WO2021068334A1 - Drive-control integrated control system - Google Patents

Drive-control integrated control system Download PDF

Info

Publication number
WO2021068334A1
WO2021068334A1 PCT/CN2019/117615 CN2019117615W WO2021068334A1 WO 2021068334 A1 WO2021068334 A1 WO 2021068334A1 CN 2019117615 W CN2019117615 W CN 2019117615W WO 2021068334 A1 WO2021068334 A1 WO 2021068334A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
force
joint
robot
control
Prior art date
Application number
PCT/CN2019/117615
Other languages
French (fr)
Chinese (zh)
Inventor
冯伟
吴新宇
张艳辉
陈清朋
徐天添
马跃
孙建铨
王大帅
郭师峰
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2021068334A1 publication Critical patent/WO2021068334A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Abstract

An intelligent drive-control integrated control system, comprising: a control module (1), an intelligent dynamic parameter identification module (2), a sensorless active compliance control module (3), a force feedback human-machine collaboration anti-collision control module (4) and a multi-shaft driving module (5). The control module (1) is configured to perform real-time control on the multi-shaft driving module (5); the intelligent dynamic parameter identification module (2) is configured to feed back, according to the motion state of a collaborative robot (6), a mechanical parameter identification signal of the collaborative robot (6) to the control module (1) in time; the sensorless active compliance control module (3) is configured to feed back, according to the motion state of the collaborative robot (6), a position signal, a force signal and an environmental signal of the collaborative robot (6) to the control module (1) in time; the force feedback human-machine collaboration anti-collision control module (4) is configured to feed back, according to the motion state of the collaborative robot (6), a safety state signal of the collaborative robot (6) to the control module (1) in time; and the multi-shaft driving module (5) is configured to control the motion of the collaborative robot in real time according to an instruction of the control module. By these means, the capability for controlling the robot can be improved.

