WO2021068834A1 - 并联型三相交流接触器的自适应同步控制方法 - Google Patents

并联型三相交流接触器的自适应同步控制方法 Download PDF

Info

Publication number
WO2021068834A1
WO2021068834A1 PCT/CN2020/119331 CN2020119331W WO2021068834A1 WO 2021068834 A1 WO2021068834 A1 WO 2021068834A1 CN 2020119331 W CN2020119331 W CN 2020119331W WO 2021068834 A1 WO2021068834 A1 WO 2021068834A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
breaking
contactor
parallel
contactors
Prior art date
Application number
PCT/CN2020/119331
Other languages
English (en)
French (fr)
Inventor
许志红
张槟鑫
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2021068834A1 publication Critical patent/WO2021068834A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits

Definitions

  • the invention relates to the technical field of low-voltage electrical appliances, in particular to an adaptive synchronous control method of a parallel three-phase contactor.
  • Smaller switching appliances use contacts in parallel to improve their current capacity and breaking current levels, including commonly used protective appliances and control appliances.
  • Large-capacity circuit breakers, contactors, knife isolating switches and fuses usually have several poles.
  • the parallel structure improves the rated current capacity and realizes the expansion operation.
  • the purpose of the present invention is to provide an adaptive synchronization control method for a parallel three-phase AC contactor, which realizes the synchronization of the actions of each contactor in the expansion operation of each phase and completes the phase combination of the three-phase contactor.
  • An adaptive synchronization control method for a parallel three-phase AC contactor including the following steps:
  • Step S1 Detect the coil voltage of each contactor of the parallel three-phase AC contactor, and judge whether the power supply of the control circuit is normal;
  • Step S2 When the power-on range is reached, enter the closing process, and then open the contact voltage sampling channel to detect the contact voltage phase of each contactor;
  • Step S3 Synchronously control the closing process of the parallel three-phase AC contactor, considering the voltage phase changes brought about by the closing sequence, and finally make the contactors of each phase can be closed synchronously at the selected phase;
  • Step S4 When the coil voltage detection determines that the control loop power supply is in the power-off range, enter the opening process, and dynamically adjust the breaking sequence of the branch contactors connected in parallel in each phase;
  • Step S5 Set the opening command by matching the software delay with the inherent breaking time of the mechanism, considering the phase change of the other two-phase currents after the first opening phase is disconnected, so as to achieve the control of zero current breaking;
  • Step S6 The adaptive dynamic adjustment strategy is added to the zero current opening control and synchronous breaking control process of the contactor, so that the contactors of each phase can be stabilized in the zero current breaking area and successfully opened synchronously.
  • step S3 is specifically:
  • Step S31 Separately control the closing command of each phase contact with the closing command of the contactors connected in parallel in each phase, and the closing command of each phase contactor is used to match the software delay with the action time of the mechanism;
  • Step S32 Consider the phase change of the voltage across the contactors of each phase caused by the different closing sequence during the closing process, so that the contactors of each phase can be closed at the selected phase;
  • Step S33 The closing command of the contactors connected in parallel in each phase will only take effect after the closing command of the contactors of each phase is issued. It is used for the synchronous pull-in control of the contactors of each branch connected in parallel to realize the control of the contactors in each phase. Synchronous, same-phase closing operation of contactors on each branch inside.
  • step S5 is specifically:
  • Step S51 Divide each branch contactor connected in parallel into a breaking sequence adjustment phase and a breaking time adjustment phase;
  • Step S52 By detecting the occurrence process of the current transfer phenomenon, extract the breaking sequence and breaking time characteristic quantities of each branch contactor connected in parallel in each phase, and identify the breaking sequence of each branch contactor online;
  • Step S53 During adjustment, the adjustment phase of the breaking time is not changed, and the breaking time value of the breaking sequence adjustment phase is continuously adjusted to be close to the breaking time value of the adjusting phase at the breaking time, and finally the error of the breaking time of the contactors on each branch does not exceed
  • the preset value achieves the control of zero current breaking.
  • step S6 is specifically:
  • Step S61 By detecting the moment of occurrence of the current transfer phenomenon, it is judged online whether it is necessary to adjust the breaking time of the adjusting phase of the breaking time;
