WO2021068169A1 - Pneumatically-actuated-muscle articulated plush toy - Google Patents

Pneumatically-actuated-muscle articulated plush toy Download PDF

Info

Publication number
WO2021068169A1
WO2021068169A1 PCT/CN2019/110449 CN2019110449W WO2021068169A1 WO 2021068169 A1 WO2021068169 A1 WO 2021068169A1 CN 2019110449 W CN2019110449 W CN 2019110449W WO 2021068169 A1 WO2021068169 A1 WO 2021068169A1
Authority
WO
WIPO (PCT)
Prior art keywords
pneumatic
toy
muscle
plush
muscles
Prior art date
Application number
PCT/CN2019/110449
Other languages
French (fr)
Inventor
Xiaoping Lu
Mathew Peter MOWBRAY
Original Assignee
Xiaoping Lu
Mowbray Mathew Peter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiaoping Lu, Mowbray Mathew Peter filed Critical Xiaoping Lu
Priority to PCT/CN2019/110449 priority Critical patent/WO2021068169A1/en
Publication of WO2021068169A1 publication Critical patent/WO2021068169A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/36Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for zoology

Definitions

  • This invention relates to the combination of pneumatic technology, and soft robotics with a children’s toy, particularly where the children’s toy is a soft plush toy.
  • US Pat. No. US7431629B1 describes a motor-controlled toy that is configured to closely resemble an animal and respond to stimuli in a way that closely represents how a real animal would respond. This may be achieved by configuring the toy to move in a manner consistent with the animal of inspiration as well using a realistic fur coat to cover the plastic inner assembly, and mechanical components within, to provide a realistic feeling toy.
  • US Pat. No. US5267886A describes a battery-powered, interactive plush toy configured to represent a dog, comprising a squeeze-operated light in a front leg while lights, motion sensors, and a speaker are mounted within the head and/or body of the dog, and operated by either a control circuit within the toy body or a manual switch.
  • US Pat. No. US4156985 describes a doll comprising a head, torso, and limbs, wherein a pressure responsive member is located in the upper portion of an arm that connects to a pivotal joint, and in turn articulates the lower portion of the arm when supplied with pressure.
  • the supply of this pneumatic pressure is manually operable by squeezing a pressure bulb that may take form as one of the other limbs, with pneumatic tubing connecting the pressure bulb to the pressure responsive member.
  • US Pat. No. US4067138A describes a walking doll comprising a hollow body to which arms and legs are mounted, wherein said legs are mounted for pivotal motion and operated by independent pneumatic systems. The actuation for each of these pneumatic systems are controlled by a hollow member in each hand of the doll, wherein when squeezed, produces the walking motion of the doll.
  • US Pat. No. US20180031010A1 describes a soft buckling linear actuator, wherein the actuator comprises a plurality of bucklable elastic structural components and a plurality of cells between adjacent structural components within, wherein a linear force is generated upon inflation or deflation of the plurality of cells, forcing the structural components to buckle.
  • US Pat. No. US20170097021A1 describes a moulded body comprising a plurality of interconnected chambers within, wherein a first portion of the moulded body is strain limiting relative to a second portion of the moulded body due to a greater wall thickness and/or a higher elastic modulus material.
  • This asymmetrical moulded body results in one side of the moulded body expanding preferentially when the plurality of interconnected chambers are pressurised by a fluid, consequently exerting a bending motion about the first portion of the body.
  • the toy industry is expansive with a diverse portfolio of products ranging from playing cards, board games, puzzles, soft plush toys, robotic toys, remote control toys, balls, water balloons, toy guns, and more.
  • These toys provide entertainment, emotional support, and/or intellectual stimulation to the user; thus, it is important to develop methods of manufacture and product technologies to produce highquality, safe toys.
  • toys that emulate animals, creatures, characters, or humans, the capability to produce toys that mimic the desired look, feel, and motion accurately is important as this enhances the play experience for the child.
  • Standard plush toys may comprise of primarily a fibrous, compliant stuffing to provide body and form within a textile outer layer, wherein the textile layer may additionally comprise a fibrous fur or hair material woven into it.
  • Interactive plush toys refers to products that may incorporate static electronics such as speakers, microphones, sensors, or lights and minimal actuation of physical features within a limited region of the toy such as a rigid plastic head, while the interior of the body and any appendages comprise primarily of plush stuffing.
  • robotic toys often comprise a plurality of limbs and features articulated by motors mounted within a plastic body that is either exposed or covered with a textile layer as a means of product design.
  • Plush toys, interactive plush toys, and robotic toys offer different user experiences and are often targeted toward respective age groups. Plush toys aim to create a product that is soft, safe for all ages, and comfortable for a child to hold and articulate manually, whereas robotic toys, with automatic limb articulation, attempt to produce an exciting, feature rich product and often rely on the hard-plastic shell structure underneath the textile to provide form and to protect the components within. This rigid body implementation results in a product that may be less suitable for younger children. Furthermore, the traditional motor actuators and physical mechanisms that control the articulation within these products are limited their mechanical boundaries and may easily fail if manually articulated with force to the edge of these boundaries by the user.
  • Soft robotics is an emerging branch of robotic actuation that utilises flexible components that can scale, twist, bend, extend, constrict, or a combination thereof when manipulated with an electrical, mechanical, gas, or fluid control input, most commonly with the use of pneumatic pressurisation or depressurisation.
  • These pneumatic, flexible components henceforth referred to as ‘pneumatic muscles’ , act similarly to actuation within organic bodies and is consequently often used to mimic organic motion and/or apply soft, compliant force.
  • pneumatic muscles often comprises a polymer or elastomer material with a hollow interior, wherein the interior cavity or cavities may be designed for pressurisation and/or depressurisation to alter the shape and/or pose of the muscle.
  • an actuation device with a very low weight at the point of desired articulation can be achieved. This may be useful in aiding a product’s design to be able to implement actuation in a location that requires low weight for balance, safety, or userexperience objectives.
  • the input actuator such as a pumps, pistons, or reservoirs
  • additional pneumatic control accessories such as valves, solenoids, pressure regulators, flow regulators, or manifolds, may be situated closer to the product’s desired centre of gravity while lightweight pneumatic tubing connects the components to the output pneumatic muscle actuator.