Description

一种驱控一体化控制系统An integrated control system for driving and controlling 【技术领域】【Technical Field】
本发明属于协作机器人领域,尤其是一种驱控一体化控制系统。The invention belongs to the field of collaborative robots, in particular to an integrated drive and control control system.
【背景技术】【Background technique】
随着工业自动化技术的发展,工业机器人在越来越多的生产任务中担任了重要角色,然而受限于技术成熟度以及实施成本,一些复杂的操作任务仍然需要依靠人来手工完成,由此催生了能运作在人机共融环境下的协作机器人。With the development of industrial automation technology, industrial robots have played an important role in more and more production tasks. However, due to technical maturity and implementation costs, some complex operation tasks still need to be completed manually by humans. This gave birth to collaborative robots that can operate in a human-machine communicative environment.
与传统工业机器人相比,协作机器人不需要单独的隔离空间,可以与人类近距离合作来完成生产任务,例如在3C产品的装配线上,人类可以完成复杂的组装任务,而协作机器人可以快速精准的完成零件拾取与摆放任务,这种协作分工很大程度的提高了生产效率,降低了生产成本。为了实现这一协作目标,需要保证安全的人机交互环境,这就对协作机器人的控制在精准性和灵活性方面提出了远高于传统机器人的要求。Compared with traditional industrial robots, collaborative robots do not require a separate isolation space, and can cooperate with humans to complete production tasks at close range. For example, on the assembly line of 3C products, humans can complete complex assembly tasks, while collaborative robots can quickly and accurately The task of picking and placing parts is completed. This collaborative division of labor greatly improves production efficiency and reduces production costs. In order to achieve this collaborative goal, it is necessary to ensure a safe human-computer interaction environment, which puts forward requirements for the control of collaborative robots far higher than traditional robots in terms of accuracy and flexibility.
目前工业机器人一般都采取“中央运动控制器+多伺服驱动器”的分布式控制方式,这种模式布局方便,应用简单。传统的工业机器人大部分都工作在位置控制模式下,各个关节利用驱动器来实现精准的位置环PID控制,并通过总线来接收运动控制器的指令要求,这种模式控制算法简单,计算量小,数据通讯量也不大。对于协作机器人而言需要实现复杂的前馈控制、柔顺控制等算法,而分布式架构存在信号传输速率受限以及同步机制问题,其实时性和快速性很难满足协作机器人要求。为了解决这一问题,目前出现了用于协作机器人的驱控一体化的控制器,其具有结构紧凑、响应速度快、控制精度高、成本低等特点。但是,现有的驱控一体控制器在应用上仍然存在以下问题:一是其算法实现仍需要更上层的控制器来实现,这又会产生不同系统间的数据传输、实时性和同步问题;二是现有动力学模型参数识别算法大部分都基于传统的激励轨迹和最小二乘法来进行迭代估计实现的,其建模复杂,估计精度 不高,且无法对不能建模的参数进行识别;三是现有的机器人的主动柔顺力控制信息主要通过关节上的力/力矩传感器获得,但是力/力矩传感器体积大,不适合于协作机器人上使用,如果采用较小体积的力/力矩传感器,则有存在价格昂贵的问题;四是存在防碰撞检测能力有限,以及安全防护策略不适合于协作机器人上使用的问题。At present, industrial robots generally adopt a distributed control mode of "central motion controller + multiple servo drives", which is convenient in layout and simple in application. Most of the traditional industrial robots work in the position control mode. Each joint uses the driver to achieve precise position loop PID control, and receives the command requirements of the motion controller through the bus. This mode has simple control algorithms and small calculations. The data communication volume is not large. For collaborative robots, it is necessary to implement complex feedforward control, compliance control and other algorithms. However, the distributed architecture has limited signal transmission rate and synchronization mechanism problems. Its real-time and rapidity are difficult to meet the requirements of collaborative robots. In order to solve this problem, a controller with integrated drive and control for collaborative robots has appeared, which has the characteristics of compact structure, fast response speed, high control accuracy, and low cost. However, the existing integrated drive and control controllers still have the following problems in application: First, the algorithm implementation still needs a higher-level controller to implement, which will cause data transmission, real-time and synchronization problems between different systems; Second, most of the existing dynamic model parameter identification algorithms are based on the traditional excitation trajectory and least squares method for iterative estimation. The modeling is complicated, the estimation accuracy is not high, and the parameters that cannot be modeled can be identified; Third, the active compliance force control information of the existing robots is mainly obtained through the force/torque sensors on the joints, but the force/torque sensors are large in size and not suitable for use on collaborative robots. If a smaller-volume force/torque sensor is used, Then there is the problem of high price; fourth, there is the problem that the anti-collision detection ability is limited, and the safety protection strategy is not suitable for use on collaborative robots.
【发明内容】[Summary of the invention]
为了解决上述问题,本发明向社会提供一种可对不能建模的参数进行识别、无需传感器就能进行主动柔顺控制,以及具有良好的防碰撞检测能力和安全防护策略的适合于协作机器人上使用的智能驱控一体化控制系统。In order to solve the above problems, the present invention provides the society with a method that can identify parameters that cannot be modeled, can perform active compliance control without sensors, and has good anti-collision detection capabilities and safety protection strategies suitable for use on collaborative robots. Integrated intelligent drive and control control system.
本发明的技术方案是:提供一种驱控一体化控制系统,该驱控一体化控制系统用于控制协作机器人(6),驱控一体化控制系统包括:控制模块(1)、智能化动力学参数辩识模块(2)、无传感主动柔顺控制模块(3)、力反馈人机协作防碰撞控制模块(4)和多轴驱动模块(5);控制模块(1)用于根据预先设置的指令,或/和由智能化动力学参数辩识模块(2)、无传感主动柔顺控制模块(3)和力反馈人机协作防碰撞控制模块(4)根据协作机器人(6)的状态所反馈过来的信号,对多轴驱动模块(5)进行实时控制,以进一步使多轴驱动模块(5)控制协作机器人(6)的运动;其中,智能化动力学参数辩识模块(2)用于根据协作机器人(6)运动状态向控制模块(1)反馈协作机器人(6)的力学参数辩识信号;无传感主动柔顺控制模块(3)用于根据协作机器人(6)运动状态向控制模块(1)反馈协作机器人(6)的位置信号、力信号和环境信号;力反馈人机协作防碰撞控制模块(4)用于根据协作机器人(6)运动状态向控制模块(1)反馈协作机器人(6)的安全状态信号。The technical solution of the present invention is to provide a drive-control integrated control system, which is used to control a collaborative robot (6), and the drive-control integrated control system includes: a control module (1), intelligent power Learning parameter identification module (2), sensorless active compliance control module (3), force feedback human-machine cooperation anti-collision control module (4) and multi-axis drive module (5); the control module (1) is used to Set instructions, or/and by the intelligent dynamic parameter identification module (2), the sensorless active compliance control module (3) and the force feedback human-machine cooperation anti-collision control module (4) according to the collaborative robot (6) The signal fed back from the state controls the multi-axis drive module (5) in real time, so that the multi-axis drive module (5) controls the motion of the collaborative robot (6); among them, the intelligent dynamic parameter identification module (2) ) Is used to feed back the mechanical parameter identification signal of the collaborative robot (6) to the control module (1) according to the motion state of the collaborative robot (6); the sensorless active compliance control module (3) is used to respond to the motion state of the collaborative robot (6) The position signal, force signal and environment signal of the collaborative robot (6) are fed back to the control module (1); the force feedback human-machine cooperation anti-collision control module (4) is used to feed the control module (1) according to the motion state of the collaborative robot (6) The safety status signal of the cooperative robot (6) is fed back.
其中,智能化动力学参数辩识模块(2)包括:标称模型(21),标称模型(21)基于拉格朗日的动力学模型,用于:根据协作机器人(6)运动状态,获取协作机器人各连杆上任一点的运动速度,计算协作机器 人各连杆在运动过程中的动能,以及协作机器人运动的总动能;计算协作机器人各连杆在运动过程中的位能,以及协作机器人运动过程中相对于参考位能面的总位能;根据协作机器人总动能和总位能,构造协作机器人的拉格朗日函数;对拉格朗日函数进行求导运算,以获得协作机器人的标称动力学方程式;实际动力学模型(22),用于根据预设的参数,得出协作机器人实际动力学模型的实际动力学方程式;参数辨识神经网络(23),用于将协作机器人设置为力矩工作模式,在关节力矩最小到最大的范围内选取一段平滑的力矩曲线作为协作机器人的输入,利用各个关节的码盘获取各个关节的角位移、角速度及角加速度;在一个采样周期(T)内设定采样时间(t),采取N组包含有力矩、角位移、角速度和角加速度的数据,作为一次训练样本数据;学习优化模块(24),用于将样本数据中的力矩τ(k)通过标称模型得到理论输出值
Figure PCTCN2019117615-appb-000001
将力矩τ(k)结合样本中的实际输出值
Figure PCTCN2019117615-appb-000002
输入至参数辨识神经网络,得到输出修正值
Figure PCTCN2019117615-appb-000003
并将理论输出值与输出修正值结合得到辨识输出值
Figure PCTCN2019117615-appb-000004
将实际输出值与辨识输出值作差获得输出误差
Figure PCTCN2019117615-appb-000005
利用输出误差建立参数辨识神经网络的损失函数,并对参数辨识神经网络进行训练,进而完成动力学模型的修正。
Among them, the intelligent dynamic parameter identification module (2) includes: the nominal model (21), the nominal model (21) is based on the Lagrangian dynamic model, used for: according to the motion state of the collaborative robot (6), Obtain the movement speed of any point on each link of the collaborative robot, calculate the kinetic energy of each link of the collaborative robot during the movement, and the total kinetic energy of the movement of the collaborative robot; calculate the potential energy of each link of the collaborative robot during the movement, and the collaborative robot The total potential energy relative to the reference potential energy surface during the movement; construct the Lagrangian function of the collaborative robot according to the total kinetic energy and total potential energy of the collaborative robot; perform the derivative operation on the Lagrangian function to obtain the standard of the collaborative robot It is called the dynamic equation; the actual dynamic model (22) is used to obtain the actual dynamic equation of the actual dynamic model of the collaborative robot according to the preset parameters; the parameter identification neural network (23) is used to set the collaborative robot to In the torque working mode, a smooth torque curve is selected as the input of the collaborative robot from the minimum to the maximum joint torque, and the code disc of each joint is used to obtain the angular displacement, angular velocity and angular acceleration of each joint; in a sampling period (T) Set the sampling time (t) inside, and take N groups of data containing torque, angular displacement, angular velocity and angular acceleration as a training sample data; the learning optimization module (24) is used to combine the torque τ(k) in the sample data ) Get the theoretical output value through the nominal model