  • Step S62 During adjustment, the breaking time adjustment phase and the breaking sequence adjustment phase change the breaking time by the same amount of change, speeding up the adjustment process and ensuring the synchronization of the branch contactors during the adjustment process, so that the zero current opening control can follow the contact
  • the action characteristic changes caused by contact wear and spring aging are adaptively adjusted to ensure that the breaking time of each contactor in the three phases is always kept in the zero current breaking area.
  • the present invention has the following beneficial effects:
  • the invention realizes the synchronization of the actions of each contactor in the expansion operation in each phase, and at the same time completes the self-adaptive zero current breaking control of each phase contactor in the phased closing and breaking process of the three-phase contactor.
  • Fig. 1 is a block diagram of a synchronous control method for opening and closing with an adaptive adjustment function in an embodiment of the present invention
  • Fig. 2 shows the voltage and current waveforms in the breaking process of branch contactors connected in parallel in an embodiment of the present invention.
  • Figure 1 shows a parallel three-phase AC contactor composed of six single-pole contactors connected in parallel, where IA , IB, and IC are three-phase main circuit currents respectively, IA1 and IA2 are A-phase parallel branch currents, IB1 and IB2 are B-phase parallel branch currents, IC1 and IC2 are C-phase parallel branch currents; Kxx represents each phase in parallel.
  • the contactor on the branch circuit for example, KA1 represents the contactor on the A-phase parallel branch circuit 1. It includes the following steps:
  • Step S1 Detect the coil voltage of each contactor of the parallel three-phase AC contactor to determine whether the power supply of the control circuit is normal;
  • Step S2 When the power-on range is reached, enter the closing process, and then open the contact voltage sampling channel to detect the contact voltage phase of each contactor;
  • Step S3 Synchronously control the closing process of the parallel three-phase AC contactor, considering the voltage phase changes brought about by the closing sequence, and finally make the contactors of each phase can be closed synchronously at the selected phase;
  • Step S4 When the coil voltage detection determines that the control loop power supply is in the power-off range, enter the opening process, and dynamically adjust the breaking sequence of the branch contactors connected in parallel in each phase;
  • Step S5 Set the opening command by matching the software delay with the inherent breaking time of the mechanism, considering the phase change of the other two-phase currents after the first opening phase is disconnected, so as to achieve the control of zero current breaking;
  • Step S6 The adaptive dynamic adjustment strategy is added to the zero current opening control and synchronous breaking control process of the contactor, so that the contactors of each phase can be stabilized in the zero current breaking area and successfully opened synchronously.
  • step S3 is specifically:
  • Step S31 Separately control the closing command of each phase contact with the closing command of the contactors connected in parallel in each phase, and the closing command of each phase contactor is used to match the software delay with the action time of the mechanism;
  • Step S32 Consider the phase change of the voltage across the contactors of each phase caused by the different closing sequence during the closing process, so that the contactors of each phase can be closed at the selected phase;
  • Step S33 The closing command of the contactors connected in parallel in each phase will only take effect after the closing command of the contactors of each phase is issued. It is used for the synchronous pull-in control of the contactors of each branch connected in parallel to realize the control of the contactors in each phase. Synchronous, same-phase closing operation of contactors on each branch inside.
  • step S5 is specifically:
  • Step S51 Divide each branch contactor connected in parallel into a breaking sequence adjustment phase and a breaking time adjustment phase;
  • Step S52 By detecting the occurrence process of the current transfer phenomenon, extract the breaking sequence and breaking time characteristic quantities of each branch contactor connected in parallel in each phase, and identify the breaking sequence of each branch contactor online;
  • Step S53 During adjustment, the adjustment phase of the breaking time is not changed, and the breaking time value of the breaking sequence adjustment phase is continuously adjusted to be close to the breaking time value of the adjusting phase at the breaking time, and finally the error of the breaking time of the contactors on each branch does not exceed
  • the preset value achieves the control of zero current breaking.
  • step S6 is specifically:
  • Step S61 By detecting the moment of occurrence of the current transfer phenomenon, it is determined online whether it is necessary to adjust the breaking time of the adjusting phase of the breaking time;
