WO2021066632A1 - Method and device for transmitting and receiving sounding reference signal in wireless communication system - Google Patents

Method and device for transmitting and receiving sounding reference signal in wireless communication system Download PDF

Info

Publication number
WO2021066632A1
WO2021066632A1 PCT/KR2020/013518 KR2020013518W WO2021066632A1 WO 2021066632 A1 WO2021066632 A1 WO 2021066632A1 KR 2020013518 W KR2020013518 W KR 2020013518W WO 2021066632 A1 WO2021066632 A1 WO 2021066632A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
transmission
power headroom
information
terminal
Prior art date
Application number
PCT/KR2020/013518
Other languages
French (fr)
Korean (ko)
Inventor
고성원
박종현
강지원
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN202080069462.2A priority Critical patent/CN114503497B/en
Priority to KR1020227004815A priority patent/KR102543958B1/en
Publication of WO2021066632A1 publication Critical patent/WO2021066632A1/en
Priority to US17/710,000 priority patent/US11595172B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control

Definitions

  • the present invention relates to a method and apparatus for transmitting and receiving a sounding reference signal in a wireless communication system.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded to not only voice but also data services, and nowadays, due to the explosive increase in traffic, a shortage of resources is caused and users request higher speed services, so a more advanced mobile communication system is required. .
  • next-generation mobile communication system The requirements of the next-generation mobile communication system are largely explosive data traffic acceptance, a dramatic increase in transmission rate per user, a largely increased number of connected devices, very low end-to-end latency, and support for high energy efficiency. You should be able to. To this end, Dual Connectivity, Massive Multiple Input Multiple Output (MIMO), In-band Full Duplex, Non-Orthogonal Multiple Access (NOMA), Super Wideband Various technologies such as wideband) support and device networking are being studied.
  • MIMO Massive Multiple Input Multiple Output
  • NOMA Non-Orthogonal Multiple Access
  • This specification proposes a method of transmitting a sounding reference signal (SRS).
  • SRS sounding reference signal
  • a legacy SRS transmitted in the last symbol of a subframe and an additional SRS (additional SRS) transmitted in one or more symbols other than the last symbol have different purposes.
  • the purpose of the legacy SRS is mainly to acquire uplink channel information and adapt the UL link, while the purpose of the additional SRS is to enhance the capacity and coverage for downlink channel acquisition.
  • independent power control needs to be supported for transmission of an additional SRS.
  • the present specification proposes a method for solving the above-described problem.
  • a method for transmitting a sounding reference signal (SRS) by a terminal includes receiving configuration information of a sounding reference signal (SRS), and transmission power of the SRS. Transmitting a message including information on power headroom (PH) related to the SRS, receiving downlink control information (DCI) triggering transmission of the SRS, and transmitting the SRS It includes the step of.
  • SRS sounding reference signal
  • PH power headroom
  • DCI downlink control information
  • the SRS is set in a region composed of at least one symbol excluding the last symbol of a subframe, and the SRS is transmitted with transmission power based on a transmission power control command (TPC command) related to transmission power control.
  • TPC command transmission power control command
  • the PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is characterized in that it is based on a type of power headroom report for a serving cell in which an Uplink Control Channel (PUCCH) is not configured.
  • PHR Power Headroom Report
  • PUSCH physical uplink shared channel
  • PUCCH Uplink Control Channel
  • the message may be based on PHR MAC CE (Power Headroom Report MAC CE).
  • the PH may be Type 3 PH.
  • a target for obtaining the PH may be determined based on configuration information for reporting of the Type 3 PH. .
  • the object for obtaining the PH may be i) the SRS or ii) an SRS in a secondary cell in which a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the configuration information for reporting of the Type 3 PH may be set through a higher layer.
  • the TPC command is acquired based on blind detection related to downlink control information (DCI), and the blind detection may be performed based on a plurality of RNTIs related to TPC.
  • DCI downlink control information
  • the plurality of RNTIs related to the TPC includes a first RNTI and a second RNTI, and the TPC command may be obtained through blind detection based on the second RNTI.
  • the first RNTI is based on srs-TPC-RNTI, and a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured through the blind detection based on the srs-TPC-RNTI.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • a terminal transmitting a sounding reference signal includes one or more transceivers,
  • One or more processors that control the one or more transceivers and the one or more processors are operably accessible, and when transmission of the sounding reference signal is executed by the one or more processors, an instruction for performing operations ) Containing one or more memories.
  • the operations include receiving setting information of a sounding reference signal (SRS), transmitting a message including information on power headroom (PH) related to the transmission power of the SRS, and transmitting the SRS. And receiving downlink control information (DCI) for triggering and transmitting the SRS.
  • SRS sounding reference signal
  • PH power headroom
  • DCI downlink control information
  • the SRS is set in a region composed of at least one symbol excluding the last symbol of a subframe, and the SRS is transmitted with transmission power based on a transmission power control command (TPC command) related to transmission power control.
  • TPC command transmission power control command
  • the PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is characterized in that it is based on a type of power headroom report for a serving cell in which an Uplink Control Channel (PUCCH) is not configured.
  • PHR Power Headroom Report
  • PUSCH physical uplink shared channel
  • PUCCH Uplink Control Channel
  • the message is characterized in that it is based on PHR MAC CE (Power Headroom Report MAC CE).
  • An apparatus includes one or more memories and one or more processors that are functionally connected to the one or more memories.
  • the one or more processors receive the setting information of the sounding reference signal (SRS) by the device, and transmit a message including information on the power headroom (PH) related to the transmission power of the SRS, and the It is configured to receive downlink control information (DCI) triggering transmission of the SRS and transmit the SRS.
  • SRS sounding reference signal
  • PH power headroom
  • DCI downlink control information
  • the SRS is set in a region composed of at least one symbol excluding the last symbol of a subframe, and the SRS is transmitted with transmission power based on a transmission power control command (TPC command) related to transmission power control.
  • TPC command transmission power control command
  • the PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is characterized in that it is based on a type of power headroom report for a serving cell in which an Uplink Control Channel (PUCCH) is not configured.
  • PHR Power Headroom Report
  • PUSCH physical uplink shared channel
  • PUCCH Uplink Control Channel
  • One or more non-transitory computer-readable media store one or more instructions.
  • At least one command executable by one or more processors is a message in which the terminal receives the setting information of the sounding reference signal (SRS) and includes information on the power headroom (PH) related to the transmission power of the SRS. Is configured to transmit, receive downlink control information (DCI) triggering transmission of the SRS, and transmit the SRS.
  • SRS sounding reference signal
  • PH power headroom
  • the SRS is set in a region composed of at least one symbol excluding the last symbol of a subframe, and the SRS is transmitted with transmission power based on a transmission power control command (TPC command) related to transmission power control.
  • TPC command transmission power control command
  • the PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is characterized in that it is based on a type of power headroom report for a serving cell in which an Uplink Control Channel (PUCCH) is not configured.
  • PHR Power Headroom Report
  • PUSCH physical uplink shared channel
  • PUCCH Uplink Control Channel
  • a method for receiving a sounding reference signal (SRS) by a base station includes transmitting configuration information of a sounding reference signal (SRS), and transmission of the SRS. Receiving a message including information on power headroom (PH) related to power, transmitting downlink control information (DCI) triggering transmission of the SRS, and transmitting the SRS And receiving.
  • SRS sounding reference signal
  • PH power headroom
  • DCI downlink control information
  • the SRS is set in a region composed of at least one symbol excluding the last symbol of a subframe, and the SRS is transmitted with transmission power based on a transmission power control command (TPC command) related to transmission power control.
  • TPC command transmission power control command
  • the PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is characterized in that it is based on a type of power headroom report for a serving cell in which an Uplink Control Channel (PUCCH) is not configured.
  • PHR Power Headroom Report
  • PUSCH physical uplink shared channel
  • PUCCH Uplink Control Channel
  • a base station receiving a sounding reference signal includes one or more transceivers, one or more processors controlling the one or more transceivers, and the one or more processors. And one or more memories storing instructions for performing operations when reception of the sounding reference signal is executed by the one or more processors.
  • SRS sounding reference signal
  • the operations include transmitting setting information of a sounding reference signal (SRS), receiving a message including information on power headroom (PH) related to the transmission power of the SRS, and transmitting the SRS. And transmitting downlink control information (DCI) that triggers the operation and receiving the SRS.
  • SRS sounding reference signal
  • PH power headroom
  • DCI downlink control information
  • the SRS is set in a region composed of at least one symbol excluding the last symbol of a subframe, and the SRS is transmitted with transmission power based on a transmission power control command (TPC command) related to transmission power control.
  • TPC command transmission power control command
  • the PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is characterized in that it is based on a type of power headroom report for a serving cell in which an Uplink Control Channel (PUCCH) is not configured.
  • PHR Power Headroom Report
  • PUSCH physical uplink shared channel
  • PUCCH Uplink Control Channel
  • a message including information on power headroom (PH) related to transmission power of the SRS is transmitted.
  • the PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is based on the type of power headroom report for a serving cell in which the Uplink Control Channel (PUCCH) is not configured.
  • PHR Power Headroom Report
  • PUSCH physical uplink shared channel
  • PUCCH Uplink Control Channel
  • An additional SRS (additional SRS) power headroom report may be performed based on an existing type (Type 3) scheme. Accordingly, power control independent of the legacy SRS may be performed for additional SRS without any other influence on the existing power headroom reporting operation.
  • FIG. 1 shows a structure of a radio frame in a wireless communication system to which the method proposed in the present specification can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the method proposed in the present specification can be applied.
  • FIG 3 shows a structure of a downlink subframe in a wireless communication system to which the method proposed in this specification can be applied.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the method proposed in the present specification can be applied.
  • 5 illustrates physical channels and general signal transmission used in a 3GPP system.
  • FIG. 6 illustrates an uplink subframe including an SRS in a wireless communication system to which the method proposed in the present specification can be applied.
  • FIG. 7 shows an example of component carrier and carrier aggregation to which the method proposed in the present specification can be applied.
  • FIG. 8 is a diagram illustrating cell division in a system supporting carrier aggregation to which the method proposed in the present specification can be applied.
  • 10A shows an example of an extended PHR MAC CE to which the method proposed in the present specification can be applied.
  • 10B shows another example of an Extended PHR MAC CE to which the method proposed in the present specification can be applied.
  • FIG. 11 illustrates a method of receiving an SRS by a base station according to an embodiment of the present specification.
  • FIG. 12 illustrates an SRS transmission method of a terminal according to an embodiment of the present specification.
  • FIG. 13 illustrates a method for reporting power headroom of a terminal according to an embodiment of the present specification.
  • FIG. 14 is a flowchart illustrating a method for a terminal to transmit a sounding reference signal in a wireless communication system according to an embodiment of the present specification.
  • 15 is a flowchart illustrating a method for a base station to receive a sounding reference signal in a wireless communication system according to another embodiment of the present specification.
  • FIG. 16 illustrates a communication system 1 applied to the present specification.
  • FIG. 17 illustrates a wireless device applicable to the present specification.
  • FIG 19 shows another example of a wireless device applied to the present specification.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is apparent that various operations performed for communication with a terminal in a network comprising a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station.
  • BS Base station
  • eNB evolved-NodeB
  • BTS base transceiver system
  • AP access point
  • gNB general NB
  • 'Terminal' may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS ( Advanced Mobile Station), Wireless terminal (WT), Machine-Type Communication (MTC) device, Machine-to-Machine (M2M) device, Device-to-Device (D2D) device.
  • UE User Equipment
  • MS Mobile Station
  • UT user terminal
  • MSS Mobile Subscriber Station
  • SS Subscriber Station
  • AMS Advanced Mobile Station
  • WT Wireless terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • the transmitter may be part of the base station, and the receiver may be part of the terminal.
  • the transmitter may be a part of the terminal, and the receiver may be a part of the base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • NOMA NOMA
  • CDMA may be implemented with universal terrestrial radio access (UTRA) or radio technology such as CDMA2000.
  • TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (evolved UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2 wireless access systems. That is, among the embodiments of the present invention, steps or parts not described in order to clearly reveal the technical idea of the present invention may be supported by the above documents. In addition, all terms disclosed in this document can be described by the standard document.
  • 3GPP LTE/LTE-A/NR New Radio
  • the technical features of the present invention are not limited thereto.
  • FIG. 1 shows a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE/LTE-A supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the type 1 radio frame can be applied to both full duplex and half duplex FDD.
  • a radio frame consists of 10 subframes.
  • One subframe is composed of two consecutive slots in a time domain, and subframe i is composed of a slot 2i and a slot 2i+1.
  • the time taken to transmit one subframe is referred to as a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • uplink transmission and downlink transmission are classified in the frequency domain. While there is no limitation on full-duplex FDD, the terminal cannot simultaneously transmit and receive in half-duplex FDD operation.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and includes a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, an OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1 shows a frame structure type 2.
  • the uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 1 shows an uplink-downlink configuration.
  • Uplink-Downlink configuration Downlink-to-Uplink Switch-point periodicity Subframe number 0 One 2 3 4 5 6 7 8 9 0 5ms D S U U U D S U U U One 5ms D S U U D D S U U D 2 5ms D S U D D D S U D D 3 10ms D S U U U D D D D D D 4 10ms D S U U D D D D D D 5 10ms D S U D D D D D D D 6 5ms D S U U U D S U U D S U U D
  • DwPTS is used for initial cell search, synchronization, or channel estimation in the terminal.
  • the UpPTS is used for channel estimation at the base station and synchronization for uplink transmission of the terminal.
  • the GP is a section for removing interference occurring in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • Uplink-downlink configurations can be classified into 7 types, and positions and/or numbers of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are switched in the same manner, and both 5ms or 10ms are supported.
  • the special subframe (S) exists for each half-frame, and in case of having a period of 5ms downlink-uplink switching time, only the first half-frame exists.
  • subframes 0 and 5 and DwPTS are sections for downlink transmission only. UpPTS and subframe The subframe immediately following the subframe is always a period for uplink transmission.
  • the uplink-downlink configuration is system information and may be known to both the base station and the terminal.
  • the base station may notify the terminal of the change in the uplink-downlink allocation state of the radio frame by transmitting only the index of the configuration information whenever the uplink-downlink configuration information is changed.
  • configuration information is a kind of downlink control information and can be transmitted through a PDCCH (Physical Downlink Control Channel) like other scheduling information, and as broadcast information, it is commonly transmitted to all terminals in a cell through a broadcast channel. It could be.
  • PDCCH Physical Downlink Control Channel
  • Table 2 shows the configuration of a special subframe (length of DwPTS/GP/UpPTS).
  • the structure of the radio frame according to the example of FIG. 1 is only one example, and the number of subcarriers included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed. I can.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes 7 OFDM symbols and one resource block includes 12 subcarriers in the frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) includes 12 ⁇ 7 resource elements.
  • the number N ⁇ DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols are a control region to which control channels are allocated, and the remaining OFDM symbols are a data region to which a physical downlink shared channel (PDSCH) is allocated ( data region).
  • Examples of downlink control channels used in 3GPP LTE include Physical Control Format Indicator Channel (PCFICH), Physical Downlink Control Channel (PDCCH), and Physical Hybrid-ARQ Indicator Channel (PHICH).
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe, and carries information on the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels in the subframe.
  • the PHICH is a response channel for the uplink and carries an Acknowledgment (ACK)/Not-Acknowledgement (NACK) signal for a Hybrid Automatic Repeat Request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information, or an uplink transmission (Tx) power control command for an arbitrary terminal group.
  • the PDCCH is a resource allocation and transmission format of a DL-SCH (downlink shared channel) (this is also referred to as a downlink grant), resource allocation information of an uplink shared channel (UL-SCH) (this is also referred to as an uplink grant), and PCH ( Resource allocation for upper-layer control messages such as paging information in Paging Channel, system information in DL-SCH, random access response transmitted in PDSCH, arbitrary terminal It can carry a set of transmission power control commands for individual terminals in a group, activation of VoIP (Voice over IP), and the like.
  • a plurality of PDCCHs may be transmitted within the control region, and the UE may monitor the plurality of PDCCHs.
  • the PDCCH is composed of a set of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the usable PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a cyclic redundancy check (CRC) to the control information.
  • CRC cyclic redundancy check
  • RNTI Radio Network Temporary Identifier
  • a unique identifier is masked according to the owner or purpose of the PDCCH. If it is a PDCCH for a specific terminal, a unique identifier of the terminal, for example, a cell-RNTI (C-RNTI) may be masked on the CRC.
  • a paging indication identifier for example, a P-RNTI (Paging-RNTI) may be masked on the CRC.
  • P-RNTI Paging-RNTI
  • SIB system information block
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe can be divided into a control region and a data region in the frequency domain.
  • a PUCCH Physical Uplink Control Channel
  • the data area is allocated a PUSCH (Physical Uplink Shared Channel) carrying user data.
  • PUSCH Physical Uplink Shared Channel
  • the PUCCH for one UE is allocated a resource block (RB) pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the two slots. This is called that the RB pair allocated to the PUCCH is frequency hopping at the slot boundary.
  • a terminal receives information from a base station through a downlink (DL), and the terminal transmits information to the base station through an uplink (UL).
  • the information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information transmitted and received by them.
  • the terminal When the terminal is powered on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S501). To this end, the terminal may receive a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) from the base station to synchronize with the base station and obtain information such as cell ID. Thereafter, the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more detailed system information by receiving a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to the information carried on the PDCCH. It can be done (S502).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • the terminal may perform a random access procedure (RACH) with respect to the base station (S503 to S506).
  • RACH random access procedure
  • the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S503 and S505), and a response message to the preamble through a PDCCH and a corresponding PDSCH (RAR (Random Access Response) message)
  • PRACH physical random access channel
  • RAR Random Access Response
  • a contention resolution procedure may be additionally performed (S506).
  • the UE receives PDCCH/PDSCH (S507) and physical uplink shared channel (PUSCH)/physical uplink control channel as a general uplink/downlink signal transmission procedure.
  • Control Channel; PUCCH) transmission (S508) may be performed.
  • the terminal may receive downlink control information (DCI) through the PDCCH.
  • DCI includes control information such as resource allocation information for the terminal, and different formats may be applied according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received from the base station by the terminal is a downlink/uplink ACK/NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), a rank indicator (RI). ) And the like.
  • the UE may transmit control information such as the above-described CQI/PMI/RI through PUSCH and/or PUCCH.
  • SRS is mainly used for channel quality measurement to perform uplink frequency-selective scheduling, and is not related to transmission of uplink data and/or control information.
  • the present invention is not limited thereto, and the SRS may be used for various other purposes to improve power control or to support various start-up functions of terminals that have not been recently scheduled.
  • an initial modulation and coding scheme (MCS) MCS
  • initial power control for data transmission timing advance
  • frequency semi-selective scheduling are Can be included.
  • frequency semi-selective scheduling refers to scheduling in which frequency resources are selectively allocated to the first slot of a subframe and pseudo-randomly hops to a different frequency in the second slot to allocate frequency resources.
  • the SRS can be used to measure the downlink channel quality under the assumption that the radio channel between the uplink and the downlink is reciprocal. This assumption is particularly effective in a Time Division Duplex (TDD) system where the uplink and the downlink share the same frequency spectrum and are separated in the time domain.
  • TDD Time Division Duplex
  • Subframes of the SRS transmitted by any terminal in the cell may be indicated by a cell-specific broadcast signal.
  • the 4-bit cell-specific'srsSubframeConfiguration' parameter indicates an arrangement of 15 possible subframes in which the SRS can be transmitted through each radio frame.
  • the 16th arrangement completely turns off the switch of the SRS in the cell, which is mainly suitable for a serving cell serving high-speed terminals.
  • FIG. 6 illustrates an uplink subframe including a sounding reference signal symbol in a wireless communication system to which the present invention can be applied.
  • the SRS is always transmitted through the last SC-FDMA symbol on the arranged subframe. Therefore, the SRS and DMRS are located in different SC-FDMA symbols.
  • PUSCH data transmission is not allowed in a specific SC-FDMA symbol for SRS transmission, and as a result, when the sounding overhead is the highest, that is, even when the SRS symbol is included in all subframes, the sounding overhead is It does not exceed about 7%.
  • Each SRS symbol is generated by a basic sequence (random sequence or a sequence set based on Zadoff-Ch(ZC)) for a given time unit and frequency band, and all terminals in the same cell use the same basic sequence.
  • SRS transmissions from a plurality of terminals in the same cell at the same frequency band and at the same time are orthogonal by different cyclic shifts of the basic sequence to be distinguished from each other.
  • SRS sequences from different cells can be distinguished by being assigned a different base sequence to each cell, but orthogonality between different base sequences is not guaranteed.
  • a sequence of SRSs for SRS resources may be generated according to Equation 1 below.
  • Equation 1 Represents a sequence set by the sequence number (v) and sequence group (u) of the SRS, and the transmission comb (TC) number K_TC ( ) May be included in the upper layer parameter SRS-TransmissionComb.
  • Equation 2 May be given by the upper layer parameter SRS-CyclicShiftConfig.
  • the sequence group (u) ( ) And the sequence number (u) may follow the upper layer parameter SRS-GroupSequenceHopping. Also, the SRS sequence identifier May be given by the upper layer parameter SRS-SequenceId. l'(i.e. ) Represents an OFDM symbol number in the corresponding SRS resource.
  • Equation 3 f_gh(x, y) denotes sequence group hopping, and v denotes sequence hopping.
  • Equation 4 group hopping rather than sequence hopping is used, which may be expressed as Equation 4 below.
  • Equation 4 f_gh(x, y) denotes sequence group hopping, and v denotes sequence hopping.
  • c(i) represents a pseudo-random sequence, and at the beginning of each radio frame Can be initialized to
  • Equation 5 f_gh(x, y) denotes sequence group hopping, and v denotes sequence hopping.
  • c(i) represents a pseudo-random sequence, and at the beginning of each radio frame Can be initialized with (here, ).
  • SRS Sounding Reference Signal
  • the SRS hopping operation can be performed only during periodic SRS triggering (eg, triggering type 0).
  • the allocation of SRS resources may be provided according to a pre-defined hopping pattern.
  • the hopping pattern may be UE-specifically designated as higher layer signaling (eg, RRC signaling), and overlapping may not be allowed.
  • the SRS is frequency hopping using a hopping pattern for each subframe in which the cell-specific and/or terminal-specific SRS is transmitted, and the start position and the hopping formula in the frequency domain of SRS hopping are shown in Equation 6 below. It can be interpreted through.
  • nSRS means a hopping progress interval in the time domain
  • Nb is the number of branches allocated to tree level b
  • b can be determined by BSRS setting in a dedicated RRC (Dedicated RRC).
  • FIG. 7 shows an example of component carrier and carrier aggregation to which the method proposed in the present specification can be applied.
  • Figure 7 (a) shows a single carrier structure used in the LTE system.
  • Component carriers include DL CC and UL CC.
  • One component carrier may have a frequency range of 20MHz.
  • FIG. 7B shows a carrier aggregation structure used in the LTE_A system.
  • three component carriers having a frequency size of 20 MHz are combined.
  • the UE can simultaneously monitor three CCs, receive downlink signals/data, and transmit uplink signals/data.
  • the network may allocate M (M ⁇ N) DL CCs to the UE. At this time, the terminal may monitor only the M limited DL CCs and receive a DL signal. In addition, the network may assign priority to L (L ⁇ M ⁇ N) DL CCs to allocate the main DL CCs to the UE, and in this case, the UE must monitor the L DL CCs. This method can be applied equally to uplink transmission.
  • a linkage between a carrier frequency (or DL CC) of a downlink resource and a carrier frequency (or UL CC) of an uplink resource may be indicated by a higher layer message such as an RRC message or system information.
  • a combination of DL resources and UL resources may be configured by linkage defined by System Information Block Type 2 (SIB2).
  • SIB2 System Information Block Type 2
  • linkage may mean a mapping relationship between a DL CC in which a PDCCH carrying a UL grant is transmitted and a UL CC using the UL grant, and a DL CC (or UL CC) in which data for HARQ is transmitted and HARQ ACK It may mean a mapping relationship between UL CCs (or DL CCs) through which the /NACK signal is transmitted.
  • FIG. 8 is a diagram illustrating cell division in a system supporting carrier aggregation to which the method proposed in the present specification can be applied.
  • a configured cell is a cell capable of merging carriers based on a measurement report among cells of a base station as shown in FIG. 7 and may be configured for each terminal.
  • the configured cell may reserve resources for ack/nack transmission for PDSCH transmission in advance.
  • An activated cell is a cell set to actually transmit a PDSCH/PUSCH among the configured cells, and performs a Channel State Information (CSI) report for PDSCH/PUSCH transmission and a Sounding Reference Signal (SRS) transmission.
  • CSI Channel State Information
  • SRS Sounding Reference Signal
  • a de-activated cell is a cell that does not perform PDSCH/PUSCH transmission by a command of a base station or a timer operation, and may also stop CSI reporting and SRS transmission.
  • a certain amount of headroom for the UL channel power currently transmitted by the terminal e.g., terminal maximum power Information on whether there is a value obtained by subtracting the power of the UL channel currently being transmitted in (that is, how much power reserve remains) may be essential.
  • the Sounding Reference Signal (SRS) in the existing LTE can be transmitted in the last symbol of each subframe in the FDD system.
  • upPTS can be used in a special subframe to transmit 1 symbol or 2 symbol SRS according to the special subframe configuration.
  • 2 symbol or 4 symbol SRS can be transmitted.
  • LTE SRS is divided into type 0 and type 1 triggering according to the time domain characteristics. In case of type 0, it is a periodic SRS based on higher layer configuration, and in case of type 1, it is an aperiodic SRS triggered by DCI.
  • the power control mechanism in the 3GPP standard can be divided into open-loop power control and closed-loop power control.
  • open-loop power control through higher layer signaling between the base station and the terminal when transmitting a specific UL channel And By setting open-loop power control parameters such as, etc., the base station configures power when transmitting the corresponding UL channel.
  • closed-loop power control in addition to open-loop power control, the height of a specific UL channel transmission power is adjusted through a dynamic indication of the base station (i.e., closed-loop power control parameter ), it can be indicated through the transmit power control (TPC) command field of DL/UL DCI.
  • TPC transmit power control
  • closed-loop power control it can be adjusted based on the strength of the UL channel signal received from the base station, but it is common to adjust within the corresponding range based on the PHR (Power Headroom Report) of the terminal.
  • PHR Power Headroom Report
  • PUSCH power control In the case of power control in the LTE standard, it is divided into PUSCH power control, PUCCH power control, and SRS power control, and the power control of the legacy SRS symbol (i.e., the last symbol of subframe) in the normal UL subframe and the UpPTS SRS symbol in the special subfrmae.
  • PUSCH power control is followed. This is because since the purpose of the existing SRS is UL channel acquisition and UL link adaptation, if the UE assumes the power of the SRS as the power when transmitting the PUSCH and transmits it, the base station can directly utilize it for PUSCH scheduling.
  • the third SRS power control not the power control for the legacy SRS in the normal UL subframe or the UpPTS SRS in the special subframe, but for the carrier switching SRS transmitted in a DL dedicated serving cell in which PUSCH and PUCCH are not scheduled.
  • power control it has been enhanced in LTE Rel-14.
  • the TPC command for closed-loop power control for PUSCH can be indicated through UL DCI and DCI formats 3 and 3A
  • the TPC command for PUCCH can be indicated through DL DCI and DCI formats 3 and 3A.
  • a TPC command for a carrier switching SRS transmitted in a DL dedicated serving cell in which PUSCH and PUCCH are not scheduled is possible through DCI format 3B.
  • PHR is also divided into three types (i.e., Type1, Type2, Type3), and each type corresponds to PHR for PUSCH transmission power, PHR for PUCCH transmission power, and PHR for SRS transmission power.
  • the PHR for Type 3 SRS transmission power can also be viewed as a PHR for carrier switching SRS transmitted in a DL dedicated serving cell in which PUSCH and PUCCH are not scheduled, rather than power control for legacy SRS or UpPTS SRS.
  • UE transmit power for SRS transmitted in subframe i of serving cell
  • the setting of is defined as follows.
  • the parameters related to the SRS transmission power are defined as follows.
  • the UE transmit power configured in subframe i for the serving cell c.
  • Is represented by the number of resource blocks (nubmer of resource blocks), and is the SRS transmission bandwidth in subframe i of the serving cell c.
  • the current SRS power control adjustment state is It is provided by and is defined as follows.
  • the terminal expects not to receive a different SRS TPC command value for the serving cell c in the same subframe.
  • the UE attempts to decode the PDCCH of DCI format 3B with the CRC scrambled by the higher layer parameter srs-TPC-RNTI-r14 in all subframes except when the serving cell c is deactivated.
  • the upper layer parameter fieldTypeFormat3B indicates a 2 bit TPC command, it is signaled in the PDCCH in DCI format 3B.
  • the dB value is in Table 1 (Reference, TS 36.213, Table 5.1.1.1-2) where TPC command values related to PUSCH are defined. To Can be given by substituting
  • the upper layer parameter fieldTypeFormat3B represents a 1-bit TPC command, signaled by the PDCCH in DCI format 3B.
  • the value is in Table 2 (Reference, TS 36.213, Table 5.1.1.1-3) where TPC command values related to PUSCH are defined. To Can be given by substituting
  • the UE must reset the accumulation.
  • the first value is set as follows.
  • silver Is the linear value of. Is defined in subframe i Is the linear value of Is for the serving cell c Is the scaling factor of to be. The value is the same across serving cells.
  • SCG Secondary Cell Group
  • PUCCH-SCell is not set in the UE
  • multiple TAGs multiple TAGs
  • SRS transmission of the UE is performed in the SC-FDMA symbol for the serving cell in subframe i of the TAG. It overlaps with SRS transmission in another SC-FDMA symbol of subframe i for a serving cell of another TAG, and the total transmission power of the terminal for the sounding reference symbol of the overlapped portion is If exceeds, the UE for each of the SRS SC-FDMA symbols overlapped in the serving cell c and subframe i to satisfy the following conditions: Is scaled.
  • silver Is the linear value of. Is defined in subframe i Is the linear value of Is for the serving cell c Is the scaling factor of to be. The value is the same across serving cells.
  • the UE When the LAA SCell is configured for uplink transmission in the UE, the UE subsists regardless of whether the UE can access the LAA SCell for SRS transmission in subframe i according to a channel access procedure. Assuming that the LAA SCell performs SRS transmission in frame i, the scaling factor Can be calculated.
  • the upper layer parameter UplinkPowerControlDedicated-v12x0 for the serving cell c is set, and as indicated by the upper layer parameter tpc-SubframeSet-r12, subframe i is uplink power control subframe set 2 If it belongs to, the terminal is for subframe i and serving cell c To determine instead Should be used.
  • Type3 Power for reporting Headroom (Power headroom for Type3 report)
  • the UE is not expected to calculate the Type 3 report for the slot/subslot.
  • Power headroom for Type 3 reporting is calculated using:
  • the power headroom for Type 3 reporting is calculated using:
  • MPR 0dB
  • A-MPR 0dB
  • P-MPR 0dB
  • Assuming 0dB, it is calculated.
  • MPR is Maximum Power Reduction
  • A-MPR is Additional Maximum Power Reduction
  • P-MPR is Power Management Maximum Power Reduction
  • the power headroom reporting procedure includes 1) information on the difference between the nominal UE maximum transmit power and the estimated power for UL-SCH transmission or SRS transmission per activated serving cell, and 2) the nominal UE maximum transmit power and UL- in SpCell and PUCCH SCell. It is used to provide the serving eNB with information about the difference between the estimated power for SCH and PUCCH / SPUCCH transmission.
  • the reporting period, delay, and mapping of the power headroom are defined in TS 36.133 and TS 38.133.
  • the RRC controls power headroom reporting by performing the following operations i) and ii).
  • RRC i) sets two timers (periodicPHR-Timer and prohibitPHR-Timer), and ii) triggers PHR as allowed by dl-PathlossChange and P-MPRc to set a change in the measured downlink path loss. Signals a requested power backoff due to power management for.
  • PHR Power Headroom Report
  • the path loss is used as a reference for path loss after the last transmission of the PHR in the MAC entity.
  • the MAC entity is changed to more than dl-PathlossChange dB for one or more activated serving cells;
  • PSCell is added (ie, PSCell is newly added or PSCell is changed);
  • the MAC entity may have the UL resource allocated for transmission or PUCCH/SPUCCH transmission in this cell.
  • the MAC entity may have the UL resource allocated for transmission or PUCCH/SPUCCH transmission in this cell.
  • the MAC entity should avoid PHR triggers when the required power backoff only temporarily decreases due to power management (e.g. for up to tens of milliseconds), when the PHR is triggered by other trigger conditions.
  • the value of /PH should not reflect this temporary decrease.
  • the MAC entity If the MAC entity has UL resources allocated for new transmission for this TTI, the MAC entity must do the following.
  • the periodicPHR-Timer is started.
  • the MAC entity has UL resources allocated for transmission in a serving cell for this TTI, or another MAC entity has UL resources allocated for transmission in a serving cell for this TTI, and phr-ModeOtherCG is set by a higher layer. If set to real:
  • the PHR (Power Headroom Report) MAC control element is identified by a MAC PDU subheader with a designated LCID (Logical Channel ID).
  • LCID Logical Channel ID
  • the PHR MAC control element has a fixed size and is composed of a single octet defined as follows.
  • PH Power Headroom
  • MAC CE MAC control element related to an extended power headroom report (Extended PHR) will be described with reference to FIGS. 10A and 10B.
  • 10A shows an example of an extended PHR MAC CE to which the method proposed in the present specification can be applied.
  • 10B shows another example of an Extended PHR MAC CE to which the method proposed in the present specification can be applied.
  • the Extended Power Headroom Report MAC control element is identified as a MAC PDU subheader with a designated LCID.
  • the size of the extended power headroom reporting control element is variable and is defined in Fig. 10A(a).
  • the octet containing the type 2 PH field is included first after the octet indicating the existence of the PH per SCell, and is related. The octet containing the field (if reported) follows. Then for the PCell there is a type 1 PH field associated with the octet. The octet with the field (if reported) follows.
  • x is equal to 3 when ul-Configuration-r14 is configured for this SCell, otherwise (when ul-Configuration-r14 is not configured) x is equal to 1.
  • the Extended Power Headroom Report (PHR) MAC control element is identified as a MAC PDU subheader with a designated LCID.
  • the PHR MAC control element has a variable size and is defined in Figs. 10a(b), 10b(a) and 10b(b).
  • 10A(b) illustrates Extended PHR MAC CE supporting PUCCH in SCell.
  • 10B(a) illustrates an Extended PHR MAC CE supporting 32 cells in which uplink is configured.
  • 10b(b) illustrates an extended PHR MAC CE supporting 32 cells in which PUCCH and uplink are configured in the SCell.
  • One octet (1 octet) with a C field is used to indicate the existence of a PH per SCell when the highest SCellIndex of an SCell with a configured uplink is less than 8, otherwise 4 octets are used.
  • the octet containing the type 2 PH field is included first after the octet indicating the existence of the PH per SCell and related The octet containing the field (if reported) follows.
  • the type 2 PH field for the PUCCH SCell (when the PUCCH of the SCell is set and the type 2 PH is reported for the PUCCH SCell) is associated with the The octet containing the field (if reported) follows.
  • the PCell there is a Type 1 PH field associated with the octet.
  • the octet with the field (if reported) follows.
  • for each SCell displayed in the bitmap in ascending order based on ServCellIndex as specified in TS 36.331 it is associated with an octet with a Type x PH field.
  • the octet with the field (if reported) follows.
  • x is equal to 3 when ul-Configuration-r14 is configured for this SCell, otherwise (when ul-Configuration-r14 is not configured)
  • x is equal to 1.
  • Extended power headroom reporting MAC control element (Extended PHR MAC CE) is defined as follows.
  • This field indicates the existence of the PH field for the SCell with SCellIndex i specified in TS 36.331.
  • the Ci field set to "1" indicates that the PH field for the SCell of SCellIndex i is reported.
  • the Ci field set to "0" indicates that the PH field for the SCell of SCellIndex i is not reported.
  • -V This field indicates whether the PH value is based on real transmission or reference format.
  • PH Power Headroom
  • Table 4 below illustrates nominal UE transmit power levels for extended PHR (Extended PHR) and dual connectivity PHR (Dual connectivity PHR).
  • Option 1 All symbols in one slot are used for SRS from a cell perspective
  • another slot of the subframe may be used for PUSCH transmission for a UE capable of sTTI.
  • Option 3 A subset of symbols in one slot can be used for SRS from a cell perspective
  • the location of the additional SRS is not limited to the above-described options.
  • Aperiodic SRS transmission may be supported for additional SRS symbols.
  • a UE in which an additional SRS is configured in one UL subframe may transmit the SRS based on one of the following options.
  • Frequency hopping is supported within one UL subframe.
  • Both intra-subframe frequency hopping and repetition are supported for aperiodic SRS in additional symbols for aperiodic SRS in additional symbols.
  • In-subframe antenna switching is supported for aperiodic SRS in the additional SRS symbol.
  • additional SRS symbol is additionally introduced in Rel-16, and the last symbol is not part of the additional SRS symbol.
  • Both legacy SRS (legacy SRS) and additional SRS (additional SRS) symbol(s) may be configured for the same UE.
  • the terminal may transmit the legacy SRS or additional SRS symbol(s) in the same subframe.
  • the UE may transmit the legacy SRS and additional SRS symbol(s) in the same or different subframes.
  • the number of symbols that can be configured in the UE as an additional SRS is 1-13.
  • SRS SRS
  • Same power control configuration applies for all additional SRS symbols configured to a single UE.
  • Transmission of aperiodic legacy SRS and aperiodic additional SRS symbol(s) in the same subframe for the UE is supported (Transmission of aperiodic legacy SRS and aperiodic additional SRS symbol(s) in the same subframes for a UE is supported ).
  • a combination of the following features may be set at the same time.
  • Antenna switching is supported across at least all antenna ports.
  • the configurable number of additional SRS repetitions may be ⁇ 1, 2, 3, 4, 6, 7, 8, 9, 12, 13 ⁇ . This setting can be applied per antenna port and per subband.
  • Code points of the same DCI trigger SRS transmission for one of the following.
  • the association of the codepoint and one of the above may be set by RRC signaling. In the absence of SRS triggering, a separate codepoint may be supported.
  • the size of the SRS request field for triggering the Rel-16 SRS may be the same as the existing (Rel-15 DCI format).
  • per-symbol group hopping and sequence hopping may be supported.
  • only one of group hopping or sequence hopping per symbol may be used by the UE (In a given time, only one of per-symbol group hopping or sequence hopping can be used by a UE).
  • One of the following options may be considered in order to solve the minimum power change due to frequency hopping or antenna switching for additional SRS symbols.
  • Option 1 A guard period of one symbol may be introduced in the RAN1 specification.
  • the guard interval may not be introduced in the RAN1 specification.
  • a guard period may be set for frequency hopping and antenna switching of additional SRS symbols.
  • the guard interval is 1 OFDM symbol.
  • frequency hopping/repetition within a subframe and antenna switching within a subframe are set at the same time, frequency hopping must be performed before antenna switching.
  • Legacy SRS symbols may follow the legacy configuration.
  • Aperiodic additional SRS (aperiodic additional SRS) may be triggered only for transmission in a subframe belonging to a legacy terminal-specific SRS subframe configuration.
  • Sequence generation of additional SRS symbols may be based on the following.
  • Nsymb is the number of OFDM symbols per slot.
  • Alt 1 to Alt 4 may be selected for collision handling of SRS and PUCCH/PUSCH transmission.
  • -Alt1 use sPUSCH and/or sPUCCH
  • Any one of the drop and the delay may be performed.
  • the UE does not expect a periodic SRS to be triggered in an additional symbol of the SRS colliding with the PUCCH/PUSCH/PRACH in the same carrier.
  • the operation for handling the collision may be based on a base station (eNB)/terminal (UE) implementation.
  • eNB base station
  • UE terminal
  • the sPUSCH and/or sPUCCH may be used to handle collisions between the SRS and PUCCH/PUSCH.
  • Any one of the following operations may be selected in order to handle collision of SRS and PUCCH/PUSCH transmissions for a terminal that does not support sPUSCH/sPUCCH.
  • -Alt2A When SRS collides with PUCCH/PUSCH/PRACH in the same carrier, the UE may delay SRS transmission in an additional symbol.
  • the terminal does not expect to be triggered by an aperiodic SRS in an additional symbol of the SRS that collides with PUCCH/PUSCH/PRACH on the same carrier.
  • the operation for handling the collision may be based on the implementation of the base station (eNB).
  • a guard period for frequency hopping and/or antenna switching may be set regardless of a repetition configuration in a subframe.
  • RAN4 It is up to RAN4 to introduce UE capability for UEs that do not need a guard interval. When this UE capability is introduced, whether to have a separate UE capability for frequency hopping and antenna switching also depends on RAN 4.
  • the gap symbol is the number of set SRS symbols And it is not included in the number of repetition coefficients R.
  • a multi symbol SRS may be introduced not only in a special subframe of the LTE TDD system but also in a normal UL subframe.
  • a multi-symbol SRS may be set from 1 symbol to 13 symbols excluding the legacy SRS (excluding the last symbol) from the cell point of view or the UE point of view.
  • the purpose is to obtain UL channel information and UL link adaptation.