Figure PCTCN2019117615-appb-000001
Combine the torque τ(k) with the actual output value in the sample
Figure PCTCN2019117615-appb-000002
Input to the parameter identification neural network to obtain the output correction value
Figure PCTCN2019117615-appb-000003
Combine the theoretical output value with the output correction value to get the identification output value
Figure PCTCN2019117615-appb-000004
Make the difference between the actual output value and the identification output value to obtain the output error
Figure PCTCN2019117615-appb-000005
The output error is used to establish the loss function of the parameter identification neural network, and the parameter identification neural network is trained to complete the correction of the dynamic model.
其中,标称动力学方程式为:
Figure PCTCN2019117615-appb-000006
其中,D(q)∈R n×n为对称正定的惯量矩阵;
Figure PCTCN2019117615-appb-000007
为哥氏力与离心力矩阵;G(q)∈R n×1为重心项矩阵;
Figure PCTCN2019117615-appb-000008
q为机械的关节角位移矢量、
Figure PCTCN2019117615-appb-000009
为机械臂的角速度矢量以
Figure PCTCN2019117615-appb-000010
为机械臂的角加速度矢量;τ∈R n为机械臂各关节控制力矩矢量。
Among them, the nominal kinetic equation is:
Figure PCTCN2019117615-appb-000006
Among them, D(q)∈R n×n is a symmetric positive definite inertia matrix;
Figure PCTCN2019117615-appb-000007
Is the Coriolis force and centrifugal force matrix; G(q)∈R n×1 is the center of gravity term matrix;
Figure PCTCN2019117615-appb-000008
q is the mechanical joint angular displacement vector,
Figure PCTCN2019117615-appb-000009
Is the angular velocity vector of the robotic arm
Figure PCTCN2019117615-appb-000010
Is the angular acceleration vector of the manipulator; τ∈R n is the control torque vector of each joint of the manipulator.
其中,实际动力学方程式为:
Figure PCTCN2019117615-appb-000011
其中,F(q)代表关节运动的摩擦,
Figure PCTCN2019117615-appb-000012
代表机械臂运动中的扰动。
Among them, the actual dynamic equation is:
Figure PCTCN2019117615-appb-000011
Among them, F(q) represents the friction of joint movement,
Figure PCTCN2019117615-appb-000012
Represents the disturbance in the motion of the robotic arm.
其中,无传感主动柔顺控制模块(3)包括位置环(31)、力环(32) 和力位混合控制律输出模块(33);其中,位置环(31)包括末端位置输入端(311)、位置选择矩阵(312)和位置控制律模块(313);末端位置输入端(311)用于输入末端位置信号给位置选择矩阵(312),末端位置信号依经过位置选择矩阵(312)和位置控制律模块(313)处理后的位置信号输入给力位混合控制律输出模块(33);其中,力环(32)包括末端力输入端(321)、力选择矩阵(322)、力控制律模块(313)和基于电机电流的关节力矩估计模块(324),末端力输入端(321)用于输入末端力信号给力选择矩阵(322),末端力信号依经过力选择矩阵(322)和力控制律模块(323)处理后的力信号输入给力位混合控制律输出模块(33),关节力矩估计模块(324)将关节电机(35)的实时电流反馈给末端力输入端(321);力位混合控制律输出模块(33)给关节电机(35)输入力位混合控制律输出信号(G)。Among them, the sensorless active compliance control module (3) includes a position loop (31), a force loop (32) and a force position hybrid control law output module (33); wherein the position loop (31) includes an end position input terminal (311) ), position selection matrix (312) and position control law module (313); the end position input terminal (311) is used to input the end position signal to the position selection matrix (312), and the end position signal passes through the position selection matrix (312) and The position signal processed by the position control law module (313) is input to the force position mixed control law output module (33); wherein the force loop (32) includes an end force input terminal (321), a force selection matrix (322), and a force control law The module (313) and the joint torque estimation module (324) based on motor current. The end force input terminal (321) is used to input the end force signal to the force selection matrix (322). The end force signal depends on the passing force selection matrix (322) and the force The force signal processed by the control law module (323) is input to the force position hybrid control law output module (33), and the joint torque estimation module (324) feeds back the real-time current of the joint motor (35) to the end force input terminal (321); The position mixing control law output module (33) inputs the force position mixing control law output signal (G) to the joint motor (35).
其中,无传感主动柔顺控制模块(3)还包括机器人运动学模型(314),机器人运动学模型(314)将协作机器人(6)的关节角度和角速度反馈给末端位置输入端(311)。The sensorless active compliance control module (3) also includes a robot kinematics model (314). The robot kinematics model (314) feeds back the joint angle and angular velocity of the collaborative robot (6) to the end position input terminal (311).
其中,无传感主动柔顺控制模块(3)还包括补偿模块(34),补偿模块(34)介于力位混合控制律输出模块(33)和关节电机(35)之间。Among them, the sensorless active compliance control module (3) further includes a compensation module (34), and the compensation module (34) is interposed between the force position hybrid control law output module (33) and the joint motor (35).
其中,关节力矩估计模块的构造为完整的机器人动力学方程为:
Figure PCTCN2019117615-appb-000013
其中M∈R n×n为关节空间惯性矩阵;C∈R n×n为哥氏力和向心力计算矩阵;g∈R n×1为重力项向量;q∈R n×1为驱动关节角度向量;τ∈R n×1为驱动关节转矩;电机转矩τ m驱动的方程式为:τ=Nτ m;其中N∈R n×n为每个关节减速比的对角矩阵,设J m为电机转子的惯量;推导过程中,将电机转子处的摩擦项
Figure PCTCN2019117615-appb-000014
代入电机转矩模块和关节转矩的关系,得出基于电机电流的关节力矩估计模块,从而得到力检测输出:
Figure PCTCN2019117615-appb-000015
Among them, the structure of the joint torque estimation module is a complete robot dynamics equation:
Figure PCTCN2019117615-appb-000013
Among them, M∈R n×n is the joint space inertia matrix; C∈R n×n is the Coriolis force and centripetal force calculation matrix; g∈R n×1 is the gravity term vector; q∈R n×1 is the driving joint angle vector ;Τ∈R n×1 is the driving joint torque; the motor torque τ m driving equation is: τ=Nτ m ; where N∈R n×n is the diagonal matrix of the reduction ratio of each joint, and set J m as The inertia of the motor rotor; in the derivation process, the friction term at the motor rotor
Figure PCTCN2019117615-appb-000014
Substituting the relationship between the motor torque module and the joint torque, the joint torque estimation module based on the motor current is obtained, and the force detection output is obtained:
Figure PCTCN2019117615-appb-000015
其中,力反馈人机协作防碰撞检测模块(4)包括:动力学方程建立模块(41),用于在预定机器人平台上,采用D-H参数法建立连杆坐标系,并根据拉格朗日动力学公式建立机器人动力学方程;碰撞检测算子 和扰动观测器建立模块(42),根据机器人动力学方程和动量方程,构造基于机器人能量不变的碰撞检测算子和基于广义动量变化量的扰动观测器;数据分析模块(43),基于机器人系统电流实时反馈,确定各关节扭矩和碰撞力之间的关系,并给出机器人雅克比矩阵求解方法,并分析其检测碰撞的有效性;安全防护策略制订模块(44),基于碰撞检测模型的检测结果,针对不同碰撞情形,结合实际工况,制订不同的安全防护策略;仿真验证及优化模块(45),基于ADAMS-Simulink联合仿真平台对机器人碰撞检测算子的有效性和安全防护策略的合理性进行仿真验证及优化;实际效果验证模块(46),基于预定机器人平台,验证评估基于力反馈的避障防护安全策略实际效果。Among them, the force feedback human-machine cooperation anti-collision detection module (4) includes: the dynamic equation establishment module (41), which is used to establish the linkage coordinate system by the DH parameter method on the predetermined robot platform, and according to the Lagrangian dynamics The robot dynamics equation is established by the scientific formula; the collision detection operator and the disturbance observer establishment module (42), according to the robot dynamics equation and momentum equation, construct the collision detection operator based on the constant energy of the robot and the disturbance based on the generalized momentum change Observer; data analysis module (43), based on the real-time feedback of the robot system current, determines the relationship between the torque of each joint and the collision force, and gives the robot Jacobian matrix solution method, and analyzes its effectiveness in detecting collisions; safety protection The strategy formulation module (44), based on the detection results of the collision detection model, formulates different safety protection strategies for different collision situations and combined with actual working conditions; simulation verification and optimization module (45), based on the ADAMS-Simulink joint simulation platform for robots The effectiveness of the collision detection operator and the rationality of the safety protection strategy are simulated and optimized; the actual effect verification module (46), based on the predetermined robot platform, verifies and evaluates the actual effect of the obstacle avoidance protection safety strategy based on force feedback.
其中,力反馈人机协作防碰撞检测模块(4)还包括:单目双视图立体匹配模块(47),用于构建基于SVS的单目双视图立体匹配模型,在损失函数上优化几何约束条件,通过左右视图合成过程和双视图立体匹配,实现单目图像中检测目标深度的准确估计;卷积特征提取模块(48),基于单目摄像头采集的RGB图像,采用ResNet模型进行深度卷积特征提取;人体骨骼关键点处理模块(49),根据人体骨骼关节几何先验知识及关节间的相关关系,优化双分支深度卷积神经网络结构设计,实现关节点及其关节关联关系的同步处理,其中一分支通过概率热图和偏移量结合的方式进行人体骨骼关键点回归,一分支检测图像中多人的关节关联信息,并通过二分图匹配形成人体骨骼序列数据;人体骨架图像数据处理模块(410),用于结合工业人机协作场景特点重构人体骨架图像数据集,并进行关节点数据标注,结合人工调整获得面向工业协作场景的姿态数据集。Among them, the force feedback human-machine cooperation anti-collision detection module (4) also includes: a monocular dual-view stereo matching module (47), used to construct a SVS-based monocular dual-view stereo matching model, and optimize geometric constraints on the loss function , Through the left and right view synthesis process and dual-view stereo matching, the accurate estimation of the detection target depth in the monocular image is realized; the convolution feature extraction module (48), based on the RGB image collected by the monocular camera, uses the ResNet model to perform deep convolution features Extraction; Human bone key point processing module (49), according to the prior knowledge of human bone joint geometry and the correlation between joints, optimize the design of the dual-branch deep convolutional neural network structure, and realize the synchronization processing of joint points and their joint relations. One branch uses the combination of probabilistic heat map and offset to perform human bone key point regression. The other branch detects the joint association information of multiple people in the image, and forms human bone sequence data through bipartite map matching; human skeleton image data processing module (410), used to reconstruct the human skeleton image data set combined with the characteristics of the industrial human-machine collaboration scene, and perform joint point data annotation, combined with manual adjustment to obtain the posture data set for the industrial collaboration scene.
