WO2021070155A1 - Porous and cellular metals and metal structures of open porosity impregnated with cork, production processes thereof and uses of same - Google Patents

Porous and cellular metals and metal structures of open porosity impregnated with cork, production processes thereof and uses of same Download PDF

Info

Publication number
WO2021070155A1
WO2021070155A1 PCT/IB2020/059560 IB2020059560W WO2021070155A1 WO 2021070155 A1 WO2021070155 A1 WO 2021070155A1 IB 2020059560 W IB2020059560 W IB 2020059560W WO 2021070155 A1 WO2021070155 A1 WO 2021070155A1
Authority
WO
WIPO (PCT)
Prior art keywords
cork
porous
cellular
impregnated
metal
Prior art date
Application number
PCT/IB2020/059560
Other languages
French (fr)
Portuguese (pt)
Inventor
Isabel Maria ALEXANDRINO DUARTE
Susana Cristina DOS SANTOS PINTO
Paula Alexandrina DE AGUIAR PEREIRA MARQUES
Original Assignee
Universidade De Aveiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Aveiro filed Critical Universidade De Aveiro
Priority to EP20811435.5A priority Critical patent/EP4043125A1/en
Publication of WO2021070155A1 publication Critical patent/WO2021070155A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/066Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to porous metals and metallic structures of open porosity impregnated with reinforced or not reinforced cork, their manufacturing processes and their uses.
  • the process of obtaining these new materials and structures comprises filling the open pores of metals and porous and cellular metallic structures, with a cork-based material in the form of particles, granules, grains, powder, the like and their combinations, which can be obtained from cork of various types and origins, such as natural, expanded, recycled cork, waste cork from the industrial process of different granulometries and densities, cork by-products, which can contain at least one natural, synthetic polymer , or recycled, which promotes the connection of cork with each other and with the porous metallic mesh, with the possibility of containing similar micro- or nano-metric reinforcement elements and their combinations, in order to improve the properties of traditional metals and porous and cellular metallic structures of open porosity.
  • a cork-based material in the form of particles, granules, grains, powder, the like and their combinations, which can be obtained from cork of various types and origins, such as natural, expanded, recycled cork, waste cork from the industrial process of different granulome
  • the new materials thus obtained are light, multifunctional, and have improved properties of sound insulation, thermal behavior and a significant increase in mechanical performance.
  • the present invention falls within the technical domain of organic macromolecular compounds and their preparation, in particular the preparation of macromolecular compounds for porous or cellular materials, such as foams of composite materials by impregnation.
  • Solid and porous cellular materials such as foams and sponges, have become the most promising light and multifunctional materials, being used or tested in a wide range of commercial, biomedical, industrial and military applications. This is mainly due to the rare combination of properties derived from their cellular structures formed by open or closed pores and the properties of the base material (matrix) from which they are made. Its use contributes to an immediate and significant reduction in weight, combined with other benefits, namely excellent noise and vibration damping, acoustic attenuation, impact and shock energy absorption, good filtration capacity, catalytic properties and sound insulation and thermal.
  • Cork and wood examples of these materials of natural origin, were the first building materials used by man in the construction of houses, kitchen utensils, fishing and hunting. Recently, a wide variety of cork products have been developed and marketed (Gil, 2019) due to their excellent derived properties cell structure, such as low density, high friction coefficient, low thermal conductivity, high resistance to moisture and the penetration of liquids, resilience and excellent vibration absorption and compressibility.
  • porous metals have the best properties for engineering applications. They are easily recyclable and extremely resistant, deforming plastically and absorbing large amounts of energy, in addition to withstanding higher temperatures than cellular polymers. In addition, they are still non-flammable, unlike the known porous and cellular polymers.
  • the syntactic foams are manufactured by simple infiltration of a molten metal through a predefined arrangement of hollow spheres or porous particles of ceramics, glass and metals, completely filling the empty spaces.
  • US2018099475 (Al) disclose cellular structures in which each cell has a straight section of 12 corners, which are generally referred to as honeycomb structures, whose geometry can vary widely, but have, as a common characteristic, to be formed by a matrix of hollow cells arranged between thin vertical walls. Its production consists of the union of cells through processes, such as adhesive bonding (bonding), resistance welding, brazing, diffusion bonding or thermal fusion. All of these production methods are based on how the connection between adjacent plates is made in order to form a "node"
  • cork is generally referred to here as a thermal insulating material or for solutions where temperature control is important.
  • the structures disclosed in these documents share the walls (hollow cells formed between thin vertical walls), cell structures for filling described in these patents are formed by hollow profiles / cells joined by thin walls using a bonding technique, cell structures that are relatively large and with a small number of cells, in which each cell can be manufactured by other processes separately and then joined, the materials that form cellular structures are very varied, for example, steel alloys, titanium alloys, aluminum alloys, magnesium alloys, nylons, plastics, polymers, compounds, fiber-reinforced composites, silicone, semiconductor, papers, rubber, foams, gels, wood, stoppers, hybrid materials (that is, multiple dissimilar materials), materials with shape memory and / or any other suitable materials, which gives them a totally different technical effect from porous and cellular metallic structures of open porosity impregnated with cork .
  • US20130098203A1 is an example of disclosure of this type of foam.
  • These metallic matrix syntactic foams have density values much higher (> 1000 g / cm 3 ) than conventional closed porosity metal foams ( ⁇ 900 g / cm 3 ), limiting their applications.
  • Hollow metallic sphere structures are typically obtained by connecting different metallic hollow spheres with a metal, polymer or polymeric foam (Andersen, 2000) and DE3724156A1 also discloses this process.
  • the limitation in the use of these structures is associated with the high cost of producing these hollow spheres, making this process, to obtain it, very uncompetitive.
  • Hybrid structures of closed porosity metal foam spheres are manufactured by heating an empty mold or hollow structure containing small closed porosity aluminum spheres obtained by powder coated powder method (in English called Powder Metallurgy) by a polymeric material, described in document W02005000502A1. Simplification of the process, automated and continuous production are some of the advantages of these structures (St ⁇ bener et al., 2009). However, this manufacturing process does not guarantee totally perfect spheres, nor is its cell structure controllable during its manufacture.
  • the present invention aims to provide an improved alternative to the materials of the prior art mentioned above proposing, for that purpose, porous metals and metallic structures of open porosity impregnated with cork, instead of polymer.
  • the present invention relates to open porous and cellular metal and metal structures impregnated with cork, which can be reinforced, its manufacturing process and its uses.
  • the porous and cellular open porosity metal and metal structures of the present invention form a matrix containing open pores distributed periodically or randomly with at least one cork material in the form of particles, granules, grains, powder, the like and combinations thereof, and wherein said cork material is incorporated into the pores of the metallic material, as described in claim 1.
  • the process of obtaining these new materials and structures comprises filling the open pores of metals and porous and cellular metallic structures, with a cork-based material, such as that described in claim 9.
  • This process has the advantage of being able to control the dimensions of the used cork powders, in relation to the open pore size of the aluminum foam, with the possibility of recycling and reusing cork products and waste / waste from the cork industry, increasing its life cycle.
  • Figure 1 Schematic representation of the process of manufacturing porous and cellular metal structures with open porosity impregnated with reinforced cork or not with reinforcement elements of nano and micrometric size.
  • Figure 2 Appearance and morphologies of the granules of cork (a) and the cellular cellular metal of open porosity (b), which are the main raw materials used for the manufacture of agglomerates of cork and (c) aluminum foams impregnated with cork.
  • Fig. 3a Displays the respective energy absorption curves
  • Fig. 3b shows the tension-extension curves of compression of aluminum foams impregnated with cork and the respective individual components, in which it can be seen, in the aluminum foam of open porosity and in the agglomerate of cork, that the presence of cork inside of aluminum foams leads to increases of 159% and 81% in mechanical strength and energy absorption capacity, respectively, Fig.
  • 3c shows the compression-strain curves of aluminum foams impregnated with cork reinforced or not with graphene oxide and the respective individual components, the open porosity aluminum foam, the cork agglomerate and the cork nanocomposite agglomerate , where it can be seen that the presence of cork inside the aluminum foams leads to increases of 395% in mechanical resistance to an extension of 0.6%, and
  • Fig. 3d shows the compression-tension curves of aluminum foams impregnated with cork reinforced or not with graphene oxide and the respective individual components, the open porosity aluminum foam, the cork agglomerate and the cork nanocomposite agglomerate , where it can be seen that the presence of cork inside the aluminum foams causes increases of 344% and 238% of mechanical resistance to an extension of 0.5% in a quasi-static or dynamic regime.
  • Fig. 4a shows the comparison of the sound absorption and noise reduction coefficients of an aluminum foam impregnated with cork and the respective individual components, the aluminum foam with open porosity and the agglomerate of cork, where there is a significant increase in the coefficient of sound absorption and noise reduction in a wide range of medium-high frequencies (1000 to 3000 Hz), with the typical human frequency being between 1000-2000 Hz,
  • Fig. 4b shows the comparison of the sound absorption and noise reduction coefficients of an aluminum foam impregnated with cork reinforced with graphene oxide, called cork nanocomposite and the respective individual components, aluminum foam, cork nanocomposite agglomerate, in which the aluminum foam impregnated with cork nanocomposite has a high sound absorption coefficient over a wide range of medium-high frequencies (1000-4000 Hz), with a value of 1 between 1700 Hz and 2000 Hz and a value greater than 0.85 between 1261 Hz and 4000 Hz,
  • Fig. 4c shows the comparison of the sound absorption and noise reduction coefficients of aluminum foam and cork and aluminum foam impregnated with cork reinforced with graphene oxide, called the cork nanocomposite and the respective individual components, a aluminum foam, cork agglomerate, cork nanocomposite agglomerate, in which the aluminum foam impregnated with cork nanocomposite has a high sound absorption coefficient over a wide range of medium-high frequencies (1000-4000 Hz), with a value of 1 between 1700 Hz and 2000 Hz and a value greater than 0.85 between 1261 Hz and 4000 Hz.
  • medium-high frequencies 1000-4000 Hz
  • Figure 5 Comparison of the thermal conductivity values of aluminum foams impregnated with cork reinforced or not with graphene oxide, with their individual components, the open porosity aluminum foam and the cork agglomerate, where it is verified that these ([ 0.091 W / (mk)] and 0.101 W / (mk)] have higher values than samples of reinforced agglomerated cork ([0.057 W / (mk)]) or not reinforced
  • Fig. 6a refers to a sample (25 c 25 c 25 mm) of agglomerate with graphene oxide (a) and a sample (25 c 25 x 25 mm) of aluminum foam impregnated with cork reinforced with graphene oxide , called the cork nanocomposite, where it is found that the flame extinguishes more quickly in aluminum foams of open porosity impregnated with graphene oxide reinforced cork, and
  • Fig. 6b refers to a sample (25 c 25 c 25 mm) of cork agglomerate, a sample (25 c 25 c 25 mm) of aluminum foam and cork, a sample (25 c 25 c 25 mm) of cork agglomerate reinforced with graphene oxide, referred to as cork nanocomposite and of a sample (25 c 25 x 25 mm) of aluminum foam impregnated with cork nanocomposite where it is verified that the flame extinguishes faster in the foam of open porosity aluminum impregnated with graphene oxide reinforced cork.
  • the present invention concerns the development of new metals and porous and cellular metallic structures of open porosity impregnated with reinforced or not reinforced cork, which comprise the filling of open pores, with a periodic or stochastic arrangement, by a cork-based filling material. .
  • Porous metals, cellular metals or porous or cellular structures are characterized by being constituted mostly of open, interconnected pores, which share the edges, forming three-dimensional arrangements periodically or stochastically distributed, which include metallic foams and metal sponges, and metallic cell structures, which include periodic cellular materials with different topologies, namely but not limiting, honeycomb, lattice lattices or prismatic.
  • Materials of this type suitable for use within the scope of the present invention are, for example, open metal foams with a pore size of 5 ppi to 500 ppi (conversion: internationally this represents m 2 ) manufactured by the precision casting method designated in English by Investment Casting and metallic cell structures manufactured by additive manufacturing technologies, such as rapid prototyping and 3D printing of metals, preferably presented with a variable dimension from 1 ppi to 500 ppi, more preferably from 10 ppi to 250 ppi, even more preferably from 50 ppi to 150 ppi, or from 75 ppi to 100 ppi.
  • the metallic matrix consisting of at least one metal or metallic alloy, are, for example, aluminum, magnesium, manganese, copper, silicon, zinc, tin, nickel and their alloys, used for the different structural and functional applications of this type of metals , such as acoustic and thermal and water filtration.
  • Cork is a 100% natural material, of vegetable origin from the bark of cork oaks (Quercus suber), rich in suberin, a wax synthesized by the cells of the cork oak. It is highly hydrophobic, essentially comprising two reactive groups, a polyaromatic and a polyaliphatic group, each of which, respectively, is based on monomers of hydroxycinnamic acids and derivatives, such as feruloiltyramine, and monomers of a-hydroxy acids, such as 18-hydroxyoctadec-9-enoic) and oc, w-diacids, with for example octadec-9-ene-l, 18-dioic acid, which gives cork unique properties: - It is extremely light (eg natural cork: 160 - 260 kg / m 3 , granulated cork: 60 - 160 kg / m 3 , agglomerated cork: 140 - 600 kg / m 3 ), smooth
  • cork is currently used for various purposes, for example, wine closures (stoppers for wine bottles), in footwear, furniture, decoration and design, in the construction of buildings for sound and thermal insulation in floors, walls, doors , windows, roofs, or for means of transport (cars, airplanes, trains, boats, etc.). Cork, as well as being one of the most environmentally friendly materials, recyclable, reusable, non-flammable.
  • the cork material can be used in expanded form, in the form of particles, grains, granules or powder of different densities and / or particle sizes.
  • This cork can come from recycled cork, cork waste from industrial processes, such as crushing, sanding powder, or technical products with floating powder, among others, or from the mixture of more than one of the varieties of cork waste or cork by-products, such as cork stoppers, from pure and expanded black agglomerates, which may contain at least one polymer of natural, synthetic or recycled origin, such as polyurethane, silicone, epoxide, polyethylene, polypropylene, ethylene, alkyl or aryl, polystyrene and polycarbonate.
  • the cork material can be used in amounts ranging from about 3% -30% by weight of polymer of natural origin, synthetic or recycled according to the intended application, with about 0% -15% by weight additives and about 0% -10% and 0% -50% by weight of nanometric and micrometric size reinforcement elements, respectively.
  • the cork material used can still be subject to pre-treatments, such as granulation processes, particle size reduction such as cutting, crushing, grinding and separation processes by sizes, such as sieving that promotes separation and ordering by the size of particles, granules or grains.
  • pre-treatments such as granulation processes, particle size reduction such as cutting, crushing, grinding and separation processes by sizes, such as sieving that promotes separation and ordering by the size of particles, granules or grains.
  • Cork should have a smaller size distribution than the open pore size distribution of the metal and the porous and cellular metallic structure to be used, to facilitate its incorporation in these pores.
  • the cork material has a variable dimension between nanometer scale and micrometric scale.
  • the cork-based filling material can be reinforced, being prepared by mixing the raw materials, which can be optionally functionalized, for example by physical or chemical modification, as well as by removing impurities, to promote better adhesion between the various constituents, namely, washing with one or more solvents and drying cork residues, or using polymers previously functionalized with functional groups of thermosets such as, for example, epoxide and polyurethane.
  • the non-reinforced cork-based filling material is obtained by simply mixing the cork, in the form of particles, granules, grains or powder, with at least one polymer, which may or may not be functionalized with the addition of processing additives. , using mixing techniques used for this purpose, with, for example, a mechanical mixer.
  • the filling material based on reinforced cork is obtained using the usual techniques of incorporating reinforcement elements of nano and micro size, with the addition of at least one functionalized or not polymer, of natural, synthetic or recycled origin, and with the adding or not processing additives.
  • the incorporation of reinforcement elements of micrometric size into cork using a mechanical mixer, or the incorporation of reinforcement elements of nanometric size in cork using the layer by layer technique, known in English layer by layer technique, which can be aqueous solutions are used for this purpose.
  • the filling material is reinforced.
  • Reinforcement elements of the cork material suitable for the present invention are materials dispersed in the continuous matrix, which include fibers, particles, tubular structures or micro and nano-scale sheets of polymers, ceramics, glass and metals, carbon-based materials, the like and their combinations. If the reinforcement element is of micrometric size, it is called a composite material, or simply “composite cork”. If the dispersed phase is nanometric in size, it is called nanocomposite material or simply “cork nanocomposite”.
  • Polymeric materials are materials of natural, synthetic or recycled origin, similar and their combinations, which according to mechanical characteristics, can be divided into thermoplastics, thermosets and elastomers.
  • Thermoplastics include the known plastics, which can be melted several times and in some cases dissolved in various solvents, and are therefore recyclable materials.
  • the thermosets are rigid and fragile, being very stable to temperature variations, although the heating of these polymers causes their decomposition before melting, and is therefore not easy to recycle.
  • Elastomers have high elasticity, not being rigid or liable to be melted, which reduces the possibilities for recycling.
  • the filler material is reinforced with one or more of the following polymers of the epoxide or polyurethane type.
  • Suitable additives for this purpose are substances used in small amounts, used to modify and / or improve various properties such as promoting processability, providing thermal stability, coloring, improving antistatic properties, surface hardness, fire resistance, among others.
  • the filler material, reinforced or not comprises one or more additives.
  • the reinforcement elements can be of natural, synthetic or recycled origin, including, but not limited to, ceramic, polymer and metal, carbon derivatives, for example graphene oxide, in the form of tubular structures, sheets, particles, fibers, of micrometric size or nanometric, similar or combinations thereof.
  • the present invention also refers to the production process of these new metals and porous and cellular metallic structures of open porosity impregnated with reinforced or not reinforced cork, which is outlined in Figure 1.
  • the cork-based filling material is prepared, which can be reinforced or not, also depending on the desired final material. . Then, the open pores of a metal or a cellular or porous structure are filled with the cork-based filling material. Finally, the resulting material is densified and cured.
  • the preparation of the filling material is carried out by mixing the various components selected for the purpose, namely cork, the polymer, if the filling material is to be reinforced, with the possibility of adding processing additives and reinforcement elements.
  • the mixing is carried out in a single phase, i.e. promoting the contact of all selected components simultaneously, under environmental conditions with vigorous mechanical agitation.
  • the incorporation of the reinforcement elements can be carried out using dry and / or wet techniques, such as mechanical stirrers, colloidal processing and step-by-step technique, similar and combinations, selected according to the chemical, physical characteristics, the shape, geometry and size distribution of these reinforcement elements.
  • the step of filling the open pores of metals and porous and cellular metallic structures is carried out by pouring the filling material, prepared according to the previously described, into the open pores of a porous or cellular metal or metallic structure with a distribution periodic or random, preferably performed under vibration and / or pressure, to ensure the filling of these pores.
  • molds or hollow structures of thin walls of simple and complex geometries can be used, optionally with the use of coatings with non-stick properties, such as tracing paper, teflon sheets, Kraft paper, paper and films based on of silicone to facilitate the extraction of the new materials resulting from it.
  • coatings with non-stick properties such as tracing paper, teflon sheets, Kraft paper, paper and films based on of silicone to facilitate the extraction of the new materials resulting from it.
  • the material resulting from the described steps is subjected to a stage of densification and curing carried out under controlled conditions, in air or in a vacuum, preferably in air without application of temperature or, also, with the possibility of varying the temperature, typically up to 250 ° C.
  • said material which is formed by a metal skeleton with pores filled, at least partially, with a cork-based material, is pressed by exerting a pressure in order to obtain the required density for each application, but that ensures that the metal or an initial porous and cellular metallic structure of open porosity is not damaged.
  • the curing step refers to the curing of at least one polymer material by crosslinking, the beginning of which can take place by chemical additives (e.g. water), heat or ultraviolet light.
  • the process of producing open porous and cellular metal and metallic structures impregnated with cork comprises the following steps: a) Preparation of cork-based filling material; b) Filling the open pores of a metal or a cellular or porous structure with the filling material of (a); c) Densification and curing of the material of (b).