  • Step S62 During adjustment, the breaking time adjustment phase and the breaking sequence adjustment phase change the breaking time by the same amount of change, speeding up the adjustment process and ensuring the synchronization of the branch contactors during the adjustment process, so that the zero current opening control can follow the contact
  • the action characteristic changes caused by contact wear and spring aging are adaptively adjusted to ensure that the breaking time of each contactor in the three phases is always kept in the zero current breaking area.
  • phase C lags phase A.
  • phase B contactor the voltage across the contacts of the phase B contactor
  • the phase B will issue a closing command after extending the time corresponding to the lagging phase A phase angle.
  • the zero point to be detected is set to change from the negative half-wave of the voltage. It is the zero point of the positive half-wave.
  • phase contactor When one phase contactor first detects the zero point, the other two-phase contactors only need to judge the action sequence based on the positive and negative half-waves of the voltage across the contacts at this time, and the positive half-wave is the second Phase closing, the negative half-wave is the third phase closing, the software delay of each phase contactor and the contactor's pull-in time cooperate with each other, and finally the three-phase contactors are closed in phase.
  • phase A detects the zero point
  • the closing sequence of the contactor must be A, C, B. If the B phase detects the zero point, the closing sequence must be B, A, C. If phase C detects the zero point first, the closing sequence must be C, B, A.
  • the principle of zero-current opening of the three-phase contactor is similar to that of the fixed-phase closing. It is also the first phase that detects the zero point, and the software delay is matched with the inherent breaking time of the mechanism to set the opening command to achieve zero current breaking. control. After the first opening phase is disconnected, different from the closing process, the other two-phase circuits become the same main circuit, the current phase changes, the software delay changes accordingly, and the two-phase contactor will be disconnected at the same time.
  • the adaptive dynamic adjustment strategy is added to the contactor's zero-current opening control and synchronous opening control process, so that the contactors of all phases can be Stable in the zero current breaking zone and successfully open the brake synchronously.
  • the specific scheme is: use the contactor on one road as the breaking sequence to adjust the phase, and the other branch as the breaking time to adjust the phase.
  • the current of this branch will be transferred to other parallel branches, that is, a current transfer phenomenon occurs.
  • the current transfer phenomenon is shown in Figure 2.
  • the breaking time and the breaking sequence of each branch contactor are stored in EEPROM and compared with the preset zero-current breaking area, and it is judged in real time whether it is necessary to adjust the breaking time online. Taking into account the influence of the dispersion of actions, the breaking sequence is adjusted only when it is detected that the contactor on a road has become the prime minister for a long time.
  • the breaking time of the adjusting phase at the breaking time will not be changed, and the breaking time of the adjusting phase of the breaking sequence shall be adjusted in advance with a change of 0.1ms until the contactor becomes the new prime opening phase.
  • the breaking time of the contactor is still adjusted with a 0.1ms change until it becomes the non-first opening phase, so that the breaking time of the contactor of the breaking sequence adjustment phase is kept basically the same as the breaking time of the contactor on the other branch.
  • the error of the breaking time between the two is no more than 0.1ms.
  • the function of adjusting the phase at the breaking time is that if it is detected that the current transfer phenomenon occurs after the zero point, that is, the zero current control has failed at this time, and the breaking time of each branch contactor is not in the zero current breaking area, and the EEPROM is still read at this time
  • the breaking time data stored in real-time in the system, the breaking time adjustment phase and the breaking sequence adjustment phase are adjusted with the same amount of change, speeding up the adjustment process and ensuring the synchronization of the branch contactors in the adjustment process, until each phase is in contact
  • the breaking time of the device is adjusted in the zero current breaking zone, and the breaking sequence adjustment phase is still through the dynamic adjustment process of the breaking sequence, and the breaking time is adjusted to be consistent with the breaking time adjustment, that is, each branch contactor can follow the change of action characteristics.
  • the breaking is kept in the zero current breaking area, and the situation that the contactor on one road becomes the first open phase for a long time is avoided.