本发明具有可对不能建模的参数进行识别、无需传感器就能进行主动柔顺控制,以及具有良好的防碰撞检测能力和安全防护策略的适合于协作机器人上使用的优点。The invention has the advantages of identifying parameters that cannot be modeled, performing active compliance control without sensors, and having good anti-collision detection capabilities and safety protection strategies, which are suitable for use on collaborative robots.
【附图说明】【Explanation of the drawings】
图1是本发明方法一种实施例的方框示意图;Figure 1 is a schematic block diagram of an embodiment of the method of the present invention;
图2是本发明智能化动力学参数辩识模块的方框结构示意图;2 is a block diagram of the intelligent dynamic parameter identification module of the present invention;
图3是本发明无传感主动柔顺控制模块的方框结构示意图;Figure 3 is a block diagram of the sensorless active compliance control module of the present invention;
图4是本发明力反馈人机协作防碰撞控制模块的方框结构示意图;4 is a schematic block diagram of the force feedback human-machine cooperation anti-collision control module of the present invention;
图5是图4的另一种表达形式的结构示意图。Fig. 5 is a schematic structural diagram of another expression form of Fig. 4.
【具体实施方式】【Detailed ways】
请参见图1,图1揭示的是一种用于多轴协作化工业机器人的智能驱控一体化控制系统,包括:控制模块1、智能化动力学参数辩识模块2、无传感主动柔顺控制模块3、力反馈人机协作防碰撞控制模块4和多轴驱动模块5。Please refer to Figure 1. Figure 1 discloses an intelligent drive and control integrated control system for multi-axis collaborative industrial robots, including: control module 1, intelligent dynamic parameter identification module 2, sensorless active compliance Control module 3, force feedback man-machine cooperation anti-collision control module 4 and multi-axis drive module 5.
所述控制模块1用于根据预先设置的指令,或/和由所述智能化动力学参数辩识模块2、无传感主动柔顺控制模块3和力反馈人机协作防碰撞控制模块4根据协作机器人6的状态所反馈过来的信号,对所述多轴驱动模块5进行实时控制。The control module 1 is used to follow the pre-set instructions, or/and the intelligent dynamic parameter identification module 2, the sensorless active compliance control module 3 and the force feedback human-machine cooperation anti-collision control module 4 according to the cooperation The signal fed back from the state of the robot 6 controls the multi-axis drive module 5 in real time.
智能化动力学参数辩识模块2,根据协作机器人6运动状态,及时向控制模块1提供协作机器人6的力学参数辩识信号。The intelligent dynamic parameter identification module 2 provides the mechanical parameter identification signal of the collaborative robot 6 to the control module 1 in time according to the motion state of the collaborative robot 6.
无传感主动柔顺控制模块3,根据协作机器人6运动状态,及时向控制模块1提供协作机器人6的位置信号、力信号和环境信号。The sensorless active compliance control module 3 provides the position signal, force signal and environment signal of the collaborative robot 6 to the control module 1 in time according to the motion state of the collaborative robot 6.
力反馈人机协作防碰撞控制模块4,根据协作机器人6运动状态,及时向控制模块1提供协作机器人6的安全状态信号。The force feedback human-machine cooperation anti-collision control module 4 provides the control module 1 with a safety status signal of the collaborative robot 6 in time according to the motion state of the collaborative robot 6.
多轴驱动模块5,根据所述控制模块1的指令,实时控制协作机器人6的运动。The multi-axis drive module 5 controls the movement of the collaborative robot 6 in real time according to the instructions of the control module 1.
图1中的市电输入接口7为控制模块1和多轴驱动模块5提供电力,由于控制模块1需要低压直流电,所以在市电输入接口7与控制模块1设有电源适配器8。The mains input interface 7 in FIG. 1 provides power for the control module 1 and the multi-axis drive module 5. Since the control module 1 requires low-voltage direct current, a power adapter 8 is provided between the mains input interface 7 and the control module 1.
请见图2,本发明中的智能化动力学参数辩识模块2,包括基于拉格朗日的动力学模型的标称模型21,根据协作机器人6运动状态,求得协作机器人各连杆上任一点的运动速度;计算协作机器人各连杆在运动过程中的动能,以及整个协作机器人运动的总动能;计算协作机器人各 连杆在运动过程中的位能,以及整个协作机器人运动过程中相对于参考位能面的总位能;根据上述求得的协作机器人总动能和总位能,构造协作机器人系统的拉格朗日函数;对上述过程中得到拉格朗日函数进行求导运算,来获得该协作机器人系统的标称动力学方程式。Please refer to Figure 2. The intelligent dynamic parameter identification module 2 of the present invention includes the nominal model 21 based on the Lagrangian dynamic model. According to the motion state of the collaborative robot 6, each link of the collaborative robot is calculated The movement speed of one point; calculate the kinetic energy of each link of the collaborative robot during the movement, and the total kinetic energy of the entire collaborative robot movement; calculate the potential energy of each link of the collaborative robot during the movement, and the relative Refer to the total potential energy of the potential energy surface; construct the Lagrangian function of the collaborative robot system based on the total kinetic energy and total potential energy of the collaborative robot obtained above; perform the derivative operation on the Lagrangian function obtained in the above process to obtain The nominal dynamic equation of the collaborative robot system.
实际动力学模型22,用于在标称模型的基础上建立实际动力学模型,从协作机器人系统的实际使用出发,加入预设的难以模型化的参数,得出协作机器人实际动力学模型的实际动力学方程式。The actual dynamics model 22 is used to establish an actual dynamics model based on the nominal model. Starting from the actual use of the collaborative robot system, adding preset parameters that are difficult to model to obtain the actual dynamics model of the collaborative robot Kinetic equation.
神经网络训练样本获取模块23,获取神经网络训练样本数据,将协作机器人设置为力矩工作模式,在关节力矩最小到最大的范围内选取一段平滑的力矩曲线作为协作机器人的输入,利用各个关节的码盘获取各个关节的角位移、角速度及角加速度;在一个采样周期T内设定采样时间为t,采取N组包含有力矩、角位移、角速度和角加速度的数据,作为一次训练样本数据。The neural network training sample acquisition module 23, acquires neural network training sample data, sets the collaborative robot to the torque working mode, selects a smooth torque curve as the input of the collaborative robot within the range of the minimum to maximum joint torque, and uses the code of each joint The disk obtains the angular displacement, angular velocity and angular acceleration of each joint; the sampling time is set to t within a sampling period T, and N sets of data including torque, angular displacement, angular velocity and angular acceleration are taken as a training sample data.
参数辨识神经网络训练模块24,将样本数据中的力矩τ(k)通过标称模型得到理论输出值
Figure PCTCN2019117615-appb-000016
将力矩τ(k)结合样本中的实际输出值
Figure PCTCN2019117615-appb-000017
输入至参数辨识神经网络;得到输出修正值
Figure PCTCN2019117615-appb-000018
理论输出值与输出修正值结合得到辨识输出值
Figure PCTCN2019117615-appb-000019
将实际输出值与辨识输出值作差获得输出误差
Figure PCTCN2019117615-appb-000020
利用输出误差建立参数辨识神经网络的损失函数;采取自我学习进化的优化策略;对神经网络进行训练,进而完成动力学模型的修正。
The parameter identification neural network training module 24 uses the torque τ(k) in the sample data to obtain the theoretical output value through the nominal model
Figure PCTCN2019117615-appb-000016
Combine the torque τ(k) with the actual output value in the sample
Figure PCTCN2019117615-appb-000017
Input to the parameter identification neural network; get the output correction value
Figure PCTCN2019117615-appb-000018
The theoretical output value is combined with the output correction value to obtain the identification output value
Figure PCTCN2019117615-appb-000019
The difference between the actual output value and the identification output value to obtain the output error
Figure PCTCN2019117615-appb-000020
Use the output error to establish the loss function of the parameter identification neural network; adopt the optimization strategy of self-learning evolution; train the neural network to complete the correction of the dynamic model.
优选的,所述标称动力学方程式为:Preferably, the nominal kinetic equation is:
Figure PCTCN2019117615-appb-000021
Figure PCTCN2019117615-appb-000021
其中,D(q)∈R n×n为对称正定的惯量矩阵;
Figure PCTCN2019117615-appb-000022
为哥氏力与离心力矩阵;G(q)∈R n×1为重心项矩阵;
Figure PCTCN2019117615-appb-000023
q为机械的关节角位移 矢量、
Figure PCTCN2019117615-appb-000024
为机械臂的角速度矢量以
Figure PCTCN2019117615-appb-000025
为机械臂的角加速度矢量;τ∈R n为机械臂各关节控制力矩矢量。
Among them, D(q)∈R n×n is a symmetric positive definite inertia matrix;
Figure PCTCN2019117615-appb-000022
Is the Coriolis force and centrifugal force matrix; G(q)∈R n×1 is the center of gravity term matrix;
Figure PCTCN2019117615-appb-000023
q is the mechanical joint angular displacement vector,
Figure PCTCN2019117615-appb-000024
Is the angular velocity vector of the robotic arm
Figure PCTCN2019117615-appb-000025
Is the angular acceleration vector of the manipulator; τ∈R n is the control torque vector of each joint of the manipulator.
优选的,所述实际动力学方程式为:Preferably, the actual dynamic equation is:
Figure PCTCN2019117615-appb-000026
Figure PCTCN2019117615-appb-000026
上式中,F(q)代表关节运动的摩擦,
Figure PCTCN2019117615-appb-000027
代表机械臂运动中的扰动。
In the above formula, F(q) represents the friction of joint movement
Figure PCTCN2019117615-appb-000027
Represents the disturbance in the motion of the robotic arm.
优选的,所述扰动包括负荷变动、建模误差或/和电气干扰。Preferably, the disturbance includes load changes, modeling errors or/and electrical interference.
