆する自律分散制御システムであって、
     前記第1移動体は、
     前記被覆領域を閉包する被覆境界に関して前記第1移動体と反対側に仮想移動体を生成する写像を行う被覆境界取得部と、
     前記第1移動体と、前記第1移動体と前記ネットワークによって結合された前記複数の第2移動体と、前記被覆境界取得部で生成された前記仮想移動体とが、前記ネットワークによって結合されていると仮定して、前記第1移動体の制御を示す指令値を生成する被覆制御演算部と、
     前記被覆制御演算部で生成された前記指令値に基づいて前記第1移動体の移動を制御する移動体制御部と
    を備える、自律分散制御システム。
    An autonomous distributed control system in which a first mobile body and a plurality of second mobile bodies connected by a network connecting information cover a predetermined covering region by autonomous and decentralized control.
    The first moving body is
    A covering boundary acquisition unit that performs a mapping to generate a virtual moving body on the opposite side of the first moving body with respect to the covering boundary that closes the covering region.
    The first mobile body, the plurality of second mobile bodies connected to the first mobile body by the network, and the virtual mobile body generated by the covering boundary acquisition unit are connected by the network. A covering control calculation unit that generates a command value indicating control of the first mobile body, assuming that the first moving body is controlled.
    An autonomous distributed control system including a moving body control unit that controls the movement of the first moving body based on the command value generated by the covering control calculation unit.
  2.  請求項1に記載の自律分散制御システムであって、
     前記被覆境界取得部は、
     前記被覆境界の幾何形状と、前記第1移動体で取得された前記第1移動体の状態量とに基づいて前記写像を行うことにより、前記仮想移動体の状態量を生成し、
     前記第1移動体は、
     前記複数の第2移動体の状態量を取得する情報取得部と、
     前記第1移動体の状態量と、前記複数の第2移動体の状態量と、前記仮想移動体の状態量とに基づいて、前記第1移動体と、前記複数の第2移動体と、前記仮想移動体とを結合する前記ネットワークを求めるネットワーク演算部と、
     前記ネットワーク演算部で求められた前記ネットワークから、前記指令値を生成するための制御グラフを生成するグラフ演算部と
    をさらに備え、
     前記被覆制御演算部は、
     前記グラフ演算部で生成された前記制御グラフに基づいて前記指令値を生成する、自律分散制御システム。
    The autonomous distributed control system according to claim 1.
    The covering boundary acquisition portion is
    The state quantity of the virtual moving body is generated by performing the mapping based on the geometric shape of the covering boundary and the state quantity of the first moving body acquired by the first moving body.
    The first moving body is
    An information acquisition unit that acquires the state quantities of the plurality of second mobile bodies, and
    Based on the state amount of the first moving body, the state amount of the plurality of second moving bodies, and the state amount of the virtual moving body, the first moving body, the plurality of second moving bodies, and the like. A network calculation unit that obtains the network that connects the virtual mobile body, and
    Further provided with a graph calculation unit for generating a control graph for generating the command value from the network obtained by the network calculation unit.
    The covering control calculation unit
    An autonomous distributed control system that generates the command value based on the control graph generated by the graph calculation unit.
  3.  請求項2に記載の自律分散制御システムであって、
     前記複数の第2移動体の状態量は、前記被覆領域を基準とする前記複数の第2移動体の位置及び速度、並びに、前記複数の第2移動体を結合している前記ネットワークの情報を含み、
     前記第1移動体の前記情報取得部は、
     前記第1移動体に対する前記第2移動体の相対位置及び相対速度を検出し、当該相対位置及び当該相対速度に基づいて、前記第2移動体の状態量に含まれる前記第2移動体の前記位置及び前記速度を推定すること、及び、
     前記第2移動体から前記ネットワークを介して前記第2移動体の状態量に含まれる前記第2移動体の前記位置及び前記速度を受信すること、の少なくともいずれか一方を行う、自律分散制御システム。
    The autonomous distributed control system according to claim 2.
    The state quantity of the plurality of second mobile bodies includes information on the positions and velocities of the plurality of second mobile bodies with reference to the covering region, and the information of the network connecting the plurality of second mobile bodies. Including