  • Pneumatic tubing is also flexible, which allows for the sections of plush toy between the pneumatic muscle and the pneumatic pump to retain the ability to be manually articulated.
  • pneumatic muscles With the material of pneumatic muscles often comprising a polymer or elastomer body, the production of these muscles can utilise forming techniques such as blow moulding, injection moulding, rotomoulding, resin casting, and other methods known to the plastics and elastics industry. Consequently, mounting features designed into the body of the muscle can be easily implemented, such as a screw hole, screw thread, snap joint, or sewing holes. Sewing holes allow for a convenient way to locate pneumatic muscles within a plush toy by sewing the muscle to a textile layer.
  • the present invention comprises a battery-powered plush toy utilising one or more pneumatic pumps, each of which actuate one or more pneumatic muscles to articulate the toy’s physical features and/or limbs such as arms, legs, eyes, eyelids, mouth, tongue, ears, fingers, toes, hair, eyebrows, stomach, head, tail, or additional creature-specific features.
  • the pump may be chosen from one of many kinds of pneumatic pumps such as a rotary pump, piston pump, diaphragm pump, vacuum pump, or other pneumatic pumps commonly used.
  • the pneumatic pump for this invention could comprise a motorised actuator to decrease or increase a closed-loop volume of air, wherein one or more pneumatic muscles is connected to this volume of air and is actuated upon the reservoir volume and consequent pressure being altered by the motorised actuator.
  • this pneumatic pump may be a linear piston controlled by a rack and pinion mechanism driven by a motor.
  • An objective of this invention is to customise the design of the pneumatic muscle’s form, size, actuation motion, force, material, actuation pressure, and any additional characteristics to meet the unique requirements of the desired product.
  • a nylon or fabric thread may be used to sew a muscle to a textile layer of a plush toy, to assist with retaining the location of the muscle.
  • mounting features implemented into a muscle may be strictly defined to receive a thread, such as holes, slots, perforations, or eyelets, or they may be deformable structure such as thin sections of material, or a flange in which the material may also be pierceable by a sewing needle.
  • Each solenoid valve may connect or disconnect independent pneumatic muscles from the pneumatic pump, or in some cases one or more solenoid valves may disconnect or connect more than one pneumatic muscle.
  • An additional objective of this invention is to implement various lowweight sensors and audio-visual outputs within or on the surface of the plush toy to allow for a high level of intractability, such as motion sensors, microphones, speakers, pressure sensors, switches, display panels, LED lights, light sensors, or other components known to be used in interactive toys.
  • An additional objective of this invention is to house the pneumatic pump, pneumatic control accessories, integrated control circuit, speaker, and batteries within a protective enclosure for said components, wherein said enclosure is located within the torso of the toy surrounded by soft, fibrous plush to protect the assembly from damage as well as providing safety padding for the user. Pneumatic tubing and signal wire may then be routed from this enclosure, through the body and limbs of the plush toy, to the location of pneumatic muscles, sensors, and buttons throughout the toy.
  • a preferred embodiment of the present invention implements the design of the plush toy to be a sloth, wherein the outer surface is covered with soft fur and pneumatic muscle components are used within the fingers, toes, eyes, and mouth of the toy to simulate the slow, sleepy nature of a sloth through controlled articulation of each physical feature. Additionally, a pneumatic muscle is located within the stomach region of the sloth to periodically pulsate the outer textile fabric and simulate organic breathing.
  • Figure 1 shows a front view of a preferred embodiment of a plush toy comprising pneumatic muscle articulation.
  • Figure 2 displays a section view of the embodiment in figure 1 that reveals the pneumatic components therein.
  • Figure 3 displays a cross sectional view of a bellows structure pneumatic muscle embodiment.
  • Figure 4 shows a perspective view of a linearly actuating pneumatic muscle in its neutral and constricted state, due to depressurisation.
  • Figure 5 shows a side view of a rotationally actuating pneumatic muscle, comprising a longitudinal rib on an outer surface, in its neutral and constricted state.
  • Figure 6 illustrates a three-quarter perspective view of a hand assembly comprising three of the rotationally actuating pneumatic muscles from Figure 5.
  • Figure 7 shows a three-quarter perspective view of an implementation of a linearly-actuating pneumatic muscle articulating a mechanical eyelid assembly.
  • Figure 8 illustrates a three-quarter perspective of a simplified solenoid valve manifold.
  • Figure 9 displays a cross sectional view of the simplified solenoid valve of figure 8, exposing the interconnection between the inlet and outlet ports.
  • Figure 10 shows a section view of an enclosure housing electronics and pneumatic control components within.
  • longitudinal axis refers to an axis concentric with the bellows segments irrespective of the lengthto-diameter ratio of the muscle.
  • longitudinal direction of a cylindrical bellows pneumatic muscle refers to a direction parallel to the longitudinal axis of the muscle.
  • the invention as disclosed in its present form, comprises of: A batterypowered plush toy sloth with an outer textile surface, coated in fur, and stuffed with a plush filling; A plurality of pneumatic muscles located within the head, stomach, fingers, and toes of the sloth; A pneumatic pump connected to a solenoid valve manifold, wherein the solenoid valve manifold controls connection between the pneumatic muscles and the pneumatic pump in order to articulate the sloth’s eye lids, mouth, stomach, fingers, and toes.
  • Figure 1 displays a preferred embodiment of a pneumatically-actuatedmuscle articulated plush toy comprising a body 1, two arms 2, 3, each with three fingers 4, 5, two legs 6, 7, each with three toes 8, 9, and a head with two eyes 10, 11 and a mouth 12.
  • the plush toy contains a plurality of pneumatic muscles, each of which articulate a part of the sloth.
  • the head contains pneumatic muscles that moves its mouth and its eye’s 10, 11 eyelids, while each finger and toe also contain a pneumatic muscle and lastly, the stomach 14 contains a pneumatic muscle to pulsate the toy’s outer textile layer. Additionally, the toy’s outer textile layer is covered in a soft fur 15.
  • Figure 2 illustrates a section view of the preferred embodiment of figure 1, revealing the internal components within the toy.
  • a plastic enclosure 16 surrounded by the toy’s plush stuffing, houses the core pneumatic and electronic components.
  • pneumatic tubes 17, 18, 19, 20, 21, 22, each controlled by an independent solenoid, and sensor wires 23, 24, 25 run throughout the inside of the plush, to the pneumatic muscles and sensors within the toy.
  • Each foot and hand assembly comprises three pneumatic muscles and each hand also features a user-controlled button 30, 31.