优选的,所述难以模型化的参数包括协作机器人的摩擦参数、间隙参数或/和变形参数。Preferably, the parameters that are difficult to model include friction parameters, clearance parameters, or/and deformation parameters of the collaborative robot.
请参见图3,图3揭示的是无传感主动柔顺控制模块3,包括位置环31和力环32,所述位置环31包括末端位置输入端311、位置选择矩阵312和位置控制律模块313;所述末端位置输入端311用于输入末端位置信号给所述位置选择矩阵312,末端位置信号依经过位置选择矩阵312和位置控制律模块313处理后的位置信号输入给力位混合控制律输出模块33;所述力环32包括末端力输入端321、力选择矩阵322、力控制律模块323和基于电机电流的关节力矩估计模块324,所述末端力输入端321用于输入末端力信号给所述力选择矩阵322,末端力信号依经过力选择矩阵322和力控制律模块323处理后的力信号输入给力位混合控制律输出模块33,所述关节力矩估计模块324将关节电机35的实时电流反馈给末端力输入端321;所述力位混合控制律输出模块33给关节电机35输入力位混合控制律输出信号G,关节电机35通过传动机构36控制协作机器人6动作。Please refer to FIG. 3, which shows the sensorless active compliance control module 3, which includes a position loop 31 and a force loop 32. The position loop 31 includes an end position input terminal 311, a position selection matrix 312, and a position control law module 313. The end position input terminal 311 is used to input an end position signal to the position selection matrix 312, and the end position signal is input to the force position hybrid control law output module according to the position signal processed by the position selection matrix 312 and the position control law module 313 33; The force loop 32 includes an end force input terminal 321, a force selection matrix 322, a force control law module 323, and a joint torque estimation module 324 based on motor current. The end force input terminal 321 is used to input an end force signal to all According to the force selection matrix 322, the terminal force signal is input to the force position hybrid control law output module 33 according to the force signal processed by the force selection matrix 322 and the force control law module 323. The joint torque estimation module 324 calculates the real-time current of the joint motor 35 The feedback is fed to the terminal force input terminal 321; the force position hybrid control law output module 33 inputs the force position hybrid control law output signal G to the joint motor 35, and the joint motor 35 controls the action of the collaborative robot 6 through the transmission mechanism 36.
图3中,X d,
Figure PCTCN2019117615-appb-000028
和f d分别为理想的末端位置和接触力。
In Figure 3, X d ,
Figure PCTCN2019117615-appb-000028
And f d are the ideal end position and contact force, respectively.
优选的,本发明还包括机器人运动学模型314,所述机器人运动学模型314将协作机器人6的关节角度和角速度反馈给末端位置输入端311。Preferably, the present invention further includes a robot kinematics model 314 that feeds back the joint angle and angular velocity of the collaborative robot 6 to the end position input terminal 311.
优选的,本发明还包括补偿模块34,所述补偿模块34介于所述力位混合控制律输出模块33和所述关节电机35之间。Preferably, the present invention further includes a compensation module 34 interposed between the force-position hybrid control law output module 33 and the joint motor 35.
优选的,所述位置选择矩阵312和所述力选择矩阵322是合二为一的,称为柔顺选择矩阵S。Preferably, the position selection matrix 312 and the force selection matrix 322 are combined into one, which is called the compliance selection matrix S.
优选的,所述柔顺选择矩阵S的表达式为:Preferably, the expression of the compliance selection matrix S is:
S=diag(s 1,s 2,...,s n); S=diag(s 1 ,s 2 ,...,s n );
当机械臂末端的第i个自由度为位置控制时,s i=1,为力控制时,s i=0;柔顺选择矩阵S基于力觉信息进行在线调整。 When the i-th degree of freedom at the end of the robotic arm is position control, s i =1, and when it is force control, s i =0; the compliance selection matrix S is adjusted online based on force information.
优选的,所述基于电机电流的关节力矩估计模块324的构造为,完整的机器人动力学方程为式一:Preferably, the structure of the joint torque estimation module 324 based on the motor current is that the complete robot dynamics equation is Equation 1:
Figure PCTCN2019117615-appb-000029
Figure PCTCN2019117615-appb-000029
其中M∈R n×n为关节空间惯性矩阵;C∈R n×n为哥氏力和向心力计算矩阵;g∈R n×1为重力项向量;q∈R n×1为驱动关节角度向量;τ∈R n×1为驱动关节转矩; Among them, M∈R n×n is the joint space inertia matrix; C∈R n×n is the Coriolis force and centripetal force calculation matrix; g∈R n×1 is the gravity term vector; q∈R n×1 is the driving joint angle vector ;Τ∈R n×1 is the driving joint torque;
电机转矩τ m驱动的方程式为: The equation driven by the motor torque τ m is:
τ=Nτ mτ=Nτ m ;
其中N∈R n×n为每个关节减速比的对角矩阵,设J m为电机转子的惯量;推导过程中,将电机转子处的摩擦项
Figure PCTCN2019117615-appb-000030
代入电机转矩模块和关节转矩的关系,得出基于电机电流的关节力矩估计模块,从而得到力检测输出:
Where N ∈ R n×n is the diagonal matrix of the reduction ratio of each joint, and J m is the inertia of the motor rotor; in the derivation process, the friction term at the motor rotor
Figure PCTCN2019117615-appb-000030
Substituting the relationship between the motor torque module and the joint torque, the joint torque estimation module based on the motor current is obtained, and the force detection output is obtained:
Figure PCTCN2019117615-appb-000031
Figure PCTCN2019117615-appb-000031
其中,Ψ(i)=τ m为电机输出力矩与电流之间的映射模块。 Among them, Ψ(i)=τ m is the mapping module between the motor output torque and current.
请参见图4和图5,本发明中,所述力反馈人机协作防碰撞检测模块4,包括:4 and 5, in the present invention, the force feedback human-machine cooperation anti-collision detection module 4 includes:
动力学方程建立模块41,用于在预定机器人平台上,采用D-H参数法建立连杆坐标系,并根据拉格朗日动力学公式建立机器人动力学方程;The dynamic equation establishment module 41 is used to establish the linkage coordinate system by the D-H parameter method on the predetermined robot platform, and establish the robot dynamic equation according to the Lagrangian dynamic formula;
碰撞检测算子和扰动观测器建立模块42,根据机器人动力学方程和动量方程,构造基于机器人能量不变的碰撞检测算子和基于广义动量变化量的扰动观测器;The collision detection operator and disturbance observer establishment module 42, according to the robot dynamics equation and momentum equation, constructs the collision detection operator based on the robot's constant energy and the disturbance observer based on the generalized momentum change;
数据分析模块43,基于机器人系统电流实时反馈,确定各关节扭矩和碰撞力之间的关系,并给出机器人雅克比矩阵求解方法,并分析其检测碰撞的有效性;The data analysis module 43, based on the real-time feedback of the robot system current, determines the relationship between the torque of each joint and the collision force, and provides a method for solving the Jacobian matrix of the robot, and analyzes its effectiveness in detecting collisions;
安全防护策略制订模块44,基于碰撞检测模型的检测结果,针对不同碰撞情形,结合实际工况,制订不同的安全防护策略;The safety protection strategy formulation module 44, based on the detection results of the collision detection model, formulates different safety protection strategies for different collision situations and in combination with actual working conditions;
仿真验证及优化模块45,基于ADAMS-Simulink联合仿真平台对机器人碰撞检测算子的有效性和安全防护策略的合理性进行仿真验证及优化;Simulation verification and optimization module 45, based on the ADAMS-Simulink joint simulation platform, performs simulation verification and optimization on the effectiveness of the robot collision detection operator and the rationality of the safety protection strategy;
实际效果验证模块46,基于预定机器人平台,验证评估基于力反馈的避障防护安全策略实际效果。The actual effect verification module 46, based on a predetermined robot platform, verifies and evaluates the actual effect of the obstacle avoidance protection safety strategy based on force feedback.
作为对本发明的改进,所述安全防护策略包括:1、碰撞后停止,即机器人控制系统检测到了碰撞信号后控制系统立刻让伺服驱动器断开使能;或者,2、碰撞后机器人控制系统切换控制模式,将位置模式转换为力矩模式;或者,3、碰撞后机器人改变原来的运动轨迹,离开碰撞区域。As an improvement to the present invention, the safety protection strategy includes: 1. Stop after collision, that is, after the robot control system detects the collision signal, the control system will immediately turn off the servo drive and enable; or, 2. After the collision, the robot control system switches control Mode, convert the position mode to the torque mode; or, 3. After the collision, the robot changes its original motion trajectory and leaves the collision area.
优选的,本发明还包括:Preferably, the present invention also includes:
单目双视图立体匹配模块47,用于构建基于SVS的单目双视图立体匹配模型,在损失函数上优化几何约束条件,通过左右视图合成过程和双视图立体匹配,实现单目图像中检测目标深度的准确估计;Monocular and dual-view stereo matching module 47, used to construct a SVS-based monocular and dual-view stereo matching model, optimize geometric constraints on the loss function, and achieve detection targets in monocular images through the left and right view synthesis process and dual-view stereo matching Accurate estimation of depth;
卷积特征提取模块48,基于单目摄像头采集的RGB图像,采用ResNet模型进行深度卷积特征提取;The convolution feature extraction module 48 uses the ResNet model to extract deep convolution features based on the RGB images collected by the monocular camera;
人体骨骼关键点处理模块49,根据人体骨骼关节几何先验知识及关节间的相关关系,优化双分支深度卷积神经网络结构设计,实现关节点及其关节关联关系的同步处理,其中一分支通过概率热图和偏移量结合的方式进行人体骨骼关键点回归,一分支检测图像中多人的关节关联信息,并通过二分图匹配形成人体骨骼序列数据;The human bone key point processing module 49 optimizes the structure design of the dual-branch deep convolutional neural network based on the prior geometric knowledge of the human bone joints and the correlation between the joints, and realizes the synchronization processing of the joint points and the joint correlation. One of the branches passes Probabilistic heat map and offset are combined to perform human bone key point regression, one branch detects the joint related information of multiple people in the image, and the human bone sequence data is formed through bipartite map matching;
人体骨架图像数据处理模块410,以微软COCO数据集为基础,结合工业人机协作场景特点重构人体骨架图像数据集,采用上海交通大学开源alphapose进行关节点数据标注,结合人工调整获得面向工业协作场 景的姿态数据集。The human skeleton image data processing module 410, based on the Microsoft COCO data set, combines the characteristics of industrial human-machine collaboration scenes to reconstruct the human skeleton image data set, uses the open source alphapose of Shanghai Jiaotong University for joint point data annotation, and combines manual adjustment to obtain industrial-oriented collaboration The pose dataset of the scene.