  • any X value presented in the course of this description should be interpreted as an approximate value of the real X value, since such an approximation to the real value would be reasonably expected by the person skilled in the art due to experimental and / or measurement conditions that introduce deviations from the real value.
  • the term “cellular metal” refers to porous metals, solids characterized by being composed mostly of open pores, which include metallic foams and metallic sponges obtained by processes commonly used for this purpose, and metallic cell structures. , which includes periodic cellular materials with different topologies, namely but not limited to, honeycomb, lattice lattices or prismatic, obtained mainly by additive manufacturing technologies, such as rapid prototyping and 3D printing.
  • the term “open porous cell metal” refers to solid porous metals made up mostly of open, interconnected pores that share the edges, forming three-dimensional arrays distributed periodically or stochastically.
  • pores per inch The number of these pores that fills an inch is called "pores per inch", PPI and is a way of characterizing the pore size of an open porosity cellular metal.
  • metal refers to metals and their metal alloys, namely, but not limited to, copper and its alloys, manganese and its alloys, aluminum and its alloys, magnesium and its alloys, zinc and its alloys .
  • porous and cellular metallic structure encompasses preferably periodic cellular structures with different topologies, namely, but not limited to, honeycomb, lattice lattices or prismatic, obtained mainly by additive manufacturing technologies, such as prototyping and 3D printing.
  • porous and cellular metal impregnated with reinforced or not cork refers to materials typically constituted by porous and cellular metal formed by a network of open pores distributed periodically or randomly, which their pores / voids are filled with a cork-based filling material, in the form of cork particles, cork grains, cork granules, natural cork powder, recycled, cork residues from the production process or a by-product or product from cork, similars and their combinations, and at least one natural, synthetic, recycled polymer, which may contain nano or micro size similar reinforcement elements and their combinations to modify and improve thermal, acoustic and performance properties mechanical, so its combination results in the characteristics of the product.
  • the term "reinforcement element” refers to materials dispersed in a continuous matrix, in this case in cork-based filling material, which include fibers, particles, tubular structures or sheets in micro and nano scale of polymers, ceramics, glass and metals, carbon-based materials, the like and their combinations. If the reinforcement element is of micrometric size, it is called a composite material, or simply “composite cork”. If the dispersed phase is nanometric in size, it is called nanocomposite material or simply “cork nanocomposite”.
  • cork material refers to particles, grains, granules or powder from natural cork, colmated natural cork, agglomerated cork, micro agglomerated cork, recycled cork, waste cork, cork expanded, similar or their combinations.
  • the reinforcing elements may or may not enter the composition of the cork-based filler material formulations, used to fill the open pores of the metals and cellular and porous structures, which give rise to the new materials and structures object of this invention .
  • cork-based material in the context of the present invention refers to cork material, as defined above, combined with another material or materials, such as, for example, a polymeric material of natural, synthetic or recycled.
  • polymeric material refers to material of natural, synthetic or recycled, similar and their combinations which, according to the mechanical characteristics, can be divided into thermoplastics, thermosets and elastomers.
  • Thermoplastics include the known plastics, which can be melted several times and in some cases dissolved in various solvents, and are therefore recyclable materials.
  • the thermosets are rigid and fragile, being very stable to temperature variations, although the heating of these polymers causes their decomposition before melting, and is therefore not easy to recycle.
  • Elastomers have high elasticity, not being rigid or liable to be melted, which reduces the possibilities for recycling.
  • additive refers to substances used in small quantities, used to modify and / or improve various properties such as promoting processability, providing thermal stability, coloring, improving properties antistatic, surface hardness, fire resistance, among others.
  • the present invention relates to the development of porous metals and metallic structures of open porosity impregnated with cork characterized by comprise at least two porous and cellular materials or structures or cellular materials, the first (1) comprising a metal or metal alloy matrix, with open pores distributed periodically or randomly, and the second (2) a cellular material natural, cork in the form of particles, granules, grains, powder, similar and their combinations, which can be made of natural, expanded, recycled cork, waste cork from the industrial process, cork by-products, which can be reinforced with reinforcement elements of natural, synthetic or recycled origin, namely but not limited to metal, polymer or ceramic, glass and carbon of micro- or nano-metric size namely but not limited in the form of tubular structures, fibers, particles and their combinations, containing at least one synthetic, natural or recycled polymer, and optionally, with the addition of processing additives.
  • porous and cellular open porosity metal and metal structures impregnated with cork are characterized by comprising:
  • porous and cellular open porosity metal and metal structures impregnated with cork composite are characterized by further comprising:
  • reinforcement elements of micrometric size of natural, synthetic, recycled, similar origin and combinations thereof including, but not limited to, fibers, particles, tubular structures, or sheets, similar and their combinations made of metal, carbon, ceramic or polymer, similar and their combinations.
  • porous metals and metal structures of open porosity impregnated with cork nanocomposites are characterized by also comprising,
  • nanometric size reinforcement elements of natural, artificial or recycled origin, similar and combinations thereof, including but not limited to fibers, particles, tubular structures, or sheets, the like and their combinations, made of metal, carbon, ceramic or polymer, with the possibility of adding other reinforcement elements of micrometric size.
  • the porous and cellular metal and metal structures of open porosity impregnated with cork composite are characterized by the aforementioned cork-based material to be selected from the group comprising particles, granules, grains, powder, derived from natural, expanded, granulated, recycled cork, cork waste from the industrial process of different particle sizes, cork by-products and cork waste, similar and their combinations.
  • the porous and cellular metal and metallic structures of open porosity impregnated with simple cork, cork composite or cork nanocomposite are characterized by the fact that cork may or may not be previously subjected to treatments, such as a physical or chemical modification for improve compatibility for different components.
  • the porous and cellular metal and metal structures of open porosity impregnated with simple cork, cork composite or cork nanocomposite are characterized in that said polymer is selected from the group comprising similar, synthetic and recycled polymer, and combinations thereof.
  • said polymer is selected from the group comprising similar, synthetic and recycled polymer, and combinations thereof.
  • thermoplastics, thermosets and elastomers for example, polyethylene, polyurethane, silicone, epoxide, polypropylene, ethylene, alkyl or aryl anhydride, polystyrene, polycarbonate and the like and combinations thereof.
  • the porous and cellular metal and metal structures of open porosity impregnated with simple cork, cork composite or cork nanocomposite are characterized in that the said polymer can be subjected to a physical or chemical modification to improve the compatibility of the different components and its uniform distribution of components, such as cork and reinforcement elements, if any.
  • porous and cellular open porous metals and metallic structures impregnated with cork composite or cork nanocomposite are characterized by the reinforcement elements being selected from the group comprising reinforcements of natural, synthetic, recycled, similar nature and combinations thereof .
  • open porous and cellular porous metals and metal structures impregnated with cork composite or cork nanocomposite are characterized in that the reinforcement elements are selected from the group comprising fibers, particles, tubular structures or sheets on a micrometric scale and / or nanometric, similar and their combinations.
  • porous and cellular open porous metals and metal structures impregnated with cork composite or cork nanocomposite are characterized in that the reinforcement elements are selected from the group comprising ceramics, metals and polymers, glass, carbon, for example, graphite, graphene, graphene oxide, carbon nanotubes, nano or micro graphite, nano or microparticles or ceramic fibers such as silicon carbide, metals, glass and polymers and the like and combinations thereof.
  • porous and cellular open porosity metal and metal structures impregnated with cork composite or cork nanocomposite are characterized in that the reinforcing elements of micrometric or nanometric size can be subjected to a physical or chemical modification to improve compatibility to the different components and their uniform distribution in the cork matrix.
  • the invention also relates to the process of producing open porous and cellular metal and metallic structures impregnated with cork, natural cellular material, reinforced or not with reinforcing elements, which comprises the following steps: a) Preparation and selection of raw materials cousins; b) Preparation of the filling material based on reinforced or not reinforced cork; c) Filling the open pores of a metal or cell or porous structure with reinforced or not reinforced cork-based filling material; and d) Densification and curing of cellular material made of metal and cork, whether reinforced or not.
  • the invention also concerns the uses of these new ones, which are light and multifunctional for use in military, engineering and commercial applications. These are light, recyclable, reusable, in addition to presenting acoustic insulation properties, improving thermal properties in relation to cork, they have excellent durability, excellent fire behavior with absence or extinguishing of flame and release of toxic gases.
  • the present invention is useful for developing new porous and cellular materials and structures of metal and cork, obtained by impregnating cork, a natural cellular material in the open pores of a metal or a porous and cellular metallic structure, with the possibility of cork becoming it is reinforced with reinforcement elements of similar size, micro- or nanometer and their combinations, which are light, recyclable, non-flammable, and with high mechanical, acoustic performance and improvement of its thermal properties.
  • the advantages of this invention include, among others, the following:
  • An open porosity aluminum cellular metal (25 c 25 c 25 mm) was prepared, with a density of approximately 113.5 kg / m 3 and a pore size of 10 ppi (pores per inch, in English pores per inch obtained for leaking suspensions, in english investment cast ⁇ ng method.
  • cork-based filling material It started with the preparation of the cork-based filling material by mixing 1.5 g of granulated cork powders with a particle size between 0.5 mm and 1 mm, with 10% by weight of polyurethane and 5% by weight. mass of water, using a paddle mixer, for 5 minutes. Water was used as a processing additive to promote the crosslinking of the polymer, that is, its hardening.
  • the resulting mixture was then poured into a stainless steel mold opened at the top which contained the aluminum foam of open porosity (25 c 25 c 25 mm) in its cavity (25 c 25 c 25 mm), which was previously coated with a non-stick film to facilitate the extraction of the resulting aluminum foam and cork.
  • the mold After filling, the mold was closed at the top and the aluminum cell metal of open porosity impregnated with the resulting cork was compressed only to guarantee its densification, exerting a pressure that does not damage the aluminum foam of initial open porosity.
  • the closed mold containing the open porosity aluminum foam was then placed in a preheated oven at 140 ° C for 2h. Finally, the open porosity aluminum foam impregnated with cork was extracted from the interior of the stainless steel mold. To compare the mechanical properties of open porosity aluminum foams impregnated with cork, the following samples were prepared:
  • Figure 3 shows the average voltage-extension curves (Figure 3a) and mechanical energy absorbed per volume unit (Figure 3b) of the different types of samples.
  • the mechanical energy curve absorbed per volume unit is obtained by the integration of the tension-extension curve, according to ISO 13314: 2011.
  • Open porosity aluminum foams impregnated with 50 mm diameter and 25 mm high cork with a density of 230 kg / m 3 were prepared using cork granules with a particle size of less than 700 pm, which were obtained through sieving the initial granules with a size distribution of 5 mm to 10 mm ( Figure 2a).
  • cork-based filling material It started with the preparation of a cork-based filling material by mixing 6.30 g of cork granules less than 700 pm in size with 20% by weight of epoxide, without using processing additives, using a paddle mixer for this purpose, for 5 minutes.
  • the mold containing the open porosity aluminum foam was placed on a vibrating platform. At the end of the pore filling, the mold was closed at the top and the aluminum foam of open porosity impregnated with cork (pores filled with cork) was compressed to ensure its densification, exerting pressure not to damage the aluminum foam of initial open porosity. Then, the mold with the resulting open porosity aluminum foam impregnated with cork was placed in an oven preheated to 80 ° C for 2h. Finally, the open porosity aluminum foam impregnated with cork (Figure 2d) was extracted from the interior of the mold.
  • Samples of cork agglomerate 50 mm in diameter and 25 mm in height (Figure 2c) with a density of 158 kg / m 3 were prepared from cork granules with a particle size of less than 700 pm, using the same methodology used and described in the preparation of open porosity aluminum foams impregnated with cork, but in this case the cork-based filling material is poured into an empty mold with an inner cavity (50 mm in diameter and 25 mm in height) followed by pressing, curing (80 ° C and 2h), mold extraction.
  • the acoustic performance and / or the sound absorption efficiency of these open porosity aluminum foams and their individual components were evaluated according to the ASTM E 1050 standard. According to this standard, the test consists of placing a sample with a diameter of 50 mm and 25 mm. mm thick of a given material at the end of the inside of a 50 mm diameter impedance tube. At the other end, there is the sound source, a RG10 noise generator that emits random noise.
  • the measured parameter is the sound absorption coefficient, which is defined as the property that materials have that are capable of transforming part of the sound energy that affects them in another form of energy (eg mechanical or thermal energy). According to the standard, this property is defined as the sound absorption of a medium as the reduction of sound power by dissipation resulting from the propagation of sound in that medium. It depends on the type of surfaces, the angle of incidence of the sound, the frequency of the wave and the application conditions of the system of which the material is a constituent.
  • a (alpha) is the relationship between the amount of sound energy that is dissipated or absorbed by a given material and that on that material. This varies between 0 (0% absorption) and 1 (100%). The more the% of sound absorbed, the more effective the insulation. This relationship is quantified from 0 to 1, which symbolizes that a material that has a sound absorption coefficient of 0.5 absorbs 50% of the energy that falls on it. This is a property on which materials can be classified, with materials with coefficients equal to or greater than 0.5 being considered absorbent.
  • NRC indicator the noise reduction coefficient
  • English No ⁇ se Reduction Coefficient is the arithmetic mean of the sound absorption coefficients, and for the frequencies 250 Hz, 500Hz, 1000 Hz and 2000Hz, rounded up to multiples of 0.05.
  • FIG. 4b shows the comparison of the sound absorption and noise reduction coefficients of an aluminum foam impregnated with cork reinforced with graphene oxide, called cork nanocomposite and the respective individual components, aluminum foam, nanocomposite agglomerate of cork. cork, in which the aluminum foam impregnated with cork nanocomposite has a high sound absorption coefficient in a wide range of medium-high frequencies (1000-4000 Hz), with a value of 1 between 1700 Hz and 2000 Hz and a value greater than 0.85 between 1261Hz and 4000 Hz.
  • medium-high frequencies 1000-4000 Hz
  • Figure 4c shows the comparison of the sound absorption and noise reduction coefficients of aluminum foam and cork and aluminum foam impregnated with cork reinforced with graphene oxide, called the cork nanocomposite and the respective individual components, a aluminum foam, cork agglomerate, cork nanocomposite agglomerate, in which the aluminum foam impregnated with cork nanocomposite has a high sound absorption coefficient over a wide range of medium-high frequencies (1000-4000 Hz), with a value of 1 between 1700 Hz and 2000 Hz and a value greater than 0.85 between 1261 Hz and 4000 Hz.
  • medium-high frequencies 1000-4000 Hz
  • Example 3 Preparation of aluminum foams of open porosity impregnated with cork and cork reinforced with graphene oxide and their thermal properties.
  • Open porosity aluminum foams impregnated with simple cork with a density of 230.4 kg / m 3 and open porosity aluminum foams impregnated with graphene oxide reinforced cork with a density of 223.8 kg / m 3 were prepared using particle size granules less than 700 mpi, obtained by sieving the initial granules from 5 mm to 10 mm.
  • samples of aluminum foams with open porosity 25 c 25 c 25 mm with a density of 117.5 kg / m 3 and with a pore size of 10 ppi (pores per inch), prepared by casting method, were used. for accuracy, in english investment cast ⁇ ng method.
  • Commercial graphene oxide chemically exfoliated and marketed in 0.4% w / w aqueous suspension, was also used as a reinforcement element for cork to prepare open porosity aluminum foams impregnated with graphene oxide reinforced cork (cork nanocomposite).
  • the open porosity aluminum foams impregnated with cork (25 c 25 and 25 mm) were prepared using the same methodology described in example 2. 1.60 g of cork granules were mixed with 20% by weight of epoxide. The resulting mixture is poured into the open pores of an aluminum cellular metal (25 c 25 c 25 mm) with 10 ppi that was inside the cavity (25 c 25 c 25 mm) in a stainless steel mold placed on a vibrating platform, followed by densification, curing (80 ° C for 2 h) and extraction from the mold.
  • the open porosity aluminum foams impregnated with reinforced cork were prepared using graphene oxide as reinforcement elements.
  • the first stage of this process consisted of incorporating and evenly distributing the graphene oxide in the cork granules. This was achieved using the layer by layer deposition technique, in English layer by layer, LBL.
  • the cork granules ( ⁇ 700 mpi) were immersed in successive solutions - aqueous solution of 0.1% by weight of poly (diallyldimethylammonium chloride; 0.1% solution by weight of Poly (sodium 4-styrene sulfonate) and 0.1% solution by weight of poly (diallyldimethylammonium chloride, for 15 minutes, followed by filtration and washing with distilled water, to remove impurities.
  • cork granules were immersed in an aqueous solution of 0.1% by weight graphene oxide for 15 min, followed by filtration and washing with distilled water.
  • the agglomerated cork granules containing the graphene oxide nanoparticles were dried in an oven at 40 ° C for 24 h.
  • 1.6 g of these granules were then mixed with and mixed with 20 mass% epoxide.
  • the resulting mixture was poured into the open pores of an aluminum foam of open porosity (25 c 25 c 25 mm), which is inside a stainless steel mold, which was placed on a vibrating platform under vibration, followed by densification, curing (80 ° C for 2 h) and extraction from the mold.
  • samples of graphene oxide reinforced cork (25 x 25 x 25 mm) with a density of 154.9 kg / m 3 , were prepared using the same methodology described for the preparation of aluminum porosity foams impregnated with reinforced cork graphene oxide, in which the mold was empty.
  • the thermal conductivities of the different samples were measured (Figure 5), using equipment from the Hot Disk brand, model TPS2500, according to the ISO 22007-2 standard.
  • the measurement is determined using a transient flat area sensor, which is placed between two identical test pieces of the same type of material. This method consists of applying an electric current intensity and the resistance of the propagation of the heat by the sample, that is, it registers the temperature profile inside the sample (axial and radial) as a function of time.
  • a good thermal insulation must have not only a low thermal conductivity, but also a good thermal diffusion, so that the variations of the outside temperature are not easily transmitted to the interior spaces. Furthermore, they must be chemically inert, dimensionally stable and easy to apply to the surface.
  • the advantage of these resulting aluminum and cork foams is their low density, withstand high temperatures and good resistance to compression.
  • These new open porosity aluminum cell metals impregnated with reinforced or undeveloped cork are important in certain applications where these thermal properties are to be improved, maintaining good sound insulation.
  • Example 5 Preparation of open porosity aluminum foams impregnated with graphene oxide reinforced cork and its flame retardant and flame extinction behavior
  • Samples of open porosity aluminum foams impregnated with graphene oxide reinforced cork and graphene oxide reinforced cork agglomerates were prepared using the methodology described in example 4.
  • Figure 6a presents a sequence of images from the flame test carried out for each type of sample. The images presented were taken every 2 seconds. The time of extinguishing the flame of the samples was determined by subjecting the samples previously to a flame of a lamp for 5 s, then measuring the time that the flame took to extinguish completely. The results show that the flame extinguishes faster in the foam aluminum foams of open porosity impregnated with reinforced cork of graphene oxide.
  • Figure 6b refers to a sample (25 c 25 c 25 mm) of cork agglomerate, a sample (25 c 25 c 25 mm) of aluminum foam and cork, a sample (25 c 25 c 25 mm) of cork agglomerate reinforced with graphene oxide, referred to as cork nanocomposite and of a sample (25 c 25 x 25 mm) of aluminum foam impregnated with cork nanocomposite where it is verified that the flame extinguishes faster in the foam of open porosity aluminum impregnated with graphene oxide reinforced cork.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The present invention refers to porous and cellular metals and metal structures of open porosity impregnated with reinforced or non-reinforced cork, to the manufacturing processes thereof and to uses of same. The process for obtaining these new materials and structures comprises filling the open pores of porous and cellular metals and metal structures with a cork-based material in the form of particles, granules, grains, powder, and the like and combinations thereof, obtainable from cork of several types and origins. The developed materials are lightweight and multifunctional, and have improved properties of acoustic insulation and thermal behaviour as well as a significantly enhanced mechanical performance. The present invention pertains to the field of macromolecular organic compounds and the preparation thereof, in particular preparation of macromolecular compounds for porous or cellular materials, such as foams of composite materials, by impregnation, with applications in the construction industry, transportation, furniture and design, footwear, construction of machines, tools and devices.