  • each hand is independently controllable, whereas both feet are coupled to a single solenoid valve, for example the pneumatic tube 19 leads from a solenoid valve in the enclosure 16, connects to the hand assembly 26 and controls all three finger pneumatic muscles 27, 28, 29 therein, however the pneumatic tubing line 17 is connected to a separate solenoid valve, travels from the enclosure, and is then split by a pneumatic T-Junction 32, subsequently connecting to both feet assemblies 33, 34, resulting in coupled control of all toe pneumatic muscles.
  • this view shows a pneumatic muscle 35, supported by a thin plastic frame 36, and connected to an independently controlled solenoid valve via pneumatic tubing 18. This pneumatic muscle slowly pulsates the toy’s stomach 14.
  • Figure 3 displays a cross sectional example of a pneumatic muscle 37 in the form of a hollow bellows structure designed to actuate linearly along its longitudinal direction.
  • the muscle comprises of a hollow body, moulded from Ethylene-Vinyl Acetate, with a sealed end 38 and an open end 39, wherein the open end opens into the cavity 40.
  • the muscle’s thin wall 41 forms a plurality of bellows segments 42, 43, 44, 45, 46 and are displayed in their neutral position, with the interior cavity 40 not subjected to pressurisation or depressurisation.
  • a respective expansion or contraction along the longitudinal axis of the bellows structure occurs.
  • the pneumatic muscle Upon the internal pressure normalising relative to the environment, the pneumatic muscle elastically returns to its neutral pose.
  • Figure 4 displays a linearly actuating pneumatic muscle 47 with bellows segments 49, 50, 51, 52, 53 in their neutral state.
  • the muscle 47 adjusts to the shape as depicted by the muscle 48, wherein the bellows segments 54, 55, 56, 57, 58 are compressed, producing a linear actuation along the muscle’s longitudinal axis.
  • Figure 5 displays a rotationally actuating pneumatic muscle 59 with bellows segments 61 in their neutral state, wherein the segments are joined on one side via a longitudinal member 62 on the outer surface of the muscle.
  • the muscle 59 adjusts to the shape as depicted by the muscle 60, wherein the bellows segments 63 are compressed, however this compression is resisted on the side of the longitudinal member 64, producing a curling actuation about an axis orthogonal to the muscle’s longitudinal axis.
  • FIG 6 illustrates a three-quarter perspective view of the hand assembly 26 seen in figure 2.
  • This hand 65 showcases an embodiment capable of mounting multiple pneumatic muscles 66, 67, 68, wherein the air supply for said muscles may come from an inlet at the rear 69 of the hand configured to receive pneumatic tubing.
  • this hand assembly 65 comprises a useroperated button 70, through which interactive features of the toy may be triggered, and the signal wire for said button may enter the assembly’s inlet at the rear 69 of the hand and follow the route of the pneumatic tubing to the enclosure 16 housing a control circuit.
  • This assembly may be configured to support multiple pneumatic tube connections, allowing for individual finger articulation, however this embodiment represents coupled finger articulation.
  • Figure 7 displays a linearly actuating pneumatic muscle 71 implemented into a toy mechanism to articulate an eyelid assembly.
  • This mechanism is a representation of what may be used within a toy, such as the preferred embodiment plush toy of Figure 1 and Figure 2, to actuate traditional mechanical mechanisms in a plush toy that is also utilising pneumatic muscles for limb articulation.
  • This allows for unification of actuator types and may be powered by the same pneumatic pump as other pneumatic muscles with only an additional solenoid valve required to independently control the additional pneumatic muscle.
  • the pneumatic muscle 71 articulates the eyelids of an eye 72, wherein the eyelids comprise a top 73 and bottom 74 eyelid.
  • Two members 75, 76 are affixed to a location on the pneumatic muscle 71 at one end and affixed to a respective eyelid 73, 74 via a pivot joint at an opposite end, wherein upon pneumatic actuation of the muscle 71, each member 75, 76 rotates a respective eyelid 73, 74 about a common pivot joint 77.
  • Figure 8 illustrates a three-quarter perspective view of a simplified solenoid valve manifold design 78 comprising an inlet port 81, a plurality of outlet ports 79, and a plurality of air exhaust holes 80 each of which oppose respective outlet ports 79.
  • the inlet and outlet ports are designed to receive pneumatic tubing to connect to a pneumatic pump to the inlet, and each outlet port to one or more pneumatic muscles.
  • the flow of air between the manifold inlet, and manifold outlets is controlled via solenoid valves within the manifold that switch each outlet’s connection to either an air exhaust hole or the inlet port.
  • Figure 9 displays a section view of the simplified solenoid valve manifold of figure 8, wherein the inlet port 82 can be seen to be connected to each of the outlet ports 84, 85, 86, 87, 88, 89 by means of a channel 83 within the manifold.
  • Figure 10 shows a section view of a component enclosure 90, as implemented in figure 2, revealing the components within, including a pneumatic pump 91, a solenoid valve manifold 94, a battery 102, and a control circuit 101.
  • the pneumatic pump comprises an inlet port 92 and an outlet port 93, wherein the outlet port receives pneumatic tubing to connect it to the inlet port of the solenoid valve manifold 94.
  • the solenoid valve manifold in this embodiment is mounted with the outlet ports 95, 96, 97, 98, 99, 100 extending out of the enclosure 90 through cut-out holes 103 in order to receive pneumatic tubing.
  • an embodiment comprises multiple pneumatic pumps
  • the following alternative configurations may be used: multiple muscles may be actuated by the same pump, each muscle may be independently actuated by a pump, multiple muscles may be independently actuated by the same pump through the implementation of a solenoid valve manifold, or a combination of said configurations.
  • the exemplary embodiment of the invention as described implements a vacuum pump as the pneumatic pump, however it is intended for this invention to support various pneumatic pressure actuators, for example, rotary pumps, piston pumps, or diaphragm pumps.
  • various pneumatic pressure actuators for example, rotary pumps, piston pumps, or diaphragm pumps.
  • a traditional motorised mechanism could be used to modify the pressure of a closed loop volume of air that responds to a volumetric compression or expansion of the closed-loop pneumatic system.
  • a closed-loop pneumatic system embodiment may comprise an electric motor, one or more pneumatic muscles, a cylindrical tube with a fitting to connect each muscle’s inner cavity together via the inner volume of the tube, a plunger head within said cylindrical tube that conforms to the inner diameter of the tube and creates a seal between said inner diameter and the outer diameter of the plunger head, and lastly a mechanical joint between the electric motor and the plunger head in which the plunger head may be translated linearly within the inside of the cylindrical tube, consequentially modifying the total volume of air within the closed loop system that the cylindrical tube and one or more pneumatic muscles comprise.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Mathematical Optimization (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mathematical Analysis (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Toys (AREA)