    The information acquisition unit of the first mobile body
    The relative position and relative speed of the second moving body with respect to the first moving body are detected, and the second moving body included in the state quantity of the second moving body based on the relative position and the relative speed. Estimating the position and the velocity, and
    An autonomous distributed control system that receives at least one of the position and the speed of the second mobile included in the state quantity of the second mobile from the second mobile via the network. ..
  4.  請求項2または請求項3に記載の自律分散制御システムであって、
     前記被覆境界取得部は、
     前記被覆境界の幾何形状を区分してなる複数の線分要素を対称軸として、前記第1移動体と線対称となる前記仮想移動体を前記写像によって生成し、
     前記グラフ演算部は、
     前記ネットワーク演算部で求められた前記ネットワークに基づいて、前記第1移動体、前記複数の第2移動体、及び、前記仮想移動体から、前記第1移動体を含み、任意の2つの移動体が情報の繋がりを有する3つの移動体を3つの節点として有する複数の三角形状の完全グラフを求め、前記複数の三角形状の完全グラフから前記制御グラフを選別するドロネー三角形分割を行い、
     前記被覆制御演算部は、
     前記制御グラフの三角形状の外心と前記第1移動体とを頂点として有する多角形の領域の重心の位置に基づいて、前記指令値を求める、自律分散制御システム。
    The autonomous distributed control system according to claim 2 or 3.
    The covering boundary acquisition portion is
    A plurality of line segment elements that divide the geometric shape of the covering boundary are used as axes of symmetry, and the virtual moving body that is line-symmetric with the first moving body is generated by the mapping.
    The graph calculation unit
    Based on the network obtained by the network calculation unit, any two mobile bodies including the first mobile body from the first mobile body, the plurality of second mobile bodies, and the virtual mobile body. Obtains a plurality of triangular complete graphs having three moving bodies having information connections as three nodes, and performs Dronay triangle division for selecting the control graph from the plurality of triangular complete graphs.
    The covering control calculation unit
    An autonomous distributed control system that obtains the command value based on the position of the center of gravity of a polygonal region having a triangular outer center and the first moving body as vertices in the control graph.
  5.  請求項1から請求項4のうちのいずれか1項に記載の自律分散制御システムであって、
     前記被覆境界の幾何形状を変更する被覆境界制御部を備え、
     前記被覆境界取得部は、
     前記被覆境界制御部によって変更された前記被覆境界に関して前記写像を行うことによって前記仮想移動体を更新する、自律分散制御システム。
    The autonomous distributed control system according to any one of claims 1 to 4.
    A covering boundary control unit for changing the geometric shape of the covering boundary is provided.
    The covering boundary acquisition portion is
    An autonomous distributed control system that updates the virtual moving body by performing the mapping on the covering boundary changed by the covering boundary control unit.
  6.  請求項5に記載の自律分散制御システムであって、
     前記被覆境界制御部は、
     前記被覆境界の幾何形状の一部を前記被覆領域の内側または外側に移動することによって、前記被覆境界の幾何形状を変更する、自律分散制御システム。
    The autonomous distributed control system according to claim 5.
    The covering boundary control unit is
    An autonomous distributed control system that modifies the geometry of a coating boundary by moving a portion of the geometry of the coating boundary to the inside or outside of the coating region.
  7.  請求項5または請求項6に記載の自律分散制御システムであって、
     前記被覆境界制御部は、
     前記被覆境界の幾何形状を区分してなる複数の線分要素を追加または削除することによって、前記被覆境界の幾何形状を変更する、自律分散制御システム。
    The autonomous distributed control system according to claim 5 or 6.
    The covering boundary control unit is
    An autonomous distributed control system that changes the geometry of a covering boundary by adding or removing a plurality of line segment elements that divide the geometry of the covering boundary.