  • additional SRS additional SRS
  • the purpose is to enhance capacity and coverage in SRS transmission for obtaining a downlink channel (DL channel).
  • the open-loop power control parameter and the closed-loop power control mechanism are independent from the legacy SRS (legacy SRS). It has been agreed to support the power control setting of additional SRS (additional SRS).
  • a certain amount of headroom e.g., the terminal's Information on whether there is a value obtained by subtracting the UL channel power currently being transmitted from the maximum power (that is, how much power remains for signal transmission) may be essential.
  • power control for legacy SRS is dependent on PUSCH power control mechanism, and power headroom report (PHR) is also performed through PUSCH PHR.
  • PHR power headroom report
  • the existing Type 3 PHR is a PHR for carrier switching SRS (carrier switching SRS) transmitted in a DL-only serving cell in which PUSCH and PUCCH are not scheduled
  • additionsl SRS in Rel-16 LTE MIMO that is, in normal UL subframe) PHR for multi symbol SRS
  • the base station can instruct a TPC command suitable for the power headroom situation of the additional SRS of the terminal.
  • the description is based on the additional SRS in the LTE system, but this can be applied to all systems that transmit SRS in a plurality of symbols, such as 3GPP NR (New RAT, New Radio Access Technology).
  • 3GPP NR New RAT, New Radio Access Technology
  • the subframe and slot structure/unit of the LTE system can be modified and applied as shown in Table 5 below in the NR system. (In other words, the number of symbols per slot, number of symbols per frame, number of symbols per subframe according to subcarrier spacing related parameter ⁇ )
  • a terminal supporting transmission of an additional SRS will be referred to as an enhanced terminal or an enhanced UE.
  • the base station In the case of the TPC command of the base station for closed-loop power control for the additional SRS (Additional SRS), the base station provides the terminal with the additional SRS in the form of enhancing the TPC command field of DCI format 3B. Can instruct power control.
  • DCI format 3B is used for transmission of groups of TPC commands for SRS transmission by one or more terminals.
  • An SRS request may also be transmitted along with the TPC command.
  • the following information is transmitted through DCI format 3B.
  • Block number 1 block number 2,... , Block number
  • the starting position of the block is determined by the parameter startingBitOfFormat3B provided from the upper layer for the terminal in which the corresponding block is configured.
  • one block is set for the UE by the higher layer, and the following fields are defined for the corresponding block.
  • -SRS request 0 or 2 bits.
  • the n TPC command fields correspond to a set of n TDD SCells without PUCCH and without PUSCH, and the set is indicated by an SRS request field or determined by an upper layer when there is no SRS request field.
  • the TPC command field has 1 bit when the value of the parameter fieldTypeFormat3B provided from the upper layer is 1 or 3, and 2 bits when the value of the parameter fieldTypeFormat3B is 2 or 4.
  • At least one block corresponding to each of the SCells is configured by an upper layer, and the following fields are defined for each block.
  • the size of DCI format 3B is Equal to, where, Is equal to the payload size of DCI format 0 before CRC attachment when DCI format 0 is mapped to the common search space including padding bits added to DCI format 0.
  • the existing DCI format 3B it is possible to instruct the TPC command for the SRS for carrier switching that is transmitted in a DL-only serving cell (i.e., TDD SCells configured without PUCCH and without PUSCH) in which PUSCH and PUCCH are not scheduled.
  • DCI format a DL-only serving cell (i.e., TDD SCells configured without PUCCH and without PUSCH) in which PUSCH and PUCCH are not scheduled.
  • TPC commands for multiple terminals may be included. Specifically, when a terminal performs blind detection through the TPC-RNTI (precisely srs-TPC-RNTI) of the corresponding terminal in DCI format 3B, the terminal It is possible to recognize whether the block is a block of the corresponding terminal (own).
  • the terminal may operate by transmitting a Type 1 SRS based on an SRS request field (optional) and a TPC command in a corresponding block or receiving a TPC instruction for closed-loop power control.
  • a method of setting a separate parameter to inform which block the TPC command is in the DCI payload may be considered.
  • the TPC command field of DCI format 3B is used for the TPC command, but in addition to startingBitOfFormat3B, a separate higher layer parameter (e.g., startingBitOfFormat3B_additionalSRS) By setting the TPC command for the additional SRS, it is possible to indicate which block is in the DCI payload.
  • startingBitOfFormat3B_additionalSRS e.g., startingBitOfFormat3B_additionalSRS
  • the improved terminal decodes one DCI format 3B to simultaneously perform the TPC command for the SRS of the PUSCH-less SCell (SCell in which PUSCH and PUCCH are not configured) and the TPC command for the additional SRS in the normal UL subframe. It can be received and applied to each of the (closed-loop) power control.
  • RRC configuration of this proposal are shown in Tables 6 and 7 below (eg startingBitOfFormat3B_additionalSRS).
  • StartingBitOfFormat3B indicating the location of the TPC command for the SRS of the PUSCH-less SCell
  • startingBitOfFormat3B_additionalSRS indicating the location of the TPC command for the additional SRS may optionally exist. Both of the above two parameters may be present or only one may be present, but neither may be present (because it is more advantageous to release SRS-TPC-PDCCH-Config itself and leave it to null rather than that).
  • a separate higher layer parameter may exist to designate a cell to which the TPC of the additional SRS is applied.
  • the base station indicates a TPC command for an additional SRS in the SCell in which the PCell or PUSCH exists (E.g. srs-CC-SetIndexlist-additionalSRS / SRS-CC-SetIndex-additionalSRS / cc-SetIndex-additionalSRS / cc-IndexInOneCC-Set-additionalSRS, etc., see Table 6 below).
  • the terminal may i) read only the TPC command for the SRS of the PUSCH-less SCell, ii) the TPC command for the additional SRS in the normal UL subframe
  • the terminal may i) read only the TPC command for the SRS of the PUSCH-less SCell, ii) the TPC command for the additional SRS in the normal UL subframe
  • a separate higher layer parameter may exist to designate a cell to which the TPC of the additional SRS is applied.
  • a TPC command for an additional SRS in a SCell in which a PCell or PUSCH is present can be designated by the base station.
  • the base station instructs a separate closed-loop power control command for an additional SRS for a purpose different from the existing legacy SRS or SRS of the PUSCH-less SCell (e.g., obtaining DL/UL reciprocity-based DL channel information and securing SRS capacity and coverage) can do.
  • the terminal can receive a TPC command for an additional SRS through the existing DCI format 3B and perform a power control operation.
  • the base station can instruct the TPC command for additional SRS across multi-cells in the CA (Carrier Aggregation) situation of the terminal.
  • a method of configuring an additional RNTI in addition to the srs-TPC-RNTI may be considered.
  • the base station uses the TPC command field of format 3B for the TPC command in closed-loop power control for the additional SRS, but srs- for decoding the TPC command for the SRS of the existing PUSCH-less SCell.
  • a separate RNTI such as additionalsrs-TPC-RNTI for decoding a TPC command for an additional SRS may be set in the enhanced terminal.
  • the enhanced terminal transmits the TPC command for the SRS of the PUSCH-less SCell and the TPC command for the additional SRS in the normal UL subframe, respectively. It can be applied to each power control by learning/detecting (closed-loop).
  • RRC configuration of this proposal is shown in Table 8 below (e.g., SRS-TPC-PDCCH-Config-r16 / srs-TPC-RNTI-additionalSRS / startingBitOfFormat3B-r14, etc.).
  • Proposal 1-2 since the TPC RNTI for the SRS of the PUSCH-less SCell and the TPC RNTI for the additional SRS are separately set, unlike Proposal 1-1, there is no need to separately indicate the startingBitOfFormat3B for additional SRS purposes, and the existing one is shared. It has the advantage of being able to use it. In other words, in proposal 1-1, one terminal occupies two blocks in DCI format 3B, and DCI payload may be wasted, but in proposal 1-2, such waste is reduced and RNTI recognizes which SRS is a TPC command. I can.
  • a separate higher layer parameter may exist to designate a cell to which the TPC of the additional SRS is to be applied.
  • the separate higher layer parameter it is possible to designate a PCell that has not been dealt with in the existing DCI format 3B or a SCell in which a PUSCH exists, so that the base station indicates a TPC command for an additional SRS in the SCell in which the PCell or PUSCH exists. Can be done (e.g.
  • the base station instructs a separate closed-loop power control command for an additional SRS that has a purpose different from the existing legacy SRS or SRS of the PUSCH-less SCell (e.g., obtaining DL/UL reciprocity-based DL channel information and securing SRS capacity and coverage) can do.
  • the terminal may receive an additional RNTI from the existing RRC structure without unnecessary RRC configuration, thereby receiving a TPC command for an additional SRS through the existing DCI format 3B and performing power control.
  • the base station can instruct a TPC command for an additional SRS across multi-cells in the CA situation of the terminal.
  • PHR power headroom report
  • the following method may be considered for the power headroom report for the additional SRS.
  • the terminal improved in the closed-loop power control as well as open-loop power control for the additional SRS is separate (from the SRS of the existing legacy SRS or PUSCH-less SCell) Can operate according to the process of.
  • a separate PHR different from the existing PH type 1 (PUSCH ( legacy SRS)), type 2 (PUCCH), and type 3 (PUSCH-less SCell SRS) in the enhanced power headroom report (PHR) of the terminal. process may be necessary.
  • PUSCH legacy SRS
  • type 2 PUCCH
  • type 3 PUSCH-less SCell SRS
  • the PHR of the terminal is reported to the base station through the MAC CE, and there are two cases, a report through a timer and a triggered report based on a specific condition.
  • the specific condition may include a case where the pathloss value for the RS set in the (open loop) power control process changes to a specific value (eg, a specific threshold) or more (see TS 36.321 section 5.4.6). .
  • PHR transmission may be performed as follows.
  • PHR in the case of extendedPHR
  • a PH of type 1/2/3 may be transmitted (reported) through MAC CE.
  • type 1 and type 2 are essentially reported for the Pcell, and the terminal additionally reports a PH based on at least one of type 1, type 2, or type 3 for the Scell according to the CA situation.
  • PH calculation for each type can follow the existing method (eg TS 36.213, Section 5.1).
  • the existing Type 3 power headroom report can be enhanced and utilized.
  • the following formula for type 3 PH can be used to calculate PH for additional SRS ( , , For parameters such as, it may be applied as a parameter of an additional SRS rather than a parameter of the SRS of the PUSCH-less SCell).
  • the UE is not expected to calculate the Type 3 report for the slot/subslot.
  • the UE transmits the SRS in subframe i for the serving cell c or 2) the UE transmits the SRS in subframe i due to collision with a higher priority physical channel or signal in subframe i + 1 Is not transmitted, and when a higher priority physical channel or signal does not occur in subframe i+1, when SRS is transmitted in subframe i,
  • Power headroom for Type 3 reporting is calculated using:
  • the power headroom for Type 3 reporting is calculated using:
  • MPR 0dB
  • A-MPR 0dB
  • P-MPR 0dB
  • Assuming 0dB, it is calculated.
  • MPR is Maximum Power Reduction
  • A-MPR is Additional Maximum Power Reduction
  • P-MPR is Power Management Maximum Power Reduction
  • the terminal may utilize a container of the MAC PDU for type 3 PH reporting of the existing MAC standard.
  • the base station may configure in the terminal whether the object to report the PH through the additional higher layer configuration is the SRS of the PUSCH-less SCell reported through the existing type 3 or an additional SRS. That is, in the type 3 PH reporting through the higher layer configuration, PH reporting for an additional SRS may be performed for the PCell and the Scell.
  • the UE may report the PH for the SRS of the PUSCH-less SCell in the type 3 PH report, or may report the PH for the additional SRS.
  • a method of newly configuring a Type 4 power headroom report and using this to report a PH may be considered.
  • the calculation formula for the type 3 PH can be used to calculate the PH for the additional SRS ( , , For parameters such as, it may be applied as a parameter of an additional SRS rather than a parameter of the SRS of the PUSCH-less SCell).
  • a container for PH type 4 of the MAC PDU for PH reporting for additional SRSs may be newly added when reporting through a timer of the terminal and reporting PH based on a specific condition.
  • the UE may report the PH for the additional SRS by using the octet of the corresponding MAC PDU.
  • the terminal for an additional SRS having a power control process separate from the legacy SRS or the SRS of the PUSCH-less SCell in open-loop and closed-loop power control, the terminal also reports the PH It can be operated according to a separate process. Accordingly, the base station can separately recognize how much the PH for the additional SRS is.
  • the base station uses other UL channels (e.g., PUSCH, PUCCH, etc.).
  • whether to transmit the FDM may be set/instructed in consideration of the power capacity of the terminal.
  • the base station uses the other UL channels (eg, PUSCH, PUCCH, etc.).
  • the base station After obtaining the PH information of the additional SRS following the PH information, it may be determined whether to set/instruct the simultaneous transmission of the SRS and other UL channels in consideration of the power capacity in the CA situation of the UE.
  • Step 0) SRS configuration can be received from the base station like method 1/method 2, etc.
  • Step 0-1) Configuration for SRS transmission, power control, and configuration for PHR can be received in one or more symbols.
  • Step 0-1-1)-Information that can be included in the configuration is (36.331 SoundingRS-UL-Config or/and TPC-PDCCH-Config or/and SRS-TPC-PDCCH-Config, etc.)
  • Step 0-2) SRS confguration may include SRS-related information transmitted periodic and/or aperiodic.
  • Step 0-3 Before SRS transmission, the power control instruction can be received from the base station through TPC commands such as DCI format 3B.
  • Step 1) When receiving an SRS trigger through a DL/UL grant (through PDCCH) or when the SRS transmission time based on RRC configuration has arrived
  • Step 1-1) SRS transmission for resources capable of SRS transmission
  • Step 0) PHR-related configuration can be received from the base station as in Method 2 (e.g. periodicPHR-Timer and/or prohibitPHR-Timer, dl-PathlossChange, etc., see TS 36.331)
  • Method 2 e.g. periodicPHR-Timer and/or prohibitPHR-Timer, dl-PathlossChange, etc., see TS 36.331)
  • Step 1) PHR reporting trigger based on PHR-related timer (periodicPHR-Timer and/or prohibitPHR-Timer in 36.331/36.321) or a specific condition (e.g., the pathloss value for the RS set in the (open loop) power control process) is a specific value
  • Step 2 When PHR reporting is triggered by Step 0, the MAC-CE including the power headroom report for the additional SRS of the UE can be transmitted to the base station through MAC PDU/PUSCH as in Method 2. At this time, the terminal
  • Step 2-1) MAC-CE including type-3 PH report is transmitted to the base station through MAC PDU/PUSCH according to the higher layer setting set by the base station (received at Step 0) as in the proposal 1-1 of Method 2 .
  • Step 2-2) As in the proposal 1-2 of Method 2, the MAC-CE including the type-4 PH report can be transmitted to the base station through the MAC PDU/PUSCH.
  • operation of the base station/terminal e.g., Method 1 (Proposals 1, 1-1, 1-2)/Method 2 (Proposals 1, 1-1, 1-2)
  • Operations related to transmission of an additional SRS may be processed by the devices of FIGS. 16 to 20 (eg, processors 102 and 202 of FIG. 17) to be described later.
  • the operation of the base station/terminal according to the above-described embodiment e.g., method 1 (suggestions 1, 1-1, 1-2)/method 2 (suggestions 1, 1-1, 1-2)
  • Operations related to transmission of an additional SRS are memory (eg, in the form of instructions/executable code) for driving at least one processor (eg, 102 and 202 in FIG. 17). It may be stored in 104 and 204 of FIG. 20.
  • FIGS. 11/12/13 are for convenience of description and do not limit the scope of the embodiments of the present specification.
  • some of the steps described in FIGS. 11/12/13 may be merged or omitted.
  • LTE-related content and SRS-related content/power headroom reporting-related content according to FIGS. 1 to 8 described above may be considered/applied.
  • FIG. 11 illustrates a method of receiving an SRS by a base station according to an embodiment of the present specification. Specifically, FIG. 11 is a flowchart for explaining the operation of the base station based on Method 1.
  • the base station may transmit the SRS configuration to the terminal through a higher layer (eg, RRC or MAC CE) (S1110).
  • the SRS configuration includes information related to SRS (e.g., additaional SRS, UpPts SRS) based on the above-described proposal method (e.g., method 1 proposal 1 / proposal 1-1 / proposal 1-2, etc.) can do.
  • the SRS configuration may include SRS-related information transmitted periodic and/or aperiodic.
  • the SRS configuration may include configuration and power control for transmitting SRS in one or more symbols, and configuration for PHR.
  • the SRS configuration may include information on a cell to which additional SRS TPC is to be applied.
  • information that may be included in the SRS configuration may be based on TS36.331 SoundingRS-UL-Config or/and TPC-PDCCH-Config or/and SRS-TPC-PDCCH-Config.
  • one or more processors 202 may control one or more transceivers 206 and/or one or more memories 204 to transmit the SRS configuration, and one or more transceivers 206 may configure the SRS configuration to a terminal. Can be transmitted.
  • the base station may transmit the DCI to the terminal (S1120).
  • the DCI may include information related to transmission such as SRS and/or UL channel.
  • the DCI may correspond to DCI format 3B, and a power control instruction may be given through a TPC command included in the DCI.
  • the DCI may include information for triggering SRS.
  • information related to transmission of the SRS and/or UL channel may be included in the SRS configuration of step S1110 described above.
  • FIGS. 16 to 20 For example, the operation of transmitting the DCI from the base station (100/200 of FIGS. 16 to 20) to the terminal (100/200 of FIGS. 16 to 20) of the step S1120 described above is described in FIGS. 16 to 20, which will be described below. It can be implemented by the device of.
  • one or more processors 202 may control one or more transceivers 206 and/or one or more memories 204 to transmit the DCI, and one or more transceivers 206 may transmit the DCI to the terminal. have.
  • the base station may receive the SRS/UL Channel from the terminal (S1130).
  • the base station may receive the SRS/UL Channel transmitted from the terminal based on the above-described proposed method (eg, proposal 1 of method 1 / proposal 1-1 / proposal 1-2, etc.).
  • the SRS/UL Channel may be transmitted based on the above-described SRS configuration / Power control / PHR configuration / DCI, and the like.
  • the SRS/UL Channel may be transmitted based on a predefined rule (eg, gap symbol position/ SRS symbol position/ SRS symbol indexing, etc.).
  • multi-symbol SRS transmission it may be transmitted through a resource set based on the above-described proposal method (eg, proposal 1 of method 1 / proposal 1-1 / proposal 1-2, etc.). .
  • FIG. 16 To 20 the operation of receiving the SRS/UL channel from the base station (100/200 of FIGS. 16 to 20) of the above-described step S1130 from the terminal (100/200 of FIGS. 16 to 20) is described below in FIG. 16 To 20 may be implemented by the device.
  • one or more processors 202 may control one or more transceivers 206 and/or one or more memories 204 to receive the SRS/UL channel, and one or more transceivers 206 may control the SRS from the terminal. /UL channel can be received.
  • FIG. 12 illustrates an SRS transmission method of a terminal according to an embodiment of the present specification. Specifically, FIG. 12 is a flowchart for explaining an operation of a terminal based on Method 1.
  • the terminal may receive the SRS configuration from the base station through a higher layer (eg, RRC or MAC CE) (S1210).
  • the SRS configuration includes information related to SRS (e.g., additaional SRS, UpPts SRS) based on the above-described proposal method (e.g., method 1 proposal 1 / proposal 1-1 / proposal 1-2, etc.) can do.
  • the SRS configuration may include SRS-related information transmitted periodic and/or aperiodic.
  • the SRS configuration may include configuration for transmitting SRS in one or more symbols / information related to power control / configuration for PHR, and the like.
  • the SRS configuration may include information (eg, period/offset, etc.) related to the SRS transmission time point.
  • the SRS configuration may include information on a cell to which additional SRS TPC is to be applied.
  • information that may be included in the SRS configuration may be based on TS 36.331 SoundingRS-UL-Config or/and TPC-PDCCH-Config or/and SRS-TPC-PDCCH-Config.
  • one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to receive the SRS configuration, and one or more transceivers 106 may configure the SRS configuration from the base station. You can receive it.
  • the terminal may receive the DCI from the base station (S1220).
  • the DCI may include information related to transmission such as SRS and/or UL channel.
  • the DCI may correspond to DCI format 3B, and a power adjustment instruction may be received through a TPC command included in the DCI.
  • the DCI may include information for triggering SRS.
  • information related to transmission of the SRS and/or UL channel may be included in the SRS configuration of step S1210 described above.
  • one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to receive the DCI, and one or more transceivers 106 may receive the DCI from the base station. I can.
  • the terminal may transmit an SRS/UL channel to the base station (S1230).
  • the terminal may transmit the SRS/UL Channel to the base station based on the above-described proposed method (eg, proposal 1 of method 1 / proposal 1-1 / proposal 1-2, etc.).
  • the SRS/UL Channel may be transmitted based on the above-described SRS configuration / Power control / PHR configuration / DCI, and the like.
  • the SRS/UL Channel may be transmitted based on a predefined rule (eg, gap symbol position/ SRS symbol position/ SRS symbol indexing, etc.).
  • multi-symbol SRS transmission it may be transmitted through a resource set based on the above-described proposal method (eg, proposal 1 of method 1 / proposal 1-1 / proposal 1-2, etc.). .
  • the operation of transmitting the SRS/UL channel by the terminal (100/200 of FIGS. 16 to 20) to the base station (100/200 of FIGS. 16 to 20) of step S1230 described above is described below in FIG. 16 To 20 may be implemented by the device.
  • one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to transmit the SRS/UL channel. /UL channel can be transmitted.
  • FIG. 13 illustrates a method for reporting power headroom of a terminal according to an embodiment of the present specification. Specifically, FIG. 13 is a flowchart for explaining an operation of a terminal based on Method 2.
  • the terminal may receive a PHR-related configuration from the base station (S1310).
  • the PHR-related configuration may be received through a higher layer (eg, RRC or MAC CE).
  • the PHR-related configuration is based on the above-described proposed method (e.g., Proposal 1 of Method 2 / Proposal 1-1 / Proposal 1-2, etc.) ) Can be included.
  • information that may be included in the PHR-related configuration may be based on TS36.331 periodicPHR-Timer and/or prohibitPHR-Timer / dl-PathlossChange.
  • FIGS. 17 For example, the operation of receiving the PHR-related configuration from the base station (100/200 of FIGS. 16 to 20) by the terminal (100/200 of FIGS. 16 to 20) in step S1310 described above is described in FIGS. It can be implemented by the device of FIG. 20.
  • one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to receive the PHR-related configuration, and one or more transceivers 106 may be configured to receive the PHR-related configuration. You can receive the configuration.
  • the terminal may check/determine whether to trigger a report on the PHR (S1320). For example, whether to trigger a report on PHR may be confirmed/determined based on a PHR-related configuration. For example, a PHR reporting trigger based on a PHR-related timer (periodicPHR-Timer and/or prohibitPHR-Timer in 36.331/36.321) or a specific condition (e.g., the pathloss value for the RS set in the (open loop) power control process) is a specific value. It is possible to check/determine whether to trigger PHR reporting based on (if it changes to more than a specific threshold, eg dl-PathlossChange in 36.331/36.321).
  • a specific threshold eg dl-PathlossChange in 36.331/36.321.
  • step S1320 the operation of confirming/determining whether the terminal (100/200 of FIGS. 16 to 20) of step S1320 described above triggers reporting on PHR may be implemented by the apparatus of FIGS. 16 to 20 to be described below.
  • one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to check/determine whether to trigger reporting on the PHR.
  • the terminal may report/transmit a power headroom report (PHR) to the base station (S1330).
  • PHR power headroom report
  • the terminal may report/transmit a PHR to the base station based on the above-described proposed method (eg, proposal 1 / proposal 1-1 / proposal 1-2 of method 2).
  • the PHR may be included in the UL Channel and transmitted when transmitting the SRS/UL Channel.
  • a MAC-CE including a PHR for an additional SRS may be transmitted to the base station through MAC PDU/PUSCH.
  • the UE may transmit SRS (eg, additional SRS) / UL Channel (eg, UL Channel including PHR for additional SRS) to the base station.
  • SRS eg, additional SRS
  • UL Channel eg, UL Channel including PHR for additional SRS
  • PHR may correspond to type 3 or type 4.
  • the operation of the terminal (100/200 of FIGS. 16 to 20) in the above-described step S1330 to report/transmit the power headroom report (PHR) to the base station (100/200 of FIGS. 16 to 20) is as follows. It can be implemented by the apparatus of FIGS. 16-20 to be described.
  • one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to report/transmit the power headroom report (PHR), and the one or more transceivers 106
  • the base station may report/transmit the power headroom report (PHR).
  • the above-described base station/terminal operation may be implemented by an apparatus (eg, FIGS. 16 to 20) to be described below.
  • the UE may correspond to the first radio device
  • the BS may correspond to the second radio device, and vice versa may be considered in some cases.
  • the above-described base station/terminal operation (e.g., Proposal 1 of Method 1 / Proposal 1-1 / Proposal 1-2 / Proposal 1 of Method 2 / Proposal 1-1 / Proposal 1-2 / Fig. 11 / Fig. 12 / Fig. 13, etc.) can be processed by one or more processors (eg, 102, 202) of Figs. 16 to 20, and the above-described base station/terminal operation (eg, proposal 1 of method 1 / proposal 1-1 / proposal) 1-2 / Proposal 1 of Method 2 / Proposal 1-1 / Proposal 1-2 / Proposal 1 / Proposal 2 / Proposal 3 / Fig.
  • processors e.g., 102, 202
  • the above-described base station/terminal operation eg, proposal 1 of method 1 / proposal 1-1 / proposal
  • a memory eg, one or more memories (eg, 104, 204) of FIG. 20) in the form of an instruction/program (eg, instruction, executable code) for driving the processor (eg, 102, 202).
  • instruction/program eg, instruction, executable code
  • FIG. 14 is a flowchart illustrating a method for a terminal to transmit a sounding reference signal in a wireless communication system according to an embodiment of the present specification.
  • the step of receiving SRS configuration information (S1410) and power headroom A message transmission step (S1420) including information, a DCI receiving step (S1430) triggering an SRS, and a SRS transmission step (S1440) are included.
  • the terminal receives configuration information related to transmission of a sounding reference signal (SRS) from the base station.
  • the SRS may be an additional SRS (additional SRS).
  • additional SRS additional SRS
  • the SRS may be set in a region composed of at least one symbol other than the last symbol of a subframe.
  • the operation of the terminal (100/200 of FIGS. 16 to 20) receiving configuration information related to transmission of the sounding reference signal (SRS) from the base station (100/200 of FIGS. 16 to 20) is It can be implemented by the device of FIGS. 16 to 20.
  • one or more processors 102 may include one or more transceivers 106 and/or one or more memories to receive configuration information related to transmission of a sounding reference signal (SRS) from the base station 200. (104) can be controlled.
  • the terminal transmits a message including information on power headroom (PH) related to the transmission power of the SRS to the base station.
  • PH power headroom
  • the PH may be related to a specific type of Power Headroom Report (PHR). This embodiment may be based on the proposal 1-1 of Method 2 above.
  • the specific type is a type of power headroom report for a serving cell in which a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) are not configured. It can be based.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the message may be based on a PHR MAC CE (Power Headroom Report MAC CE).
  • the PH may be Type 3 PH.
  • the message when the message is transmitted based on a pre-configured timer or a trigger condition, acquisition of the PH is performed based on configuration information for reporting of the Type 3 PH.
  • the target for can be determined.
  • the object for obtaining the PH may be i) the SRS or ii) an SRS in a secondary cell in which a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the configuration information for reporting of the Type 3 PH may be set through a higher layer.
  • the terminal (100/200 of Figs. 16 to 20) provides the base station (100/200 of Figs. 16 to 20) for power headroom (PH) related to the transmission power of the SRS.
  • the operation of transmitting a message including information may be implemented by the devices of FIGS. 16 to 20.
  • one or more processors 102 transmit one or more messages to the base station 200 to transmit a message including information on power headroom (PH) related to the transmission power of the SRS. It is possible to control the transceiver 106 and/or one or more memories 104.
  • the UE receives downlink control information (DCI) triggering transmission of the SRS from the base station.
  • DCI downlink control information
  • the DCI may include a transmission power control command (TPC command) related to control of the transmission power of the SRS.
  • TPC command may be transmitted by being included in a DCI other than the DCI triggering the transmission of the SRS.
  • the TPC command may be obtained based on blind detection related to downlink control information (DCI).
  • the blind detection may be performed based on a plurality of RNTIs related to TPC. This embodiment may be based on the proposal 1-2 of Method 1 above.
  • the plurality of RNTIs related to the TPC may include a first RNTI and a second RNTI.
  • the TPC command may be obtained through the blind detection based on the second RNTI.
  • the second RNTI may be based on a preset RNTI for additional SRS (additional SRS).
  • additional SRS additional SRS
  • the second RNTI may be based on the srs-TPC-RNTI-additionalSRS described above.
  • the first RNTI may be an existing RNTI related to TPC.
  • the first RNTI may be based on srs-TPC-RNTI.
  • a TPC command for an SRS in a secondary cell in which a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured can be obtained. I can.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • downlink control information Downlink Control Information, DCI
  • DCI Downlink Control Information
  • the operation of receiving is may be implemented by the apparatus of FIGS. 16 to 20.
  • at least one processor 102 includes at least one transceiver 106 to receive downlink control information (DCI) triggering transmission of the SRS from the base station 200 and /Or one or more of the memories 104 may be controlled.
  • the terminal transmits the SRS to the base station.
  • the SRS is transmitted as transmission power based on a transmission power control command (TPC command) related to transmission power control.
  • TPC command transmission power control command
  • Transmission power based on the TPC command may be determined as described above in the terminal operation for SRS power control.
  • the operation of the terminal (100/200 of FIGS. 16 to 20) transmitting the SRS to the base station (100/200 of FIGS. 16 to 20) is implemented by the apparatus of FIGS. 16 to 20.
  • one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to transmit the SRS to the base station 200.
  • 15 is a flowchart illustrating a method for a base station to receive a sounding reference signal in a wireless communication system according to another embodiment of the present specification.
  • a method for receiving a sounding reference signal (SRS) by a base station in a wireless communication system is a method for transmitting SRS configuration information (S1510) and power headroom. It includes a step of receiving a message including information (S1520), a step of transmitting a DCI triggering an SRS (S1530), and a step of receiving an SRS (S1540).
  • the base station transmits configuration information related to transmission of a sounding reference signal (SRS) to the terminal.
  • the SRS may be an additional SRS (additional SRS).
  • additional SRS additional SRS
  • the SRS may be set in a region composed of at least one symbol other than the last symbol of a subframe.
  • the operation of the base station (100/200 of FIGS. 16 to 20) transmitting configuration information related to transmission of the sounding reference signal (SRS) to the terminal (100/200 of FIGS. 16 to 20) is It can be implemented by the device of FIGS. 16 to 20.
  • one or more processors 202 may transmit configuration information related to transmission of a sounding reference signal (SRS) to the terminal 100 by one or more transceivers 206 and/or one or more memories. You can control 204.
  • the base station receives a message including information on power headroom (PH) related to the transmission power of the SRS from the terminal.
  • PH power headroom
  • the PH may be related to a specific type of Power Headroom Report (PHR). This embodiment may be based on the proposal 1-1 of Method 2 above.
  • the specific type is a type of power headroom report for a serving cell in which a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) are not configured. It can be based.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the message may be based on a PHR MAC CE (Power Headroom Report MAC CE).
  • the PH may be Type 3 PH.
  • the message when the message is transmitted based on a pre-configured timer or a trigger condition, acquisition of the PH is performed based on configuration information for reporting of the Type 3 PH.
  • the target for can be determined.
  • the object for obtaining the PH may be i) the SRS or ii) an SRS in a secondary cell in which a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the configuration information for reporting of the Type 3 PH may be set through a higher layer.
  • the operation of receiving a message including information may be implemented by the devices of FIGS. 16 to 20.
  • one or more processors 202 may receive one or more messages from the terminal 100 including information on power headroom (PH) related to the transmission power of the SRS. It is possible to control the transceiver 206 and/or one or more memories 204.
  • the base station transmits downlink control information (DCI) for triggering transmission of the SRS to the terminal.
  • DCI downlink control information
  • the DCI may include a transmission power control command (TPC command) related to control of the transmission power of the SRS.
  • TPC command may be transmitted by being included in a DCI other than the DCI triggering the transmission of the SRS.
  • the TPC command may be obtained based on blind detection related to downlink control information (DCI).
  • the blind detection may be performed based on a plurality of RNTIs related to TPC. This embodiment may be based on the proposal 1-2 of Method 1 above.
  • the plurality of RNTIs related to the TPC may include a first RNTI and a second RNTI.
  • the TPC command may be obtained through the blind detection based on the second RNTI.
  • the second RNTI may be based on a preset RNTI for additional SRS (additional SRS).
  • additional SRS additional SRS
  • the second RNTI may be based on the srs-TPC-RNTI-additionalSRS described above.
  • the first RNTI may be an existing RNTI related to TPC.
  • the first RNTI may be based on srs-TPC-RNTI.
  • a TPC command for an SRS in a secondary cell in which a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured can be obtained. I can.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the base station (100/200 of FIGS. 16 to 20) triggers transmission of the SRS to the terminal (100/200 of FIGS. 16 to 20) downlink control information (Downlink Control Information, DCI)
  • DCI Downlink Control Information
  • the operation of transmitting may be implemented by the apparatus of FIGS. 16 to 20.
  • at least one processor 202 transmits downlink control information (DCI) triggering transmission of the SRS to the terminal 100, and one or more transceivers 206 and /Or one or more of the memories 204 may be controlled.
  • DCI downlink control information
  • the base station receives the SRS from the terminal.
  • the SRS is transmitted as transmission power based on a transmission power control command (TPC command) related to transmission power control.
  • TPC command transmission power control command
  • Transmission power based on the TPC command may be determined as described above in operation of the base station for SRS power control.
  • one or more processors 202 may control one or more transceivers 206 and/or one or more memories 204 to receive the SRS from the terminal 100.
  • FIG. 16 illustrates a communication system 1 applied to the present specification.
  • a communication system 1 applied to the present specification includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices. It can be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, and the like.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f/base station 200, and the base station 200/base station 200.
  • wireless communication/connection includes various wireless access such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, Integrated Access Backhaul). This can be achieved through technology (eg 5G NR)
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive radio signals to each other.
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive signals through various physical channels.
  • At least some of a process of setting various configuration information various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation process, and the like may be performed.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation process e.g., resource allocation process, and the like.
  • FIG. 17 illustrates a wireless device applicable to the present specification.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is the ⁇ wireless device 100x, the base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. ⁇ Can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a radio signal including the first information/signal through the transceiver 106.
  • the processor 102 may store information obtained from signal processing of the second information/signal in the memory 104 after receiving a radio signal including the second information/signal through the transceiver 106.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed herein. It is possible to store software code including:
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
  • Transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 and one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, the memory 204 may perform some or all of the processes controlled by the processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It is possible to store software code including:
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be connected to the processor 202 and may transmit and/or receive radio signals through one or more antennas 208.
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, and SDAP).
  • One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed in this document. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or operational flow chart disclosed herein. At least one processor (102, 202) generates a signal (e.g., a baseband signal) containing PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , Can be provided to one or more transceivers (106, 206).
  • a signal e.g., a baseband signal
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the description, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document are configured to perform firmware or software included in one or more processors 102, 202, or stored in one or more memories 104, 204, and It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions, and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more of the memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
  • one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
  • One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc., mentioned in the description, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document from one or more other devices. have.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), one or more transceivers (106, 206) through the one or more antennas (108, 208), the description and functions disclosed in this document.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • one or more of the transceivers 106 and 206 may include (analog) oscillators and/or filters.
  • the signal processing circuit 1000 may include a scrambler 1010, a modulator 1020, a layer mapper 1030, a precoder 1040, a resource mapper 1050, and a signal generator 1060.
  • the operations/functions of FIG. 18 may be performed in the processors 102 and 202 and/or the transceivers 106 and 206 of FIG. 17.
  • the hardware elements of FIG. 18 may be implemented in the processors 102 and 202 and/or the transceivers 106 and 206 of FIG. 17.
  • blocks 1010 to 1060 may be implemented in the processors 102 and 202 of FIG. 17.
  • blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 17, and block 1060 may be implemented in the transceivers 106 and 206 of FIG. 17.
  • the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 18.
  • the codeword is an encoded bit sequence of an information block.
  • the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
  • the codeword may be converted into a scrambled bit sequence by the scrambler 1010.
  • the scramble sequence used for scramble is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like.
  • the scrambled bit sequence may be modulated by the modulator 1020 into a modulation symbol sequence.
  • the modulation scheme may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
  • the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030.
  • the modulation symbols of each transport layer may be mapped to the corresponding antenna port(s) by the precoder 1040 (precoding).
  • the output z of the precoder 1040 can be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N*M.
  • N is the number of antenna ports
  • M is the number of transmission layers.
  • the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transform) on complex modulation symbols. Also, the precoder 1040 may perform precoding without performing transform precoding.
  • the resource mapper 1050 may map modulation symbols of each antenna port to a time-frequency resource.
  • the time-frequency resource may include a plurality of symbols (eg, CP-OFDMA symbols, DFT-s-OFDMA symbols) in the time domain, and may include a plurality of subcarriers in the frequency domain.
  • CP Cyclic Prefix
  • DAC Digital-to-Analog Converter
  • the signal processing process for the received signal in the wireless device may be configured as the reverse of the signal processing process 1010 to 1060 of FIG. 18.
  • a wireless device eg, 100 and 200 in FIG. 17
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP canceller, and a Fast Fourier Transform (FFT) module.
  • ADC analog-to-digital converter
  • FFT Fast Fourier Transform
  • the baseband signal may be reconstructed into a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a de-scramble process.
  • a signal processing circuit for a received signal may include a signal restorer, a resource demapper, a postcoder, a demodulator, a descrambler, and a decoder.
  • FIG. 19 shows another example of a wireless device applied to the present specification.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 16).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 17, and various elements, components, units/units, and/or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • the communication circuit 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 17.
  • the transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 17.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or externally through the communication unit 110 (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • an external eg, other communication device
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 16, 100a), vehicles (FIGS. 16, 100b-1, 100b-2), XR devices (FIGS. 16, 100c), portable devices (FIGS. 16, 100d), and home appliances. (Figs. 16, 100e), IoT devices (Figs.
  • the wireless device can be used in a mobile or fixed place depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit eg, 130, 140
  • each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements.
  • the control unit 120 may be configured with one or more processor sets.
  • control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), and portable computers (eg, notebook computers).
  • the portable device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input/output unit 140c. ) Can be included.
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. 19, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may perform various operations by controlling components of the portable device 100.
  • the controller 120 may include an application processor (AP).
  • the memory unit 130 may store data/parameters/programs/codes/commands required for driving the portable device 100.
  • the memory unit 130 may store input/output data/information, and the like.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support connection between the portable device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, audio input/output ports, video input/output ports) for connection with external devices.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
  • the input/output unit 140c acquires information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130. Can be saved.
  • the communication unit 110 may convert the information/signal stored in the memory into a wireless signal, and may directly transmit the converted wireless signal to another wireless device or to a base station.
  • the communication unit 110 may restore the received radio signal to the original information/signal.
  • the restored information/signal is stored in the memory unit 130, it may be output in various forms (eg, text, voice, image, video, heptic) through the input/output unit 140c.
  • a message including information on power headroom (PH) related to transmission power of the SRS is transmitted.
  • the PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is based on the type of power headroom report for a serving cell in which the Uplink Control Channel (PUCCH) is not configured.
  • PHR Power Headroom Report
  • PUSCH physical uplink shared channel
  • PUCCH Uplink Control Channel
  • An additional SRS (additional SRS) power headroom report may be performed based on an existing type (Type 3) scheme. Accordingly, power control independent of the legacy SRS may be performed for additional SRS without any other influence on the existing power headroom reporting operation.
  • the wireless communication technology implemented in the wireless device (eg, 100/200 of FIG. 17) of the present specification may include LTE, NR, and 6G, as well as Narrowband Internet of Things for low-power communication.
  • the NB-IoT technology may be an example of a Low Power Wide Area Network (LPWAN) technology, and may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and limited to the above name no.
  • LPWAN Low Power Wide Area Network
  • the wireless communication technology implemented in the wireless device (eg, 100/200 of FIG. 17) of the present specification may perform communication based on the LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be referred to by various names such as enhanced machine type communication (eMTC).
  • eMTC enhanced machine type communication
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-Bandwidth Limited (BL), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above-described name.
  • the wireless communication technology implemented in the wireless device (eg, 100/200 in FIG. 17) of the present specification is ZigBee, Bluetooth, and Low Power Wide Area Network in consideration of low power communication.
  • LPWAN may include at least one of, but is not limited to the above-described name.
  • ZigBee technology can create personal area networks (PANs) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and may be referred to by various names.
  • an embodiment of the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention provides one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, etc.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • an embodiment of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • the software code can be stored in a memory and driven by a processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor through various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method for a terminal to transmit a Sounding Reference Signal (SRS) in a wireless communication system according to an embodiment of the present specification comprises the steps of: receiving setting information about an SRS; transmitting a message including information about Power Headroom (PH) related to the transmission power of the SRS; receiving Downlink Control Information (DCI) for triggering the transmission of the SRS; and transmitting the SRS. The PF is characterized by being related to a Power Headroom Report (PHR) of a specific type, wherein the specific type is based on the type of the PHR for a serving cell in which a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) are not set.