Abstract

一种并联型三相交流接触器的自适应同步控制方法,包括以下步骤:步骤S1:检测各个接触器线圈电压,判断控制回路是否电源正常;步骤S2:当达到上电范围时,进入合闸过程,之后将触头电压采样通道打开,对各个接触器触头电压相位进行检测;步骤S3:对合闸过程进行同步控制,考虑合闸顺序带来的电压相位变化,最终使得各相接触器能在所选相位同步合闸;步骤S4:当线圈电压检测判断控制回路电源处于下电范围时,进入分闸过程,对各相内并联连接的各支路接触器的分断顺序进行动态调整;步骤S5:将软件延时与机构固有分断时间相配合来设定分闸指令步骤;S6:将自适应动态调整策略加入接触器的零电流分闸控制和同步分断控制过程。该方法能够实现并联型三相交流接触器通断过程的同步。

Description

并联型三相交流接触器的自适应同步控制方法 技术领域
本发明涉及低压电器技术领域,特别是涉及一种并联型三相接触器的自适应同步控制方法。
背景技术
随着加工设备的大型化,重型机器在煤炭、冶金、矿山等工控场合的大量使用,使得大容量交流接触器在工控场合的需求越来越大, 此外,国民经济与电气行业的不断发展,社会用电量的提高,都驱动着电网规模的不断扩大,电力系统通过自身扩容和网际互联,系统结构更加趋于复杂化,正常情况下通过的电流随之增大,同时短路故障发生的频率和短路故障电流数值也随之提升,配电系统的容量也随之提升。为了满足新能源领域与工控现场、电网自身扩容等场合对大容量交流接触器的需要,特别是对630A电流规格以上的交流接触器的需求,提升开关的额定容量成为热点问题。由于接触器的触头材料和触头结构方面的瓶颈问题很难突破,单断口的接触器的额定通流能力和分断能力难以从本体提升,因此急需寻找在不改变触头结构及材料的情况下实现交流接触器的扩容运行的方法。
额定电流大于1000A的电力开关,为了简化制造工艺,常将若干个额定电流
较小的开关电器以触头并联的形式来提升其通流能力和分断电流等级,包括常用的保护电器和控制电器,大容量断路器、接触器、刀隔离开关和熔断器便常用若干个极并联的结构提升额定电流容量,实现扩容运行。
技术问题
在高压断路器领域,多断口断路器串联技术来成为更高电压等级场合应用的有效解决方案,目前国内外研究者在多断口断路器静动态绝缘特性、开断增益特性、动态均压及操动机构方面展开了深入研究,北京开关厂、大连理工大学、西安交通大学均已研制出多断口串联型断路器产品,大幅度提高了断路器的分断能力。
技术解决方案
有鉴于此,本发明的目的在于提供一种并联型三相交流接触器的自适应同步控制方法,实现各相内扩容运行的各个接触器动作的同步性的同时完成三相接触器的定相合闸与分断过程各相接触器的自适应零电流分断控制。
为实现上述目的,本发明采用如下技术方案:
一种并联型三相交流接触器的自适应同步控制方法,包括以下步骤:
  步骤S1:检测并联型三相交流接触器各个接触器线圈电压,判断控制回路是否电源正常;
  步骤S2:当达到上电范围时,进入合闸过程,之后将触头电压采样通道打开,对各个接触器触头电压相位进行检测;
步骤S3:对并联型三相交流接触器的合闸过程进行同步控制,考虑合闸顺序带来的电压相位变化,最终使得各相接触器能在所选相位同步合闸;
步骤S4:当线圈电压检测判断控制回路电源处于下电范围时,进入分闸过程,对各相内并联连接的各支路接触器的分断顺序进行动态调整;
步骤S5:将软件延时与机构固有分断时间相配合来设定分闸指令,考虑首开相断开后,其他两相电流的相位变化,以达到零电流分断的控制;
步骤S6:将自适应动态调整策略加入接触器的零电流分闸控制和同步分断控制过程,使各相接触器均能稳定在零电流分断区域内成功同步分闸。
进一步的,所述步骤S3具体为:
步骤S31:将各相接触的合闸指令与各相内并联连接的接触器的合闸指令分开控制,各相接触器的合闸指令用于将软件延时与机构动作时间相配合;
步骤S32:考虑合闸过程中不同合闸顺序导致的各相接触器两端电压相位变化,使得各相接触器能在所选相位合闸;
步骤S33:各相内并联连接的接触器的合闸指令只有在各相接触器的合闸指令发出后才生效,用于并联连接的各支路上接触器的同步吸合控制,实现在各相内各支路上接触器的同步、同相位合闸作业。
进一步的,所述步骤S5具体为:
   步骤S51:将并联连接的各支路接触器分为分断顺序调整相和分断时刻调整相;
