WO2021068504A1 - 一种切换电路、单火线开关及开关装置 - Google Patents

一种切换电路、单火线开关及开关装置 Download PDF

Info

Publication number
WO2021068504A1
WO2021068504A1 PCT/CN2020/089874 CN2020089874W WO2021068504A1 WO 2021068504 A1 WO2021068504 A1 WO 2021068504A1 CN 2020089874 W CN2020089874 W CN 2020089874W WO 2021068504 A1 WO2021068504 A1 WO 2021068504A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
control
control module
power consumption
low power
Prior art date
Application number
PCT/CN2020/089874
Other languages
English (en)
French (fr)
Inventor
余孟
胡文涛
Original Assignee
宁波公牛电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波公牛电器有限公司 filed Critical 宁波公牛电器有限公司
Publication of WO2021068504A1 publication Critical patent/WO2021068504A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25257Microcontroller

Definitions

  • This application belongs to the technical field of electrical switches, and in particular relates to a switching circuit, a single live wire switch and a switch device.
  • a single live wire switch refers to a switch with one end connected to a live wire and the other end to an electrical appliance, which is used to control whether to supply power to the electrical appliance. Because the circuit used in the above connection is relatively simple, the single live wire switch is widely used in household circuits.
  • Single live wire switches generally include buttons, relays, control modules, and power supplies.
  • the button is connected with the control module to control the start and stop of the control module; the two ends of the relay are used to directly connect with the live wire and the electrical appliance to control whether to supply power to the electrical appliance; the control module is connected with the relay for receiving The received remote signal controls the closing or opening of the relay; the power supply is connected to the relay, the control module and the live wire respectively, and is used to supply power to the control module.
  • the power supply generally includes two power-taking states: on-state power-taking and off-state power-taking.
  • the relay When the relay is in the closed state, the power supply will take power in the on-state. While supplying power to the appliance, it will also output the relay. Part of the current flows out to supply power to the control module; when the relay is in the off state, the power supply will be off-state to take power, and the current through the live wire will supply power to the control module.
  • the embodiments of the present application provide a switching circuit, a single live wire switch, and a switch device, which can improve the power-taking success rate of the control module in the single live wire switch, and make the single live wire switch work normally.
  • the technical solution is as follows:
  • the embodiment of the present application provides a switching circuit, which includes: a first on-off module, a power-taking control module, a control module, and a low-power consumption module, wherein:
  • the first on-off module is respectively connected to the power supply, the low power consumption module, and the control module, and is used for controlling the working state of the control module under the control of the low power consumption module;
  • the power taking control module is respectively connected with the low power consumption module and the control module, and is used to control the power supply to take power in the on-state or off-state under the control of the low-power module or the control module;
  • the low-power module is connected to the power supply.
  • the low-power module controls the power-taking control module so that the power-taking control module controls the power supply to take power in the off state, and the low-power module controls the first Turn on and off the module to enable the control module to start.
  • the low power consumption module is in communication connection with the control module for transmitting communication signals between the low power consumption module and the control module.
  • the first on-off module includes a first field effect transistor.
  • the first field effect tube is a PMOS tube
  • the first end of the PMOS tube is connected to the control end of the low power consumption module, the second end of the PMOS tube is connected to the power supply end of the control module, and the third end of the PMOS tube is connected to the power supply source.
  • the first field effect transistor is an NMOS transistor
  • the NMOS tube is also used to control the working state of the control module under the control of the control module;
  • the first terminal of the NMOS tube is connected to the control terminal of the low power consumption module and the first control terminal of the control module, the second terminal of the NMOS tube is connected to the power supply terminal of the control module, and the third terminal of the NMOS tube Connected to the power supply; or
  • the second terminal of the NMOS tube is connected to the ground terminal of the control module, and the third terminal of the NMOS tube is grounded.
  • control module is a communication module to implement data communication with an external control device.
  • control module includes multiple control sub-modules
  • the first on-off module includes a plurality of first on-off sub-modules
  • Each first control sub-module is connected to the corresponding first on-off sub-module.
  • the circuit also includes a second on-off module
  • the second on-off module is connected between the power supply and the low power consumption module, and the second on-off module is also connected with the control module;
  • the second on-off module is used for feedback control of the working state of the low power consumption module under the control of the control module.
  • the circuit also includes a switching module
  • the switching module is respectively connected with the low power consumption module and the control module, and is used to switch the working state of the low power consumption module and the control module respectively.
  • the circuit also includes a display module
  • the display module is respectively connected with the low-power consumption module and the control module, and is used to display the power-taking state of the on-state or off-state power-taking.
  • the first end of the second on-off module is connected to the second control end of the control module, the second end of the second on-off module is connected to the power supply end of the control module, and the second end of the on-off module is connected to the power supply end of the control module.
  • the third end is connected to the power supply.
  • a single live wire switch is provided, and the single live wire switch includes a switching circuit as provided in any of the above-mentioned possible designs.
  • a switch device which includes a master single live wire switch and a slave single live wire switch;
  • Both the master single live wire switch and the slave single live wire switch include a switching circuit as provided in any of the above-mentioned possible designs;
  • the live wire terminal of the master single live wire switch is connected to the live wire terminal of the slave single live wire switch, the electrical terminal of the master single live wire switch is connected to the first end of the external electrical appliance, and the second end of the external electrical appliance is connected to the neutral terminal of the AC power.
  • the live wire end of the live wire switch is connected to the live wire end of the AC power, and the power supply communication end of the main single live wire switch is connected to the power supply communication end of the slave single live wire switch.
  • the switching circuit provided by the present application includes a first on-off module, a low-power consumption module, a control module, and a power-taking control module.
  • the first on-off module is connected to a power supply, a low power consumption module, and a control module, respectively, the power fetching control module is connected to the low power consumption module and the control module, and the low power consumption module is connected to the power supply.
  • the control module needs to be switched to the working state, the power supply of the control circuit is first to be powered off.
  • the circuit can provide the energy required for the control module to start, and then control the control
  • the module startup can make the control module start up smoothly, that is, the power is successfully obtained, which solves the problem that the control module in the current commonly used circuit has a low success rate of powering, which causes the single live wire switch to fail to work normally.
  • FIG. 1 is a schematic diagram of a switching circuit provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of modules of a switching circuit provided by another embodiment of the present application.
  • FIG. 3 is a schematic diagram of modules of a switching circuit provided by another embodiment of the present application.
  • FIG. 4 is a schematic diagram of modules of a switching circuit provided by still another embodiment of the present application.
  • FIG. 5 is a block diagram of a switching circuit provided by still another embodiment of the present application.
  • FIG. 6 is a circuit structure diagram of a switching circuit provided by another embodiment of the present application.
  • FIG. 7 is a circuit structure diagram of a switching circuit provided by another embodiment of the present application.
  • FIG. 8 is a circuit structure diagram of a switching circuit provided by another embodiment of the present application.
  • FIG. 9 is a circuit structure diagram of a switching circuit provided by another embodiment of the present application.
  • FIG. 10 is a circuit structure diagram of a switching circuit provided by another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a module of a switch device provided by an embodiment of the present application.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed can be a fixed connection or a detachable connection , Or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in this application can be understood according to specific circumstances.
  • the term “and/or” as used herein includes any and all combinations of one or more related listed items.
  • Fig. 1 is a schematic diagram of a switching circuit provided by an embodiment of the present application. Please refer to Fig. 1.
  • the circuit includes: a first on-off module 11, a power-taking control module 12, a control module 13, and a low-power consumption module 14.
  • the first on-off module 11 is respectively connected to the power supply 20, the low power consumption module 14, and the control module 13, and is used to control the working state of the control module 13 under the control of the low power consumption module 14;
  • the electrical control module 12 is connected to the low power consumption module 14 and the control module 13 respectively, and is used to control the power supply 20 to take power in an on-state or off-state under the control of the low-power-consumption module 14 or the control module 13 Take power;
  • the low power consumption module 14 is connected to the power supply 20, when the control module 13 needs to be started, the low power consumption module 14 controls the power control module 12, so that the power control module 12 controls the power supply
  • the power supply 20 takes power in the off state, and the low power consumption module 14 controls the first on-off module 11 to activate the control module 13.
  • the low power consumption module 14 when the switching circuit is powered on, the low power consumption module 14 operates in a low power consumption state, and controls the control module 13 to be in a non-working state by controlling the first on-off module 11, At this time, since the low power consumption module 14 requires a small voltage when it is started and the power consumption during operation is low, the low power consumption module 14 can be successfully started.
  • the control module 13 When the control module 13 is required to work, the low-power module 14 first controls the power supply 20 through the power-taking control module 12 to take off-state power, so that in the off-state power-off state, the circuit can provide the required power when the control module 13 is started. Energy, the control module 13 is restarted at this time, which avoids directly starting the control module 13 in the on-state power-taking state, and the control module 13 does not stop restarting and resetting, thereby solving the problem of low power-taking success rate.
  • the low power consumption module 14 is a low power consumption MCU (Microcontroller Unit, Microcontroller Unit).
  • the low-power MCU may be multiple types of single-chip microcomputers, as long as it can realize the working principle within the protection scope proposed in the embodiments of the present application. Since the low-power MCU mainly runs in a low-power state during startup and operation, the power consumption of the switching circuit can be reduced. At the same time, the low-power MCU requires a small startup voltage, so that it can also be operated at a lower voltage. The smooth start can reduce the power consumption of the switching circuit when the control module 13 is in an inoperative state.
  • the control terminal of the low-power module 14 is connected to the first on-off module 11.
  • the control terminal of the low-power module 14 can output a first control signal to the first on-off module 11, so that An on/off module 11 feedbacks and controls the working state of the control module 13 according to the first control signal.
  • the first control signal may be an on signal or an off signal.
  • the low power consumption module 14 outputs a shutdown signal to the first on-off module 11, the first on-off module 11 controls the control module 13 to be in a non-working state.
  • the low power consumption module 14 outputs the on-off signal to the first on-off module 11, the first on-off module 11 controls the control module 13 to be in a working state.
  • control module 13 is used to implement the control function in the switching circuit.
  • the power consumption of the control module 13 during normal operation is larger than that of the low power consumption module 14, and the control module 13 needs to be more Large starting voltage.
  • control module 13 may be any one or more of a communication module, an intelligent module, and other control MCUs. It is understandable that in other embodiments of the present application, the control module 13 may also be other. Set according to actual usage requirements, and there is no limitation here.
  • the communication module is used to process information and realize functions such as data communication with external control equipment.
  • the communication module includes a ZIGBEE module, a Bluetooth module, an NB-IoT module (Narrow Band Internet of Things), a LoRa module (Long Range Radio), and the like.
  • the communication module can receive a signal sent by a terminal such as a mobile phone, and then control the switching circuit to work based on the signal.
  • the intelligent module is used to realize the information processing function and control the switching circuit based on the data processing result.
  • control module 13 includes a plurality of control sub-modules; the first on-off module 11 includes a plurality of first on-off sub-modules; each of the first control sub-modules corresponds to the first on-off sub-module
  • the sub-modules are connected so that when the switching circuit is powered on, the low-power module 14 starts first, and the low-power module 14 controls the control by controlling the on-off state of the first on-off sub-module connected to any control sub-module Switching of the working status of the sub-module.
  • the power supply end of the low power consumption module 14 is connected to the power supply 20, so that the power supply end of the low power consumption module 14 can receive the power supply 20 when the switching circuit is connected to the power supply 20 to realize power-on. Power supply to switch to working state.
  • the power supply 20 is used to provide a 3V power supply for power supply. It is understandable that in other embodiments of the present application, the power supply 20 may also provide a power supply of 3.3V, 5V, etc., to achieve low power. The normal operation of the consumption module 14 and the control module 13.
  • the power supply 20 includes an on-state power-taking circuit and an off-state power-taking circuit, and the on-state power-taking circuit or the off-state power-taking circuit can be controlled by switching the power-taking control module 12 on and off.
  • the on-state power taking circuit is turned on to supply power to the switching circuit; when the power taking control module 12 is off, the off-state power taking circuit is turned on to power the switching circuit.
  • the power-taking control module 12 is respectively connected to the on-state power-taking circuit and the off-state power-taking circuit in the power supply 20, so that the power-taking control module 12 can be based on the low power consumption module 14 or
  • the power-taking control signal output by the control module 13 correspondingly controls the connection state with the on-state power-taking circuit and the off-state power-taking circuit to realize the on-state power-taking or off-state power-taking.
  • the power-fetching control signal can be an off-state signal or an on-state signal.
  • the power-taking control module 12 may be a relay. When the relay obtains an on-state signal, the relay is closed.
  • the circuit is connected to the on-state power-taking circuit to realize the on-state power-taking;
  • the relay is disconnected when the signal is in the off state.
  • the circuit is connected to the off-state power-taking circuit to realize off-state power-taking.
  • the power-taking control module 12 may also be a thyristor or a transistor. Other switching devices are set according to actual usage requirements, and there is no limitation here.
  • the low power consumption module 14 can be the first chip U1 in the figure
  • the control module 13 can be the second chip U2 in the figure
  • the first on-off module 11 It may be the first field effect transistor Q1 in the figure
  • the control terminal of the low power consumption module 14 may be the RC6 pin in the first chip U1 in the figure.
  • the low power consumption module 14 When the switching circuit is powered on, the low power consumption module 14 is started. Since the low power consumption module 14 requires a lower voltage to start, even if the low power electrical appliances are driven to be powered on, the low power consumption module 14 can still be started smoothly and remains in place. In the working state, the power consumption of the low power consumption module 14 in the working state is relatively low.
  • the low power consumption module 14 when the working state of the control module 13 needs to be controlled, the low power consumption module 14 outputs an off-state signal to the power-taking control module 12, so that the power-taking control module 12 controls the power supply 20 to perform the off-state acquisition.
  • the off-state power-taking circuit can provide the higher energy required for the control module 13 to start up, avoiding the inability to provide the energy required for the control module 13 to start up when the power is in the on-state, which will cause failure when the power is in the on-state. The problem is that the circuit can not get power after the reset is started after the stop.
  • the low power consumption module 14 outputs a turn-on signal to the first turn-on module 11, so that the first turn-on module 11 controls the control module 13 to be in a working state.
  • the low power consumption module 14 can also output a shutdown signal to the first on-off module 11, so that the first on-off module 11 controls the control module 13 Switch to non-working state.
  • the low power consumption module 14 since the power supply end of the low power consumption module 14 is connected to the power supply 20, the low power consumption module 14 can be started and run in a low power consumption state when the switching circuit is connected to the power supply 20 and is powered on. ; At the same time, due to the settings of the first on-off module 11, the low-power module 14, the control module 13, and the power-taking control module 12, when the low-power module 14 is in working state, the control signal can be output to the first on-off Module 11 to achieve control of the control module 13.
  • the low-power module 14 first controls the power-taking control module 14 to control the power supply 20 to take off-state power, so that in the off-state power-off state, the circuit can provide when the control module 13 starts Higher energy required.
  • the low-power module 14 controls the first on-off module 11 to control the control module 13 to start in the off-state power supply state, so as to realize that only the low-power module 14 with low required voltage is started when the power is turned on.
  • the power consumption module 14 is in the working state to reduce power consumption.
  • the low power consumption module 14 first controls the power-taking control module 12 to achieve power-off when the control module 13 starts up.
  • the control module 13 is restarted to avoid the continuous start-up reset problem caused by directly starting the control module 13 when the power is turned on, and solves the problems of low power-on success rate and high power consumption of the commonly used circuits.
  • FIG. 2 is a schematic diagram of a switching circuit provided by another embodiment of the present application. Please refer to FIG. 2.
  • the low power consumption module 14 is communicatively connected with the control module 13 for transmitting the low power consumption.
  • the low power consumption module 14 and the control module 13 are correspondingly provided with a first communication terminal, and the first communication terminal of the low power consumption module 14 is connected to the first communication terminal of the control module 13 so that The low power consumption module 14 switches from the sleep state to the working state according to the interrupt signal output by the first communication terminal of the control module 13.
  • the low power consumption module 14 starts to operate in a low power consumption state.
  • the control module 13 needs to switch to the working state, the low power consumption module 14 outputs an off-state signal to The power taking control module 14 controls the power supply 20 to take power in the off state.
  • the low power consumption module 14 outputs the on-off signal to the first on-off module 11, so that the first on-off module 11 controls the control module 13 to be in a working state. At the same time, the low power consumption module 14 starts to switch from the normal working state to the dormant state, and continuously outputs the first control signal to the first on-off module 11 during the dormant state, so that the control module 13 is continuously in the working state.
  • the consumption is relatively low.
  • the control module 13 is always in the working state.
  • the low-power consumption module 14 needs to be awakened to make the low-power consumption module 14 switch from the sleep state to the working state again. Therefore, the control module 13 outputs an interrupt signal to the low power consumption module 14 through the first communication terminal, so that the low power consumption module 14 is awakened based on the interrupt signal output by the control module 13, and then the low power consumption module 14 outputs a shutdown signal to the first
  • the on-off module 11 enables the first on-off module 11 to control the control module 13 to switch to a non-working state.
  • the low power consumption module 14 in the switching circuit switches to the sleep state and the control module 13 switches to the working state
  • the control module 13 may not be able to get power after restarting. Therefore, in the embodiment of the present application, the power-off reset voltage of the low-power module 14 and the control module 13 must be consistent.