Description

무선 통신 시스템에서 사운딩 참조 신호 송수신 방법 및 장치Method and apparatus for transmitting/receiving sounding reference signal in wireless communication system
본 발명은 무선 통신 시스템에서 사운딩 참조 신호 송수신 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for transmitting and receiving a sounding reference signal in a wireless communication system.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.Mobile communication systems have been developed to provide voice services while ensuring user activity. However, the mobile communication system has expanded to not only voice but also data services, and nowadays, due to the explosive increase in traffic, a shortage of resources is caused and users request higher speed services, so a more advanced mobile communication system is required. .
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.The requirements of the next-generation mobile communication system are largely explosive data traffic acceptance, a dramatic increase in transmission rate per user, a largely increased number of connected devices, very low end-to-end latency, and support for high energy efficiency. You should be able to. To this end, Dual Connectivity, Massive Multiple Input Multiple Output (MIMO), In-band Full Duplex, Non-Orthogonal Multiple Access (NOMA), Super Wideband Various technologies such as wideband) support and device networking are being studied.
본 명세서는 사운딩 참조 신호(Sounding Reference Signal, SRS)의 전송 방법을 제안한다. This specification proposes a method of transmitting a sounding reference signal (SRS).
서브프레임의 마지막 심볼에서 전송되는 레거시 SRS와 상기 마지막 심볼을 제외한 하나 이상의 심볼에서 전송되는 추가적인 SRS(additional SRS)는 그 목적이 상이하다. 레거시 SRS의 목적은 주로 상향링크 채널 정보 획득과 UL link 적응인 반면, 추가적인 SRS의 목적은 하향링크 채널 획득을 위한 용량(capacity) 및 커버리지(coverage)를 강화하는 것이다. 상기와 같이 목적상의 차이를 고려할 때, 추가적인 SRS의 전송을 위해서는 독립된 전력 제어가 지원될 필요가 있다.A legacy SRS transmitted in the last symbol of a subframe and an additional SRS (additional SRS) transmitted in one or more symbols other than the last symbol have different purposes. The purpose of the legacy SRS is mainly to acquire uplink channel information and adapt the UL link, while the purpose of the additional SRS is to enhance the capacity and coverage for downlink channel acquisition. When considering the difference in purpose as described above, independent power control needs to be supported for transmission of an additional SRS.
본 명세서는 상술한 과제를 해결하기 위한 방법을 제안한다.The present specification proposes a method for solving the above-described problem.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems that are not mentioned will be clearly understood by those of ordinary skill in the technical field to which the present invention belongs from the following description. I will be able to.
본 명세서의 일 실시예에 따른 무선 통신 시스템에서 단말이 사운딩 참조 신호(Sounding Reference Signal, SRS)를 전송하는 방법은 사운딩 참조 신호(SRS)의 설정 정보를 수신하는 단계, 상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지를 전송하는 단계, 상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계 및 상기 SRS를 전송하는 단계를 포함한다.In a wireless communication system according to an embodiment of the present specification, a method for transmitting a sounding reference signal (SRS) by a terminal includes receiving configuration information of a sounding reference signal (SRS), and transmission power of the SRS. Transmitting a message including information on power headroom (PH) related to the SRS, receiving downlink control information (DCI) triggering transmission of the SRS, and transmitting the SRS It includes the step of.
상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정되고, 상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송된다.The SRS is set in a region composed of at least one symbol excluding the last symbol of a subframe, and the SRS is transmitted with transmission power based on a transmission power control command (TPC command) related to transmission power control.
상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며, 상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반하는 것을 특징으로 한다.The PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is characterized in that it is based on a type of power headroom report for a serving cell in which an Uplink Control Channel (PUCCH) is not configured.
상기 메시지는 PHR MAC CE(Power Headroom Report MAC CE)에 기반할 수 있다.The message may be based on PHR MAC CE (Power Headroom Report MAC CE).
상기 PH는 Type 3 PH일 수 있다.The PH may be Type 3 PH.
상기 메시지가 미리 설정된 타이머(pre-configured timer) 또는 트리거 조건(trigger condition)에 기반하여 전송되는 경우, 상기 Type 3 PH의 보고를 위한 설정 정보에 기반하여 상기 PH의 획득을 위한 대상이 결정될 수 있다.When the message is transmitted based on a pre-configured timer or a trigger condition, a target for obtaining the PH may be determined based on configuration information for reporting of the Type 3 PH. .
상기 PH의 획득을 위한 대상은 i) 상기 SRS 또는 ii) 물리 상향링크 공유 채널(PUSCH) 및 물리 상향링크 제어 채널(PUCCH)이 설정되지 않은 세컨더리 셀(SCell)에서의 SRS일 수 있다.The object for obtaining the PH may be i) the SRS or ii) an SRS in a secondary cell in which a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured.
상기 Type 3 PH의 보고를 위한 설정 정보는 상위 계층(higher layer)을 통해 설정될 수 있다.The configuration information for reporting of the Type 3 PH may be set through a higher layer.
상기 TPC command는 하향링크 제어 정보(Downlink Control Information, DCI)와 관련된 블라인드 검출(blind detection)에 기반하여 획득되며, 상기 블라인드 검출은 TPC와 관련된 복수의 RNTI들에 기반하여 수행될 수 있다.The TPC command is acquired based on blind detection related to downlink control information (DCI), and the blind detection may be performed based on a plurality of RNTIs related to TPC.
상기 TPC와 관련된 복수의 RNTI들은 제1 RNTI 및 제2 RNTI를 포함하며, 상기 제2 RNTI에 기반하는 상기 블라인드 검출을 통해 상기 TPC command가 획득될 수 있다.The plurality of RNTIs related to the TPC includes a first RNTI and a second RNTI, and the TPC command may be obtained through blind detection based on the second RNTI.
상기 제1 RNTI는 srs-TPC-RNTI에 기반하며, 상기 srs-TPC-RNTI에 기반하는 상기 블라인드 검출을 통해 물리 상향링크 공유 채널(PUSCH) 및 물리 상향링크 제어 채널(PUCCH)이 설정되지 않은 세컨더리 셀(SCell)에서의 SRS를 위한 TPC command가 획득될 수 있다.The first RNTI is based on srs-TPC-RNTI, and a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured through the blind detection based on the srs-TPC-RNTI. A TPC command for SRS in a cell may be obtained.
본 명세서의 다른 실시예에 따른 무선 통신 시스템에서 사운딩 참조 신호(Sounding Reference Signal, SRS)를 전송하는 단말은 하나 이상의 송수신기,In a wireless communication system according to another embodiment of the present specification, a terminal transmitting a sounding reference signal (SRS) includes one or more transceivers,
상기 하나 이상의 송수신기를 제어하는 하나 이상의 프로세서들 및 상기 하나 이상의 프로세서들에 동작 가능하게 접속 가능하고, 상기 하나 이상의 프로세서들에 의해 상기 사운딩 참조 신호의 전송이 실행될 때, 동작들을 수행하는 지시(instruction)들을 저장하는 하나 이상의 메모리들을 포함한다.One or more processors that control the one or more transceivers and the one or more processors are operably accessible, and when transmission of the sounding reference signal is executed by the one or more processors, an instruction for performing operations ) Containing one or more memories.
상기 동작들은 사운딩 참조 신호(SRS)의 설정 정보를 수신하는 단계, 상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지를 전송하는 단계, 상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계 및 상기 SRS를 전송하는 단계를 포함한다.The operations include receiving setting information of a sounding reference signal (SRS), transmitting a message including information on power headroom (PH) related to the transmission power of the SRS, and transmitting the SRS. And receiving downlink control information (DCI) for triggering and transmitting the SRS.
상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정되고, 상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송된다.The SRS is set in a region composed of at least one symbol excluding the last symbol of a subframe, and the SRS is transmitted with transmission power based on a transmission power control command (TPC command) related to transmission power control.
상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며, 상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반하는 것을 특징으로 한다.The PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is characterized in that it is based on a type of power headroom report for a serving cell in which an Uplink Control Channel (PUCCH) is not configured.
상기 메시지는 PHR MAC CE(Power Headroom Report MAC CE)에 기반하는 것을 특징으로 한다.The message is characterized in that it is based on PHR MAC CE (Power Headroom Report MAC CE).
본 명세서의 또 다른 실시예에 따른 장치는 하나 이상의 메모리들 및 상기 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함한다. An apparatus according to another embodiment of the present specification includes one or more memories and one or more processors that are functionally connected to the one or more memories.
상기 하나 이상의 프로세서들은 상기 장치가 사운딩 참조 신호(SRS)의 설정 정보를 수신하고, 상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지를 전송하며, 상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하고, 상기 SRS를 전송하도록 설정된다.The one or more processors receive the setting information of the sounding reference signal (SRS) by the device, and transmit a message including information on the power headroom (PH) related to the transmission power of the SRS, and the It is configured to receive downlink control information (DCI) triggering transmission of the SRS and transmit the SRS.
상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정되고, 상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송된다.The SRS is set in a region composed of at least one symbol excluding the last symbol of a subframe, and the SRS is transmitted with transmission power based on a transmission power control command (TPC command) related to transmission power control.
상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며, 상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반하는 것을 특징으로 한다.The PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is characterized in that it is based on a type of power headroom report for a serving cell in which an Uplink Control Channel (PUCCH) is not configured.
본 명세서의 또 다른 실시예에 따른 하나 이상의 비일시적(non-transitory) 컴퓨터 판독 가능 매체는 하나 이상의 명령어를 저장한다.One or more non-transitory computer-readable media according to another embodiment of the present specification store one or more instructions.
하나 이상의 프로세서에 의해 실행 가능한 하나 이상의 명령어는 단말이 사운딩 참조 신호(SRS)의 설정 정보를 수신하고, 상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지를 전송하며, 상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하고, 상기 SRS를 전송하도록 설정된다.At least one command executable by one or more processors is a message in which the terminal receives the setting information of the sounding reference signal (SRS) and includes information on the power headroom (PH) related to the transmission power of the SRS. Is configured to transmit, receive downlink control information (DCI) triggering transmission of the SRS, and transmit the SRS.
상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정되고, 상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송된다.The SRS is set in a region composed of at least one symbol excluding the last symbol of a subframe, and the SRS is transmitted with transmission power based on a transmission power control command (TPC command) related to transmission power control.
상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며, 상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반하는 것을 특징으로 한다.The PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is characterized in that it is based on a type of power headroom report for a serving cell in which an Uplink Control Channel (PUCCH) is not configured.
본 명세서의 또 다른 실시예에 따른 무선 통신 시스템에서 기지국이 사운딩 참조 신호(Sounding Reference Signal, SRS)를 수신하는 방법은 사운딩 참조 신호(SRS)의 설정 정보를 전송하는 단계, 상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지를 수신하는 단계, 상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 전송하는 단계 및 상기 SRS를 수신하는 단계를 포함한다.In a wireless communication system according to another embodiment of the present specification, a method for receiving a sounding reference signal (SRS) by a base station includes transmitting configuration information of a sounding reference signal (SRS), and transmission of the SRS. Receiving a message including information on power headroom (PH) related to power, transmitting downlink control information (DCI) triggering transmission of the SRS, and transmitting the SRS And receiving.
상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정되고, 상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송된다.The SRS is set in a region composed of at least one symbol excluding the last symbol of a subframe, and the SRS is transmitted with transmission power based on a transmission power control command (TPC command) related to transmission power control.
상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며, 상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반하는 것을 특징으로 한다.The PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is characterized in that it is based on a type of power headroom report for a serving cell in which an Uplink Control Channel (PUCCH) is not configured.
본 명세서의 또 다른 실시예에 따른 무선 통신 시스템에서 사운딩 참조 신호(Sounding Reference Signal, SRS)를 수신하는 기지국은 하나 이상의 송수신기, 상기 하나 이상의 송수신기를 제어하는 하나 이상의 프로세서들 및 상기 하나 이상의 프로세서들에 동작 가능하게 접속 가능하고, 상기 하나 이상의 프로세서들에 의해 상기 사운딩 참조 신호의 수신이 실행될 때, 동작들을 수행하는 지시(instruction)들을 저장하는 하나 이상의 메모리들을 포함한다.In a wireless communication system according to another embodiment of the present specification, a base station receiving a sounding reference signal (SRS) includes one or more transceivers, one or more processors controlling the one or more transceivers, and the one or more processors. And one or more memories storing instructions for performing operations when reception of the sounding reference signal is executed by the one or more processors.
상기 동작들은 사운딩 참조 신호(SRS)의 설정 정보를 전송하는 단계, 상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지를 수신하는 단계, 상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 전송하는 단계 및 상기 SRS를 수신하는 단계를 포함한다.The operations include transmitting setting information of a sounding reference signal (SRS), receiving a message including information on power headroom (PH) related to the transmission power of the SRS, and transmitting the SRS. And transmitting downlink control information (DCI) that triggers the operation and receiving the SRS.
상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정되고, 상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송된다.The SRS is set in a region composed of at least one symbol excluding the last symbol of a subframe, and the SRS is transmitted with transmission power based on a transmission power control command (TPC command) related to transmission power control.
상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며, 상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반하는 것을 특징으로 한다.The PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is characterized in that it is based on a type of power headroom report for a serving cell in which an Uplink Control Channel (PUCCH) is not configured.
본 명세서의 일 실시예에 의하면, 상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지가 전송된다. 상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며, 상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반한다.According to an embodiment of the present specification, a message including information on power headroom (PH) related to transmission power of the SRS is transmitted. The PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is based on the type of power headroom report for a serving cell in which the Uplink Control Channel (PUCCH) is not configured.
기존의 타입(Type 3)의 방식에 기초하여 추가적인 SRS(additional SRS)의 전력 헤드룸 보고가 수행될 수 있다. 따라서, 기존의 전력 헤드룸 보고 동작에 다른 영향을 미치지 않으면서 추가적인 SRS를 위해 레거시 SRS와는 독립적인 전력 제어가 수행될 수 있다. An additional SRS (additional SRS) power headroom report may be performed based on an existing type (Type 3) scheme. Accordingly, power control independent of the legacy SRS may be performed for additional SRS without any other influence on the existing power headroom reporting operation.
본 명세서에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present specification are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those of ordinary skill in the art from the following description. .
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.1 shows a structure of a radio frame in a wireless communication system to which the method proposed in the present specification can be applied.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the method proposed in the present specification can be applied.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.3 shows a structure of a downlink subframe in a wireless communication system to which the method proposed in this specification can be applied.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.4 shows a structure of an uplink subframe in a wireless communication system to which the method proposed in the present specification can be applied.
도 5는 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다.5 illustrates physical channels and general signal transmission used in a 3GPP system.
도 6은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 SRS를 포함한 상향링크 서브 프레임을 예시한다.6 illustrates an uplink subframe including an SRS in a wireless communication system to which the method proposed in the present specification can be applied.
도 7은 본 명세서에서 제안하는 방법이 적용될 수 있는 컴포넌트 캐리어 및 캐리어 병합의 일 예를 나타낸다.7 shows an example of component carrier and carrier aggregation to which the method proposed in the present specification can be applied.
도 8은 본 명세서에서 제안하는 방법이 적용될 수 있는 캐리어 병합을 지원하는 시스템에서 셀의 구분을 예시한 도면이다.8 is a diagram illustrating cell division in a system supporting carrier aggregation to which the method proposed in the present specification can be applied.
도 9는 본 명세서에서 제안하는 방법이 적용될 수 있는 PHR MAC 제어 요소를 예시한다.9 illustrates a PHR MAC control element to which the method proposed in this specification can be applied.
도 10a는 본 명세서에서 제안하는 방법이 적용될 수 있는 Extended PHR MAC CE의 일 예를 나타낸다. 10A shows an example of an extended PHR MAC CE to which the method proposed in the present specification can be applied.
도 10b는 본 명세서에서 제안하는 방법이 적용될 수 있는 Extended PHR MAC CE의 다른 예를 나타낸다.10B shows another example of an Extended PHR MAC CE to which the method proposed in the present specification can be applied.
도 11은 본 명세서의 실시예에 따른 기지국의 SRS 수신 방법을 예시한다.11 illustrates a method of receiving an SRS by a base station according to an embodiment of the present specification.
도 12는 본 명세서의 실시예에 따른 단말의 SRS 전송 방법을 예시한다.12 illustrates an SRS transmission method of a terminal according to an embodiment of the present specification.
도 13은 본 명세서의 실시예에 따른 단말의 전력 헤드룸 보고를 위한 방법을 예시한다.13 illustrates a method for reporting power headroom of a terminal according to an embodiment of the present specification.
도 14는 본 명세서의 일 실시예에 따른 무선 통신 시스템에서 단말이 사운딩 참조 신호를 전송하기 위한 방법을 설명하기 위한 흐름도이다.14 is a flowchart illustrating a method for a terminal to transmit a sounding reference signal in a wireless communication system according to an embodiment of the present specification.
도 15는 본 명세서의 다른 실시예에 따른 무선 통신 시스템에서 기지국이 사운딩 참조 신호를 수신하기 위한 방법을 설명하기 위한 흐름도이다.15 is a flowchart illustrating a method for a base station to receive a sounding reference signal in a wireless communication system according to another embodiment of the present specification.
도 16은 본 명세서에 적용되는 통신 시스템(1)을 예시한다.16 illustrates a communication system 1 applied to the present specification.
도 17은 본 명세서에 적용될 수 있는 무선 기기를 예시한다.17 illustrates a wireless device applicable to the present specification.
도 18은 본 명세서에 적용되는 신호 처리 회로를 예시한다.18 illustrates a signal processing circuit applied to the present specification.
도 19는 본 명세서에 적용되는 무선 기기의 다른 예를 나타낸다.19 shows another example of a wireless device applied to the present specification.
도 20은 본 명세서에 적용되는 휴대 기기를 예시한다.20 illustrates a portable device applied to the present specification.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 동일하거나 유사한 구성요소에는 동일, 유사한 도면 부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, exemplary embodiments disclosed in the present specification will be described in detail with reference to the accompanying drawings, but the same or similar components are assigned the same and similar reference numerals, and redundant descriptions thereof will be omitted. The suffixes "module" and "unit" for constituent elements used in the following description are given or used interchangeably in consideration of only the ease of writing the specification, and do not themselves have a distinct meaning or role from each other. In addition, in describing the embodiments disclosed in the present specification, when it is determined that a detailed description of related known technologies may obscure the subject matter of the embodiments disclosed in the present specification, the detailed description thereof will be omitted. In addition, the accompanying drawings are for easy understanding of the embodiments disclosed in the present specification, and the technical idea disclosed in the present specification is not limited by the accompanying drawings, and all changes included in the spirit and scope of the present invention It should be understood to include equivalents or substitutes.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(general NB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.In the present specification, a base station has a meaning as a terminal node of a network that directly communicates with a terminal. The specific operation described as being performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is apparent that various operations performed for communication with a terminal in a network comprising a plurality of network nodes including a base station may be performed by the base station or network nodes other than the base station. 'Base station (BS)' is a term such as fixed station, Node B, evolved-NodeB (eNB), base transceiver system (BTS), access point (AP), general NB (gNB), etc. Can be replaced by In addition,'Terminal' may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS ( Advanced Mobile Station), Wireless terminal (WT), Machine-Type Communication (MTC) device, Machine-to-Machine (M2M) device, Device-to-Device (D2D) device.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.Hereinafter, downlink (DL) means communication from a base station to a terminal, and uplink (UL) means communication from a terminal to a base station. In downlink, the transmitter may be part of the base station, and the receiver may be part of the terminal. In the uplink, the transmitter may be a part of the terminal, and the receiver may be a part of the base station.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.Specific terms used in the following description are provided to aid understanding of the present invention, and the use of these specific terms may be changed in other forms without departing from the technical spirit of the present invention.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.The following technologies include code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and NOMA. (Non-orthogonal multiple access) can be used in various wireless access systems such as. CDMA may be implemented with universal terrestrial radio access (UTRA) or radio technology such as CDMA2000. TDMA may be implemented with a radio technology such as global system for mobile communications (GSM)/general packet radio service (GPRS)/enhanced data rates for GSM evolution (EDGE). OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (evolved UTRA). UTRA is part of a universal mobile telecommunications system (UMTS). 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA and employs OFDMA in downlink and SC-FDMA in uplink. LTE-A (advanced) is an evolution of 3GPP LTE.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2 wireless access systems. That is, among the embodiments of the present invention, steps or parts not described in order to clearly reveal the technical idea of the present invention may be supported by the above documents. In addition, all terms disclosed in this document can be described by the standard document.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New Radio)를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.For clarity, 3GPP LTE/LTE-A/NR (New Radio) is mainly described, but the technical features of the present invention are not limited thereto.
본 발명이 적용될 수 있는 무선 통신 시스템 일반General wireless communication system to which the present invention can be applied
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.1 shows a structure of a radio frame in a wireless communication system to which the present invention can be applied.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.3GPP LTE/LTE-A supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
도 1에서 무선 프레임의 시간 영역에서의 크기는 T_s=1/(15000*2048)의 시간 단위의 배수로 표현된다. 하향링크 및 상향링크 전송은 T_f=307200*T_s=10ms의 구간을 가지는 무선 프레임으로 구성된다.In FIG. 1, the size of a radio frame in the time domain is expressed as a multiple of a time unit of T_s=1/(15000*2048). Downlink and uplink transmission consists of a radio frame having a period of T_f=307200*T_s=10ms.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 타입 1 무선 프레임은 전이중(full duplex) 및 반이중(half duplex) FDD에 모두 적용될 수 있다.1A illustrates the structure of a type 1 radio frame. The type 1 radio frame can be applied to both full duplex and half duplex FDD.
무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 무선 프레임은 T_slot=15360*T_s=0.5ms 길이의 20개의 슬롯으로 구성되고, 각 슬롯은 0부터 19까지의 인덱스가 부여된다. 하나의 서브프레임은 시간 영역(time domain)에서 연속적인 2개의 슬롯(slot)으로 구성되고, 서브프레임 i는 슬롯 2i 및 슬롯 2i+1로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.A radio frame consists of 10 subframes. One radio frame consists of 20 slots with a length of T_slot=15360*T_s=0.5ms, and each slot is assigned an index from 0 to 19. One subframe is composed of two consecutive slots in a time domain, and subframe i is composed of a slot 2i and a slot 2i+1. The time taken to transmit one subframe is referred to as a transmission time interval (TTI). For example, one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
FDD에서 상향링크 전송 및 하향링크 전송은 주파수 도메인에서 구분된다. 전이중 FDD에 제한이 없는 반면, 반이중 FDD 동작에서 단말은 동시에 전송 및 수신을 할 수 없다.In FDD, uplink transmission and downlink transmission are classified in the frequency domain. While there is no limitation on full-duplex FDD, the terminal cannot simultaneously transmit and receive in half-duplex FDD operation.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and includes a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, an OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period. A resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. (B) of FIG. 1 shows a frame structure type 2.
타입 2 무선 프레임은 각 153600*T_s=5ms의 길이의 2개의 하프 프레임(half frame)으로 구성된다. 각 하프 프레임은 30720*T_s=1ms 길이의 5개의 서브프레임으로 구성된다. The type 2 radio frame is composed of two half frames each having a length of 153600*T_s=5ms. Each half frame consists of 5 subframes with a length of 30720*T_s=1ms.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다. In the type 2 frame structure of the TDD system, the uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
표 1은 상향링크-하향링크 구성을 나타낸다.Table 1 shows an uplink-downlink configuration.
Uplink-Downlink configurationUplink-Downlink configuration Downlink-to-Uplink Switch-point periodicityDownlink-to-Uplink Switch-point periodicity Subframe numberSubframe number
00 1One 22 33 44 55 66 77 88 99
00 5ms5ms DD SS UU UU UU DD SS UU UU UU
1One 5ms5ms DD SS UU UU DD DD SS U U UU DD
22 5ms5ms DD SS UU DD DD DD SS U U DD DD
33 10ms10ms DD SS UU UU UU DD DD D D DD DD
44 10ms10ms DD SS UU UU DD DD DD DD DD DD
55 10ms10ms DD SS UU DD DD DD DD D D DD DD
66 5ms5ms DD SS UU UU UU DD SS UU UU DD
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot) 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다.Referring to Table 1, for each subframe of a radio frame,'D' represents a subframe for downlink transmission,'U' represents a subframe for uplink transmission, and'S' represents a Downlink Pilot (DwPTS). Time Slot), a guard period (GP), and an Uplink Pilot Time Slot (UpPTS) represent a special subframe composed of three fields.
DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. GP는 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.DwPTS is used for initial cell search, synchronization, or channel estimation in the terminal. The UpPTS is used for channel estimation at the base station and synchronization for uplink transmission of the terminal. The GP is a section for removing interference occurring in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
각 서브프레임 i는 각 T_slot=15360*T_s=0.5ms 길이의 슬롯 2i 및 슬롯 2i+1로 구성된다.Each subframe i is composed of slot 2i and slot 2i+1 of each T_slot=15360*T_s=0.5ms length.
상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.Uplink-downlink configurations can be classified into 7 types, and positions and/or numbers of downlink subframes, special subframes, and uplink subframes are different for each configuration.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다. The time point at which the downlink is changed to the uplink or the time point at which the uplink is switched to the downlink is called a switching point. Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are switched in the same manner, and both 5ms or 10ms are supported. In the case of a period of 5ms downlink-uplink switching time, the special subframe (S) exists for each half-frame, and in case of having a period of 5ms downlink-uplink switching time, only the first half-frame exists.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.In all configurations, subframes 0 and 5 and DwPTS are sections for downlink transmission only. UpPTS and subframe The subframe immediately following the subframe is always a period for uplink transmission.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.The uplink-downlink configuration is system information and may be known to both the base station and the terminal. The base station may notify the terminal of the change in the uplink-downlink allocation state of the radio frame by transmitting only the index of the configuration information whenever the uplink-downlink configuration information is changed. In addition, configuration information is a kind of downlink control information and can be transmitted through a PDCCH (Physical Downlink Control Channel) like other scheduling information, and as broadcast information, it is commonly transmitted to all terminals in a cell through a broadcast channel. It could be.
표 2는 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.Table 2 shows the configuration of a special subframe (length of DwPTS/GP/UpPTS).
Figure PCTKR2020013518-appb-img-000001
Figure PCTKR2020013518-appb-img-000001
도 1의 예시에 따른 무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.The structure of the radio frame according to the example of FIG. 1 is only one example, and the number of subcarriers included in the radio frame, the number of slots included in the subframe, and the number of OFDM symbols included in the slot may be variously changed. I can.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.Referring to FIG. 2, one downlink slot includes a plurality of OFDM symbols in the time domain. Here, one downlink slot includes 7 OFDM symbols and one resource block includes 12 subcarriers in the frequency domain, but is not limited thereto.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 Х 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 N^DL은 하향링크 전송 대역폭(bandwidth)에 종속한다.Each element on the resource grid is a resource element, and one resource block (RB) includes 12 Х 7 resource elements. The number N^DL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.The structure of the uplink slot may be the same as the structure of the downlink slot.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.3, in a first slot in a subframe, up to three OFDM symbols are a control region to which control channels are allocated, and the remaining OFDM symbols are a data region to which a physical downlink shared channel (PDSCH) is allocated ( data region). Examples of downlink control channels used in 3GPP LTE include Physical Control Format Indicator Channel (PCFICH), Physical Downlink Control Channel (PDCCH), and Physical Hybrid-ARQ Indicator Channel (PHICH).
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.The PCFICH is transmitted in the first OFDM symbol of a subframe, and carries information on the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels in the subframe. The PHICH is a response channel for the uplink and carries an Acknowledgment (ACK)/Not-Acknowledgement (NACK) signal for a Hybrid Automatic Repeat Request (HARQ). Control information transmitted through the PDCCH is called downlink control information (DCI). The downlink control information includes uplink resource allocation information, downlink resource allocation information, or an uplink transmission (Tx) power control command for an arbitrary terminal group.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.The PDCCH is a resource allocation and transmission format of a DL-SCH (downlink shared channel) (this is also referred to as a downlink grant), resource allocation information of an uplink shared channel (UL-SCH) (this is also referred to as an uplink grant), and PCH ( Resource allocation for upper-layer control messages such as paging information in Paging Channel, system information in DL-SCH, random access response transmitted in PDSCH, arbitrary terminal It can carry a set of transmission power control commands for individual terminals in a group, activation of VoIP (Voice over IP), and the like. A plurality of PDCCHs may be transmitted within the control region, and the UE may monitor the plurality of PDCCHs. The PDCCH is composed of a set of one or a plurality of consecutive control channel elements (CCEs). CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel. CCE corresponds to a plurality of resource element groups. The format of the PDCCH and the number of bits of the usable PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.The base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a cyclic redundancy check (CRC) to the control information. In the CRC, a unique identifier (this is called a Radio Network Temporary Identifier (RNTI)) is masked according to the owner or purpose of the PDCCH. If it is a PDCCH for a specific terminal, a unique identifier of the terminal, for example, a cell-RNTI (C-RNTI) may be masked on the CRC. Alternatively, if it is a PDCCH for a paging message, a paging indication identifier, for example, a P-RNTI (Paging-RNTI) may be masked on the CRC. If the PDCCH for system information, more specifically, a system information block (SIB), a system information identifier and a system information RNTI (SI-RNTI) may be masked on the CRC. In order to indicate a random access response, which is a response to transmission of the random access preamble of the terminal, a random access-RNTI (RA-RNTI) may be masked on the CRC.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다. Referring to FIG. 4, an uplink subframe can be divided into a control region and a data region in the frequency domain. A PUCCH (Physical Uplink Control Channel) carrying uplink control information is allocated to the control region. The data area is allocated a PUSCH (Physical Uplink Shared Channel) carrying user data. In order to maintain the single carrier characteristic, one UE does not simultaneously transmit PUCCH and PUSCH.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.The PUCCH for one UE is allocated a resource block (RB) pair in a subframe. RBs belonging to the RB pair occupy different subcarriers in each of the two slots. This is called that the RB pair allocated to the PUCCH is frequency hopping at the slot boundary.
물리 채널 및 일반적인 신호 전송Physical channel and general signal transmission
도 5는 3GPP 시스템에 이용되는 물리 채널들 및 일반적인 신호 전송을 예시한다. 무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.5 illustrates physical channels and general signal transmission used in a 3GPP system. In a wireless communication system, a terminal receives information from a base station through a downlink (DL), and the terminal transmits information to the base station through an uplink (UL). The information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information transmitted and received by them.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S501). 이를 위해, 단말은 기지국으로부터 주 동기 신호(Primary Synchronization Signal, PSS) 및 부 동기 신호(Secondary Synchronization Signal, SSS)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel, PBCH)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.When the terminal is powered on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S501). To this end, the terminal may receive a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) from the base station to synchronize with the base station and obtain information such as cell ID. Thereafter, the terminal may receive a physical broadcast channel (PBCH) from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S502).After completing the initial cell search, the UE acquires more detailed system information by receiving a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to the information carried on the PDCCH. It can be done (S502).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우, 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure, RACH)을 수행할 수 있다(S503 내지 S506). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S503 및 S505), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지((RAR(Random Access Response) message)를 수신할 수 있다. 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다(S506).Meanwhile, when accessing the base station for the first time or when there is no radio resource for signal transmission, the terminal may perform a random access procedure (RACH) with respect to the base station (S503 to S506). To this end, the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S503 and S505), and a response message to the preamble through a PDCCH and a corresponding PDSCH (RAR (Random Access Response) message) In the case of contention-based RACH, a contention resolution procedure may be additionally performed (S506).
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S507) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S508)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information, DCI)를 수신할 수 있다. 여기서, DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 사용 목적에 따라 포맷이 서로 다르게 적용될 수 있다. After performing the above-described procedure, the UE receives PDCCH/PDSCH (S507) and physical uplink shared channel (PUSCH)/physical uplink control channel as a general uplink/downlink signal transmission procedure. Control Channel; PUCCH) transmission (S508) may be performed. In particular, the terminal may receive downlink control information (DCI) through the PDCCH. Here, the DCI includes control information such as resource allocation information for the terminal, and different formats may be applied according to the purpose of use.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함할 수 있다. 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.On the other hand, the control information transmitted by the terminal to the base station through the uplink or received from the base station by the terminal is a downlink/uplink ACK/NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), a rank indicator (RI). ) And the like. The UE may transmit control information such as the above-described CQI/PMI/RI through PUSCH and/or PUCCH.
사운딩Sounding 참조 신호( Reference signal ( SRSSRS : Sounding Reference Signal): Sounding Reference Signal)
SRS는 주로 상향링크의 주파수-선택적 스케줄링을 수행하기 위하여 채널 품질 측정에 사용되며, 상향링크 데이터 및/또는 제어 정보의 전송과 관련되지 않는다. 그러나, 이에 한정되지 않으며 SRS는 전력 제어의 향상 또는 최근에 스케줄되어 있지 않은 단말들의 다양한 스타트-업(start-up) 기능을 지원하기 위한 다양한 다른 목적들을 위해 사용될 수 있다. 스타트-업 기능의 일례로, 초기의 변조 및 부호화 방식(MCS: Modulation and Coding Scheme), 데이터 전송을 위한 초기의 전력 제어, 타이밍 전진(timing advance) 및 주파수 반-선택적(semi-selective) 스케줄링이 포함될 수 있다. 이때, 주파수 반-선택적 스케줄링은 서브 프레임의 처음의 슬롯에 선택적으로 주파수 자원을 할당하고, 두번째 슬롯에서는 다른 주파수로 의사 랜덤(pseudo-randomly)하게 도약하여 주파수 자원을 할당하는 스케줄링을 말한다.SRS is mainly used for channel quality measurement to perform uplink frequency-selective scheduling, and is not related to transmission of uplink data and/or control information. However, the present invention is not limited thereto, and the SRS may be used for various other purposes to improve power control or to support various start-up functions of terminals that have not been recently scheduled. As an example of the start-up function, an initial modulation and coding scheme (MCS), initial power control for data transmission, timing advance, and frequency semi-selective scheduling are Can be included. In this case, frequency semi-selective scheduling refers to scheduling in which frequency resources are selectively allocated to the first slot of a subframe and pseudo-randomly hops to a different frequency in the second slot to allocate frequency resources.
또한, SRS는 상향링크와 하향링크 간에 무선 채널이 상호적(reciprocal)인 가정하에 하향링크 채널 품질을 측정하기 위하여 사용될 수 있다. 이러한 가정은 상향링크와 하향링크가 동일한 주파수 스펙트럼을 공유하고, 시간 영역에서는 분리된 시분할 듀플렉스(TDD: Time Division Duplex) 시스템에서 특히 유효하다In addition, the SRS can be used to measure the downlink channel quality under the assumption that the radio channel between the uplink and the downlink is reciprocal. This assumption is particularly effective in a Time Division Duplex (TDD) system where the uplink and the downlink share the same frequency spectrum and are separated in the time domain.
셀 내에서 어떠한 단말에 의하여 전송되는 SRS의 서브 프레임들은 셀-특정 방송 신호에 의하여 나타낼 수 있다. 4비트 셀-특정 'srsSubframeConfiguration' 파라미터는 SRS가 각 무선 프레임을 통해 전송될 수 있는 15가지의 가능한 서브 프레임의 배열을 나타낸다. 이러한 배열들에 의하여, 운용 시나리오(deployment scenario)에 따라 SRS 오버헤드(overhead)의 조정에 대한 유동성을 제공하게 된다. Subframes of the SRS transmitted by any terminal in the cell may be indicated by a cell-specific broadcast signal. The 4-bit cell-specific'srsSubframeConfiguration' parameter indicates an arrangement of 15 possible subframes in which the SRS can be transmitted through each radio frame. These arrangements provide liquidity for adjustment of the SRS overhead according to the deployment scenario.
이 중 16번째 배열은 셀 내에서 완전하게 SRS의 스위치를 오프하며, 이는 주로 고속 단말들을 서빙하는 서빙 셀에 적합하다.Of these, the 16th arrangement completely turns off the switch of the SRS in the cell, which is mainly suitable for a serving cell serving high-speed terminals.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 사운딩 참조 신호 심볼을 포함한 상향링크 서브 프레임을 예시한다.6 illustrates an uplink subframe including a sounding reference signal symbol in a wireless communication system to which the present invention can be applied.
도 6을 참조하면, SRS는 배열된 서브 프레임 상에서 항상 마지막 SC-FDMA 심볼을 통해 전송된다. 따라서, SRS와 DMRS는 다른 SC-FDMA 심볼에 위치하게 된다. Referring to FIG. 6, the SRS is always transmitted through the last SC-FDMA symbol on the arranged subframe. Therefore, the SRS and DMRS are located in different SC-FDMA symbols.
PUSCH 데이터 전송은 SRS 전송을 위한 특정의 SC-FDMA 심볼에서는 허용되지 않으며, 결과적으로 사운딩(sounding) 오버헤드가 가장 높은 경우 즉, 모든 서브 프레임에 SRS 심볼이 포함되는 경우라도 사운딩 오버헤드는 약 7%를 초과하지 않는다. PUSCH data transmission is not allowed in a specific SC-FDMA symbol for SRS transmission, and as a result, when the sounding overhead is the highest, that is, even when the SRS symbol is included in all subframes, the sounding overhead is It does not exceed about 7%.
각 SRS 심볼은 주어진 시간 단위와 주파수 대역에 관한 기본 시퀀스(랜덤 시퀀스 또는 Zadoff-Ch(ZC)에 기초한 시퀀스 세트)에 의하여 생성되고, 동일 셀 내의 모든 단말들은 동일한 기본 시퀀스를 사용한다. 이때, 동일한 주파수 대역과 동일한 시간에서 동일 셀 내의 복수의 단말로부터의 SRS 전송은 기본 시퀀스의 서로 다른 순환 이동(cyclic shift)에 의해 직교(orthogonal)되어 서로 구별된다. Each SRS symbol is generated by a basic sequence (random sequence or a sequence set based on Zadoff-Ch(ZC)) for a given time unit and frequency band, and all terminals in the same cell use the same basic sequence. At this time, SRS transmissions from a plurality of terminals in the same cell at the same frequency band and at the same time are orthogonal by different cyclic shifts of the basic sequence to be distinguished from each other.
각각의 셀 마다 서로 다른 기본 시퀀스가 할당되는 것에 의하여 서로 다른 셀로부터의 SRS 시퀀스가 구별될 수 있으나, 서로 다른 기본 시퀀스 간에 직교성은 보장되지 않는다.SRS sequences from different cells can be distinguished by being assigned a different base sequence to each cell, but orthogonality between different base sequences is not guaranteed.
NRNR 시스템에서의 In the system SRSSRS 전송 send
NR 시스템에서, SRS 자원에 대한 SRS의 시퀀스(sequence)는 아래 수학식 1에 따라 생성될 수 있다.In the NR system, a sequence of SRSs for SRS resources may be generated according to Equation 1 below.
Figure PCTKR2020013518-appb-img-000002
Figure PCTKR2020013518-appb-img-000002
수학식 1에서,
Figure PCTKR2020013518-appb-img-000003
는 SRS의 시퀀스 번호(sequence number, v) 및 시퀀스 그룹(sequence group, u)에 의해 설정된 시퀀스를 나타내며, 전송 콤브(transmission comb, TC) 번호 K_TC(
Figure PCTKR2020013518-appb-img-000004
)는 상위 계층 파라미터인 SRS-TransmissionComb에 포함될 수 있다.
In Equation 1,
Figure PCTKR2020013518-appb-img-000003
Represents a sequence set by the sequence number (v) and sequence group (u) of the SRS, and the transmission comb (TC) number K_TC (
Figure PCTKR2020013518-appb-img-000004
) May be included in the upper layer parameter SRS-TransmissionComb.
또한, 안테나 포트
Figure PCTKR2020013518-appb-img-000005
에 대한 순환 쉬프트(cyclic shift, SC)
Figure PCTKR2020013518-appb-img-000006
는 는 아래 수학식 2와 같이 주어질 수 있다.
Also, the antenna port
Figure PCTKR2020013518-appb-img-000005
Cyclic shift (SC)
Figure PCTKR2020013518-appb-img-000006
May be given as in Equation 2 below.
Figure PCTKR2020013518-appb-img-000007
Figure PCTKR2020013518-appb-img-000007
수학식 2에서,
Figure PCTKR2020013518-appb-img-000008
는 상위 계층 파라미터 SRS-CyclicShiftConfig에 의해 주어질 수 있다. 또한, 순환 쉬프트의 최대 값(maximum number)은 K_TC가 4인 경우 12(즉,
Figure PCTKR2020013518-appb-img-000009
=12 )이며, K_TC가 2인 경우 8(즉,
Figure PCTKR2020013518-appb-img-000010
=8 )일 수 있다.
In Equation 2,
Figure PCTKR2020013518-appb-img-000008
May be given by the upper layer parameter SRS-CyclicShiftConfig. In addition, the maximum number of cyclic shift is 12 (that is, when K_TC is 4)
Figure PCTKR2020013518-appb-img-000009
= 12 ), and if K_TC is 2, 8 (i.e.
Figure PCTKR2020013518-appb-img-000010
=8).