Claims (10)

  1. 一种驱控一体化控制系统,其特征在于,所述驱控一体化控制系统用于控制协作机器人(6),所述驱控一体化控制系统包括:控制模块(1)、智能化动力学参数辩识模块(2)、无传感主动柔顺控制模块(3)、力反馈人机协作防碰撞控制模块(4)和多轴驱动模块(5);A drive and control integrated control system, characterized in that the drive and control integrated control system is used to control a collaborative robot (6), and the drive and control integrated control system includes: a control module (1), intelligent dynamics Parameter identification module (2), sensorless active compliance control module (3), force feedback man-machine cooperation anti-collision control module (4) and multi-axis drive module (5);
    所述控制模块(1)用于根据预先设置的指令,或/和由所述智能化动力学参数辩识模块(2)、无传感主动柔顺控制模块(3)和力反馈人机协作防碰撞控制模块(4)根据协作机器人(6)的状态所反馈过来的信号,对所述多轴驱动模块(5)进行实时控制,以进一步使所述多轴驱动模块(5)控制协作机器人(6)的运动;The control module (1) is used for pre-set instructions, or/and by the intelligent dynamic parameter identification module (2), the sensorless active compliance control module (3) and the force feedback man-machine cooperation defense The collision control module (4) controls the multi-axis drive module (5) in real time according to the signal fed back from the state of the collaborative robot (6), so that the multi-axis drive module (5) controls the collaborative robot ( 6) Exercise;
    其中,所述智能化动力学参数辩识模块(2)用于根据协作机器人(6)运动状态向控制模块(1)反馈所述协作机器人(6)的力学参数辩识信号;所述无传感主动柔顺控制模块(3)用于根据协作机器人(6)运动状态向控制模块(1)反馈所述协作机器人(6)的位置信号、力信号和环境信号;所述力反馈人机协作防碰撞控制模块(4)用于根据协作机器人(6)运动状态向控制模块(1)反馈所述协作机器人(6)的安全状态信号。Wherein, the intelligent dynamic parameter identification module (2) is used to feed back the mechanical parameter identification signal of the collaborative robot (6) to the control module (1) according to the motion state of the collaborative robot (6); The sensory active compliance control module (3) is used to feed back the position signal, force signal and environment signal of the collaborative robot (6) to the control module (1) according to the motion state of the collaborative robot (6); the force feedback human-machine cooperation defense The collision control module (4) is used for feeding back the safety state signal of the collaborative robot (6) to the control module (1) according to the motion state of the collaborative robot (6).
  2. 根据权利要求1所述的驱控一体化控制系统,其特征在于,The drive and control integrated control system according to claim 1, characterized in that:
    所述智能化动力学参数辩识模块(2)包括:The intelligent dynamic parameter identification module (2) includes:
    标称模型(21),所述标称模型(21)基于拉格朗日的动力学模型,用于:根据协作机器人(6)运动状态,获取所述协作机器人各连杆上任一点的运动速度,计算所述协作机器人各连杆在运动过程中的动能,以及所述协作机器人运动的总动能;计算所述协作机器人各连杆在运动过程中的位能,以及所述协作机器人运动过程中相对于参考位能面的总位能;根据所述协作机器人总动能和总位能,构造所述协作机器人的拉格朗日函数;对所述拉格朗日函数进行求导运算,以获得所述协作机器人的标称动力学方程式;Nominal model (21), the nominal model (21) is based on Lagrange's dynamics model, and is used to obtain the motion speed of any point on each link of the collaborative robot according to the motion state of the collaborative robot (6) Calculate the kinetic energy of each link of the collaborative robot in the movement process and the total kinetic energy of the movement of the collaborative robot; calculate the potential energy of each link of the collaborative robot in the movement process and the movement process of the collaborative robot The total potential energy relative to the reference potential energy surface; the Lagrangian function of the collaborative robot is constructed according to the total kinetic energy and total potential energy of the collaborative robot; the derivative operation is performed on the Lagrangian function to obtain the total potential energy State the nominal dynamics equation of the collaborative robot;
    实际动力学模型(22),用于根据预设的参数,得出所述协作机器 人实际动力学模型的实际动力学方程式;The actual dynamics model (22) is used to obtain the actual dynamics equation of the actual dynamics model of the collaborative robot according to preset parameters;
    参数辨识神经网络(23),用于将所述协作机器人设置为力矩工作模式,在关节力矩最小到最大的范围内选取一段平滑的力矩曲线作为所述协作机器人的输入,利用各个关节的码盘获取各个关节的角位移、角速度及角加速度;在一个采样周期(T)内设定采样时间(t),采取N组包含有力矩、角位移、角速度和角加速度的数据,作为一次训练样本数据;The parameter identification neural network (23) is used to set the collaborative robot to the torque working mode, select a smooth torque curve as the input of the collaborative robot in the range from the minimum to the maximum joint torque, and use the code wheel of each joint Obtain the angular displacement, angular velocity and angular acceleration of each joint; set the sampling time (t) within a sampling period (T), and take N groups of data including torque, angular displacement, angular velocity and angular acceleration as a training sample data ;
    学习优化模块(24),用于将样本数据中的力矩τ(k)通过所述标称模型得到理论输出值
    Figure PCTCN2019117615-appb-100001
    将力矩τ(k)结合样本中的实际输出值
    Figure PCTCN2019117615-appb-100002
    输入至所述参数辨识神经网络,得到输出修正值
    Figure PCTCN2019117615-appb-100003
    并将所述理论输出值与所述输出修正值结合得到辨识输出值
    Figure PCTCN2019117615-appb-100004
    将实际输出值与所述辨识输出值作差获得输出误差
    Figure PCTCN2019117615-appb-100005
    利用所述输出误差建立所述参数辨识神经网络的损失函数,并对所述参数辨识神经网络进行训练,进而完成动力学模型的修正。
    The learning optimization module (24) is used to obtain the theoretical output value of the torque τ(k) in the sample data through the nominal model
    Figure PCTCN2019117615-appb-100001
    Combine the torque τ(k) with the actual output value in the sample
    Figure PCTCN2019117615-appb-100002
    Input to the parameter identification neural network to obtain the output correction value
    Figure PCTCN2019117615-appb-100003
    And combine the theoretical output value with the output correction value to obtain the identification output value
    Figure PCTCN2019117615-appb-100004
    Make the difference between the actual output value and the identification output value to obtain the output error
    Figure PCTCN2019117615-appb-100005
    The output error is used to establish the loss function of the parameter identification neural network, and the parameter identification neural network is trained to complete the correction of the dynamic model.
  3. 根据权利要求2所述的驱控一体化控制系统,其特征在于,The drive and control integrated control system according to claim 2, characterized in that:
    所述标称动力学方程式为:The nominal kinetic equation is:
    Figure PCTCN2019117615-appb-100006
    Figure PCTCN2019117615-appb-100006
    其中,D(q)∈R n×n为对称正定的惯量矩阵;
    Figure PCTCN2019117615-appb-100007
    为哥氏力与离心力矩阵;G(q)∈R n×1为重心项矩阵;
    Figure PCTCN2019117615-appb-100008
    q为机械的关节角位移矢量、
    Figure PCTCN2019117615-appb-100009
    为机械臂的角速度矢量以
    Figure PCTCN2019117615-appb-100010
    为机械臂的角加速度矢量;τ∈R n为机械臂各关节控制力矩矢量。
    Among them, D(q)∈R n×n is a symmetric positive definite inertia matrix;
    Figure PCTCN2019117615-appb-100007
    Is the Coriolis force and centrifugal force matrix; G(q)∈R n×1 is the center of gravity term matrix;
    Figure PCTCN2019117615-appb-100008
    q is the mechanical joint angular displacement vector,
    Figure PCTCN2019117615-appb-100009
    Is the angular velocity vector of the robotic arm
    Figure PCTCN2019117615-appb-100010
    Is the angular acceleration vector of the manipulator; τ∈R n is the control torque vector of each joint of the manipulator.
  4. 根据权利要求2所述的驱控一体化控制系统,其特征在于,The drive and control integrated control system according to claim 2, characterized in that:
    所述实际动力学方程式为:The actual dynamic equation is:
    Figure PCTCN2019117615-appb-100011
    Figure PCTCN2019117615-appb-100011
    其中,F(q)代表关节运动的摩擦,
    Figure PCTCN2019117615-appb-100012
    代表机械臂运动中的扰动。
    Among them, F(q) represents the friction of joint movement,
    Figure PCTCN2019117615-appb-100012
    Represents the disturbance in the motion of the robotic arm.
  5. 根据权利要求1所述的驱控一体化控制系统,其特征在于,The drive and control integrated control system according to claim 1, characterized in that:
    所述无传感主动柔顺控制模块(3)包括位置环(31)、力环(32)和力位混合控制律输出模块(33);The sensorless active compliance control module (3) includes a position loop (31), a force loop (32) and a force position hybrid control law output module (33);
    其中,所述位置环(31)包括末端位置输入端(311)、位置选择矩阵(312)和位置控制律模块(313);所述末端位置输入端(311)用于输入末端位置信号给所述位置选择矩阵(312),末端位置信号依经过所述位置选择矩阵(312)和所述位置控制律模块(313)处理后的位置信号输入给所述力位混合控制律输出模块(33);Wherein, the position loop (31) includes an end position input terminal (311), a position selection matrix (312) and a position control law module (313); the end position input terminal (311) is used to input an end position signal to the The position selection matrix (312), and the end position signal is input to the force position mixing control law output module (33) according to the position signal processed by the position selection matrix (312) and the position control law module (313) ;