  • the low power consumption module 14 is also powered off at the same time. When the power is restored, the low power consumption module 14 is still activated first, and the activation of the module 13 is controlled by the corresponding switch of the low power consumption module 14. This avoids the problem that the control module 13 cannot get power when it restarts directly.
  • the implementation circuits in the embodiments of the present application can be seen from Figures 6 to 10, where the first communication terminal of the low power consumption module 14 can be the RB6 in the first chip U1 in the figure, and the first communication terminal of the control module 13 can be the figure PB13 pin in the second chip U2.
  • the low power consumption module 14 controls the first on-off module 11 to switch the control module 13 to the working state
  • the low power consumption module 14 itself switches from the working state to the sleep state, which can further reduce power consumption.
  • the control module 13 outputs an interrupt signal to the low-power module 14 through the first communication terminal, thereby realizing the wake-up of the low-power module 14
  • the subsequent low power consumption module 14 controls the control module 13 to switch to the non-working state
  • FIG. 6 is a circuit structure diagram of a switching circuit provided by another embodiment of the present application. Please refer to FIG. 6.
  • the first on-off module 11 includes a first field effect transistor Q1 for low
  • the working states of the power consumption module 14 and the control module 13 are switched.
  • the first field effect transistor Q1 is a PMOS transistor; the first end of the PMOS transistor is connected to the control end of the low power consumption module 14, and the second end of the PMOS transistor is connected to the control end of the control module 13.
  • the power supply terminal is connected, and the third terminal of the PMOS tube is connected to the power supply 20.
  • the first terminal of the first on-off module 11 is connected to the control terminal RC6 of the low power consumption module 14, the second terminal of the first on-off module 11 is connected to the power supply terminal VDD of the control module 13, and the first The third end of the on-off module 11 is connected to the power supply 20.
  • the first on-off module 11 includes a first field effect transistor Q1, a first resistor R1 connected to the gate of the first field effect transistor Q1, and a first resistor R1 connected to the source of the first field effect transistor Q1.
  • the drain of the field effect transistor Q1 is connected to the power supply terminal VDD of the control module 13, and the source of the first field effect transistor Q1 is connected to the other end of the second resistor R2 and the power supply 20.
  • the power-taking control module 12 is connected to the first signal output terminal of the low power consumption module 14 and the first signal output terminal of the control module 13 respectively.
  • the power-taking control module 12 may be a relay with low power consumption.
  • the consumption module 14 can output a control signal to the power-taking control module 12 through the first signal output terminal to control the connection state of the on-state power-taking circuit or the off-state power-taking circuit connected to the power-taking control module 12, thereby controlling the switching circuit On-state power-taking state or off-state power-taking state.
  • the turn-on signal may be a high level, and the turn-off signal may be a low level, which will be described as an example below.
  • the first signal output terminal of the low power consumption module 14 and the first signal output terminal of the control module 13 both include a relay open end (RELAY1ON, RELAY2ON) and a relay close end (RELAY1OFF, RELAY2OFF).
  • the relay When the power consumption module 14 or the control module 13 outputs the control signal to the relay through the open end of the relay, the relay is turned on accordingly, so that the switching circuit is in the on-state power-taking state; when the low power consumption module 14 or the control module 13 outputs the control signal to the relay through the closed end of the relay When the relay is turned off, the relay is correspondingly disconnected, so that the switching circuit is in the off state to take power.
  • the first signal output terminal may be at least one group.
  • the number of the first signal output terminal is two groups. It is understandable that in other embodiments of the present application, the number of the first signal output terminal may also be For others, it can be set according to actual use needs, which is not limited here.
  • diodes are respectively connected between the first signal output terminal of the low power consumption module 14 and the first signal output terminal of the control module 13 and the power-taking control module 12 to avoid each first signal output terminal. There is a problem of circuit conduction.
  • the switching circuit further includes a protection resistor R11 connected between the power supply 20 and the reset terminal MCLR/VPP/RA3 of the low power consumption module 14, and a first capacitor C1 and a first capacitor C1 and a second capacitor connected to both ends of the protection resistor R11.
  • a protection resistor R11 connected between the power supply 20 and the reset terminal MCLR/VPP/RA3 of the low power consumption module 14
  • a first capacitor C1 and a first capacitor C1 and a second capacitor connected to both ends of the protection resistor R11.
  • Two capacitors C2 where one end of the first capacitor C1 is connected to the power supply 20 and one end of the protection resistor R11, the other end of the first capacitor C1 is grounded, and one end of the second capacitor C2 is connected to the protection resistor R11 and the low power consumption module 14
  • One end of the reset terminal MCLR/VPP/RA3 is connected, and the other end of the second capacitor C2 is grounded.
  • a protection resistor R11 is set between the terminal VDD and the reset terminal MCLR/VPP/RA3 to ensure the normal operation of the reset terminal MCLR/VPP/RA3 of the low power consumption module 14.
  • the low-power module 14 When the switching circuit is powered on, the low-power module 14 is activated. At this time, the control terminal RC6 of the low-power module 14 is in the input high-impedance state. Since the second resistor R2 is connected to the power supply 20, the low-power module 14 is controlled The voltage of the terminal RC6 is pulled up, so the gate voltage of the first field effect transistor Q1 is the same as the source voltage, so that the first field effect transistor Q1 is not turned on, so the first field effect transistor Q1 does not work, that is, the control module 13 It is not working at this time.
  • the control terminal RC6 of the low power consumption module 14 can be driven to output a high level.
  • the low power consumption module 14 needs to control the working state of the control module 13, when the low power consumption module 14 first outputs a control signal to the relay through the off terminal of the relay, the relay is correspondingly disconnected, so that the switching circuit is in the off state and takes power.
  • the low power consumption module 14 outputs a low level through the control terminal RC6, so that the gate voltage of the first field effect transistor Q1 is smaller than the source voltage, so that the first field effect transistor Q1 is turned on.
  • the control The power supply terminal VDD of the module 13 is connected to the power supply 20, so that the control module 13 is started in the off-state power-taking state.
  • the low power consumption module 14 when the control module 13 is completed and the low power consumption module 14 needs to control the control module 13 to switch to the non-working state, the low power consumption module 14 outputs a high level through the control terminal RC6, so that the first field The gate voltage of the effect transistor Q1 is equal to the source voltage, so that the first field effect transistor Q1 is turned off, so that the control module 13 is switched to a non-operating state.
  • the first communication terminal RB6 of the low power consumption module 14 is connected to the first communication terminal PB13 of the control module 13, so that the low power consumption module 14 outputs according to the communication terminal of the control module 13
  • the interrupt signal switches from the sleep state to the working state.
  • the low-power module 14 drives the control module 13 to start in the off-state power-taking state
  • the low-power module 14 switches from the normal working state to the sleep state, and continues through the control terminal RC6 during the sleep state
  • the low level is output to the first on-off module 11, so that the control module 13 is continuously in the working state, and the low power consumption module 14 is in the low power consumption state.
  • the low-power consumption module 14 when the work of the control module 13 is completed and the control module 13 needs to be switched to the non-working state, the low-power consumption module 14 needs to be awakened, so that the low-power consumption module 14 is switched from the sleep state to the working state again.
  • the control module 13 outputs an interrupt signal to the low-power module 14 through the first communication terminal PB13, so that the low-power module 14 is awakened based on the interrupt signal output by the control module 13, and then the low-power module 14 continues through the control terminal RC6
  • the high level is output to the first on-off module 11, so that the first on-off module 11 is turned off to control the control module 13 to switch to a non-working state.
  • FIG. 7 is a circuit structure diagram of a switching circuit provided by another embodiment of the present application.
  • the first field effect transistor Q1 is an NMOS transistor; the NMOS transistor is also used in the control Under the control of the module 13, the working state of the control module 13 is controlled; the first terminal of the NMOS tube is connected to the control terminal of the low power consumption module 14 and the first control terminal of the control module 13, and the second terminal of the NMOS tube Terminal is connected to the power supply terminal of the control module 13, and the third terminal of the NMOS tube is connected to the power supply 20; or, the second terminal of the NMOS tube is connected to the ground terminal of the control module 13, and the third terminal of the NMOS tube is connected to the ground terminal of the control module 13. The terminal is grounded.
  • the first terminal of the first on-off module 11 is connected to the control terminal RC6 of the low power consumption module 14 and the first control terminal PF1 of the control module 13, and the second terminal of the first on-off module 11 is connected to the control terminal PF1.
  • the power supply terminal VDD of the module 13 is connected, and the third terminal of the first on-off module 11 is connected to the power supply 20.
  • the first on-off module 11 includes a first field effect transistor Q1, a third resistor R3 connected to the gate of the first field effect transistor Q1, a first diode D1, and a second diode D2.
  • the gate of the first field effect transistor Q1 is respectively connected to one end of the third resistor R3, the cathode of the first diode D1 and the second diode D2, the other end of the third resistor R3 is grounded, and the anode of the first diode D1 Connected to the control terminal RC6 of the low power consumption module 14, the anode of the second diode D2 is connected to the first control terminal PF1 of the control module 13; the drain of the first field effect transistor Q1 is connected to the power supply 20, the first field The source of the effect tube Q1 is connected to the power supply terminal VDD of the control module 13.
  • the first diode D1 and the second diode D2 are used to prevent the circuit between the control terminal RC6 of the low power consumption module 14 and the first control terminal PF1 of the control module 13 from being connected. It should be noted that the resistance of the third resistor R3 can be set to a larger value, such as megaohm level. At this time, the design of the large resistance of the third resistor R3 can reduce the power consumption of the low-power module 14 during output control. .
  • the gate voltage of the first on-off module 11 is equal to the source voltage, so that the first The on-off module 11 is turned off, so that the control module 13 is in a non-working state.
  • the control terminal RC6 of the low power consumption module 14 and the first control terminal PF1 of the control module 13 output a high level, the control module 13 is in a working state.
  • the control module 13 does not start to work.
  • the first control terminal PF1 of the control module 13 is in the input high-impedance state.
  • the first control terminal PF1 of the control module 13 The high level is not output, and at the same time, the control terminal RC6 of the low power consumption module 14 outputs a low level, so that the first on-off module 11 is turned off, so the control module 13 is in a non-working state.
  • the first control terminal PF1 of the control module 13 continues to output a high level, so as to control its own working state.
  • FIG. 3 is a schematic diagram of a module of a switching circuit provided by another embodiment of the present application
  • FIG. 8 is a circuit structure diagram of a switching circuit provided by another embodiment of the present application.
  • the circuit also includes a second on-off module 15; the second on-off module 15 is connected between the power supply 20 and the low power consumption module 14, and the second on-off module is also connected with the control module 13; The two-on-off module 15 is used for feedback control of the working state of the low power consumption module 14 under the control of the control module 13.
  • the control module 13 when the switching circuit is powered on, since the control module 13 is not powered on, the control of the second on-off module 15 cannot be achieved.
  • the control module 13 does not output a signal to control the second on-off module 15 ,
  • the second on-off module 15 is in the on state, so the low-power module 14 starts to run.
  • the control module 13 needs to work, the low-power module 14 outputs an off-state signal so that the power-taking control module 14 controls the power supply
  • the power supply 20 takes power in the off state.
  • the low power consumption module 14 outputs the on-off signal to the first on-off module 11, so that the first on-off module 11 controls the control module 13 to be in a working state, so that the low-power module 14 controls the control module 13 Start.
  • the control module 13 continuously outputs the on-off signal to the first on-off module 11, so that the first on-off module 11 controls the control module 13 to be in a working state, so that the control module 13 realizes control of its own state.
  • control module 13 outputs a turn-off signal to the second on-off module 15, so that the second on-off module 15 is turned off to control the low power consumption module 14 to be in a sleep state, so that the control module 13 can drive low power consumption.
  • the module 14 switches to the sleep state, thereby completing the switching of the working states of the low power consumption module 14 and the control module 13 respectively.
  • the control module 13 when the work of the control module 13 is completed, the control module 13 needs to be switched to a non-working state, and the low power consumption module 14 needs to be activated, the control module 13 outputs a conduction signal to the second on-off module 15 so that the first The two-on-off module 15 controls the low power consumption module 14 to be in a working state.
  • the low-power module 14 starts to continuously output the turn-off signal to the first on-off module 11, so that the first on-off module 11 controls the control module 13 to be in an inoperative state, thereby completing the control module 13 and the low-power module 14 respectively. Switching of working status.
  • the working states of the low power consumption module 14 and the control module 13 can be switched in turn.
  • the implementation circuit of the embodiment of the present application can be seen in Figures 8 and 10, where the second on-off module 15 can be the second FET Q2 in the figure; the first control terminal PF1 of the control module 13 can be the second chip in the figure.
  • the PF1 pin in U2 is used to output the second control signal to the first on-off module 11; the second control terminal of the control module 13 can be the PF2 pin in the second chip U2 in the figure, which is used to output the third control Signal to the second on-off module 15.
  • the control module 13 itself controls its own working state by controlling the first on-off module 11, and controls the second on-off module 15 so that the low power consumption module 14 is switched to the sleep state, and when the control module 13 is completed, the control module 13 needs to be switched to the non-working state, and when the low power consumption module 14 needs to be switched to the working state, the control module 13 passes The second on-off module 15 is controlled to drive the low-power module 14 to start, and the low-power module 14 is switched to the non-working state by controlling the first on-off module 11 to drive the control module 13, so that the low-power module 14 can be controlled in turn.
  • the first control terminal PF1 of the control module 13 is connected to the first on-off module 11 for controlling the working state of the first on-off module 11; the second control terminal PF2 of the control module 13 is connected to the second on-off module 15 , Used to control the working state of the second on-off module 15.
  • the first terminal of the second on-off module 15 is connected to the second control terminal PF2 of the control module 13, and the second terminal of the second on-off module 15 is connected to the power supply terminal VDD of the control module 13.
  • the third end of the on-off module 15 is connected to the power supply 20.
  • the second on-off module 15 includes a second field effect tube and a fourth resistor R4 connected to the gate of the second field effect tube, the source of the second field effect tube is connected to the power supply 20, and the second field effect tube
  • the gate of the fourth resistor R4 is connected to one end of the fourth resistor R4, the other end of the fourth resistor R4 is connected to the second control terminal PF2 of the control module 13, and the drain of the second field effect transistor is connected to the control terminal RC6 of the low power consumption module 14.
  • the second field effect transistors are PMOS transistors. It can be understood that in other embodiments of the present application, the first on-off module 11 and the second on-off module 15 can also be other switching devices, which can be set according to actual needs. This is not limited.
  • the second control terminal PF2 of the control module 13 does not output a high level, and the gate voltage of the second on-off module 15 is lower than the source voltage, thus making the second The on-off module 15 is turned on; at the same time, since the control terminal RC6 of the low-power module 14 and the second control terminal PF2 of the control module 13 do not output a high level, the gate voltage of the first on-off module 11 is equal to the source voltage, so The first on-off module 11 is turned off.
  • the power supply 20 is connected to the power supply terminal VDD of the low-power module 14 through the second on-off module 15 to realize normal power supply to the low-power module 14.
  • the low-power module 14 starts up The starting voltage is small, so whether the switching circuit is in the on-state or off-state, the low-power module 14 can be driven to start; at the same time, because the first on-off module 11 is turned off, the power supply 20 cannot communicate with each other.
  • the power supply terminal VDD of the control module 13 is connected, so that the control module 13 is in a non-working state.
  • the low power consumption module 14 when the low power consumption module 14 needs to drive the control module 13 not to work, the low power consumption module 14 can drive the control terminal RC6 to always output a low level.
  • the relay when the low power consumption module 14 needs to switch to the operation of the control module 13, when the low power consumption module 14 outputs a control signal to the relay through the off terminal of the relay, the relay is disconnected accordingly, so that the switching circuit is in the off state. Electric state.
  • the low power consumption module 14 outputs a high level through the control terminal RC6, so that the gate voltage of the first on-off module 11 is greater than the source voltage, so that the first on-off module 11 is turned on.
  • the power supply terminal VDD of the module 13 is connected to the power supply 20, so that the control module 13 is started in the off-state power supply state.
  • control module 13 continuously outputs a high level to the first on-off module 11 through the first control terminal PF1, so as to realize the control of the control module 13 on its own state, so as to maintain its normal operation.
  • control module 13 outputs a high level to the second on-off module 15 through the second control terminal PF2, so that the second on-off module 15 is turned off.
  • the power supply 20 cannot interact with the low-power module 15
  • the power supply terminal VDD of 14 is connected, so that the low power consumption module 14 is switched to the non-operating state, so that the working state of the low power consumption module 14 and the control module 13 are switched respectively.
  • the control module 13 when the work of the control module 13 is completed and the low power consumption module 14 needs to be switched to the working state, the control module 13 outputs a low level to the second on-off module 15 through the second control terminal PF2, so that the second The on-off module 15 is turned on, so that the low-power module 14 is started, and the control module 13 outputs a low level through the first control terminal PF1 to the first on-off module 11 or the low-power module 14 outputs a low level through the control terminal RC6 To the first on-off module 11, so that the first on-off module 11 is turned off, so that the control module 13 is switched to the non-working state, thus realizing the switching of the working state of the control module 13 and the low power consumption module 14 respectively.
  • the first on-off module 11 and the second on-off module 15 can be used to control the working status of the control module 13 and the low power consumption module 14, respectively.
  • the low-power module 14 is switched to the sleep state, and when the control module 13 is switched to the working state, the turn-off signal output by the second control terminal PF2 of the control module 13 can be sent to the second on-off module 15 to turn the low-power module 14 Switch to sleep state.
  • the low power consumption module 14 and the control module 13 can also be used for information communication between the first communication terminal and the second communication terminal, so that the low power consumption module 14 and the control module can be controlled separately. 13 When the working state is switched, it is always maintained to start any one of the low power consumption module 14 and the control module 13, and correspondingly control the other to enter the dormant state.
  • the circuit further includes a switching module 16; the switching module 16 is connected to the low power consumption module 14 and The control module 13 is connected to switch the working state of the low power consumption module 14 and the control module 13 respectively.
  • the low power consumption module 14 is also in communication connection with the control module 13 for transmitting communication signals between the low power consumption module 14 and the control module 13.
  • the switching module 16 may be a key switch, and the corresponding input signal can be sent to the low power consumption module 14 and the control module 13 according to the pressing state of the key switch, so that the low power consumption module 14 and The control module 13 responds accordingly according to the input signal to switch the working states of the low power consumption module 14 and the control module 13 respectively.