Abstract

A battery-powered children's plush toy utilising lightweight pneumatically-actuated muscles to articulate parts of said toy. These pneumatic muscles are actuated by a pneumatic pump that may be located in a central location within the toy's plush stuffing and connected to said pneumatic muscles throughout the toy, with the means of pneumatic tubing. Said pneumatic tubing is thin and flexible, allowing for the sections of plush toy it travels through to be unaffected by actuation at its periphery and remain manually articulatable. The implementation of these components allows for plush toys to be robotically articulated in ways unfeasible when using traditional robotic toy actuators. Additionally, this invention retains the soft, compliant properties of a standard plush toy resulting in a product that is safer than traditional motorised mechanical toys which often comprise a hard-plastic shell under a thin textile layer.

Description

PNEUMATICALLY-ACTUATED-MUSCLE ARTICULATED PLUSH TOY TECHNICAL FIELD
This invention relates to the combination of pneumatic technology, and soft robotics with a children’s toy, particularly where the children’s toy is a soft plush toy.
DESCRIPTION OF PRIOR ART
All patents, patent applications, published applications and publications, websites and other published materials referred to throughout the entire disclosure herein, unless noted otherwise, are incorporated by reference in their entirety.
In the context of the toy industry, specifically interactive and/or actuated toys:
US Pat. No. US7431629B1 describes a motor-controlled toy that is configured to closely resemble an animal and respond to stimuli in a way that closely represents how a real animal would respond. This may be achieved by configuring the toy to move in a manner consistent with the animal of inspiration as well using a realistic fur coat to cover the plastic inner assembly, and mechanical components within, to provide a realistic feeling toy.
US Pat. No. US5267886A describes a battery-powered, interactive plush toy configured to represent a dog, comprising a squeeze-operated light in a front leg while lights, motion sensors, and a speaker are mounted within the head and/or body of the dog, and operated by either a control circuit within the toy body or a manual switch.
Referring to the preceding inventions US7431629B1 and US5267886A, these both represent typical embodiments of interactive toys, wherein they may comprise a rigid body and are highly articulated by motorised mechanisms, or in the instance of a plush toy, the toy may incorporate more simplistic, solid-state components for the interactive features while foregoing motorised features on the periphery of the body.
In the context of the toy industry, specifically pneumatically actuated toy articulation:
US Pat. No. US4156985 describes a doll comprising a head, torso, and limbs, wherein a pressure responsive member is located in the upper portion of an arm that connects to a pivotal joint, and in turn articulates the lower portion of the arm when supplied with pressure. The supply of this pneumatic pressure is manually operable by squeezing a pressure bulb that may take form as one of the other limbs, with pneumatic tubing connecting the pressure bulb to the pressure responsive member.
US Pat. No. US4067138A describes a walking doll comprising a hollow body to which arms and legs are mounted, wherein said legs are mounted for pivotal motion and operated by independent pneumatic systems. The actuation for each of these pneumatic systems are controlled by a hollow member in each hand of the doll, wherein when squeezed, produces the walking motion of the doll.
Referring to the preceding inventions US4156985 and US4067138A, these both utilise pneumatic power to articulate a toy using traditional mechanical methods and one or more manually operated bladders. These and other products currently available, use this simplistic approach to pneumatic actuation which limits the scope of the product design due to weight of mechanical mechanisms, and the lack of automation in this implementation.
In the context of soft-robotics:
US Pat. No. US20180031010A1 describes a soft buckling linear actuator, wherein the actuator comprises a plurality of bucklable elastic structural components and a plurality of cells between adjacent structural components within, wherein a linear force is generated upon inflation or deflation of the plurality of cells, forcing the structural components to buckle.
US Pat. No. US20170097021A1 describes a moulded body comprising a plurality of interconnected chambers within, wherein a first portion of the moulded body is strain limiting relative to a second portion of the moulded body due to a greater wall thickness and/or a higher elastic modulus material. This asymmetrical moulded body results in one side of the moulded body expanding preferentially when the plurality of interconnected chambers are pressurised by a fluid, consequently exerting a bending motion about the first portion of the body.
Referring to the preceding inventions US20180031010A1 and US20170097021A1, these are both examples of how a pneumatic muscle actuator may be designed to a desired shape, size, motion, force, material, actuation pressure, or other properties in order to meet product requirements such as weight, artistic design, user safety, and other characteristics of concern for robotic toys.
BACKGROUND
The toy industry is expansive with a diverse portfolio of products ranging from playing cards, board games, puzzles, soft plush toys, robotic toys, remote control toys, balls, water balloons, toy guns, and more. These toys provide entertainment, emotional support, and/or intellectual stimulation to the user; thus, it is important to develop methods of manufacture and product technologies to produce highquality, safe toys. Furthermore, in the instance of toys that emulate animals, creatures, characters, or humans, the capability to produce toys that mimic the desired look, feel, and motion accurately is important as this enhances the play experience for the child.
The key toy classifications relevant to this invention are plush toys, interactive plush toys, and robotic toys. Standard plush toys may comprise of primarily a fibrous, compliant stuffing to provide body and form within a textile outer layer, wherein the textile layer may additionally comprise a fibrous fur or hair material woven into it. Interactive plush toys, however, refers to products that may incorporate static electronics such as speakers, microphones, sensors, or lights and minimal actuation of physical features within a limited region of the toy such as a rigid plastic head, while the interior of the body and any appendages comprise primarily of plush stuffing. Lastly, robotic toys often comprise a plurality of limbs and features articulated by motors mounted within a plastic body that is either exposed or covered with a textile layer as a means of product design.
Plush toys, interactive plush toys, and robotic toys offer different user experiences and are often targeted toward respective age groups. Plush toys aim to create a product that is soft, safe for all ages, and comfortable for a child to hold and articulate manually, whereas robotic toys, with automatic limb articulation, attempt to produce an exciting, feature rich product and often rely on the hard-plastic shell structure underneath the textile 
Figure PCTCN2019110449-appb-000001
to provide form and to protect the components within. This rigid body implementation results in a product that  may be less suitable for younger children. Furthermore, the traditional motor actuators and physical mechanisms that control the articulation within these products are limited their mechanical boundaries and may easily fail if manually articulated with force to the edge of these boundaries by the user.
Current products do not offer a children’s toy that consists of a plush fibrous interior body as well as actuated, articulating limbs and features. Some plush products may have solid body parts wherein motion controlled features may exist, however, this is often limited to solid shell regions such as a head with blinking eyes or actuated mouth, whereas compliant parts of the plush toy, such as arms or fingers, are not feasible to be automatically articulated due to limited structure for stiffness, and component mounting.
Soft robotics is an emerging branch of robotic actuation that utilises flexible components that can scale, twist, bend, extend, constrict, or a combination thereof when manipulated with an electrical, mechanical, gas, or fluid control input, most commonly with the use of pneumatic pressurisation or depressurisation. These pneumatic, flexible components henceforth referred to as ‘pneumatic muscles’ , act similarly to actuation within organic bodies and is consequently often used to mimic organic motion and/or apply soft, compliant force.
The design of pneumatic muscles often comprises a polymer or elastomer material with a hollow interior, wherein the interior cavity or cavities may be designed for pressurisation and/or depressurisation to alter the shape and/or pose of the muscle.