  8.  請求項5から請求項7のうちのいずれか1項に記載の自律分散制御システムであって、
     前記被覆境界制御部は、
     隣り合う複数の前記被覆領域を1つの前記被覆領域に合流することによって、前記被覆境界の幾何形状を変更する、自律分散制御システム。
    The autonomous distributed control system according to any one of claims 5 to 7.
    The covering boundary control unit is
    An autonomous distributed control system that changes the geometric shape of the coating boundary by merging a plurality of adjacent coating regions into one coating region.
  9.  請求項5から請求項8のうちのいずれか1項に記載の自律分散制御システムであって、
     前記被覆境界制御部は、
     1つの前記被覆領域を隣り合う複数の前記被覆領域に分岐することによって、前記被覆境界の幾何形状を変更する、自律分散制御システム。
    The autonomous distributed control system according to any one of claims 5 to 8.
    The covering boundary control unit is
    An autonomous distributed control system that changes the geometric shape of the covering boundary by branching one covering region into a plurality of adjacent covering regions.
  10.  請求項2または請求項3に記載の自律分散制御システムであって、
     前記グラフ演算部は、
     前記ネットワーク演算部で求められた前記ネットワークに基づいて、前記第1移動体、前記複数の第2移動体、及び、前記仮想移動体から、前記第1移動体を含み、任意の2つの移動体が情報の繋がりを有する3つの移動体を3つの節点として有する複数の三角形状の完全グラフを求め、前記複数の三角形状の完全グラフから前記制御グラフを選別するドロネー三角形分割を行い、
     前記被覆制御演算部は
     前記制御グラフの節点に前記仮想移動体が含まれる場合に、当該制御グラフに基づいてボロノイ領域を求め、当該ボロノイ領域の重心及び面積に基づいて、前記指令値を求める、自律分散制御システム。
    The autonomous distributed control system according to claim 2 or 3.
    The graph calculation unit
    Based on the network obtained by the network calculation unit, any two mobile bodies including the first mobile body from the first mobile body, the plurality of second mobile bodies, and the virtual mobile body. Obtains a plurality of triangular complete graphs having three moving bodies having information connections as three nodes, and performs Dronay triangle division for selecting the control graph from the plurality of triangular complete graphs.
    When the virtual moving body is included in the node of the control graph, the covering control calculation unit obtains the Voronoi region based on the control graph, and obtains the command value based on the center of gravity and the area of the Voronoi region. Autonomous distributed control system.
  11.  請求項2または請求項3に記載の自律分散制御システムであって、
     前記被覆制御演算部は、異なる方式で前記指令値を求め、
     前記グラフ演算部は、
     前記ネットワーク演算部で求められた前記ネットワークに基づいて、任意の2つの移動体が情報の繋がりを有する複数の移動体を複数の節点として有する複数の完全グラフを求め、前記複数の完全グラフから、前記被覆制御演算部が異なる方式で前記指令値を求めるために必要な最小構成のグラフを求める、自律分散制御システム。
    The autonomous distributed control system according to claim 2 or 3.
    The covering control calculation unit obtains the command value by a different method, and obtains the command value.
    The graph calculation unit
    Based on the network obtained by the network calculation unit, a plurality of complete graphs in which any two mobile bodies have a plurality of mobile bodies having information connections as a plurality of nodes are obtained, and from the plurality of complete graphs, a plurality of complete graphs are obtained. An autonomous distributed control system in which the covering control calculation unit obtains a graph having the minimum configuration required to obtain the command value by a different method.
PCT/JP2019/039594 2019-10-08 2019-10-08 Autonomous distributed control system WO2021070239A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020515788A JP6742561B1 (en) 2019-10-08 2019-10-08 Autonomous decentralized control system
PCT/JP2019/039594 WO2021070239A1 (en) 2019-10-08 2019-10-08 Autonomous distributed control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039594 WO2021070239A1 (en) 2019-10-08 2019-10-08 Autonomous distributed control system