Description

METAIS E ESTRUTURAS METÁLICAS POROSOS E CELULARES DE POROSIDADE ABERTA IMPREGNADOS COM CORTIÇA, SEUS PROCESSOS DE POROUS METALS AND METALLIC STRUCTURES AND OPEN POROSITY CELLS IMPREGNATED WITH CORK, ITS PROCESSES OF
PRODUÇÃO E SUAS UTILIZAÇÕES PRODUCTION AND THEIR USES
Domínio técnico da invenção Technical domain of the invention
A presente invenção refere-se metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça reforçada ou não, seus processos de fabrico e suas utilizações . The present invention relates to porous metals and metallic structures of open porosity impregnated with reinforced or not reinforced cork, their manufacturing processes and their uses.
O processo de obtenção destes novos materiais e estruturas compreende o enchimento dos poros abertos de metais e estruturas metálicas porosos e celulares, com um material à base de cortiça sob a forma de partículas, grânulos, grãos, pó, semelhantes e suas combinações, os quais podem ser obtidos a partir de cortiça de vários tipos e origens, como de cortiça natural, expandida, reciclada, desperdício de cortiça provenientes do processo industrial de diferentes granulometrias e densidades, subprodutos de cortiça, os quais podem conter pelo menos um polímero natural, sintético, ou reciclado, o qual promove a ligação da cortiça entre si e desta com a rede porosa metálica, com a possibilidade de conter elementos de reforço de tamanho micro- ou nano- métrico, semelhantes e suas combinações, no sentido de melhorar as propriedades dos tradicionais metais e estruturas metálicas porosos e celulares de porosidade aberta. The process of obtaining these new materials and structures comprises filling the open pores of metals and porous and cellular metallic structures, with a cork-based material in the form of particles, granules, grains, powder, the like and their combinations, which can be obtained from cork of various types and origins, such as natural, expanded, recycled cork, waste cork from the industrial process of different granulometries and densities, cork by-products, which can contain at least one natural, synthetic polymer , or recycled, which promotes the connection of cork with each other and with the porous metallic mesh, with the possibility of containing similar micro- or nano-metric reinforcement elements and their combinations, in order to improve the properties of traditional metals and porous and cellular metallic structures of open porosity.
Os novos materiais assim obtidos são leves, multifuncionais, e possuem propriedades melhoradas de isolamento acústico, de comportamento térmico e ainda um aumento significativo de desempenho mecânico. The new materials thus obtained are light, multifunctional, and have improved properties of sound insulation, thermal behavior and a significant increase in mechanical performance.
Por essa razão podem ser vantajosamente utilizados na construção civil, transportes, mobiliário e design, calçado, construção de máquinas, ferramentas e dispositivos, como construção de casas, carros, comboios, barcos, aviões, ferramentas, máquinas, dispositivos, mobiliário, peça de design, com boas propriedades de absorção acústica, de melhoria de comportamento térmico, de desempenho mecânico, baixo peso com elevada rigidez e boa capacidade de absorção de energia ao impacto e ao choque. For this reason they can be advantageously used in civil construction, transport, furniture and design, footwear, construction of machines, tools and devices, such as building houses, cars, trains, boats, airplanes, tools, machines, devices, furniture, design pieces, with good sound-absorbing properties, improved thermal behavior, mechanical performance, low weight with high rigidity and good ability to absorb energy on impact and shock.
Desta forma, a presente invenção insere-se no domínio técnico dos compostos macromoleculares orgânicos e sua preparação, em particular à preparação de compostos macromoleculares para materiais porosos ou celulares, como espumas de materiais compósitos por impregnação. Thus, the present invention falls within the technical domain of organic macromolecular compounds and their preparation, in particular the preparation of macromolecular compounds for porous or cellular materials, such as foams of composite materials by impregnation.
Antecedentes da Invenção Background of the Invention
Os materiais celulares sólidos e porosos, como as espumas e esponjas, tornaram-se nos mais promissores materiais leves e multifuncionais, sendo utilizados ou testados numa ampla gama de aplicações comerciais, biomédicas, industriais e militares. Tal acontece, sobretudo devido à combinação rara entre as propriedades derivadas das suas estruturas celulares formadas por poros abertos ou fechados e das propriedades do material de base(matriz) de que são feitas. A sua utilização contribui para uma redução imediata e significativa do peso, combinada com outros benefícios, nomeadamente um excelente amortecimento de ruído e vibrações, atenuação acústica, absorção de energia ao impacto e ao choque, boa capacidade de filtração, propriedades catalíticas e isolamento acústico e térmico. Solid and porous cellular materials, such as foams and sponges, have become the most promising light and multifunctional materials, being used or tested in a wide range of commercial, biomedical, industrial and military applications. This is mainly due to the rare combination of properties derived from their cellular structures formed by open or closed pores and the properties of the base material (matrix) from which they are made. Its use contributes to an immediate and significant reduction in weight, combined with other benefits, namely excellent noise and vibration damping, acoustic attenuation, impact and shock energy absorption, good filtration capacity, catalytic properties and sound insulation and thermal.
A cortiça e a madeira, exemplos destes materiais de origem natural, foram os primeiros materiais de construção usados pelo homem na construção de casas, utensílios de cozinha, de pesca e de caça. Recentemente, têm vindo a ser desenvolvidos e comercializados uma grande variedade de produtos de cortiça (Gil, 2019) devido às suas excelentes propriedades derivadas da sua estrutura celular, como a baixa densidade, elevado coeficiente de fricção, baixa condutividade térmica, elevada resistência à humidade e à penetração de líquidos, a resiliência e à excelente capacidade de absorção de vibrações e compressibilidade. Cork and wood, examples of these materials of natural origin, were the first building materials used by man in the construction of houses, kitchen utensils, fishing and hunting. Recently, a wide variety of cork products have been developed and marketed (Gil, 2019) due to their excellent derived properties cell structure, such as low density, high friction coefficient, low thermal conductivity, high resistance to moisture and the penetration of liquids, resilience and excellent vibration absorption and compressibility.
Inspirados nestes materiais celulares naturais, o homem começou a desenvolver materiais semelhantes feitos de polímero, metal e cerâmico, designados por materiais celulares sintéticos, designados também por artificiais ou bio- inspirados (Duarte et al., Sei. Techn. Mater. 2018). De entre estes, os metais porosos são os que apresentam melhores propriedades para aplicações em engenharia. São facilmente recicláveis e extremamente resistentes, deformando-se plasticamente absorvendo grandes quantidades energia, para além de suportarem temperaturas mais altas do que os polímeros celulares. Para além disso, são ainda não inflamáveis, contrariamente aos polímeros porosos e celulares conhecidos.Inspired by these natural cellular materials, man began to develop similar materials made of polymer, metal and ceramic, called synthetic cellular materials, also called artificial or bio-inspired (Duarte et al., Sei. Techn. Mater. 2018). Among these, porous metals have the best properties for engineering applications. They are easily recyclable and extremely resistant, deforming plastically and absorbing large amounts of energy, in addition to withstanding higher temperatures than cellular polymers. In addition, they are still non-flammable, unlike the known porous and cellular polymers.
Nos últimos anos, têm-se assistido ao surgimento novos produtos baseados nestes metais celulares e porosos, e consequentemente novos processos ou melhoria dos existentes, com o objetivo de os tornar mais multifuncionais, com melhores propriedades, permitindo o controlo da distribuição, do tamanho e geometria dos poros celulares durante o seu fabrico, essencial para prever o seu comportamento em serviço, e em simultâneo minimizar os custos de produção e os resíduos/desperdícios . In recent years, new products based on these cellular and porous metals have appeared, and consequently new processes or improvement of existing ones, with the objective of making them more multifunctional, with better properties, allowing the control of distribution, size and cell pore geometry during its manufacture, essential to predict its behavior in service, while simultaneously minimizing production costs and waste / waste.
Com os rápidos avanços nas tecnologias de fabrico aditivo, como a prototipagem rápida e impressão 3D surgiram novos materiais celulares com estruturas celulares regulares ou periódicas de porosidade aberta em que podem ser facilmente caracterizados por uma célula unitária (Wadley, 2006). Surgiram igualmente, outros materiais celulares, que combinam materiais com uma rede porosa periódica ou estocástica combinados com outros materiais. As espumas sintáticas de matriz metálica (em inglês "metal matrix syntactic foams", as estruturas de esferas metálicas ocas (em inglês metallic hollow sphere structures) e as estruturas híbridas de esferas de espuma metálica de porosidade fechada e polímeros (em inglês metallic foam - polymer hybrid structures) são exemplos destes materiais com uma célula unitária facilmente reproduzível . With the rapid advances in additive manufacturing technologies, such as rapid prototyping and 3D printing, new cellular materials have emerged with regular or periodic open porosity cell structures in which they can be easily characterized by a unit cell (Wadley, 2006). Other cellular materials have also emerged, combining materials with a periodic or stochastic network combined with other materials. The metallic matrix syntactic foams, the hollow metallic sphere structures (in English metallic hollow sphere structures) and the hybrid structures of closed porosity metallic foam spheres and polymers (in metallic foam - polymer hybrid structures) are examples of these materials with an easily reproducible unit cell.
As espumas sintáticas são fabricadas por simples infiltração de um metal fundido através de um arranjo predefinido de esferas ocas ou partículas porosas de cerâmicos, vidros e metais, preenchendo totalmente os espaços vazios. The syntactic foams are manufactured by simple infiltration of a molten metal through a predefined arrangement of hollow spheres or porous particles of ceramics, glass and metals, completely filling the empty spaces.
Os documentos "US2017307137 (Al)", "US2017307138 (Al)" eThe documents "US2017307137 (Al)", "US2017307138 (Al)" and
"US2018099475 (Al)" divulgam estruturas celulares em que cada célula apresenta uma secção reta de 12 cantos, as quais são geralmente designadas por estruturas em favo de mel, cuja geometria pode variar amplamente, mas apresentam, como característica comum, serem formadas por uma matriz de células ocas dispostas entre paredes verticais finas. A sua produção consiste na união de células através de processos, como a ligação adesiva (colagem), soldadura por resistência, brasagem, ligação por difusão ou fusão térmica. Todos estes métodos de produção baseiam-se na forma como se faz a ligação entre placas adjacentes de maneira a se formar um "nodo""US2018099475 (Al)" disclose cellular structures in which each cell has a straight section of 12 corners, which are generally referred to as honeycomb structures, whose geometry can vary widely, but have, as a common characteristic, to be formed by a matrix of hollow cells arranged between thin vertical walls. Its production consists of the union of cells through processes, such as adhesive bonding (bonding), resistance welding, brazing, diffusion bonding or thermal fusion. All of these production methods are based on how the connection between adjacent plates is made in order to form a "node"
(ponto de ligação das diferentes placas). Nestes documentos, a cortiça é aqui referida genericamente como um material de isolante térmico ou para soluções em que é importante o controle da temperatura. Para além disso, as estruturas divulgadas nestes documentos, partilham as paredes (células ocas formadas entre paredes verticais finas), estruturas celulares para preenchimento descritas nestas patentes são formadas por perfis/células ocas unidas pelas paredes finas usando uma técnica de ligação, as estruturas celulares que são relativamente grandes e com um pequeno número de células, em que cada célula pode ser fabricada por outros processos separadamente e depois unidas, os materiais que formas as estruturas celulares são muito variados, como por exemplo, ligas de aço, ligas de titânio, ligas de alumínio, ligas de magnésio, nylons, plásticos, polímeros, compostos, compósitos reforçados com fibra, silicone, semicondutor, papéis, borracha, espumas, géis, madeiras, rolhas, materiais híbridos (ou seja, materiais múltiplos dissimilares), materiais com memória de forma e / ou quaisquer outros materiais adequados, o que lhes confere efeito técnico totalmente distinto de estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça. (connection point of the different plates). In these documents, cork is generally referred to here as a thermal insulating material or for solutions where temperature control is important. In addition, the structures disclosed in these documents, share the walls (hollow cells formed between thin vertical walls), cell structures for filling described in these patents are formed by hollow profiles / cells joined by thin walls using a bonding technique, cell structures that are relatively large and with a small number of cells, in which each cell can be manufactured by other processes separately and then joined, the materials that form cellular structures are very varied, for example, steel alloys, titanium alloys, aluminum alloys, magnesium alloys, nylons, plastics, polymers, compounds, fiber-reinforced composites, silicone, semiconductor, papers, rubber, foams, gels, wood, stoppers, hybrid materials (that is, multiple dissimilar materials), materials with shape memory and / or any other suitable materials, which gives them a totally different technical effect from porous and cellular metallic structures of open porosity impregnated with cork .
O documento US20130098203A1 é um exemplo de divulgação deste tipo de espuma. Estas espumas sintáticas de matriz metálica apresentam valores de densidade muito superiores (> 1000 g/cm3) às espumas metálicas de porosidade fechada convencionais (<900 g/cm3), limitando as suas aplicações. US20130098203A1 is an example of disclosure of this type of foam. These metallic matrix syntactic foams have density values much higher (> 1000 g / cm 3 ) than conventional closed porosity metal foams (<900 g / cm 3 ), limiting their applications.
As estruturas de esferas metálicas ocas são tipicamente obtidas ligando diferentes esferas ocas metálicas por um metal, um polímero ou uma espuma polimérica (Andersen, 2000) e o documento DE3724156A1 também divulga este processo. A limitação do uso destas estruturas está associada ao elevado custo da produção destas esferas ocas, tornando este processo, para a sua obtenção, muito pouco competitivo. Hollow metallic sphere structures are typically obtained by connecting different metallic hollow spheres with a metal, polymer or polymeric foam (Andersen, 2000) and DE3724156A1 also discloses this process. The limitation in the use of these structures is associated with the high cost of producing these hollow spheres, making this process, to obtain it, very uncompetitive.
As estruturas híbridas de esferas de espuma metálica de porosidade fechada são fabricadas pelo aquecimento de um molde vazio ou estrutura oca que contem pequenas esferas de alumínio de porosidade fechada obtidas pelo método de pulverotecnologia de pós (em inglês designado por Powder Metallurgy) revestidas por um material polimérico, descrito no documento W02005000502A1 . A simplificação do processo, a produção automatizada e em continuo são algumas das vantagens destas estruturas (Stõbener et ai., 2009). No entanto, este processo de fabrico não garante esferas totalmente perfeitas, nem a sua estrutura celular é controlável durante o seu fabrico. Hybrid structures of closed porosity metal foam spheres are manufactured by heating an empty mold or hollow structure containing small closed porosity aluminum spheres obtained by powder coated powder method (in English called Powder Metallurgy) by a polymeric material, described in document W02005000502A1. Simplification of the process, automated and continuous production are some of the advantages of these structures (Stõbener et al., 2009). However, this manufacturing process does not guarantee totally perfect spheres, nor is its cell structure controllable during its manufacture.
Para ultrapassar estas limitações, recentemente foram também desenvolvidas espumas metálicas de porosidade aberta impregnadas com polímero, preenchendo-a totalmente, como se divulga nos documentos WO2012072543A1 e W02018087076A1 e Duarte et ai., Polymer Testing, 2018. Este tipo de processo, que recorre ao uso destas espumas periódicas, permite prever as suas propriedades mecânicas, e simultaneamente a resistência mecânica é garantida pelo uso do polímero. Apesar dos resultados serem promissores, em termos de propriedades mecânicas, o uso de polímeros é a principal desvantagem destas espumas devido à sua elevada flamabilidade, que aumenta o risco de incêndio, com a libertação de gases tóxicos e fumos. Para além disso, o fato de alguns destes polímeros não serem recicláveis, e noutros a sua reciclagem não ser economicamente viável, torna o seu uso muito limitado. To overcome these limitations, metallic open porosity foams impregnated with polymer have also recently been developed, completely filling it, as disclosed in WO2012072543A1 and W02018087076A1 and Duarte et al., Polymer Testing, 2018. This type of process, which uses the use of these periodic foams, allows to predict their mechanical properties, and at the same time the mechanical resistance is guaranteed by the use of the polymer. Although the results are promising, in terms of mechanical properties, the use of polymers is the main disadvantage of these foams due to their high flammability, which increases the risk of fire, with the release of toxic gases and fumes. In addition, the fact that some of these polymers are not recyclable, and in others their recycling is not economically viable, makes their use very limited.
Desta forma, a presente invenção tem como objetivo proporcionar uma alternativa melhorada aos materiais do estado da técnica mencionados anteriormente propondo, para esse efeito, metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, em vez de polímero. In this way, the present invention aims to provide an improved alternative to the materials of the prior art mentioned above proposing, for that purpose, porous metals and metallic structures of open porosity impregnated with cork, instead of polymer.
Sumário da invenção Summary of the invention
A presente invenção refere-se metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, a qual pode ser reforçada, seu processo de fabrico e suas utilizações. Os metais e estruturas metálicas porosos e celulares de porosidade aberta da presente invenção formam uma matriz que contém poros abertos distribuídos periodicamente ou aleatoriamente com pelo menos um material de cortiça sob a forma de partículas, grânulos, grãos, pó, semelhantes e suas combinações, e em que o referido material de cortiça se encontra incorporado nos poros do material metálico, de acordo com o descrito na reivindicação 1. The present invention relates to open porous and cellular metal and metal structures impregnated with cork, which can be reinforced, its manufacturing process and its uses. The porous and cellular open porosity metal and metal structures of the present invention form a matrix containing open pores distributed periodically or randomly with at least one cork material in the form of particles, granules, grains, powder, the like and combinations thereof, and wherein said cork material is incorporated into the pores of the metallic material, as described in claim 1.
Estes novos materiais são multifuncionais, e possuem propriedades melhoradas de isolamento acústico, de comportamento térmico e ainda um aumento significativo de desempenho mecânico. Para além disso são recicláveis e não inflamáveis . These new materials are multifunctional, and have improved properties of acoustic insulation, thermal behavior and a significant increase in mechanical performance. In addition, they are recyclable and non-flammable.
O processo de obtenção destes novos materiais e estruturas compreende o enchimento dos poros abertos de metais e estruturas metálicas porosos e celulares, com um material à base de cortiça, tal como o descrito na reivindicação 9. The process of obtaining these new materials and structures comprises filling the open pores of metals and porous and cellular metallic structures, with a cork-based material, such as that described in claim 9.
Este processo apresenta a vantagem de ser possível controlar as dimensões dos pós de cortiça usados, relativamente ao tamanho de poros abertos da espuma de alumínio, com a possibilidade de reciclagem e de reutilização de produtos de cortiça e resíduos/desperdícios da indústria da cortiça, aumentando o seu ciclo de vida. This process has the advantage of being able to control the dimensions of the used cork powders, in relation to the open pore size of the aluminum foam, with the possibility of recycling and reusing cork products and waste / waste from the cork industry, increasing its life cycle.
A flexibilidade, produtos de entrada e o baixo custo do processo constituem também vantagens em relação aos processos existentes, dado que são possíveis de usar diversos sub produtos e baixo custo dado que no processo da presente invenção não é aplicada temperatura ou, caso seja aplicada é sempre inferir à temperatura que é necessária quando comparada com outros processos, como sejam, por exemplo, fundição de precisão, fusão, fabrico aditivo, impressão 3D, etc. Deste modo, estes novos metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, apresentam várias multifuncionalidades, com melhores propriedades acústicas, térmicas e mecânicas do que os componentes individuais, sendo possível obter as características necessárias para satisfazer os requisitos de uma dada aplicação específica. Permite, igualmente, valorizar os resíduos/desperdícios da indústria da cortiça, e "criar" novas aplicações para os metais e estruturas metálicas porosos e celulares de porosidade aberta, ou seja, serem usados também para aplicações estruturais. The flexibility, input products and the low cost of the process are also advantages in relation to the existing processes, since it is possible to use several by-products and low cost since in the process of the present invention no temperature is applied or, if it is applied, it is always infer the temperature that is needed when compared to other processes, such as, for example, precision casting, melting, additive manufacturing, 3D printing, etc. In this way, these new open porous and cellular metals and metallic structures impregnated with cork, present several multifunctionalities, with better acoustic, thermal and mechanical properties than the individual components, being possible to obtain the necessary characteristics to satisfy the requirements of a given specific application. It also allows the valuation of waste / waste from the cork industry, and "creates" new applications for open porosity cellular and metal structures and metals, that is, to be used also for structural applications.
Descrição das Figuras Description of the Figures
Figura 1: Representação esquemática do processo de fabrico de metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça reforçada ou não com elementos de reforço de tamanho nano e micrométrico. Figure 1: Schematic representation of the process of manufacturing porous and cellular metal structures with open porosity impregnated with reinforced cork or not with reinforcement elements of nano and micrometric size.
Figura 2: Aspeto e morfologias dos grânulos de cortiça (a) e do metal celular de alumínio de porosidade aberta (b), os quais são as principais matérias-primas usadas para o fabrico de aglomerados de cortiça e de (c) espumas de alumínio impregnadas com cortiça. Figure 2: Appearance and morphologies of the granules of cork (a) and the cellular cellular metal of open porosity (b), which are the main raw materials used for the manufacture of agglomerates of cork and (c) aluminum foams impregnated with cork.
Figura 3: Curvas tensão-extensão de compressão, em que: Figure 3: Compression tension-extension curves, where:
Fig. 3a Apresenta as respetivas curvas de absorção de energia,Fig. 3a Displays the respective energy absorption curves,
Fig. 3b apresenta as curvas tensão-extensão de compressão de espumas de alumínio impregnadas de cortiça e dos respetivos componentes individuais, em que se pode verificar, na espuma de alumínio de porosidade aberta e no aglomerado de cortiça, que a presença da cortiça no interior das espumas de alumínio origina aumentos de 159 % e 81% de resistência mecânica e de capacidade de energia de absorção, respetivamente, Fig. 3c apresenta as curvas tensão-extensão de compressão de espumas de alumínio impregnadas de cortiça reforçada ou não com óxido de grafeno e dos respetivos componentes individuais, a espuma de alumínio de porosidade aberta, o aglomerado de cortiça e o aglomerado de nanocompósito de cortiça, onde se pode verificar que a presença da cortiça no interior das espumas de alumínio origina aumentos de 395% de resistência mecânica para uma extensão de 0,6%, e Fig. 3b shows the tension-extension curves of compression of aluminum foams impregnated with cork and the respective individual components, in which it can be seen, in the aluminum foam of open porosity and in the agglomerate of cork, that the presence of cork inside of aluminum foams leads to increases of 159% and 81% in mechanical strength and energy absorption capacity, respectively, Fig. 3c shows the compression-strain curves of aluminum foams impregnated with cork reinforced or not with graphene oxide and the respective individual components, the open porosity aluminum foam, the cork agglomerate and the cork nanocomposite agglomerate , where it can be seen that the presence of cork inside the aluminum foams leads to increases of 395% in mechanical resistance to an extension of 0.6%, and