Due to the material selection and hollow nature of the pneumatic muscles, an actuation device with a very low weight at the point of desired articulation can be achieved. This may be useful in aiding a product’s design to be able to implement actuation in a location that requires low weight for balance, safety, or userexperience objectives. Furthermore, due to the nature of pneumatic components, the input actuator, such as a pumps, pistons, or reservoirs, and additional pneumatic control accessories, such as valves, solenoids, pressure regulators, flow regulators, or manifolds, may be situated closer to the product’s desired centre of gravity while lightweight pneumatic tubing connects the components to the output pneumatic muscle actuator. Pneumatic tubing is also flexible, which allows for the sections of plush toy between the pneumatic muscle and the pneumatic pump to retain the ability to be manually articulated.
With the material of pneumatic muscles often comprising a polymer or elastomer body, the production of these muscles can utilise forming techniques such as blow moulding, injection moulding, rotomoulding, resin casting, and other methods known to the plastics and elastics industry. Consequently, mounting features designed into the body of the muscle can be easily implemented, such as a screw hole, screw thread, snap joint, or sewing holes. Sewing holes allow for a convenient way to locate pneumatic muscles within a plush toy by sewing the muscle to a textile layer.
Regarding the preceding analysis of the relevant technologies and capability of current products, an apparent need exists to be able to produce a toy that can utilise a soft plush interior stuffing, while also incorporating a lightweight, compliant actuation technology within the limbs, appendages and other physical features that may also be manually articulated and require the plush padding for safety concerns and/or realistic product design.
SUMMARY OF THE INVENTION
Accordingly, the present invention comprises a battery-powered plush toy utilising one or more pneumatic pumps, each of which actuate one or more pneumatic muscles to articulate the toy’s physical features and/or limbs such as arms, legs, eyes, eyelids, mouth, tongue, ears, fingers, toes, hair, eyebrows, stomach, head, tail, or additional creature-specific features. The pump may be chosen from one of many kinds of pneumatic pumps such as a rotary pump, piston pump, diaphragm pump, vacuum pump, or other pneumatic pumps commonly used.
Furthermore, the pneumatic pump for this invention could comprise a motorised actuator to decrease or increase a closed-loop volume of air, wherein one or more pneumatic muscles is connected to this volume of air and is actuated upon the reservoir volume and consequent pressure being altered by the motorised actuator. For example, this pneumatic pump may be a linear piston controlled by a rack and pinion mechanism driven by a motor.
An objective of this invention is to customise the design of the pneumatic muscle’s form, size, actuation motion, force, material, actuation pressure, and any additional characteristics to meet the unique requirements of the desired product.
Furthermore, it is an objective of this invention to design the pneumatic muscle’s form to comprise additional mounting features as required, for example, a nylon or fabric thread may be used to sew a muscle to a textile layer of a plush toy, to assist with retaining the location of the muscle. Examples of such mounting features implemented into a muscle may be strictly defined to receive a thread, such as holes, slots, perforations, or eyelets, or they may be deformable structure such as thin sections of material, or a flange in which the material may also be pierceable by a sewing needle.
It is also an objective of this invention for multiple, independently controlled, pneumatic muscles to be able to be actuated by a single pneumatic pump through the use of a solenoid valve manifold, comprising multiple solenoids, and connecting the pump to each of the pneumatic muscles. Each solenoid valve may connect or disconnect independent pneumatic muscles from the pneumatic pump, or in some cases one or more solenoid valves may disconnect or connect more than one pneumatic muscle.
An additional objective of this invention is to implement various lowweight sensors and audio-visual outputs within or on the surface of the plush toy to allow for a high level of intractability, such as motion sensors, microphones, speakers, pressure sensors, switches, display panels, LED lights, light sensors, or other components known to be used in interactive toys.
An additional objective of this invention is to house the pneumatic pump, pneumatic control accessories, integrated control circuit, speaker, and batteries within a protective enclosure for said components, wherein said enclosure is located within the torso of the toy surrounded by soft, fibrous plush to protect the assembly from damage as well as providing safety padding for the user. Pneumatic tubing and signal wire may then be routed from this enclosure, through the body and limbs of the plush toy, to the location of pneumatic muscles, sensors, and buttons throughout the toy.
A preferred embodiment of the present invention implements the design of the plush toy to be a sloth, wherein the outer surface is covered with soft fur and pneumatic muscle components are used within the fingers, toes, eyes, and mouth of the toy to simulate the slow,  sleepy nature of a sloth through controlled articulation of each physical feature. Additionally, a pneumatic muscle is located within the stomach region of the sloth to periodically pulsate the outer textile fabric and simulate organic breathing.
Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realised and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended figures.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are included to provide further understanding of the invention are incorporated and constitute a part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention.
In the drawings:
Figure 1 shows a front view of a preferred embodiment of a plush toy comprising pneumatic muscle articulation.
Figure 2 displays a section view of the embodiment in figure 1 that reveals the pneumatic components therein.
Figure 3 displays a cross sectional view of a bellows structure pneumatic muscle embodiment.
Figure 4 shows a perspective view of a linearly actuating pneumatic muscle in its neutral and constricted state, due to depressurisation.
Figure 5 shows a side view of a rotationally actuating pneumatic muscle, comprising a longitudinal rib on an outer surface, in its neutral and constricted state.
Figure 6 illustrates a three-quarter perspective view of a hand assembly comprising three of the rotationally actuating pneumatic muscles from Figure 5.
Figure 7 shows a three-quarter perspective view of an implementation of a linearly-actuating pneumatic muscle articulating a mechanical eyelid assembly.
Figure 8 illustrates a three-quarter perspective of a simplified solenoid valve manifold.
Figure 9 displays a cross sectional view of the simplified solenoid valve of figure 8, exposing the interconnection between the inlet and outlet ports.
Figure 10 shows a section view of an enclosure housing electronics and pneumatic control components within.
DETAILED DESCRIPTION OF THE INVENTION
As used hereinbefore or after, when referring to a longitudinal axis of a cylindrical bellows pneumatic muscle “longitudinal axis” refers to an axis concentric with the bellows segments irrespective of the lengthto-diameter ratio of the muscle.
As used hereinbefore or after, when referring to a longitudinal direction of a cylindrical bellows pneumatic muscle “longitudinal” refers to a direction parallel to the longitudinal axis of the muscle.
The invention as disclosed in its present form, comprises of: A batterypowered plush toy sloth with an outer textile surface, coated in fur, and stuffed with a plush filling; A plurality of pneumatic muscles located within the head, stomach, fingers, and toes of the sloth; A pneumatic pump connected to a solenoid valve manifold, wherein the solenoid valve manifold controls connection between the pneumatic muscles and the pneumatic pump in order to articulate the sloth’s eye lids, mouth, stomach, fingers, and toes.
Referring now to Figures 1 to 10:
Figure 1 displays a preferred embodiment of a pneumatically-actuatedmuscle articulated plush toy comprising a body 1, two  arms  2, 3, each with three  fingers  4, 5, two  legs  6, 7, each with three  toes  8, 9, and a head with two  eyes  10, 11 and a mouth 12. The plush toy contains a plurality of pneumatic muscles, each of which articulate a part of the sloth. The head contains pneumatic muscles that moves its mouth and its eye’s 10, 11 eyelids, while each finger and toe also contain a pneumatic muscle and lastly, the stomach 14 contains a pneumatic muscle to pulsate the toy’s outer textile layer. Additionally, the toy’s outer textile layer is covered in a soft fur 15.