   步骤S52:通过检测电流转移现象的发生过程,提取各相内并联连接的各支路接触器的分断顺序与分断时刻特征量,在线识别各支路接触器分断顺序;
  步骤S53:调整时,分断时刻调整相不做改变,不断调整分断顺序调整相的分断时刻值使其靠近分断时刻调整相的分断时刻值,最终使将各支路上接触器的分断时刻误差不超过预设值,达到零电流分断的控制。
进一步的,所述步骤S6具体为:
步骤S61:通过检测电流转移现象的发生时刻,在线判别是否需要对分断时刻调整相的分断时刻进行调整;
步骤S62:调整时,分断时刻调整相与分断顺序调整相以相同的变化量来改变分断时刻,加速调整过程并保证调整过程个支路接触器的同步性,使得零电流分闸控制能够跟随接触器长期运行后产生触头磨损和弹簧老化情况导致的动作特性变化自适应调整,确保三相内各个接触器分断时刻始终保持在零电流分断区域内。
有益效果
本发明与现有技术相比具有以下有益效果:
本发明实现各相内扩容运行的各个接触器动作的同步性的同时完成三相接触器的定相合闸与分断过程各相接触器的自适应零电流分断控制。
附图说明
图1是本发明一实施例中具有自适应调整功能的分合闸同步控制方法框图;
图2是本发明一实施例中的并联连接各支路接触器分断过程电压、电流波形。
本发明的实施方式
下面结合附图及实施例对本发明做进一步说明。
请参照图1,本发明提供一种并联型三相交流接触器的自适应同步控制方法,图1中为六台单极接触器并联连接组合而成的并联型三相交流接触器,其中IA、IB、IC分别为三相干路电流,IA1、IA2为A相并联支路电流,IB1、IB2为B相并联支路电流,IC1、IC2为C相并联支路电流;Kxx代表各相并联各支路上的接触器,如KA1代表A相并联支路1上的接触器;包括以下步骤:
   步骤S1:检测并联型三相交流接触器各个接触器线圈电压,判断控制回路是否电源正常;
   步骤S2:当达到上电范围时,进入合闸过程,之后将触头电压采样通道打开,对各个接触器触头电压相位进行检测;
步骤S3:对并联型三相交流接触器的合闸过程进行同步控制,考虑合闸顺序带来的电压相位变化,最终使得各相接触器能在所选相位同步合闸;
步骤S4:当线圈电压检测判断控制回路电源处于下电范围时,进入分闸过程,对各相内并联连接的各支路接触器的分断顺序进行动态调整;
步骤S5:将软件延时与机构固有分断时间相配合来设定分闸指令,考虑首开相断开后,其他两相电流的相位变化,以达到零电流分断的控制;
步骤S6:将自适应动态调整策略加入接触器的零电流分闸控制和同步分断控制过程,使各相接触器均能稳定在零电流分断区域内成功同步分闸。
在本实施例中,所述步骤S3具体为:
步骤S31:将各相接触的合闸指令与各相内并联连接的接触器的合闸指令分开控制,各相接触器的合闸指令用于将软件延时与机构动作时间相配合;
步骤S32:考虑合闸过程中不同合闸顺序导致的各相接触器两端电压相位变化,使得各相接触器能在所选相位合闸;
步骤S33:各相内并联连接的接触器的合闸指令只有在各相接触器的合闸指令发出后才生效,用于并联连接的各支路上接触器的同步吸合控制,实现在各相内各支路上接触器的同步、同相位合闸作业。
在本实施例中,所述步骤S5具体为:
   步骤S51:将并联连接的各支路接触器分为分断顺序调整相和分断时刻调整相;
   步骤S52:通过检测电流转移现象的发生过程,提取各相内并联连接的各支路接触器的分断顺序与分断时刻特征量,在线识别各支路接触器分断顺序;
  步骤S53:调整时,分断时刻调整相不做改变,不断调整分断顺序调整相的分断时刻值使其靠近分断时刻调整相的分断时刻值,最终使将各支路上接触器的分断时刻误差不超过预设值,达到零电流分断的控制。
在本实施例中,所述步骤S6具体为:
步骤S61:通过检测电流转移现象的发生时刻,在线判别是否需要对分断时刻调整相的分断时刻进行调整;
步骤S62:调整时,分断时刻调整相与分断顺序调整相以相同的变化量来改变分断时刻,加速调整过程并保证调整过程个支路接触器的同步性,使得零电流分闸控制能够跟随接触器长期运行后产生触头磨损和弹簧老化情况导致的动作特性变化自适应调整,确保三相内各个接触器分断时刻始终保持在零电流分断区域内。
在本实施例中,以三相三角形连接负载为例,设A相电压为