상기 시퀀스 그룹(u)(
Figure PCTKR2020013518-appb-img-000011
) 및 시퀀스 번호(u)는 상위 계층 파라미터 SRS-GroupSequenceHopping에 따를 수 있다. 또한, SRS 시퀀스 식별자
Figure PCTKR2020013518-appb-img-000012
는 상위 계층 파라미터 SRS-SequenceId에 의해 주어질 수 있다. l'(즉,
Figure PCTKR2020013518-appb-img-000013
)는 해당 SRS 자원 내의 OFDM 심볼 번호(OFDM symbol number)를 나타낸다.
The sequence group (u) (
Figure PCTKR2020013518-appb-img-000011
) And the sequence number (u) may follow the upper layer parameter SRS-GroupSequenceHopping. Also, the SRS sequence identifier
Figure PCTKR2020013518-appb-img-000012
May be given by the upper layer parameter SRS-SequenceId. l'(i.e.
Figure PCTKR2020013518-appb-img-000013
) Represents an OFDM symbol number in the corresponding SRS resource.
이 때, SRS-GroupSequenceHopping의 값이 0인 경우, 그룹 호핑 및 시퀀스 호핑은 이용되지 않으며, 이는 아래 수학식 3과 같이 표현될 수 있다.In this case, when the value of SRS-GroupSequenceHopping is 0, group hopping and sequence hopping are not used, and this may be expressed as Equation 3 below.
Figure PCTKR2020013518-appb-img-000014
Figure PCTKR2020013518-appb-img-000014
수학식 3에서 f_gh(x, y)는 시퀀스 그룹 호핑을 나타내며, v는 시퀀스 호핑을 나타낸다.In Equation 3, f_gh(x, y) denotes sequence group hopping, and v denotes sequence hopping.
또는, SRS-GroupSequenceHopping의 값이 1인 경우, 시퀀스 호핑이 아닌 그룹 호핑이 이용되며, 이는 아래 수학식 4와 같이 표현될 수 있다.Alternatively, when the value of SRS-GroupSequenceHopping is 1, group hopping rather than sequence hopping is used, which may be expressed as Equation 4 below.
Figure PCTKR2020013518-appb-img-000015
Figure PCTKR2020013518-appb-img-000015
수학식 4에서 f_gh(x, y)는 시퀀스 그룹 호핑을 나타내며, v는 시퀀스 호핑을 나타낸다. 또한, c(i)는 의사-랜덤 시퀀스(pseudo-random sequence)를 나타내며, 각 무선 프레임의 시작에서
Figure PCTKR2020013518-appb-img-000016
로 초기화될 수 있다.
In Equation 4, f_gh(x, y) denotes sequence group hopping, and v denotes sequence hopping. In addition, c(i) represents a pseudo-random sequence, and at the beginning of each radio frame
Figure PCTKR2020013518-appb-img-000016
Can be initialized to
또는, SRS-GroupSequenceHopping의 값이 2인 경우, 그룹 호핑이 아닌 시퀀스 호핑이 이용되며, 이는 아래 수학식 5와 같이 표현될 수 있다.Alternatively, when the value of SRS-GroupSequenceHopping is 2, sequence hopping rather than group hopping is used, which may be expressed as Equation 5 below.
Figure PCTKR2020013518-appb-img-000017
Figure PCTKR2020013518-appb-img-000017
수학식 5에서 f_gh(x, y)는 시퀀스 그룹 호핑을 나타내며, v는 시퀀스 호핑을 나타낸다. 또한, c(i)는 의사-랜덤 시퀀스(pseudo-random sequence)를 나타내며, 각 무선 프레임의 시작에서
Figure PCTKR2020013518-appb-img-000018
로 초기화될 수 있다(여기에서,
Figure PCTKR2020013518-appb-img-000019
).
In Equation 5, f_gh(x, y) denotes sequence group hopping, and v denotes sequence hopping. In addition, c(i) represents a pseudo-random sequence, and at the beginning of each radio frame
Figure PCTKR2020013518-appb-img-000018
Can be initialized with (here,
Figure PCTKR2020013518-appb-img-000019
).
SRS(Sounding Reference Signal) 호핑Sounding Reference Signal (SRS) hopping
SRS 호핑 동작은 주기적 SRS 트리거링(예: 트리거링 유형 0)시에만 수행될 수 있다. 또한, SRS 자원들의 할당은 기-정의된 호핑 패턴에 따라 제공될 수 있다. 이 경우, 호핑 패턴은 단말-특정하게 상위 계층 시그널링(예: RRC 시그널링)으로 지정될 수 있으며, 중첩은 허용될 수 없다.The SRS hopping operation can be performed only during periodic SRS triggering (eg, triggering type 0). In addition, the allocation of SRS resources may be provided according to a pre-defined hopping pattern. In this case, the hopping pattern may be UE-specifically designated as higher layer signaling (eg, RRC signaling), and overlapping may not be allowed.
또한, 셀-특정 및/또는 단말-특정 SRS가 전송되는 서브프레임마다 호핑 패턴을 이용하여 SRS가 주파수 호핑(frequency hopping)되며, SRS 호핑의 주파수 영역 상의 시작 위치 및 호핑 공식은 아래의 수학식 6을 통해 해석될 수 있다.In addition, the SRS is frequency hopping using a hopping pattern for each subframe in which the cell-specific and/or terminal-specific SRS is transmitted, and the start position and the hopping formula in the frequency domain of SRS hopping are shown in Equation 6 below. It can be interpreted through.
Figure PCTKR2020013518-appb-img-000020
Figure PCTKR2020013518-appb-img-000020
수학식 6에서, nSRS는 시간 영역에서의 호핑 진행 간격을 의미하며, Nb는 tree level b에 할당된 가지(branch) 수, b는 전용 RRC(dedicated RRC)에서 BSRS 설정에 의해 결정될 수 있다.In Equation 6, nSRS means a hopping progress interval in the time domain, Nb is the number of branches allocated to tree level b, and b can be determined by BSRS setting in a dedicated RRC (Dedicated RRC).
도 7은 본 명세서에서 제안하는 방법이 적용될 수 있는 컴포넌트 캐리어 및 캐리어 병합의 일 예를 나타낸다.7 shows an example of component carrier and carrier aggregation to which the method proposed in the present specification can be applied.
도 7의 (a)는 LTE 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 DL CC와 UL CC가 있다. 하나의 컴포넌트 캐리어는 20MHz의 주파수 범위를 가질 수 있다.Figure 7 (a) shows a single carrier structure used in the LTE system. Component carriers include DL CC and UL CC. One component carrier may have a frequency range of 20MHz.
도 7의 (b)는 LTE_A 시스템에서 사용되는 캐리어 병합 구조를 나타낸다. 도 7의 (b)의 경우에 20MHz의 주파수 크기를 갖는 3개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. DL CC와 UL CC가 각각 3 개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 캐리어 병합의 경우 단말은 3개의 CC를 동시에 모니터링할 수 있고, 하향링크 신호/데이터를 수신할 수 있고 상향링크 신호/데이터를 송신할 수 있다. 7B shows a carrier aggregation structure used in the LTE_A system. In the case of (b) of FIG. 7, three component carriers having a frequency size of 20 MHz are combined. There are three DL CCs and UL CCs each, but there is no limit to the number of DL CCs and UL CCs. In the case of carrier aggregation, the UE can simultaneously monitor three CCs, receive downlink signals/data, and transmit uplink signals/data.
만약, 특정 셀에서 N개의 DL CC가 관리되는 경우에는, 네트워크는 단말에 M (M≤N)개의 DL CC를 할당할 수 있다. 이때, 단말은 M 개의 제한된 DL CC 만을 모니터링하고 DL 신호를 수신할 수 있다. 또한, 네트워크는 L (L≤M≤N)개의 DL CC에 우선순위를 주어 주된 DL CC를 단말에 할당할 수 있으며, 이러한 경우 UE는 L 개의 DL CC는 반드시 모니터링해야 한다. 이러한 방식은 상향링크 전송에도 똑같이 적용될 수 있다.If N DL CCs are managed in a specific cell, the network may allocate M (M≦N) DL CCs to the UE. At this time, the terminal may monitor only the M limited DL CCs and receive a DL signal. In addition, the network may assign priority to L (L≦M≦N) DL CCs to allocate the main DL CCs to the UE, and in this case, the UE must monitor the L DL CCs. This method can be applied equally to uplink transmission.
하향링크 자원의 반송파 주파수(또는 DL CC)와 상향링크 자원의 반송파 주파수(또는, UL CC) 사이의 링키지(linkage)는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보에 의해 지시될 수 있다. 예를 들어, SIB2(System Information Block Type2)에 의해서 정의되는 링키지에 의해서 DL 자원과 UL 자원의 조합이 구성될 수 있다. 구체적으로, 링키지는 UL 그랜트를 나르는 PDCCH가 전송되는 DL CC와 상기 UL 그랜트를 사용하는 UL CC간의 맵핑 관계를 의미할 수 있으며, HARQ를 위한 데이터가 전송되는 DL CC(또는 UL CC)와 HARQ ACK/NACK 신호가 전송되는 UL CC(또는 DL CC)간의 맵핑 관계를 의미할 수도 있다.A linkage between a carrier frequency (or DL CC) of a downlink resource and a carrier frequency (or UL CC) of an uplink resource may be indicated by a higher layer message such as an RRC message or system information. For example, a combination of DL resources and UL resources may be configured by linkage defined by System Information Block Type 2 (SIB2). Specifically, linkage may mean a mapping relationship between a DL CC in which a PDCCH carrying a UL grant is transmitted and a UL CC using the UL grant, and a DL CC (or UL CC) in which data for HARQ is transmitted and HARQ ACK It may mean a mapping relationship between UL CCs (or DL CCs) through which the /NACK signal is transmitted.
도 8은 본 명세서에서 제안하는 방법이 적용될 수 있는 캐리어 병합을 지원하는 시스템에서 셀의 구분을 예시한 도면이다.8 is a diagram illustrating cell division in a system supporting carrier aggregation to which the method proposed in the present specification can be applied.
도 8을 참조하면, 설정된 셀(configured cell)은 도 7에서와 같이 기지국의 셀 중에서 측정 보고를 근거로 캐리어 병합할 수 있도록 한 셀로서 단말별로 설정될 수 있다. 설정된 셀은 PDSCH 전송에 대한 ack/nack 전송을 위한 자원을 미리 예약해 놓을 수 있다. 활성화된 셀(activated cell)은 설정된 셀 중에서 실제로 PDSCH/PUSCH를 전송하도록 설정된 셀로서 PDSCH/PUSCH 전송을 위한 CSI(Channel State Information) 보고와 SRS(Sounding Reference Signal) 전송을 수행하게 된다. 비활성화된 셀(de-activated cell)은 기지국의 명령 또는 타이머 동작에 의해서 PDSCH/PUSCH 전송을 하지 않도록 하는 셀로서 CSI 보고 및 SRS 전송도 중단할 수 있다.Referring to FIG. 8, a configured cell is a cell capable of merging carriers based on a measurement report among cells of a base station as shown in FIG. 7 and may be configured for each terminal. The configured cell may reserve resources for ack/nack transmission for PDSCH transmission in advance. An activated cell is a cell set to actually transmit a PDSCH/PUSCH among the configured cells, and performs a Channel State Information (CSI) report for PDSCH/PUSCH transmission and a Sounding Reference Signal (SRS) transmission. A de-activated cell is a cell that does not perform PDSCH/PUSCH transmission by a command of a base station or a timer operation, and may also stop CSI reporting and SRS transmission.
앞서 살핀 내용들은 후술할 본 명세서에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 명세서에서 제안하는 방법들의 기술적 특징을 명확하게 하는데 보충될 수 있다. 이하 설명되는 방법들은 설명의 편의를 위하여 구분된 것일 뿐, 어느 한 방법의 일부 구성이 다른 방법의 일부 구성과 치환되거나, 상호 간에 결합되어 적용될 수 있음은 물론이다.The foregoing contents may be applied in combination with the methods proposed in the present specification to be described later, or may be supplemented to clarify the technical characteristics of the methods proposed in the present specification. The methods described below are only classified for convenience of description, and of course, some components of one method may be substituted with some components of another method, or may be combined with each other to be applied.
본 명세서에서 ‘/’는 문맥에 따라 ‘and’, ‘or’, 혹은 ‘and/or’를 의미한다.In this specification,'/' means'and','or', or'and/or' depending on the context.
기지국의 TPC(Transmit Power Control) command에 의해 제어되는 폐-루프 전력 제어(closed-loop power control)의 경우, 단말이 현재 전송하고 있는 UL channel power에 대해 어느정도의 headroom(예를 들면, 단말 maximum power에서 현재 전송하고 있는 UL channel power를 뺀 값. 즉, 어느정도의 power 여력이 남아 있는지)이 존재하는지에 대한 정보가 필수적일 수 있다.In the case of closed-loop power control controlled by the TPC (Transmit Power Control) command of the base station, a certain amount of headroom for the UL channel power currently transmitted by the terminal (e.g., terminal maximum power Information on whether there is a value obtained by subtracting the power of the UL channel currently being transmitted in (that is, how much power reserve remains) may be essential.
하지만, 현재 표준관점에서 legacy SRS에 대한 power control은 PUSCH power control mechanism에 종속되어 있고 PHR(power headroom report) 또한 동일하다. 그러므로, legacy SRS와 separate된 power control 설정을 가지는 additional SRS에 있어서는 별도의 PHR 방법 혹은 process가 존재해야 효율적인 기지국-단말 간 power control 동작이 수행될 수 있다.However, from the current standard point of view, power control for legacy SRS is dependent on the PUSCH power control mechanism, and the power headroom report (PHR) is also the same. Therefore, in an additional SRS having a power control configuration separate from a legacy SRS, an efficient base station-to-terminal power control operation can be performed only when a separate PHR method or process exists.
본 명세서에서는 이러한 문제를 고려해, 기지국-단말 간 additional SRS에 대한 power control 설정 및 단말의 additional SRS에 대한 power headroom report 방법에 대해 제안하고, 해당 설정에 기반한 UE 동작에 대해 기술한다.In this specification, in consideration of such a problem, a method for setting power control for an additional SRS between a base station and a terminal and a power headroom report method for an additional SRS of a terminal is proposed, and UE operation based on the configuration is described.
Rel-15까지의 LTE 표준을 살펴보면 기존 LTE에서의 SRS(Sounding Reference Signal)는 FDD 시스템에서 각 subframe의 마지막 symbol에서 전송될 수 있다. TDD 시스템에서는 UL normal subframe에서의 SRS 전송 외에 추가로 special subframe에서 UpPTS를 활용하여 special subframe configuration에 따라 1 symbol 혹은 2 symbol SRS를 전송할 수 있고, special subframe 내에서 기존 UpPTS 외에 additional한 UL 용도의 SC-FDMA symbol의 설정 여부에 따라 2 symbol 혹은 4 symbol SRS를 전송할 수 있다. LTE SRS는 time domain 특성에 따라 type 0와 type 1 triggering으로 나뉘는데, type 0의 경우 higher layer 설정에 기반한 periodic SRS이고 type 1의 경우 DCI로 triggering되는 aperiodic SRS이다.Looking at the LTE standards up to Rel-15, the Sounding Reference Signal (SRS) in the existing LTE can be transmitted in the last symbol of each subframe in the FDD system. In the TDD system, in addition to SRS transmission in the UL normal subframe, upPTS can be used in a special subframe to transmit 1 symbol or 2 symbol SRS according to the special subframe configuration. Depending on whether the FDMA symbol is set, 2 symbol or 4 symbol SRS can be transmitted. LTE SRS is divided into type 0 and type 1 triggering according to the time domain characteristics. In case of type 0, it is a periodic SRS based on higher layer configuration, and in case of type 1, it is an aperiodic SRS triggered by DCI.
Type 1 SRS의 전송 timing: UE가 subframe n(혹은 slot 2n 혹은 slot 2n+1)에서 positive SRS request를 detect했을 시, n+k(즉, k=4 혹은 UE capability에 따라 결정) 이후 UE-specifc한 SRS 설정들(즉, SRS 전송 주기, SRS 전송 offset 등)에 부합하는 최초 subframe에서 SRS를 전송한다. Type 1 SRS transmission timing: When the UE detects a positive SRS request in subframe n (or slot 2n or slot 2n+1), after n+k (ie, k=4 or determined according to UE capability) UE-specifc SRS is transmitted in the first subframe corresponding to one SRS configuration (ie, SRS transmission period, SRS transmission offset, etc.).
<LTE에서 legacy SRS의 power control mechanism><Power control mechanism of legacy SRS in LTE>
3GPP 표준에서의 power control mechanism은 open-loop power control과 closed-loop power control로 나눌 수 있다. Open-loop power control의 경우, 특정 UL channel 전송 시에 기지국-단말 간 higher layer signalling을 통해
Figure PCTKR2020013518-appb-img-000021
Figure PCTKR2020013518-appb-img-000022
등의 open-loop power control parameter를 설정함으로써 기지국이 해당 UL channel 전송 시 power를 configure하는 형태이다. Closed-loop power control의 경우, open-loop power control에 더하여 기지국의 dynamic한 지시를 통해 특정 UL channel 전송 power의 높낮이를 조절하는 형태로(즉, closed-loop power control parameter
Figure PCTKR2020013518-appb-img-000023
), DL/UL DCI의 TPC(Transmit Power Control) command field를 통해 지시가 가능하다. 이러한 closed-loop power control의 경우 기지국측에서 수신한 UL channel 신호의 강도에 기반하여 조절할 수 있지만, 단말의 PHR(Power Headroom Report)를 바탕으로 해당 범위 내에서 조절하는 것이 일반적이다.
The power control mechanism in the 3GPP standard can be divided into open-loop power control and closed-loop power control. In the case of open-loop power control, through higher layer signaling between the base station and the terminal when transmitting a specific UL channel
Figure PCTKR2020013518-appb-img-000021
And
Figure PCTKR2020013518-appb-img-000022
By setting open-loop power control parameters such as, etc., the base station configures power when transmitting the corresponding UL channel. In the case of closed-loop power control, in addition to open-loop power control, the height of a specific UL channel transmission power is adjusted through a dynamic indication of the base station (i.e., closed-loop power control parameter
Figure PCTKR2020013518-appb-img-000023
), it can be indicated through the transmit power control (TPC) command field of DL/UL DCI. In the case of such closed-loop power control, it can be adjusted based on the strength of the UL channel signal received from the base station, but it is common to adjust within the corresponding range based on the PHR (Power Headroom Report) of the terminal.
LTE 표준에서 power control의 경우 PUSCH power control, PUCCH power control, SRS power control로 나뉘어 있으며, normal UL subframe에서의 legacy SRS symbol(즉, last symbol of subframe)과 special subfrmae에서의 UpPTS SRS symbol의 power control의 경우 PUSCH power control를 따른다. 이는 기존 SRS의 목적이 UL channel 획득 및 UL link adaptation이기 때문에, 단말이 SRS의 power를 PUSCH를 보낼 때의 power로 상정하여 전송하게 되면 기지국 입장에서 PUSCH scheduling 시 직접적으로 활용할 수 있기 때문이다. 또한, 여기서 세번째 SRS power control의 경우 상기 normal UL subframe에서의 legacy SRS 또는 special subframe에서의 UpPTS SRS에 대한 power control이 아닌, PUSCH와 PUCCH가 scheduling되지 않는 DL 전용 serving cell에서 전송되는 carrier switching SRS에 대한 power control로써, LTE Rel-14에서 enhance되었다. PUSCH에 대한 closed-loop power control을 위한 TPC command는 UL DCI 및 DCI format 3, 3A를 통해 지시가 가능하고, PUCCH에 대한 TPC command는 DL DCI 및 DCI format 3, 3A를 통해 지시가 가능하다. PUSCH와 PUCCH가 scheduling되지 않는 DL 전용 serving cell에서 전송되는 carrier switching SRS에 대한 TPC command는 DCI format 3B를 통해 가능하다.In the case of power control in the LTE standard, it is divided into PUSCH power control, PUCCH power control, and SRS power control, and the power control of the legacy SRS symbol (i.e., the last symbol of subframe) in the normal UL subframe and the UpPTS SRS symbol in the special subfrmae. In this case, PUSCH power control is followed. This is because since the purpose of the existing SRS is UL channel acquisition and UL link adaptation, if the UE assumes the power of the SRS as the power when transmitting the PUSCH and transmits it, the base station can directly utilize it for PUSCH scheduling. In addition, in the case of the third SRS power control, not the power control for the legacy SRS in the normal UL subframe or the UpPTS SRS in the special subframe, but for the carrier switching SRS transmitted in a DL dedicated serving cell in which PUSCH and PUCCH are not scheduled. As power control, it has been enhanced in LTE Rel-14. The TPC command for closed-loop power control for PUSCH can be indicated through UL DCI and DCI formats 3 and 3A, and the TPC command for PUCCH can be indicated through DL DCI and DCI formats 3 and 3A. A TPC command for a carrier switching SRS transmitted in a DL dedicated serving cell in which PUSCH and PUCCH are not scheduled is possible through DCI format 3B.
PHR 역시 power control과 마찬가지로 3가지 type으로 나뉘고(즉, Type1, Type2, Type3), 각 type은 PUSCH 전송 power에 대한 PHR, PUCCH 전송 power에 대한 PHR, SRS 전송 power에 대한 PHR에 해당한다. Type 3 SRS 전송power에 대한 PHR 또한 legacy SRS 또는 UpPTS SRS에 대한 power control이 아닌, PUSCH와 PUCCH가 scheduling되지 않는 DL 전용 serving cell에서 전송되는 carrier switching SRS에 대한 PHR로 볼 수 있다.Like power control, PHR is also divided into three types (i.e., Type1, Type2, Type3), and each type corresponds to PHR for PUSCH transmission power, PHR for PUCCH transmission power, and PHR for SRS transmission power. The PHR for Type 3 SRS transmission power can also be viewed as a PHR for carrier switching SRS transmitted in a DL dedicated serving cell in which PUSCH and PUCCH are not scheduled, rather than power control for legacy SRS or UpPTS SRS.
이하에서는 SRS 전력 제어를 위한 단말 동작과 전력 헤드룸(Power headroom)에 대한 타입 3 보고(Type 3 reporting)와 관련된 사항을 살펴본다.Hereinafter, matters related to terminal operation for SRS power control and Type 3 reporting on power headroom will be described.
먼저 SRS 전력 제어를 위한 단말 동작을 살펴본다.First, a terminal operation for SRS power control is described.
SRSSRS 전력 제어를 위한 단말 동작( Terminal operation for power control ( SRSSRS power control power control UEUE behavior) behavior)
서빙 셀의 서브 프레임 i에서 전송되는 SRS에 대한 UE 전송 전력
Figure PCTKR2020013518-appb-img-000024
의 설정은 다음과 같이 정의된다.
UE transmit power for SRS transmitted in subframe i of serving cell
Figure PCTKR2020013518-appb-img-000024
The setting of is defined as follows.
프레임 구조 타입 2(frame structure type 2)를 사용하고 PUSCH/PUCCH 전송이 설정되지 않은 서빙 셀 c의 경우, In the case of serving cell c using frame structure type 2 and not configured for PUSCH/PUCCH transmission,
Figure PCTKR2020013518-appb-img-000025
[dbm]이고,
Figure PCTKR2020013518-appb-img-000025
is [dbm],
그렇지 않은 경우,If not,
Figure PCTKR2020013518-appb-img-000026
[dbm]이다.
Figure PCTKR2020013518-appb-img-000026
It is [dbm].
여기서, 상기 SRS 전송 전력과 관련된 파라미터는 다음과 같이 정의된다.Here, the parameters related to the SRS transmission power are defined as follows.
-
Figure PCTKR2020013518-appb-img-000027
는 서빙 셀 c에 대해 서브프레임 i에서 설정된 UE 전송 전력(configured UE transmit power)이다.
-
Figure PCTKR2020013518-appb-img-000027
Is the UE transmit power configured in subframe i for the serving cell c.
-
Figure PCTKR2020013518-appb-img-000028
는 서빙 셀 c의 m = 0, m = 1에 대해 상위 계층에 의해 반정적으로 설정된다. 트리거 타입 0으로 주어진 SRS 전송의 경우 m = 0이고 트리거 타입 1인 SRS 전송의 경우 m = 1이다.
-
Figure PCTKR2020013518-appb-img-000028
Is set semi-statically by the upper layer for m = 0 and m = 1 of the serving cell c. For SRS transmission given as trigger type 0, m = 0, and for trigger type 1 SRS transmission, m = 1.
-
Figure PCTKR2020013518-appb-img-000029
는 자원 블록의 수(nubmer of resource blocks)로 표현되며, 서빙 셀 c의 서브프레임 i에서의 SRS 전송 대역폭(bandwidth of the SRS transmission)이다.
-
Figure PCTKR2020013518-appb-img-000029
Is represented by the number of resource blocks (nubmer of resource blocks), and is the SRS transmission bandwidth in subframe i of the serving cell c.
-
Figure PCTKR2020013518-appb-img-000030
는 서빙 셀 c에 대한 현재 PUSCH 전력 제어 조정 상태(current PUSCH power control adjustment state)이다.
-
Figure PCTKR2020013518-appb-img-000030
Is the current PUSCH power control adjustment state for the serving cell c.
-
Figure PCTKR2020013518-appb-img-000031
Figure PCTKR2020013518-appb-img-000032
은 서브 프레임 i에 대해 정의된 파라미터들이며, 여기서 j=1이다.
-
Figure PCTKR2020013518-appb-img-000031
And
Figure PCTKR2020013518-appb-img-000032
Are parameters defined for subframe i, where j=1.
-
Figure PCTKR2020013518-appb-img-000033
은 서빙 셀 c를 위해 상위 계층에 의해 설정된 상위 계층 파라미터 alpha-SRS이다.
-
Figure PCTKR2020013518-appb-img-000033
Is an upper layer parameter alpha-SRS set by an upper layer for the serving cell c.
-
Figure PCTKR2020013518-appb-img-000034
은 서빙 셀 c에 대해 i) m=0 또는 m=1에 대해 상위 계층에서 제공되는 p0-Nominal-PeriodicSRS 또는 p0-Nominal-AperiodicSRS 인 구성 요소
Figure PCTKR2020013518-appb-img-000035
와 ii) m=0 또는 m=1에 대해 상위 계층에서 제공되는 p0-UE-PeriodicSRS 또는 p0-UE-AperiodicSRS인 구성 요소
Figure PCTKR2020013518-appb-img-000036
의 합으로 구성된 파라미터이다. 트리거 타입 0으로 주어진 SRS 전송의 경우 m = 0이고 트리거 타입 1인 SRS 전송의 경우 m = 1이다.
-
Figure PCTKR2020013518-appb-img-000034
Is a component that is p0-Nominal-PeriodicSRS or p0-Nominal-AperiodicSRS provided by the upper layer for i) m=0 or m=1 for the serving cell c
Figure PCTKR2020013518-appb-img-000035
And ii) a component that is p0-UE-PeriodicSRS or p0-UE-AperiodicSRS provided by an upper layer for m=0 or m=1
Figure PCTKR2020013518-appb-img-000036
It is a parameter consisting of the sum of. For SRS transmission given as trigger type 0, m = 0, and for trigger type 1 SRS transmission, m = 1.
-프레임 구조 타입이 2이고 PUSCH/PUCCH 전송이 설정되지 않은 서빙 셀 c의 경우 현재 SRS 전력 제어 조정 상태(current SRS power control adjustment state)는
Figure PCTKR2020013518-appb-img-000037
에 의해 제공되며 다음과 같이 정의된다.
-For serving cell c in which the frame structure type is 2 and PUSCH/PUCCH transmission is not set, the current SRS power control adjustment state is
Figure PCTKR2020013518-appb-img-000037
It is provided by and is defined as follows.
- 상위 계층 파라미터 Accumulation-enabled 를 기반으로 누적(accumulation)이 인에이블(enable) 된 경우
Figure PCTKR2020013518-appb-img-000038
이고, 누적(accumulation)이 인에이블 되지 않은 경우
Figure PCTKR2020013518-appb-img-000039
, 여기서,
-When accumulation is enabled based on the upper layer parameter Accumulation-enabled
Figure PCTKR2020013518-appb-img-000038
And if accumulation is not enabled
Figure PCTKR2020013518-appb-img-000039
, here,
-
Figure PCTKR2020013518-appb-img-000040
는 수정 값(correction value)이며, 가장 최근의 서브 프레임
Figure PCTKR2020013518-appb-img-000041
에서 DCI format 3B로 PDCCH에서 시그널링 된 SRS TPC command로 참조된다.
-
Figure PCTKR2020013518-appb-img-000040
Is the correction value, and is the most recent subframe
Figure PCTKR2020013518-appb-img-000041
In DCI format 3B, it is referred to as the SRS TPC command signaled on the PDCCH.
- 단말은 동일한 서브 프레임에서 서빙 셀 c에 대해 다른 SRS TPC 커맨드 값(different SRS TPC command value)을 수신하지 않을 것으로 예상한다.-The terminal expects not to receive a different SRS TPC command value for the serving cell c in the same subframe.
- 단말은 서빙 셀 c가 비활성화 된 경우를 제외하고 모든 서브 프레임에서 상위 계층 파라미터 srs-TPC-RNTI-r14에 의해 스크램블 된 CRC로 DCI format 3B의 PDCCH를 디코딩하려고 시도한다.-The UE attempts to decode the PDCCH of DCI format 3B with the CRC scrambled by the higher layer parameter srs-TPC-RNTI-r14 in all subframes except when the serving cell c is deactivated.
- DCI 포맷 3B의 PDCCH에서 TPC 명령(TPC command)이 서빙 셀 c에 대해 디코딩되지 않거나, i가 TDD 또는 FDD-TDD 및 서빙 셀 c, 프레임 구조 타입 2에서 상향링크/스페셜 서브프레임이 아닌 경우
Figure PCTKR2020013518-appb-img-000042
=0dB이다.
-When the TPC command is not decoded for the serving cell c in the PDCCH of DCI format 3B, or i is not an uplink/special subframe in the TDD or FDD-TDD and serving cell c, frame structure type 2
Figure PCTKR2020013518-appb-img-000042
=0dB.
-상위 계층 매개 변수 fieldTypeFormat3B가 2 bit TPC 명령을 나타내는 경우, DCI format 3B로 PDCCH에서 시그널링 된
Figure PCTKR2020013518-appb-img-000043
dB 값은 PUSCH와 관련된 TPC command value들이 정의된 테이블 1(참조, TS 36.213, Table 5.1.1.1-2)에서
Figure PCTKR2020013518-appb-img-000044
Figure PCTKR2020013518-appb-img-000045
로 대체함으로써 주어질 수 있다. 상위 계층 매개 변수 fieldTypeFormat3B가 1 bit TPC 명령을 나타내는 경우 DCI format 3B로 PDCCH에서 시그널링 된
Figure PCTKR2020013518-appb-img-000046
값은 PUSCH와 관련된 TPC command value들이 정의된 테이블 2(참조, TS 36.213, Table 5.1.1.1-3)에서
Figure PCTKR2020013518-appb-img-000047
Figure PCTKR2020013518-appb-img-000048
로 대체함으로써 주어질 수 있다.
-If the upper layer parameter fieldTypeFormat3B indicates a 2 bit TPC command, it is signaled in the PDCCH in DCI format 3B.
Figure PCTKR2020013518-appb-img-000043
The dB value is in Table 1 (Reference, TS 36.213, Table 5.1.1.1-2) where TPC command values related to PUSCH are defined.
Figure PCTKR2020013518-appb-img-000044
To
Figure PCTKR2020013518-appb-img-000045
Can be given by substituting When the upper layer parameter fieldTypeFormat3B represents a 1-bit TPC command, signaled by the PDCCH in DCI format 3B.
Figure PCTKR2020013518-appb-img-000046
The value is in Table 2 (Reference, TS 36.213, Table 5.1.1.1-3) where TPC command values related to PUSCH are defined.
Figure PCTKR2020013518-appb-img-000047
To
Figure PCTKR2020013518-appb-img-000048
Can be given by substituting
-누적(accumulation)이 인에이블 된 경우,
Figure PCTKR2020013518-appb-img-000049
은 누적 리셋(reset of accumulation) 후 첫 번째 값이다.
-If accumulation is enabled,
Figure PCTKR2020013518-appb-img-000049
Is the first value after reset of accumulation.
다음의 경우, 단말은 누적(accumulation)을 리셋해야 한다.In the following cases, the UE must reset the accumulation.
-서빙 셀 c에 대해, 상위 레이어에서
Figure PCTKR2020013518-appb-img-000050
값이 변경된 경우
-For serving cell c, in the upper layer
Figure PCTKR2020013518-appb-img-000050
If the value has changed
-서빙 셀 c에 대해, 단말이 서빙 셀 c에 대한 랜덤 액세스 응답 메시지를 수신하는 경우-For serving cell c, when the terminal receives a random access response message for serving cell c
-두 가지 유형의
Figure PCTKR2020013518-appb-img-000051
(누적(accumulation) 또는 현재 절대 값(current value))에 대해 첫 번째 값은 다음과 같이 설정된다.
-Two types of
Figure PCTKR2020013518-appb-img-000051
For (accumulation or current value), the first value is set as follows.
-상위 레이어에 의해
Figure PCTKR2020013518-appb-img-000052
값이 수신된 경우
-By upper layer
Figure PCTKR2020013518-appb-img-000052
When a value is received
-
Figure PCTKR2020013518-appb-img-000053
-
Figure PCTKR2020013518-appb-img-000053
-그렇지 않으면,-Otherwise,
-단말이 서빙 셀 c에 대한 랜덤 액세스 응답 메시지를 수 한 경우-When the terminal has received a random access response message for the serving cell c
-
Figure PCTKR2020013518-appb-img-000054
, 여기서
-
Figure PCTKR2020013518-appb-img-000054
, here
Figure PCTKR2020013518-appb-img-000055
는 서빙 셀 c에서 전송되는 랜덤 액세스 프리앰블에 해당하는 랜덤 액세스 응답에서 지시되는 TPC 명령이다.
Figure PCTKR2020013518-appb-img-000055
Is a TPC command indicated in the random access response corresponding to the random access preamble transmitted from the serving cell c.
Figure PCTKR2020013518-appb-img-000056
이고,
Figure PCTKR2020013518-appb-img-000057
은 상위 계층에서 제공되며 서빙 셀 c의 첫 번째에서 마지막 프리앰블까지 상위 계층에 의해 요청된 총 전력 램프 업(total power ramp-up )에 해당한다.
Figure PCTKR2020013518-appb-img-000058
은 서빙 셀에서 첫 번째 SRS 전송의 서브 프레임에 대해 유효한 자원 블록의 수로 표현되는 SRS 전송의 대역폭이다.
Figure PCTKR2020013518-appb-img-000056
ego,
Figure PCTKR2020013518-appb-img-000057
Is provided by the upper layer and corresponds to the total power ramp-up requested by the upper layer from the first to the last preamble of the serving cell c.
Figure PCTKR2020013518-appb-img-000058
Is the bandwidth of the SRS transmission expressed as the number of valid resource blocks for the subframe of the first SRS transmission in the serving cell.
단말에 SCG(Secondary Cell Group) 또는 PUCCH-SCell이 설정되어 있지 않고 SC-FDMA 심볼의 사운딩 참조 심볼에 대한 단말의 총 전송 전력이
Figure PCTKR2020013518-appb-img-000059
을 초과하는 경우, 단말은 서빙 셀 c 및 서브 프레임 i의 SC-FDMA 심볼에 대해 아래의 조건을 만족하도록
Figure PCTKR2020013518-appb-img-000060
를 스케일링한다.
There is no SCG (Secondary Cell Group) or PUCCH-SCell set in the UE, and the total transmit power of the UE for the sounding reference symbol of the SC-FDMA symbol is
Figure PCTKR2020013518-appb-img-000059
If exceeds, the terminal satisfies the following conditions for the SC-FDMA symbol of the serving cell c and subframe i.
Figure PCTKR2020013518-appb-img-000060
Scale.
Figure PCTKR2020013518-appb-img-000061
Figure PCTKR2020013518-appb-img-000061
여기서,
Figure PCTKR2020013518-appb-img-000062
Figure PCTKR2020013518-appb-img-000063
의 선형 값(linear value)이다.
Figure PCTKR2020013518-appb-img-000064
은 서브 프레임 i에서 정의된
Figure PCTKR2020013518-appb-img-000065
의 선형 값이며,
Figure PCTKR2020013518-appb-img-000066
는 서빙 셀 c에 대한
Figure PCTKR2020013518-appb-img-000067
의 스케일링 인자(scaling factor)이며
Figure PCTKR2020013518-appb-img-000068
이다.
Figure PCTKR2020013518-appb-img-000069
값은 서빙 셀들에 걸쳐서 동일하다.
here,
Figure PCTKR2020013518-appb-img-000062
silver
Figure PCTKR2020013518-appb-img-000063
Is the linear value of.
Figure PCTKR2020013518-appb-img-000064
Is defined in subframe i
Figure PCTKR2020013518-appb-img-000065
Is the linear value of
Figure PCTKR2020013518-appb-img-000066
Is for the serving cell c
Figure PCTKR2020013518-appb-img-000067
Is the scaling factor of
Figure PCTKR2020013518-appb-img-000068
to be.
Figure PCTKR2020013518-appb-img-000069
The value is the same across serving cells.
단말에 SCG(Secondary Cell Group) 또는 PUCCH-SCell이 설정되어 있지 않고, 단말에 다중 TAGs(multiple TAGs)가 설정되며, TAG의 서브 프레임 i에서 서빙 셀에 대한 SC-FDMA 심볼에서 단말의 SRS 전송이 다른 TAG의 서빙 셀에 대한 서브 프레임 i의 다른 SC-FDMA 심볼에서 SRS 전송과 겹치며, 중첩된 부분의 사운딩 참조 심볼에 대한 단말의 총 전송 전력이
Figure PCTKR2020013518-appb-img-000070
을 초과하는 경우, 단말은 다음의 조건을 만족하도록 서빙 셀 c와 서브 프레임 i에서 중첩된 SRS SC-FDMA 심볼들 각각에 대해
Figure PCTKR2020013518-appb-img-000071
을 스케일링한다.
SCG (Secondary Cell Group) or PUCCH-SCell is not set in the UE, multiple TAGs (multiple TAGs) are set in the UE, and SRS transmission of the UE is performed in the SC-FDMA symbol for the serving cell in subframe i of the TAG. It overlaps with SRS transmission in another SC-FDMA symbol of subframe i for a serving cell of another TAG, and the total transmission power of the terminal for the sounding reference symbol of the overlapped portion is
Figure PCTKR2020013518-appb-img-000070
If exceeds, the UE for each of the SRS SC-FDMA symbols overlapped in the serving cell c and subframe i to satisfy the following conditions:
Figure PCTKR2020013518-appb-img-000071
Is scaled.
Figure PCTKR2020013518-appb-img-000072
Figure PCTKR2020013518-appb-img-000072
여기서,
Figure PCTKR2020013518-appb-img-000073
Figure PCTKR2020013518-appb-img-000074
의 선형 값(linear value)이다.
Figure PCTKR2020013518-appb-img-000075
은 서브 프레임 i에서 정의된
Figure PCTKR2020013518-appb-img-000076
의 선형 값이며,
Figure PCTKR2020013518-appb-img-000077
는 서빙 셀 c에 대한
Figure PCTKR2020013518-appb-img-000078
의 스케일링 인자(scaling factor)이며
Figure PCTKR2020013518-appb-img-000079
이다.
Figure PCTKR2020013518-appb-img-000080
값은 서빙 셀들에 걸쳐서 동일하다.
here,
Figure PCTKR2020013518-appb-img-000073
silver
Figure PCTKR2020013518-appb-img-000074
Is the linear value of.
Figure PCTKR2020013518-appb-img-000075
Is defined in subframe i
Figure PCTKR2020013518-appb-img-000076
Is the linear value of
Figure PCTKR2020013518-appb-img-000077
Is for the serving cell c
Figure PCTKR2020013518-appb-img-000078
Is the scaling factor of
Figure PCTKR2020013518-appb-img-000079
to be.
Figure PCTKR2020013518-appb-img-000080
The value is the same across serving cells.
단말에 상향링크 전송을 위해 LAA SCell이 설정된 경우, 단말은, 단말이 채널 액세스 절차(channel access procedure)에 따라 서브프레임 i에서 SRS 전송을 위해 LAA SCell에 액세스 할 수 있는지 여부에 관계없이 단말이 서브프레임 i에서 LAA SCell에서 SRS 전송을 수행한다고 가정하여, 스케일링 계수
Figure PCTKR2020013518-appb-img-000081
을 계산할 수 있다.
When the LAA SCell is configured for uplink transmission in the UE, the UE subsists regardless of whether the UE can access the LAA SCell for SRS transmission in subframe i according to a channel access procedure. Assuming that the LAA SCell performs SRS transmission in frame i, the scaling factor
Figure PCTKR2020013518-appb-img-000081
Can be calculated.
단말에 서빙 셀 c에 대한 상위 계층 파라미터 UplinkPowerControlDedicated-v12x0가 설정되고, 상위 계층 파라미터 tpc-SubframeSet-r12에 의해 지시된대로 서브 프레임 i가 상향링크 전력 제어 서브프레임 세트 2(uplink power control subframe set 2)에 속하는 경우, 단말은 서브 프레임 i 및 서빙 셀 c에 대해
Figure PCTKR2020013518-appb-img-000082
를 결정하기 위해
Figure PCTKR2020013518-appb-img-000083
대신
Figure PCTKR2020013518-appb-img-000084
를 사용해야 한다.