  • the key switch can be a mechanical key or a touch key.
  • the switching module 16 may be at least one group. In some embodiments, the number of the switching module 16 is two groups.
  • the second communication terminal (RC7, RB7) of the low power consumption module 14 and the second communication terminal (RC7, RB7) of the control module 13 The two communication terminals (PC11, PF0) are also connected in two groups. It is understandable that in other embodiments of this application, the number of switching modules 16 can also be other, which can be set according to actual needs, and will not be done here. limited. At the same time, it should be noted that in other embodiments of the present application, the low power consumption module 14 and the control module 13 may also be connected to a corresponding switching module 16, for example, the low power consumption module 14 is connected to the first switching module 16. , The control module 13 is connected to the second switching module 16, and at this time, different switching control of the low power consumption module 14 and the control module 13 is realized through the multiple switching modules 16 provided.
  • the switching module 16 can output a switching signal to the low power consumption module 14 or the control module 13 based on its closed or open state, thereby controlling the switching of the working status of the low power consumption module 14 and the control module 13 respectively.
  • the switching module 16 when the switching module 16 is closed, it outputs a closing signal, which can be used to control the control module 13 to switch to the working state and the low power consumption module 14 to switch to the dormant state; when the switching module 16 is opened, the output is turned on Signal, the open signal can be used to control the control module 13 to switch to the non-working state, and the low power consumption module 14 to switch to the working state.
  • the low power consumption module 14 and the control module 13 are correspondingly provided with a second communication terminal, and the second communication terminal of the low power consumption module 14 is connected to the second communication terminal of the control module 13 to The switching signal of the switching module 16 received by the low power consumption module 14 is output to the control module 13, and the switching signal of the switching module 16 received by the control module 13 is output to the low power consumption module 14.
  • control module 13 switches from the non-working state to the working state
  • low power consumption module 14 switches from the working state to the sleep state in the switching circuit:
  • the switching circuit When the switching circuit is connected to the power supply 20, according to the introduction of the above embodiment, the low power consumption module 14 is switched to the working state, and the control module 13 is in the non-working state.
  • the low power consumption module 14 when the switching circuit is powered on, the low power consumption module 14 starts to operate in a low power consumption state.
  • the low power consumption module 14 and the control module 13 are switched respectively.
  • the power consumption module 14 obtains the switching signal output by the switching module 16, and at this time, the low power consumption module 14 outputs an off-state signal, so that the power taking control module 14 controls the power supply 20 to take off-state power.
  • the low power consumption module 14 outputs the on-off signal to the first on-off module 11, so that the first on-off module 11 controls the control module 13 to be in working state, so that the low-power module 14 drives the control module 13 start up.
  • the control module 13 outputs the on-off signal to the first on-off module 11, so that the first on-off module 11 controls the control module 13 to be in a working state, so that the control module 13 realizes the control of its own state.
  • the low power consumption module 14 outputs the synchronization signal of the switching signal of the switching module 16 to the control module 13 through the second communication terminal, so as to synchronize the key information and keep the power-taking state following, that is, the control module 13
  • the off-state signal is output so that the power taking control module 14 controls the power supply 20 to take off-state power.
  • the control module 13 outputs a shutdown signal to the second on-off module 15, so that the second on-off module 15 controls the low-power module 14 to be in an inoperative state, and realizes that the control module 13 drives the low-power module 14 to switch To the sleep state, the switching between the working states of the low power consumption module 14 and the control module 13 is completed respectively.
  • the user can realize the control of the external electrical appliance through the switching circuit.
  • the external electrical appliance can be a lamp.
  • the corresponding control of the switching circuit is carried out to take power at this time;
  • the switching circuit is controlled to stop the electrical appliance from working, the corresponding control of the switching circuit at this time is in the off state to take power.
  • control module 13 when the control module 13 completes its work and needs to switch to the low-power module 14 for work, the user can switch the working status of the control module 13 and the low-power module 14 through the switch module 16, respectively.
  • the control module 13 obtains the switching signal output by the switching module 16
  • the control module 13 outputs the on-off signal to the second on-off module 15 so that the second on-off module 15 controls the low power consumption module 14 to be in working state.
  • control module 13 outputs a synchronization signal to the low power consumption module 14 through the second communication terminal, so as to keep the power-taking state following, that is, when the switching circuit is currently in the on-state to take power, the low-power consumption module 14 Output an on-state signal to enable the power-taking control module 12 to take power from the on-state; when the switching circuit is currently in the off-state to take power, the low-power module 14 outputs an off-state signal so that the power-taking control module 14 controls the power supply 20 Carry out the off state to fetch electricity.
  • the low power consumption module 14 starts to continuously output a shutdown signal to the first on-off module 11, so that the first on-off module 11 controls the control module 13 to be in a non-working state.
  • the above steps are completed in sequence, and based on the control of the switching module 16, the switching of the working states of the low power consumption module 14 and the control module 13 can be realized in turn.
  • control module 13 works normally, when the gateway is disconnected from the network, the control module 13 can also be switched to the non-working state, and the low power consumption module 14 is switched to the working state.
  • the process is described below:
  • the ZIGBEE module in the control module 13 is in the network search state, and the power consumption increases.
  • the network search state can trigger the control module 13 to control the second control terminal to output a conduction signal To the second on-off module 15 to control the second on-off module 15 to be turned on, so that the low-power module 14 is switched to the working state; because the low-power module 14 does not obtain the switching signal output by the control module 13, therefore,
  • the control end of the low power consumption module 14 outputs the first control signal to the first on-off module 11, so that the control module 13 enters an inoperative state, thereby reducing the power consumption of the switching circuit.
  • the switching module 16 can be integrated on other button switches of the switching circuit.
  • the switching module 16 and the switch of the electrical appliance can be integrated on a button, and the switch state of the electrical appliance can be controlled by a short press.
  • the long press controls the switching of the working states of the low power consumption module 14 and the control module 13.
  • the control module 13 can also enter the sleep state accordingly to reduce power consumption.
  • the low power consumption module 14 Can not drive the control module 13 to switch to the non-working state, realize the low power consumption module 14 and the control module 13 to be awakened based on the interrupt signal respectively through the first communication terminal, and realize the low power consumption module 14 and the control module through the second communication terminal Transmission of communication signals between 13.
  • any one of the low power consumption module 14 and the control module 13 can be activated, and the other one can be controlled to enter the sleep state accordingly.
  • the implementation circuit of the embodiment of the present application can be seen in Figures 6 to 10, where the second communication terminal of the low power consumption module 14 can be the RC7 and RB7 pins of the first chip U1 in the figure, which controls the second communication of the module 13
  • the terminals can be the PC11 and PF0 pins in the second chip U2 in the figure.
  • the user can manually switch the working status of the low-power module 14 and the control module 13; through the communication connection between the low-power module 14 and the control module 13, Synchronize the power supply status information and switching signals between the low-power module 12 and the control module 13, so that when the control module 13 is not required to work, switch to the low-power module 14 to start to reduce power consumption;
  • the module 13 is controlled, the user can manually switch the working state of the low power consumption module 14 and the control module 13 through the switch module 16.
  • the circuit further includes a display module 17; the display module 17 is connected to the low power consumption module 14 and The control module 13 is connected and used to display the power-taking state of the on-state power-taking or off-state power-taking.
  • the display module 17 can perform corresponding display according to the current power-taking state controlled by the power-taking control module 12. For example, when the switching module 16 controls the switching circuit to switch from the low-power module 14 to the control module 13 for operation, the low-power module 14 First, control the power-taking control module 12 so that the power-taking control module 14 controls the power supply 20 to take power in the off-state, and the display module 17 displays the current power-off state according to the current off-state. When it is in the on-state power-taking state, the display module 17 stops displaying.
  • the number of display modules 17 may be at least one group. In some embodiments, the number of display modules 17 is two groups. It is understandable that in other embodiments of the present application, the number of display modules 17 may also be other. Set according to actual needs, and there is no limitation here. In some embodiments of the present application, the display module 17 may be a light emitting diode.
  • the display module 17 is respectively connected to the second signal output terminals (LED1, LED2) provided on the low power consumption module 14 and the control module 13, and the low power consumption module 14 and the control module 13 correspond to each other.
  • a second communication terminal is provided, and the second communication terminal (RC7, RB7) of the low power consumption module 14 is connected to the second communication terminal (PC11, PF0) of the control module 13.
  • diodes are respectively connected between the second signal output end of the low power consumption module 14 and the second signal output end of the control module 13 and the display module 17 to prevent the second signal output end from being connected to each other. There is a problem of circuit conduction.
  • the embodiment of the present application can also obtain the switching signal generated by the user pressing the switching module 16 to control the working states of the low power consumption module 14 and the control module 13 respectively.
  • the low power consumption module 14 When the switching signal output by the switching module 16 is obtained after startup, the low power consumption module 14 controls the power-taking control module 14 to control the power supply 20 to take off-state power, and at the same time, the off-state power-taking state is displayed through the display module 17.
  • the low power consumption module 14 outputs a synchronization signal to the control module 13 through the second communication terminal (RC7, RB7). At this time, the low power consumption module 14 switches from the normal working state to the sleep state, and continues during the sleep state.
  • the control terminal RC6 outputs a low level to the first on-off module 11, so that the control module 13 continues to work.
  • the control module 13 works, when the switching signal output by the switching module 16 is obtained, the control module 13 outputs a synchronization signal to the low power consumption module 14 through the second communication terminal (PC11, PF0), and passes The first communication terminal (PB13) outputs an interrupt signal to the low-power module 14, so that the low-power module 14 is awakened based on the interrupt signal output by the control module 13, and then the low-power module 14 continues to output a high level through the control terminal RC6 To the first on-off module 11, the first on-off module 11 controls the control module 13 to switch to a non-working state.
  • the first communication terminal RB6 of the low power consumption module 14 and the first communication terminal PB13 of the control module 13 may not be connected.
  • the working state can be switched through the control of the switching module 16 or the self-control of the low power consumption module 14/control module 13.
  • the first communication terminal may not be used to wake up.
  • the wake-up is realized when the first communication terminal is connected, and the power is directly turned on when the first communication terminal is not connected.
  • the settings are set according to actual usage requirements, which are not limited here.
  • the second communication terminal (RC7, RB7) of the low-power module and the second communication terminal (PC11, PF0) of the control module may not be connected.
  • the low-power module 14 is starting and controlling the switching.
  • the control module 13 the low power consumption module 14 can sleep and is no longer awakened, thereby realizing continuous control of the control module 13.
  • FIG. 9 is a schematic diagram of the circuit structure of a switching circuit provided by an embodiment of the present application. Please refer to FIG. 9.
  • the power supply terminal VDD of the control module 13 is connected to the power supply 20.
  • the first on-off module 11 includes an NMOS tube, the first terminal of the first on-off module 11 is connected to the control terminal RC6 of the low power consumption module 14 and the first control terminal PF1 of the control module 13, and the first on-off module The second terminal of 11 is connected to the ground terminal of the control module 13, and the third terminal of the first on-off module 11 is grounded.
  • the first on-off module 11 includes a first field effect transistor Q1, a fifth resistor R5 connected to the gate of the first field effect transistor Q1, a sixth resistor R6 connected to the other end of the fifth resistor R5, and a third resistor R5.
  • the gate of the first field effect transistor Q1 is connected to one end of the fifth resistor R5, the source of the first field effect transistor Q1 is grounded, the drain of the first field effect transistor Q1 is connected to the ground terminal of the control module 13, and the fifth resistor R5
  • the other end is connected to one end of the sixth resistor R6, the cathode of the third diode D3, and the cathode of the fourth diode D4, the other end of the sixth resistor R6 is grounded, and the anode of the third diode D3 is connected to the control end of the low-power module 14 RC6 is connected, and the anode of the fourth diode D4 is connected to the first control terminal PF1 of the control module 13.
  • the first field effect transistor Q1 is an NMOS transistor
  • the third diode D3 and the fourth diode D4 are used to prevent the control terminal RC6 of the low power consumption module 14 from the first control terminal PF1 of the control module 13 The circuit is connected.
  • the switching module 16 when the control terminal RC6 of the low power consumption module 14 and the first control terminal PF1 of the control module 13 output a high level, the first on-off module The gate voltage of 11 is greater than the source voltage, so that the first on-off module 11 is turned on. At this time, the ground terminal GND of the control module is connected to the ground, so that the control module 13 is in a working state.
  • the switching circuit further includes a second on-off module 15; the second on-off module 15 is connected between the power supply 20 and the low power consumption module 14, and the second on-off module 15 is also Connected to the control module 13 for feedback control of the working state of the low power consumption module 14 under the control of the control module 13.
  • the first terminal of the second on-off module 15 is connected to the second control terminal PF2 of the control module 13, and the second terminal of the second on-off module 15 is connected to the power supply terminal VDD of the control module 13.
  • the third end of the on-off module 15 is connected to the power supply 20.
  • the second on-off module 15 includes a second field effect tube and a seventh resistor R7 connected to the grid of the second field effect tube, the source of the second field effect tube is connected to the power supply 20, and the second field effect tube
  • the gate is connected to one end of the seventh resistor R7, the other end of the seventh resistor R7 is connected to the second control terminal PF2 of the control module 13, and the drain of the second field effect transistor is connected to the control terminal RC6 of the low power consumption module 14.
  • the second field effect tube is a PMOS tube.
  • An embodiment of the present application also provides a single live wire switch, which includes the switching circuit provided in any one of the foregoing embodiments.
  • the switching circuit controls only the low-power module 14 to be activated first, thereby reducing power consumption.
  • the low power consumption module 14 requires a lower voltage when starting, which can improve the success rate of starting when the single live wire switch is connected to low-power electrical appliances.
  • the control module 13 needs to work, the low power consumption module 14 first controls the power access control module 14 to control power supply The power supply 20 takes power in the off state, so that the circuit can provide the power consumption required when the control module 13 is started when the circuit is in the off state.
  • the low power consumption module 14 controls the control module 13 to start, which can effectively avoid the problem that the control module 13 and low-power electrical appliances cannot start successfully due to the high energy required by the control module 13 when the single live wire switch is powered on.
  • the low power consumption module 14 since the low power consumption module 14 is switched to the working state when the control module 13 is not required to work, and the control module 13 is switched to work when the control module 13 is required to work, the power consumption of the single live wire switch can be effectively reduced.
  • the present application also provides a switch device, please refer to FIG. 11, the switch device includes a master single live wire switch 100 and a slave single live wire switch 200, wherein the master single live wire switch 100 and the slave single live wire switch 200 include any of the above implementations Example of the switching circuit provided.
  • the live terminal of the master single live wire switch 100 is connected to the live terminal of the slave single live wire switch 200
  • the electrical terminal A of the master single live wire switch 100 is connected to the first terminal of the external electrical appliance 300
  • the first terminal of the external electrical appliance 300 is connected.
  • the two ends are connected to the neutral terminal N of the AC power
  • the live terminal L of the single live wire switch 200 is connected to the live terminal L of the AC power
  • the power supply communication terminal S of the main single live wire switch 100 is connected to the power supply communication terminal S of the slave single live wire switch 200 .
  • the number of the slave single live wire switch 200 is one, and the slave single live wire switch 200 and the master single live wire switch 100 are combined to form a single live wire dual control switch device.
  • the number of the slave single live wire switch 200 can be other, and they are all connected to the master single live wire switch 100, and can be set according to actual usage requirements, which is not limited here.
  • the low power consumption module 14 in the main single live wire switch 100 works, and at the same time, the slave single live wire switch 200 passes through the live wires corresponding to the main single live wire switch 100 respectively.
  • the connection between the terminal L and the communication terminal S is to provide power supply when the single live wire switch 200 is working, and can drive the low power consumption module 14 in the single live wire switch 200 to work.
  • the power supply communication terminal S is also It can communicate with the slave single live wire switch 200.
  • the main single live wire switch 100 works through any one of the on-state power-taking circuit or the off-state power-taking circuit, so as to realize the on-state power-taking or the off-state power-taking.
  • the main single live wire switch 100 needs to be switched from low to low.
  • the switching circuit in the main single live wire switch 100 first controls the power supply 20 through the power-taking control module 12 to take off-state power, and then controls low in the off-state power-off state.
  • the power consumption module 14 switches to the sleep state, and the control module 13 switches to the working state.
  • the slave single-wire switch 200 is connected to the live-wire terminal L and the communication terminal S respectively corresponding to the main single-wire switch 100, so as to realize that after power is taken, when the main single-wire switch 100 is in the on state to take power, Then the single live wire switch 200 is also in the on state to take power; when the main single live wire switch 100 is in the off state to take power, the from the single live wire switch 200 is also in the off state to take power. At this time, the main single live wire switch 100 is controlled to take power in the off state, and after the low power consumption module 14 is switched to the control module 13, the single live wire switch 200 is delayed for a preset time and is correspondingly in the off state to take power.
  • the switching control module 13 works, or when the control module 13 in the main single live wire switch 100 works from the single live wire switch 200 and receives the control signal output by the power supply communication terminal S, from the switching circuit in the single live wire switch 200
  • the low power consumption module 14 is switched to the sleep state, and the control module 13 is switched to the working state, so that the control module 13 in the main single live switch 100 and the control module 13 in the slave single live switch 200 stagger the switching start time at intervals, avoiding At the same time, the power taken during startup does not meet the working power requirements, which leads to the problem of unsuccessful power taking, thereby increasing the success rate of startup.