    其中,所述力环(32)包括末端力输入端(321)、力选择矩阵(322)、力控制律模块(313)和基于电机电流的关节力矩估计模块(324),所述末端力输入端(321)用于输入末端力信号给所述力选择矩阵(322),末端力信号依经过力选择矩阵(322)和力控制律模块(323)处理后的力信号输入给力位混合控制律输出模块(33),所述关节力矩估计模块(324)将关节电机(35)的实时电流反馈给末端力输入端(321);所述力位混合控制律输出模块(33)给关节电机(35)输入力位混合控制律输出信号(G)。Wherein, the force loop (32) includes a terminal force input terminal (321), a force selection matrix (322), a force control law module (313), and a joint torque estimation module (324) based on motor current. The terminal force input The terminal (321) is used to input the terminal force signal to the force selection matrix (322), and the terminal force signal is input to the force position hybrid control law based on the force signal processed by the force selection matrix (322) and the force control law module (323) The output module (33), the joint torque estimation module (324) feeds back the real-time current of the joint motor (35) to the end force input terminal (321); the force position mixed control law output module (33) feeds the joint motor ( 35) Input the output signal of the mixed control law of force and position (G).
  6. 根据权利要求5所述的驱控一体化控制系统,其特征在于,The drive and control integrated control system according to claim 5, characterized in that:
    所述无传感主动柔顺控制模块(3)还包括机器人运动学模型(314),所述机器人运动学模型(314)将协作机器人(6)的关节角度和角速度反馈给末端位置输入端(311)。The sensorless active compliance control module (3) also includes a robot kinematics model (314), which feeds back the joint angle and angular velocity of the collaborative robot (6) to the end position input terminal (311). ).
  7. 根据权利要求5或6所述的驱控一体化控制系统,其特征在于,The drive and control integrated control system according to claim 5 or 6, characterized in that:
    所述无传感主动柔顺控制模块(3)还包括补偿模块(34),所述补偿模块(34)介于所述力位混合控制律输出模块(33)和所述关节电机(35)之间。The sensorless active compliance control module (3) also includes a compensation module (34), which is interposed between the force-position hybrid control law output module (33) and the joint motor (35). between.
  8. 根据权利要求5或6所述的驱控一体化控制系统,其特征在于,所述关节力矩估计模块的构造为完整的机器人动力学方程为:The drive and control integrated control system according to claim 5 or 6, wherein the joint torque estimation module is configured as a complete robot dynamics equation:
    Figure PCTCN2019117615-appb-100013
    Figure PCTCN2019117615-appb-100013
    其中M∈R n×n为关节空间惯性矩阵;C∈R n×n为哥氏力和向心力计算矩阵;g∈R n×1为重力项向量;q∈R n×1为驱动关节角度向量;τ∈R n×1为驱动关 节转矩; Among them, M∈R n×n is the joint space inertia matrix; C∈R n×n is the Coriolis force and centripetal force calculation matrix; g∈R n×1 is the gravity term vector; q∈R n×1 is the driving joint angle vector ;Τ∈R n×1 is the driving joint torque;
    电机转矩τ m驱动的方程式为: The equation driven by the motor torque τ m is:
    τ=Nτ mτ=Nτ m ;
    其中N∈R n×n为每个关节减速比的对角矩阵,设J m为电机转子的惯量;推导过程中,将电机转子处的摩擦项
    Figure PCTCN2019117615-appb-100014
    代入电机转矩模块和关节转矩的关系,得出基于电机电流的关节力矩估计模块,从而得到力检测输出:
    Where N ∈ R n×n is the diagonal matrix of the reduction ratio of each joint, and J m is the inertia of the motor rotor; in the derivation process, the friction term at the motor rotor
    Figure PCTCN2019117615-appb-100014
    Substituting the relationship between the motor torque module and the joint torque, the joint torque estimation module based on the motor current is obtained, and the force detection output is obtained:
    Figure PCTCN2019117615-appb-100015
    Figure PCTCN2019117615-appb-100015
    其中,Ψ(i)=τ m为电机输出力矩与电流之间的映射模块。 Among them, Ψ(i)=τ m is the mapping module between the motor output torque and current.
  9. 根据权利要求1或2所述的驱控一体化控制系统,其特征在于,The drive and control integrated control system according to claim 1 or 2, characterized in that:
    所述力反馈人机协作防碰撞检测模块(4)包括:The force feedback human-machine cooperation anti-collision detection module (4) includes:
    动力学方程建立模块(41),用于在预定机器人平台上,采用D-H参数法建立连杆坐标系,并根据拉格朗日动力学公式建立机器人动力学方程;The dynamic equation establishment module (41) is used to establish the linkage coordinate system by the D-H parameter method on the predetermined robot platform, and establish the robot dynamic equation according to the Lagrangian dynamic formula;
    碰撞检测算子和扰动观测器建立模块(42),根据所述机器人动力学方程和动量方程,构造基于机器人能量不变的碰撞检测算子和基于广义动量变化量的扰动观测器;Collision detection operator and disturbance observer establishment module (42), according to the robot dynamic equation and momentum equation, construct a collision detection operator based on the invariable robot energy and a disturbance observer based on the generalized momentum change;
    数据分析模块(43),基于机器人系统电流实时反馈,确定各关节扭矩和碰撞力之间的关系,并给出机器人雅克比矩阵求解方法,并分析其检测碰撞的有效性;The data analysis module (43), based on the real-time feedback of the robot system current, determines the relationship between the torque of each joint and the collision force, and provides a method for solving the Jacobian matrix of the robot, and analyzes its effectiveness in detecting collisions;
    安全防护策略制订模块(44),基于碰撞检测模型的检测结果,针对不同碰撞情形,结合实际工况,制订不同的安全防护策略;The safety protection strategy formulation module (44), based on the detection results of the collision detection model, formulates different safety protection strategies for different collision situations and combined with actual working conditions;
    仿真验证及优化模块(45),基于ADAMS-Simulink联合仿真平台对机器人碰撞检测算子的有效性和安全防护策略的合理性进行仿真验证及优化;The simulation verification and optimization module (45), based on the ADAMS-Simulink joint simulation platform, performs simulation verification and optimization on the effectiveness of the robot collision detection operator and the rationality of the safety protection strategy;
    实际效果验证模块(46),基于预定机器人平台,验证评估基于力反馈的避障防护安全策略实际效果。The actual effect verification module (46), based on the predetermined robot platform, verifies and evaluates the actual effect of the obstacle avoidance protection safety strategy based on force feedback.
  10. 根据权利要求9所述的驱控一体化控制系统,其特征在于,The drive and control integrated control system according to claim 9, characterized in that:
    所述力反馈人机协作防碰撞检测模块(4)还包括:The force feedback human-machine cooperation anti-collision detection module (4) further includes:
    单目双视图立体匹配模块(47),用于构建基于SVS的单目双视图立体匹配模型,在损失函数上优化几何约束条件,通过左右视图合成过程和双视图立体匹配,实现单目图像中检测目标深度的准确估计;The monocular dual-view stereo matching module (47) is used to construct a SVS-based monocular dual-view stereo matching model, optimize geometric constraints on the loss function, and realize the monocular image through the left and right view synthesis process and dual-view stereo matching Accurate estimation of detection target depth;
    卷积特征提取模块(48),基于单目摄像头采集的RGB图像,采用ResNet模型进行深度卷积特征提取;Convolution feature extraction module (48), based on the RGB image collected by the monocular camera, uses the ResNet model for deep convolution feature extraction;
    人体骨骼关键点处理模块(49),根据人体骨骼关节几何先验知识及关节间的相关关系,优化双分支深度卷积神经网络结构设计,实现关节点及其关节关联关系的同步处理,其中一分支通过概率热图和偏移量结合的方式进行人体骨骼关键点回归,一分支检测图像中多人的关节关联信息,并通过二分图匹配形成人体骨骼序列数据;The human bone key point processing module (49) optimizes the design of the dual-branch deep convolutional neural network structure based on the prior geometric knowledge of human bone joints and the correlation between the joints, and realizes the synchronization processing of the joint points and their joint relations. One of them The branch uses the combination of probabilistic heat map and offset to perform human bone key point regression. One branch detects the joint information of multiple people in the image, and forms human bone sequence data through bipartite map matching;
    人体骨架图像数据处理模块(410),用于结合工业人机协作场景特点重构人体骨架图像数据集,并进行关节点数据标注,结合人工调整获得面向工业协作场景的姿态数据集。The human body skeleton image data processing module (410) is used to reconstruct the human body skeleton image data set combined with the characteristics of the industrial human-machine collaboration scene, and perform joint point data annotation, combined with manual adjustment to obtain a posture data set oriented to the industrial collaboration scene.
PCT/CN2019/117615 2019-10-12 2019-11-12 Drive-control integrated control system WO2021068334A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/110895 2019-10-12
CN2019110895 2019-10-12