In the UE, the upper layer parameter UplinkPowerControlDedicated-v12x0 for the serving cell c is set, and as indicated by the upper layer parameter tpc-SubframeSet-r12, subframe i is uplink power control subframe set 2 If it belongs to, the terminal is for subframe i and serving cell c
Figure PCTKR2020013518-appb-img-000082
To determine
Figure PCTKR2020013518-appb-img-000083
instead
Figure PCTKR2020013518-appb-img-000084
Should be used.
Type3Type3 보고를 위한 전력 Power for reporting 헤드룸Headroom (Power headroom for (Power headroom for Type3Type3 report) report)
단말은 슬롯/서브 슬롯에 대한 Type 3 report를 계산할 것으로 예상되지 않는다.The UE is not expected to calculate the Type 3 report for the slot/subslot.
프레임 구조 타입이 2이고 PUSCH/PUCCH 전송이 설정되지 않은 서빙 셀 c의 경우,In the case of a serving cell c in which the frame structure type is 2 and PUSCH/PUCCH transmission is not configured,
-1) 단말이 서빙 셀 c에 대한 서브프레임 i에서 SRS를 전송하는 경우 또는 2) 단말이 서브 프레임 i + 1에서 더 높은 우선 순위의 물리 채널 또는 신호와의 충돌(collision)로 인해 서브 프레임 i에서 SRS를 전송하지 않았고, 서브프레임 i+1에서 더 높은 우선 순위의 물리 채널 또는 신호가 발생하지 않았을 경우 서브프레임 i에서 SRS를 전송했을 경우,-1) When the UE transmits the SRS in subframe i for the serving cell c, or 2) The UE transmits subframe i due to collision with a higher-priority physical channel or signal in subframe i + 1 When SRS is not transmitted in subframe i+1 and a higher priority physical channel or signal does not occur in subframe i, when SRS is transmitted in subframe i,
Type 3 보고에 대한 전력 헤드룸은 다음을 사용하여 계산된다.Power headroom for Type 3 reporting is calculated using:
Figure PCTKR2020013518-appb-img-000085
[dB]
Figure PCTKR2020013518-appb-img-000085
[dB]
여기서
Figure PCTKR2020013518-appb-img-000086
은 dB 단위로 서빙 셀 c에 대해 단말에서 계산되는 하향링크 경로 손실 추정치(downlink path loss estimate)이다.
Figure PCTKR2020013518-appb-img-000087
,
Figure PCTKR2020013518-appb-img-000088
,
Figure PCTKR2020013518-appb-img-000089
,
Figure PCTKR2020013518-appb-img-000090
,
Figure PCTKR2020013518-appb-img-000091
은 앞서 설명한 바와 동일하다.
here
Figure PCTKR2020013518-appb-img-000086
Is a downlink path loss estimate calculated by the terminal for the serving cell c in dB.
Figure PCTKR2020013518-appb-img-000087
,
Figure PCTKR2020013518-appb-img-000088
,
Figure PCTKR2020013518-appb-img-000089
,
Figure PCTKR2020013518-appb-img-000090
,
Figure PCTKR2020013518-appb-img-000091
Is the same as previously described.
-그렇지 않으면(상기 1) 2)가 아닌 경우), Type 3 보고에 대한 전력 헤드룸은 다음을 사용하여 계산된다.-Otherwise (if not 1) 2) above), the power headroom for Type 3 reporting is calculated using:
Figure PCTKR2020013518-appb-img-000092
[dB]
Figure PCTKR2020013518-appb-img-000092
[dB]
여기서
Figure PCTKR2020013518-appb-img-000093
은 dB 단위로 서빙 셀 c에 대해 단말에서 계산되는 하향링크 경로 손실 추정치(downlink path loss estimate)이다.
Figure PCTKR2020013518-appb-img-000094
,
Figure PCTKR2020013518-appb-img-000095
,
Figure PCTKR2020013518-appb-img-000096
는 앞서 설명한 바와 동일하다.
Figure PCTKR2020013518-appb-img-000097
는, 미리 설정된 요구 사항에 따라 서브 프레임에서 SRS 전송을 가정하고 MPR = 0dB, A-MPR = 0dB, P-MPR = 0dB 및
Figure PCTKR2020013518-appb-img-000098
= 0dB를 가정하여, 계산된다. MPR은 최대 전력 감소(Maximum Power Reduction)이고, A-MPR은 추가적인 최대 전력 감소(Additional Maximum Power Reduction)이며, P-MPR은 전력 관리 최대 전력 감소(Power Management Maximum Power Reduction)이며,
Figure PCTKR2020013518-appb-img-000099
은 전송 전력과 관련된 tolerance이다. 이 경우 물리 계층은 상위 계층에
Figure PCTKR2020013518-appb-img-000100
대신
Figure PCTKR2020013518-appb-img-000101
을 전달한다.
here
Figure PCTKR2020013518-appb-img-000093
Is a downlink path loss estimate calculated by the terminal for the serving cell c in dB.
Figure PCTKR2020013518-appb-img-000094
,
Figure PCTKR2020013518-appb-img-000095
,
Figure PCTKR2020013518-appb-img-000096
Is the same as previously described.
Figure PCTKR2020013518-appb-img-000097
Assuming SRS transmission in a subframe according to preset requirements, MPR = 0dB, A-MPR = 0dB, P-MPR = 0dB and
Figure PCTKR2020013518-appb-img-000098
Assuming = 0dB, it is calculated. MPR is Maximum Power Reduction, A-MPR is Additional Maximum Power Reduction, P-MPR is Power Management Maximum Power Reduction,
Figure PCTKR2020013518-appb-img-000099
Is the tolerance related to the transmission power. In this case, the physical layer
Figure PCTKR2020013518-appb-img-000100
instead
Figure PCTKR2020013518-appb-img-000101
To deliver.
전력 power 헤드룸Headroom 보고(Power Headroom Reporting) Reporting (Power Headroom Reporting)
전력 헤드룸 보고 절차는 1) nominal UE maximum transmit power와 활성화 된 서빙 셀당 UL-SCH 전송 또는 SRS 전송에 대한 추정 전력 간의 차이에 대한 정보와 2) nominal UE maximum transmit power와 SpCell 및 PUCCH SCell에서 UL-SCH 및 PUCCH / SPUCCH 전송을 위한 추정 전력 간의 차이에 대한 정보를 서빙 eNB에 제공하는 데 사용됩니다. The power headroom reporting procedure includes 1) information on the difference between the nominal UE maximum transmit power and the estimated power for UL-SCH transmission or SRS transmission per activated serving cell, and 2) the nominal UE maximum transmit power and UL- in SpCell and PUCCH SCell. It is used to provide the serving eNB with information about the difference between the estimated power for SCH and PUCCH / SPUCCH transmission.
전력 헤드룸의 보고 기간(reporting period), 지연(delay) 및 매핑(mapping)은 TS 36.133 및 TS 38.133에 정의되어 있다. RRC는 다음 i), ii)의 동작을 수행함으로써 전력 헤드룸 보고(power headroom reporting)를 제어한다. RRC는 i) 두 개의 타이머들(periodicPHR-Timer 및 prohibitPHR-Timer)을 설정하고, ii) 측정된 하향링크 경로 손실에서의 변경을 설정하는 dl-PathlossChange와 P-MPRc에서 허용하는대로 PHR을 트리거하기 위한 전력 관리(power management)로 인해 요구된 전력 백오프(required power backoff)를 시그널링한다.The reporting period, delay, and mapping of the power headroom are defined in TS 36.133 and TS 38.133. The RRC controls power headroom reporting by performing the following operations i) and ii). RRC i) sets two timers (periodicPHR-Timer and prohibitPHR-Timer), and ii) triggers PHR as allowed by dl-PathlossChange and P-MPRc to set a change in the measured downlink path loss. Signals a requested power backoff due to power management for.
다음 이벤트 중 하나가 발생하면 PHR(Power Headroom Report)이 트리거된다.When one of the following events occurs, the Power Headroom Report (PHR) is triggered.
-prohibitPHR-Timer가 만료된 경우, prohibitPHR-Timer가 만료되었으며 MAC 엔티티가 새로운 전송을 위한 UL 자원을 갖고 있을 때 경로 손실(path loss)이 상기 MAC 엔터티에서 PHR의 마지막 전송 이후 경로 손실 참조로 사용되는 MAC 엔터티의 활성화 된 서빙 셀 하나 이상에 대해 dl-PathlossChange dB 이상으로 변경된 경우;When -prohibitPHR-Timer expires, prohibitPHR-Timer expires and when the MAC entity has UL resources for new transmission, the path loss is used as a reference for path loss after the last transmission of the PHR in the MAC entity. When the MAC entity is changed to more than dl-PathlossChange dB for one or more activated serving cells;
-periodicPHR-Timer가 만료된 경우;-periodicPHR-Timer has expired;
-기능을 디스에이블(disable)하는 데 사용되지 않는 상위 계층에 의해 전력 헤드룸 보고 기능(power headroom reporting functionality)이 설정 또는 재설정된 경우;-When the power headroom reporting functionality is set or reset by an upper layer that is not used to disable the function;
-설정된 상향링크를 갖는 MAC 엔티티의 SCell이 활성화된 경우;-When the SCell of the MAC entity having the configured uplink is activated;
-PSCell이 추가된 경우(즉, PSCell이 새로 추가되거나 PSCell이 변경);-When PSCell is added (ie, PSCell is newly added or PSCell is changed);
-prohibitPHR-Timer는 만료되거나 만료되었된 경우, MAC 엔티티가 새로운 전송을 위한 UL 자원을 가지고 있고, 설정된 상향링크가있는 MAC 엔티티의 활성화 된 서빙 셀에 대해 이 TTI에서 다음의 내용이 참일 때:-prohibitPHR-Timer is expired or expired, when the MAC entity has UL resources for new transmission, and the following contents in this TTI are true for the activated serving cell of the MAC entity with the configured uplink:
- 전송을 위해 할당된 UL 자원이 있거나 이 셀에 PUCCH/SPUCCH 전송이 있고 전력 관리로 인해 필요한 전력 백 오프가, MAC 엔티티가 이 셀에서 전송 또는 PUCCH/SPUCCH 전송을 위해 할당 된 UL 자원을 가지고 있을 때 PHR의 마지막 전송 이후 이 셀에 대해, dl-PathlossChange dB 이상으로 변경되었을 경우.-If there is a UL resource allocated for transmission, or there is a PUCCH/SPUCCH transmission in this cell, and the power backoff required due to power management, the MAC entity may have the UL resource allocated for transmission or PUCCH/SPUCCH transmission in this cell. When for this cell since the last transmission of the PHR, it has changed by more than dl-PathlossChange dB.
참고 1: MAC 엔티티는 전원 관리로 인해 필요한 전원 백 오프가 일시적으로 만 감소할 때 (예 : 최대 수십 밀리 초 동안) PHR 트리거를 피해야하며, PHR이 다른 트리거 조건에 의해 트리거 될 때
Figure PCTKR2020013518-appb-img-000102
/PH의 값에 이러한 일시적인 감소를 반영하지 않아야 한다.
Note 1: The MAC entity should avoid PHR triggers when the required power backoff only temporarily decreases due to power management (e.g. for up to tens of milliseconds), when the PHR is triggered by other trigger conditions.
Figure PCTKR2020013518-appb-img-000102
The value of /PH should not reflect this temporary decrease.
참고 2: UL HARQ 동작이 HARQ 엔티티에 대해 자율적이고 PHR가 이미 이 HARQ 엔티티에 의한 전송을 위해 MAC PDU에 포함되어 있지만 아직 하위 계층에 의해 전송되지 않은 경우, PHR content를 처리하는 방법은 단말 구현에 달려 있다.Note 2: When the UL HARQ operation is autonomous with respect to the HARQ entity and the PHR is already included in the MAC PDU for transmission by this HARQ entity, but has not yet been transmitted by the lower layer, the method of processing PHR content is determined by the UE implementation. Depends.
MAC 엔티티에 이 TTI에 대한 새로운 전송을 위해 할당된 UL 자원이 있는 경우 MAC 엔티티는 다음을 수행해야 한다.If the MAC entity has UL resources allocated for new transmission for this TTI, the MAC entity must do the following.
-마지막 MAC 리셋 이후 새로운 전송을 위해 할당된 첫 번째 UL 자원인 경우에 periodicPHR-Timer를 시작한다.-In the case of the first UL resource allocated for new transmission after the last MAC reset, the periodicPHR-Timer is started.
-전력 헤드룸 보고 절차에서 하나 이상의 PHR이 트리거되고 취소되지 않은 것으로 결정된 경우, 및;-If it is determined that one or more PHRs are triggered and not canceled in the power headroom reporting procedure, and
-할당된 UL 자원이 논리 채널 우선 순위의 결과로 MAC 엔티티가 전송하도록 설정된 PHR에 대한 MAC 제어 요소와 그것의 서브 헤더를 수용할 수있는 경우:-If the allocated UL resource can accommodate the MAC control element and its sub-headers for the PHR set to be transmitted by the MAC entity as a result of logical channel priority:
-extendedPHR이 설정된 경우:If -extendedPHR is set:
-상향링크가 설정된 활성화 된 각 서빙 셀에 대해:-For each active serving cell with uplink configured:
-타입 1 또는 타입 3 전력 헤드룸의 값을 획득한다.-Acquire the value of type 1 or type 3 power headroom.
-MAC 엔티티가 이 TTI에 대한 서빙 셀에서 전송을 위해 할당된 UL 자원을 갖고 있는 경우:-If the MAC entity has UL resources allocated for transmission in the serving cell for this TTI:
-물리 계층에서 해당
Figure PCTKR2020013518-appb-img-000103
필드에 대한 값을 획득한다.
-Corresponds in the physical layer
Figure PCTKR2020013518-appb-img-000103
Gets a value for a field.
-simultaneous PUCCH-PUSCH가 설정되거나 상향링크가 있는 프레임 구조 타입 3에 따라 동작하는 서빙 셀이 설정되고 활성화 된 경우:-When simultaneous PUCCH-PUSCH is configured or a serving cell operating according to frame structure type 3 with uplink is configured and activated:
-PCell에 대한 타입 2 전력 헤드룸의 값을 획득한다.-Acquire a value of type 2 power headroom for PCell.
-물리 계층에서 해당
Figure PCTKR2020013518-appb-img-000104
필드에 대한 값을 획득한다(TS 36.213의 5.1.1.2 절 참조).
-Corresponds in the physical layer
Figure PCTKR2020013518-appb-img-000104
Get the value for the field (see section 5.1.1.2 of TS 36.213).
-물리 계층에 의해 보고된 값에 기초하여 6.1.3.6a 절에 정의된 extendedPHR에 대한 Extended PHR MAC 제어 요소를 생성하고 전송하도록 다중화 및 어셈블리 절차(multiplexing and assembly procedure)를 지시한다.-Instructs the multiplexing and assembly procedure to generate and transmit the Extended PHR MAC control element for the extendedPHR defined in Section 6.1.3.6a based on the value reported by the physical layer.
-extendedPHR2가 설정된 경우 :If -extendedPHR2 is set:
-상향링크가 설정된 활성화 된 각 서빙 셀에 대해:-For each active serving cell with uplink configured:
-타입 1 또는 타입 3 전력 헤드룸의 값을 획득한다.-Acquire the value of type 1 or type 3 power headroom.
-MAC 엔티티가 이 TTI에 대한 서빙 셀에서 전송을 위해 할당된 UL 자원을 갖고 있는 경우:-If the MAC entity has UL resources allocated for transmission in the serving cell for this TTI:
-물리 계층에서 해당
Figure PCTKR2020013518-appb-img-000105
필드에 대한 값을 획득한다.
-Corresponds in the physical layer
Figure PCTKR2020013518-appb-img-000105
Gets a value for a field.
-PUCCH SCell이 구성되고 활성화 된 경우:-If PUCCH SCell is configured and enabled:
-PCell 및 PUCCH SCell에 대한 타입 2 전력 헤드룸의 값을 획득한다.-Acquires values of type 2 power headroom for PCell and PUCCH SCell.
-물리 계층에서 해당
Figure PCTKR2020013518-appb-img-000106
필드에 대한 값을 획득한다.
-Corresponds in the physical layer
Figure PCTKR2020013518-appb-img-000106
Gets a value for a field.
-그 외의 경우:-Other cases:
-simultaneous PUCCH-PUSCH가 설정되거나 상향링크가 있는 프레임 구조 타입 3에 따라 동작하는 서빙 셀이 설정되고 활성화 된 경우:-When simultaneous PUCCH-PUSCH is configured or a serving cell operating according to frame structure type 3 with uplink is configured and activated:
-PCell에 대한 타입 2 전력 헤드룸의 값을 획득한다.-Acquire a value of type 2 power headroom for PCell.
-물리 계층에서 해당
Figure PCTKR2020013518-appb-img-000107
필드에 대한 값을 획득한다(TS 36.213의 5.1.1.2 절 참조).
-Corresponds in the physical layer
Figure PCTKR2020013518-appb-img-000107
Get the value for the field (see section 5.1.1.2 of TS 36.213).
-물리 계층에 의해 보고된 값에 기초하여 6.1.3.6a 절에 정의된 extendedPHR에 대한 Extended PHR MAC 제어 요소를 생성하고 전송하도록 다중화 및 어셈블리 절차(multiplexing and assembly procedure)를 지시한다.-Instructs the multiplexing and assembly procedure to generate and transmit the Extended PHR MAC control element for the extendedPHR defined in Section 6.1.3.6a based on the value reported by the physical layer.
-dualConnectivityPHR가 설정된 경우 :If -dualConnectivityPHR is set:
-MAC 엔티티와 연결된 상향링크가 설정된 활성화 된 각 서빙 셀에 대해 :-For each activated serving cell in which uplink connected to the MAC entity is configured:
-타입 1 또는 타입 3 전력 헤드룸의 값을 획득한다.-Acquire the value of type 1 or type 3 power headroom.
- MAC 엔티티가 이 TTI에 대한 서빙 셀에서 전송을 위해 할당된 UL 자원을 갖고 있거나 다른 MAC 엔티티가 이 TTI에 대한 서빙 셀에서 전송을 위해 할당된 UL 자원을 가지고 있고 phr-ModeOtherCG가 상위 계층에 의해 real로 설정된 경우 :-The MAC entity has UL resources allocated for transmission in a serving cell for this TTI, or another MAC entity has UL resources allocated for transmission in a serving cell for this TTI, and phr-ModeOtherCG is set by a higher layer. If set to real:
-물리 계층에서 해당
Figure PCTKR2020013518-appb-img-000108
필드에 대한 값을 획득한다.
-Corresponds in the physical layer
Figure PCTKR2020013518-appb-img-000108
Gets a value for a field.
-simultaneous PUCCH-PUSCH가 설정되거나 상향링크가 있는 프레임 구조 타입 3에 따라 동작하는 서빙 셀이 설정되고 활성화 된 경우:-When simultaneous PUCCH-PUSCH is configured or a serving cell operating according to frame structure type 3 with uplink is configured and activated:
-SpCell에 대한 타입 2 전력 헤드룸의 값을 획득한다.-Acquire the value of type 2 power headroom for SpCell.
-물리 계층에서 SpCell에 대한 해당
Figure PCTKR2020013518-appb-img-000109
필드의 값을 획득한다 (TS 36.213 [2]의 5.1.1.2 절 참조).
-Correspondence for SpCell in the physical layer
Figure PCTKR2020013518-appb-img-000109
Obtain the value of the field (see section 5.1.1.2 of TS 36.213 [2]).
-다른 MAC 엔티티가 E-UTRA MAC 엔티티인 경우 :-If another MAC entity is an E-UTRA MAC entity:
-다른 MAC 엔티티의 SpCell에 대한 타입 2 전력 헤드룸의 값을 획득한다.-Acquire a value of type 2 power headroom for SpCell of another MAC entity.
-phr-ModeOtherCG가 상위 계층에 의해 real로 설정된 경우 :If -phr-ModeOtherCG is set to real by the upper layer:
-물리 계층으로부터 다른 MAC 엔티티의 SpCell에 대한 해당
Figure PCTKR2020013518-appb-img-000110
필드에 대한 값을 획득한다(TS 36.213 [2]의 5.1.1.2 절 참조).
-Correspondence for SpCell of other MAC entity from physical layer
Figure PCTKR2020013518-appb-img-000110
Get the value for the field (see section 5.1.1.2 of TS 36.213 [2]).
-물리 계층에 의해 보고된 값에 기초하여 6.1.3.6b 절에 정의된 dual Connectivity PHR MAC 제어 요소를 생성하고 전송하도록 다중화 및 어셈블리 절차(multiplexing and assembly procedure)를 지시한다.-Instruct the multiplexing and assembly procedure to generate and transmit the dual Connectivity PHR MAC control element defined in Section 6.1.3.6b based on the value reported by the physical layer.
-그 외 :-etc :
-물리 계층에서 타입 1 전력 헤드룸의 값을 획득한다.-Acquire the value of type 1 power headroom in the physical layer.
-물리 계층에 의해 보고된 값에 기초하여 6.1.3.6 절에 정의 된대로 PHR MAC 제어 요소를 생성하고 전송하도록 다중화 및 어셈블리 절차(multiplexing and assembly procedure)를 지시한다.-Instruct the multiplexing and assembly procedure to generate and transmit the PHR MAC control element as defined in Section 6.1.3.6 based on the value reported by the physical layer.
-periodicPHR-Timer를 시작하거나 다시 시작한다.-periodicPHR-Timer start or restart.
-prohibitPHR-Timer를 시작하거나 다시 시작한다.-prohibitPHR-Timer Start or restart.
-트리거 된 모든 PHR(s)을 취소(cancel)한다.-Cancel all triggered PHR(s).
전력 power 헤드룸Headroom 보고 MAC 제어 요소(Power Headroom Report MAC Control Element) Power Headroom Report MAC Control Element
PHR(Power Headroom Report) MAC 제어 요소는 지정된 LCID(Logical channel ID)가있는 MAC PDU 서브 헤더로 식별된다. 이하 도 9를 참조하여 설명한다.The PHR (Power Headroom Report) MAC control element is identified by a MAC PDU subheader with a designated LCID (Logical Channel ID). Hereinafter, it will be described with reference to FIG. 9.
도 9는 본 명세서에서 제안하는 방법이 적용될 수 있는 PHR MAC 제어 요소를 예시한다. 도 9를 참조하면, PHR MAC 제어 요소는 고정된 크기(fixed size)를 가지며, 다음과 같이 정의된 단일 옥텟(single octet)으로 구성된다.9 illustrates a PHR MAC control element to which the method proposed in this specification can be applied. Referring to FIG. 9, the PHR MAC control element has a fixed size and is composed of a single octet defined as follows.
-R : 예약 된 비트, "0"으로 설정;-R: reserved bit, set to "0";
-전력 헤드룸(PH): 이 필드는 전력 헤드룸 레벨을 나타낸다. 이 필드의 길이는 6 비트이다. 보고된 PH 및 이에 따른 전력 헤드룸 레벨은 아래 표 3에 예시되어 있다.-Power Headroom (PH): This field represents the power headroom level. The length of this field is 6 bits. The reported PH and thus the power headroom level are illustrated in Table 3 below.
Figure PCTKR2020013518-appb-img-000111
Figure PCTKR2020013518-appb-img-000111
이하 도 10a 및 도 10b를 참조하여 확장된 전력 헤드룸 보고(Extended Power Headroom Report, Extended PHR)와 관련된 MAC 제어 요소(MAC CE)에 대해 살펴본다.Hereinafter, a MAC control element (MAC CE) related to an extended power headroom report (Extended PHR) will be described with reference to FIGS. 10A and 10B.
도 10a는 본 명세서에서 제안하는 방법이 적용될 수 있는 Extended PHR MAC CE의 일 예를 나타낸다. 도 10b는 본 명세서에서 제안하는 방법이 적용될 수 있는 Extended PHR MAC CE의 다른 예를 나타낸다.10A shows an example of an extended PHR MAC CE to which the method proposed in the present specification can be applied. 10B shows another example of an Extended PHR MAC CE to which the method proposed in the present specification can be applied.
확장된 전력 Extended power 헤드룸Headroom 보고 MAC 제어 요소(Extended Power Headroom Report MAC Control Element) Extended Power Headroom Report MAC Control Element
extendedPHR의 경우, 확장된 전력 헤드룸 보고(Extended Power Headroom Report) MAC 제어 요소는 지정된 LCID가 있는 MAC PDU 서브 헤더로 식별된다. 확장된 전력 헤드룸 보고 제어 요소의 크기는 가변적이며 도 10a(a)에 정의되어 있다. 타입 2 PH가 보고될 때, 타입 2 PH 필드를 포함하는 옥텟(octet)은 SCell당 PH의 존재를 나타내는 옥텟 뒤에 먼저 포함되고 관련
Figure PCTKR2020013518-appb-img-000112
필드(보고된 경우)를 포함하는 옥텟이 뒤 따른다. 그런 다음 PCell에 대해 타입 1 PH 필드가 있는 옥텟과 연관된
Figure PCTKR2020013518-appb-img-000113
필드(보고된 경우)가 있는 옥텟이 이어진다. 그 다음 TS 36.331에 지정된대로 ServCellIndex를 기반으로 오름차순으로 비트 맵에 표시된 각 SCell에 대해 Type x PH 필드가 있는 옥텟과 연관된
Figure PCTKR2020013518-appb-img-000114
필드 (보고된 경우)가 있는 옥텟이 이어진다. 여기서 x는 이 SCell에 대해 ul-Configuration-r14가 설정될 때 3과 같으며, 그렇지 않은 경우(ul-Configuration-r14이 설정되지 않은 경우) x는 1과 같다.
In the case of extendedPHR, the Extended Power Headroom Report MAC control element is identified as a MAC PDU subheader with a designated LCID. The size of the extended power headroom reporting control element is variable and is defined in Fig. 10A(a). When type 2 PH is reported, the octet containing the type 2 PH field is included first after the octet indicating the existence of the PH per SCell, and is related.
Figure PCTKR2020013518-appb-img-000112
The octet containing the field (if reported) follows. Then for the PCell there is a type 1 PH field associated with the octet.
Figure PCTKR2020013518-appb-img-000113
The octet with the field (if reported) follows. Then, for each SCell displayed in the bitmap in ascending order based on ServCellIndex as specified in TS 36.331, it is associated with an octet with a Type x PH field.
Figure PCTKR2020013518-appb-img-000114
The octet with the field (if reported) follows. Here, x is equal to 3 when ul-Configuration-r14 is configured for this SCell, otherwise (when ul-Configuration-r14 is not configured) x is equal to 1.
extendedPHR2의 경우, PHR(Extended Power Headroom Report) MAC 제어 요소는 지정된 LCID가 있는 MAC PDU 서브 헤더로 식별된다. PHR MAC 제어 요소는 가변 크기를 가지며 도 10a(b), 도 10b(a) 및 도 10b(b)에 정의되어 있다. 도 10a(b)는 SCell에서의 PUCCH를 지원하는 Extended PHR MAC CE를 예시한다. 도 10b(a)는 상향링크가 설정된 32개의 셀들을 지원하는 Extended PHR MAC CE를 예시한다. 도 10b(b)는 SCell에서의 PUCCH 및 상향링크가 설정된 32개의 셀들을 지원하는 Extended PHR MAC CE를 예시한다.In the case of extendedPHR2, the Extended Power Headroom Report (PHR) MAC control element is identified as a MAC PDU subheader with a designated LCID. The PHR MAC control element has a variable size and is defined in Figs. 10a(b), 10b(a) and 10b(b). 10A(b) illustrates Extended PHR MAC CE supporting PUCCH in SCell. 10B(a) illustrates an Extended PHR MAC CE supporting 32 cells in which uplink is configured. 10b(b) illustrates an extended PHR MAC CE supporting 32 cells in which PUCCH and uplink are configured in the SCell.
C 필드가 있는 한 옥텟(1 octet)은 설정된 상향링크가 있는 SCell의 가장 높은 SCellIndex가 8 미만일 때 SCell당 PH의 존재를 나타내기 위해 사용되며, 그렇지 않으면 4 옥텟들(4 octets)이 사용된다. 타입 2 PH가 PCell에 대해 보고될 때, 타입 2 PH 필드를 포함하는 옥텟이 SCell당 PH의 존재를 나타내는 옥텟 뒤에 먼저 포함되고 관련
Figure PCTKR2020013518-appb-img-000115
필드를 포함하는 옥텟(보고된 경우)이 뒤 따른다. 그런 다음 PUCCH SCell에 대한 타입 2 PH 필드(SCell의 PUCCH가 설정되고 PUCCH SCell에 대해 타입 2 PH가 보고되는 경우)와 연관된
Figure PCTKR2020013518-appb-img-000116
필드(보고된 경우)를 포함하는 옥텟이 뒤 따른다. 그런 다음 PCell에 대해 Type 1 PH 필드가 있는 옥텟과 연관된
Figure PCTKR2020013518-appb-img-000117
필드(보고된 경우)가 있는 옥텟이 이어진다. 그 다음 TS 36.331에 지정된대로 ServCellIndex를 기반으로 오름차순으로 비트 맵에 표시된 각 SCell에 대해 Type x PH 필드가 있는 옥텟과 연관된
Figure PCTKR2020013518-appb-img-000118
필드(보고된 경우)가 있는 옥텟이 이어진다. 여기서 x는 이 SCell에 대해 ul-Configuration-r14가 설정될 때 3과 같으며, 그렇지 않은 경우(ul-Configuration-r14이 설정되지 않은 경우) x는 1과 같다.
One octet (1 octet) with a C field is used to indicate the existence of a PH per SCell when the highest SCellIndex of an SCell with a configured uplink is less than 8, otherwise 4 octets are used. When type 2 PH is reported for the PCell, the octet containing the type 2 PH field is included first after the octet indicating the existence of the PH per SCell and related
Figure PCTKR2020013518-appb-img-000115
The octet containing the field (if reported) follows. Then, the type 2 PH field for the PUCCH SCell (when the PUCCH of the SCell is set and the type 2 PH is reported for the PUCCH SCell) is associated with the
Figure PCTKR2020013518-appb-img-000116
The octet containing the field (if reported) follows. Then for the PCell there is a Type 1 PH field associated with the octet.
Figure PCTKR2020013518-appb-img-000117
The octet with the field (if reported) follows. Then, for each SCell displayed in the bitmap in ascending order based on ServCellIndex as specified in TS 36.331, it is associated with an octet with a Type x PH field.
Figure PCTKR2020013518-appb-img-000118
The octet with the field (if reported) follows. Here, x is equal to 3 when ul-Configuration-r14 is configured for this SCell, otherwise (when ul-Configuration-r14 is not configured) x is equal to 1.
확장된 전력 헤드룸 보고 MAC 제어 요소(Extended PHR MAC CE)는 다음과 같이 정의된다.The extended power headroom reporting MAC control element (Extended PHR MAC CE) is defined as follows.
-
Figure PCTKR2020013518-appb-img-000119
:이 필드는 TS 36.331에 명시된 SCellIndex i를 갖는 SCell에 대한 PH 필드의 존재를 나타낸다. "1"로 설정된 Ci 필드는 SCellIndex i의 SCell에 대한 PH 필드가 보고됨을 나타낸다. "0"으로 설정된 Ci 필드는 SCellIndex i의 SCell에 대한 PH 필드가 보고되지 않음을 나타낸다.
-
Figure PCTKR2020013518-appb-img-000119
: This field indicates the existence of the PH field for the SCell with SCellIndex i specified in TS 36.331. The Ci field set to "1" indicates that the PH field for the SCell of SCellIndex i is reported. The Ci field set to "0" indicates that the PH field for the SCell of SCellIndex i is not reported.
-R : 예약된 비트(reserved bits), "0"으로 설정된다.-R: Reserved bits, set to "0".
-V :이 필드는 PH 값이 실제 전송(real transmission) 또는 참조 형식(reference format)을 기반으로 하는지를 나타낸다. Type 1 PH의 경우 V=0은 PUSCH에서의 실제 전송(real transmission)을 나타내고 V = 1은 PUSCH 참조 형식(reference format)이 사용됨을 나타낸다. Type 2 PH의 경우 V = 0은 PUCCH/SPUCCH에서의 실제 전송을 나타내고 V=1은 PUCCH/SPUCCH 참조 형식이 사용됨을 나타낸다. Type 3 PH의 경우 V=0은 SRS에서의 실제 전송을 나타내고 V=1은 SRS 참조 형식이 사용됨을 나타낸다. 또한, 타입 1, 타입 2 및 타입 3 PH의 경우, V=0은 연관된
Figure PCTKR2020013518-appb-img-000120
필드를 포함하는 옥텟이 있음을 나타내고 V=1은 연관된
Figure PCTKR2020013518-appb-img-000121
필드를 포함하는 옥텟이 생략됨을 나타낸다.
-V: This field indicates whether the PH value is based on real transmission or reference format. In the case of Type 1 PH, V=0 indicates real transmission in the PUSCH, and V=1 indicates that the PUSCH reference format is used. In the case of Type 2 PH, V = 0 indicates actual transmission in PUCCH/SPUCCH, and V=1 indicates that the PUCCH/SPUCCH reference format is used. In the case of Type 3 PH, V=0 indicates actual transmission in the SRS, and V=1 indicates that the SRS reference format is used. In addition, in the case of type 1, type 2 and type 3 PH, V = 0 is associated
Figure PCTKR2020013518-appb-img-000120
Indicates that there is an octet containing the field and V=1 is the associated
Figure PCTKR2020013518-appb-img-000121
Indicates that the octet including the field is omitted.
-전력 헤드룸(Power Headroom, PH) :이 필드는 전력 헤드룸 레벨을 나타낸다. 필드의 길이는 6 비트이다. 보고된 PH 및 해당 전력 헤드룸 레벨은 표 3에 나와 있다(dB 단위의 해당 측정 값은 TS 36.133의 9.1.8.4 절 참조).-Power Headroom (PH): This field indicates the power headroom level. The length of the field is 6 bits. The reported PH and corresponding power headroom levels are shown in Table 3 (for corresponding measurements in dB, see section 9.1.8.4 of TS 36.133).
-P :이 필드는 MAC 엔티티가 전력 관리(power management)로 인해 전력 백오프(power backoff)를 적용하는지 여부를 나타낸다(
Figure PCTKR2020013518-appb-img-000122
에서 허용하는대로, TS 36.101 참조). MAC 엔티티는 전력 관리로 인한 전력 백오프가 적용되지 않는 경우로서 해당
Figure PCTKR2020013518-appb-img-000123
필드가 다른 값을 가질 경우 P=1로 설정해야 한다.
-P: This field indicates whether the MAC entity applies power backoff due to power management (
Figure PCTKR2020013518-appb-img-000122
As permitted by, see TS 36.101). MAC entity is a case where power backoff due to power management is not applied.
Figure PCTKR2020013518-appb-img-000123
If the field has a different value, it should be set to P=1.
-
Figure PCTKR2020013518-appb-img-000124
: (해당 필드가 존재한다면), 이 필드는 이전 PH 필드의 계산에 사용된 TS 36.213에서 지정된
Figure PCTKR2020013518-appb-img-000125
또는
Figure PCTKR2020013518-appb-img-000126
를 나타낸다. 보고된
Figure PCTKR2020013518-appb-img-000127
및 해당 nominal UE transmit power level은 표 4에 예시되어 있다(dBm 단위의 해당 측정 값은 TS 36.133의 9.6.1 절 참조).
-
Figure PCTKR2020013518-appb-img-000124
: (If the corresponding field exists), this field is specified in TS 36.213 used in the calculation of the previous PH field.
Figure PCTKR2020013518-appb-img-000125
or
Figure PCTKR2020013518-appb-img-000126
Represents. Reported
Figure PCTKR2020013518-appb-img-000127
And the corresponding nominal UE transmit power levels are shown in Table 4 (for corresponding measurements in dBm, see section 9.6.1 of TS 36.133).
아래 표 4는 확장된 PHR(Extended PHR) 및 이중 연결 PHR(Dual connectivity PHR)에 대한 nominal UE transmit power level을 예시한다.Table 4 below illustrates nominal UE transmit power levels for extended PHR (Extended PHR) and dual connectivity PHR (Dual connectivity PHR).
Figure PCTKR2020013518-appb-img-000128
Figure PCTKR2020013518-appb-img-000128
이하에서는 본 명세서에서 제안하는 방법에 적용될 수 있는 LTE MIMO enhancement(additional SRS)와 관련된 합의 사항들(agreements)을 살펴본다.Hereinafter, agreements related to LTE MIMO enhancement (additional SRS) applicable to the method proposed in the present specification will be described.
1. Agreement(additional SRS에 대해서 고려되는 시나리오)1. Agreement (a scenario considered for additional SRS)
The work for additional SRS symbols in this WI should consider the following scenariosThe work for additional SRS symbols in this WI should consider the following scenarios
-TDD for non-CA-TDD for non-CA
-TDD only CA-TDD only CA
-FDD-TDD CA-FDD-TDD CA
2. Agreement(additional SRS 심볼의 시간 영역상의 위치)2. Agreement (position of the additional SRS symbol in the time domain)
셀에 대한 하나의 일반 UL 서브 프레임에서 가능한 additional SRS 심볼의 시간 영역상의 위치는 다음을 포함한다Positions in the time domain of additional SRS symbols available in one general UL subframe for a cell include:
옵션 1 : 하나의 슬롯에 있는 모든 심볼을 셀 관점에서 SRS에 사용Option 1: All symbols in one slot are used for SRS from a cell perspective
예를 들어, 서브 프레임의 다른 슬롯은 sTTI가 가능한 UE에 대한 PUSCH 전송에 사용될 수 있다.For example, another slot of the subframe may be used for PUSCH transmission for a UE capable of sTTI.
옵션 2 : 하나의 서브 프레임에 있는 모든 심볼을 셀 관점에서 SRS에 사용Option 2: All symbols in one subframe are used for SRS from a cell perspective
옵션 3 : 하나의 슬롯에있는 심볼의 서브셋을 셀 관점에서 SRS에 사용할 수 있다Option 3: A subset of symbols in one slot can be used for SRS from a cell perspective
다만, additional SRS의 위치는 상술한 옵션들로 한정되는 것은 아니다.However, the location of the additional SRS is not limited to the above-described options.
낮은 하향링크 SINR을 갖는 영역에 대해, 일반 서브 프레임에서 UE당 추가적인 SRS(additional SRS) 심볼의 지원은 하향링크 성능의 이득을 가져올 수 있다.For a region having a low downlink SINR, support of an additional SRS (additional SRS) symbol per UE in a general subframe may result in a downlink performance gain.
3. Agreement(비주기적 SRS 지원)3. Agreement (aperiodic SRS support)
추가적인 SRS의 심볼에 대해 비주기적 SRS 전송이 지원될 수 있다.Aperiodic SRS transmission may be supported for additional SRS symbols.
4. Agreement(additional SRS의 전송)4. Agreement (transmission of additional SRS)
하나의 UL 서브 프레임 내에 추가적인 SRS가 설정된 UE는 다음 옵션들 중 어느 하나에 기반하여 SRS를 전송할 수 있다.A UE in which an additional SRS is configured in one UL subframe may transmit the SRS based on one of the following options.
-옵션 1 : 하나의 UL 서브 프레임 내에서 주파수 호핑(frequency hopping)이 지원된다.-Option 1: Frequency hopping is supported within one UL subframe.
-옵션 2 : 하나의 UL 서브 프레임 내 반복(repetition)이 지원된다.-Option 2: Repetition in one UL subframe is supported.
-옵션 3 : 하나의 UL 서브 프레임 내에서 주파수 호핑 및 반복이 모두 지원된다.-Option 3: Both frequency hopping and repetition are supported within one UL subframe.
5. Agreement5. Agreement
추가적인 심볼들(additional symbols)에서 비주기적 SRS에 대해 서브 프레임 내 주파수 호핑 및 반복이 모두 지원된다(Both intra-subframe frequency hopping and repetition are supported for aperiodic SRS in additional symbols).Both intra-subframe frequency hopping and repetition are supported for aperiodic SRS in additional symbols for aperiodic SRS in additional symbols.
6.Agreement(추가적인 SRS와 안테나 스위칭)6.Agreement (additional SRS and antenna switching)
추가 SRS 심벌에서 비 주기적 SRS를 위해 서브 프레임 내 안테나 스위칭이 지원된다.In-subframe antenna switching is supported for aperiodic SRS in the additional SRS symbol.
추가적인 SRS 심볼이라는 용어는 Rel-16에 추가로 도입된 것이며 마지막 심볼(last symbol)은 추가적인 SRS 심볼의 일부가 아니다.The term additional SRS symbol is additionally introduced in Rel-16, and the last symbol is not part of the additional SRS symbol.
7. Agreement(레거시 SRS와 추가적인 SRS의 전송)7. Agreement (transmission of legacy SRS and additional SRS)
레거시 SRS(legacy SRS) 및 추가적인 SRS (additional SRS) 심볼(들)이 모두 동일한 UE에 대해 설정될 수있다.Both legacy SRS (legacy SRS) and additional SRS (additional SRS) symbol(s) may be configured for the same UE.
레거시 SRS가 비주기적인 경우, 단말은 레거시 SRS 또는 추가적인 SRS 심볼(들)을 동일한 서브 프레임에서 전송할 수 있다.When the legacy SRS is aperiodic, the terminal may transmit the legacy SRS or additional SRS symbol(s) in the same subframe.