Fig. 3d apresenta as curvas tensão-extensão de compressão de espumas de alumínio impregnadas de cortiça reforçada ou não com óxido de grafeno e dos respetivos componentes individuais, a espuma de alumínio de porosidade aberta, o aglomerado de cortiça e o aglomerado de nanocompósito de cortiça, onde se pode verificar que a presença da cortiça no interior das espumas de alumínio origina aumentos de 344% e de 238% de resistência mecânica para uma extensão de 0,5% em regime quase-estático ou dinâmico. Fig. 3d shows the compression-tension curves of aluminum foams impregnated with cork reinforced or not with graphene oxide and the respective individual components, the open porosity aluminum foam, the cork agglomerate and the cork nanocomposite agglomerate , where it can be seen that the presence of cork inside the aluminum foams causes increases of 344% and 238% of mechanical resistance to an extension of 0.5% in a quasi-static or dynamic regime.
Figura 4: Comparação dos coeficientes de absorção sonora e de redução de ruído, em que: Figure 4: Comparison of sound absorption and noise reduction coefficients, in which:
Fig. 4a apresenta a comparação dos coeficientes de absorção sonora e de redução de ruído de uma espuma de alumínio impregnado de cortiça e dos respetivos componentes individuais, a espuma de alumínio de porosidade aberta e o aglomerado de cortiça, onde se verifica um aumento significativo do coeficiente de absorção sonora e de redução de ruído numa ampla gama de frequências médias-altas (1000 a 3000 Hz), sendo que a frequência típica humana está compreendida entre 1000-2000 Hz, Fig. 4a shows the comparison of the sound absorption and noise reduction coefficients of an aluminum foam impregnated with cork and the respective individual components, the aluminum foam with open porosity and the agglomerate of cork, where there is a significant increase in the coefficient of sound absorption and noise reduction in a wide range of medium-high frequencies (1000 to 3000 Hz), with the typical human frequency being between 1000-2000 Hz,
Fig. 4b apresenta a comparação dos coeficientes de absorção sonora e de redução de ruído de uma espuma de alumínio impregnado de cortiça reforçada com óxido de grafeno, designado por nanocompósito de cortiça e dos respetivos componentes individuais, a espuma de alumínio, aglomerado de nanocompósito de cortiça, em que se verifica que a espuma de alumínio impregnado de nanocompósito de cortiça apresenta elevado coeficiente de absorção de som numa ampla gama de frequências médias-altas (1000-4000 Hz), com o valor de 1 entre 1700 Hz e 2000 Hz e um valor superior a 0,85 entre 1261Hz e 4000 Hz, Fig. 4b shows the comparison of the sound absorption and noise reduction coefficients of an aluminum foam impregnated with cork reinforced with graphene oxide, called cork nanocomposite and the respective individual components, aluminum foam, cork nanocomposite agglomerate, in which the aluminum foam impregnated with cork nanocomposite has a high sound absorption coefficient over a wide range of medium-high frequencies (1000-4000 Hz), with a value of 1 between 1700 Hz and 2000 Hz and a value greater than 0.85 between 1261 Hz and 4000 Hz,
Fig. 4c apresenta a comparação dos coeficientes de absorção sonora e de redução de ruído de uma espuma de alumínio e de cortiça e de espuma de alumínio impregnado de cortiça reforçada com óxido de grafeno, designado por nanocompósito de cortiça e dos respetivos componentes individuais, a espuma de alumínio, aglomerado de cortiça, aglomerado de nanocompósito de cortiça, em que se verifica que a espuma de alumínio impregnado de nanocompósito de cortiça apresenta elevado coeficiente de absorção de som numa ampla gama de frequências médias-altas (1000-4000 Hz), com o valor de 1 entre 1700 Hz e 2000 Hz e um valor superior a 0,85 entre 1261Hz e 4000 Hz. Fig. 4c shows the comparison of the sound absorption and noise reduction coefficients of aluminum foam and cork and aluminum foam impregnated with cork reinforced with graphene oxide, called the cork nanocomposite and the respective individual components, a aluminum foam, cork agglomerate, cork nanocomposite agglomerate, in which the aluminum foam impregnated with cork nanocomposite has a high sound absorption coefficient over a wide range of medium-high frequencies (1000-4000 Hz), with a value of 1 between 1700 Hz and 2000 Hz and a value greater than 0.85 between 1261 Hz and 4000 Hz.
Figura 5: Comparação dos valores da condutividade térmica de espumas de alumínio impregnadas de cortiça reforçada ou não com óxido de grafeno, com os seus componentes individuais, a espuma de alumínio de porosidade aberta e o aglomerado de cortiça, onde se verifica que estas ([0,091 W/(m.k)] e 0,101 W/ (m.k)] apresentam valores superiores às amostras de cortiça aglomerada reforçadas ([0,057 W/(m.k)]) ou não reforçadaFigure 5: Comparison of the thermal conductivity values of aluminum foams impregnated with cork reinforced or not with graphene oxide, with their individual components, the open porosity aluminum foam and the cork agglomerate, where it is verified that these ([ 0.091 W / (mk)] and 0.101 W / (mk)] have higher values than samples of reinforced agglomerated cork ([0.057 W / (mk)]) or not reinforced
([0,055 W/(m.k)]) de óxido de grafeno. ([0.055 W / (m.k)]) of graphene oxide.
Figura 6: Sequência de imagens 2s do teste de chama de uma amostra, em que: Figure 6: Sequence of 2s images of a sample flame test, in which:
Fig. 6a refere-se a uma amostra (25 c 25 c 25 mm) de aglomerado com óxido de grafeno (a) e de uma amostra (25 c 25 x 25 mm) de espuma de alumínio impregnado de cortiça reforçada com óxido de grafeno, designado por nanocompósito de cortiça, onde se verifica que a chama extingue mais depressa nas espumas de alumínio de porosidade aberta impregnadas com cortiça reforçada de óxido de grafeno, e Fig. 6a refers to a sample (25 c 25 c 25 mm) of agglomerate with graphene oxide (a) and a sample (25 c 25 x 25 mm) of aluminum foam impregnated with cork reinforced with graphene oxide , called the cork nanocomposite, where it is found that the flame extinguishes more quickly in aluminum foams of open porosity impregnated with graphene oxide reinforced cork, and
Fig. 6b refere-se a uma amostra (25 c 25 c 25 mm) de aglomerado de cortiça, de uma amostra (25 c 25 c 25 mm)de espuma de alumínio e de cortiça, de uma amostra (25 c 25 c 25 mm) de aglomerado de cortiça reforçada com óxido de grafeno, designado por nanocompósito de cortiça e de uma amostra (25 c 25 x 25 mm) de espuma de alumínio impregnado de nanocompósito de cortiça onde se verifica que a chama extingue mais depressa nas espumas de alumínio de porosidade aberta impregnadas com cortiça reforçada de óxido de grafeno. Fig. 6b refers to a sample (25 c 25 c 25 mm) of cork agglomerate, a sample (25 c 25 c 25 mm) of aluminum foam and cork, a sample (25 c 25 c 25 mm) of cork agglomerate reinforced with graphene oxide, referred to as cork nanocomposite and of a sample (25 c 25 x 25 mm) of aluminum foam impregnated with cork nanocomposite where it is verified that the flame extinguishes faster in the foam of open porosity aluminum impregnated with graphene oxide reinforced cork.
Descrição da invenção Description of the invention
A presente invenção diz respeito ao desenvolvimento de novos metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça reforçada ou não, que compreendem o enchimento dos poros abertos, com uma arranjo periódico ou estocástico, por um material de enchimento à base de cortiça. The present invention concerns the development of new metals and porous and cellular metallic structures of open porosity impregnated with reinforced or not reinforced cork, which comprise the filling of open pores, with a periodic or stochastic arrangement, by a cork-based filling material. .
1. Metal poroso ou celular ou uma estrutura porosa ou celular1. Porous or cellular metal or a porous or cellular structure
Os metais porosos, metais celulares ou estruturas porosas ou celulares caracterizam-se por serem constituídos maioritariamente por poros abertos, interligados, que partilham entre si as arestas, formando arranjos tridimensionais distribuídos periodicamente ou estocasticamente, que englobam as espumas metálicas e as esponjas metálicas, e ainda estruturas celulares metálicas, que incluem os materiais celulares periódicos com diferentes topologias, nomeadamente mas não limitante, favo de mel, reticulados de treliça ou prismáticos. Materiais deste tipo adequados para serem utilizados no âmbito da presente invenção são, por exemplo as espumas abertas de metal com tamanho de poros de 5 ppi a 500 ppi (conversão: internacionalmente é isto representa m2) fabricadas pelo método de fundição de precisão designado em inglês por Investment Casting e estruturas celulares metálicas fabricadas por tecnologias de fabrico aditivo, como a prototipagem rápida e a impressão 3D de metais, preferencialmente apresentado uma dimensão variável de 1 ppi a 500 ppi, mais preferencialmente de 10 ppi a 250 ppi, ainda mais preferencialmente de 50 ppi a 150 ppi, ou ainda de 75 ppi a 100 ppi. Porous metals, cellular metals or porous or cellular structures are characterized by being constituted mostly of open, interconnected pores, which share the edges, forming three-dimensional arrangements periodically or stochastically distributed, which include metallic foams and metal sponges, and metallic cell structures, which include periodic cellular materials with different topologies, namely but not limiting, honeycomb, lattice lattices or prismatic. Materials of this type suitable for use within the scope of the present invention are, for example, open metal foams with a pore size of 5 ppi to 500 ppi (conversion: internationally this represents m 2 ) manufactured by the precision casting method designated in English by Investment Casting and metallic cell structures manufactured by additive manufacturing technologies, such as rapid prototyping and 3D printing of metals, preferably presented with a variable dimension from 1 ppi to 500 ppi, more preferably from 10 ppi to 250 ppi, even more preferably from 50 ppi to 150 ppi, or from 75 ppi to 100 ppi.
2. Matriz metálica 2. Metallic matrix
A matriz metálica constituída de pelo menos por um metal ou liga metálica, são, por exemplo o alumínio, magnésio, manganês, cobre, silício, zinco, estanho, níquel e suas ligas, usadas para as diferentes aplicações estruturais e funcionais deste tipo de metais, como por exemplo acústica e térmica e filtragem de água. The metallic matrix consisting of at least one metal or metallic alloy, are, for example, aluminum, magnesium, manganese, copper, silicon, zinc, tin, nickel and their alloys, used for the different structural and functional applications of this type of metals , such as acoustic and thermal and water filtration.
3. Material de enchimento à base de cortiça 3. Cork-based filling material
A cortiça é um material 100% natural, de origem vegetal da casca dos sobreiros (Quercus suber), rico em suberina, uma cera sintetizada pelas células do súber do sobreiro. É altamente hidrofóbica, compreendendo essencialmente dois grupos reativos, um poliaromático e um polialifático, sendo cada um destes, respectivamente, constituídos à base de monómeros de ácidos hidroxicinâmicos e derivados, como feruloiltiramina, e por monómeros de a-hidroxiácidos, como por exemplo o ácido 18-hidroxioctadec-9-enoico) e oc,w-diácidos, com por exemplo o ácido octadec-9-ene-l, 18-dioico, o que confere à cortiça propriedades únicas: - É extremamente leve (ex. cortiça natural: 160 - 260 kg/m3, cortiça granulada: 60 - 160 kg/m3, cortiça aglomerada: 140 - 600 kg/m3), suave e agradável ao toque que tem uma grande elasticidade e resiliência, recuperando facilmente sua forma original, depois de ser submetida a uma pressão; Cork is a 100% natural material, of vegetable origin from the bark of cork oaks (Quercus suber), rich in suberin, a wax synthesized by the cells of the cork oak. It is highly hydrophobic, essentially comprising two reactive groups, a polyaromatic and a polyaliphatic group, each of which, respectively, is based on monomers of hydroxycinnamic acids and derivatives, such as feruloiltyramine, and monomers of a-hydroxy acids, such as 18-hydroxyoctadec-9-enoic) and oc, w-diacids, with for example octadec-9-ene-l, 18-dioic acid, which gives cork unique properties: - It is extremely light (eg natural cork: 160 - 260 kg / m 3 , granulated cork: 60 - 160 kg / m 3 , agglomerated cork: 140 - 600 kg / m 3 ), smooth and pleasant to the touch, which has a great elasticity and resilience, easily recovering its original shape, after being subjected to pressure;
- É impermeável tanto a líquidos como a gases (não apodrece), evitando por exemplo a absorção da água; - It is impermeable to both liquids and gases (does not rot), avoiding, for example, water absorption;
- É muito resistente ao fogo, não faz chama nem expele gases tóxicos durante a combustão; - It is very resistant to fire, does not ignite or expels toxic gases during combustion;
- Suporta grandes variações de temperatura e de humidade; - Supports large variations in temperature and humidity;
- Apresenta baixa condutividade térmica, sendo, por isso excelentes isolantes térmicos, o que é devido ar dentro das células; - It presents low thermal conductivity, being, therefore, excellent thermal insulators, which is due to air inside the cells;
- Apresenta uma elevada capacidade de absorção de ruido e vibrações, sendo por isso, excelentes isolantes acústicos;- It has a high noise and vibration absorption capacity, being, therefore, excellent acoustic insulators;
- Apresenta ainda, uma boa capacidade de absorção de energia de impacto. - It also has a good capacity to absorb impact energy.
Assim, a cortiça é atualmente usada para diversos fins, como por exemplo, vedantes de vinhos (rolhas para garrafas de vinho), em calçado, mobiliário, decoração e design, na construção de edifícios para isolamento acústico e térmico em pavimentos, paredes, portas, janelas, telhados, ou para meios de transportes (carros, aviões, comboios, barcos, etc.). A cortiça assim como o é dos materiais mais amigos do ambiente, reciclável, reutilizável, não inflamável. Thus, cork is currently used for various purposes, for example, wine closures (stoppers for wine bottles), in footwear, furniture, decoration and design, in the construction of buildings for sound and thermal insulation in floors, walls, doors , windows, roofs, or for means of transport (cars, airplanes, trains, boats, etc.). Cork, as well as being one of the most environmentally friendly materials, recyclable, reusable, non-flammable.
No âmbito da presente invenção, o material de cortiça pode ser usado sob a forma expandida, sob a forma de partículas, grãos, grânulos ou pó de diferentes densidades e/ou de granulometrias . Esta cortiça pode ser proveniente de cortiça reciclada, desperdício de cortiça de processos industriais, como pó de trituração, lixagem, ou de produtos técnicos com o pó de flutuantes, entre outros ou da mistura de mais do que uma das variedades de desperdícios de cortiça ou de subprodutos de cortiça, como rolhas de cortiça, dos aglomerados puros e negros expandidos, os quais podem conter pelo menos um polímero de origem natural, sintético, ou reciclado, como o poliuretano, silicone, epóxido, polietileno, polipropileno, etileno, anidrido de alquilo ou arilo, poliestireno e policarbonato . Within the scope of the present invention, the cork material can be used in expanded form, in the form of particles, grains, granules or powder of different densities and / or particle sizes. This cork can come from recycled cork, cork waste from industrial processes, such as crushing, sanding powder, or technical products with floating powder, among others, or from the mixture of more than one of the varieties of cork waste or cork by-products, such as cork stoppers, from pure and expanded black agglomerates, which may contain at least one polymer of natural, synthetic or recycled origin, such as polyurethane, silicone, epoxide, polyethylene, polypropylene, ethylene, alkyl or aryl, polystyrene and polycarbonate.
Em termos quantitativos, o material de cortiça pode ser usado quantidades que variam de cerca de 3%-30% em massa de polímero de origem natural, sintética ou reciclado de acordo com a aplicação pretendida, com cerca de 0%-15% em massa de aditivos e cerca de 0%-10% e 0%-50% em massa de elementos de reforço de tamanho nanométrico e micrométrico, respetivamente. In quantitative terms, the cork material can be used in amounts ranging from about 3% -30% by weight of polymer of natural origin, synthetic or recycled according to the intended application, with about 0% -15% by weight additives and about 0% -10% and 0% -50% by weight of nanometric and micrometric size reinforcement elements, respectively.
Para além disso, o material de cortiça usado pode ainda ser objeto de pré-tratamentos, tais como processos de granulação, de redução de tamanho de partículas como o corte, a trituração, a moagem e processos de separação por tamanhos, como a peneiração que promove a separação e ordenação pelo tamanho das partículas, grânulos ou grãos. In addition, the cork material used can still be subject to pre-treatments, such as granulation processes, particle size reduction such as cutting, crushing, grinding and separation processes by sizes, such as sieving that promotes separation and ordering by the size of particles, granules or grains.
A cortiça deve ter uma distribuição de tamanhos inferior à distribuição de tamanhos de poros abertos do metal e estrutura metálica poroso e celular a utilizar, para facilitar a sua incorporação nestes poros. Cork should have a smaller size distribution than the open pore size distribution of the metal and the porous and cellular metallic structure to be used, to facilitate its incorporation in these pores.
Numa forma de realização preferencial, o material de cortiça tem uma dimensão variável entre escala nanométrica e escala micrométrica . O material de enchimento à base de cortiça pode ser reforçado, sendo preparado através da mistura das matérias-primas, podendo estas ser opcionalmente funcionalizadas, através por exemplo de modificação física ou química, como pela remoção de impurezas, para promover melhor adesão entre os diversos constituintes, nomeadamente, a lavagem com um ou mais solventes e secagem dos resíduos da cortiça, ou utilizar polímeros previamente funcionalizados com grupos funcionais de termoendureciveis como sejam, por exemplo, o Epóxido e Poliuretano . In a preferred embodiment, the cork material has a variable dimension between nanometer scale and micrometric scale. The cork-based filling material can be reinforced, being prepared by mixing the raw materials, which can be optionally functionalized, for example by physical or chemical modification, as well as by removing impurities, to promote better adhesion between the various constituents, namely, washing with one or more solvents and drying cork residues, or using polymers previously functionalized with functional groups of thermosets such as, for example, epoxide and polyurethane.
O material de enchimento à base de cortiça não reforçada é obtido através da simples mistura da cortiça, sob a forma de partículas, grânulos, grãos ou pó, com pelo menos um polímero, que pode ou não ser funcionalizado com a adição de aditivos de processamento, usando técnicas da mistura usadas para este propósito, com por exemplo, um misturador mecânico. The non-reinforced cork-based filling material is obtained by simply mixing the cork, in the form of particles, granules, grains or powder, with at least one polymer, which may or may not be functionalized with the addition of processing additives. , using mixing techniques used for this purpose, with, for example, a mechanical mixer.
O material de enchimento à base de cortiça reforçada é obtido usando as vulgares técnicas de incorporação de elementos de reforço de tamanho nano e micro, com a adição de pelo menos um polímero funcionalizado ou não, de origem natural, sintético ou reciclado, e com a adição ou não de aditivos de processamento. Como por exemplo, a incorporação de elementos de reforço de tamanho micrométrico à cortiça usando um misturador mecânico, ou a incorporação na cortiça de elementos de reforço de tamanho nanométrico usando a técnica de camada por camada, designada em inglês layer by layer technique, podendo ser usadas, para este efeito, soluções aquosas. The filling material based on reinforced cork is obtained using the usual techniques of incorporating reinforcement elements of nano and micro size, with the addition of at least one functionalized or not polymer, of natural, synthetic or recycled origin, and with the adding or not processing additives. For example, the incorporation of reinforcement elements of micrometric size into cork using a mechanical mixer, or the incorporation of reinforcement elements of nanometric size in cork using the layer by layer technique, known in English layer by layer technique, which can be aqueous solutions are used for this purpose.
Numa forma de realização preferencial o material de enchimento é reforçado. In a preferred embodiment, the filling material is reinforced.
Elementos de reforço do material de cortiça adequados à presente invenção são materiais dispersos na matriz contínua, que englobam fibras, partículas, estruturas tubulares ou folhas em escala micro e nano de polímeros, cerâmicos, vidros e metais, materiais à base de carbono, semelhantes e suas combinações. No caso de o elemento de reforço ser de tamanho micrométrico, denomina-se por material compósito, ou simplesmente "compósito de cortiça". No caso de a fase dispersa ser de tamanho nanométrico, denomina-se por material nanocompósito ou simplesmente "nanocompósito de cortiça". Reinforcement elements of the cork material suitable for the present invention are materials dispersed in the continuous matrix, which include fibers, particles, tubular structures or micro and nano-scale sheets of polymers, ceramics, glass and metals, carbon-based materials, the like and their combinations. If the reinforcement element is of micrometric size, it is called a composite material, or simply "composite cork". If the dispersed phase is nanometric in size, it is called nanocomposite material or simply "cork nanocomposite".
Materiais poliméricos, ou simplesmente "polímeros" são materiais de origem natural, sintética ou reciclada, semelhantes e suas combinações, que de acordo com as caracteristicas mecânicas, pode ser dividido em termoplásticos, termoendureciveis e elastómeros. Os termoplásticos incluem os conhecidos plásticos, que podem ser fundidos várias vezes e nalguns casos dissolvidos em vários solventes, sendo, por isso, materiais recicláveis. Os termoendureciveis são rígidos e frágeis, sendo muito estáveis a variações de temperatura, embora o aquecimento destes polímeros origina a sua decomposição antes de ocorrer fusão, não sendo, por isso, fácil de reciclar. Os elastómeros apresentam elevada elasticidade, não sendo rígidos nem passíveis de ser fundidos, o que reduz as possibilidades de reciclagem. Polymeric materials, or simply "polymers" are materials of natural, synthetic or recycled origin, similar and their combinations, which according to mechanical characteristics, can be divided into thermoplastics, thermosets and elastomers. Thermoplastics include the known plastics, which can be melted several times and in some cases dissolved in various solvents, and are therefore recyclable materials. The thermosets are rigid and fragile, being very stable to temperature variations, although the heating of these polymers causes their decomposition before melting, and is therefore not easy to recycle. Elastomers have high elasticity, not being rigid or liable to be melted, which reduces the possibilities for recycling.
Numa forma de realização preferencial, o material de enchimento é reforçado com um ou mais dos seguintes polímeros do tipo epóxido ou poliuretano. In a preferred embodiment, the filler material is reinforced with one or more of the following polymers of the epoxide or polyurethane type.
Aditivos adequados para este efeito são substâncias utilizadas em pequenas quantidades, utilizadas para modificar e/ou melhorar diversas propriedades como promover a processabilidade, conferir estabilidade térmica, colorir, melhorar propriedades antiestáticas, dureza superficial, resistência ao fogo, entre outros. Numa forma de realização preferencial, o material de enchimento, reforçado ou não, compreende um ou mais aditivos. Suitable additives for this purpose are substances used in small amounts, used to modify and / or improve various properties such as promoting processability, providing thermal stability, coloring, improving antistatic properties, surface hardness, fire resistance, among others. In a preferred embodiment, the filler material, reinforced or not, comprises one or more additives.
4. Elementos de reforço da matriz metálica 4. Metal matrix reinforcement elements
Os elementos de reforço podem ter origem natural, sintética ou reciclada nomeadamente, mas não limitante de cerâmico, polímero e de metal, derivados de carbono, por exemplo óxido de grafeno, em forma de estruturas tubulares, folhas, partículas, fibras, de tamanho micrométrico ou nanométrico, semelhantes ou suas combinações. The reinforcement elements can be of natural, synthetic or recycled origin, including, but not limited to, ceramic, polymer and metal, carbon derivatives, for example graphene oxide, in the form of tubular structures, sheets, particles, fibers, of micrometric size or nanometric, similar or combinations thereof.
Estes novos metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça reforçada ou não, leves e multifuncionais podem integrar os habituais processos de transformação das várias empresas relacionadas com a indústria de metais e estruturas metálicas porosos e celulares de porosidade aberta e com a indústria da cortiça. These new porous and cellular open porous and cellular metal structures and impregnated with reinforced or not, light and multifunctional cork can integrate the usual transformation processes of the various companies related to the metal industry and porous and cellular metallic structures with open porosity and cork industry.
5. Processo de obtenção de metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça 5. Process for obtaining porous metals and metallic structures of open porosity impregnated with cork