Abstract

一种切换电路、单火线开关及开关装置,切换电路包括第一通断模块(11)、低功耗模块(14)、控制模块(13)以及取电控制模块(12)。第一通断模块(11)分别与供电电源(20)、低功耗模块(14)、控制模块(13)连接,取电控制模块(12)分别与低功耗模块(14)和控制模块(13)连接,低功耗模块(14)与供电电源(20)连接。当需要将控制模块(13)切换为工作状态时,先控制电路的供电电源(20)进行关态取电,在关态取电状态下,电路可以提供控制模块(13)启动所需的能量,此时再控制控制模块(13)启动,可以使控制模块(13)顺利启动起来,也即是取电成功,解决了目前常用的电路中控制模块(13)取电成功率低,导致单火线开关无法正常工作的问题。

Description

一种切换电路、单火线开关及开关装置
本申请要求于2019年10月11日提交的申请号为201910962677.6、发明名称为“一种芯片切换电路、单火线开关、及开关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电器开关技术领域,尤其涉及一种切换电路、单火线开关及开关装置。
背景技术
单火线开关是指一端连接火线、另一端连接电器的开关,用于控制是否为电器进行供电。由于上述连接所采用的线路比较简单,因此,单火线开关在家用电路中得到广泛的应用。
单火线开关一般包括按键、继电器、控制模块以及供电电源。其中,按键与控制模块连接,用于控制控制模块的启动和停止;继电器的两端用于分别直接与火线和电器连接,从而控制是否为电器进行供电;控制模块与继电器连接,用于基于接收到的远程信号控制继电器的闭合或断开;供电电源分别与继电器、控制模块和火线连接,用于为控制模块供电。
其中,供电电源一般包括开态取电和关态取电两种取电状态,在继电器处于闭合状态时,供电电源会进行开态取电,在为电器供电的同时,还会将继电器输出的电流分流出一部分,用于为控制模块供电;在继电器处于断开状态时,供电电源会进行关态取电,将通过火线的电流为控制模块供电。
当需要对该单火线开关进行远程遥控时,则需要按下单火线开关上的按键,从而向控制模块发送启动(或称为上电)信号,若该回路中的电器功率较小,且继电器处于闭合状态,则回路中的电流较小,分流给控制模块的电流就会较小,从而导致加载到控制模块两端的电压也会较低,控制模块会不停的出现启动复位现象,而难以正常启动,也即是控制模块的取电成功率低,导致单火线开关无法正常工作。
发明内容
本申请实施例提供了一种切换电路、单火线开关及开关装置,能够提高单火线开关中控制模块的取电成功率,使得单火线开关正常工作。该技术方案如下:
本申请实施例提供了一种切换电路,该电路包括:第一通断模块、取电控制模块、控制模块以及低功耗模块,其中,
该第一通断模块分别与供电电源、该低功耗模块、该控制模块连接,用于在该低功耗模块的控制下,控制该控制模块的工作状态;
该取电控制模块分别与低功耗模块和控制模块连接,用于在低功耗模块或该控制模块的控制下,控制供电电源进行开态取电或关态取电;
该低功耗模块与供电电源连接,当需要启动控制模块时,低功耗模块控制该取电控制模块,以使取电控制模块控制供电电源进行关态取电,低功耗模块控制第一通断模块,以使控制模块启动。
在一种可能设计中,该低功耗模块与控制模块通讯连接,用于传输低功耗模块和控制模块之间的通讯信号。
在一种可能设计中,该第一通断模块包括第一场效应管。
在一种可能设计中,该第一场效应管为PMOS管;
该PMOS管的第一端与该低功耗模块的控制端连接,该PMOS管的第二端与该控制模块的供电端连接,该PMOS管的第三端与该供电电源连接。
在一种可能设计中,该第一场效应管为NMOS管;
该NMOS管还用于在该控制模块的控制下,控制该控制模块的工作状态;
该NMOS管的第一端与该低功耗模块的控制端和该控制模块的第一控制端连接,该NMOS管的第二端与该控制模块的供电端连接,该NMOS管的第三端与该供电电源连接;或
该NMOS管的第二端与该控制模块的接地端连接,该NMOS管的第三端接地。
在一种可能设计中,该控制模块为通信模块,用以实现与外部控制设备的数据通信。
在一种可能设计中,该控制模块包括多个控制子模块;
该第一通断模块包括多个第一通断子模块;
各个第一控制子模块与相对应的第一通断子模块连接。
在一种可能设计中,该电路还包括第二通断模块;
该第二通断模块连接于供电电源和低功耗模块之间,第二通断模块还与控制模块连接;
该第二通断模块用于在控制模块的控制下,反馈控制低功耗模块的工作状态。
在一种可能设计中,该电路还包括切换模块;
该切换模块分别与低功耗模块和控制模块连接,用于分别切换低功耗模块和控制模块的工作状态。
在一种可能设计中,该电路还包括显示模块;
该显示模块分别与低功耗模块和控制模块连接,用于显示开态取电或关态取电的取电状态。
在一种可能设计中,该第二通断模块的第一端与控制模块的第二控制端连接,第二通断模块的第二端与控制模块的供电端连接,第二通断模块的第三端与供电电源连接。
一方面,提供了一种单火线开关,该单火线开关包括如上述任一种可能设计中提供的切换电路。
一方面,提供了一种开关装置,该开关装置包括主单火线开关和从单火线开关;
该主单火线开关和该从单火线开关均包括如上述任一种可能设计中提供的切换电路;
主单火线开关的火线端与从单火线开关的火线端连接,主单火线开关的电器接线端与外接电器的第一端连接,外接电器的第二端与交流电的零线端连接,从单火线开关的火线端与交流电的火线端连接,主单火线开关的供电通讯端与从单火线开关的供电通讯端连接。
本申请提供的切换电路包括第一通断模块、低功耗模块、控制模块以及取电控制模块。该第一通断模块分别与供电电源、低功耗模块、控制模块连接,该取电控制模块分别与该低功耗模块和该控制模块连接,该低功耗模块与供电 电源连接。当需要将该控制模块切换为工作状态时,先控制电路的供电电源进行关态取电,在关态取电状态下,该电路可以提供控制模块启动所需的能量,此时再控制该控制模块启动,可以使控制模块顺利启动起来,也即是取电成功,解决了目前常用的电路中控制模块取电成功率低,导致单火线开关无法正常工作的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的切换电路的模块示意图;
图2是本申请另一实施例提供的切换电路的模块示意图;
图3是本申请又一实施例提供的切换电路的模块示意图;
图4是本申请再一实施例提供的切换电路的模块示意图;
图5是本申请再一实施例提供的切换电路的模块示意图;
图6是本申请另一实施例提供的切换电路的电路结构图;
图7是本申请另一实施例提供的切换电路的电路结构图;
图8是本申请另一实施例提供的切换电路的电路结构图;
图9是本申请又一实施例提供的切换电路的电路结构图;
图10是本申请又一实施例提供的切换电路的电路结构图;
图11是本申请一实施例提供的开关装置的模块示意图。
附图中的各个标号说明如下:
11-第一通断模块;
12-取电控制模块;
13-控制模块;
14-低功耗模块;
15-第二通断模块;
16-切换模块;
17-显示模块;
20-供电电源;
Q1-第一场效应管;
D1-第一二极管,D2-第二二极管;
R1-第一电阻,R2-第二电阻,R3-第三电阻,R11-保护电阻;
C1-第一电容,C2-第二电容。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面通过实施例描述该切换电路:
图1是本申请一实施例提供的切换电路的模块示意图,请参见图1,该电路包括:第一通断模块11、取电控制模块12、控制模块13以及低功耗模块14,其中,该第一通断模块11分别与供电电源20、该低功耗模块14、该控制模块13连接,用于在该低功耗模块14的控制下,控制该控制模块13的工作状态;该取电控制模块12分别与该低功耗模块14和该控制模块13连接,用于在该低功耗模块14或该控制模块13的控制下,控制该供电电源20进行开态取电或关态取电;该低功耗模块14与该供电电源20连接,当需要启动该控制模块13时,该低功耗模块14控制该取电控制模块12,以使该取电控制模块12控制该供电电源20进行关态取电,该低功耗模块14控制该第一通断模块11,以使该控制模块13启动。
本申请提供的切换电路,在切换电路上电工作时,低功耗模块14以低功耗状态运行,并通过对第一通断模块11的控制,来控制该控制模块13处于不工作状态,此时由于低功耗模块14启动时所需电压较小且工作时的功耗较低,因此低功耗模块14能够成功启动。在需要控制模块13工作时,低功耗模块14先通过取电控制模块12控制供电电源20进行关态取电,从而在关态取电状态下, 电路能提供控制模块13启动时所需的能量,此时再启动控制模块13,避免了采用开态取电状态下直接启动控制模块13,也就不会出现控制模块13不停启动复位,从而解决了取电成功率低的问题。
下面对该切换电路中各结构及功能进行描述:
在本申请的一些实施例中,低功耗模块14为低功耗MCU(Microcontroller Unit,微控制单元)。例如,低功耗MCU可以为多种型号的单片机,只要能实现本申请实施例所提出的保护范围内的工作原理即可。由于低功耗MCU在启动及运行时主要以低功耗状态运行,因此,可以降低切换电路的功耗,同时,低功耗MCU所需启动电压较小,使得在较低的电压下也能顺利启动,可以降低该切换电路在控制模块13处于不工作状态时的功耗。
在一些实施例中,低功耗模块14的控制端与第一通断模块11连接,此时低功耗模块14的控制端可输出第一控制信号至第一通断模块11,以使第一通断模块11根据第一控制信号反馈控制该控制模块13的工作状态,例如,第一控制信号可以为导通信号或关断信号。当低功耗模块14输出关断信号至第一通断模块11时,则第一通断模块11控制该控制模块13处于不工作状态。当低功耗模块14输出导通信号至第一通断模块11时,则第一通断模块11控制该控制模块13处于工作状态。
在本申请的一些实施例中,控制模块13用于实现切换电路中的控制功能,该控制模块13在正常工作时所需功耗比低功耗模块14大,且控制模块13启动时需要较大的启动电压。在一些实施例中,控制模块13可以为通信模块、智能模块及其他控制MCU中的任意一种或多种,可以理解的,本申请其他实施例中,该控制模块13还可以为其他,可以根据实际使用需求进行设置,在此不做限定。
其中,通信模块用于对信息进行处理并实现与外部控制设备的数据通信等功能。在一些实施例中,通信模块包括ZIGBEE模块、蓝牙模块、NB-IoT模块(Narrow Band Internet of Things窄带物联网)、LoRa模块(Long Range Radio远距离无线电)等。例如,通信模块可以接收手机等终端发送的信号,而后基于该信号控制切换电路工作。其中,智能模块用于实现信息处理功能,并基于数据处理结果对切换电路进行控制。
在一些实施例中,该控制模块13包括多个控制子模块;该第一通断模块11包括多个第一通断子模块;各个该第一控制子模块与相对应的该第一通断子模块连接,使得在切换电路上电时,低功耗模块14先启动,低功耗模块14通过 控制与任一控制子模块连接的第一通断子模块的通断状态,来控制该控制子模块的工作状态的切换。
在本申请的一些实施例中,低功耗模块14的供电端与供电电源20连接,使得在切换电路与供电电源20连通实现上电时,低功耗模块14的供电端可接收供电电源20的供电,从而切换至工作状态。在一些实施例中,供电电源20用于提供3V的电源来供电,可以理解的,在本申请的其他实施例中,供电电源20还可以提供3.3V,5V等的电源,用于实现低功耗模块14及控制模块13的正常工作。该供电电源20包括开态取电电路和关态取电电路,通过取电控制模块12开闭的切换,可以控制开态取电电路或关态取电电路的导通状态。当取电控制模块12闭合时,开态取电电路导通,从而为切换电路供电;当取电控制模块12断开时,关态取电电路导通,从而为切换电路供电。
在本申请的一些实施例中,该取电控制模块12分别与供电电源20中的开态取电电路和关态取电电路连接,从而该取电控制模块12可以根据低功耗模块14或控制模块13所输出的取电控制信号,相应控制与开态取电电路和关态取电电路的连接状态,以实现开态取电或关态取电。其中,取电控制信号可以为关态信号或开态信号。在一些实施例中,该取电控制模块12可以为继电器,当继电器获取到开态信号时,继电器闭合,此时电路与开态取电电路导通,实现开态取电;当获取到关态信号时,继电器断开,此时电路与关态取电电路导通,实现关态取电,可以理解的,本申请其他实施例中,取电控制模块12还可以为可控硅、晶体管等开关器件,根据实际使用需求进行设置,在此不做限定。
本申请实施例中的实施电路可参见图6至图10,其中,低功耗模块14可以为图中第一芯片U1,控制模块13可以为图中第二芯片U2,第一通断模块11可以为图中第一场效应管Q1,低功耗模块14的控制端可以为图中第一芯片U1中的RC6引脚。
基于上述各模块的功能,下面对该切换电路的工作原理进行描述:
在切换电路上电时,低功耗模块14启动,由于低功耗模块14启动所需的电压较低,即使是带动小功率电器上电,该低功耗模块14仍然可以顺利启动起来并处于工作状态,低功耗模块14在工作状态下的功耗较低。