Figure 2 illustrates a section view of the preferred embodiment of figure 1, revealing the internal components within the toy. In the torso of the toy, a plastic enclosure 16, surrounded by the toy’s plush stuffing, houses the core pneumatic and electronic components. Leading from this enclosure,  pneumatic tubes  17, 18, 19, 20, 21, 22, each controlled by an independent solenoid, and  sensor wires  23, 24, 25 run throughout the inside of the plush, to the pneumatic muscles and sensors within the toy. Each foot and hand assembly comprises three pneumatic muscles and each hand also features a user-controlled  button  30, 31. In this embodiment, each hand is independently controllable, whereas both feet are coupled to a single solenoid valve, for example the pneumatic tube 19 leads from a solenoid valve in the enclosure 16, connects to the hand assembly 26 and controls all three finger  pneumatic muscles  27, 28, 29 therein, however the pneumatic tubing line 17 is connected to a separate solenoid valve, travels from the enclosure, and is then split by a pneumatic T-Junction 32, subsequently connecting to both  feet assemblies  33, 34, resulting in coupled control of all toe pneumatic muscles. Additionally, this view shows a pneumatic muscle 35, supported by a thin plastic frame 36, and connected to an independently controlled solenoid valve via pneumatic tubing 18. This pneumatic muscle slowly pulsates the toy’s stomach 14.
Figure 3 displays a cross sectional example of a pneumatic muscle 37 in the form of a hollow bellows structure designed to actuate linearly along its longitudinal direction. The muscle comprises of a hollow body, moulded from Ethylene-Vinyl Acetate, with a sealed end 38 and an open end 39, wherein the open end opens into the cavity 40. The muscle’s thin wall 41 forms a plurality of  bellows segments  42, 43, 44, 45, 46 and are displayed in their neutral position, with the interior cavity 40 not subjected to pressurisation or depressurisation. Upon the muscle experiencing a positive or negative pressure, relative to the environment, a respective expansion or contraction along the longitudinal axis of the bellows structure occurs.  Upon the internal pressure normalising relative to the environment, the pneumatic muscle elastically returns to its neutral pose.
Figure 4 displays a linearly actuating pneumatic muscle 47 with  bellows segments  49, 50, 51, 52, 53 in their neutral state. Upon depressurisation, the muscle 47 adjusts to the shape as depicted by the muscle 48, wherein the  bellows segments  54, 55, 56, 57, 58 are compressed, producing a linear actuation along the muscle’s longitudinal axis.
Figure 5 displays a rotationally actuating pneumatic muscle 59 with bellows segments 61 in their neutral state, wherein the segments are joined on one side via a longitudinal member 62 on the outer surface of the muscle. Upon depressurisation, the muscle 59 adjusts to the shape as depicted by the muscle 60, wherein the bellows segments 63 are compressed, however this compression is resisted on the side of the longitudinal member 64, producing a curling actuation about an axis orthogonal to the muscle’s longitudinal axis.
Figure 6 illustrates a three-quarter perspective view of the hand assembly 26 seen in figure 2. This hand 65 showcases an embodiment capable of mounting multiple  pneumatic muscles  66, 67, 68, wherein the air supply for said muscles may come from an inlet at the rear 69 of the hand configured to receive pneumatic tubing. Additionally, this hand assembly 65 comprises a useroperated button 70, through which interactive features of the toy may be triggered, and the signal wire for said button may enter the assembly’s inlet at the rear 69 of the hand and follow the route of the pneumatic tubing to the enclosure 16 housing a control circuit. This assembly may be configured to support multiple pneumatic tube connections, allowing for individual finger articulation, however this embodiment represents coupled finger articulation.
Figure 7 displays a linearly actuating pneumatic muscle 71 implemented into a toy mechanism to articulate an eyelid assembly. This mechanism is a representation of what may be used within a toy, such as the preferred embodiment plush toy of Figure 1 and Figure 2, to actuate traditional mechanical mechanisms in a plush toy that is also utilising pneumatic muscles for limb articulation. This allows for unification of actuator types and may be powered by the same pneumatic pump as other pneumatic muscles with only an additional solenoid valve required to independently control the additional pneumatic muscle. In this embodiment, the pneumatic muscle 71 articulates the eyelids of an eye 72, wherein the eyelids comprise a top 73 and bottom 74 eyelid. Two  members  75, 76 are affixed to a location on the pneumatic muscle 71 at one end and affixed to a  respective eyelid  73, 74 via a pivot joint at an opposite end, wherein upon pneumatic actuation of the muscle 71, each  member  75, 76 rotates a  respective eyelid  73, 74 about a common pivot joint 77.
Figure 8 illustrates a three-quarter perspective view of a simplified solenoid valve manifold design 78 comprising an inlet port 81, a plurality of outlet ports 79, and a plurality of air exhaust holes 80 each of which oppose respective outlet ports 79. The inlet and outlet ports are designed to receive pneumatic tubing to connect to a pneumatic pump to the inlet, and each outlet port to one or more pneumatic muscles. The flow of air between the manifold inlet, and manifold outlets is controlled via solenoid valves within the manifold that switch each outlet’s connection to either an air exhaust hole or the inlet port. Upon connection between a pneumatic muscle to the pneumatic pump and consequent pressurisation or depressurisation of the muscle, switching the connection of the outlet port to the air exhaust  hole cuts the actuation force and allows the pneumatic muscle to normalise in pressure, returning elastically to its neutral position.
Figure 9 displays a section view of the simplified solenoid valve manifold of figure 8, wherein the inlet port 82 can be seen to be connected to each of the  outlet ports  84, 85, 86, 87, 88, 89 by means of a channel 83 within the manifold.
Figure 10 shows a section view of a component enclosure 90, as implemented in figure 2, revealing the components within, including a pneumatic pump 91, a solenoid valve manifold 94, a battery 102, and a control circuit 101. The pneumatic pump comprises an inlet port 92 and an outlet port 93, wherein the outlet port receives pneumatic tubing to connect it to the inlet port of the solenoid valve manifold 94. The solenoid valve manifold in this embodiment is mounted with the  outlet ports  95, 96, 97, 98, 99, 100 extending out of the enclosure 90 through cut-out holes 103 in order to receive pneumatic tubing.
The invention as described is only an exemplary illustration of the preferred embodiment, however it is intended for multiple pumps to be able to be used instead of a single pump. For example, where an embodiment comprises multiple pneumatic pumps, the following alternative configurations may be used: multiple muscles may be actuated by the same pump, each muscle may be independently actuated by a pump, multiple muscles may be independently actuated by the same pump through the implementation of a solenoid valve manifold, or a combination of said configurations.
Additionally, the exemplary embodiment of the invention as described implements a vacuum pump as the pneumatic pump, however it is intended for this invention to support various pneumatic pressure actuators, for example, rotary pumps, piston pumps, or diaphragm pumps. In addition to the aforementioned exemplary pressurising pneumatic pumps, which are designed to pump air one-way into a pneumatic system, it should be noted that a traditional motorised mechanism could be used to modify the pressure of a closed loop volume of air that responds to a volumetric compression or expansion of the closed-loop pneumatic system. A closed-loop pneumatic system embodiment may comprise an electric motor, one or more pneumatic muscles, a cylindrical tube with a fitting to connect each muscle’s inner cavity together via the inner volume of the tube, a plunger head within said cylindrical tube that conforms to the inner diameter of the tube and creates a seal between said inner diameter and the outer diameter of the plunger head, and lastly a mechanical joint between the electric motor and the plunger head in which the plunger head may be translated linearly within the inside of the cylindrical tube, consequentially modifying the total volume of air within the closed loop system that the cylindrical tube and one or more pneumatic muscles comprise.
The invention has been described with examples relevant to its current form, however, potential embodiments will include any form that is within the scope of the appended claims. It will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (14)