A presente invenção refere-se também ao processo de produção destes novos metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça reforçada ou não que se encontra esquematizada na Figura 1. The present invention also refers to the production process of these new metals and porous and cellular metallic structures of open porosity impregnated with reinforced or not reinforced cork, which is outlined in Figure 1.
Após a seleção das matérias-primas, em função do material final desejado e de acordo com o descrito anteriormente, faz- se a preparação do material de enchimento à base de cortiça, que pode ser reforçada ou não, também em função do material final desejado. Em seguida efetua-se o enchimento dos poros abertos de um metal ou de uma estrutura celular ou poroso com o material de enchimento à base de cortiça. Por fim, procede- se a densificação e cura do material resultante. A preparação do material de enchimento realiza-se pela mistura dos vários componentes selecionados para o efeito, nomeadamente a cortiça, o polímero, no caso de se pretender que o material de enchimento seja reforçado, com a possibilidade de adição de aditivos de processamento e de elementos de reforço. After the selection of the raw materials, depending on the desired final material and according to what was previously described, the cork-based filling material is prepared, which can be reinforced or not, also depending on the desired final material. . Then, the open pores of a metal or a cellular or porous structure are filled with the cork-based filling material. Finally, the resulting material is densified and cured. The preparation of the filling material is carried out by mixing the various components selected for the purpose, namely cork, the polymer, if the filling material is to be reinforced, with the possibility of adding processing additives and reinforcement elements.
A mistura é realizada em fase única, i.e. promovendo o contacto de todos os componentes selecionados em simultâneo, em condições ambientais com agitação mecânica vigorosa. The mixing is carried out in a single phase, i.e. promoting the contact of all selected components simultaneously, under environmental conditions with vigorous mechanical agitation.
No caso de se pretender obter material de enchimento com cortiça reforçada, a incorporação dos elementos de reforço pode ser realizada através das técnicas por via seca e/ou húmida, como agitadores mecânicos, processamento coloidal e técnica de passo a passo, semelhantes e combinações, selecionadas de acordo com as características químicas, físicas, a forma, geometria e distribuição de tamanhos destes elementos de reforço. In case it is desired to obtain filling material with reinforced cork, the incorporation of the reinforcement elements can be carried out using dry and / or wet techniques, such as mechanical stirrers, colloidal processing and step-by-step technique, similar and combinations, selected according to the chemical, physical characteristics, the shape, geometry and size distribution of these reinforcement elements.
A etapa de enchimento dos poros abertos de metais e estruturas metálicas porosos e celulares é realizada pelo vazamento do material de enchimento, preparado de acordo com o anteriormente descrito, para o interior dos poros abertos de um metal ou estrutura metálica poroso ou celular com uma distribuição periódica ou aleatória, sendo realizada preferencialmente sob vibração e/ou pressão, para garantir o preenchimento desses poros. The step of filling the open pores of metals and porous and cellular metallic structures is carried out by pouring the filling material, prepared according to the previously described, into the open pores of a porous or cellular metal or metallic structure with a distribution periodic or random, preferably performed under vibration and / or pressure, to ensure the filling of these pores.
Para esse efeito, pode-se utilizar moldes ou estruturas ocas de paredes finas de geometrias simples e complexas, opcionalmente com a utilização de revestimentos com propriedades antiaderentes, como o papel vegetal, folhas de teflon, o papel Kraft, o papel e filmes à base de silicone para facilitar a extração dos novos materiais daqui resultante . Por fim, o material resultante das etapas descritas é sujeito a uma etapa de densificação e cura realizada em condições controladas, ao ar ou em vácuo, preferencialmente ao ar sem aplicação de temperatura ou, também, com a possibilidade de variar a temperatura podendo ir, tipicamente até aos 250°C.For this purpose, molds or hollow structures of thin walls of simple and complex geometries can be used, optionally with the use of coatings with non-stick properties, such as tracing paper, teflon sheets, Kraft paper, paper and films based on of silicone to facilitate the extraction of the new materials resulting from it. Finally, the material resulting from the described steps is subjected to a stage of densification and curing carried out under controlled conditions, in air or in a vacuum, preferably in air without application of temperature or, also, with the possibility of varying the temperature, typically up to 250 ° C.
Para este efeito, o referido material, o qual é formado por um esqueleto de metal com os poros preenchidos, pelo menos parcialmente, com um material à base de cortiça, é prensado exercendo-se uma pressão de modo a se obter a densidade requerida para cada aplicação, mas que garanta que o metal ou de uma estrutura metálica poroso e celular inicial de porosidade aberta não se danifique. For this purpose, said material, which is formed by a metal skeleton with pores filled, at least partially, with a cork-based material, is pressed by exerting a pressure in order to obtain the required density for each application, but that ensures that the metal or an initial porous and cellular metallic structure of open porosity is not damaged.
Segue-se, a etapa de cura que se refere ao endurecimento de pelo menos um material polímero por reticulação, cujo seu início pode se dar por aditivos químicos (e.g. água), calor ou luz ultravioleta. This is followed by the curing step, which refers to the curing of at least one polymer material by crosslinking, the beginning of which can take place by chemical additives (e.g. water), heat or ultraviolet light.
Finalmente, o material resultante, o metal ou de uma estrutura metálica poroso e celular impregnada com cortiça é extraído do molde. Finally, the resulting material, metal or a porous and cellular metallic structure impregnated with cork, is extracted from the mold.
Em resumo, o processo de produção de metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, da presente invenção, compreende os seguintes passos: a) Preparação do material de enchimento à base de cortiça; b) Enchimento dos poros abertos de um metal ou de uma estrutura celular ou poroso pelo material de enchimento de (a); c) Densificação e cura do material de (b). In summary, the process of producing open porous and cellular metal and metallic structures impregnated with cork, of the present invention, comprises the following steps: a) Preparation of cork-based filling material; b) Filling the open pores of a metal or a cellular or porous structure with the filling material of (a); c) Densification and curing of the material of (b).
Definições : No contexto da presente invenção, as percentagens mencionadas na presente descrição e reivindicações referem-se a percentagens em massa. Definitions : In the context of the present invention, the percentages mentioned in the present description and claims refer to mass percentages.
No contexto da presente invenção, o termo "compreendendo" deve ser entendido como "incluindo, entre outros". Como tal, o referido termo não deve ser interpretado como "consistindo apenas de". In the context of the present invention, the term "comprising" is to be understood as "including, among others". As such, the term should not be interpreted as "consisting only of".
Note-se que qualquer valor X apresentado no decurso da presente descrição deve ser interpretado como um valor aproximado do valor X real, uma vez que tal aproximação ao valor real seria razoavelmente esperada pelo especialista na técnica devido a condições experimentais e/ou de medição que introduzem desvios ao valor real. Note that any X value presented in the course of this description should be interpreted as an approximate value of the real X value, since such an approximation to the real value would be reasonably expected by the person skilled in the art due to experimental and / or measurement conditions that introduce deviations from the real value.
No contexto da presente invenção, as gamas de valores apresentadas na presente descrição destinam-se a proporcionar um modo simplificado e tecnicamente aceite para indicar cada valor individual dentro da respetiva gama. A titulo de exemplo a expressão "1 a 2 ou "entre 1 e 2 significa qualquer valor dentro deste intervalo, incluindo os valores limites. Todos os valores mencionados devem ser interpretados como valores aproximados. Por exemplo, uma referência a "0,1" significa "cerca de 0,1" In the context of the present invention, the ranges of values presented in the present description are intended to provide a simplified and technically accepted way to indicate each individual value within the respective range. By way of example, the expression "1 to 2 or" between 1 and 2 means any value within this range, including the limit values. All values mentioned should be interpreted as approximate values. For example, a reference to "0.1" means "about 0.1"
Na presente invenção, o termo "metal celular" refere-se a metais porosos, sólidos caracterizados por serem constituídos maioritariamente por poros abertos, que englobam as espumas metálicas e as esponjas metálicas obtidas por processos vulgarmente usados para este fim, e ainda estruturas celulares metálicas, que inclui os materiais celulares periódicos com diferentes topologias, nomeadamente mas não limitante, favo de mel, reticulados de treliça ou prismáticos, obtidas maioritariamente por tecnologias de fabrico aditivo, como a prototipagem rápida e impressão 3D. Na presente invenção, o termo "metal celular de porosidade aberta" refere-se a metais porosos sólidos constituídos maioritariamente poros abertos, interligados que partilham entre si as arestas, formando arranjos tridimensionais distribuídos periodicamente ou estocasticamente. In the present invention, the term "cellular metal" refers to porous metals, solids characterized by being composed mostly of open pores, which include metallic foams and metallic sponges obtained by processes commonly used for this purpose, and metallic cell structures. , which includes periodic cellular materials with different topologies, namely but not limited to, honeycomb, lattice lattices or prismatic, obtained mainly by additive manufacturing technologies, such as rapid prototyping and 3D printing. In the present invention, the term "open porous cell metal" refers to solid porous metals made up mostly of open, interconnected pores that share the edges, forming three-dimensional arrays distributed periodically or stochastically.
O número destes poros que preenche uma polegada é designado por "poros por polegada", PPI e é uma forma de caracterizar o tamanho dos poros de um metal celular de porosidade aberta.The number of these pores that fills an inch is called "pores per inch", PPI and is a way of characterizing the pore size of an open porosity cellular metal.
Na presente invenção, o termo "metal" refere-se a metais e suas ligas metálicas, nomeadamente, mas não limitante o cobre e suas ligas, o manganês e suas ligas, alumínio e suas ligas, magnésio e suas ligas, zinco e suas ligas. In the present invention, the term "metal" refers to metals and their metal alloys, namely, but not limited to, copper and its alloys, manganese and its alloys, aluminum and its alloys, magnesium and its alloys, zinc and its alloys .
Na presente invenção, o termo "estrutura metálica porosa e celular" engloba as estruturas celulares preferencialmente periódicas com diferentes topologias, nomeadamente, mas não limitante, favo de mel, reticulados de treliça ou prismáticos, obtidas maioritariamente por tecnologias de fabrico aditivo, como a prototipagem rápida e impressão 3D. In the present invention, the term "porous and cellular metallic structure" encompasses preferably periodic cellular structures with different topologies, namely, but not limited to, honeycomb, lattice lattices or prismatic, obtained mainly by additive manufacturing technologies, such as prototyping and 3D printing.
Na presente invenção, o termo "metal poroso e celular impregnados por cortiça reforçada ou não" refere-se a materiais constituídos tipicamente por metal poroso e celular formado por uma rede de poros abertos distribuídos de forma periódica ou aleatória, os quais os seus poros/vazios são preenchidos por um material de enchimento à base de cortiça, sob a forma de partículas de cortiça, grãos de cortiça, grânulos de cortiça, pó de cortiça natural, reciclado, resíduos de cortiça provenientes do processo produtivo ou de um subproduto ou produto de cortiça, semelhantes e suas combinações, e pelo menos um polímero natural, sintético, reciclado, podendo conter elementos de reforço de tamanho nano ou micro, semelhante e suas combinações para modificar e melhorar as propriedades térmicas, acústicas e o desempenho mecânico, pelo que a sua combinação resulta nas caracteristicas do produto. In the present invention, the term "porous and cellular metal impregnated with reinforced or not cork" refers to materials typically constituted by porous and cellular metal formed by a network of open pores distributed periodically or randomly, which their pores / voids are filled with a cork-based filling material, in the form of cork particles, cork grains, cork granules, natural cork powder, recycled, cork residues from the production process or a by-product or product from cork, similars and their combinations, and at least one natural, synthetic, recycled polymer, which may contain nano or micro size similar reinforcement elements and their combinations to modify and improve thermal, acoustic and performance properties mechanical, so its combination results in the characteristics of the product.
Na presente invenção, o termo "elemento de reforço" refere-se a materiais dispersos numa matriz continua, neste caso no material de enchimento à base de cortiça, que englobam fibras, partículas, estruturas tubulares ou folhas em escala micro e nano de polímeros, cerâmicos, vidros e metais, materiais à base de carbono, semelhantes e suas combinações. No caso de o elemento de reforço ser de tamanho micrométrico, denomina-se por material compósito, ou simplesmente "compósito de cortiça". No caso de a fase dispersa ser de tamanho nanométrico, denomina-se por material nanocompósito ou simplesmente "nanocompósito de cortiça". In the present invention, the term "reinforcement element" refers to materials dispersed in a continuous matrix, in this case in cork-based filling material, which include fibers, particles, tubular structures or sheets in micro and nano scale of polymers, ceramics, glass and metals, carbon-based materials, the like and their combinations. If the reinforcement element is of micrometric size, it is called a composite material, or simply "composite cork". If the dispersed phase is nanometric in size, it is called nanocomposite material or simply "cork nanocomposite".
Na presente invenção, a expressão "material de cortiça" ou simplesmente "cortiça" refere-se a partículas, grãos, grânulos ou pó de cortiça natural, cortiça natural colmatada, cortiça aglomerada, cortiça micro aglomerada, cortiça reciclada, desperdício de cortiça, cortiça expandida, semelhantes ou suas combinações . In the present invention, the term "cork material" or simply "cork" refers to particles, grains, granules or powder from natural cork, colmated natural cork, agglomerated cork, micro agglomerated cork, recycled cork, waste cork, cork expanded, similar or their combinations.
Na presente invenção, os elementos de reforço podem ou não entrar na composição das formulações do material de enchimento à base de cortiça, usado para preencher os poros abertos dos metais ou estruturas celulares e porosos, que dão origem aos novos materiais e estruturas objeto desta invenção. In the present invention, the reinforcing elements may or may not enter the composition of the cork-based filler material formulations, used to fill the open pores of the metals and cellular and porous structures, which give rise to the new materials and structures object of this invention .
A expressão "material à base de cortiça", no contexto da presente invenção refere-se a material de cortiça, tal como definido acima, combinado com outro material ou materiais, tal como, por exemplo, um material polimérico de origem natural, sintético ou reciclado. The term "cork-based material" in the context of the present invention refers to cork material, as defined above, combined with another material or materials, such as, for example, a polymeric material of natural, synthetic or recycled.
A expressão "material polimérico", ou simplesmente "polímero" refere-se a material de origem natural, sintético ou reciclado, semelhantes e suas combinações que de acordo com as caracteristicas mecânicas, pode ser dividido em termoplásticos, termoendureciveis e elastómeros. Os termoplásticos incluem os conhecidos plásticos, que podem ser fundidos várias vezes e nalguns casos dissolvidos em vários solventes, sendo, por isso, materiais recicláveis. Os termoendureciveis são rígidos e frágeis, sendo muito estáveis a variações de temperatura, embora o aquecimento destes polímeros origina a sua decomposição antes de ocorrer fusão, não sendo, por isso, fácil de reciclar. Os elastómeros apresentam elevada elasticidade, não sendo rígidos nem passíveis de ser fundidos, o que reduz as possibilidades de reciclagem. The term "polymeric material", or simply "polymer" refers to material of natural, synthetic or recycled, similar and their combinations which, according to the mechanical characteristics, can be divided into thermoplastics, thermosets and elastomers. Thermoplastics include the known plastics, which can be melted several times and in some cases dissolved in various solvents, and are therefore recyclable materials. The thermosets are rigid and fragile, being very stable to temperature variations, although the heating of these polymers causes their decomposition before melting, and is therefore not easy to recycle. Elastomers have high elasticity, not being rigid or liable to be melted, which reduces the possibilities for recycling.
O termo "aditivo" ou "aditivos de processamento", no contexto da presente invenção, refere-se a substâncias utilizadas em pequenas quantidades, utilizadas para modificar e/ou melhorar diversas propriedades como promover a processabilidade, conferir estabilidade térmica, colorir, melhorar propriedades antiestáticas, dureza superficial, resistência ao fogo, entre outros. The term "additive" or "processing additives", in the context of the present invention, refers to substances used in small quantities, used to modify and / or improve various properties such as promoting processability, providing thermal stability, coloring, improving properties antistatic, surface hardness, fire resistance, among others.
É objetivo da presente invenção obter metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça reforçada ou não com elementos de reforço, que exibem caracteristicas adicionais da combinação destes materiais celulares de metal e de cortiça, que proporcionam uma melhoria do conforto a nível acústico, térmico, assim como um melhor desempenho mecânico, apresentando uma grande versatilidade na sua aplicação. It is an objective of the present invention to obtain porous metals and metallic structures of open porosity impregnated with reinforced cork or not with reinforcing elements, which exhibit additional characteristics of the combination of these cellular metal and cork materials, which provide an improvement of comfort at the level acoustic, thermal, as well as better mechanical performance, presenting great versatility in its application.
Descrição detalhada da invenção Detailed description of the invention
A presente invenção relaciona-se com o desenvolvimento de metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça caracterizados por compreender, pelo menos, dois materiais ou estruturas porosas e celulares ou materiais celulares, em que o primeiro (1) compreende matriz de um metal ou liga metálica, com poros abertos distribuídos de periodicamente ou aleatoriamente, e o segundo (2) um material celular natural, a cortiça sob a forma de partículas, grânulos, grãos, pó, semelhantes e suas combinações, os quais podem ser de cortiça natural, expandida, reciclada, de desperdícios de cortiça provenientes do processo industrial, subprodutos de cortiça, a qual pode ser reforçada com elementos de reforço de origem natural, sintética ou reciclada, nomeadamente mas não limitante de metal, polímero ou cerâmico, de vidro e de carbono de tamanho micro- ou nano- métrico nomeadamente mas não limitante na forma de estruturas tubulares, fibras, partículas e suas combinações, contendo pelo menos um polímero sintético, natural ou reciclado, e opcionalmente, com a adição de aditivos de processamento. The present invention relates to the development of porous metals and metallic structures of open porosity impregnated with cork characterized by comprise at least two porous and cellular materials or structures or cellular materials, the first (1) comprising a metal or metal alloy matrix, with open pores distributed periodically or randomly, and the second (2) a cellular material natural, cork in the form of particles, granules, grains, powder, similar and their combinations, which can be made of natural, expanded, recycled cork, waste cork from the industrial process, cork by-products, which can be reinforced with reinforcement elements of natural, synthetic or recycled origin, namely but not limited to metal, polymer or ceramic, glass and carbon of micro- or nano-metric size namely but not limited in the form of tubular structures, fibers, particles and their combinations, containing at least one synthetic, natural or recycled polymer, and optionally, with the addition of processing additives.
Numa forma de realização, os metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça são caracterizados por compreender: In one embodiment, porous and cellular open porosity metal and metal structures impregnated with cork are characterized by comprising:
(a) um metal ou uma estrutura metálica poroso e celular de porosidade aberta obtidos por qualquer processo um dos processos usados para este fim, incluindo tecnologias de fabrico aditivo; (a) a porous and cellular metal or metal structure of open porosity obtained by any process one of the processes used for this purpose, including additive manufacturing technologies;
(b) um material celular natural à base de cortiça sob a forma de partículas, grânulos, grãos, pó, semelhantes e suas combinações, os quais podem ser de cortiça natural, expandida, granulada, reciclada, desperdícios de cortiça provenientes do processo industrial de diferentes granulometrias, subprodutos de cortiça e resíduos de cortiça, semelhantes e suas combinações; e opcionalmente (c) um ou vários polímeros sintéticos, naturais ou reciclados que podem ou não ser submetidos previamente a uma modificação física ou química para melhorar a compatibilidade com os outros componentes, com a possibilidade de se adicionar aditivos de processamento. (b) a natural cellular material based on cork in the form of particles, granules, grains, powder, similar and combinations thereof, which can be natural, expanded, granulated, recycled cork, waste cork from the industrial process of different granulometries, cork by-products and cork residues, similar and their combinations; and optionally (c) one or more synthetic, natural or recycled polymers that may or may not be previously subjected to physical or chemical modification to improve compatibility with the other components, with the possibility of adding processing additives.
Numa forma de realização, os metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com compósito de cortiça são caracterizados por compreender ainda: In one embodiment, porous and cellular open porosity metal and metal structures impregnated with cork composite are characterized by further comprising:
(a) 0,1% - 50 % em massa de elementos de reforço de tamanho micrométrico de origem natural, sintética, reciclada, semelhante e suas combinações, compreendendo nomeadamente, mas não limitante, fibras, partículas, estruturas tubulares, ou folhas, semelhantes e suas combinações feitos de metal, de carbono, de cerâmico ou de polímero, semelhantes e suas combinações. (a) 0.1% - 50% by weight of reinforcement elements of micrometric size of natural, synthetic, recycled, similar origin and combinations thereof, including, but not limited to, fibers, particles, tubular structures, or sheets, similar and their combinations made of metal, carbon, ceramic or polymer, similar and their combinations.
Numa forma de realização, os metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com nanocompósito de cortiça são caracterizados por compreender ainda, In one embodiment, the porous metals and metal structures of open porosity impregnated with cork nanocomposites are characterized by also comprising,
(a) 0,1%-10% em massa de elementos de reforço de tamanho nanométrico de origem natural, artificial ou reciclado, semelhantes e suas combinações, compreendendo nomeadamente mas não limitante fibras, partículas, estruturas tubulares, ou folhas, semelhantes e suas combinações, feitos de metal, de carbono, de cerâmico ou de polímero, com a possibilidade de se adicionar outros elementos de reforço de tamanho micrométrico.(a) 0.1% -10% by mass of nanometric size reinforcement elements of natural, artificial or recycled origin, similar and combinations thereof, including but not limited to fibers, particles, tubular structures, or sheets, the like and their combinations, made of metal, carbon, ceramic or polymer, with the possibility of adding other reinforcement elements of micrometric size.
Numa forma de realização, os metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com compósito de cortiça são caracterizados por o referido material à base de cortiça ser selecionado do grupo compreendendo partículas, grânulos, grãos, pó, provenientes da cortiça natural, expandida, granulada, reciclada, desperdícios de cortiça provenientes do processo industrial de diferentes granulometrias, subprodutos de cortiça e resíduos de cortiça, semelhantes e suas combinações. In one embodiment, the porous and cellular metal and metal structures of open porosity impregnated with cork composite are characterized by the aforementioned cork-based material to be selected from the group comprising particles, granules, grains, powder, derived from natural, expanded, granulated, recycled cork, cork waste from the industrial process of different particle sizes, cork by-products and cork waste, similar and their combinations.