在一些实施例中,在需要对控制模块13的工作状态进行控制时,低功耗模块14输出关态信号至取电控制模块12,以使取电控制模块12控制供电电源20进行关态取电,关态取电电路可提供控制模块13启动时所需的较高能量,避免 了在开态取电时无法提供控制模块13启动所需的能量,而带来在开态取电下不停的启动复位,电路取不到电的问题。在一些实施例中,低功耗模块14输出导通信号至第一通断模块11,以使第一通断模块11控制该控制模块13处于工作状态。
在一些实施例中,在需要控制模块13切换至不工作状态时,低功耗模块14还可输出关断信号至第一通断模块11,以使第一通断模块11控制该控制模块13切换至不工作状态。
本申请实施例中,由于低功耗模块14的供电端与供电电源20连接,使得在切换电路与供电电源20连通并上电工作时,低功耗模块14可启动并以低功耗状态运行;同时由于第一通断模块11、低功耗模块14、控制模块13以及取电控制模块12的设置,使得在低功耗模块14处于工作状态时,可通过输出控制信号至第一通断模块11,以实现对控制模块13的控制。在控制模块13需要切换至工作状态时,低功耗模块14先控制取电控制模块14控制供电电源20进行关态取电,使得在关态取电状态下,电路可提供控制模块13启动时所需的较高能量。低功耗模块14通过控制第一通断模块11,以在关态取电状态下控制该控制模块13启动,从而实现上电时只启动所需电压低的低功耗模块14,通过低功耗模块14处于工作状态以降低功耗,在控制模块13需要切换至工作状态时,通过低功耗模块14先控制取电控制模块12实现关态取电,以提供控制模块13启动时所需的能量,再启动控制模块13,从而避免了上电时直接启动控制模块13而带来的不停的启动复位问题,解决了目前通常使用的电路上电成功率低、功耗大的问题。
图2是本申请另一实施例提供的切换电路的模块示意图,请参见图2,在一种可能设计中,该低功耗模块14与该控制模块13通讯连接,用于传输该低功耗模块14和该控制模块13之间的通讯信号。
在本申请的一些实施例中,低功耗模块14和控制模块13上对应设有第一通讯端,低功耗模块14的第一通讯端与控制模块13的第一通讯端连接,以使低功耗模块14根据控制模块13的第一通讯端输出的中断信号由休眠状态切换至工作状态。
在本申请的一些实施例中,切换电路上电后,低功耗模块14开始以低功耗状态运行,当控制模块13需要切换至工作状态时,低功耗模块14输出关态信 号,以使取电控制模块14控制供电电源20进行关态取电。
在一些实施例中,低功耗模块14输出导通信号至第一通断模块11,使得第一通断模块11控制该控制模块13处于工作状态。同时低功耗模块14开始由正常工作状态切换至休眠状态,且在休眠状态时持续输出第一控制信号至第一通断模块11,以使控制模块13持续处于工作状态,该休眠状态的功耗相对更低。
此时控制模块13一直处于工作状态,当需要控制模块13切换至不工作状态时,需要唤醒低功耗模块14,以使低功耗模块14由休眠状态重新切换至工作状态。因而控制模块13通过第一通讯端输出中断信号至低功耗模块14,以使低功耗模块14基于控制模块13输出的中断信号被唤醒,之后低功耗模块14输出关断信号至第一通断模块11,使得第一通断模块11控制该控制模块13切换至不工作状态。
需要说明的是,当该切换电路中低功耗模块14切换至休眠状态,控制模块13切换至工作状态后,如果突然出现掉电,且持续一段时间后恢复上电时,可能存在电压降低的情况,如果低功耗模块14依然处于休眠状态,控制模块13会出现重启取不到电的问题,因此本申请实施例中,低功耗模块14和控制模块13的掉电复位电压须保持一致,使得在出现掉电时,低功耗模块14也同时掉电,在重新恢复上电时,依旧先启动低功耗模块14,并通过低功耗模块14相应的切换控制模块13的启动,使得避免控制模块13直接重启时取不到电的问题。
本申请实施例中实施电路可参见图6至图10,其中,低功耗模块14的第一通讯端可以为图中第一芯片U1中的RB6,控制模块13的第一通讯端可以为图中第二芯片U2中的PB13引脚。
本申请实施例中,在低功耗模块14控制第一通断模块11以使控制模块13切换至工作状态后,低功耗模块14自身由工作状态切换至休眠状态,可进一步的降低功耗,并在控制模块13工作完成后,需要低功耗模块14切换至工作状态时,控制模块13通过第一通讯端输出中断信号至低功耗模块14,从而实现对低功耗模块14的唤醒,以及后续低功耗模块14控制该控制模块13切换至不工作状态,上述切换过程十分便捷,且使该切换电路的功耗较低。
图6是本申请另一实施例提供的切换电路的电路结构图,请参见图6,在一种可能设计中,该第一通断模块11包括第一场效应管Q1,用于分别对低功耗模块14和控制模块13的工作状态进行切换。
在一种可能设计中,该第一场效应管Q1为PMOS管;该PMOS管的第一端与该低功耗模块14的控制端连接,该PMOS管的第二端与该控制模块13的供电端连接,该PMOS管的第三端与该供电电源20连接。
在一些实施例中,第一通断模块11的第一端与低功耗模块14的控制端RC6连接,第一通断模块11的第二端与控制模块13的供电端VDD连接,第一通断模块11的第三端与供电电源20连接。
在一些实施例中,第一通断模块11包括第一场效应管Q1、与第一场效应管Q1的栅极连接的第一电阻R1以及与第一场效应管Q1的源极连接的第二电阻R2,其中,第一场效应管Q1的栅极与第一电阻R1一端连接,第一电阻R1另一端分别与低功耗模块14的控制端RC6及第二电阻R2一端连接,第一场效应管Q1的漏极与控制模块13的供电端VDD连接,第一场效应管Q1的源极与第二电阻R2另一端及供电电源20连接。
在本申请的一些实施例中,取电控制模块12分别与低功耗模块14的第一信号输出端和控制模块13的第一信号输出端连接,取电控制模块12可以为继电器,低功耗模块14可以通过第一信号输出端输出控制信号至取电控制模块12,以控制与取电控制模块12连接的开态取电电路或关态取电电路的连接状态,从而控制切换电路的开态取电状态或关态取电状态。
在一些实施例中,导通信号可以是高电平,关断信号可以是低电平,下文均以此为例进行介绍。
在一些实施例中,低功耗模块14的第一信号输出端和控制模块13的第一信号输出端中均包括继电器开端(RELAY1ON、RELAY2ON)和继电器关端(RELAY1OFF、RELAY2OFF),当低功耗模块14或控制模块13通过继电器开端输出控制信号至继电器时,继电器相应导通,使得切换电路处于开态取电状态;当低功耗模块14或控制模块13通过继电器关端输出控制信号至继电器时,继电器相应断开,使得切换电路处于关态取电状态。其中,第一信号输出端可以为至少一组,在一些实施例中,第一信号输出端的数量为两组,可以理解的,在本申请的其他实施例中,第一信号输出端的数量还可以为其他,可以根据实际使用需要进行设置,在此不做限定。在一些实施例中,低功耗模块14的第一信号输出端和控制模块13的第一信号输出端与取电控制模块12之间均分别连接有二极管,用于避免各个第一信号输出端之间存在电路导通的问题。
在一些实施例中,切换电路还包括连接于供电电源20和低功耗模块14的 复位端MCLR/VPP/RA3之间的保护电阻R11以及与保护电阻R11两端连接的第一电容C1和第二电容C2,其中,第一电容C1的一端与供电电源20和保护电阻R11的一端连接,第一电容C1的另一端接地,第二电容C2的一端与保护电阻R11和低功耗模块14的复位端MCLR/VPP/RA3的一端连接,第二电容C2的另一端接地,由于低功耗模块14的复位端MCLR/VPP/RA3需要高电平供电,因此通过在低功耗模块14的供电端VDD和复位端MCLR/VPP/RA3之间设置一保护电阻R11,保障低功耗模块14的复位端MCLR/VPP/RA3的正常工作。
该切换电路上电时,低功耗模块14启动,此时低功耗模块14的控制端RC6为输入高阻状态,由于第二电阻R2与供电电源20连接,使得低功耗模块14的控制端RC6的电压被上拉,因此第一场效应管Q1的栅极电压和源极电压相同,使得第一场效应管Q1不导通,因而第一场效应管Q1不工作,即控制模块13此时处于不工作状态。
在低功耗模块14启动,当需要驱动控制模块13切换至工作状态时,可驱动低功耗模块14的控制端RC6输出一高电平。当低功耗模块14需要控制该控制模块13的工作状态时,低功耗模块14先通过继电器关端输出控制信号至继电器时,继电器相应断开,使得切换电路处于关态取电状态。在一些实施例中,低功耗模块14通过控制端RC6输出低电平,使得第一场效应管Q1的栅极电压小于源极电压,因而使得第一场效应管Q1导通,此时控制模块13的供电端VDD与供电电源20连接,使得控制模块13在关态取电状态下启动。
在一些实施例中,当控制模块13工作完成后,低功耗模块14需要控制该控制模块13切换至不工作状态时,低功耗模块14通过控制端RC6输出高电平,使得第一场效应管Q1的栅极电压等于源极电压,因而使得第一场效应管Q1关断,使得控制模块13切换至不工作状态。
在一些实施例中,请参见图6,低功耗模块14的第一通讯端RB6与控制模块13的第一通讯端PB13连接,以使低功耗模块14根据控制模块13的通讯端输出的中断信号由休眠状态切换至工作状态。
在上述步骤的基础上,低功耗模块14驱动控制模块13在关态取电状态下启动后,低功耗模块14由正常工作状态切换至休眠状态,且在休眠状态时通过控制端RC6持续输出低电平至第一通断模块11,以使控制模块13持续处于工作状态,且低功耗模块14处于低功耗状态。
在一些实施例中,当控制模块13工作完成,需要将该控制模块13切换至 不工作状态时,需要唤醒低功耗模块14,以使低功耗模块14由休眠状态重新切换至工作状态,此时控制模块13通过第一通讯端PB13输出中断信号至低功耗模块14,以使低功耗模块14基于控制模块13输出的中断信号被唤醒,之后低功耗模块14通过控制端RC6持续输出高电平至第一通断模块11,使得第一通断模块11关断,以控制该控制模块13切换至不工作状态。
图7是本申请另一实施例提供的切换电路的电路结构图,请参见图7,在一种可能设计中,该第一场效应管Q1为NMOS管;该NMOS管还用于在该控制模块13的控制下,控制该控制模块13的工作状态;该NMOS管的第一端与该低功耗模块14的控制端和该控制模块13的第一控制端连接,该NMOS管的第二端与该控制模块13的供电端连接,该NMOS管的第三端与该供电电源20连接;或,该NMOS管的第二端与该控制模块13的接地端连接,该NMOS管的第三端接地。
在一些实施例中,第一通断模块11的第一端与低功耗模块14的控制端RC6和控制模块13的第一控制端PF1连接,第一通断模块11的第二端与控制模块13的供电端VDD连接,第一通断模块11的第三端与供电电源20连接。
例如,第一通断模块11包括第一场效应管Q1、与第一场效应管Q1的栅极连接的第三电阻R3、第一二极管D1以及第二二极管D2。第一场效应管Q1的栅极分别与第三电阻R3一端、第一二极管D1和第二二极管D2的负极连接,第三电阻R3另一端接地,第一二极管D1的正极与低功耗模块14的控制端RC6连接,第二二极管D2的正极与控制模块13的第一控制端PF1连接;第一场效应管Q1的漏极与供电电源20连接,第一场效应管Q1的源极与控制模块13的供电端VDD连接。其中,第一二极管D1和第二二极管D2用于防止低功耗模块14的控制端RC6和控制模块13的第一控制端PF1之间的电路连通。需要说明的是,第三电阻R3的阻值可设置较大,例如兆欧级,此时通过第三电阻R3的大电阻的设计,从而可减少低功耗模块14在输出控制时的功耗。
在一些实施例中,当低功耗模块14的控制端RC6和控制模块13的第一控制端PF1输出低电平时,第一通断模块11的栅极电压等于源极电压,因此使得第一通断模块11关断,从而使得控制模块13处于不工作状态。依次上述,低功耗模块14的控制端RC6和控制模块13的第一控制端PF1输出高电平时,控制模块13处于工作状态。
因此,在切换电路与供电电源20连通实现上电时,控制模块13未开始工作,此时控制模块13的第一控制端PF1为输入高阻状态,此时控制模块13的第一控制端PF1不输出高电平,同时低功耗模块14的控制端RC6输出低电平,使得第一通断模块11关断,因此控制模块13处于不工作状态。
在一些实施例中,在低功耗模块14切换至控制模块13工作后,控制模块13的第一控制端PF1持续输出高电平,以实现控制自身的工作状态。
图3是本申请又一实施例提供的切换电路的模块示意图,图8是本申请另一实施例提供的切换电路的电路结构图,请参见图3和图8,在一种可能设计中,该电路还包括第二通断模块15;该第二通断模块15连接于该供电电源20和该低功耗模块14之间,该第二通断模块还与该控制模块13连接;该第二通断模块15用于在该控制模块13的控制下,反馈控制该低功耗模块14的工作状态。
在一些实施例中,切换电路上电时,由于控制模块13未上电,因此无法实现对第二通断模块15的控制,在控制模块13未输出信号对该第二通断模块15控制时,第二通断模块15处于导通状态,因此低功耗模块14开始启动运行,当控制模块13需要进行工作时,低功耗模块14输出关态信号,以使取电控制模块14控制供电电源20进行关态取电。在一些实施例中,低功耗模块14输出导通信号至第一通断模块11,使得第一通断模块11控制该控制模块13处于工作状态,实现低功耗模块14控制该控制模块13的启动。此时控制模块13持续输出导通信号至第一通断模块11,使得第一通断模块11控制该控制模块13处于工作状态,使得控制模块13实现对自身状态的控制。
在一些实施例中,控制模块13输出关断信号至第二通断模块15,使得第二通断模块15关断,以控制低功耗模块14处于休眠状态,实现控制模块13驱动低功耗模块14切换至休眠状态,从而分别完成了低功耗模块14与控制模块13工作状态的切换。