Publications (1)

Publication Number Publication Date
WO2021068334A1 true WO2021068334A1 (en) 2021-04-15

Family

ID=75436984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117615 WO2021068334A1 (en) 2019-10-12 2019-11-12 Drive-control integrated control system

Country Status (1)

Country Link
WO (1) WO2021068334A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101332604A (en) * 2008-06-20 2008-12-31 哈尔滨工业大学 Control method of man machine interaction mechanical arm
US20090106005A1 (en) * 2007-10-23 2009-04-23 Kabushiki Kaisha Toshiba Simulation reproducing apparatus
US20160096271A1 (en) * 2014-10-06 2016-04-07 The Johns Hopkins University Active vibration damping device
JP2016215303A (en) * 2015-05-19 2016-12-22 キヤノン株式会社 Robot system, control method for robot system and monitor console
CN108582070A (en) * 2018-04-17 2018-09-28 上海达野智能科技有限公司 robot collision detecting system and method, storage medium, operating system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090106005A1 (en) * 2007-10-23 2009-04-23 Kabushiki Kaisha Toshiba Simulation reproducing apparatus
CN101332604A (en) * 2008-06-20 2008-12-31 哈尔滨工业大学 Control method of man machine interaction mechanical arm
US20160096271A1 (en) * 2014-10-06 2016-04-07 The Johns Hopkins University Active vibration damping device
JP2016215303A (en) * 2015-05-19 2016-12-22 キヤノン株式会社 Robot system, control method for robot system and monitor console
CN108582070A (en) * 2018-04-17 2018-09-28 上海达野智能科技有限公司 robot collision detecting system and method, storage medium, operating system

Similar Documents

Publication Publication Date Title
CN111015649B (en) Driving and controlling integrated control system
Wang et al. A hybrid visual servo controller for robust grasping by wheeled mobile robots
US9862090B2 (en) Surrogate: a body-dexterous mobile manipulation robot with a tracked base
CN108656112B (en) Mechanical arm zero-force control experiment system for direct teaching
CN110825076B (en) Mobile robot formation navigation semi-autonomous control method based on sight line and force feedback
Luo et al. Real time human motion imitation of anthropomorphic dual arm robot based on Cartesian impedance control
WO2022252221A1 (en) Mobile robot queue system, path planning method and following method
CN113829343A (en) Real-time multi-task multi-person man-machine interaction system based on environment perception
CN112621746A (en) PID control method with dead zone and mechanical arm visual servo grabbing system
Guo et al. A small opening workspace control strategy for redundant manipulator based on RCM method
Adjigble et al. An assisted telemanipulation approach: combining autonomous grasp planning with haptic cues
CN115122325A (en) Robust visual servo control method for anthropomorphic manipulator with view field constraint
Ye et al. Velocity decomposition based planning algorithm for grasping moving object
Jia et al. Human/robot interaction for human support system by using a mobile manipulator
Siradjuddin et al. A real-time model based visual servoing application for a differential drive mobile robot using beaglebone black embedded system
WO2021068334A1 (en) Drive-control integrated control system
Wang et al. A visual servoing system for interactive human-robot object transfer
Abadianzadeh et al. Visual servoing control of robot manipulator in 3D space using fuzzy hybrid controller
Huang et al. Vision guided dual arms robotic system with DSP and FPGA integrated system structure
Hentout et al. A telerobotic human/robot interface for mobile manipulators: A study of human operator performance
Zhou et al. A cooperative shared control scheme based on intention recognition for flexible assembly manufacturing
CN112077841B (en) Multi-joint linkage method and system for manipulator precision of elevator robot arm
Anderson et al. Coordinated control and range imaging for mobile manipulation
TWI309597B (en)
Sawalmeh et al. A surveillance 3D hand-tracking-based Tele-operated UGV

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948710

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19948710

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19948710

Country of ref document: EP

Kind code of ref document: A1