Figure 185768dest_path_image001
,假设A相电压在t 1时刻先过零,定义为首合相,则当A相在所需相位闭合时,C相接触器触头两端电压为:
Figure 293401dest_path_image002
即C相的闭合相位滞后A相,同理在A相与B相开关均闭合后,B相接触器触头两端电压为:
Figure 485348dest_path_image003
即B相的闭合相位滞后A相。
因此各相接触器定相合闸的过程为当A相t 1时刻检测到零点后,经过软件延时间t 2发出合闸指令,触头开始动作,经过机构固有动作时间在相角闭合,而C相在延长滞后A相相角所对应的时间后发出合闸指令,B相在延长滞后A相相角所对应的时间后发出合闸指令,将所要检测的零点设为由电压负半波变为正半波的那个零点,在有一相接触器首先检测到该零点时,另外两相接触器只需根据此时触头两端电压的正负半波判断动作顺序,正半波为第二相合闸,负半波为第三相合闸,各相接触器的软件延时与该接触器的吸合时间互相配合,最终使得三相接触器均在相位闭合。并且经分析,如果A相检测到零点,接触器合闸顺序必然是A、C、B。如果B相检测到零点,合闸顺序必然是B、A、C。如果C相先检测到零点,合闸顺序必然是C、B、A。
进行各相内并联连接各支路上接触器同步合闸控制时,由于各个支路接触器触头两端电压相位幅值均相等,因此合闸指令的设置仅需配合各支路开关的吸合时间来确定,且该合闸指令只有在各相接触器的合闸指令发出后才生效。在某一支路电压检测到零点时,经过软件延时发出合闸指令,另一支路接触器设置的软件延时则应该根据该支路动作时间来调整,使得各个支路的接触器经过的软件延时加上机构固有动作时间的总时间相等,来达到同步合闸的操作。将各并联支路上接触器的同步合闸指令与各相接触器定相合闸指令控制通过同步合闸模块上的逻辑门电路相结合,对各个接触器的上电信号与合闸指令进行关联控制,从而消除硬件电路响应的不一致性带来的误差。
并联系三相接触器零电流分闸原理与定相合闸类似,同样是在首先检测到零点的一相,将软件延时与机构固有分断时间相配合来设定分闸指令,达到零电流分断的控制。在首开相分断后,不同于合闸过程,其它两相电路由于变成同一干路,电流相位发生变化,软件延时相应改变,且两相接触器将在同一时刻分断。
考虑到接触器长期运行后产生触头磨损,弹簧老化等情况导致动作特性发生变化,将自适应动态调整策略加入接触器的零电流分闸控制和同步分断控制过程,使各相接触器均能稳定在零电流分断区域内成功同步分闸。
具体方案为:将一支路上的接触器作为分断顺序调整相,另一支路作为分断时刻调整相。
由于首开相分开后,该支路电流将全部转移至其他并联支路,即发生电流转移现象,电流转移现象如图2所示,通过检测改电流转移现象的发生的时刻,即可判定首开相分断时刻和各支路接触器分断顺序,将其存入EEPROM中,与预先设定零电流分断区域作对比,并实时判断是否需要对分断时刻进行在线调整。考虑到动作分散性的影响,只有在检测到存在一支路上的接触器长期成为首开相的情况才对分断顺序进行调整。调整时,分断时刻调整相的分断时刻不做改变,对分断顺序调整相的分断时刻以0.1ms的变化进行推前调整,直至该接触器成为新的首开相,如果该接触器长期成为首开相,则仍然对该接触器的分断时刻以0.1ms的变化进行延迟调整,直至成为非首开相,如此循环将分断顺序调整相的接触器断时刻保持与另一支路上接触器的分断时刻基本一致,两者分断时刻误差不超过0.1ms。分断时刻调整相的作用在于如果检测到电流转移现象发生的时刻发生在零点之后,即此时零电流控制已经失效,各支路接触器的分断时刻不在零电流分断区域,此时仍然读取EEPROM中实时存储的分断时刻数据,对分断时刻调整相与分断顺序调整相以相同的变化量对分断时刻进行调整,加速调整过程并保证调整过程个支路接触器的同步性,直至将各相接触器的分断时刻调整在零电流分断区域内,分断顺序调整相仍然通过分断顺序的动态调整过程,将分断时刻调整到与分断时刻调整相保持一致,即各支路接触器能够跟随动作特性变化,通过自适应分断顺序与分断时刻的动态调整,使得分断保持在零电流分断区域内,且避免了有一支路上的接触器长期成为首开相的情况。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