在一些实施例中,控制模块13工作完成,需要将控制模块13切换至不工作状态,且需要启动低功耗模块14时,控制模块13输出导通信号至第二通断模块15,使得第二通断模块15控制低功耗模块14处于工作状态。同时低功耗模块14开始持续输出关断信号至第一通断模块11,使得第一通断模块11控制该控制模块13处于不工作状态,从而分别完成了控制模块13与低功耗模块14工作状态的切换。依次实现上述步骤,可以轮番分别对低功耗模块14和控制模 块13的工作状态进行切换。
本申请实施例的实施电路可参见图8和图10,其中,第二通断模块15可以为图中第二场效应管Q2;控制模块13的第一控制端PF1可以为图中第二芯片U2中的PF1引脚,用于输出第二控制信号至第一通断模块11;控制模块13的第二控制端可以为图中第二芯片U2中的PF2引脚,用于输出第三控制信号至第二通断模块15。
本申请实施例中,在低功耗模块14通过第一通断模块11控制模块13工作后,控制模块13自身通过控制第一通断模块11来控制自身工作状态,并控制第二通断模块15以使低功耗模块14切换至休眠状态,并在控制模块13工作完成,需要控制模块13将切换至不工作状态,且需要将低功耗模块14切换至工作状态时,控制模块13通过控制第二通断模块15驱动低功耗模块14启动,以及低功耗模块14通过控制第一通断模块11驱动控制模块13切换至不工作状态,从而可以轮番实现分别对低功耗模块14和控制模块13的工作状态的切换,从而在不需要控制模块13工作时,切换至低功耗模块14工作,以降低功耗;在需要控制模块13工作时,低功耗模块14控制该控制模块13切换至工作状态。
其中,控制模块13的第一控制端PF1与第一通断模块11连接,用于控制第一通断模块11的工作状态;控制模块13的第二控制端PF2与第二通断模块15连接,用于控制第二通断模块15的工作状态。
在一些实施例中,第二通断模块15的第一端与控制模块13的第二控制端PF2连接,第二通断模块15的第二端与控制模块13的供电端VDD连接,第二通断模块15的第三端与供电电源20连接。
例如,第二通断模块15包括第二场效应管以及与第二场效应管的栅极连接的第四电阻R4,第二场效应管的源极与供电电源20连接,第二场效应管的栅极与第四电阻R4一端连接,第四电阻R4另一端与控制模块13的第二控制端PF2连接,第二场效应管的漏极与低功耗模块14的控制端RC6连接,第二场效应管为PMOS管,可以理解的,在本申请的其他实施例中,第一通断模块11和第二通断模块15还可以为其他开关器件,可以根据实际使用需要进行设置,在此不做限定。
工作时,切换电路与供电电源20连通实现上电时,由于低功耗模块14和控制模块13均未开始工作,此时低功耗模块14的控制端RC6以及控制模块13的第一控制端PF1和第二控制端PF2均为输入高阻状态,此时控制模块13的第 二控制端PF2不输出高电平,第二通断模块15的栅极电压小于源极电压,因而使得第二通断模块15导通;同时由于低功耗模块14的控制端RC6及控制模块13的第二控制端PF2不输出高电平,第一通断模块11的栅极电压等于源极电压,因此使得第一通断模块11关断。
在一些实施例中,供电电源20经第二通断模块15后与低功耗模块14的供电端VDD连通,实现对低功耗模块14的正常供电,此时由于低功耗模块14启动所需启动电压较小,因此无论切换电路处于开态取电状态还是关态取电状态,均可驱动低功耗模块14启动;同时由于第一通断模块11关断,使得供电电源20无法与控制模块13的供电端VDD连通,使得控制模块13处于不工作状态。
在一些实施例中,在低功耗模块14需要驱动控制模块13不工作时,低功耗模块14可驱动控制端RC6一直输出低电平。
在一些实施例中,当低功耗模块14需要切换至控制模块13的工作时,低功耗模块14通过继电器关端输出控制信号至继电器时,继电器相应断开,使得切换电路处于关态取电状态。在一些实施例中,低功耗模块14通过控制端RC6输出高电平,使得第一通断模块11的栅极电压大于源极电压,因而使得第一通断模块11导通,此时控制模块13的供电端VDD与供电电源20连接,使得控制模块13在关态取电状态下启动。
在一些实施例中,控制模块13持续通过第一控制端PF1输出高电平至第一通断模块11,从而实现控制模块13对自身状态的控制,以一直保持自身的正常工作。在一些实施例中,控制模块13通过第二控制端PF2输出高电平至第二通断模块15,以使第二通断模块15关断,此时使得供电电源20无法与低功耗模块14的供电端VDD连通,使得低功耗模块14切换至不工作状态,因而实现了分别切换低功耗模块14与控制模块13的工作状态。
在一些实施例中,当控制模块13工作完成,需要低功耗模块14切换至工作状态时,控制模块13通过第二控制端PF2输出低电平至第二通断模块15,以使第二通断模块15导通,使得低功耗模块14启动,同时控制模块13通过第一控制端PF1输出低电平至第一通断模块11或低功耗模块14通过控制端RC6输出低电平至第一通断模块11,以使第一通断模块11关断,使得控制模块13切换至不工作状态,因而实现分别切换控制模块13与低功耗模块14之的工作状态。
需要说明的是,当通过切换模块16进行切换控制时,可以通过第一通断模 块11及第二通断模块15分别实现对控制模块13及低功耗模块14的工作状态的控制,在需要将低功耗模块14切换至休眠状态,控制模块13切换至工作状态时,可以通过控制模块13的第二控制端PF2输出的关断信号至第二通断模块15,以将低功耗模块14切换至休眠状态。
同时,需要说明的是,在一些实施例中,还可通过低功耗模块14和控制模块13上的第一通讯端及第二通讯端的信息通信,使得分别控制低功耗模块14和控制模块13工作状态的切换时,始终保持为启动低功耗模块14和控制模块13中的任意一个,并相应的控制另一个进入休眠状态。
图4是本申请再一实施例提供的切换电路的模块示意图,请参见图4,在一种可能设计中,该电路还包括切换模块16;该切换模块16分别与该低功耗模块14和该控制模块13连接,用于分别切换该低功耗模块14和该控制模块13的工作状态。
在一些实施例中,低功耗模块14还与控制模块13通讯连接,用于传输低功耗模块14和控制模块13之间的通讯信号。
例如,在本申请的一些实施例中,切换模块16可以为按键开关,可以根据按键开关的按压状态相应的输入信号至低功耗模块14及控制模块13中,以使低功耗模块14及控制模块13根据输入信号相应进行响应,以分别切换低功耗模块14和控制模块13的工作状态。按键开关可以为机械按键或触摸按键。其中,切换模块16可以为至少一组,在一些实施例中,切换模块16的数量为两组,相应的,低功耗模块14的第二通讯端(RC7、RB7)与控制模块13的第二通讯端(PC11、PF0)连接也均为两组,可以理解的,在本申请的其他实施例中,切换模块16的数量还可以为其他,可以根据实际使用需要进行设置,在此不做限定。同时需要说明的是,在本申请的其他实施例中,低功耗模块14和控制模块13还可分别与一相对应的切换模块16连接,例如低功耗模块14与第一切换模块16连接,控制模块13与第二切换模块16连接,此时通过设置的多个切换模块16分别实现对低功耗模块14及控制模块13的不同切换控制。
其中,该切换模块16可以基于自身闭合或打开的状态,输出切换信号至低功耗模块14或控制模块13,从而分别控制低功耗模块14和控制模块13工作状态的切换。例如,当该切换模块16闭合时,输出闭合信号,该闭合信号可以用于控制该控制模块13切换为工作状态,低功耗模块14切换为休眠状态;当该 切换模块16打开时,输出打开信号,该打开信号可以用于控制该控制模块13切换为不工作状态,低功耗模块14切换为工作状态。
例如,在本申请的一些实施例中,低功耗模块14和控制模块13对应设有第二通讯端,低功耗模块14的第二通讯端与控制模块13的第二通讯端连接,以使低功耗模块14所接收的切换模块16的切换信号输出至该控制模块13,以及控制模块13所接收的切换模块16的切换信号输出至低功耗模块14。
下面介绍该切换电路中,控制模块13由不工作状态切换为工作状态,低功耗模块14由工作状态切换为休眠状态的过程:
在切换电路与供电电源20连通时,依照上述实施例的介绍,低功耗模块14切换为工作状态,控制模块13处于不工作状态。
在一些实施例中,切换电路上电时,低功耗模块14开始以低功耗状态运行,当用户通过切换模块16分别进行低功耗模块14和控制模块13的工作状态的切换时,低功耗模块14获取到切换模块16所输出的切换信号,此时低功耗模块14输出关态信号,以使取电控制模块14控制供电电源20进行关态取电。
在一些实施例中,低功耗模块14输出导通信号至第一通断模块11,使得第一通断模块11控制该控制模块13处于工作状态,实现低功耗模块14驱动控制模块13的启动。此时控制模块13输出导通信号至第一通断模块11,使得第一通断模块11控制该控制模块13处于工作状态,使得控制模块13实现对自身状态的控制。
在一些实施例中,低功耗模块14通过第二通讯端将切换模块16的切换信号的同步信号输出至控制模块13,以使按键信息同步,以及保持取电状态的跟随,即控制模块13输出关态信号,以使取电控制模块14控制供电电源20进行关态取电。
在一些实施例中,控制模块13输出关断信号至第二通断模块15,使得第二通断模块15控制低功耗模块14处于不工作状态,实现控制模块13驱动低功耗模块14切换至休眠状态,从而分别完成了低功耗模块14与控制模块13工作状态的切换。此时用户可通过该切换电路实现对外接电器的控制,例如,该外接电器可以是灯具,在用户控制切换电路以使电器工作时,此时切换电路相应的控制进行开态取电;在用户控制切换电路以使电器停止工作时,此时切换电路相应的控制进行关态取电。
在一些实施例中,当控制模块13完成工作,需要切换至低功耗模块14进 行工作时,用户可通过切换模块16进行分别对控制模块13和低功耗模块14的工作状态进行切换,在控制模块13获取到切换模块16所输出的切换信号时,控制模块13输出导通信号至第二通断模块15,使得第二通断模块15控制低功耗模块14处于工作状态。
在一些实施例中,控制模块13通过第二通讯端输出同步信号至低功耗模块14,以使保持取电状态的跟随,即在切换电路当前处于开态取电时,低功耗模块14输出开态信号,以使取电控制模块12进行开态取电;在切换电路当前处于关态取电时,低功耗模块14输出关态信号,以使取电控制模块14控制供电电源20进行关态取电。
在一些实施例中,低功耗模块14开始持续输出关断信号至第一通断模块11,使得第一通断模块11控制该控制模块13处于不工作状态。依次完成上述步骤,基于切换模块16的控制,可以轮番实现低功耗模块14和控制模块13的工作状态的切换。
在控制模块13正常工作后,当网关断网时,也可以实现控制模块13切换为不工作状态,低功耗模块14切换为工作状态,下面介绍该过程:
在控制模块13正常工作过程中,当网关断网时,控制模块13中的ZIGBEE模块处于寻网状态,功耗增加,该寻网状态可以触发控制模块13控制第二控制端输出导通信号至第二通断模块15,以控制第二通断模块15导通,从而使低功耗模块14切换为工作状态;由于低功耗模块14未获取到控制模块13输出的切换信号,因此,低功耗模块14的控制端输出第一控制信号至第一通断模块11,以使控制模块13进入不工作状态,从而降低该切换电路的功耗。
在本申请的一些实施例中,该切换模块16可以集成在切换电路的其他按钮开关上,例如,可以将该切换模块16与电器的开关集成在一个按钮上,短按控制电器的开关状态,长按控制低功耗模块14以及控制模块13工作状态的切换。
其中,需要说明的是,在本申请的其他实施例中,控制模块13也可相应的进入休眠状态,以实现降低功耗,在控制模块13控制低功耗模块14启动后,低功耗模块14可不驱动控制模块13切换至不工作状态,通过第一通讯端分别实现低功耗模块14和控制模块13的基于中断信号被唤醒,以及通过第二通讯端实现低功耗模块14和控制模块13之间通讯信号的传输。每当获取到切换模块16的切换信号时,可启动低功耗模块14和控制模块13中的任意一个,并相应的控制另一个进入休眠状态。
本申请实施例的实施电路可参见图6至图10,其中,低功耗模块14的第二通讯端可以为图中第一芯片U1中的RC7、RB7引脚,控制模块13的第二通讯端可以为图中第二芯片U2中的PC11、PF0引脚。
本申请实施例中,通过切换模块16的设置,可以实现用户对低功耗模块14和控制模块13的工作状态的手动切换;通过低功耗模块14与控制模块13之间的通讯连接,可以将低功耗模块12与控制模块13之间的取电状态信息及切换信号进行同步,使得在不需要控制模块13工作时,切换至低功耗模块14启动,以降低功耗;在需要启动控制模块13时,用户可通过切换模块16手动切换低功耗模块14和控制模块13的工作状态。
图5是本申请再一实施例提供的切换电路的模块示意图,请参见图5,在一种可能设计中,该电路还包括显示模块17;该显示模块17分别与该低功耗模块14和该控制模块13连接,用于显示开态取电或关态取电的取电状态。