Publications (1)

Publication Number Publication Date
WO2021070239A1 true WO2021070239A1 (en) 2021-04-15

Family

ID=72047821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039594 WO2021070239A1 (en) 2019-10-08 2019-10-08 Autonomous distributed control system

Country Status (2)

Country Link
JP (1) JP6742561B1 (en)
WO (1) WO2021070239A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261195A (en) * 1997-03-21 1998-09-29 Fujitsu Ten Ltd Device and method for controlling vehicle group formation
JP2005032196A (en) * 2003-07-11 2005-02-03 Japan Science & Technology Agency System for planning path for moving robot
WO2005096114A1 (en) * 2004-04-01 2005-10-13 Seoul National University Industry Foundation Method for avoiding collision of multiple robots by using extended collision map, and storage medium readable by computer recording the method
JP2005293021A (en) * 2004-03-31 2005-10-20 Japan Science & Technology Agency Triangular mesh generation method using maximum opposite angulation, and program
JP2017519279A (en) * 2014-05-05 2017-07-13 ジョージア テック リサーチ コーポレイション Control of group robot
JP2017142551A (en) * 2016-02-08 2017-08-17 エレメンタルデザイン&コンサルティング株式会社 Group control method of mobile body
JP2019074918A (en) * 2017-10-16 2019-05-16 株式会社豊田中央研究所 Control device, moving body, and distribution control program for moving body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261195A (en) * 1997-03-21 1998-09-29 Fujitsu Ten Ltd Device and method for controlling vehicle group formation
JP2005032196A (en) * 2003-07-11 2005-02-03 Japan Science & Technology Agency System for planning path for moving robot
JP2005293021A (en) * 2004-03-31 2005-10-20 Japan Science & Technology Agency Triangular mesh generation method using maximum opposite angulation, and program
WO2005096114A1 (en) * 2004-04-01 2005-10-13 Seoul National University Industry Foundation Method for avoiding collision of multiple robots by using extended collision map, and storage medium readable by computer recording the method
JP2017519279A (en) * 2014-05-05 2017-07-13 ジョージア テック リサーチ コーポレイション Control of group robot
JP2017142551A (en) * 2016-02-08 2017-08-17 エレメンタルデザイン&コンサルティング株式会社 Group control method of mobile body
JP2019074918A (en) * 2017-10-16 2019-05-16 株式会社豊田中央研究所 Control device, moving body, and distribution control program for moving body

Also Published As

Publication number Publication date
JP6742561B1 (en) 2020-08-19
JPWO2021070239A1 (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US10665115B2 (en) Controlling unmanned aerial vehicles to avoid obstacle collision
US20200117220A1 (en) Swarm path planner system for vehicles
Shule et al. Uwb-based localization for multi-uav systems and collaborative heterogeneous multi-robot systems
US10705528B2 (en) Autonomous visual navigation
Droeschel et al. Multilayered mapping and navigation for autonomous micro aerial vehicles
US20190056743A1 (en) Method for motion planning for autonomous moving objects
CA3094649C (en) Attract-repel path planner system for collision avoidance
Waslander Unmanned aerial and ground vehicle teams: Recent work and open problems
Marzat et al. Reactive MPC for autonomous MAV navigation in indoor cluttered environments: Flight experiments
Chen et al. Real-time identification and avoidance of simultaneous static and dynamic obstacles on point cloud for UAVs navigation
Adaldo et al. Cooperative coverage for surveillance of 3D structures
Yu et al. Vision-based navigation frame mapping and planning for collision avoidance for miniature air vehicles
Queralta et al. Collaborative mapping with ioe-based heterogeneous vehicles for enhanced situational awareness
Shit Precise localization for achieving next-generation autonomous navigation: State-of-the-art, taxonomy and future prospects
Saldana et al. A distributed multi-robot approach for the detection and tracking of multiple dynamic anomalies
JP7032062B2 (en) Point cloud data processing device, mobile robot, mobile robot system, and point cloud data processing method
Song et al. Cooperative vehicle localisation method based on the fusion of GPS, inter‐vehicle distance, and bearing angle measurements
Chen et al. Multilayer mapping kit for autonomous UAV navigation
Fragoso et al. Dynamically feasible motion planning for micro air vehicles using an egocylinder
Ivancsits et al. Visual navigation system for small unmanned aerial vehicles
Pritzl et al. Cooperative navigation and guidance of a micro-scale aerial vehicle by an accompanying UAV using 3D LiDAR relative localization
Rohde et al. Avigle: A system of systems concept for an avionic digital service platform based on micro unmanned aerial vehicles
CN111052027A (en) Action plan generation when self position is unknown
Choi et al. Two tier search scheme using micro UAV swarm
WO2021070239A1 (en) Autonomous distributed control system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020515788

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948696

Country of ref document: EP

Kind code of ref document: A1