Numa forma de realização, os metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com simples cortiça, compósito de cortiça ou nanocompósito de cortiça são caracterizados, pela cortiça poder ou não ser previamente submetidas a tratamentos, como a uma modificação física ou química para melhorar a compatibilidade aos diferentes componentes. In one embodiment, the porous and cellular metal and metallic structures of open porosity impregnated with simple cork, cork composite or cork nanocomposite are characterized by the fact that cork may or may not be previously subjected to treatments, such as a physical or chemical modification for improve compatibility for different components.
Numa forma de realização, os metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com simples cortiça, compósito de cortiça ou nanocompósito de cortiça são caracterizados por o referido polímero ser selecionado do grupo compreendendo polímero natural, sintético e reciclado, semelhantes e suas combinações, como termoplásticos, termoendurecíveis e elastómeros, por exemplo, polietileno, poliuretano, silicone, epóxido, polipropileno, etileno, anidrido de alquilo ou arilo, poliestireno, policarbonato e semelhantes e suas combinações. In one embodiment, the porous and cellular metal and metal structures of open porosity impregnated with simple cork, cork composite or cork nanocomposite are characterized in that said polymer is selected from the group comprising similar, synthetic and recycled polymer, and combinations thereof. , such as thermoplastics, thermosets and elastomers, for example, polyethylene, polyurethane, silicone, epoxide, polypropylene, ethylene, alkyl or aryl anhydride, polystyrene, polycarbonate and the like and combinations thereof.
Numa forma de realização, os metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com simples cortiça, compósito de cortiça ou nanocompósito de cortiça são caracterizados por o referido polímero poder ser submetido a uma modificação física ou química para melhorar a compatibilidade aos diferentes componentes e a sua distribuição uniforme dos componentes, como por exemplo a cortiça e os elementos de reforço caso os haja. Numa forma de realização, os metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com compósito de cortiça ou nanocompósito de cortiça são caracterizados por os elementos de reforço serem selecionadas do grupo compreendendo reforços de origem natural, sintética, reciclada, semelhante e suas combinações. In one embodiment, the porous and cellular metal and metal structures of open porosity impregnated with simple cork, cork composite or cork nanocomposite are characterized in that the said polymer can be subjected to a physical or chemical modification to improve the compatibility of the different components and its uniform distribution of components, such as cork and reinforcement elements, if any. In one embodiment, porous and cellular open porous metals and metallic structures impregnated with cork composite or cork nanocomposite are characterized by the reinforcement elements being selected from the group comprising reinforcements of natural, synthetic, recycled, similar nature and combinations thereof .
Numa forma de realização, os metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com compósito de cortiça ou nanocompósito de cortiça são caracterizados por os elementos de reforço serem selecionadas do grupo compreendendo fibras, partículas, estruturas tubulares ou folhas em escala micrométrica e/ou nanométrica, semelhantes e suas combinações. In one embodiment, open porous and cellular porous metals and metal structures impregnated with cork composite or cork nanocomposite are characterized in that the reinforcement elements are selected from the group comprising fibers, particles, tubular structures or sheets on a micrometric scale and / or nanometric, similar and their combinations.
Numa forma de realização, os metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com compósito de cortiça ou nanocompósito de cortiça são caracterizados por os elementos de reforço serem selecionadas do grupo compreendendo cerâmicos, metais e polímeros, vidros, carbono como por exemplo, grafite, grafeno, óxido de grafeno, nanotubos de carbono, nano ou micro grafite, nano ou micropartícuias ou fibras cerâmicas como o carboneto de silício, de metálicas, de vidro e de polímeros e semelhantes e suas combinações. In one embodiment, porous and cellular open porous metals and metal structures impregnated with cork composite or cork nanocomposite are characterized in that the reinforcement elements are selected from the group comprising ceramics, metals and polymers, glass, carbon, for example, graphite, graphene, graphene oxide, carbon nanotubes, nano or micro graphite, nano or microparticles or ceramic fibers such as silicon carbide, metals, glass and polymers and the like and combinations thereof.
Numa forma de realização, os metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com compósito de cortiça ou nanocompósito de cortiça são caracterizados por os elementos de reforço de tamanho micrométrico ou nanométrico poderem ser submetidos a uma modificação física ou química para melhorar a compatibilidade aos diferentes componentes e a sua distribuição uniforme na matriz de cortiça. A invenção diz também respeito ao processo de produção de metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, material celular natural, reforçada ou não com elementos de reforço, que compreende os seguintes passos: a) Preparação e seleção das matérias-primas; b) Preparação do material de enchimento à base de cortiça reforçada ou não; c) Enchimento dos poros abertos de um metal ou de uma estrutura celular ou poroso pelo material de enchimento à base de cortiça reforçada ou não; e d) Densificação e cura do material celular de metal e de cortiça reforçada ou não. In one embodiment, porous and cellular open porosity metal and metal structures impregnated with cork composite or cork nanocomposite are characterized in that the reinforcing elements of micrometric or nanometric size can be subjected to a physical or chemical modification to improve compatibility to the different components and their uniform distribution in the cork matrix. The invention also relates to the process of producing open porous and cellular metal and metallic structures impregnated with cork, natural cellular material, reinforced or not with reinforcing elements, which comprises the following steps: a) Preparation and selection of raw materials cousins; b) Preparation of the filling material based on reinforced or not reinforced cork; c) Filling the open pores of a metal or cell or porous structure with reinforced or not reinforced cork-based filling material; and d) Densification and curing of cellular material made of metal and cork, whether reinforced or not.
A invenção diz também respeito às utilizações destes novos, os quais são leves e multifuncionais para serem usados em aplicações militares, de engenharia e comerciais. Estes são leves, recicláveis, reutilizáveis, para além de apresentarem propriedades de isolamento acústico, melhoramento das propriedades térmicas em relação à cortiça, têm excelente durabilidade, excelente comportamento ao fogo com ausência ou extinção de chama e de libertação de gases tóxicos. The invention also concerns the uses of these new ones, which are light and multifunctional for use in military, engineering and commercial applications. These are light, recyclable, reusable, in addition to presenting acoustic insulation properties, improving thermal properties in relation to cork, they have excellent durability, excellent fire behavior with absence or extinguishing of flame and release of toxic gases.
A presente invenção é útil para desenvolver novos materiais e estruturas porosos e celulares de metal e de cortiça, obtidos pela impregnação da cortiça, um material celular natural nos poros abertos de um metal ou una estrutura metálica poroso e celular, com a possibilidade da cortiça se encontra reforçada com elementos de reforço de tamanho, micro- ou nanométrico, semelhantes e suas combinações, que são leves, recicláveis, não-inflamáveis, e com elevado desempenho mecânico, acústico e melhoramento das suas propriedades térmicas. Como vantagens desta invenção podem enumerar-se , entre outras , as seguintes : The present invention is useful for developing new porous and cellular materials and structures of metal and cork, obtained by impregnating cork, a natural cellular material in the open pores of a metal or a porous and cellular metallic structure, with the possibility of cork becoming it is reinforced with reinforcement elements of similar size, micro- or nanometer and their combinations, which are light, recyclable, non-flammable, and with high mechanical, acoustic performance and improvement of its thermal properties. The advantages of this invention include, among others, the following:
- Obtenção de novos metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça reforçada ou não, leves e multifuncionais, recicláveis e não inflamáveis para a construção leve; - Obtaining new porous metals and metallic structures of open porosity impregnated with reinforced or not reinforced cork, light and multifunctional, recyclable and non-flammable for light construction;
- Obtenção de novos metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça reforçada ou não, leves para isolamento acústico e com um melhoramento de condutividade térmica em relação à cortiça; - Obtaining new metals and porous and cellular metallic structures of open porosity impregnated with reinforced or not reinforced cork, light for acoustic insulation and with an improvement of thermal conductivity in relation to cork;
- Obtenção de novos metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça reforçada ou não, leves com boa capacidade de absorção de energia ao impacto e ao choque, ruido e vibrações que podem ser usados como núcleo e enchimento de estruturas tubulares de parede fina de diferentes geometrias e de painéis sandwich para aplicações estruturais, respetivamente. - Obtaining new porous metals and metallic structures of open porosity impregnated with reinforced or not reinforced cork, light with good capacity to absorb energy to impact and shock, noise and vibrations that can be used as a core and filling of tubular structures of thin wall of different geometries and sandwich panels for structural applications, respectively.
- Obtenção de novos metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça reforçada ou não, leves para peças de design e de mobiliário, incluindo o moderno devido à sua beleza e leveza. - Obtaining new metals and porous and cellular metallic structures with open porosity impregnated with reinforced or not reinforced cork, for design and furniture pieces, including the modern one due to its beauty and lightness.
- Aumentar o leque de aplicações metais e estruturas metálicas porosos e celulares de porosidade aberta geralmente usados para aplicações funcionais, podendo ser também usados para aplicações estruturais, uma vez que estão impregnados com cortiça reforçada ou não que aumenta o seu desempenho mecânico. - Increase the range of metal applications and porous and cellular metallic structures with open porosity generally used for functional applications, and can also be used for structural applications, since they are impregnated with reinforced cork or not which increases its mechanical performance.
- Possibilidade de usar o desperdício dos subprodutos de cortiça, como rolhas de cortiça, dos aglomerados puros e negros expandidos através da regranulação, de desperdícios de cortiça provenientes do processo industrial de diferentes granulometrias. - Possibility of using waste from cork by-products, such as cork stoppers, from pure agglomerates and blacks expanded through regranulation, from cork waste from the industrial process of different granulometries.
- Valorização dos resíduos da indústria da cortiça. - Recovery of waste from the cork industry.
Como principais aplicações, podem destacar-se: As main applications, the following can be highlighted:
- O fabrico de peças de mobiliário, decorativas e de design; - The manufacture of furniture, decorative and design pieces;
- O fabrico de componentes leves para isolamento acústico e amortecimento de ruído e vibrações na construção de ferramentas, máquinas e dispositivos. - The manufacture of lightweight components for sound insulation and noise and vibration damping in the construction of tools, machines and devices.
- O fabrico de painéis de revestimento leves exterior e interior para isolamento acústico e térmico de edifícios, casas e auditórios, bem como na indústria automóvel e aeronáutica; - The manufacture of light exterior and interior cladding panels for sound and thermal insulation of buildings, houses and auditoriums, as well as in the automotive and aeronautical industry;
- A incorporação destes novos materiais celulares de metal e de cortiça, como núcleo e enchimento de painéis sandwich e estruturas ocas para a indústria de transportes, para garantir uma construção leve, isolamento acústico, amortecimento de ruído e vibrações e uma boa capacidade de absorção de energia ao impacto. - The incorporation of these new cellular metal and cork materials, such as core and filling of sandwich panels and hollow structures for the transport industry, to guarantee a light construction, sound insulation, noise and vibration damping and a good absorption capacity. energy to impact.
- O fabrico de sistemas de proteção balística de equipamentos de proteção pessoal (ex. coletes), veículos e casas. - The manufacture of ballistic protection systems for personal protective equipment (eg vests), vehicles and houses.
Exemplos EXAMPLES
Exemplo 1. Preparação de uma espuma de alumínio de porosidade aberta impregnada por cortiça e o seu comportamento à compressão Example 1. Preparation of an open porosity aluminum foam impregnated with cork and its compression behavior
Espumas de alumínio de porosidade aberta impregnada de cortiça com uma densidade de aproximadamente 178,7 kg/m3 foram preparadas usando grânulos de cortiça granulada com um tamanho de partículas entre 0,5 mm e 1 mm ( Figura 2a) . Open porosity aluminum foams impregnated with cork with a density of approximately 178.7 kg / m 3 prepared using granulated cork granules with a particle size between 0.5 mm and 1 mm (Figure 2a).
Foi preparado um metal celular de alumínio de porosidade aberta (25 c 25 c 25 mm), com uma densidade de aproximadamente 113,5 kg/m3 e um tamanho de poro de 10 ppi (poros por polegada, em inglês pores per inch obtida por vazamento de suspensões, em inglês investment castíng method. An open porosity aluminum cellular metal (25 c 25 c 25 mm) was prepared, with a density of approximately 113.5 kg / m 3 and a pore size of 10 ppi (pores per inch, in English pores per inch obtained for leaking suspensions, in english investment castíng method.
Iniciou-se com a preparação do material de enchimento à base de cortiça misturando, 1,5 g de pós de cortiça granulada com um tamanho de partículas entre 0,5 mm e 1 mm, com 10% em massa de poliuretano e 5% em massa de água, usando um misturador de pás, durante 5 minutos. A água foi usada como aditivo de processamento para promover a reticulação do polímero, ou seja, o seu endurecimento. It started with the preparation of the cork-based filling material by mixing 1.5 g of granulated cork powders with a particle size between 0.5 mm and 1 mm, with 10% by weight of polyurethane and 5% by weight. mass of water, using a paddle mixer, for 5 minutes. Water was used as a processing additive to promote the crosslinking of the polymer, that is, its hardening.
A mistura resultante foi depois vazada para dentro de um molde de aço inoxidável aberto no topo que continha a espuma de alumínio de porosidade aberta (25 c 25 c 25 mm) na sua cavidade (25 c 25 c 25 mm), a qual foi previamente revestida por uma película antiaderente para facilitar a extração da espuma de alumínio e de cortiça resultante. The resulting mixture was then poured into a stainless steel mold opened at the top which contained the aluminum foam of open porosity (25 c 25 c 25 mm) in its cavity (25 c 25 c 25 mm), which was previously coated with a non-stick film to facilitate the extraction of the resulting aluminum foam and cork.
Após o enchimento, o molde foi fechado no topo e o metal celular de alumínio de porosidade aberta impregnada com cortiça resultante, foi comprimida apenas para garantir a sua densificação, exercendo uma pressão que não danifique a espuma de alumínio de porosidade aberta inicial. After filling, the mold was closed at the top and the aluminum cell metal of open porosity impregnated with the resulting cork was compressed only to guarantee its densification, exerting a pressure that does not damage the aluminum foam of initial open porosity.
O molde fechado contendo a espuma de alumínio de porosidade aberta foi, de seguida, colocado numa estufa pré-aquecida a 140°C durante 2h. Por último, a espuma de alumínio de porosidade aberta impregnada com cortiça foi extraída do interior do molde de aço inoxidável. Para a comparação das propriedades mecânicas das espumas de alumínio de porosidade aberta impregnadas com cortiça, foram preparadas as seguintes amostras: The closed mold containing the open porosity aluminum foam was then placed in a preheated oven at 140 ° C for 2h. Finally, the open porosity aluminum foam impregnated with cork was extracted from the interior of the stainless steel mold. To compare the mechanical properties of open porosity aluminum foams impregnated with cork, the following samples were prepared:
A.Aglomerado de cortiça (25 c 25 c 25 mm) de 126 kg/m3, usando-se a mesma metodologia descrita anteriormente, mas neste caso o molde de aço inoxidável encontrava-se vazio, e A. 126 kg / m 3 cork agglomerate (25 c 25 c 25 mm), using the same methodology described above, but in this case the stainless steel mold was empty, and
B.Aglomerado de cortiça com grânulos de cortiça de tamanho de cortiça inferior a 700 pm, em que se utilizou epóxido 20 % (m/m) como material adesivo em vez de poliuretano e sem a adição de água. B. Cork agglomerate with cork granules of cork size less than 700 pm, in which 20% epoxide (w / w) was used as an adhesive material instead of polyurethane and without the addition of water.
Foram também avaliadas as propriedades mecânicas (método descrito no exemplo 1) da cortiça aglomerada com óxido de grafeno e estruturas híbridas de nanocompósito. The mechanical properties (method described in example 1) of cork agglomerated with graphene oxide and hybrid nanocomposite structures were also evaluated.
O processo de modificação da cortiça com óxido de grafeno (nanocompósitos e estrutura híbrida de nanocompósito) está de acordo com o descrito no exemplo 3, abaixo. The process of modifying cork with graphene oxide (nanocomposites and hybrid nanocomposite structure) is in accordance with that described in example 3, below.
O desempenho mecânico das amostras de espuma de alumínio de porosidade aberta impregnadas com cortiça produzidas de acordo com esta metodologia, foram avaliadas através de ensaios de compressão usando uma velocidade de 0,1 mm/s, segundo a norma ISO 13314: 2011. O comportamento à compressão destas espumas de alumínio de porosidade aberta impregnadas com cortiça foi comparado com o comportamento dos seus componentes individuais (espumas de alumínio de porosidade aberta e os aglomerados de cortiça). O número de amostras ensaiadas para cada tipo de material foram três. The mechanical performance of the open porosity aluminum foam samples impregnated with cork produced according to this methodology, were evaluated through compression tests using a speed of 0.1 mm / s, according to ISO 13314: 2011. The behavior the compression of these open porosity aluminum foams impregnated with cork was compared with the behavior of their individual components (open porosity aluminum foams and cork agglomerates). The number of samples tested for each type of material was three.
Nas Figura 3 apresentam-se as curvas médias de tensão-extensão (Figura 3a) e de energia mecânica absorvida por unidade de volume (Figura 3b) dos diferentes tipos de amostras. A curva de energia mecânica absorvida por unidade de volume é obtida pela integração da curva tensão-extensão, segundo a norma ISO 13314: 2011. Figure 3 shows the average voltage-extension curves (Figure 3a) and mechanical energy absorbed per volume unit (Figure 3b) of the different types of samples. The mechanical energy curve absorbed per volume unit is obtained by the integration of the tension-extension curve, according to ISO 13314: 2011.
Os resultados mostram claramente, que as espumas de alumínio de porosidade aberta impregnadas com cortiça desenvolvidas, possuem melhores propriedades mecânicas, do que os seus componentes individuais, as espumas de alumínio de porosidade aberta e as amostras de aglomerado de cortiça (Figura 3). As curvas de tensão-extensão (Figura 3a) e as respetivas curvas de energia absorvida por volume (Figura 3b) das espumas alumínio de porosidade aberta impregnadas com cortiça são superiores às das espumas de alumínio de porosidade aberta e às dos aglomerados de cortiça. Por exemplo, para a extensão de 0,6, os valores da tensão e da energia absorvida das amostras de espuma de alumínio de porosidade aberta impregnadas com cortiça são 159 % e 81% superiores aos valores da espuma de alumínio de porosidade aberta inicial, respetivamente. Verifica-se também que o valor da tensão de cedência das amostras desenvolvidas de espumas de alumínio de porosidade aberta impregnadas com cortiça é muito superior (cerca de 0,344 MPa) ao valor da tensão de cedência das amostras de cortiça aglomerada (cerca de 0,116 MPa). The results clearly show that the open porosity aluminum foams impregnated with developed cork have better mechanical properties than their individual components, the open porosity aluminum foams and the cork agglomerate samples (Figure 3). The tension-extension curves (Figure 3a) and the respective energy curves absorbed by volume (Figure 3b) of open porosity aluminum foams impregnated with cork are superior to those of open porosity aluminum foams and those of cork agglomerates. For example, for the 0.6 extension, the values of tension and absorbed energy of open porosity aluminum foam samples impregnated with cork are 159% and 81% higher than the values of the initial open porosity aluminum foam, respectively . It is also noted that the yield strength of samples developed from open porosity aluminum foams impregnated with cork is much higher (about 0.344 MPa) than the yield strength of agglomerated cork samples (about 0.116 MPa) .
No caso das amostras B (figura 3c) pode-se verificar que a presença da cortiça no interior das espumas de alumínio origina aumentos de 395% de resistência mecânica para uma extensão de 0,6%. In the case of samples B (figure 3c), it can be seen that the presence of cork inside the aluminum foams leads to increases of 395% in mechanical resistance to an extension of 0.6%.
O desempenho mecânico das amostras de espuma de alumínio de porosidade aberta impregnadas com cortiça produzidas de acordo com esta metodologia, foram avaliadas através de ensaios de compressão quase estáticos e dinâmicos, usando uma velocidade de 0,1 mm/s e de 284 mm/s, segundo a norma ISO 13314: 2011, respetivamente, como se pode verificar na figura 3d. Exemplo 2. Preparação de espumas de alumínio de porosidade aberta impregnadas com cortiça e suas propriedades acústicasThe mechanical performance of open porosity aluminum foam samples impregnated with cork produced according to this methodology, were evaluated through quasi-static and dynamic compression tests, using a speed of 0.1 mm / s and 284 mm / s, according to ISO 13314: 2011, respectively, as can be seen in figure 3d. Example 2. Preparation of open porosity aluminum foams impregnated with cork and its acoustic properties
As espumas de alumínio de porosidade aberta impregnadas com cortiça de 50 mm de diâmetro e 25 mm de altura com uma densidade de 230 kg/m3 foram preparadas usando grânulos de cortiça com um tamanho de partícula inferior a 700 pm, os quais foram obtidos através da peneiração dos grânulos iniciais com uma distribuição de tamanhos de 5 mm a 10 mm (Figura 2a). Open porosity aluminum foams impregnated with 50 mm diameter and 25 mm high cork with a density of 230 kg / m 3 were prepared using cork granules with a particle size of less than 700 pm, which were obtained through sieving the initial granules with a size distribution of 5 mm to 10 mm (Figure 2a).
Para tal, foram utilizadas espumas de alumínio de porosidade aberta de 50 mm de diâmetro e 25 mm de altura (Figura 2b), com uma densidade de 117,5 kg/m3 e com tamanho de poro de 10 ppi (poros por polegada, preparada por método de fundição por precisão, em inglês investment castíng method. For this purpose, aluminum foams with open porosity of 50 mm in diameter and 25 mm in height were used (Figure 2b), with a density of 117.5 kg / m 3 and with a pore size of 10 ppi (pores per inch, prepared by precision casting method, in english investment castíng method.
Iniciou-se com a preparação de um material de enchimento à base de cortiça misturando 6,30 g de grânulos de cortiça com tamanhos inferiores a 700 pm com 20% em massa de epóxido, sem recorrer a aditivos de processamento, usando um misturador de pás para este efeito, durante 5 minutos. It started with the preparation of a cork-based filling material by mixing 6.30 g of cork granules less than 700 pm in size with 20% by weight of epoxide, without using processing additives, using a paddle mixer for this purpose, for 5 minutes.
Foi vazada 7 g de mistura resultante para dentro de um molde de aço inoxidável cilíndrico aberto no topo com uma cavidade interior (50 mm de diâmetro e 25 mm de altura) onde foi colocada previamente a espuma de alumínio de porosidade aberta de 50 mm de diâmetro e 25 mm de altura, o qual encontrava-se sob vibração mecânica. 7 g of the resulting mixture was poured into a cylindrical stainless steel mold opened at the top with an inner cavity (50 mm in diameter and 25 mm in height) where the 50 mm diameter open porosity aluminum foam was previously placed and 25 mm in height, which was under mechanical vibration.