레거시 SRS가 주기적인 경우, 단말은 레거시 SRS 및 추가적인 SRS 심볼(들)을 동일하거나 상이한 서브 프레임에서 전송할 수 있다.When the legacy SRS is periodic, the UE may transmit the legacy SRS and additional SRS symbol(s) in the same or different subframes.
8. Agreement(추가적인 SRS의 심볼 수)8. Agreement (number of additional SRS symbols)
추가적인 SRS(additional SRS)로서 UE에 설정될 수 있는 심볼 수는 1-13이다.The number of symbols that can be configured in the UE as an additional SRS (additional SRS) is 1-13.
향후 합의 사항의 결정과 관련하여 아래의 사항들이 고려될 수 있다.The following items may be considered in connection with the decision of future agreements.
서브프레임 내 주파수 호핑 및 추가적인 SRS 심볼의 반복(For intra-subframe frequency hopping and repetition of additional SRS symbols)For intra-subframe frequency hopping and repetition of additional SRS symbols
반복 및 주파수 호핑의 지원에 있어서 다음의 사항들이 논의될 수 있다.In support of repetition and frequency hopping, the following can be discussed.
Figure PCTKR2020013518-appb-img-000129
값. 여기서,
Figure PCTKR2020013518-appb-img-000130
은 OFDM 심볼 수이다.
Figure PCTKR2020013518-appb-img-000129
value. here,
Figure PCTKR2020013518-appb-img-000130
Is the number of OFDM symbols.
Figure PCTKR2020013518-appb-img-000131
의 값. 여기서,
Figure PCTKR2020013518-appb-img-000132
는 설정된 SRS의 심볼 수이며, R은 단말에 설정된 반복 인자이다(
Figure PCTKR2020013518-appb-img-000133
is the number of configured SRS symbols, and R is the repetition factor for the configured UE).
Figure PCTKR2020013518-appb-img-000131
The value of. here,
Figure PCTKR2020013518-appb-img-000132
Is the number of symbols of the configured SRS, and R is the repetition factor set in the terminal (
Figure PCTKR2020013518-appb-img-000133
is the number of configured SRS symbols, and R is the repetition factor for the configured UE).
비-주기적 SRS에 대한 적용Application to non-periodic SRS
레거시 SRS 및 추가적인 SRS 심볼의 호핑 패턴의 동일 여부(whether legacy SRS and additional SRS symbols have the same hopping pattern)Whether legacy SRS and additional SRS symbols have the same hopping pattern
추가 SRS 심볼의 반복을 위해 유연한 설정(예: comb/comb offset configuration)이 지원되는지 여부(whether flexible configuration (예: comb/comb offset configuration) is supported for repetition of additional SRS symbols)Whether flexible configuration (e.g., comb/comb offset configuration) is supported for repetition of additional SRS symbols (e.g., comb/comb offset configuration) is supported for repetition of additional SRS symbols
9. Agreement9. Agreement
셀에 대한 하나의 일반 UL 서브 프레임에서 가능한 SRS (additional SRS) 심볼의 시간 위치에 대해:For the time position of an additional SRS (SRS) symbol possible in one general UL subframe for a cell:
하나의 서브 프레임에서 1 ~ 13 개의 심볼을 셀 관점에서 SRS에 사용1 to 13 symbols in one subframe are used for SRS from a cell point of view
10. Agreement(전력 제어)10. Agreement (power control)
단일 UE에 구성된 모든 추가적인 SRS 심볼에 동일한 전력 제어 구성이 적용된다(Same power control configuration applies for all additional SRS symbols configured to a single UE).Same power control configuration applies for all additional SRS symbols configured to a single UE.
11. Agreement11. Agreement
UE에 대한 동일한 서브 프레임에서 비주기적인 레거시 SRS 및 비주기적인 추가적인 SRS 심볼(들)의 전송이 지원된다(Transmission of aperiodic legacy SRS and aperiodic additional SRS symbol(s) in the same subframes for a UE is supported).Transmission of aperiodic legacy SRS and aperiodic additional SRS symbol(s) in the same subframe for the UE is supported (Transmission of aperiodic legacy SRS and aperiodic additional SRS symbol(s) in the same subframes for a UE is supported ).
12. Agreement12. Agreement
비 주기적 SRS 전송의 경우 다음 특징들의 조합이 동시에 설정될 수 있다.In the case of aperiodic SRS transmission, a combination of the following features may be set at the same time.
인트라 서브 프레임 안테나 스위칭(Intra-subframe antenna switching)Intra-subframe antenna switching
적어도 모든 안테나 포트들에 거쳐 안테나 스위칭이 지원된다.Antenna switching is supported across at least all antenna ports.
다음의 사항들의 지원 여부가 추가적으로 고려될 수 있다.Whether the following items are supported may be additionally considered.
안테나 포트의 하위 집합을 통한 안테나 전환(Antenna switching across a subset of antenna ports)Antenna switching across a subset of antenna ports
서브 프레임 내 주파수 호핑(Antenna switching across a subset of antenna ports)Frequency hopping within subframes (Antenna switching across a subset of antenna ports)
서브 프레임 내 반복(Intra-subframe repetition)Intra-subframe repetition
상술한 특징들이 추가적인 SRS 심볼(additional SRS symbol)에만 적용되는지 아니면 레거시 SRS 심볼(legacy SRS symbol)에도 적용되는 지 여부가 고려될 수 있다.Whether the above-described features are applied only to an additional SRS symbol or a legacy SRS symbol may be considered.
13. Agreement13. Agreement
SRS의 반복
Figure PCTKR2020013518-appb-img-000134
을 지원함에 있어서, 다음과 같은 파라미터가 정의될 수 있다. 여기서
Figure PCTKR2020013518-appb-img-000135
은 OFDM 심볼 번호(OFDM symbol number)이고,
Figure PCTKR2020013518-appb-img-000136
은 설정된 SRS 심볼의 개수(number of configured SRS symbols)이고, R은 설정된 단말에 대한 반복 인자(repetition factor)이다.
SRS repetition
Figure PCTKR2020013518-appb-img-000134
In supporting, the following parameters may be defined. here
Figure PCTKR2020013518-appb-img-000135
Is an OFDM symbol number,
Figure PCTKR2020013518-appb-img-000136
Is the number of configured SRS symbols, and R is a repetition factor for the configured terminal.
14. Agreement 14. Agreement
추가적인 SRS 반복의 설정 가능한 수(configurable number of additional SRS repetitions)는 {1, 2, 3, 4, 6, 7, 8, 9, 12, 13}가 될 수 있다. 해당 설정은 안테나 포트 및 서브 밴드 당(per antenna port and per subband) 적용될 수 있다.The configurable number of additional SRS repetitions may be {1, 2, 3, 4, 6, 7, 8, 9, 12, 13}. This setting can be applied per antenna port and per subband.
15. Agreement(DCI의 코드 포인트를 통한 SRS 전송의 트리거)15. Agreement (trigger of SRS transmission through code point of DCI)
동일한 DCI의 코드 포인트는 다음 중 하나에 대한 SRS 전송을 트리거한다.Code points of the same DCI trigger SRS transmission for one of the following.
-비주기적 레거시 SRS 심볼(Only aperiodic legacy SRS symbols)-Only aperiodic legacy SRS symbols
-비주기적 추가적인 SRS 심볼(Only aperiodic additional SRS symbols)-Only aperiodic additional SRS symbols
-동일 서브 프레임 내에서 비주기적 레거시 및 비주기적 추가적인 SRS 심볼(Both aperiodic legacy and aperiodic additional SRS symbols within the same subframe)-Aperiodic legacy and aperiodic additional SRS symbols within the same subframe
코드 포인트와 상기 열거된 항목들 중 하나의 연관(association of the codepoint and one of the above)은 RRC 시그널링에 의해 설정될 수 있다. SRS 트리거링이 없는 경우 별도의 코드 포인트(separate codepoint)가 지원될 수 있다.The association of the codepoint and one of the above may be set by RRC signaling. In the absence of SRS triggering, a separate codepoint may be supported.
16. Agreement16. Agreement
Rel-16 SRS를 트리거하기 위한 SRS 요청 필드(SRS request field)의 크기(size)는 기존(Rel-15 DCI 형식)과 동일할 수 있다.The size of the SRS request field for triggering the Rel-16 SRS may be the same as the existing (Rel-15 DCI format).
17. Agreement17. Agreement
SRS 트리거링을 지원하는 Rel-15 DCI 형식만이 Rel-16 SRS 전송을 트리거하는 데 사용될 수 있다(Only Rel-15 DCI formats that support SRS triggering can be used to trigger Rel-16 SRS transmission).Only Rel-15 DCI formats that support SRS triggering can be used to trigger Rel-16 SRS transmission.
18. Agreement18. Agreement
추가적인 SRS 심볼(additional SRS symbol)의 경우 심볼당 그룹 호핑 및 시퀀스 호핑(per-symbol group hopping and sequence hopping)이 지원될 수 있다.In the case of an additional SRS symbol, per-symbol group hopping and sequence hopping may be supported.
주어진 시간에서, 심볼당 그룹 호핑 또는 시퀀스 호핑 중 하나만이 단말에 의해 사용될 수 있다(In a given time, only one of per-symbol group hopping or sequence hopping can be used by a UE).At a given time, only one of group hopping or sequence hopping per symbol may be used by the UE (In a given time, only one of per-symbol group hopping or sequence hopping can be used by a UE).
19. Agreement19. Agreement
추가적인 SRS 심볼에 대한 주파수 호핑 또는 안테나 스위칭으로 인한 최소한의 전력 변화를 해결하기 위해 다음 옵션들 중 하나가 고려될 수 있다.One of the following options may be considered in order to solve the minimum power change due to frequency hopping or antenna switching for additional SRS symbols.
옵션 1 : 하나의 심볼의 보호 구간(guard period of one symbol)이 RAN1 스펙에 도입될 수 있다.Option 1: A guard period of one symbol may be introduced in the RAN1 specification.
옵션 2 : RAN1 스펙에에 보호 구간이 도입되지 않을 수 있다.Option 2: The guard interval may not be introduced in the RAN1 specification.
20. Agreement20. Agreement
추가적인 SRS 심볼의 주파수 호핑 및 안테나 스위칭을 위해 보호 구간(guard period)이 설정될 수 있다.A guard period may be set for frequency hopping and antenna switching of additional SRS symbols.
-보호 구간이 설정되면, 해당 보호 구간은 1 OFDM 심볼이다.-If a guard interval is set, the guard interval is 1 OFDM symbol.
-FFS : 주파수 호핑 및/또는 안테나 스위칭을 위한 보호 구간이, 서브 프레임 내 반복(repetition)이 설정되지 않은 경우, 항상 설정될 지 여부가 결정될 필요가 있다.-FFS: When the guard interval for frequency hopping and/or antenna switching is not set in a subframe, it needs to be determined whether or not to always be set.
다음의 사항이 고려될 수 있다.The following can be considered:
서브 프레임 내 주파수 호핑/반복과 서브 프레임 내 안테나 스위칭이 동시에 설정되는 경우 안테나 스위칭 전에 주파수 호핑이 수행되어야 한다.When frequency hopping/repetition within a subframe and antenna switching within a subframe are set at the same time, frequency hopping must be performed before antenna switching.
레거시 SRS 심볼들은 레거시 설정을 따를 수 있다.Legacy SRS symbols may follow the legacy configuration.
21. Agreement21. Agreement
비 주기적 추가적인 SRS(aperiodic additional SRS)는 레거시 단말 특정 SRS 서브 프레임 설정에 속하는 서브 프레임에서의 전송에 대해서만 트리거 될 수 있다.Aperiodic additional SRS (aperiodic additional SRS) may be triggered only for transmission in a subframe belonging to a legacy terminal-specific SRS subframe configuration.
22. Agreement22. Agreement
적어도 서브 프레임상에서 레거시 SRS 전송이 없는 경우, 레거시 SRS 심볼로부터 추가적인 SRS 심볼의 적어도 독립적인 개 루프 전력 제어가 지원된다.When there is no legacy SRS transmission on at least a subframe, at least independent open loop power control of an additional SRS symbol from the legacy SRS symbol is supported.
-동일한 서브 프레임에서 추가적인 SRS 심볼 및 레거시 SRS 심볼이 전송될 때 SRS 심볼에 대한 전력 제어에 대해서는 추가적으로 검토될 필요가 있다.-When an additional SRS symbol and a legacy SRS symbol are transmitted in the same subframe, power control for the SRS symbol needs to be additionally reviewed.
23. Agreement23. Agreement
추가적인 SRS 심볼의 시퀀스 생성은 다음에 기반할 수 있다.Sequence generation of additional SRS symbols may be based on the following.
Figure PCTKR2020013518-appb-img-000137
Figure PCTKR2020013518-appb-img-000137
Figure PCTKR2020013518-appb-img-000138
Figure PCTKR2020013518-appb-img-000138
여기서, 여기서 l은 슬롯
Figure PCTKR2020013518-appb-img-000139
내의 절대 심볼 인덱스(absolute symbol index)이고 Nsymb는 슬롯당 OFDM 심볼 수이다.
Where l is a slot
Figure PCTKR2020013518-appb-img-000139
Is the absolute symbol index and Nsymb is the number of OFDM symbols per slot.
24. Agreement24. Agreement
SRS와 PUCCH/PUSCH 전송의 충돌 처리(collision handling)를 위해 다음 Alt 1 내지 Alt 4 중 어느 하나가 선택될 수 있다.Any one of the following Alt 1 to Alt 4 may be selected for collision handling of SRS and PUCCH/PUSCH transmission.
-Alt1 : sPUSCH 및/또는 sPUCCH 사용-Alt1: use sPUSCH and/or sPUCCH
SRS 서브 프레임에서 sPUSCH 및/또는 sPUCCH 전송을 가능하게하는 Rel-16 UE에 대한 sPUSCH 및/또는 sPUCCH 기능을 도입한다.Introduces the sPUSCH and/or sPUCCH function for the Rel-16 UE that enables sPUSCH and/or sPUCCH transmission in the SRS subframe.
SRS가 전송되지 않는 심볼에서 추가적인 SRS와 동일한 서브 프레임 및 동일한 PRB에서 sTTI의 멀티플렉싱이 지원된다(Multiplexing of sTTI on same subframe and same PRBs with additional SRS on symbols where SRS is not transmitted is suported).Multiplexing of sTTI in the same subframe and same PRB as the additional SRS is supported in the symbol in which the SRS is not transmitted (Multiplexing of sTTI on same subframe and same PRBs with additional SRS on symbols where SRS is not transmitted is suported).
-Alt2 : 동일한 캐리어에서 SRS가 PUCCH/PUSCH/PRACH와 충돌하면 단말이 추가적인 심볼에서 SRS 전송을 드랍(drop)하거나 지연(delay)-Alt2: When the SRS collides with PUCCH/PUSCH/PRACH in the same carrier, the UE drops or delays SRS transmission in an additional symbol
상기 드랍과 상기 지연 중에서 어느 하나의 동작이 수행될 수 있다.Any one of the drop and the delay may be performed.
-Alt3 : 단말은 동일한 캐리어에서 PUCCH/PUSCH/PRACH와 충돌하는 SRS의 추가적인 심볼에서 비 주기적 SRS가 트리거 될 것을 예상하지 않는다.-Alt3: The UE does not expect a periodic SRS to be triggered in an additional symbol of the SRS colliding with the PUCCH/PUSCH/PRACH in the same carrier.
interband-CA, intraband-CA에서 충돌이 고려될 수 있다.Conflict may be considered in interband-CA and intraband-CA.
-Alt4 : 해당 충돌을 처리하기 위한 동작은 기지국(eNB)/단말(UE) 구현에 기반할 수 있다.-Alt4: The operation for handling the collision may be based on a base station (eNB)/terminal (UE) implementation.
sPUSCH 및/또는 sPUCCH는 SRS와 PUCCH/PUSCH 간의 충돌을 처리하는 데 사용될 수 있다.The sPUSCH and/or sPUCCH may be used to handle collisions between the SRS and PUCCH/PUSCH.
SRS 서브 프레임에서 sPUSCH 및/또는 sPUCCH 전송을 가능하게 하는 Rel-16 단말에 대한 sPUSCH 및/또는 sPUCCH 기능의 도입이 고려될 수 있다.Introduction of the sPUSCH and/or sPUCCH function to the Rel-16 terminal enabling sPUSCH and/or sPUCCH transmission in the SRS subframe may be considered.
다음의 사항이 추가적으로 고려될 수 있다.The following may additionally be considered.
sPUSCH/sPUCCH를 지원하지 않는 단말에 대한 SRS 및 PUCCH/PUSCH 전송의 충돌을 처리하기 위해 다음 중 어느 하나의 동작이 선택될 수 있다.Any one of the following operations may be selected in order to handle collision of SRS and PUCCH/PUSCH transmissions for a terminal that does not support sPUSCH/sPUCCH.
-Alt2A : 동일한 캐리어에서 SRS가 PUCCH/PUSCH/PRACH와 충돌하는 경우 단말은 추가적인 심볼에서 SRS 전송을 지연시킬 수 있다.-Alt2A: When SRS collides with PUCCH/PUSCH/PRACH in the same carrier, the UE may delay SRS transmission in an additional symbol.
-Alt2B : SRS가 동일한 캐리어에서 PUCCH/PUSCH/PRACH와 충돌하면 단말은 추가 심볼에서 SRS 전송을 드랍(drop)한다.-Alt2B: When SRS collides with PUCCH/PUSCH/PRACH in the same carrier, the UE drops SRS transmission in an additional symbol.
-Alt3 : 단말은 동일한 캐리어에서 PUCCH/PUSCH/PRACH와 충돌하는 SRS의 추가적인 심볼에서 비 주기적 SRS로 트리거 될 것으로 예상하지 않습니다.-Alt3: The terminal does not expect to be triggered by an aperiodic SRS in an additional symbol of the SRS that collides with PUCCH/PUSCH/PRACH on the same carrier.
interband-CA, intraband-CA의 충돌 상황에 대한 구체적인 내용이 결정될 필요가 있다.It is necessary to determine specific details about the collision situation of interband-CA and intraband-CA.
-Alt4 : 해당 충돌을 처리하기 위한 동작은 기지국(eNB) 구현에 기반할 수 있다.-Alt4: The operation for handling the collision may be based on the implementation of the base station (eNB).
Rel-16에 대한 추가적인 심볼에서 주기적 SRS 전송 지원에 대한 합의는 없다.There is no consensus on supporting periodic SRS transmission in additional symbols for Rel-16.
25. Agreement25. Agreement
주파수 호핑 및/또는 안테나 스위칭을 위한 보호 구간(guard period)은 서브 프레임 내 반복 설정(repetition configuration)에 관계없이 설정될 수 있다.A guard period for frequency hopping and/or antenna switching may be set regardless of a repetition configuration in a subframe.
보호 구간이 필요 없는 단말들을 위한 단말 성능(UE capability)을 도입하는 것은 RAN4에 달려 있다. 이러한 단말 성능(UE capability)이 도입된 경우 주파수 호핑 및 안테나 스위칭을 위한 별도의 단말 성능(UE capability)을 가질 지 여부 또한 RAN 4에 달려있다.It is up to RAN4 to introduce UE capability for UEs that do not need a guard interval. When this UE capability is introduced, whether to have a separate UE capability for frequency hopping and antenna switching also depends on RAN 4.
26. Agreement26. Agreement
적어도 서브 프레임에서 레거시 SRS 전송이 없는 경우, 레거시 SRS 심볼로부터 추가적인 SRS 심볼의 독립적인 폐 루프 전력 제어(close loop power control)가 지원된다.When there is no legacy SRS transmission in at least a subframe, independent closed loop power control of an additional SRS symbol from the legacy SRS symbol is supported.
27. Agreement27. Agreement
적어도 서브 프레임에서 레거시 SRS 전송이 없는 경우, 레거시 SRS 심볼로부터 추가적인 SRS 심볼의 독립적인 폐 루프 전력 제어(close loop power control)가 지원된다.When there is no legacy SRS transmission in at least a subframe, independent closed loop power control of an additional SRS symbol from the legacy SRS symbol is supported.
28. Agreement28. Agreement
Figure PCTKR2020013518-appb-img-000140
와 관련된 하나의 수정으로 LTE 릴리스 15에 지정된 것과 동일한 (u, v)에 대한 초기화 시드
Figure PCTKR2020013518-appb-img-000141
는 가상 셀 ID(virtual cell ID)가 될 수 있다.
Figure PCTKR2020013518-appb-img-000140
Initialization seed for (u, v) identical to that specified in LTE Release 15 with one modification related to
Figure PCTKR2020013518-appb-img-000141
May be a virtual cell ID (virtual cell ID).
29. Agreement29. Agreement
갭 심볼(gap symbol)이 설정된 경우, 갭 심볼은 설정된 SRS 심볼수
Figure PCTKR2020013518-appb-img-000142
및 반복 계수 R의 수에 포함되지 않는다.
When a gap symbol is set, the gap symbol is the number of set SRS symbols
Figure PCTKR2020013518-appb-img-000142
And it is not included in the number of repetition coefficients R.
Rel-16에서 하나의 서브 프레임에 있는 안테나 포트의 서브 세트에 걸친 안테나 스위칭 지원에 대한 합의는 없다.In Rel-16, there is no consensus on supporting antenna switching across a subset of antenna ports in one subframe.
30. Agreement30. Agreement
추가적인 SRS 심볼 및 레거시 SRS 심볼이 동일한 서브 프레임에서 전송될 때 SRS 심볼에 대한 전력 제어:Power control for SRS symbols when additional SRS symbols and legacy SRS symbols are transmitted in the same subframe:
-추가적인 SRS 및 레거시 SRS는 각각 자체 전송 전력 제어를 따른다.-Additional SRS and legacy SRS each follow their own transmission power control.
추가적인 SRS와 레거시 SRS 심볼이 인접해 있을 때, 추가적인 SRS와 레거시 SRS 심볼 간의 갭(gap)이 고려될 필요가 있다.When the additional SRS and the legacy SRS symbol are adjacent to each other, a gap between the additional SRS and the legacy SRS symbol needs to be considered.
Rel-16 LTE MIMO enhancement에서는 (특히 TDD configuration의 massive MIMO에서) DL/UL channel reciprocity를 더욱 효과적으로 활용하기 위해 SRS의 용량(capacity) 및 커버리지(coverage)를 강화(enhancement)하기로 결정되었다. In Rel-16 LTE MIMO enhancement (especially in massive MIMO in TDD configuration), it was decided to enhance the capacity and coverage of the SRS in order to more effectively utilize the DL/UL channel reciprocity.
구체적으로, LTE TDD 시스템의 스페셜 서브프레임(special subframe)에서 뿐만 아니라 일반 상향링크 서브프레임(normal UL subframe)에서도 멀티 심볼 SRS(multi symbol SRS)가 도입될 수 있다. 현재 하나의 상향링크 서브프레임에서 멀티 심볼 SRS(multi symbol SRS)는 셀 관점에서나 단말 관점에서나 레거시 SRS(legacy SRS)를 제외한(last symbol을 제외한) 1 심볼에서 13 심볼까지 설정될 수 있다. Specifically, a multi symbol SRS (multi symbol SRS) may be introduced not only in a special subframe of the LTE TDD system but also in a normal UL subframe. Currently, in one uplink subframe, a multi-symbol SRS (multi symbol SRS) may be set from 1 symbol to 13 symbols excluding the legacy SRS (excluding the last symbol) from the cell point of view or the UE point of view.
또한, legacy SRS의 경우 상향링크 채널(UL channel) 정보 획득 및 상향링크 링크 적응(UL link adaptation)이 목적이다. 반면, 추가적인 SRS(additional SRS)의 경우 하향링크 채널(DL channel) 획득을 위한 SRS 전송에 있어서 용량(capacity) 및 커버리지(coverage)를 강화(enhancement)하는 것이 목적이다.In addition, in the case of a legacy SRS, the purpose is to obtain UL channel information and UL link adaptation. On the other hand, in the case of additional SRS (additional SRS), the purpose is to enhance capacity and coverage in SRS transmission for obtaining a downlink channel (DL channel).
상기 목적상의 차이에 기반하여, 개-루프 전력 제어 파라미터(open-loop power control parameter) 및 폐-루프 전력 제어 매커니즘(closed-loop power control mechanism)에 있어서 레거시 SRS(legacy SRS)와는 독립된(separate) 추가적인 SRS(additional SRS)의 전력 제어 설정을 지원하는 것이 합의되었다. Based on the objective difference, the open-loop power control parameter and the closed-loop power control mechanism are independent from the legacy SRS (legacy SRS). It has been agreed to support the power control setting of additional SRS (additional SRS).
기지국의 TPC 커맨드((Transmit Power Control command)에 의해 제어되는 폐-루프 제어(closed-loop power control)의 경우, 단말이 현재 전송하고 있는 UL channel power에 대해 어느정도의 headroom(예를 들면, 단말의 최대 전력(maximum power)에서 현재 전송하고 있는 상향링크 채널 전력(UL channel power)을 뺀 값. 즉, 신호의 전송을 위해 어느 정도의 power가 남아 있는지)이 존재하는지에 대한 정보가 필수적일 수 있다.In the case of closed-loop power control controlled by the TPC command (Transmit Power Control command) of the base station, a certain amount of headroom (e.g., the terminal's Information on whether there is a value obtained by subtracting the UL channel power currently being transmitted from the maximum power (that is, how much power remains for signal transmission) may be essential. .
하지만, 현재 표준관점에서 legacy SRS에 대한 전력 제어(power control)은 PUSCH 전력 제어 매커니즘(PUSCH power control mechanism)에 종속되어 있고 PHR(power headroom report)의 수행도 PUSCH PHR을 통해 이루어진다. 또한, 기존 Type 3 PHR은 PUSCH와 PUCCH가 scheduling되지 않는 DL 전용 서빙 셀에서 전송되는 캐리어 스위칭 SRS(carrier switching SRS)에 대한 PHR이므로 Rel-16 LTE MIMO에서의 additionsl SRS(즉, normal UL subframe에서의 multi symbol SRS)에 대한 PHR가 별도로 수행될 필요가 있다. 이러한 additional SRS에 대한 별도의 PHR이 수행되어야만 기지국은 단말의 additional SRS의 전력 헤드룸(power headroom) 상황에 맞는 TPC command를 지시할 수 있다.However, from the current standard point of view, power control for legacy SRS is dependent on PUSCH power control mechanism, and power headroom report (PHR) is also performed through PUSCH PHR. In addition, since the existing Type 3 PHR is a PHR for carrier switching SRS (carrier switching SRS) transmitted in a DL-only serving cell in which PUSCH and PUCCH are not scheduled, additionsl SRS in Rel-16 LTE MIMO (that is, in normal UL subframe) PHR for multi symbol SRS) needs to be performed separately. Only when a separate PHR for this additional SRS is performed, the base station can instruct a TPC command suitable for the power headroom situation of the additional SRS of the terminal.
그러므로 본 명세서에서는 이러한 문제를 고려해, 기지국-단말 간 additional SRS에 대한 power control 설정 및 단말의 additional SRS에 대한 power headroom report 방법에 대해 제안하고, 해당 설정에 기반한 UE 동작에 대해 기술한다.Therefore, in this specification, in consideration of such a problem, a method for setting power control for an additional SRS between a base station and a terminal and a power headroom report method for an additional SRS of a terminal is proposed, and UE operation based on the configuration is described.
본 발명에서는 편의상 LTE 시스템에서의 additional SRS를 기준으로 설명하지만, 이는 3GPP NR(New RAT, New Radio Access Technology) 등 복수의 심볼에서 SRS를 전송하는 모든 시스템에서 적용될 수 있다. 더불어, NR에서 본 발명이 적용되는 경우 LTE시스템의 subframe 및 slot 구조/단위는 NR시스템에서 다음 표 5와 같이 변형되어 적용될 수 있다. (즉, subcarrier spacing 관련 parameter μ에 따른 slot당 symbol 개수, frame당 symbol 개수, subframe 당 symbol 개수)In the present invention, for convenience, the description is based on the additional SRS in the LTE system, but this can be applied to all systems that transmit SRS in a plurality of symbols, such as 3GPP NR (New RAT, New Radio Access Technology). In addition, when the present invention is applied in NR, the subframe and slot structure/unit of the LTE system can be modified and applied as shown in Table 5 below in the NR system. (In other words, the number of symbols per slot, number of symbols per frame, number of symbols per subframe according to subcarrier spacing related parameter μ)
Figure PCTKR2020013518-appb-img-000143
Figure PCTKR2020013518-appb-img-000143
또한, 본 발명에서 additional SRS의 전송을 지원하는 단말에 대해 향상된 단말 혹은 enhanced UE라고 지칭하기로 한다.In addition, in the present invention, a terminal supporting transmission of an additional SRS will be referred to as an enhanced terminal or an enhanced UE.
앞서 살핀 내용들은 후술할 본 명세서에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 명세서에서 제안하는 방법들의 기술적 특징을 명확하게 하는데 보충될 수 있다. 이하 설명되는 방법들은 설명의 편의를 위하여 구분된 것일 뿐, 어느 한 방법의 일부 구성이 다른 방법의 일부 구성과 치환되거나, 상호 간에 결합되어 적용될 수 있음은 물론이다.The foregoing contents may be applied in combination with the methods proposed in the present specification to be described later, or may be supplemented to clarify the technical characteristics of the methods proposed in the present specification. The methods described below are only classified for convenience of description, and of course, some components of one method may be substituted with some components of another method, or may be combined with each other to be applied.
[방법 1][Method 1]
이하에서는 기지국의 향상된 단말의 추가적인 SRS(additional SRS)에 대한 TPC 커맨드의 설정 및 지시와 관련된 방법을 살펴본다.Hereinafter, a method related to setting and instruction of a TPC command for an additional SRS (additional SRS) of an enhanced terminal of a base station will be described.
[제안 1][suggestion 1]
추가적인 SRS(Additional SRS)에 대한 폐-루프 전력 제어(closed-loop power control)을 위한 기지국의 TPC command의 경우, DCI format 3B의 TPC command field를 enhance하는 하는 형태로 기지국이 단말에게 추가적인 SRS에 대한 power control을 지시할 수 있다.In the case of the TPC command of the base station for closed-loop power control for the additional SRS (Additional SRS), the base station provides the terminal with the additional SRS in the form of enhancing the TPC command field of DCI format 3B. Can instruct power control.
이하에서는 DCI format 3B와 관련된 사항을 살펴본다.Hereinafter, matters related to DCI format 3B will be described.
DCI 포맷 3B는 하나 이상의 단말에 의한 SRS 전송을 위한 TPC 커맨드 그룹(groups of TPC commands)의 전송에 사용된다. TPC 커맨드과 함께 SRS 요청(SRS request)도 전송될 수 있다.DCI format 3B is used for transmission of groups of TPC commands for SRS transmission by one or more terminals. An SRS request may also be transmitted along with the TPC command.
다음 정보는 DCI 포맷 3B를 통해 전송된다.The following information is transmitted through DCI format 3B.
-블록 번호 1(block number 1), 블록 번호 2,…, 블록 번호-Block number 1, block number 2,... , Block number
여기서 블록의 시작 위치는 해당 블록이 설정된 단말에 대해 상위 계층에서 제공되는 파라미터 startingBitOfFormat3B에 의해 결정된다.Here, the starting position of the block is determined by the parameter startingBitOfFormat3B provided from the upper layer for the terminal in which the corresponding block is configured.
단말에 PUCCH 및 PUSCH 없이 설정된 TDD SCell이 5 개 이상 있는 경우, 상위 계층에 의해 단말에 대해 하나의 블록이 설정되며, 해당 블록에 대해 다음 필드가 정의된다.If the UE has five or more TDD SCells configured without PUCCH and PUSCH, one block is set for the UE by the higher layer, and the following fields are defined for the corresponding block.
-SRS 요청(SRS request): 0 또는 2 비트.-SRS request: 0 or 2 bits.
-TPC command number 1, TPC command number 2,…, TPC command number n-TPC command number 1, TPC command number 2,... , TPC command number n
n개의 TPC command 필드들은 PUCCH가 없고 PUSCH가 없는 n개의 TDD SCell 세트에 해당하며, 세트는 SRS 요청 필드에 의해 표시되거나 SRS 요청 필드가 없는 경우 상위 계층에 의해 결정된다. TPC command 필드는 상위 계층에서 제공되는 파라미터 fieldTypeFormat3B의 값이 1 또는 3 인 경우 1 비트, 파라미터 fieldTypeFormat3B의 값이 2 또는 4 인 경우 2 비트를 갖는다.The n TPC command fields correspond to a set of n TDD SCells without PUCCH and without PUSCH, and the set is indicated by an SRS request field or determined by an upper layer when there is no SRS request field. The TPC command field has 1 bit when the value of the parameter fieldTypeFormat3B provided from the upper layer is 1 or 3, and 2 bits when the value of the parameter fieldTypeFormat3B is 2 or 4.
단말이 PUCCH 및 PUSCH 없이 설정된 TDD SCell을 최대 5 개까지 가지고 있는 경우, SCell에 각각 해당하는 하나 이상의 블록이 상위 계층에 의해 구성되며 각 블록에 대해 다음 필드가 정의된다.When the UE has up to 5 TDD SCells configured without PUCCH and PUSCH, at least one block corresponding to each of the SCells is configured by an upper layer, and the following fields are defined for each block.
-SRS 요청(SRS request): 0, 1 또는 2 비트-SRS request: 0, 1 or 2 bits
-TPC command: 1 또는 2 비트, 상위 계층에서 제공되는 파라미터 fieldTypeFormat3B의 값이 1 또는 3 인 경우 비트 수는 1이고, 파라미터 fieldTypeFormat3B 의 값이 2 또는 4 인 경우 2 비트이다.-TPC command: 1 or 2 bits, when the value of the parameter fieldTypeFormat3B provided from the upper layer is 1 or 3, the number of bits is 1, and when the value of the parameter fieldTypeFormat3B is 2 or 4, the number of bits is 2 bits.
DCI 포맷 3B의 크기는
Figure PCTKR2020013518-appb-img-000144
와 같고, 여기서,
Figure PCTKR2020013518-appb-img-000145
는 DCI 포맷 0에 추가된 패딩 비트를 포함하여 DCI 포맷 0이 공통 검색 공간에 매핑될 때 CRC 첨부 전의 DCI 포맷 0의 페이로드 크기와 동일하다.
The size of DCI format 3B is
Figure PCTKR2020013518-appb-img-000144
Equal to, where,
Figure PCTKR2020013518-appb-img-000145
Is equal to the payload size of DCI format 0 before CRC attachment when DCI format 0 is mapped to the common search space including padding bits added to DCI format 0.
기존 DCI format 3B의 경우, PUSCH와 PUCCH가 스케줄되지 않는 DL 전용 서빙셀(즉, TDD SCells configured without PUCCH and without PUSCH)에서 전송되는 캐리어 스위칭(carrier switching) 용도의 SRS에 대한 TPC command를 지시할 수 있는 DCI 포맷이다.In the case of the existing DCI format 3B, it is possible to instruct the TPC command for the SRS for carrier switching that is transmitted in a DL-only serving cell (i.e., TDD SCells configured without PUCCH and without PUSCH) in which PUSCH and PUCCH are not scheduled. DCI format.
DCI payload 내에 다수 블록들이 존재해 다수의 단말들에 대한 TPC command를 포함할 수 있다. 구체적으로, 어떤 단말이 DCI format 3B를 해당 단말의 TPC-RNTI(정확하게는 srs-TPC-RNTI)를 통해 블라인드 검출(blind detection)했을 시에, 단말은 RRC parameter startingBitOfFormat3B를 통해 다수의 블록들 중 어떤 블록이 해당 단말(자신)의 블록인지 인식할 수 있다. 상기 단말은 해당 블록 내에 SRS request field(optional)와 TPC command에 기반하여 Type 1 SRS를 전송하거나 폐-루프 전력 제어에 대한 TPC 지시를 받아 동작할 수 있다. Since there are multiple blocks in the DCI payload, TPC commands for multiple terminals may be included. Specifically, when a terminal performs blind detection through the TPC-RNTI (precisely srs-TPC-RNTI) of the corresponding terminal in DCI format 3B, the terminal It is possible to recognize whether the block is a block of the corresponding terminal (own). The terminal may operate by transmitting a Type 1 SRS based on an SRS request field (optional) and a TPC command in a corresponding block or receiving a TPC instruction for closed-loop power control.
[제안 1-1][Proposal 1-1]
TPC command가 DCI payload 내에 어떤 block에 있는지 알려주기 위해 별도의 파라미터를 설정하는 방법이 고려될 수 있다.A method of setting a separate parameter to inform which block the TPC command is in the DCI payload may be considered.
구체적으로 가적인 SRS에 대한 폐-루프 전력 제어에 있어서 TPC command를 위해 DCI format 3B의 TPC command field를 활용하되, startingBitOfFormat3B 이외에 (예를 들어, startingBitOfFormat3B_additionalSRS와 같은) 별도의 상위 계층 파라미터(higher layer parameter)를 설정하여 추가적인 SRS에 대한 TPC command가 DCI payload 내에 어떤 block에 있는지를 지시할 수 있다.Specifically, in the closed-loop power control for the additive SRS, the TPC command field of DCI format 3B is used for the TPC command, but in addition to startingBitOfFormat3B, a separate higher layer parameter (e.g., startingBitOfFormat3B_additionalSRS) By setting the TPC command for the additional SRS, it is possible to indicate which block is in the DCI payload.
즉, 향상된 단말은 하나의 DCI format 3B를 디코딩(decoding)하여 PUSCH-less SCell(PUSCH 및 PUCCH가 설정되지 않은 SCell)의 SRS에 대한 TPC command와 normal UL subframe에서의 추가적인 SRS에 대한 TPC command를 동시에 수신하여 (closed-loop) power control에 각각 적용할 수 있다.That is, the improved terminal decodes one DCI format 3B to simultaneously perform the TPC command for the SRS of the PUSCH-less SCell (SCell in which PUSCH and PUCCH are not configured) and the TPC command for the additional SRS in the normal UL subframe. It can be received and applied to each of the (closed-loop) power control.
이러한 제안의 RRC 설정의 예를 아래 표 6 및 표 7에 나타내었다(예: startingBitOfFormat3B_additionalSRS).Examples of RRC configuration of this proposal are shown in Tables 6 and 7 below (eg startingBitOfFormat3B_additionalSRS).
PUSCH-less SCell의 SRS에 대한 TPC command의 위치를 지시해주는 startingBitOfFormat3B와 추가적인 SRS에 대한 TPC command의 위치를 지시해주는, startingBitOfFormat3B_additionalSRS는 optional하게 존재할 수도 있다. 상기 두 파라미터들이 둘 다 존재하거나 하나만 존재할 수 있지만 둘 다 존재하지 않을 필요는 없을 수 있다(그러기보다는 SRS-TPC-PDCCH-Config 자체를 release하여 null로 두는 편이 유리하기 때문이다).StartingBitOfFormat3B indicating the location of the TPC command for the SRS of the PUSCH-less SCell and startingBitOfFormat3B_additionalSRS indicating the location of the TPC command for the additional SRS may optionally exist. Both of the above two parameters may be present or only one may be present, but neither may be present (because it is more advantageous to release SRS-TPC-PDCCH-Config itself and leave it to null rather than that).
더하여, 추가적인 SRS의 TPC를 적용할 cell을 지정해주기 위해 별도의 상위 계층 파라미터가 존재할 수 있다. 예를 들어, 상기 별도의 상위 계층 파라미터를 통해 기존 DCI format 3B에서는 다루지 않았던 PCell 또는 PUSCH가 존재하는 SCell을 지정할 수 있으므로, PCell 또는 PUSCH가 존재하는 SCell에서의 추가적인 SRS에 대한 TPC command를 기지국이 지시해줄 수 있다(예: srs-CC-SetIndexlist-additionalSRS / SRS-CC-SetIndex-additionalSRS / cc-SetIndex-additionalSRS / cc-IndexInOneCC-Set-additionalSRS 등 아래 표 6 참조).In addition, a separate higher layer parameter may exist to designate a cell to which the TPC of the additional SRS is applied. For example, through the separate higher layer parameter, it is possible to designate a PCell that has not been dealt with in the existing DCI format 3B or a SCell in which a PUSCH exists, so the base station indicates a TPC command for an additional SRS in the SCell in which the PCell or PUSCH exists (E.g. srs-CC-SetIndexlist-additionalSRS / SRS-CC-SetIndex-additionalSRS / cc-SetIndex-additionalSRS / cc-IndexInOneCC-Set-additionalSRS, etc., see Table 6 below).