  1. 一种并联型三相交流接触器的自适应同步控制方法,其特征在于,包括以下步骤:
      步骤S1:检测并联型三相交流接触器各个接触器线圈电压,判断控制回路是否电源正常;
      步骤S2:当达到上电范围时,进入合闸过程,之后将触头电压采样通道打开,对各个接触器触头电压相位进行检测;
    步骤S3:对并联型三相交流接触器的合闸过程进行同步控制,考虑合闸顺序带来的电压相位变化,最终使得各相接触器能在所选相位同步合闸;
    步骤S4:当线圈电压检测判断控制回路电源处于下电范围时,进入分闸过程,对各相内并联连接的各支路接触器的分断顺序进行动态调整;
    步骤S5:将软件延时与机构固有分断时间相配合来设定分闸指令,达到零电流分断的控制;
    步骤S6:将自适应动态调整策略加入接触器的零电流分闸控制和同步分断控制过程,使各相接触器均能稳定在零电流分断区域内成功同步分闸。
  2. 根据权利要求1所述的一种并联型三相交流接触器的自适应同步控制方法,其特征在于,所述步骤S3具体为:
    步骤S31:将各相接触的合闸指令与各相内并联连接的接触器的合闸指令分开控制,各相接触器的合闸指令用于将软件延时与机构动作时间相配合;
    步骤S32:考虑合闸过程中不同合闸顺序导致的各相接触器两端电压相位变化,使得各相接触器能在所选相位合闸;
    步骤S33:各相内并联连接的接触器的合闸指令只有在各相接触器的合闸指令发出后才生效,用于并联连接的各支路上接触器的同步吸合控制,实现在各相内各支路上接触器的同步、同相位合闸作业。
  3. 根据权利要求1所述的一种并联型三相交流接触器的自适应同步控制方法,其特征在于,所述步骤S5具体为:
       步骤S51:将并联连接的各支路接触器分为分断顺序调整相和分断时刻调整相;
       步骤S52:通过检测电流转移现象的发生过程,提取各相内并联连接的各支路接触器的分断顺序与分断时刻特征量,在线识别各支路接触器分断顺序;
      步骤S53:调整时,分断时刻调整相不做改变,不断调整分断顺序调整相的分断时刻值使其靠近分断时刻调整相的分断时刻值,最终使将各支路上接触器的分断时刻误差不超过预设值,达到零电流分断的控制。
  4. 根据权利要求1所述的一种并联型三相交流接触器的自适应同步控制方法,其特征在于,所述步骤S6具体为:
    步骤S61:通过检测电流转移现象的发生时刻,在线判别是否需要对分断时刻调整相的分断时刻进行调整;
    步骤S62:调整时,分断时刻调整相与分断顺序调整相以相同的变化量来改变分断时刻,加速调整过程并保证调整过程个支路接触器的同步性,使得零电流分闸控制能够跟随接触器长期运行后产生触头磨损和弹簧老化情况导致的动作特性变化自适应调整,确保三相内各个接触器分断时刻始终保持在零电流分断区域内。
PCT/CN2020/119331 2019-10-12 2020-09-30 并联型三相交流接触器的自适应同步控制方法 WO2021068834A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910966137.5 2019-10-12
CN201910966137.5A CN110556267B (zh) 2019-10-12 2019-10-12 并联型三相交流接触器的自适应同步控制方法