Para facilitar o enchimento dos poros abertos da espuma de alumínio de porosidade aberta, o molde contendo a espuma de alumínio de porosidade aberta foi colocado numa plataforma vibratória. No final do enchimento dos poros, o molde foi fechado no topo e a espuma de alumínio de porosidade aberta impregnada com cortiça (poros preenchidos a cortiça) foi comprimida para garantir a sua densificação, exercendo uma pressão para não danificar a espuma de alumínio de porosidade aberta inicial. De seguida, o molde com a espuma de alumínio de porosidade aberta impregnada com cortiça resultante foi colocado numa estufa pré-aquecido a 80°C durante 2h. Por último, a espuma de alumínio de porosidade aberta impregnada com cortiça (Figura 2d) foi extraída do interior do molde. To facilitate the filling of the open pores of the open porosity aluminum foam, the mold containing the open porosity aluminum foam was placed on a vibrating platform. At the end of the pore filling, the mold was closed at the top and the aluminum foam of open porosity impregnated with cork (pores filled with cork) was compressed to ensure its densification, exerting pressure not to damage the aluminum foam of initial open porosity. Then, the mold with the resulting open porosity aluminum foam impregnated with cork was placed in an oven preheated to 80 ° C for 2h. Finally, the open porosity aluminum foam impregnated with cork (Figure 2d) was extracted from the interior of the mold.
Amostras de aglomerado de cortiça de 50 mm de diâmetro e 25 mm de altura(Figura 2c) com uma densidade de 158 kg/m3 foram preparadas a partir de grânulos de cortiça com um tamanho de partícula inferior a 700 pm, usando a mesma metodologia utilizada e descrita na preparação das espumas de alumínio de porosidade aberta impregnadas com cortiça, mas neste caso o material de enchimento à base de cortiça é vazado para um molde vazio com uma cavidade interior (50 mm de diâmetro e 25 mm de altura) seguido por prensagem, cura (80°C e 2h), extração do molde. Samples of cork agglomerate 50 mm in diameter and 25 mm in height (Figure 2c) with a density of 158 kg / m 3 were prepared from cork granules with a particle size of less than 700 pm, using the same methodology used and described in the preparation of open porosity aluminum foams impregnated with cork, but in this case the cork-based filling material is poured into an empty mold with an inner cavity (50 mm in diameter and 25 mm in height) followed by pressing, curing (80 ° C and 2h), mold extraction.
O desempenho acústico e/ou a eficiência da absorção sonora destas espumas de alumínio de porosidade aberta e dos seus componentes individuais foram avaliadas segundo a norma ASTM E 1050. Segundo esta norma, o teste consiste em colocar uma amostra de 50 mm de diâmetro e 25 mm de espessura de um determinado material na extremidade do interior de um tubo de impedância de 50 mm de diâmetro. Na outra extremidade, encontra-se a fonte sonora, um gerador de ruído RG10 que emite um ruído aleatório. The acoustic performance and / or the sound absorption efficiency of these open porosity aluminum foams and their individual components were evaluated according to the ASTM E 1050 standard. According to this standard, the test consists of placing a sample with a diameter of 50 mm and 25 mm. mm thick of a given material at the end of the inside of a 50 mm diameter impedance tube. At the other end, there is the sound source, a RG10 noise generator that emits random noise.
Existem ainda, dois microfones colocados no interior do tubo entre a fonte sonora e a amostra a ensaiar, que mede as variações de pressão que o som exerce no provete. O parâmetro medido é o coeficiente de absorção sonora que se define como sendo a propriedade que os materiais possuem que são capazes de transformar parte da energia sonora que sobre eles incide noutra forma de energia (ex. energia mecânica ou térmica). Segundo a norma, esta propriedade está definida como a absorção sonora de um meio como sendo a redução da potência sonora por dissipação resultante da propagação do som nesse meio. Depende do tipo de superfícies, do ângulo de incidência do som, da frequência da onda e das condições de aplicação do sistema do qual o material é constituinte. Assim, designa-se por a (alfa) a relação entre a quantidade de energia sonora que é dissipada ou absorvida por determinado material e aquela que sobre esse material incide. Este varia entre 0 (0% absorção) e 1 (100%). Quanto mais a % de som absorvido, maior eficácia do isolamento. Esta relação é quantificada de 0 a 1, o que simboliza que um material que possua um coeficiente de absorção sonora de 0,5 absorve 50% da energia que sobre ele incide. Esta é uma propriedade sobre qual se podem classificar os materiais, sendo que materiais com coeficientes iguais ou superiores a 0,5 são considerados absorventes. Um outro parâmetro é o indicador de NRC, o coeficiente de redução de ruído, em inglês Noíse Reduction Coefficient que é a média aritmética dos coeficientes de absorção sonora, a para as frequências 250 Hz, 500Hz, 1000 Hz e 2000Hz, arredondada a múltiplos de 0,05. Os resultados mostraram claramente que estes metais celulares de alumínio de porosidade aberta impregnadas com cortiça são materiais que podem ser usados para isolamento acústico, sendo absorvedores de ruído altamente eficazes numa ampla gama de frequências médias-altas (1000 a 3000 Hz). O desempenho é menos impressionante em baixas frequências (inferiores a 1000 Hz), como se mostra na Figura 4a . There are also two microphones placed inside the tube between the sound source and the sample to be tested, which measures the pressure variations that the sound exerts on the test piece. The measured parameter is the sound absorption coefficient, which is defined as the property that materials have that are capable of transforming part of the sound energy that affects them in another form of energy (eg mechanical or thermal energy). According to the standard, this property is defined as the sound absorption of a medium as the reduction of sound power by dissipation resulting from the propagation of sound in that medium. It depends on the type of surfaces, the angle of incidence of the sound, the frequency of the wave and the application conditions of the system of which the material is a constituent. Thus, a (alpha) is the relationship between the amount of sound energy that is dissipated or absorbed by a given material and that on that material. This varies between 0 (0% absorption) and 1 (100%). The more the% of sound absorbed, the more effective the insulation. This relationship is quantified from 0 to 1, which symbolizes that a material that has a sound absorption coefficient of 0.5 absorbs 50% of the energy that falls on it. This is a property on which materials can be classified, with materials with coefficients equal to or greater than 0.5 being considered absorbent. Another parameter is the NRC indicator, the noise reduction coefficient, in English Noíse Reduction Coefficient, which is the arithmetic mean of the sound absorption coefficients, and for the frequencies 250 Hz, 500Hz, 1000 Hz and 2000Hz, rounded up to multiples of 0.05. The results clearly showed that these open porosity aluminum cellular metals impregnated with cork are materials that can be used for sound insulation, being highly effective noise absorbers in a wide range of medium-high frequencies (1000 to 3000 Hz). Performance is less impressive at low frequencies (below 1000 Hz), as shown in Figure 4a.
Para efeitos de comparação, foram ainda preparadas espumas de alumínio de apenas em que novas amostras compósitas, com adição de óxido de grafeno, de acordo com os exemplos 2 e 3. A figura 4b apresenta a comparação dos coeficientes de absorção sonora e de redução de ruído de uma espuma de alumínio impregnado de cortiça reforçada com óxido de grafeno, designado por nanocompósito de cortiça e dos respetivos componentes individuais, a espuma de alumínio, aglomerado de nanocompósito de cortiça, em que se verifica que a espuma de alumínio impregnado de nanocompósito de cortiça apresenta elevado coeficiente de absorção de som numa ampla gama de frequências médias-altas (1000-4000 Hz), com o valor de 1 entre 1700 Hz e 2000 Hz e um valor superior a 0,85 entre 1261Hz e 4000 Hz. For comparison purposes, aluminum foams were also prepared from only new composite samples, with the addition of graphene oxide, according to examples 2 and 3. Figure 4b shows the comparison of the sound absorption and noise reduction coefficients of an aluminum foam impregnated with cork reinforced with graphene oxide, called cork nanocomposite and the respective individual components, aluminum foam, nanocomposite agglomerate of cork. cork, in which the aluminum foam impregnated with cork nanocomposite has a high sound absorption coefficient in a wide range of medium-high frequencies (1000-4000 Hz), with a value of 1 between 1700 Hz and 2000 Hz and a value greater than 0.85 between 1261Hz and 4000 Hz.
A figura 4c apresenta a comparação dos coeficientes de absorção sonora e de redução de ruído de uma espuma de alumínio e de cortiça e de espuma de alumínio impregnado de cortiça reforçada com óxido de grafeno, designado por nanocompósito de cortiça e dos respetivos componentes individuais, a espuma de alumínio, aglomerado de cortiça, aglomerado de nanocompósito de cortiça, em que se verifica que a espuma de alumínio impregnado de nanocompósito de cortiça apresenta elevado coeficiente de absorção de som numa ampla gama de frequências médias-altas (1000-4000 Hz), com o valor de 1 entre 1700 Hz e 2000 Hz e um valor superior a 0,85 entre 1261Hz e 4000 Hz. Figure 4c shows the comparison of the sound absorption and noise reduction coefficients of aluminum foam and cork and aluminum foam impregnated with cork reinforced with graphene oxide, called the cork nanocomposite and the respective individual components, a aluminum foam, cork agglomerate, cork nanocomposite agglomerate, in which the aluminum foam impregnated with cork nanocomposite has a high sound absorption coefficient over a wide range of medium-high frequencies (1000-4000 Hz), with a value of 1 between 1700 Hz and 2000 Hz and a value greater than 0.85 between 1261 Hz and 4000 Hz.
Exemplo 3: Preparação de espumas de alumínio de porosidade aberta impregnadas com cortiça e cortiça reforçada com óxido de grafeno e suas propriedades térmicas. Example 3: Preparation of aluminum foams of open porosity impregnated with cork and cork reinforced with graphene oxide and their thermal properties.
Espumas de alumínio de porosidade aberta impregnadas com cortiça simples com uma densidade de 230,4 kg/m3 e espumas de alumínio de porosidade aberta impregnadas com cortiça reforçada com óxido de grafeno com uma densidade de 223,8 kg/m3 foram preparadas usando grânulos com tamanho de partículas inferior a 700 mpi, obtidos por peneiração dos grânulos iniciais de 5 mm a 10 mm. Open porosity aluminum foams impregnated with simple cork with a density of 230.4 kg / m 3 and open porosity aluminum foams impregnated with graphene oxide reinforced cork with a density of 223.8 kg / m 3 were prepared using particle size granules less than 700 mpi, obtained by sieving the initial granules from 5 mm to 10 mm.
Para tal, foram utilizadas amostras de espumas de alumínio de porosidade aberta (25 c 25 c 25 mm) de densidade de 117,5 kg/m3 e com tamanho de poro de 10 ppi (poros por polegada), preparada por método de fundição por precisão, em inglês investment castíng method. Utilizou-se também óxido de grafeno comercial, esfoliado quimicamente e comercializado em suspensão aquosa 0.4 % m/m como elemento de reforço da cortiça para preparar as espumas de alumínio de porosidade aberta impregnadas com cortiça reforçada de óxido de grafeno (nanocompósito de cortiça). For this purpose, samples of aluminum foams with open porosity (25 c 25 c 25 mm) with a density of 117.5 kg / m 3 and with a pore size of 10 ppi (pores per inch), prepared by casting method, were used. for accuracy, in english investment castíng method. Commercial graphene oxide, chemically exfoliated and marketed in 0.4% w / w aqueous suspension, was also used as a reinforcement element for cork to prepare open porosity aluminum foams impregnated with graphene oxide reinforced cork (cork nanocomposite).
As espumas de alumínio de porosidade aberta impregnadas com cortiça (25 c 25 c 25 mm) foram preparadas usando a mesma metodologia descrita no exemplo 2. 1,60 g de grânulos de cortiça foram misturados com 20 % em massa de epóxido. A mistura resultante é vazada para o interior dos poros abertos de um metal celular de alumínio (25 c 25 c 25 mm) com 10 ppi que se encontrava no interior da cavidade (25 c 25 c 25 mm) de num molde de aço inoxidável colocado numa plataforma vibratória, seguido por densificação, cura (80°C durante 2 h) e extração do molde. Amostras de aglomerados de cortiça (25 c 25 x 25 mm) com 154,6 kg/m3 de densidade foram também preparados seguindo esta metodologia, em que o material de enchimento foi vazado para um molde vazio com uma cavidade oca (25 x 25 x 25 mm). The open porosity aluminum foams impregnated with cork (25 c 25 and 25 mm) were prepared using the same methodology described in example 2. 1.60 g of cork granules were mixed with 20% by weight of epoxide. The resulting mixture is poured into the open pores of an aluminum cellular metal (25 c 25 c 25 mm) with 10 ppi that was inside the cavity (25 c 25 c 25 mm) in a stainless steel mold placed on a vibrating platform, followed by densification, curing (80 ° C for 2 h) and extraction from the mold. Samples of cork agglomerates (25 c 25 x 25 mm) with 154.6 kg / m 3 of density were also prepared following this methodology, in which the filling material was poured into an empty mold with a hollow cavity (25 x 25 x 25 mm).
As espumas de alumínio de porosidade aberta impregnadas com cortiça reforçada, foram preparadas usando óxido de grafeno como elementos de reforço. A primeira etapa deste processo consistiu em incorporar e distribuir uniformemente o óxido de grafeno nos grânulos de cortiça. Tal foi conseguido, usando a técnica de deposição camada a camada, em inglês de layer by layer, LBL. Para tal, os grânulos de cortiça (< 700 mpi) foram imersos em soluções sucessivas - solução aquosa de 0,1% em massa de poly(diallyldimethylammonium chloride; solução 0,1% em massa de Poly(sodium 4-styrene sulfonate) e solução 0,1% em massa de poly (diallyldimethylammonium chloride, durante 15 minutos, seguido por filtragem e lavagem com água destilada, para remover as impurezas. The open porosity aluminum foams impregnated with reinforced cork, were prepared using graphene oxide as reinforcement elements. The first stage of this process consisted of incorporating and evenly distributing the graphene oxide in the cork granules. This was achieved using the layer by layer deposition technique, in English layer by layer, LBL. For this purpose, the cork granules (<700 mpi) were immersed in successive solutions - aqueous solution of 0.1% by weight of poly (diallyldimethylammonium chloride; 0.1% solution by weight of Poly (sodium 4-styrene sulfonate) and 0.1% solution by weight of poly (diallyldimethylammonium chloride, for 15 minutes, followed by filtration and washing with distilled water, to remove impurities.
De seguida, estes grânulos de cortiça foram imersos numa solução aquosa de óxido de grafeno de 0.1 % em massa durante 15 min, seguido de filtragem e lavagem com água destilada. Os grânulos de cortiça aglomerada contendo as nanoparticulas de óxido de grafeno foram secos numa estufa a 40°C durante 24 h. 1,6 g destes grânulos foram depois misturados com de foram misturados com 20 % em massa de epóxido. A mistura resultante foi vazada para o interior dos poros abertos de uma espuma de alumínio de porosidade aberta (25 c 25 c 25 mm), que se encontra no interior de num molde de aço inoxidável, o qual foi colocado numa plataforma vibratória sob vibração, seguido por densificação, cura (80°C durante 2 h) e extração do molde.Then, these cork granules were immersed in an aqueous solution of 0.1% by weight graphene oxide for 15 min, followed by filtration and washing with distilled water. The agglomerated cork granules containing the graphene oxide nanoparticles were dried in an oven at 40 ° C for 24 h. 1.6 g of these granules were then mixed with and mixed with 20 mass% epoxide. The resulting mixture was poured into the open pores of an aluminum foam of open porosity (25 c 25 c 25 mm), which is inside a stainless steel mold, which was placed on a vibrating platform under vibration, followed by densification, curing (80 ° C for 2 h) and extraction from the mold.
Igualmente, amostras de cortiça reforçada com óxido de grafeno (25 x 25 x 25 mm) com 154,9 kg/m3 de densidades, foram preparadas usando a mesma metodologia descrita para a preparação das espumas de alumínio de porosidade aberta impregnadas com cortiça reforçada de óxido de grafeno, em que o molde se encontrava vazio. Likewise, samples of graphene oxide reinforced cork (25 x 25 x 25 mm) with a density of 154.9 kg / m 3 , were prepared using the same methodology described for the preparation of aluminum porosity foams impregnated with reinforced cork graphene oxide, in which the mold was empty.
As condutividades térmicas das diferentes amostras foram medidas ( Figura 5 ) , usando um equipamento da marca Hot Disk, modelo TPS2500, de acordo com a norma ISO 22007-2. A medição é determinada usando um sensor de área plana transiente, que é colocado entre dois provetes idênticos do mesmo tipo de material. Este método consiste em aplicar uma intensidade de corrente elétrica e mede-se a resistência da propagação do calor pela amostra, ou seja, regista o perfil de temperatura no interior da amostra (axial e radial) em função do tempo.The thermal conductivities of the different samples were measured (Figure 5), using equipment from the Hot Disk brand, model TPS2500, according to the ISO 22007-2 standard. The measurement is determined using a transient flat area sensor, which is placed between two identical test pieces of the same type of material. This method consists of applying an electric current intensity and the resistance of the propagation of the heat by the sample, that is, it registers the temperature profile inside the sample (axial and radial) as a function of time.
Os resultados ( Figura 5 ) demonstram claramente que as espumas de alumínio de porosidade aberta são as que apresentam um valor superior ([0,178 W/(m.k)], seguidas das espumas de alumínio de porosidade aberta impregnadas com cortiça ([0,091 W/(m.k)]) e as reforçada de óxido de grafeno ([0,101 W/ (m.k)]). Estas amostras apresentam valores superiores às amostras de cortiça aglomerada não reforçada ([0,055 W/(m.k)]) e de cortiça aglomerada reforçada com óxido de grafeno ([0,057 W/ (m.k)]). Estas espumas de alumínio de porosidade aberta impregnadas com cortiça reforçada ou não desenvolvidas apresentam valores de condutividade térmica podem ser usadas para certas aplicações, em que interessa ter valores superiores aos da cortiça. The results (Figure 5) clearly demonstrate that aluminum foams with open porosity are those with a higher value ([0.178 W / (mk)], followed by aluminum foams with open porosity impregnated with cork ([0.091 W / ( mk)]) and those reinforced with graphene oxide ([0.101 W / (mk)]). These samples have higher values than the samples of unreinforced agglomerated cork ([0.055 W / (mk)]) and of agglomerated cork reinforced with graphene oxide ([0.057 W / (mk)]). These open porosity aluminum foams impregnated with reinforced or undeveloped cork have thermal conductivity values that can be used for certain applications, in which it is important to have values higher than those of cork.
Existem no mercado, materiais que são usados como isolantes térmicos com valores de condutividade térmica semelhantes ou mesmo superiores a estas espumas de alumínio de porosidade aberta impregnadas com cortiça reforçada ou não desenvolvidaThere are materials on the market that are used as thermal insulators with values of thermal conductivity similar or even higher than these aluminum foams of open porosity impregnated with reinforced or undeveloped cork
Um bom isolamento térmico deve ter não só uma baixa condutividade térmica, mas também uma boa difusão térmica, para que as variações da temperatura exterior não sejam facilmente transmitidas aos espaços interiores. Mais ainda, devem ser inertes quimicamente, estáveis dimensionalmente e de fácil aplicação na superfície. A vantagem destas espumas de alumínio e cortiça resultantes é a sua baixa densidade, suportarem temperaturas elevadas e boa resistência à compressão. Estes novos metais celulares de alumínio de porosidade aberta impregnadas com cortiça reforçada ou não desenvolvidos é importante em certas aplicações em que se pretende um melhoramento destas propriedades térmicas, mantendo um bom isolamento acústico. Exemplo 5: Preparação de espumas de alumínio de porosidade aberta impregnadas com cortiça reforçada de óxido de grafeno e seu comportamento de retardação e extinção da chama A good thermal insulation must have not only a low thermal conductivity, but also a good thermal diffusion, so that the variations of the outside temperature are not easily transmitted to the interior spaces. Furthermore, they must be chemically inert, dimensionally stable and easy to apply to the surface. The advantage of these resulting aluminum and cork foams is their low density, withstand high temperatures and good resistance to compression. These new open porosity aluminum cell metals impregnated with reinforced or undeveloped cork are important in certain applications where these thermal properties are to be improved, maintaining good sound insulation. Example 5: Preparation of open porosity aluminum foams impregnated with graphene oxide reinforced cork and its flame retardant and flame extinction behavior
Amostras de espumas de alumínio de porosidade aberta impregnadas com cortiça reforçada de óxido de grafeno e de aglomerados de cortiça reforçada de óxido de grafeno foram preparadas usando a metodologia descrita no exemplo 4. Na Figura 6a apresenta-se uma sequência de imagens do teste de chama efetuado para cada tipo de amostra. As imagens apresentadas foram tiradas de 2s em 2s. 0 tempo de extinção da chama das amostras foi determinado sujeitando as amostras previamente a uma chama de uma lamparina durante 5 s, medindo de seguida o tempo que a chama demorava a extinguir-se completamente. Os resultados demostram que a chama extingue mais depressa na espuma espumas de alumínio de porosidade aberta impregnadas com cortiça reforçada de óxido de grafeno.Samples of open porosity aluminum foams impregnated with graphene oxide reinforced cork and graphene oxide reinforced cork agglomerates were prepared using the methodology described in example 4. Figure 6a presents a sequence of images from the flame test carried out for each type of sample. The images presented were taken every 2 seconds. The time of extinguishing the flame of the samples was determined by subjecting the samples previously to a flame of a lamp for 5 s, then measuring the time that the flame took to extinguish completely. The results show that the flame extinguishes faster in the foam aluminum foams of open porosity impregnated with reinforced cork of graphene oxide.
A figura 6b refere-se a uma amostra (25 c 25 c 25 mm) de aglomerado de cortiça, de uma amostra (25 c 25 c 25 mm)de espuma de alumínio e de cortiça, de uma amostra (25 c 25 c 25 mm) de aglomerado de cortiça reforçada com óxido de grafeno, designado por nanocompósito de cortiça e de uma amostra (25 c 25 x 25 mm) de espuma de alumínio impregnado de nanocompósito de cortiça onde se verifica que a chama extingue mais depressa nas espumas de alumínio de porosidade aberta impregnadas com cortiça reforçada de óxido de grafeno. Figure 6b refers to a sample (25 c 25 c 25 mm) of cork agglomerate, a sample (25 c 25 c 25 mm) of aluminum foam and cork, a sample (25 c 25 c 25 mm) of cork agglomerate reinforced with graphene oxide, referred to as cork nanocomposite and of a sample (25 c 25 x 25 mm) of aluminum foam impregnated with cork nanocomposite where it is verified that the flame extinguishes faster in the foam of open porosity aluminum impregnated with graphene oxide reinforced cork.
Referências References
Andersen O., Waag U., Schneider L., Stephani G., Kieback B. Novel Metallic Hollow Sphere Structures. Advanced Engineering Materials 2000; 2(4): 192-195. Andersen O., Waag U., Schneider L., Stephani G., Kieback B. Novel Metallic Hollow Sphere Structures. Advanced Engineering Materials 2000; 2 (4): 192-195.
Desbois P., Scherzer D., Wollny A., Radtke A., Steinke T.H., Schaum mit fullung WO2012072543A1, 2012. Duarte I., Peixinho N., Andrade-Campos A., Valente R. Editorial - Special Issue on Cellular Materials. Science and Technology of Materials 2018, 30: 1-3. Desbois P., Scherzer D., Wollny A., Radtke A., Steinke TH, Schaum mit fullung WO2012072543A1, 2012. Duarte I., Peixinho N., Andrade-Campos A., Valente R. Editorial - Special Issue on Cellular Materials. Science and Technology of Materials 2018, 30: 1-3.
Duarte I., Vesenjak M., Krstulovic-Opara L., Ren Z. Crush performance of multifunctional hybrid foams based on an aluminium alloy open-cell foam skeleton. Polymer Testing 2018; 67: 246-256. Duarte I., Vesenjak M., Krstulovic-Opara L., Ren Z. Crush performance of multifunctional hybrid foams based on an aluminum alloy open-cell foam skeleton. Polymer Testing 2018; 67: 246-256.
Gil L. Cork Composites: A Review. Materials 2009, 2, 776-789; doi:10.3390/ma2030776. Gil L. Cork Composites: A Review. Materials 2009, 2, 776-789; doi: 10.3390 / ma2030776.
Imam M.A., Rath B.B., Keller T.M., Porous metal/organic polymeric composites, W02018087076A1, 2018. Imam M.A., Rath B.B., Keller T.M., Porous metal / organic polymeric composites, W02018087076A1, 2018.
ISO 13314: 2011. Mechanical testing of metais— Ductility testing— Compression test for porous and cellular metais. ISO 13314: 2011. Mechanical testing of metals— Ductility testing— Compression test for porous and cellular metals.
ISO 22007-2: 2008. Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (hot disc) method ISO 22007-2: 2008. Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source (hot disc) method
Jaeckel M., Smigilski H. Process for Producing Metallic and Ceramic Hollow Spheres, German Patent DE3724156A1, 1988. Jaeckel M., Smigilski H. Process for Producing Metallic and Ceramic Hollow Spheres, German Patent DE3724156A1, 1988.
Sherman A.J., Doud B. Syntactic metal matrix materiais and methods, US20130098203A1, 2013. Sherman A.J., Doud B. Syntactic metal matrix materials and methods, US20130098203A1, 2013.
Stõbener K., Baumeister J., Lehmhus D., Zimmer N., Baumeister J., 2005. German patent, W02005000502A1, 2005. Stõbener K., Baumeister J., Lehmhus D., Zimmer N., Baumeister J., 2005. German patent, W02005000502A1, 2005.
Stõbener K., Rausch G. Aluminium foam-polymer composites: Processing and characteristics. Journal of Materials Science 2009; 44(6): 1506-1511. Stõbener K., Rausch G. Aluminum foam-polymer composites: Processing and characteristics. Journal of Materials Science 2009; 44 (6): 1506-1511.
Wadley, H.N.G., Multifunctional periodic cellular metais. Proc. Roy. Soc. A. 2006, 364: 31-68. Wadley, H.N.G., Multifunctional periodic cellular metals. Proc. Roy. Soc. A. 2006, 364: 31-68.