  1. A plush toy comprising a textile outer layer, plush stuffing within said textile layer, one or more pneumatic pumps, one or more pneumatic muscles, and one or more solenoid valves that connect each pneumatic pump to one or more of the pneumatic muscles.
  2. The toy as claimed in claim 1, wherein the pneumatic muscles articulate any of the following physical features of the toy: arms, legs, eyes, eyelids, mouth, tongue, ears, fingers, toes, hair, eyebrows, stomach, head, tail, or a combination thereof.
  3. The toy as claimed in claims 1 or 2, wherein one or more of the pneumatic muscles comprise a hollow bellows structure allowing either expansion, contraction, or expansion and contraction, along the longitudinal axis of said pneumatic muscle.
  4. The toy as claimed in any of claims 1 to 3, wherein one or more of the pneumatic muscles comprise a bellows structure with a longitudinal member on an outer surface of the muscle connecting two or more segments of bellows, wherein when said muscle is expanded or contracted, the expansion or contraction of said bellows segments is resisted on the side of the longitudinal member causing the muscle to curl about an axis orthogonal to the longitudinal axis of said pneumatic muscle.
  5. The toy as claimed in any of claims 1 to 4, wherein one or more pneumatic muscles comprise one or more physical features such as holes, eyelets, slots, or pierceable structure in which the pneumatic muscle may be sewn to a textile outer surface of the plush toy as a means to fix the location of the pneumatic muscle to the toy.
  6. The toy as claimed in any of claims 1 to 5, wherein one or more of the pneumatic pumps is a vacuum pump.
  7. The toy as claimed in any one of claims 1 to 6, wherein one or more of the pneumatic pumps comprises of a motorised actuator that modifies the pressure of a closed-loop volume of air connected to one or more pneumatic muscles.
  8. A plush toy comprising a textile outer layer, plush stuffing within said textile layer, one or more pneumatic pumps, wherein each pneumatic pump actuates one or more pneumatic muscles to articulate said plush toy.
  9. The toy as claimed in claim 8, wherein the pneumatic muscles articulate any of the following physical features of the toy: Arms, legs, eyes, eyelids, mouth, tongue, ears, fingers, toes, hair, eyebrows, stomach, head, tail, or a combination thereof.
  10. The toy as claimed in claims 8 or 9, wherein one or more of the pneumatic muscles comprise a hollow bellows structure allowing either expansion, contraction, or expansion and contraction, along the longitudinal axis of said pneumatic muscle.
  11. The toy as claimed in any of claims 8 to 10, wherein one or more of the pneumatic muscles comprise a bellows structure with a longitudinal member on an outer surface of the muscle connecting two or more segments of bellows, wherein when said muscle is expanded or contracted, the expansion or contraction of said bellows segments is resisted on the side of the longitudinal member causing the muscle to curl about an axis orthogonal to the longitudinal axis of said pneumatic muscle.
  12. The toy as claimed in any of claims 8 to 11, wherein one or more pneumatic muscles comprise one or more physical features such as holes, eyelets, slots, or pierceable structure in which the pneumatic muscle may be sewn to a textile outer surface of the plush toy as a means to fix the location of the pneumatic muscle to the toy.
  13. The toy as claimed in any of claims 8 to 12, wherein one or more of the pneumatic pumps is a vacuum pump.
  14. The toy as claimed in any one of claims 8 to 13, wherein one or more of the pneumatic pumps comprises of a motorised actuator that modifies the pressure of a closed-loop volume of air connected to one or more pneumatic muscles.
PCT/CN2019/110449 2019-10-10 2019-10-10 Pneumatically-actuated-muscle articulated plush toy WO2021068169A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110449 WO2021068169A1 (en) 2019-10-10 2019-10-10 Pneumatically-actuated-muscle articulated plush toy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/110449 WO2021068169A1 (en) 2019-10-10 2019-10-10 Pneumatically-actuated-muscle articulated plush toy