显示模块17可以根据当前取电控制模块12所控制的取电状态进行相应的显示,例如,在切换模块16控制切换电路由低功耗模块14切换至控制模块13进行工作时,低功耗模块14先控制取电控制模块12,使得取电控制模块14控制供电电源20进行关态取电,此时显示模块17根据当前的关态取电状态相应的进行显示。当处于开态取电状态时,则显示模块17停止显示。其中,显示模块17可以为至少一组,在一些实施例中,显示模块17的数量为两组,可以理解的,在本申请的其他实施例中,显示模块17的数量还可以为其他,可以根据实际使用需要进行设置,在此不做限定。在本申请的一些实施例中,显示模块17可以为发光二极管。
在一些实施例中,请参见图6,显示模块17分别与低功耗模块14和控制模块13上设置的第二信号输出端(LED1、LED2)连接,低功耗模块14和控制模块13对应设有第二通讯端,低功耗模块14的第二通讯端(RC7、RB7)与控制模块13的第二通讯端(PC11、PF0)连接。在一些实施例中,低功耗模块14的第二信号输出端和控制模块13的第二信号输出端与显示模块17之间均分别连接有二极管,用于避免各个第二信号输出端之间存在电路导通的问题。
基于上述结构,在使用时,本申请实施例还可通过获取用户按压切换模块16所产生的切换信号,实现分别控制低功耗模块14及控制模块13的工作状态,此时低功耗模块14启动后获取到切换模块16所输出的切换信号时,低功耗模 块14控制取电控制模块14控制供电电源20进行关态取电,同时通过显示模块17进行关态取电状态的显示,在一些实施例中,低功耗模块14通过第二通讯端(RC7、RB7)输出同步信号至控制模块13,此时低功耗模块14由正常工作状态切换至休眠状态,且在休眠状态时持续通过控制端RC6输出低电平至第一通断模块11,以使控制模块13持续工作。
在一些实施例中,在控制模块13工作后,获取到切换模块16所输出的切换信号时,控制模块13通过第二通讯端(PC11、PF0)输出同步信号至低功耗模块14,并通过第一通讯端(PB13)输出中断信号至低功耗模块14,以使低功耗模块14基于控制模块13输出的中断信号被唤醒,之后低功耗模块14通过控制端RC6持续输出高电平至第一通断模块11,使得第一通断模块11控制该控制模块13切换至不工作状态。
可以理解的,在本申请实施例中,低功耗模块14的第一通讯端RB6与控制模块13的第一通讯端PB13还可以不连接,此时低功耗模块14和控制模块13之间工作状态的切换可通过切换模块16的控制,或低功耗模块14/控制模块13的自身控制进行切换,此时可不通过第一通讯端进行唤醒。在第一通讯端连接时实现唤醒,在第一通信端不连接时实现直接上电,此时设置根据实际使用需求进行设定,在此不做限定。
在一些实施例中,低功耗模块的第二通讯端(RC7、RB7)与控制模块的第二通讯端(PC11、PF0)还可以不连接,此时低功耗模块14在启动并控制切换至控制模块13启动后,低功耗模块14可进行休眠且不再被唤醒,从而实现控制模块13的持续控制。
图9是本申请实施例提供的一种切换电路的电路结构示意图,请参见图9,在一些实施例中,该控制模块13的供电端VDD与供电电源20连接。
其中,第一通断模块11包含有NMOS管,第一通断模块11的第一端与低功耗模块14的控制端RC6和控制模块13的第一控制端PF1连接,第一通断模块11的第二端与控制模块13的接地端连接,第一通断模块11的第三端接地。
例如,第一通断模块11包括第一场效应管Q1、与第一场效应管Q1的栅极连接的第五电阻R5以及与第五电阻R5另一端连接的第六电阻R6、第三二极管D3、第四二极管D4。第一场效应管Q1的栅极与第五电阻R5一端连接,第一场效应管Q1的源极接地,第一场效应管Q1的漏极与控制模块13的接地端连 接,第五电阻R5另一端与第六电阻R6一端、第三二极管D3负极以及第四二极管D4负极连接,第六电阻R6另一端接地,第三二极管D3正极与低功耗模块14的控制端RC6连接,第四二极管D4正极与控制模块13的第一控制端PF1连接。其中,第一场效应管Q1为NMOS管,第三二极管D3和第四二极管D4用于防止低功耗模块14的控制端RC6和控制模块13的第一控制端PF1之间的电路连通。
其中,切换模块16的其他结构可参见上述实施例,在一些实施例中,当低功耗模块14的控制端RC6和控制模块13的第一控制端PF1输出高电平时,第一通断模块11的栅极电压大于源极电压,因此使得第一通断模块11导通,此时控制模块的接地端GND与地连接,从而使得控制模块13处于工作状态。
在一些实施例中,请参见图10,该切换电路还包括第二通断模块15;第二通断模块15连接于供电电源20和低功耗模块14之间,第二通断模块15还与控制模块13连接,用于在控制模块13的控制下,反馈控制低功耗模块14的工作状态。
在一些实施例中,第二通断模块15的第一端与控制模块13的第二控制端PF2连接,第二通断模块15的第二端与控制模块13的供电端VDD连接,第二通断模块15的第三端与供电电源20连接。
例如,第二通断模块15包括第二场效应管以及与第二场效应管的栅极连接的第七电阻R7,第二场效应管的源极与供电电源20连接,第二场效应管的栅极与第七电阻R7一端连接,第七电阻R7另一端与控制模块13的第二控制端PF2连接,第二场效应管的漏极与低功耗模块14的控制端RC6连接,第二场效应管为PMOS管。
本申请实施例还提供了一种单火线开关,该单火线开关包括上述任一实施例提供的切换电路。在一些实施例中,由于单火线开关上电工作时,无论是处于开态取电状态还是关态取电状态,切换电路均控制先只启动低功耗模块14,从而降低功耗,同时由于低功耗模块14启动时所需电压较低,可提高单火线开关连接小功率电器时的启动成功率,在控制模块13需要工作时,低功耗模块14先控制取电控制模块14控制供电电源20进行关态取电,使得电路在关态取电状态下电路可提供控制模块13启动时所需的功耗。低功耗模块14控制该控制模块13启动,可以有效避免在单火线开关上电工作时,由于控制模块13所需 能量较高而导致控制模块13及小功率电器无法成功启动的问题。同时由于在不需要控制模块13工作时将低功耗模块14切换至工作状态,在需要控制模块13工作使用时才切换至控制模块13工作,可以有效的减少单火线开关工作时的功耗。
本申请还提供了一种开关装置,请参见图11,该开关装置包括主单火线开关100和从单火线开关200,其中,主单火线开关100和从单火线开关200均包括上述任一实施例提供的切换电路。
在一些实施例中,主单火线开关100的火线端与从单火线开关200的火线端连接,主单火线开关100的电器接线端A与外接电器300的第一端连接,外接电器300的第二端与交流电的零线端N连接,从单火线开关200的火线端L与交流电的火线端L连接,主单火线开关100的供电通讯端S与从单火线开关200的供电通讯端S连接。其中,需要说明的是,在一些实施例中,该从单火线开关200的数量为一个,从单火线开关200与主单火线开关100组合成一单火线双控开关装置,可以理解的,在本申请的其他实施例中,从单火线开关200的数量还可以为其他,均与主单火线开关100连接,可以根据实际使用需求进行设置,在此不做限定。
在一些实施例中,在主单火线开关100启动上电后,主单火线开关100中的低功耗模块14进行工作,同时从单火线开关200通过分别与主单火线开关100相对应的火线端L及通讯端S的连接,以提供从单火线开关200工作时的供电,可以驱动从单火线开关200中的低功耗模块14进行工作,在一些实施例中,该供电通讯端S还可与从单火线开关200进行信号通信。
在一些实施例中,主单火线开关100通过开态取电电路或关态取电电路中的任意一路工作,从而实现开态取电或关态取电,在主单火线开关100需要由低功耗模块14工作切换至控制模块13进行工作时,主单火线开关100中的切换电路先通过取电控制模块12控制供电电源20进行关态取电,在关态取电状态下再控制低功耗模块14切换至休眠状态,控制模块13切换至工作状态。
在一些实施例中,从单线开关200通过分别与主单火线开关100相对应的火线端L及通讯端S的连接,从而实现取电后,在主单火线开关100处于开态取电时,则从单火线开关200也处于开态取电状态;在主单火线开关100处于关态取电时,则从单火线开关200也处于关态取电状态。此时主单火线开关100 控制进行关态取电,且由低功耗模块14切换至控制模块13的工作后,从单火线开关200延时预设时间后相应的在关态取电状态下切换控制模块13工作,或者从单火线开关200在主单火线开关100中的控制模块13进行工作后接收到由供电通讯端S所输出的控制信号时,从单火线开关200中的切换电路中的低功耗模块14切换至休眠状态,控制模块13切换至工作状态,从而使得主单火线开关100中的控制模块13和从单火线开关200中的控制模块13间隔错开切换启动时间,避免了同时启动时取电电量达不到工作电量要求而导致取电不成功的问题,从而提高了启动成功率。
上述仅为本申请的可选实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种切换电路,其特征在于,所述电路包括:第一通断模块(11)、取电控制模块(12)、控制模块(13)以及低功耗模块(14),其中,
    所述第一通断模块(11)分别与供电电源(20)、所述低功耗模块(14)、所述控制模块(13)连接,用于在所述低功耗模块(14)的控制下,控制所述控制模块(13)的工作状态;
    所述取电控制模块(12)分别与所述低功耗模块(14)和所述控制模块(13)连接,用于在所述低功耗模块(14)或所述控制模块(13)的控制下,控制所述供电电源(20)进行开态取电或关态取电;
    所述低功耗模块(14)与所述供电电源(20)连接,当需要启动所述控制模块(13)时,所述低功耗模块(14)控制所述取电控制模块(12),以使所述取电控制模块(12)控制所述供电电源(20)进行关态取电,所述低功耗模块(14)控制所述第一通断模块(11),以使所述控制模块(13)启动。
  2. 根据权利要求1所述的切换电路,其特征在于,所述低功耗模块(14)与所述控制模块(13)通讯连接,用于传输所述低功耗模块(14)和所述控制模块(13)之间的通讯信号。
  3. 根据权利要求1所述的切换电路,其特征在于,所述第一通断模块(11)包括第一场效应管(Q1)。
  4. 根据权利要求3所述的切换电路,其特征在于,所述第一场效应管(Q1)为PMOS管;
    所述PMOS管的第一端与所述低功耗模块(14)的控制端连接,所述PMOS管的第二端与所述控制模块(13)的供电端连接,所述PMOS管的第三端与所述供电电源(20)连接。
  5. 根据权利要求3所述的切换电路,其特征在于,所述第一场效应管(Q1)为NMOS管;
    所述NMOS管还用于在所述控制模块(13)的控制下,控制所述控制模块(13)的工作状态;
    所述NMOS管的第一端与所述低功耗模块(14)的控制端和所述控制模块(13)的第一控制端连接,所述NMOS管的第二端与所述控制模块(13)的供电端连接,所述NMOS管的第三端与所述供电电源(20)连接;或
    所述NMOS管的第二端与所述控制模块(13)的接地端连接,所述NMOS管的第三端接地。
  6. 根据权利要求1所述的切换电路,其特征在于,所述控制模块(13)为通信模块,用以实现与外部控制设备的数据通信。
  7. 根据权利要求1所述的切换电路,其特征在于,所述控制模块(13)包括多个控制子模块;
    所述第一通断模块(11)包括多个第一通断子模块;
    各个所述第一控制子模块与相对应的所述第一通断子模块连接。
  8. 根据权利要求1所述的切换电路,其特征在于,所述电路还包括第二通断模块(15);
    所述第二通断模块(15)连接于所述供电电源(20)和所述低功耗模块(14)之间,所述第二通断模块还与所述控制模块(13)连接;
    所述第二通断模块(15)用于在所述控制模块(13)的控制下,反馈控制所述低功耗模块(14)的工作状态。
  9. 根据权利要求1所述的切换电路,其特征在于,所述电路还包括切换模块(16);
    所述切换模块(16)分别与所述低功耗模块(14)和所述控制模块(13)连接,用于分别切换所述低功耗模块(14)和所述控制模块(13)的工作状态。
  10. 根据权利要求1所述的切换电路,其特征在于,所述电路还包括显示模块(17);
    所述显示模块(17)分别与所述低功耗模块(14)和所述控制模块(13)连接,用于显示开态取电或关态取电的取电状态。
  11. 一种单火线开关,其特征在于,所述单火线开关包括如权利要求1-10中任一项所述的切换电路。
  12. 一种开关装置,其特征在于,所述开关装置包括主单火线开关和从单火线开关;
    所述主单火线开关和所述从单火线开关均包括如权利要求1-10中任一项所述的切换电路;
    所述主单火线开关的火线端与所述从单火线开关的火线端连接,所述主单火线开关的电器接线端与外接电器的第一端连接,所述外接电器的第二端与交流电的零线端连接,所述从单火线开关的火线端与交流电的火线端连接,所述主单火线开关的供电通讯端与所述从单火线开关的供电通讯端连接。
PCT/CN2020/089874 2019-10-11 2020-05-12 一种切换电路、单火线开关及开关装置 WO2021068504A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910962677.6 2019-10-11
CN201910962677.6A CN110716466B (zh) 2019-10-11 2019-10-11 一种芯片切换电路、单火线开关、及开关装置