Claims

REIVINDICAÇÕES
1. Metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça caracterizados por compreender: 1. Metals and porous and cellular metallic structures of open porosity impregnated with cork characterized by comprising:
- pelo menos um metal poroso ou celular ou uma estrutura porosa ou celular com poros abertos, interligados, que partilham entre si as arestas, formando arranjos tridimensionais distribuídos periodicamente ou estocasticamente, formando uma espuma de matriz metálica de pelo menos um metal ou liga metálica e - at least one porous or cellular metal or a porous or cellular structure with open, interconnected pores that share the edges, forming three-dimensional arrangements periodically or stochastically distributed, forming a metallic matrix foam of at least one metal or metal alloy, and
- um material de enchimento dos poros da referida matriz que compreende cortiça, em que a cortiça se encontra presente na forma de partículas, grãos, grânulos ou pó de diferentes densidades e/ou de granulometrias, cuja distribuição de tamanhos é inferior à dos poros abertos do referido metal e estrutura metálica poroso e celular. - a pore filling material for said matrix comprising cork, in which cork is present in the form of particles, grains, granules or powder of different densities and / or granulometries, whose size distribution is less than that of open pores of said metal and porous and cellular metallic structure.
2. Metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, de acordo com a revindicação 1, caracterizados por o metal ser selecionado de entre alumínio, magnésio, manganês, cobre, silício, zinco, estanho, níquel e suas ligas. 2. Metals and porous and cellular metallic structures of open porosity impregnated with cork, according to claim 1, characterized in that the metal is selected from aluminum, magnesium, manganese, copper, silicon, zinc, tin, nickel and their alloys.
3. Metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, de acordo com qualquer uma das revindicações anteriores, caracterizados por o material de enchimento compreender cortiça proveniente de cortiça reciclada ou de desperdícios de cortiça de processos industriais. 3. Porous and cellular open porosity metallic and metallic structures impregnated with cork, according to any of the previous claims, characterized in that the filling material comprises cork from recycled cork or from cork waste from industrial processes.
4. Metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, de acordo com qualquer uma das revindicações anteriores, caracterizados por as espumas abertas de metal terem tamanho de poros entre 1 ppi a 500 ppi, mais preferencialmente de 10 ppi a 250 ppi, ainda mais preferencialmente de 50 ppi a 150 ppi, ou ainda de 75 ppi a 100 ppi. 4. Metals and porous and cellular metallic structures of open porosity impregnated with cork, according to any of the previous claims, characterized because the open metal foams are pore size between 1 ppi to 500 ppi, more preferably from 10 ppi to 250 ppi, even more preferably from 50 ppi to 150 ppi, or even from 75 ppi to 100 ppi.
5. Metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, de acordo com qualquer uma das revindicações anteriores, caracterizados por o material de enchimento compreender pelo menos um elemento de reforço selecionados de entre os cerâmicos, metais, polímeros, vidros, materiais à base de carbono, semelhantes na forma de partículas, fibras, estruturas tubulares ou folhas, semelhantes e suas combinações. 5. Metals and porous and cellular metallic structures of open porosity impregnated with cork, according to any of the previous claims, characterized in that the filler material comprises at least one reinforcement element selected from ceramics, metals, polymers, glass, carbon-based materials, similar in the form of particles, fibers, tubular structures or sheets, similar and their combinations.
6. Metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, de acordo com qualquer uma das revindicações anteriores, caracterizados por o material de enchimento polímero ser poliuretano ou epóxido. 6. Metals and porous and cellular metallic structures of open porosity impregnated with cork, according to any of the previous claims, characterized in that the polymeric filler material is polyurethane or epoxide.
7. Metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, de acordo com qualquer uma das revindicações anteriores, caracterizados por o material de enchimento conter 0 -50% em massa de elementos de reforço, de tamanho micrométrico ou 0-10% em massa de elementos de reforço, de tamanho nanométrico. 7. Metals and porous and cellular metallic structures of open porosity impregnated with cork, according to any of the previous claims, characterized in that the filler material contains 0 -50% by weight of reinforcement elements, of micrometric size or 0-10 % by mass of reinforcement elements, of nanometric size.
8. Metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, de acordo com qualquer uma das revindicações anteriores, caracterizados por o material de enchimento compreender aditivos de processamento, preferencialmente do tipo reticulante. 8. Metals and porous and cellular metallic structures of open porosity impregnated with cork, according to any of the previous claims, characterized in that the filler material comprises processing additives, preferably of the crosslinking type.
9. Processo de produção de metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, tal como o descrito nas reivindicações 1 a 8, caracterizado por compreender os seguintes passos: a) Preparação do material de enchimento à base de cortiça, através da mistura das matérias-primas selecionadas, em particular do material de cortiça com o polímero e opcionalmente com incorporação de pelo menos um elemento de reforço; b) Enchimento dos poros abertos de um metal ou de uma estrutura celular ou poroso pelo material de enchimento de (a), pelo vazamento desse material para o interior dos poros abertos de matriz metálica de pelo menos um metal ou liga metálica; e c) Densificação e cura do material de (b). 9. Process of production of porous metals and metallic structures of open porosity impregnated with cork, as described in claims 1 to 8, characterized by comprising the following steps: a) Preparation of cork-based filling material, by mixing the selected raw materials, in particular the cork material with the polymer and optionally with incorporation of at least one reinforcement element; b) Filling the open pores of a metal or a cellular or porous structure with the filling material of (a), by pouring that material into the open pores of the metal matrix of at least one metal or metal alloy; and c) Densification and curing of the material of (b).
10. Processo, de acordo com a reivindicação 9, caracterizado por no passo (a) a incorporação do elemento de reforço ser realizada através de técnicas por via seca e/ou húmida, em agitadores mecânicos, por processamento coloidal e técnica de passo a passo. Process according to claim 9, characterized in that in step (a) the incorporation of the reinforcement element is carried out by dry and / or wet techniques, in mechanical stirrers, by colloidal processing and step by step technique .
11. Processo, de acordo com a reivindicação 9 ou 10, caracterizado por no passo (b), o enchimento dos poros ser realizado sob vibração e/ou pressão. Process according to claim 9 or 10, characterized in that in step (b), the pore filling is carried out under vibration and / or pressure.
12. Processo, de acordo com a reivindicação 9, 10 ou 11, caracterizado por no passo (b), se utilizar moldes ou estruturas ocas de paredes finas de geometrias simples e/ou complexas. Process according to claim 9, 10 or 11, characterized in that in step (b), hollow-wall molds or structures of simple and / or complex geometries are used.
13. Processo, de acordo com a reivindicação anterior, caracterizado por no passo (b) os moldes ou estruturas ocas de paredes finas de geometrias simples e complexas ter revestimento com propriedades antiaderentes. 13. Process according to the preceding claim, characterized in that in step (b) the molds or hollow structures of thin walls of simple and complex geometries have a coating with non-stick properties.
14. Processo, de acordo com a reivindicação anterior, caracterizado por o revestimento com propriedades antiaderentes ser papel vegetal, folhas de teflon, papel Kraft e/ou papel e filmes à base de silicone. 14. Process according to the preceding claim, characterized in that the coating with properties nonstick be tracing paper, teflon sheets, kraft paper and / or paper and silicone-based films.
15. Processo, de acordo com a reivindicação 9, 10, 11, 12, 13 ou 14, caracterizado por o passo (c) ser realizado ao ar ou em vácuo, sem aplicação de temperatura ou, também, com a possibilidade de variar a temperatura podendo ir, tipicamente até aos 250°C. Process according to claim 9, 10, 11, 12, 13 or 14, characterized in that step (c) is carried out in air or in a vacuum, without applying temperature or, also, with the possibility of varying the temperature, typically up to 250 ° C.
16. Utilização dos metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, de acordo com o descrito nas reivindicações 1 a 8, caracterizada por serem aplicados na indústria de metais e estruturas metálicas porosos e celulares de porosidade aberta, nomeadamente, em espumas metálicas e esponjas metálicas. 16. Use of open porous and cellular metals and metal structures impregnated with cork, as described in claims 1 to 8, characterized in that they are applied in the open porosity and cellular metal and metal structures industry, namely, in metal foams and metal sponges.
17. Utilização dos metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, de acordo com o descrito nas reivindicações 1 a 8, caracterizada por serem aplicados na construção de casas, carros, comboios, barcos, aviões, ferramentas, máquinas, dispositivos, mobiliário, peça de design, para isolamento acústico, absorção acústica, construção leve, com melhoria de comportamento térmico, energia ao impacto e ao choque. 17. Use of open porous and cellular metals and metallic structures impregnated with cork, as described in claims 1 to 8, characterized by being applied in the construction of houses, cars, trains, boats, airplanes, tools, machines, devices, furniture, design piece, for sound insulation, sound absorption, light construction, with improved thermal behavior, energy to impact and shock.
18. Utilização dos metais e estruturas metálicas porosos e celulares de porosidade aberta impregnados com cortiça, de acordo com o descrito nas reivindicações 1 a 8, caracterizada por ser aplicadas como núcleo ou enchimento de painéis sanduíche ou estruturas tubulares de parede fina ocas para sistemas de absorção de energia ao impacto e para sistemas de proteção balística para veículos, casas e equipamento de proteção pessoais como os coletes. 18. Use of open porous and cellular metals and metallic structures impregnated with cork, as described in claims 1 to 8, characterized by being applied as a core or filling for sandwich panels or hollow thin-walled tubular structures for impact energy absorption and for ballistic protection systems for vehicles, houses and personal protective equipment such as vests.
PCT/IB2020/059560 2019-10-11 2020-10-12 Porous and cellular metals and metal structures of open porosity impregnated with cork, production processes thereof and uses of same WO2021070155A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20811435.5A EP4043125A1 (en) 2019-10-11 2020-10-12 Porous and cellular metals and metal structures of open porosity impregnated with cork, production processes thereof and uses of same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT11583519 2019-10-11
PT115835 2019-10-11

Publications (1)

Publication Number Publication Date
WO2021070155A1 true WO2021070155A1 (en) 2021-04-15

Family

ID=73543304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/059560 WO2021070155A1 (en) 2019-10-11 2020-10-12 Porous and cellular metals and metal structures of open porosity impregnated with cork, production processes thereof and uses of same

Country Status (3)

Country Link
EP (1) EP4043125A1 (en)
PT (1) PT2021070155B (en)
WO (1) WO2021070155A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES1051607U (en) * 2002-04-16 2002-09-01 Alonso Luisa Maria Gonzalez Prefabricated panel construction. (Machine-translation by Google Translate, not legally binding)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES1051607U (en) * 2002-04-16 2002-09-01 Alonso Luisa Maria Gonzalez Prefabricated panel construction. (Machine-translation by Google Translate, not legally binding)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CELINA PIRES GAMEIRO ET AL: "Dynamic behaviour of cork and cork-filled aluminium tubes: Numerical simulation and innovative applications", HOLZFORSCHUNG: INTERNATIONAL JOURNAL OF THE BIOLOGY, CHEMISTRY, PHYSICS AND TECHNOLOGY OF WOOD, vol. 61, no. 4, 1 June 2007 (2007-06-01), DE, pages 400 - 405, XP055769083, ISSN: 0018-3830, DOI: 10.1515/HF.2007.051 *

Also Published As

Publication number Publication date
EP4043125A1 (en) 2022-08-17
PT2021070155B (en) 2022-12-23

Similar Documents

Publication Publication Date Title
US20220259850A1 (en) Composite insulation including an inorganic aerogel and a melamine foam
Afolabi et al. Syntactic foams formulations, production techniques, and industry applications: A review
RU2426751C2 (en) Aerogel-based composite materials
AU629009B2 (en) Inorganic foam body and process for producing same
SE432096B (en) Rigid Inorganic Foam Product AND WAY TO MAKE IT
CN111217922A (en) Porous nanocrystalline cellulose structures
JPH04275344A (en) Composite foam having low thermal conductivity
CA1193149A (en) Fire resistant materials
Kremensas et al. Hemp shivs and corn-starch-based biocomposite boards for furniture industry: Improvement of water resistance and reaction to fire
EP2561013A1 (en) Insulating foamed moulded part
Afolabi et al. Fabrication and characterization of two-phase syntactic foam using vacuum assisted mould filling technique
JP5745083B2 (en) Nanoporous particles in a hollow latex matrix
KR102149238B1 (en) A method of coating expanded polystyrene resin particles expanded graphite
Boztoprak et al. Sound insulation performance of honeycomb core aluminum sandwich panels with flexible epoxy-based foam infill
WO2021070155A1 (en) Porous and cellular metals and metal structures of open porosity impregnated with cork, production processes thereof and uses of same
EP3216825B1 (en) Method for recycling waste material
JPS5911616B2 (en) Foam plastic molded products and their manufacturing method
EP3743379A1 (en) Insulation panel
KR20180102784A (en) Organic insulation including expanding inorganic aggregate
Yang et al. Synthesis and acoustic properties study of castor‐oil‐based polyurethane foams with the addition of graphene‐oxide‐modified straw fibers
Liew et al. Effects of expandable graphite on flammability, thermal and mechanical performance of palm empty fruit bunch fibre reinforced composite
JP2000096737A (en) Fireproof member and its manufacture
CA2827215C (en) Novel composite materials and methods for manufacturing same
Foti et al. Heat treatment’s effect on properties of polystyrene from building demolitions
Dewan et al. Polyvinyl Chloride Foam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20811435

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020811435

Country of ref document: EP

Effective date: 20220511