Figure PCTKR2020013518-appb-img-000146
Figure PCTKR2020013518-appb-img-000146
또는, 기지국이 단말에게 DCI format 3B를 통해 TPC command를 지시할 때, 단말이 i) PUSCH-less SCell의 SRS에 대한 TPC command만 읽어도 될지, ii) normal UL subframe에서의 추가적인 SRS에 대한 TPC command만 읽어도 될지, iii) 둘다 읽어야 될지, 또는,iv)둘다 안 읽어도 될지 flexible하게 설정해주기 위해 (즉, startingBitOfFormat3B 또는 startingBitOfFormat3B_additionalSRS에 대해 어느 쪽은 release해주어 null 값으로 설정) 아래와 같은 RRC 설정 구조를 따를수도 있다. (예: SRS-TPC-PDCCH-Config-r16 )Or, when the base station instructs the terminal to a TPC command through DCI format 3B, the terminal may i) read only the TPC command for the SRS of the PUSCH-less SCell, ii) the TPC command for the additional SRS in the normal UL subframe In order to flexibly set whether you can read only, iii) read both, or iv) not both (i.e., release for startingBitOfFormat3B or startingBitOfFormat3B_additionalSRS and set it to a null value), follow the RRC configuration structure as shown below. May be. (Example: SRS-TPC-PDCCH-Config-r16)
이 경우에도 마찬가지로, 추가적인 SRS의 TPC를 적용할 cell을 지정해주기 위해 별도 higher layer parameter가 존재할 수 있다. 예를 들어, 상기 별도 parameter를 통해 기존 DCI format 3B에서는 다루지 않았던 PCell 또는 PUSCH가 존재하는 SCell을 지정할 수 있으므로, PCell 또는 PUSCH가 존재하는 SCell에서의 추가적인 SRS에 대한 TPC command를 기지국이 지시해줄 수 있다(srs-CC-SetIndexlist-additionalSRS / SRS-CC-SetIndex-additionalSRS / cc-SetIndex-additionalSRS / cc-IndexInOneCC-Set-additionalSRS 등 아래 표 7 참조).Likewise in this case, a separate higher layer parameter may exist to designate a cell to which the TPC of the additional SRS is applied. For example, since a PCell or a SCell in which a PUSCH is present can be designated through the separate parameter, a TPC command for an additional SRS in a SCell in which a PCell or PUSCH is present can be designated by the base station. (See Table 7 below, such as srs-CC-SetIndexlist-additionalSRS / SRS-CC-SetIndex-additionalSRS / cc-SetIndex-additionalSRS / cc-IndexInOneCC-Set-additionalSRS).
Figure PCTKR2020013518-appb-img-000147
Figure PCTKR2020013518-appb-img-000147
제안 1-1의 폐-루프 전력 제어에 대한 설정 및 TPC command 설정/지시 구조에 의하면, 다음과 같은 효과가 있다.According to the setting for the closed-loop power control and the TPC command setting/instruction structure of proposal 1-1, the following effects are obtained.
기지국은 기존 legacy SRS 또는 PUSCH-less SCell의 SRS와는 다른 목적(예: DL/UL reciprocity 기반 DL channel 정보 획득 및 SRS capacity 및 coverage 확보)을 위한 추가적인 SRS에 대해 별도의 폐-루프 전력 제어 명령을 지시할 수 있다. 또한 기지국이 불필요한 RRC 설정을 수행할 필요 없이 기존 RRC 구조에서 일부 파라미터를 추가함으로써, 단말이 기존 DCI format 3B를 통해 추가적인 SRS에 대한 TPC command를 수신하고 전력 제어 동작을 수행할 수 있다. 또한, DCI format 3B를 enhance 및 확장 적용함으로써 단말의 CA(Carrier Aggregation) 상황에서 multi-cell에 걸친 추가적인 SRS에 대한 TPC command를 기지국이 지시할 수 있다는 장점이 있다.The base station instructs a separate closed-loop power control command for an additional SRS for a purpose different from the existing legacy SRS or SRS of the PUSCH-less SCell (e.g., obtaining DL/UL reciprocity-based DL channel information and securing SRS capacity and coverage) can do. In addition, by adding some parameters in the existing RRC structure without the need for the base station to perform unnecessary RRC configuration, the terminal can receive a TPC command for an additional SRS through the existing DCI format 3B and perform a power control operation. In addition, by enhancing and extending DCI format 3B, there is an advantage that the base station can instruct the TPC command for additional SRS across multi-cells in the CA (Carrier Aggregation) situation of the terminal.
[제안 1-2][Suggestion 1-2]
TPC command를 디코딩 하기 위해 srs-TPC-RNTI 외에 추가적인 RNTI를 설정하는 방법이 고려될 수 있다.In order to decode the TPC command, a method of configuring an additional RNTI in addition to the srs-TPC-RNTI may be considered.
구체적으로 기지국은 추가적인 SRS에 대한 폐-루프 전력 제어에 있어서 TPC 커맨드를 위해 format 3B의 TPC command field를 활용하되, 기존의 PUSCH-less SCell의 SRS에 대한 TPC 커맨드를 디코딩(decoding)하기 위한 srs-TPC-RNTI 이외에 추가적인 SRS에 대한 TPC 커맨드를 decoding하기 위한 additionalsrs-TPC-RNTI와 같은 별도의 RNTI를 향상된 단말에 설정할 수 있다.Specifically, the base station uses the TPC command field of format 3B for the TPC command in closed-loop power control for the additional SRS, but srs- for decoding the TPC command for the SRS of the existing PUSCH-less SCell. In addition to the TPC-RNTI, a separate RNTI such as additionalsrs-TPC-RNTI for decoding a TPC command for an additional SRS may be set in the enhanced terminal.
즉, 향상된 단말은 하나의 DCI format 3B에 대해 두가지 RNTI를 통해 블라인드 검출(blind detection)을 수행함으로써, PUSCH-less SCell의 SRS에 대한 TPC 커맨드와 normal UL subframe에서의 추가적인 SRS에 대한 TPC 커맨드를 각각 습득/검출하여 (closed-loop) power control에 각각 적용할 수 있다. That is, by performing blind detection for one DCI format 3B through two RNTIs, the enhanced terminal transmits the TPC command for the SRS of the PUSCH-less SCell and the TPC command for the additional SRS in the normal UL subframe, respectively. It can be applied to each power control by learning/detecting (closed-loop).
이러한 제안의 RRC 설정의 예를 아래 표 8에 나타내었다(예: SRS-TPC-PDCCH-Config-r16 / srs-TPC-RNTI-additionalSRS / startingBitOfFormat3B-r14등).An example of RRC configuration of this proposal is shown in Table 8 below (e.g., SRS-TPC-PDCCH-Config-r16 / srs-TPC-RNTI-additionalSRS / startingBitOfFormat3B-r14, etc.).
제안 1-2에서는 PUSCH-less SCell의 SRS에 대한 TPC RNTI와 추가적인 SRS에 대한 TPC RNTI를 별도로 설정해주었기 때문에, 제안 1-1과는 다르게 추가적인 SRS 용도의 startingBitOfFormat3B을 따로 지시해줄 필요가 없고 기존 것을 공유해서 활용할 수 있다는 장점이 있다. 다시 말해, 제안 1-1에서는 하나의 단말이 DCI format 3B에서 두군데의 block을 차지하여 DCI payload가 낭비될 수도 있으나, 제안 1-2에서는 그러한 낭비를 줄이고 RNTI로 어느 SRS에 대한 TPC 커맨드인지 인식할 수 있다.In Proposal 1-2, since the TPC RNTI for the SRS of the PUSCH-less SCell and the TPC RNTI for the additional SRS are separately set, unlike Proposal 1-1, there is no need to separately indicate the startingBitOfFormat3B for additional SRS purposes, and the existing one is shared. It has the advantage of being able to use it. In other words, in proposal 1-1, one terminal occupies two blocks in DCI format 3B, and DCI payload may be wasted, but in proposal 1-2, such waste is reduced and RNTI recognizes which SRS is a TPC command. I can.
이 경우에도 마찬가지로, 추가적인 SRS의 TPC를 적용할 cell을 지정해주기 위해 별도의 상위 계층 파라미터가 존재할 수 있다. 예를 들어, 상기 별도의 상위 계층 파라미터를 통해 기존 DCI format 3B에서는 다루지 않았던 PCell 또는 PUSCH가 존재하는 SCell을 지정할 수 있으므로, PCell 또는 PUSCH가 존재하는 SCell에서의 추가적인 SRS에 대한 TPC 커맨드를 기지국이 지시해줄 수 있다(예: srs-CC-SetIndexlist-additionalSRS / SRS-CC-SetIndex-additionalSRS / cc-SetIndex-additionalSRS / cc-IndexInOneCC-Set-additionalSRS 등).Likewise in this case, a separate higher layer parameter may exist to designate a cell to which the TPC of the additional SRS is to be applied. For example, through the separate higher layer parameter, it is possible to designate a PCell that has not been dealt with in the existing DCI format 3B or a SCell in which a PUSCH exists, so that the base station indicates a TPC command for an additional SRS in the SCell in which the PCell or PUSCH exists. Can be done (e.g. srs-CC-SetIndexlist-additionalSRS / SRS-CC-SetIndex-additionalSRS / cc-SetIndex-additionalSRS / cc-IndexInOneCC-Set-additionalSRS, etc.).
Figure PCTKR2020013518-appb-img-000148
Figure PCTKR2020013518-appb-img-000148
제안 1-2의 폐-루프 전력 제어에 대한 설정 및 TPC 커맨드 설정/지시 구조에 의하면, 다음과 같은 효과가 있다.According to the setting for the closed-loop power control and the TPC command setting/instruction structure of proposal 1-2, the following effects are obtained.
기지국은 기존 legacy SRS 또는 PUSCH-less SCell의 SRS와는 목적을 달리하는 (예: DL/UL reciprocity 기반 DL channel 정보 획득 및 SRS capacity 및 coverage 확보) 추가적인 SRS에 대해 별도의 폐-루프 전력 제어 명령을 지시할 수 있다. 단말은 불필요한 RRC 설정 없이 기존 RRC 구조에서 추가적인 RNTI를 부여받음으로써 기존 DCI format 3B를 통해 추가적인 SRS에 대한 TPC 커맨드를 수신하고 power control을 수행할 수 있다. 또한, DCI format 3B를 enhance 및 확장 적용함으로써 단말의 CA 상황에서 multi-cell에 걸친 추가적인 SRS에 대한 TPC 커맨드를 기지국이 지시할 수 있다는 장점이 있다. The base station instructs a separate closed-loop power control command for an additional SRS that has a purpose different from the existing legacy SRS or SRS of the PUSCH-less SCell (e.g., obtaining DL/UL reciprocity-based DL channel information and securing SRS capacity and coverage) can do. The terminal may receive an additional RNTI from the existing RRC structure without unnecessary RRC configuration, thereby receiving a TPC command for an additional SRS through the existing DCI format 3B and performing power control. In addition, by enhancing and extending DCI format 3B, there is an advantage that the base station can instruct a TPC command for an additional SRS across multi-cells in the CA situation of the terminal.
[방법 2][Method 2]
이하에서는 향상된 단말의 추가적인 SRS에 대한 전력 헤드룸 보고(Power Headroom Report, PHR)를 위한 방법을 살펴본다.Hereinafter, a method for a power headroom report (PHR) for an additional SRS of an improved terminal will be described.
[제안 1][suggestion 1]
추가적인 SRS에 대한 power headroom report를 위해 다음의 방법이 고려될 수 있다.The following method may be considered for the power headroom report for the additional SRS.
방법 1에서 제안한 바와 같이, 추가적인 SRS에 대해 개-루프 전력 제어(open-loop power control)은 물론이고 폐-루프 전력 제어에 있어서 향상된 단말은 (기존 legacy SRS 또는 PUSCH-less SCell의 SRS와는)별도의 프로세스에 따라 동작할 수 있다.As proposed in Method 1, the terminal improved in the closed-loop power control as well as open-loop power control for the additional SRS is separate (from the SRS of the existing legacy SRS or PUSCH-less SCell) Can operate according to the process of.
향상된 단말의 전력 헤드룸 보고(power headroom report, PHR)에 있어서도 기존 PH type 1(PUSCH(=legacy SRS)), type 2(PUCCH), type 3(PUSCH-less SCell의 SRS)와는 다른 별도의 PHR process가 필요할 수 있다.A separate PHR different from the existing PH type 1 (PUSCH (=legacy SRS)), type 2 (PUCCH), and type 3 (PUSCH-less SCell SRS) in the enhanced power headroom report (PHR) of the terminal. process may be necessary.
기본적으로 단말의 PHR은 MAC CE를 통해 기지국에 보고가 되며, timer를 통한 보고와 특정 조건에 기반하여 트리거(trigger)되어 보고하는 두가지 경우가 존재한다.Basically, the PHR of the terminal is reported to the base station through the MAC CE, and there are two cases, a report through a timer and a triggered report based on a specific condition.
상기 특정 조건은 (open loop) power control process에 있어서 설정된 RS에 대한 경로손실(pathloss) 값이 특정값(예: 특정 threshold) 이상으로 변할 경우를 포함할 수 있다(TS 36.321 section 5.4.6 참고).The specific condition may include a case where the pathloss value for the RS set in the (open loop) power control process changes to a specific value (eg, a specific threshold) or more (see TS 36.321 section 5.4.6). .
또한, PHR 전송은 다음과 같이 수행될 수 있다. PHR의 경우(extendedPHR의 경우), MAC CE를 통해 type 1/ 2/ 3의 PH가 전송(보고)될 수 있다. 또한, type 1과 type 2는 Pcell에 대해 필수적으로 보고되며, CA 상황에 따라 단말은 부가적으로 Scell에 대해 type 1, type 2 또는 type 3 중 적어도 하나에 기반하는 PH를 보고하게 된다. 각 type별 PH 계산은 기존 방식(예: TS 36.213, 5.1절)을 따를 수 있다.In addition, PHR transmission may be performed as follows. In the case of PHR (in the case of extendedPHR), a PH of type 1/2/3 may be transmitted (reported) through MAC CE. In addition, type 1 and type 2 are essentially reported for the Pcell, and the terminal additionally reports a PH based on at least one of type 1, type 2, or type 3 for the Scell according to the CA situation. PH calculation for each type can follow the existing method (eg TS 36.213, Section 5.1).
이하에서는 추가적인 SRS에 대한 power headroom report에 대해 제안한다.Hereinafter, a power headroom report for additional SRS is proposed.
[제안 1-1][Proposal 1-1]
추가적인 SRS에 대한 power headroom report의 경우, 기존 Type 3 power headroom report를 향상(enhance)시켜 활용할 수 있다.In the case of a power headroom report for an additional SRS, the existing Type 3 power headroom report can be enhanced and utilized.
이 경우, 아래와 같은 type 3 PH에 대한 계산식을 추가적인 SRS에 대한 PH 계산에 활용할 수 있다(
Figure PCTKR2020013518-appb-img-000149
,
Figure PCTKR2020013518-appb-img-000150
,
Figure PCTKR2020013518-appb-img-000151
등의 parameter에 대해 PUSCH-less SCell의 SRS의 parameter가 아닌 추가적인 SRS의 parameter로 적용될 수 있다).
In this case, the following formula for type 3 PH can be used to calculate PH for additional SRS (
Figure PCTKR2020013518-appb-img-000149
,
Figure PCTKR2020013518-appb-img-000150
,
Figure PCTKR2020013518-appb-img-000151
For parameters such as, it may be applied as a parameter of an additional SRS rather than a parameter of the SRS of the PUSCH-less SCell).
아래의 내용은 상술한 Type3 보고를 위한 전력 헤드룸에서 상술한 바와 동일하다.The following is the same as described above in the power headroom for Type3 reporting.
단말은 슬롯/서브 슬롯에 대한 Type 3 report를 계산할 것으로 예상되지 않는다.The UE is not expected to calculate the Type 3 report for the slot/subslot.
프레임 구조 타입이 2이고 PUSCH/PUCCH 전송이 설정되지 않은 서빙 셀 c의 경우,In the case of a serving cell c in which the frame structure type is 2 and PUSCH/PUCCH transmission is not configured,
- 단말이 서빙 셀 c에 대한 서브프레임 i에서 SRS를 전송하는 경우 또는 2) 단말이 서브 프레임 i + 1에서 더 높은 우선 순위의 물리 채널 또는 신호와의 충돌(collision)로 인해 서브 프레임 i에서 SRS를 전송하지 않았고, 서브프레임 i+1에서 더 높은 우선 순위의 물리 채널 또는 신호가 발생하지 않았을 경우 서브프레임 i에서 SRS를 전송했을 경우,-When the UE transmits the SRS in subframe i for the serving cell c or 2) the UE transmits the SRS in subframe i due to collision with a higher priority physical channel or signal in subframe i + 1 Is not transmitted, and when a higher priority physical channel or signal does not occur in subframe i+1, when SRS is transmitted in subframe i,
Type 3 보고에 대한 전력 헤드룸은 다음을 사용하여 계산된다.Power headroom for Type 3 reporting is calculated using:
Figure PCTKR2020013518-appb-img-000152
[dB]
Figure PCTKR2020013518-appb-img-000152
[dB]
여기서
Figure PCTKR2020013518-appb-img-000153
은 dB 단위로 서빙 셀 c에 대해 단말에서 계산되는 하향링크 경로 손실 추정치(downlink path loss estimate)이다.
Figure PCTKR2020013518-appb-img-000154
,
Figure PCTKR2020013518-appb-img-000155
,
Figure PCTKR2020013518-appb-img-000156
,
Figure PCTKR2020013518-appb-img-000157
,
Figure PCTKR2020013518-appb-img-000158
은 앞서 설명한 바와 동일하다.
here
Figure PCTKR2020013518-appb-img-000153
Is a downlink path loss estimate calculated by the terminal for the serving cell c in dB.
Figure PCTKR2020013518-appb-img-000154
,
Figure PCTKR2020013518-appb-img-000155
,
Figure PCTKR2020013518-appb-img-000156
,
Figure PCTKR2020013518-appb-img-000157
,
Figure PCTKR2020013518-appb-img-000158
Is the same as previously described.
-그렇지 않으면(상기 1) 2)가 아닌 경우), Type 3 보고에 대한 전력 헤드룸은 다음을 사용하여 계산된다.-Otherwise (if not 1) 2) above), the power headroom for Type 3 reporting is calculated using:
Figure PCTKR2020013518-appb-img-000159
[dB]
Figure PCTKR2020013518-appb-img-000159
[dB]
여기서
Figure PCTKR2020013518-appb-img-000160
은 dB 단위로 서빙 셀 c에 대해 단말에서 계산되는 하향링크 경로 손실 추정치(downlink path loss estimate)이다.
Figure PCTKR2020013518-appb-img-000161
,
Figure PCTKR2020013518-appb-img-000162
,
Figure PCTKR2020013518-appb-img-000163
는 앞서 설명한 바와 동일하다.
Figure PCTKR2020013518-appb-img-000164
는, 미리 설정된 요구 사항에 따라 서브 프레임에서 SRS 전송을 가정하고 MPR = 0dB, A-MPR = 0dB, P-MPR = 0dB 및
Figure PCTKR2020013518-appb-img-000165
= 0dB를 가정하여, 계산된다. MPR은 최대 전력 감소(Maximum Power Reduction)이고, A-MPR은 추가적인 최대 전력 감소(Additional Maximum Power Reduction)이며, P-MPR은 전력 관리 최대 전력 감소(Power Management Maximum Power Reduction)이며,
Figure PCTKR2020013518-appb-img-000166
은 전송 전력과 관련된 tolerance이다. 이 경우 물리 계층은 상위 계층에
Figure PCTKR2020013518-appb-img-000167
대신
Figure PCTKR2020013518-appb-img-000168
을 전달한다.
here
Figure PCTKR2020013518-appb-img-000160
Is a downlink path loss estimate calculated by the terminal for the serving cell c in dB.
Figure PCTKR2020013518-appb-img-000161
,
Figure PCTKR2020013518-appb-img-000162
,
Figure PCTKR2020013518-appb-img-000163
Is the same as previously described.
Figure PCTKR2020013518-appb-img-000164
Assuming SRS transmission in a subframe according to preset requirements, MPR = 0dB, A-MPR = 0dB, P-MPR = 0dB and
Figure PCTKR2020013518-appb-img-000165
Assuming = 0dB, it is calculated. MPR is Maximum Power Reduction, A-MPR is Additional Maximum Power Reduction, P-MPR is Power Management Maximum Power Reduction,
Figure PCTKR2020013518-appb-img-000166
Is the tolerance related to the transmission power. In this case, the physical layer
Figure PCTKR2020013518-appb-img-000167
instead
Figure PCTKR2020013518-appb-img-000168
To deliver.
이때, timer를 통한 PH 보고와 특정 조건에 기반하는 PH 보고에 있어서, 단말은 기존 MAC 표준의 type 3 PH 보고를 위한 MAC PDU의 컨테이너(container)를 활용할 수 있다. 기지국은 추가적인 상위 계층 설정을 통해 PH를 보고할 대상이 기존 type 3를 통해 보고했던 PUSCH-less SCell의 SRS인지 추가적인 SRS인지를 단말에 설정할 수 있다. 즉, 상기 상위 계층 설정을 통해 type 3 PH 보고에 있어서 PCell과 Scell에 대해 추가적인 SRS을 위한 PH 보고가 수행될 수 있다.In this case, for PH reporting through a timer and PH reporting based on a specific condition, the terminal may utilize a container of the MAC PDU for type 3 PH reporting of the existing MAC standard. The base station may configure in the terminal whether the object to report the PH through the additional higher layer configuration is the SRS of the PUSCH-less SCell reported through the existing type 3 or an additional SRS. That is, in the type 3 PH reporting through the higher layer configuration, PH reporting for an additional SRS may be performed for the PCell and the Scell.
상기와 같이 단말이 PHR 전송 시, 해당 단말은 type 3 PH 보고에 있어서 PUSCH-less SCell의 SRS에 대한 PH를 보고하거나, 또는 추가적인 SRS에 대한 PH를 보고할 수 있다.When the UE transmits the PHR as described above, the UE may report the PH for the SRS of the PUSCH-less SCell in the type 3 PH report, or may report the PH for the additional SRS.
[제안 1-2][Suggestion 1-2]
추가적인 SRS에 대한 power headroom report의 경우, Type 4 power headroom report를 새로 설정하고 단말은 이를 활용하여 PH를 보고하는 방법이 고려될 수 있다.In the case of a power headroom report for an additional SRS, a method of newly configuring a Type 4 power headroom report and using this to report a PH may be considered.
이 경우 또한, 상기 type 3 PH에 대한 계산식을 추가적인 SRS에 대한 PH 계산에 활용할 수 있다(
Figure PCTKR2020013518-appb-img-000169
,
Figure PCTKR2020013518-appb-img-000170
,
Figure PCTKR2020013518-appb-img-000171
등의 parameter에 대해 PUSCH-less SCell의 SRS의 parameter가 아닌 추가적인 SRS의 parameter로 적용될 수 있다).
In this case, also, the calculation formula for the type 3 PH can be used to calculate the PH for the additional SRS (
Figure PCTKR2020013518-appb-img-000169
,
Figure PCTKR2020013518-appb-img-000170
,
Figure PCTKR2020013518-appb-img-000171
For parameters such as, it may be applied as a parameter of an additional SRS rather than a parameter of the SRS of the PUSCH-less SCell).
이때, 단말의 timer를 통한 보고와 특정 조건에 기반하는 PH 보고 시 추가적인 SRS에 대한 PH 보고를 위한 MAC PDU의 PH type 4에 대한 container가 새로 추가될 수 있다. 단말은 해당 MAC PDU의 octet을 활용하여 추가적인 SRS에 대한 PH를 보고할 수 있다. 이를 통해 PUSCH-less SCell의 SRS에 대한 PH 보고와 별도로 PCell 및 SCell(with PUSCH)의 추가적인 SRS에 대한 PH 보고가 가능하므로, 제안 1-1보다는 flexible한 설정이 가능하다.At this time, a container for PH type 4 of the MAC PDU for PH reporting for additional SRSs may be newly added when reporting through a timer of the terminal and reporting PH based on a specific condition. The UE may report the PH for the additional SRS by using the octet of the corresponding MAC PDU. Through this, since it is possible to report the PH for the SRS of the PUSCH-less SCell and the additional SRS of the PCell and SCell (with PUSCH) separately, a more flexible setting than the proposal 1-1 is possible.
제안 1-2의 경우, 개-루프 및 폐-루프 전력 제어에 있어서 legacy SRS 또는 PUSCH-less SCell의 SRS와 별도의 전력 제어 프로세스(power control process)를 갖는 추가적인 SRS에 대해, 단말은 PH 보고 또한 별도의 프로세스를 따라 동작할 수 있다. 이에 따라, 기지국은 추가적인 SRS에 대한 PH가 어느 정도인지 별도로 인식할 수 있다.In the case of proposal 1-2, for an additional SRS having a power control process separate from the legacy SRS or the SRS of the PUSCH-less SCell in open-loop and closed-loop power control, the terminal also reports the PH It can be operated according to a separate process. Accordingly, the base station can separately recognize how much the PH for the additional SRS is.
상술한 제안 1-2에 따른 효과를 설명하면 다음과 같다.The effect of the above-described proposal 1-2 will be described as follows.
예를 들어, 단일 셀(single cell)에서 추가적인 SRS가 전송될 때 다른 상향링크 채널들(UL channels)과의 FDM에 기반하는 전송이 가능한 경우, 기지국은 다른 UL channel들(예: PUSCH, PUCCH 등)의 PH 정보에 이어 추가적인 SRS의 PH 정보를 획득한 뒤에 단말의 전력 용량(power capacity)을 고려하여 FDM 전송 여부를 설정/지시할 수 있다.For example, when FDM-based transmission with other UL channels is possible when an additional SRS is transmitted in a single cell, the base station uses other UL channels (e.g., PUSCH, PUCCH, etc.). After obtaining the PH information of the additional SRS following the PH information of ), whether to transmit the FDM may be set/instructed in consideration of the power capacity of the terminal.
또한, 예를 들어, multi cell 혹은 CA 상황에 있어서도 multi cell에 걸친 SRS와 다른 UL channel 간에 FDM 전송 혹은 동일 심볼에서의 전송이 가능한 경우, 기지국은 다른 UL channel들(예: PUSCH, PUCCH 등)의 PH 정보에 이어 추가적인 SRS의 PH 정보를 획득한 뒤에 단말의 CA 상황에서의 전력 용량(power capacity)을 고려하여 SRS와 다른 UL channel의 동시 전송의 설정/지시 여부를 판단할 수 있다.In addition, for example, even in a multi-cell or CA situation, if FDM transmission or transmission in the same symbol is possible between the SRS and other UL channels across multi cells, the base station uses the other UL channels (eg, PUSCH, PUCCH, etc.). After obtaining the PH information of the additional SRS following the PH information, it may be determined whether to set/instruct the simultaneous transmission of the SRS and other UL channels in consideration of the power capacity in the CA situation of the UE.
이하 방법 1, 방법 2에 기반하는 단말의 동작은 아래의 예시와 같이 표현될 수 있다.The operation of the terminal based on Method 1 and Method 2 below may be expressed as an example below.
<방법 1의 단말 동작><Terminal operation of method 1>
Step 0) 방법 1/방법 2 등과 같이 SRS configuration 를 기지국으로부터 수신할 수 있음.Step 0) SRS configuration can be received from the base station like method 1/method 2, etc.
Step 0-1) one or more symbol에서 SRS를 전송하기 위한 configuration 및 power control, PHR에 대한 configuration을 수신할 수 있음.Step 0-1) Configuration for SRS transmission, power control, and configuration for PHR can be received in one or more symbols.
Step 0-1-1) - configuration 에 포함될 수 있는 정보는 (36.331 SoundingRS-UL-Config 또는/및 TPC-PDCCH-Config 또는/및 SRS-TPC-PDCCH-Config 등)Step 0-1-1)-Information that can be included in the configuration is (36.331 SoundingRS-UL-Config or/and TPC-PDCCH-Config or/and SRS-TPC-PDCCH-Config, etc.)
Step 0-2) SRS confguration은 periodic 그리고/또는 aperiodic 하게 전송되는 SRS 관련 정보를 포함할 수 있음.Step 0-2) SRS confguration may include SRS-related information transmitted periodic and/or aperiodic.
Step 0-3) SRS 송신 이전에 DCI format 3B 등의 TPC 커맨드를 통해 power 조절 지시를 기지국으로부터 수신할 수 있음Step 0-3) Before SRS transmission, the power control instruction can be received from the base station through TPC commands such as DCI format 3B.
Step 1) DL/UL grant를 통한 SRS trigger 수신 (through PDCCH) 하는 경우 또는 RRC 설정 기반 SRS 전송 시점이 도래한 경우Step 1) When receiving an SRS trigger through a DL/UL grant (through PDCCH) or when the SRS transmission time based on RRC configuration has arrived
Step 1-1) SRS 전송 가능한 자원에 대해 SRS 전송Step 1-1) SRS transmission for resources capable of SRS transmission
<방법 2 의 단말 동작><Terminal operation of method 2>
Step 0) 방법 2와 같이 PHR 관련 configuration을 기지국으로부터 수신할 수 있음(예: periodicPHR-Timer and/or prohibitPHR-Timer, dl-PathlossChange 등, TS 36.331참조) Step 0) PHR-related configuration can be received from the base station as in Method 2 (e.g. periodicPHR-Timer and/or prohibitPHR-Timer, dl-PathlossChange, etc., see TS 36.331)
Step 1) PHR 관련 timer(periodicPHR-Timer and/or prohibitPHR-Timer in 36.331/36.321)에 기반한 PHR reporting trigger 혹은 특정 조건(예: (open loop) power control process에 있어서 설정된 RS에 대한 pathloss 값이 특정값(특정 threshold, e.g. dl-PathlossChange in 36.331/36.321) 이상으로 변할 경우)에 기반한 PHR reporting trigger 여부 확인/결정Step 1) PHR reporting trigger based on PHR-related timer (periodicPHR-Timer and/or prohibitPHR-Timer in 36.331/36.321) or a specific condition (e.g., the pathloss value for the RS set in the (open loop) power control process) is a specific value Checking/determining whether to trigger PHR reporting based on (if it changes to more than a specific threshold, eg dl-PathlossChange in 36.331/36.321)
Step 2) Step 0에 의해 PHR reporting이 trigger되는 경우, 방법 2와 같이 단말의 추가적인 SRS에 대한 power headroom report을 포함하는 MAC-CE를 MAC PDU/PUSCH를 통해 기지국으로 전송할 수 있음. 이 때, 단말은 Step 2) When PHR reporting is triggered by Step 0, the MAC-CE including the power headroom report for the additional SRS of the UE can be transmitted to the base station through MAC PDU/PUSCH as in Method 2. At this time, the terminal
Step 2-1) 방법2의 제안 1-1과 같이 기지국이 설정한(Step 0에서 수신) higher layer 설정에 따라 type-3 PH 보고를 포함하는 MAC-CE를 MAC PDU/PUSCH를 통해 기지국으로 전송.Step 2-1) MAC-CE including type-3 PH report is transmitted to the base station through MAC PDU/PUSCH according to the higher layer setting set by the base station (received at Step 0) as in the proposal 1-1 of Method 2 .
혹은,or,
Step 2-2) 방법 2의 제안 1-2와 같이 type-4 PH 보고를 포함하는 MAC-CE를 MAC PDU/PUSCH를 통해 기지국으로 전송할 수 있음.Step 2-2) As in the proposal 1-2 of Method 2, the MAC-CE including the type-4 PH report can be transmitted to the base station through the MAC PDU/PUSCH.
상기 모든 step이 필수적인 것은 아니며, 일부 step은 단말의 상황에 따라 생략 가능하다.Not all the steps are essential, and some of the steps may be omitted depending on the situation of the terminal.
구현적인 측면에서 상술한 실시예들에 따른 기지국/단말의 동작(예: 방법 1(제안들 1, 1-1, 1-2)/방법 2(제안들 1, 1-1, 1-2) 중 적어도 하나에 기반하는 추가적인 SRS(additional SRS)의 전송과 관련된 동작)들은 후술할 도 16 내지 도 20의 장치(예: 도 17의 프로세서(102, 202))에 의해 처리될 수 있다. In terms of implementation, operation of the base station/terminal according to the above-described embodiments (e.g., Method 1 (Proposals 1, 1-1, 1-2)/Method 2 (Proposals 1, 1-1, 1-2)) Operations related to transmission of an additional SRS (additional SRS) based on at least one of them may be processed by the devices of FIGS. 16 to 20 (eg, processors 102 and 202 of FIG. 17) to be described later.
또한 상술한 실시예에 따른 기지국/단말의 동작(예: 방법 1(제안들 1, 1-1, 1-2)/방법 2(제안들 1, 1-1, 1-2) 중 적어도 하나에 기반하는 추가적인 SRS(additional SRS)의 전송과 관련된 동작)들은 적어도 하나의 프로세서(예: 도 17의 102, 202)를 구동하기 위한 명령어/프로그램(예: instruction, executable code)형태로 메모리(예: 도 20의 104, 204)에 저장될 수도 있다.In addition, the operation of the base station/terminal according to the above-described embodiment (e.g., method 1 (suggestions 1, 1-1, 1-2)/method 2 (suggestions 1, 1-1, 1-2)) Operations related to transmission of an additional SRS (additional SRS) based on) are memory (eg, in the form of instructions/executable code) for driving at least one processor (eg, 102 and 202 in FIG. 17). It may be stored in 104 and 204 of FIG. 20.
상술한 제안 방법(예: 방법 1의 제안 1 / 제안 1-1 / 제안 1-2 / 방법 2의 제안 1 / 제안 1-1 / 제안 1-2 등)에 대한 기지국과 단말의 동작 flow의 각 예시는 아래의 도 11 / 도 12 / 도 13 과 같을 수 있다. 도 11 / 도 12 / 도 13 은 설명의 편의를 위한 것으로, 본 명세서의 따른 실시예의 범위를 제한하는 것이 아니다. 또한, 도 11 / 도 12 / 도 13 에서 설명되는 step들 중 일부는 병합되거나, 생략될 수도 있다. 또한, 이하 설명되는 절차들을 수행함에 있어, 상술한 도 1 내지 도 8에 따른 LTE 관련 내용 및 SRS 관련 내용/전력 헤드룸 보고 관련 내용이 고려/적용될 수 있다. Each of the operation flows of the base station and the terminal for the above-described proposed method (e.g., Proposal 1 of Method 1 / Proposal 1-1 / Proposal 1-2 / Proposal 1 of Method 2 / Proposal 1-1 / Proposal 1-2, etc.) An example may be the same as in FIGS. 11/12/13 below. 11/12/13 are for convenience of description and do not limit the scope of the embodiments of the present specification. In addition, some of the steps described in FIGS. 11/12/13 may be merged or omitted. In addition, in performing the procedures described below, LTE-related content and SRS-related content/power headroom reporting-related content according to FIGS. 1 to 8 described above may be considered/applied.
도 11은 본 명세서의 실시예에 따른 기지국의 SRS 수신 방법을 예시한다. 구체적으로 도 11은 방법 1에 기반하는 기지국의 동작을 설명하기 위한 흐름도이다.11 illustrates a method of receiving an SRS by a base station according to an embodiment of the present specification. Specifically, FIG. 11 is a flowchart for explaining the operation of the base station based on Method 1.
기지국은 단말로 higher layer (예: RRC or MAC CE)를 통해 SRS configuration을 전송할 수 있다(S1110). 예를 들어, 상기 SRS configuration은 상술한 제안 방법(예: 방법 1의 제안 1 / 제안 1-1 / 제안 1-2 등)에 기반하여 SRS(예: additaional SRS, UpPts SRS)와 관련된 정보를 포함할 수 있다. 일례로, SRS configuration은 periodic 그리고/또는 aperiodic 하게 전송되는 SRS 관련 정보를 포함할 수 있다. 일례로, SRS configuration은 one or more symbol에서 SRS를 전송하기 위한 configuration 및 power control, PHR에 대한 configuration을 포함할 수 있다. 일례로, SRS configuration은 additional SRS TPC를 적용할 cell에 대한 정보를 포함할 수 있다. 일례로, SRS configuration 에 포함될 수 있는 정보는 TS36.331 SoundingRS-UL-Config 또는/및 TPC-PDCCH-Config 또는/및 SRS-TPC-PDCCH-Config 등에 기반할 수 있다.The base station may transmit the SRS configuration to the terminal through a higher layer (eg, RRC or MAC CE) (S1110). For example, the SRS configuration includes information related to SRS (e.g., additaional SRS, UpPts SRS) based on the above-described proposal method (e.g., method 1 proposal 1 / proposal 1-1 / proposal 1-2, etc.) can do. As an example, the SRS configuration may include SRS-related information transmitted periodic and/or aperiodic. As an example, the SRS configuration may include configuration and power control for transmitting SRS in one or more symbols, and configuration for PHR. As an example, the SRS configuration may include information on a cell to which additional SRS TPC is to be applied. For example, information that may be included in the SRS configuration may be based on TS36.331 SoundingRS-UL-Config or/and TPC-PDCCH-Config or/and SRS-TPC-PDCCH-Config.
예를 들어, 상술한 S1110 단계의 기지국(도 16 내지 도 20의 100/200)이 단말(도 16 내지 도 20의 100/200)로 상기 SRS configuration을 전송하는 동작은 이하 설명될 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참고하면, 하나 이상의 프로세서 202는 상기 SRS configuration을 전송하도록 하나 이상의 트랜시버 206 및/또는 하나 이상의 메모리 204 등을 제어할 수 있으며, 하나 이상의 트랜시버 206은 단말로 상기 SRS configuration을 전송할 수 있다.For example, the operation of transmitting the SRS configuration from the base station (100/200 in FIGS. 16 to 20) to the terminal (100/200 in FIGS. 16 to 20) in step S1110 described above is described in FIGS. Can be implemented by 20 devices. For example, referring to FIG. 17, one or more processors 202 may control one or more transceivers 206 and/or one or more memories 204 to transmit the SRS configuration, and one or more transceivers 206 may configure the SRS configuration to a terminal. Can be transmitted.
기지국은 단말로 DCI를 전송할 수 있다(S1120). 예를 들어, 상기 DCI는 SRS 및/또는 UL channel 등의 전송과 관련된 정보를 포함할 수 있다. 예를 들어, 상기 DCI는 상술한 방법 1에서와 같이, DCI format 3B 에 해당할 수 있으며, 상기 DCI에 포함된 TPC command를 통해 power 조절 지시를 할 수 있다. 일례로, 상기 DCI는 SRS를 trigger하는 정보를 포함할 수 있다. 또는, 일례로, SRS 및/또는 UL channel 등의 전송과 관련된 정보는 상술한 S1110 단계의 SRS configuration에 포함될 수도 있다.The base station may transmit the DCI to the terminal (S1120). For example, the DCI may include information related to transmission such as SRS and/or UL channel. For example, as in Method 1 described above, the DCI may correspond to DCI format 3B, and a power control instruction may be given through a TPC command included in the DCI. For example, the DCI may include information for triggering SRS. Or, as an example, information related to transmission of the SRS and/or UL channel may be included in the SRS configuration of step S1110 described above.
예를 들어, 상술한 S1120 단계의 기지국(도 16 내지 도 20의 100/200)이 단말(도 16 내지 도 20의 100/200)로 상기 DCI를 전송하는 동작은 이하 설명될 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참고하면, 하나 이상의 프로세서 202는 상기 DCI를 전송하도록 하나 이상의 트랜시버 206 및/또는 하나 이상의 메모리 204 등을 제어할 수 있으며, 하나 이상의 트랜시버 206은 단말로 상기 DCI를 전송할 수 있다.For example, the operation of transmitting the DCI from the base station (100/200 of FIGS. 16 to 20) to the terminal (100/200 of FIGS. 16 to 20) of the step S1120 described above is described in FIGS. 16 to 20, which will be described below. It can be implemented by the device of. For example, referring to FIG. 17, one or more processors 202 may control one or more transceivers 206 and/or one or more memories 204 to transmit the DCI, and one or more transceivers 206 may transmit the DCI to the terminal. have.
기지국은 단말로부터 SRS/UL Channel을 수신할 수 있다(S1130). 예를 들어, 기지국은 상술한 제안 방법(예: 방법 1의 제안 1 / 제안 1-1 / 제안 1-2 등)에 기반하여 단말로부터 전송되는 SRS/UL Channel을 수신할 수 있다. 예를 들어, 상기 SRS/UL Channel은 상술한 SRS configuration / Power control / PHR에 대한 configuration / DCI 등에 기반하여 전송될 수 있다. 그리고/또는, 예를 들어, 미리 정의된 규칙(예: gap symbol 위치/ SRS symbol 위치/ SRS symbol indexing 등)에 기반하여 SRS/UL Channel을 전송할 수 있다. 그리고/또는, 예를 들어, multi symbol SRS 전송의 경우, 상술한 제안 방법(예: 방법 1의 제안 1 / 제안 1-1 / 제안 1-2 등)에 기반하여 설정된 자원을 통해 전송될 수 있다. The base station may receive the SRS/UL Channel from the terminal (S1130). For example, the base station may receive the SRS/UL Channel transmitted from the terminal based on the above-described proposed method (eg, proposal 1 of method 1 / proposal 1-1 / proposal 1-2, etc.). For example, the SRS/UL Channel may be transmitted based on the above-described SRS configuration / Power control / PHR configuration / DCI, and the like. And/or, for example, the SRS/UL Channel may be transmitted based on a predefined rule (eg, gap symbol position/ SRS symbol position/ SRS symbol indexing, etc.). And/or, for example, in the case of multi-symbol SRS transmission, it may be transmitted through a resource set based on the above-described proposal method (eg, proposal 1 of method 1 / proposal 1-1 / proposal 1-2, etc.). .