Publications (1)

Publication Number Publication Date
WO2021068834A1 true WO2021068834A1 (zh) 2021-04-15

Family

ID=68742687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119331 WO2021068834A1 (zh) 2019-10-12 2020-09-30 并联型三相交流接触器的自适应同步控制方法

Country Status (2)

Country Link
CN (1) CN110556267B (zh)
WO (1) WO2021068834A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556267B (zh) * 2019-10-12 2021-08-31 福州大学 并联型三相交流接触器的自适应同步控制方法
US11456688B2 (en) 2020-11-30 2022-09-27 General Electric Renovables Espana, S.L. Systems and methods for operating a power generating asset
CN112965401B (zh) * 2021-02-08 2022-08-26 中国南方电网有限责任公司超高压输电公司检修试验中心 变压器防火防爆物理校核试验用大电流控制装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995199A (en) * 1975-08-25 1976-11-30 Lennox Industries Inc. Compressor motor protection
CN101546670A (zh) * 2009-04-30 2009-09-30 淮南市启迪电子有限公司 零电流分断的交流真空接触器
CN102119434A (zh) * 2008-08-11 2011-07-06 国际商业机器公司 全球自适应多线圈自动转换开关
CN110556267A (zh) * 2019-10-12 2019-12-10 福州大学 并联型三相交流接触器的自适应同步控制方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3139987A1 (de) * 1981-10-08 1983-04-28 Robert Bosch Gmbh, 7000 Stuttgart Steuereinrichtung fuer einen elektromagnetischen verbraucher in einem kraftfahrzeug, insbesondere ein magnetventil oder ein stellmagnet
CN101601111B (zh) * 2007-02-15 2012-07-04 三菱电机株式会社 相位控制开关装置
CN103456566B (zh) * 2013-08-21 2016-01-06 福州大学 数字化全过程动态控制智能交流接触器
CN204289279U (zh) * 2014-08-25 2015-04-22 沈阳工业大学 一种新型交流接触器
CN104157513A (zh) * 2014-08-25 2014-11-19 沈阳工业大学 一种新型交流接触器及其分闸方法
CN106098473B (zh) * 2016-08-05 2018-07-17 江苏特力威信息系统有限公司 自适应过零通断控制装置及方法
CN106374507A (zh) * 2016-09-06 2017-02-01 青岛鼎信通讯股份有限公司 一种三相共补智能同步开关及其控制保护方法
CN107248478B (zh) * 2017-07-06 2020-09-04 惠州市元盛科技有限公司 一种保护继电器的方法及电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995199A (en) * 1975-08-25 1976-11-30 Lennox Industries Inc. Compressor motor protection
CN102119434A (zh) * 2008-08-11 2011-07-06 国际商业机器公司 全球自适应多线圈自动转换开关
CN101546670A (zh) * 2009-04-30 2009-09-30 淮南市启迪电子有限公司 零电流分断的交流真空接触器
CN110556267A (zh) * 2019-10-12 2019-12-10 福州大学 并联型三相交流接触器的自适应同步控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIJIE LIN, XIAOYUN ZHAO, BINGZHANG LIU: "FYJC 5-2000 Type of AC Contactor with Expended Capacity in Parallel", LOW VOLTAGE APPARATUS, no. 3, 1 January 2003 (2003-01-01), pages 38 - 61, XP055800461, DOI: 10.16628/j.cnki.2095-8188.2003.03.011 *

Also Published As

Publication number Publication date
CN110556267B (zh) 2021-08-31
CN110556267A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
WO2021068834A1 (zh) 并联型三相交流接触器的自适应同步控制方法
CN102121957B (zh) 大容量无功功率动态补偿装置性能测试系统
EP2346132B1 (en) Fast three-phase reclosing method in shunt reactor compensated transmission lines
CN106033891B (zh) 一种低压负荷并行在线自动换相装置及其操作方法
NZ549655A (en) Dynamic reactive compensation system and method
CN102222889B (zh) 线路不对称接地故障电流的控制器及其控制方法
CN110718418B (zh) 一种基于单极接触器的开关并联扩容运行控制方法
CN106410951A (zh) 一种双电源自动转换装置的转换控制方法
US5625277A (en) Dynamic mechanically switched damping system and method for damping power oscillations using the same
CN2800620Y (zh) 智能式过零分合闸断路器
US6671151B2 (en) Network protector relay and method of controlling a circuit breaker employing two trip characteristics
CN205583705U (zh) 一种三相负荷不平衡调整装置的主回路
CN106451500B (zh) 一种基于暂态波形拟合的相间负荷转移终端装置
Guo et al. A protection scheme for active distribution network based on the cooperative control of inverter-interfaced distributed generators
CN103280796B (zh) 供电系统母联开关柔性倒闸技术及其实现方法
CN105244881A (zh) 一种有源电力滤波器补偿策略和装置
CN205583706U (zh) 一种三相负荷不平衡调整装置
CN103490395B (zh) 利用双芯可控移相器限制线路短路电流的方法
Soe et al. Advance OLTC control for improving power system voltage stability
CN201945650U (zh) 大容量无功功率动态补偿装置性能测试系统
CN108152721B (zh) 半波长输电线路沿线高速接地开关参数确定方法和装置
CN206226107U (zh) 一种工业无扰动安全控制装置
CN110535110B (zh) 特高压交流变压器选相分合闸控制方法及装置
TWI814174B (zh) 電壓控制方法
CN114094559A (zh) 断路器限流控制方法及其控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20875193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20875193

Country of ref document: EP

Kind code of ref document: A1