Publications (1)

Publication Number Publication Date
WO2021068169A1 true WO2021068169A1 (en) 2021-04-15

Family

ID=75436928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110449 WO2021068169A1 (en) 2019-10-10 2019-10-10 Pneumatically-actuated-muscle articulated plush toy

Country Status (1)

Country Link
WO (1) WO2021068169A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114771686A (en) * 2022-04-08 2022-07-22 南京航空航天大学 Air pressure driven four-footed soft wall-climbing robot
CN114783269A (en) * 2022-04-08 2022-07-22 中国地质大学(武汉) Pile foundation settlement calculation teaching auxiliary device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084372B2 (en) * 2005-05-27 2008-04-30 Mhiソリューションテクノロジーズ株式会社 Fish robot structure
CN106309083A (en) * 2016-09-05 2017-01-11 西安交通大学 EMG controlled air-operated soft body rehabilitative mechanical hand
CN106875803A (en) * 2017-03-08 2017-06-20 哈尔滨工业大学 Variation rigidity flexible bionic fish model based on internal fluid pressure regulation
CN107233149A (en) * 2017-05-27 2017-10-10 北京软体机器人科技有限公司 A kind of flexible upper extremity prosthesis of pneumatic control
CN209422384U (en) * 2018-07-06 2019-09-24 北京京成兴华医疗科技有限公司 A kind of pneumatic joint structure and joint training aids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084372B2 (en) * 2005-05-27 2008-04-30 Mhiソリューションテクノロジーズ株式会社 Fish robot structure
CN106309083A (en) * 2016-09-05 2017-01-11 西安交通大学 EMG controlled air-operated soft body rehabilitative mechanical hand
CN106875803A (en) * 2017-03-08 2017-06-20 哈尔滨工业大学 Variation rigidity flexible bionic fish model based on internal fluid pressure regulation
CN107233149A (en) * 2017-05-27 2017-10-10 北京软体机器人科技有限公司 A kind of flexible upper extremity prosthesis of pneumatic control
CN209422384U (en) * 2018-07-06 2019-09-24 北京京成兴华医疗科技有限公司 A kind of pneumatic joint structure and joint training aids

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114771686A (en) * 2022-04-08 2022-07-22 南京航空航天大学 Air pressure driven four-footed soft wall-climbing robot
CN114783269A (en) * 2022-04-08 2022-07-22 中国地质大学(武汉) Pile foundation settlement calculation teaching auxiliary device
CN114783269B (en) * 2022-04-08 2023-05-23 中国地质大学(武汉) Pile foundation subsides and calculates teaching auxiliary device
CN114771686B (en) * 2022-04-08 2023-10-27 南京航空航天大学 Pneumatic-driven four-foot soft wall climbing robot

Similar Documents

Publication Publication Date Title
US6586859B2 (en) Electroactive polymer animated devices
WO2021068169A1 (en) Pneumatically-actuated-muscle articulated plush toy
US20220233967A1 (en) Reversible toy
US20050283043A1 (en) Self-contained, submersible, autonomous, speaking android
US3959919A (en) Animated objects such as dolls, figured personages and the like
US11167409B2 (en) Action robot
US7384324B2 (en) Plush toy with stretch interface
US6371826B1 (en) Plush animal figure having moving ears and nose
US20040018799A1 (en) Reproducible doll
CN103108563A (en) Footwear having air-controlled active element
US20050233675A1 (en) Animated multi-persona toy
US20080293324A1 (en) Toy doll system
JP2004504901A (en) Devices for extending the limbs and / or other body parts of puppets, such as dolls and other similar toys, ie small animals and soft toys
US6547631B1 (en) Prayer doll
US20040214507A1 (en) Method and apparatus for attaching plush to an artificial eye
US20140047738A1 (en) Animated Slipper
US1489385A (en) Figure toy
US11957991B2 (en) Balloon toy
US4992070A (en) Finger actuated toy figure
US7841921B2 (en) Soft toy or doll
US11034017B2 (en) Soft actuators
WO2022130907A1 (en) Doll body, hip joint part, and rotation mechanism
CN209173369U (en) A kind of medical treatment science popularization doll toy
US20130157539A1 (en) Marionette
CN117593946B (en) Modularized pneumatic deformation building block teaching aid for bionics education and bionic robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948282

Country of ref document: EP

Kind code of ref document: A1