Publications (1)

Publication Number Publication Date
WO2021068504A1 true WO2021068504A1 (zh) 2021-04-15

Family

ID=69211418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089874 WO2021068504A1 (zh) 2019-10-11 2020-05-12 一种切换电路、单火线开关及开关装置

Country Status (2)

Country Link
CN (1) CN110716466B (zh)
WO (1) WO2021068504A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991657A (zh) * 2021-11-02 2022-01-28 珠海格力电器股份有限公司 一种电器、电器的取电装置及取电控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110716466B (zh) * 2019-10-11 2023-04-14 宁波公牛电器有限公司 一种芯片切换电路、单火线开关、及开关装置
CN113727495B (zh) * 2021-03-25 2023-07-18 杰华特微电子股份有限公司 一种单火线开关电路及其控制方法
CN113934285B (zh) * 2021-12-16 2022-03-08 石家庄科林电气股份有限公司 一种低功耗传感器中芯片的启动装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204156836U (zh) * 2014-08-22 2015-02-11 宁波杜亚机电技术有限公司 一种单火线开关
CN105323922A (zh) * 2015-10-14 2016-02-10 深圳市二八智能家居有限公司 一种基于锂电池的单火线取电装置
US20160181813A1 (en) * 2014-12-19 2016-06-23 Distech Controls Inc. Low voltage environment controller with power factor correction flyback power supply
CN205793566U (zh) * 2016-05-30 2016-12-07 宁波公牛电器有限公司 一种单火线开关
CN208707312U (zh) * 2018-08-12 2019-04-05 东莞市迅迪电子有限公司 一种单火线电子开关电路
CN110716466A (zh) * 2019-10-11 2020-01-21 宁波公牛电器有限公司 一种芯片切换电路、单火线开关、及开关装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449991B (zh) * 2015-12-21 2018-06-08 广东美的厨房电器制造有限公司 低功耗待机装置及电器设备
CN206181495U (zh) * 2016-11-10 2017-05-17 惠州良信智能科技有限公司 一种单火线智能开关取电系统
CN106488619B (zh) * 2016-12-06 2018-11-09 东莞市罗姆斯智能家居有限公司 一种单火线双控开关接线电路
CN206931538U (zh) * 2017-05-27 2018-01-26 深圳市培林体育科技有限公司 单火线取电继电器控制电路
CN108243536B (zh) * 2017-09-22 2019-10-29 廖薇 无线控制的电力开关模块及其电源的启动方法
CN110337162B (zh) * 2019-04-28 2021-09-21 天彩电子(深圳)有限公司 基于智能开关的单火线取电系统和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204156836U (zh) * 2014-08-22 2015-02-11 宁波杜亚机电技术有限公司 一种单火线开关
US20160181813A1 (en) * 2014-12-19 2016-06-23 Distech Controls Inc. Low voltage environment controller with power factor correction flyback power supply
CN105323922A (zh) * 2015-10-14 2016-02-10 深圳市二八智能家居有限公司 一种基于锂电池的单火线取电装置
CN205793566U (zh) * 2016-05-30 2016-12-07 宁波公牛电器有限公司 一种单火线开关
CN208707312U (zh) * 2018-08-12 2019-04-05 东莞市迅迪电子有限公司 一种单火线电子开关电路
CN110716466A (zh) * 2019-10-11 2020-01-21 宁波公牛电器有限公司 一种芯片切换电路、单火线开关、及开关装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991657A (zh) * 2021-11-02 2022-01-28 珠海格力电器股份有限公司 一种电器、电器的取电装置及取电控制方法
CN113991657B (zh) * 2021-11-02 2024-02-13 珠海格力电器股份有限公司 一种电器、电器的取电装置及取电控制方法

Also Published As

Publication number Publication date
CN110716466B (zh) 2023-04-14
CN110716466A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
WO2021068504A1 (zh) 一种切换电路、单火线开关及开关装置
CN103226347B (zh) 个性化开关装置及其控制方法
KR101697443B1 (ko) 저전력소모 대기 회로장치, 에어컨 및 에어컨의 제어방법
CN101753924A (zh) 一种电视机的待机控制方法
TWI513168B (zh) 電源轉換裝置
CN112885070B (zh) 超微功耗信号发射装置及其应用
TW201411583A (zh) 時序控制電路及使用其的電子裝置
CN203839620U (zh) 一种用手机控制通断电的插座
CN108762159A (zh) 一种工控机重启装置、系统及方法
CN106384690A (zh) 可远程控制的机械式墙面开关
US9705323B2 (en) Power supply system and power control circuit thereof
CN201118273Y (zh) 电源管理电路
CN202159236U (zh) 待机开关电路及小型电子设备
CN101188174A (zh) 电器电源开关系统
CN106647918A (zh) 电器设备及其控制电路
CN201114445Y (zh) 具有待机控制电路的电子设备
CN203932533U (zh) 一种定时开关插座
CN205003502U (zh) 一种具有定时动作功能的无线智能开关面板
CN205378314U (zh) 一种基于z-wave技术的单火线开关互控系统
CN202059496U (zh) 用于关断电视机主板的电源装置
CN206134525U (zh) 可远程控制的机械式墙面开关
CN201191818Y (zh) 智能定时电源控制装置
CN216751536U (zh) 一种低成本低功耗的多功能手电筒驱动控制电路
CN207053678U (zh) 网络机顶盒控制系统
CN110049608B (zh) 一种智能灯及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20873760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20873760

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20873760

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.01.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20873760

Country of ref document: EP

Kind code of ref document: A1