예를 들어, 상술한 S1130 단계의 기지국(도 16 내지 도 20의 100/200)이 단말(도 16 내지 도 20의 100/200)로부터 상기 SRS/UL channel을 수신하는 동작은 이하 설명될 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참고하면, 하나 이상의 프로세서 202는 상기 SRS/UL channel를 수신하도록 하나 이상의 트랜시버 206 및/또는 하나 이상의 메모리 204 등을 제어할 수 있으며, 하나 이상의 트랜시버 206은 단말로부터 상기 SRS/UL channel를 수신할 수 있다.For example, the operation of receiving the SRS/UL channel from the base station (100/200 of FIGS. 16 to 20) of the above-described step S1130 from the terminal (100/200 of FIGS. 16 to 20) is described below in FIG. 16 To 20 may be implemented by the device. For example, referring to FIG. 17, one or more processors 202 may control one or more transceivers 206 and/or one or more memories 204 to receive the SRS/UL channel, and one or more transceivers 206 may control the SRS from the terminal. /UL channel can be received.
도 12는 본 명세서의 실시예에 따른 단말의 SRS 전송 방법을 예시한다. 구체적으로 도 12는 방법 1에 기반하는 단말의 동작을 설명하기 위한 흐름도이다.12 illustrates an SRS transmission method of a terminal according to an embodiment of the present specification. Specifically, FIG. 12 is a flowchart for explaining an operation of a terminal based on Method 1.
단말은 기지국으로부터 higher layer (예: RRC or MAC CE)를 통해 SRS configuration을 수신할 수 있다(S1210). 예를 들어, 상기 SRS configuration은 상술한 제안 방법(예: 방법 1의 제안 1 / 제안 1-1 / 제안 1-2 등)에 기반하여 SRS(예: additaional SRS, UpPts SRS)와 관련된 정보를 포함할 수 있다. 일례로, SRS configuration은 periodic 그리고/또는 aperiodic 하게 전송되는 SRS 관련 정보를 포함할 수 있다. 일례로, SRS configuration은 one or more symbol에서 SRS를 전송하기 위한 configuration / power control 관련 정보 / PHR에 대한 configuration 등을 포함할 수 있다. 일례로, SRS configuration은 SRS 전송 시점과 관련된 정보(예: 주기/오프셋 등)를 포함할 수 있다. 일례로, SRS configuration은 additional SRS TPC를 적용할 cell에 대한 정보를 포함할 수 있다. 일례로, SRS configuration 에 포함될 수 있는 정보는 TS 36.331 SoundingRS-UL-Config 또는/및 TPC-PDCCH-Config 또는/및 SRS-TPC-PDCCH-Config 등에 기반할 수 있다.The terminal may receive the SRS configuration from the base station through a higher layer (eg, RRC or MAC CE) (S1210). For example, the SRS configuration includes information related to SRS (e.g., additaional SRS, UpPts SRS) based on the above-described proposal method (e.g., method 1 proposal 1 / proposal 1-1 / proposal 1-2, etc.) can do. As an example, the SRS configuration may include SRS-related information transmitted periodic and/or aperiodic. As an example, the SRS configuration may include configuration for transmitting SRS in one or more symbols / information related to power control / configuration for PHR, and the like. As an example, the SRS configuration may include information (eg, period/offset, etc.) related to the SRS transmission time point. As an example, the SRS configuration may include information on a cell to which additional SRS TPC is to be applied. For example, information that may be included in the SRS configuration may be based on TS 36.331 SoundingRS-UL-Config or/and TPC-PDCCH-Config or/and SRS-TPC-PDCCH-Config.
예를 들어, 상술한 S1210 단계의 단말(도 16 내지 도 20의 100/200)이 기지국(도 16 내지 도 20의 100/200)으로부터 상기 SRS configuration을 수신하는 동작은 이하 설명될 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참고하면, 하나 이상의 프로세서 102는 상기 SRS configuration을 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 기지국으로부터 상기 SRS configuration을 수신할 수 있다.For example, the operation of receiving the SRS configuration from the terminal (100/200 of FIGS. 16 to 20) of the above-described step S1210 from the base station (100/200 of FIGS. 16 to 20) is described below in FIGS. Can be implemented by 20 devices. For example, referring to FIG. 17, one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to receive the SRS configuration, and one or more transceivers 106 may configure the SRS configuration from the base station. You can receive it.
단말은 기지국으로부터 DCI를 수신할 수 있다(S1220). 예를 들어, 상기 DCI는 SRS 및/또는 UL channel 등의 전송과 관련된 정보를 포함할 수 있다. 예를 들어, 상기 DCI는 상술한 방법 1에서와 같이, DCI format 3B 에 해당할 수 있으며, 상기 DCI에 포함된 TPC command를 통해 power 조절 지시를 수신할 수 있다. 일례로, 상기 DCI는 SRS를 trigger하는 정보를 포함할 수 있다. 또는, 일례로, SRS 및/또는 UL channel 등의 전송과 관련된 정보는 상술한 S1210 단계의 SRS configuration에 포함될 수도 있다.The terminal may receive the DCI from the base station (S1220). For example, the DCI may include information related to transmission such as SRS and/or UL channel. For example, as in Method 1 described above, the DCI may correspond to DCI format 3B, and a power adjustment instruction may be received through a TPC command included in the DCI. For example, the DCI may include information for triggering SRS. Or, as an example, information related to transmission of the SRS and/or UL channel may be included in the SRS configuration of step S1210 described above.
예를 들어, 상술한 S1220 단계의 단말(도 16 내지 도 20의 100/200)이 기지국(도 16 내지 도 20의 100/200)으로부터 상기 DCI를 수신하는 동작은 이하 설명될 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참고하면, 하나 이상의 프로세서 102는 상기 DCI를 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 기지국으로부터 상기 DCI를 수신할 수 있다.For example, the operation of receiving the DCI from the terminal (100/200 of FIGS. 16 to 20) of the above-described step S1220 from the base station (100/200 of FIGS. 16 to 20) is described below in FIGS. 16 to 20 It can be implemented by the device of. For example, referring to FIG. 17, one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to receive the DCI, and one or more transceivers 106 may receive the DCI from the base station. I can.
단말은 기지국으로 SRS/UL Channel을 전송할 수 있다(S1230). 예를 들어, 단말은 상술한 제안 방법(예: 방법 1의 제안 1 / 제안 1-1 / 제안 1-2 등)에 기반하여 기지국으로 SRS/UL Channel을 전송할 수 있다. 예를 들어, 상기 SRS/UL Channel은 상술한 SRS configuration / Power control / PHR에 대한 configuration / DCI 등에 기반하여 전송될 수 있다. 그리고/또는, 예를 들어, 미리 정의된 규칙(예: gap symbol 위치/ SRS symbol 위치/ SRS symbol indexing 등)에 기반하여 SRS/UL Channel을 전송할 수 있다. 그리고/또는, 예를 들어, multi symbol SRS 전송의 경우, 상술한 제안 방법(예: 방법 1의 제안 1 / 제안 1-1 / 제안 1-2 등)에 기반하여 설정된 자원을 통해 전송될 수 있다. The terminal may transmit an SRS/UL channel to the base station (S1230). For example, the terminal may transmit the SRS/UL Channel to the base station based on the above-described proposed method (eg, proposal 1 of method 1 / proposal 1-1 / proposal 1-2, etc.). For example, the SRS/UL Channel may be transmitted based on the above-described SRS configuration / Power control / PHR configuration / DCI, and the like. And/or, for example, the SRS/UL Channel may be transmitted based on a predefined rule (eg, gap symbol position/ SRS symbol position/ SRS symbol indexing, etc.). And/or, for example, in the case of multi-symbol SRS transmission, it may be transmitted through a resource set based on the above-described proposal method (eg, proposal 1 of method 1 / proposal 1-1 / proposal 1-2, etc.). .
예를 들어, 상술한 S1230 단계의 단말(도 16 내지 도 20의 100/200)이 기지국(도 16 내지 도 20의 100/200)으로 상기 SRS/UL channel을 전송하는 동작은 이하 설명될 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참고하면, 하나 이상의 프로세서 102는 상기SRS/UL channel를 전송하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 기지국으로 상기 SRS/UL channel를 전송할 수 있다.For example, the operation of transmitting the SRS/UL channel by the terminal (100/200 of FIGS. 16 to 20) to the base station (100/200 of FIGS. 16 to 20) of step S1230 described above is described below in FIG. 16 To 20 may be implemented by the device. For example, referring to FIG. 17, one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to transmit the SRS/UL channel. /UL channel can be transmitted.
도 13은 본 명세서의 실시예에 따른 단말의 전력 헤드룸 보고를 위한 방법을 예시한다. 구체적으로 도 13은 방법 2에 기반하는 단말의 동작을 설명하기 위한 흐름도이다.13 illustrates a method for reporting power headroom of a terminal according to an embodiment of the present specification. Specifically, FIG. 13 is a flowchart for explaining an operation of a terminal based on Method 2.
단말은 기지국으로부터 PHR 관련 configuration을 수신할 수 있다(S1310). 예를 들어, 상기 PHR 관련 configuration은 higher layer (예: RRC or MAC CE)를 통해 수신될 수 있다. 예를 들어, 상기 PHR 관련 configuration은 상술한 제안 방법(예: 방법 2의 제안 1/ 제안 1-1 / 제안 1-2 등)에 기반하여 PHR과 관련 timer/ pathloss 값과 관련된 특정값(특정 threshold)을 포함할 수 있다. 일례로, PHR 관련 configuration에 포함될 수 있는 정보는 TS36.331 periodicPHR-Timer and/or prohibitPHR-Timer / dl-PathlossChange 등에 기반할 수 있다. The terminal may receive a PHR-related configuration from the base station (S1310). For example, the PHR-related configuration may be received through a higher layer (eg, RRC or MAC CE). For example, the PHR-related configuration is based on the above-described proposed method (e.g., Proposal 1 of Method 2 / Proposal 1-1 / Proposal 1-2, etc.) ) Can be included. For example, information that may be included in the PHR-related configuration may be based on TS36.331 periodicPHR-Timer and/or prohibitPHR-Timer / dl-PathlossChange.
예를 들어, 상술한 S1310 단계의 단말(도 16 내지 도 20의 100/200)이 기지국(도 16 내지 도 20의 100/200)으로부터 상기 PHR 관련 configuration을 수신하는 동작은 이하 설명될 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참고하면, 하나 이상의 프로세서 102는 상기 PHR 관련 configuration을 수신하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 기지국으로부터 상기 PHR 관련 configuration을 수신할 수 있다.For example, the operation of receiving the PHR-related configuration from the base station (100/200 of FIGS. 16 to 20) by the terminal (100/200 of FIGS. 16 to 20) in step S1310 described above is described in FIGS. It can be implemented by the device of FIG. 20. For example, referring to FIG. 17, one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to receive the PHR-related configuration, and one or more transceivers 106 may be configured to receive the PHR-related configuration. You can receive the configuration.
단말은 PHR에 대한 보고 triggering 여부를 확인/결정할 수 있다(S1320). 예를 들어, PHR에 대한 보고 triggering 여부는 PHR 관련 configuration에 기반하여 확인/결정될 수 있다. 일례로, PHR 관련 timer(periodicPHR-Timer and/or prohibitPHR-Timer in 36.331/36.321)에 기반한 PHR reporting trigger 혹은 특정 조건(예: (open loop) power control process에 있어서 설정된 RS에 대한 pathloss 값이 특정값(특정 threshold, e.g. dl-PathlossChange in 36.331/36.321) 이상으로 변할 경우)에 기반한 PHR reporting trigger 여부 확인/결정할 수 있다.The terminal may check/determine whether to trigger a report on the PHR (S1320). For example, whether to trigger a report on PHR may be confirmed/determined based on a PHR-related configuration. For example, a PHR reporting trigger based on a PHR-related timer (periodicPHR-Timer and/or prohibitPHR-Timer in 36.331/36.321) or a specific condition (e.g., the pathloss value for the RS set in the (open loop) power control process) is a specific value. It is possible to check/determine whether to trigger PHR reporting based on (if it changes to more than a specific threshold, eg dl-PathlossChange in 36.331/36.321).
예를 들어, 상술한 S1320 단계의 단말(도 16 내지 도 20의 100/200)이 PHR에 대한 보고 triggering 여부를 확인/결정하는 동작은 이하 설명될 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참고하면, 하나 이상의 프로세서 102는 상기 PHR에 대한 보고 triggering 여부를 확인/결정하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있다.For example, the operation of confirming/determining whether the terminal (100/200 of FIGS. 16 to 20) of step S1320 described above triggers reporting on PHR may be implemented by the apparatus of FIGS. 16 to 20 to be described below. have. For example, referring to FIG. 17, one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to check/determine whether to trigger reporting on the PHR.
단말은 기지국으로 PHR(power headroom report)을 보고/전송할 수 있다(S1330). 예를 들어, 단말은 상술한 제안 방법(예: 방법 2의 제안 1/ 제안 1-1 / 제안 1-2 등)에 기반하여 기지국으로 PHR을 보고/전송할 수 있다. 예를 들어, 상기 PHR은 SRS/UL Channel 전송 시 UL Channel에 포함되어 전송될 수 있다. 예를 들어, PHR 보고가 trigger 된 경우, 상술한 방법 2에서와 같이 additional SRS에 대한 PHR을 포함하는 MAC-CE를 MAC PDU / PUSCH를 통해 기지국으로 전송할 수 있다. 예를 들어, 상술한 제안 방법 2와 같이 단말은 SRS(예: additional SRS) / UL Channel (예: additional SRS에 대한 PHR을 포함하는 UL Channel)을 기지국으로 전송할 수 있다. 일례로, PHR은 type 3 또는 type 4에 해당할 수 있다.The terminal may report/transmit a power headroom report (PHR) to the base station (S1330). For example, the terminal may report/transmit a PHR to the base station based on the above-described proposed method (eg, proposal 1 / proposal 1-1 / proposal 1-2 of method 2). For example, the PHR may be included in the UL Channel and transmitted when transmitting the SRS/UL Channel. For example, when the PHR report is triggered, as in Method 2 described above, a MAC-CE including a PHR for an additional SRS may be transmitted to the base station through MAC PDU/PUSCH. For example, as in the above-described proposed method 2, the UE may transmit SRS (eg, additional SRS) / UL Channel (eg, UL Channel including PHR for additional SRS) to the base station. For example, PHR may correspond to type 3 or type 4.
예를 들어, 상술한 S1330 단계의 단말(도 16 내지 도 20의 100/200)이 기지국(도 16 내지 도 20의 100/200)으로 상기 PHR(power headroom report)를 보고/전송하는 동작은 이하 설명될 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참고하면, 하나 이상의 프로세서 102는 상기 PHR(power headroom report)를 보고/전송하도록 하나 이상의 트랜시버 106 및/또는 하나 이상의 메모리 104 등을 제어할 수 있으며, 하나 이상의 트랜시버 106은 기지국으로 상기 PHR(power headroom report)를 보고/전송할 수 있다.For example, the operation of the terminal (100/200 of FIGS. 16 to 20) in the above-described step S1330 to report/transmit the power headroom report (PHR) to the base station (100/200 of FIGS. 16 to 20) is as follows. It can be implemented by the apparatus of FIGS. 16-20 to be described. For example, referring to FIG. 17, one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to report/transmit the power headroom report (PHR), and the one or more transceivers 106 The base station may report/transmit the power headroom report (PHR).
앞서 언급한 바와 같이, 상술한 기지국/단말 동작(예: 방법 1의 제안 1 / 제안 1-1 / 제안 1-2 / 방법 2의 제안 1/ 제안 1-1 / 제안 1-2 / 도 11 / 도 12 / 도 13 등)은 이하 설명될 장치(예: 도 16 내지 도 20)에 의해 구현될 수 있다. 예를 들어, UE는 제 1 무선장치, BS는 제 2 무선장치에 해당할 수 있고, 경우에 따라 그 반대의 경우도 고려될 수 있다. As mentioned above, the above-described base station/terminal operation (e.g., Proposal 1 of Method 1 / Proposal 1-1 / Proposal 1-2 / Proposal 1 of Method 2/ Proposal 1-1 / Proposal 1-2 / Fig. 11 / 12 / 13, etc.) may be implemented by an apparatus (eg, FIGS. 16 to 20) to be described below. For example, the UE may correspond to the first radio device, the BS may correspond to the second radio device, and vice versa may be considered in some cases.
예를 들어, 상술한 기지국/단말 동작(예: 방법 1의 제안 1 / 제안 1-1 / 제안 1-2 / 방법 2의 제안 1/ 제안 1-1 / 제안 1-2 / 도 11 / 도 12 / 도 13 등)은 도 16 내지 도 20의 하나 이상의 프로세서(예: 102, 202) 에 의해 처리될 수 있으며, 상술한 기지국/단말 동작(예: 방법 1의 제안 1 / 제안 1-1 / 제안 1-2 / 방법 2의 제안 1/ 제안 1-1 / 제안 1-2 / 의 제안 1 / 제안 2 / 제안 3 / 도 11 / 도 12 / 도 13 등)은 도 16 내지 도 20의 적어도 하나의 프로세서(예: 102, 202)를 구동하기 위한 명령어/프로그램(예: instruction, executable code)형태로 메모리(예: 도 20의 하나 이상의 메모리(예: 104, 204)에 저장될 수도 있다.For example, the above-described base station/terminal operation (e.g., Proposal 1 of Method 1 / Proposal 1-1 / Proposal 1-2 / Proposal 1 of Method 2 / Proposal 1-1 / Proposal 1-2 / Fig. 11 / Fig. 12 / Fig. 13, etc.) can be processed by one or more processors (eg, 102, 202) of Figs. 16 to 20, and the above-described base station/terminal operation (eg, proposal 1 of method 1 / proposal 1-1 / proposal) 1-2 / Proposal 1 of Method 2 / Proposal 1-1 / Proposal 1-2 / Proposal 1 / Proposal 2 / Proposal 3 / Fig. 11 / Fig. 12 / Fig. 13, etc.) It may be stored in a memory (eg, one or more memories (eg, 104, 204) of FIG. 20) in the form of an instruction/program (eg, instruction, executable code) for driving the processor (eg, 102, 202).
이하 상술한 실시예들을 단말의 동작 측면에서 도 14를 참조하여 구체적으로 설명한다. 이하 설명되는 방법들은 설명의 편의를 위하여 구분된 것일 뿐, 어느 한 방법의 일부 구성이 다른 방법의 일부 구성과 치환되거나, 상호 간에 결합되어 적용될 수 있음은 물론이다.Hereinafter, the above-described embodiments will be described in detail with reference to FIG. 14 in terms of the operation of the terminal. The methods described below are only classified for convenience of description, and of course, some components of one method may be substituted with some components of another method, or may be combined with each other to be applied.
도 14는 본 명세서의 일 실시예에 따른 무선 통신 시스템에서 단말이 사운딩 참조 신호를 전송하기 위한 방법을 설명하기 위한 흐름도이다.14 is a flowchart illustrating a method for a terminal to transmit a sounding reference signal in a wireless communication system according to an embodiment of the present specification.
도 14를 참조하면, 본 명세서의 일 실시예에 따른 무선 통신 시스템에서 단말이 사운딩 참조 신호(Sounding Reference Signal, SRS)를 전송하는 방법은 SRS 설정 정보 수신 단계(S1410) 및 전력 헤드룸에 대한 정보를 포함하는 메시지 전송 단계(S1420), SRS를 트리거 하는 DCI 수신 단계(S1430) 및 SRS 전송 단계(S1440)를 포함한다.Referring to FIG. 14, in a method for transmitting a sounding reference signal (SRS) by a terminal in a wireless communication system according to an embodiment of the present specification, the step of receiving SRS configuration information (S1410) and power headroom A message transmission step (S1420) including information, a DCI receiving step (S1430) triggering an SRS, and a SRS transmission step (S1440) are included.
S1410에서, 단말은 기지국으로부터 사운딩 참조 신호(SRS)의 전송과 관련된 설정 정보를 수신한다. 상기 SRS는 추가적인 SRS(additional SRS)일 수 있다. 구체적으로 상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정될 수 있다.In S1410, the terminal receives configuration information related to transmission of a sounding reference signal (SRS) from the base station. The SRS may be an additional SRS (additional SRS). Specifically, the SRS may be set in a region composed of at least one symbol other than the last symbol of a subframe.
상술한 S1410에 따라, 단말(도 16 내지 도 20의 100/200)이 기지국(도 16 내지 도 20의 100/200)으로부터 사운딩 참조 신호(SRS)의 전송과 관련된 설정 정보를 수신하는 동작은 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참조하면, 하나 이상의 프로세서(102)는 기지국(200)으로부터 사운딩 참조 신호(SRS)의 전송과 관련된 설정 정보를 수신하도록 하나 이상의 트랜시버(106) 및/또는 하나 이상의 메모리(104)를 제어할 수 있다.According to the above-described S1410, the operation of the terminal (100/200 of FIGS. 16 to 20) receiving configuration information related to transmission of the sounding reference signal (SRS) from the base station (100/200 of FIGS. 16 to 20) is It can be implemented by the device of FIGS. 16 to 20. For example, referring to FIG. 17, one or more processors 102 may include one or more transceivers 106 and/or one or more memories to receive configuration information related to transmission of a sounding reference signal (SRS) from the base station 200. (104) can be controlled.
S1420에서, 단말은 기지국에 상기 SRS의 전송 전력과 관련된 전력 헤드룸(power headroom, PH)에 대한 정보를 포함하는 메시지를 전송한다.In S1420, the terminal transmits a message including information on power headroom (PH) related to the transmission power of the SRS to the base station.
일 실시예에 의하면, 상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련될 수 있다. 본 실시예는 상기 방법 2의 제안 1-1에 기반할 수 있다.According to an embodiment, the PH may be related to a specific type of Power Headroom Report (PHR). This embodiment may be based on the proposal 1-1 of Method 2 above.
상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반할 수 있다.The specific type is a type of power headroom report for a serving cell in which a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) are not configured. It can be based.
일 실시예에 의하면, 상기 메시지는 PHR MAC CE(Power Headroom Report MAC CE)에 기반할 수 있다. 상기 PH는 Type 3 PH일 수 있다.According to an embodiment, the message may be based on a PHR MAC CE (Power Headroom Report MAC CE). The PH may be Type 3 PH.
일 실시예에 의하면, 상기 메시지가 미리 설정된 타이머(pre-configured timer) 또는 트리거 조건(trigger condition)에 기반하여 전송되는 경우, 상기 Type 3 PH의 보고를 위한 설정 정보에 기반하여 상기 PH의 획득을 위한 대상이 결정될 수 있다.According to an embodiment, when the message is transmitted based on a pre-configured timer or a trigger condition, acquisition of the PH is performed based on configuration information for reporting of the Type 3 PH. The target for can be determined.
상기 PH의 획득을 위한 대상은 i) 상기 SRS 또는 ii) 물리 상향링크 공유 채널(PUSCH) 및 물리 상향링크 제어 채널(PUCCH)이 설정되지 않은 세컨더리 셀(SCell)에서의 SRS일 수 있다.The object for obtaining the PH may be i) the SRS or ii) an SRS in a secondary cell in which a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured.
상기 Type 3 PH의 보고를 위한 설정 정보는 상위 계층(higher layer)을 통해 설정될 수 있다.The configuration information for reporting of the Type 3 PH may be set through a higher layer.
상술한 S1420에 따라, 단말(도 16 내지 도 20의 100/200)이 기지국(도 16 내지 도 20의 100/200)에 상기 SRS의 전송 전력과 관련된 전력 헤드룸(power headroom, PH)에 대한 정보를 포함하는 메시지를 전송하는 동작은 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참조하면, 하나 이상의 프로세서(102)는 기지국(200)에 상기 SRS의 전송 전력과 관련된 전력 헤드룸(power headroom, PH)에 대한 정보를 포함하는 메시지를 전송하도록 하나 이상의 트랜시버(106) 및/또는 하나 이상의 메모리(104)를 제어할 수 있다.According to the above-described S1420, the terminal (100/200 of Figs. 16 to 20) provides the base station (100/200 of Figs. 16 to 20) for power headroom (PH) related to the transmission power of the SRS. The operation of transmitting a message including information may be implemented by the devices of FIGS. 16 to 20. For example, referring to FIG. 17, one or more processors 102 transmit one or more messages to the base station 200 to transmit a message including information on power headroom (PH) related to the transmission power of the SRS. It is possible to control the transceiver 106 and/or one or more memories 104.
S1430에서, 단말은 기지국으로부터 상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 수신한다. In S1430, the UE receives downlink control information (DCI) triggering transmission of the SRS from the base station.
일 실시예에 의하면, 상기 DCI는 상기 SRS의 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)를 포함할 수 있다. 다만, 상기 TPC command는 상기 SRS의 전송을 트리거 하는 DCI가 아닌 다른 DCI에 포함되어 전송될 수 있다.According to an embodiment, the DCI may include a transmission power control command (TPC command) related to control of the transmission power of the SRS. However, the TPC command may be transmitted by being included in a DCI other than the DCI triggering the transmission of the SRS.
일 실시예에 의하면, 상기 TPC command는 하향링크 제어 정보(Downlink Control Information, DCI)와 관련된 블라인드 검출(blind detection)에 기반하여 획득될 수 있다. 상기 블라인드 검출은 TPC와 관련된 복수의 RNTI들에 기반하여 수행될 수 있다. 본 실시예는 상기 방법 1의 제안 1-2에 기반할 수 있다.According to an embodiment, the TPC command may be obtained based on blind detection related to downlink control information (DCI). The blind detection may be performed based on a plurality of RNTIs related to TPC. This embodiment may be based on the proposal 1-2 of Method 1 above.
상기 TPC와 관련된 복수의 RNTI들은 제1 RNTI 및 제2 RNTI를 포함할 수 있다. 상기 제2 RNTI에 기반하는 상기 블라인드 검출을 통해 상기 TPC command가 획득될 수 있다. 상기 제2 RNTI는 추가적인 SRS(additional SRS)를 위해 미리 설정된 RNTI에 기반할 수 있다. 일 예로, 상기 제2 RNTI는 상술한 srs-TPC-RNTI-additionalSRS에 기반할 수 있다.The plurality of RNTIs related to the TPC may include a first RNTI and a second RNTI. The TPC command may be obtained through the blind detection based on the second RNTI. The second RNTI may be based on a preset RNTI for additional SRS (additional SRS). For example, the second RNTI may be based on the srs-TPC-RNTI-additionalSRS described above.
상기 제1 RNTI는 TPC와 관련된 기존의 RNTI일 수 있다. 일 예로, 상기 제1 RNTI는 srs-TPC-RNTI에 기반할 수 있다. 상기 srs-TPC-RNTI에 기반하는 상기 블라인드 검출을 통해 물리 상향링크 공유 채널(PUSCH) 및 물리 상향링크 제어 채널(PUCCH)이 설정되지 않은 세컨더리 셀(SCell)에서의 SRS를 위한 TPC command가 획득될 수 있다.The first RNTI may be an existing RNTI related to TPC. For example, the first RNTI may be based on srs-TPC-RNTI. Through the blind detection based on the srs-TPC-RNTI, a TPC command for an SRS in a secondary cell in which a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured can be obtained. I can.
상술한 S1430에 따라, 단말(도 16 내지 도 20의 100/200)이 기지국(도 16 내지 도 20의 100/200)으로부터 상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 동작은 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참조하면, 하나 이상의 프로세서(102)는 기지국(200)으로부터 상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하도록 하나 이상의 트랜시버(106) 및/또는 하나 이상의 메모리(104)를 제어할 수 있다.According to the above-described S1430, downlink control information (Downlink Control Information, DCI) for triggering transmission of the SRS from the base station (100/200 of FIGS. 16 to 20) of the terminal (100/200 of FIGS. 16 to 20) The operation of receiving is may be implemented by the apparatus of FIGS. 16 to 20. For example, referring to FIG. 17, at least one processor 102 includes at least one transceiver 106 to receive downlink control information (DCI) triggering transmission of the SRS from the base station 200 and /Or one or more of the memories 104 may be controlled.
S1440에서, 단말은 기지국에 상기 SRS를 전송한다. 상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송된다. 상기 TPC command에 기반하는 전송 전력은 SRS 전력 제어를 위한 단말 동작에서 상술한 바와 같이 결정될 수 있다.In S1440, the terminal transmits the SRS to the base station. The SRS is transmitted as transmission power based on a transmission power control command (TPC command) related to transmission power control. Transmission power based on the TPC command may be determined as described above in the terminal operation for SRS power control.
상술한 S1440에 따라, 단말(도 16 내지 도 20의 100/200)이 기지국(도 16 내지 도 20의 100/200)에 상기 SRS를 전송하는 동작은 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참조하면, 하나 이상의 프로세서(102)는 기지국(200)에 상기 SRS를 전송하도록 하나 이상의 트랜시버(106) 및/또는 하나 이상의 메모리(104)를 제어할 수 있다.According to the above-described S1440, the operation of the terminal (100/200 of FIGS. 16 to 20) transmitting the SRS to the base station (100/200 of FIGS. 16 to 20) is implemented by the apparatus of FIGS. 16 to 20. I can. For example, referring to FIG. 17, one or more processors 102 may control one or more transceivers 106 and/or one or more memories 104 to transmit the SRS to the base station 200.
이하 상술한 실시예들을 기지국의 동작 측면에서 도 15를 참조하여 구체적으로 설명한다. 이하 설명되는 방법들은 설명의 편의를 위하여 구분된 것일 뿐, 어느 한 방법의 일부 구성이 다른 방법의 일부 구성과 치환되거나, 상호 간에 결합되어 적용될 수 있음은 물론이다.Hereinafter, the above-described embodiments will be described in detail with reference to FIG. 15 in terms of operation of the base station. The methods described below are only classified for convenience of description, and of course, some components of one method may be substituted with some components of another method, or may be combined with each other to be applied.
도 15는 본 명세서의 다른 실시예에 따른 무선 통신 시스템에서 기지국이 사운딩 참조 신호를 수신하기 위한 방법을 설명하기 위한 흐름도이다.15 is a flowchart illustrating a method for a base station to receive a sounding reference signal in a wireless communication system according to another embodiment of the present specification.
도 15를 참조하면, 본 명세서의 다른 실시예에 따른 무선 통신 시스템에서 기지국이 사운딩 참조 신호(Sounding Reference Signal, SRS)를 수신하는 방법은 SRS 설정 정보 전송 단계(S1510) 및 전력 헤드룸에 대한 정보를 포함하는 메시지 수신 단계(S1520), SRS를 트리거 하는 DCI 전송 단계(S1530) 및 SRS 수신 단계(S1540)를 포함한다.Referring to FIG. 15, a method for receiving a sounding reference signal (SRS) by a base station in a wireless communication system according to another embodiment of the present specification is a method for transmitting SRS configuration information (S1510) and power headroom. It includes a step of receiving a message including information (S1520), a step of transmitting a DCI triggering an SRS (S1530), and a step of receiving an SRS (S1540).
S1510에서, 기지국은 단말에 사운딩 참조 신호(SRS)의 전송과 관련된 설정 정보를 전송한다. 상기 SRS는 추가적인 SRS(additional SRS)일 수 있다. 구체적으로 상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정될 수 있다.In S1510, the base station transmits configuration information related to transmission of a sounding reference signal (SRS) to the terminal. The SRS may be an additional SRS (additional SRS). Specifically, the SRS may be set in a region composed of at least one symbol other than the last symbol of a subframe.
상술한 S1510에 따라, 기지국(도 16 내지 도 20의 100/200)이 단말(도 16 내지 도 20의 100/200)에 사운딩 참조 신호(SRS)의 전송과 관련된 설정 정보를 전송하는 동작은 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참조하면, 하나 이상의 프로세서(202)는 단말(100)에 사운딩 참조 신호(SRS)의 전송과 관련된 설정 정보를 전송하도록 하나 이상의 트랜시버(206) 및/또는 하나 이상의 메모리(204)를 제어할 수 있다.According to the above-described S1510, the operation of the base station (100/200 of FIGS. 16 to 20) transmitting configuration information related to transmission of the sounding reference signal (SRS) to the terminal (100/200 of FIGS. 16 to 20) is It can be implemented by the device of FIGS. 16 to 20. For example, referring to FIG. 17, one or more processors 202 may transmit configuration information related to transmission of a sounding reference signal (SRS) to the terminal 100 by one or more transceivers 206 and/or one or more memories. You can control 204.
S1520에서, 기지국은 단말로부터 상기 SRS의 전송 전력과 관련된 전력 헤드룸(power headroom, PH)에 대한 정보를 포함하는 메시지를 수신한다.In S1520, the base station receives a message including information on power headroom (PH) related to the transmission power of the SRS from the terminal.
일 실시예에 의하면, 상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련될 수 있다. 본 실시예는 상기 방법 2의 제안 1-1에 기반할 수 있다.According to an embodiment, the PH may be related to a specific type of Power Headroom Report (PHR). This embodiment may be based on the proposal 1-1 of Method 2 above.
상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반할 수 있다.The specific type is a type of power headroom report for a serving cell in which a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) are not configured. It can be based.
일 실시예에 의하면, 상기 메시지는 PHR MAC CE(Power Headroom Report MAC CE)에 기반할 수 있다. 상기 PH는 Type 3 PH일 수 있다.According to an embodiment, the message may be based on a PHR MAC CE (Power Headroom Report MAC CE). The PH may be Type 3 PH.
일 실시예에 의하면, 상기 메시지가 미리 설정된 타이머(pre-configured timer) 또는 트리거 조건(trigger condition)에 기반하여 전송되는 경우, 상기 Type 3 PH의 보고를 위한 설정 정보에 기반하여 상기 PH의 획득을 위한 대상이 결정될 수 있다.According to an embodiment, when the message is transmitted based on a pre-configured timer or a trigger condition, acquisition of the PH is performed based on configuration information for reporting of the Type 3 PH. The target for can be determined.
상기 PH의 획득을 위한 대상은 i) 상기 SRS 또는 ii) 물리 상향링크 공유 채널(PUSCH) 및 물리 상향링크 제어 채널(PUCCH)이 설정되지 않은 세컨더리 셀(SCell)에서의 SRS일 수 있다.The object for obtaining the PH may be i) the SRS or ii) an SRS in a secondary cell in which a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured.
상기 Type 3 PH의 보고를 위한 설정 정보는 상위 계층(higher layer)을 통해 설정될 수 있다.The configuration information for reporting of the Type 3 PH may be set through a higher layer.
상술한 S1520에 따라, 기지국(도 16 내지 도 20의 100/200)이 단말(도 16 내지 도 20의 100/200)로부터 상기 SRS의 전송 전력과 관련된 전력 헤드룸(power headroom, PH)에 대한 정보를 포함하는 메시지를 수신하는 동작은 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참조하면, 하나 이상의 프로세서(202)는 단말(100)로부터 상기 SRS의 전송 전력과 관련된 전력 헤드룸(power headroom, PH)에 대한 정보를 포함하는 메시지를 수신하도록 하나 이상의 트랜시버(206) 및/또는 하나 이상의 메모리(204)를 제어할 수 있다.In accordance with the above-described S1520, the base station (100/200 in FIGS. 16 to 20) from the terminal (100/200 in FIGS. 16 to 20) for power headroom (PH) related to the transmission power of the SRS. The operation of receiving a message including information may be implemented by the devices of FIGS. 16 to 20. For example, referring to FIG. 17, one or more processors 202 may receive one or more messages from the terminal 100 including information on power headroom (PH) related to the transmission power of the SRS. It is possible to control the transceiver 206 and/or one or more memories 204.
S1530에서, 기지국은 단말에 상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 전송한다. In S1530, the base station transmits downlink control information (DCI) for triggering transmission of the SRS to the terminal.
일 실시예에 의하면, 상기 DCI는 상기 SRS의 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)를 포함할 수 있다. 다만, 상기 TPC command는 상기 SRS의 전송을 트리거 하는 DCI가 아닌 다른 DCI에 포함되어 전송될 수 있다.According to an embodiment, the DCI may include a transmission power control command (TPC command) related to control of the transmission power of the SRS. However, the TPC command may be transmitted by being included in a DCI other than the DCI triggering the transmission of the SRS.
일 실시예에 의하면, 상기 TPC command는 하향링크 제어 정보(Downlink Control Information, DCI)와 관련된 블라인드 검출(blind detection)에 기반하여 획득될 수 있다. 상기 블라인드 검출은 TPC와 관련된 복수의 RNTI들에 기반하여 수행될 수 있다. 본 실시예는 상기 방법 1의 제안 1-2에 기반할 수 있다.According to an embodiment, the TPC command may be obtained based on blind detection related to downlink control information (DCI). The blind detection may be performed based on a plurality of RNTIs related to TPC. This embodiment may be based on the proposal 1-2 of Method 1 above.
상기 TPC와 관련된 복수의 RNTI들은 제1 RNTI 및 제2 RNTI를 포함할 수 있다. 상기 제2 RNTI에 기반하는 상기 블라인드 검출을 통해 상기 TPC command가 획득될 수 있다. 상기 제2 RNTI는 추가적인 SRS(additional SRS)를 위해 미리 설정된 RNTI에 기반할 수 있다. 일 예로, 상기 제2 RNTI는 상술한 srs-TPC-RNTI-additionalSRS에 기반할 수 있다.The plurality of RNTIs related to the TPC may include a first RNTI and a second RNTI. The TPC command may be obtained through the blind detection based on the second RNTI. The second RNTI may be based on a preset RNTI for additional SRS (additional SRS). For example, the second RNTI may be based on the srs-TPC-RNTI-additionalSRS described above.
상기 제1 RNTI는 TPC와 관련된 기존의 RNTI일 수 있다. 일 예로, 상기 제1 RNTI는 srs-TPC-RNTI에 기반할 수 있다. 상기 srs-TPC-RNTI에 기반하는 상기 블라인드 검출을 통해 물리 상향링크 공유 채널(PUSCH) 및 물리 상향링크 제어 채널(PUCCH)이 설정되지 않은 세컨더리 셀(SCell)에서의 SRS를 위한 TPC command가 획득될 수 있다.The first RNTI may be an existing RNTI related to TPC. For example, the first RNTI may be based on srs-TPC-RNTI. Through the blind detection based on the srs-TPC-RNTI, a TPC command for an SRS in a secondary cell in which a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured can be obtained. I can.
상술한 S1530에 따라, 기지국(도 16 내지 도 20의 100/200)이 단말(도 16 내지 도 20의 100/200)에 상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 전송하는 동작은 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참조하면, 하나 이상의 프로세서(202)는 단말(100)에 상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 전송하도록 하나 이상의 트랜시버(206) 및/또는 하나 이상의 메모리(204)를 제어할 수 있다.According to the above-described S1530, the base station (100/200 of FIGS. 16 to 20) triggers transmission of the SRS to the terminal (100/200 of FIGS. 16 to 20) downlink control information (Downlink Control Information, DCI) The operation of transmitting may be implemented by the apparatus of FIGS. 16 to 20. For example, referring to FIG. 17, at least one processor 202 transmits downlink control information (DCI) triggering transmission of the SRS to the terminal 100, and one or more transceivers 206 and /Or one or more of the memories 204 may be controlled.
S1540에서, 기지국은 단말로부터 상기 SRS를 수신한다. 상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송된다. 상기 TPC command에 기반하는 전송 전력은 SRS 전력 제어를 위한 기지국 동작에서 상술한 바와 같이 결정될 수 있다.In S1540, the base station receives the SRS from the terminal. The SRS is transmitted as transmission power based on a transmission power control command (TPC command) related to transmission power control. Transmission power based on the TPC command may be determined as described above in operation of the base station for SRS power control.
상술한 S1540에 따라, 기지국(도 16 내지 도 20의 100/200)이 단말(도 16 내지 도 20의 100/200)로부터 상기 SRS를 수신하는 동작은 도 16 내지 도 20의 장치에 의해 구현될 수 있다. 예를 들어, 도 17을 참조하면, 하나 이상의 프로세서(202)는 단말(100)로부터 상기 SRS를 수신하도록 하나 이상의 트랜시버(206) 및/또는 하나 이상의 메모리(204)를 제어할 수 있다.According to the above-described S1540, the operation of receiving the SRS from the base station (100/200 of Figs. 16 to 20) from the terminal (100/200 of Figs. 16 to 20) will be implemented by the apparatus of Figs. I can. For example, referring to FIG. 17, one or more processors 202 may control one or more transceivers 206 and/or one or more memories 204 to receive the SRS from the terminal 100.
본 발명이 적용되는 통신 시스템 예Communication system example to which the present invention is applied
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.Although not limited thereto, various descriptions, functions, procedures, proposals, methods, and/or operational flow charts of the present invention disclosed in this document can be applied to various fields requiring wireless communication/connection (eg, 5G) between devices. have.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다. Hereinafter, it will be illustrated in more detail with reference to the drawings. In the following drawings/description, the same reference numerals may exemplify the same or corresponding hardware block, software block, or functional block, unless otherwise indicated.
도 16은 본 명세서에 적용되는 통신 시스템(1)을 예시한다.16 illustrates a communication system 1 applied to the present specification.
도 16을 참조하면, 본 명세서에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.Referring to FIG. 16, a communication system 1 applied to the present specification includes a wireless device, a base station, and a network. Here, the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device. Although not limited thereto, wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400. For example, the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like. Here, the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone). XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices. It can be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like. Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.). Home appliances may include TVs, refrigerators, washing machines, and the like. IoT devices may include sensors, smart meters, and the like. For example, the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other wireless devices.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.The wireless devices 100a to 100f may be connected to the network 300 through the base station 200. AI (Artificial Intelligence) technology may be applied to the wireless devices 100a to 100f, and the wireless devices 100a to 100f may be connected to the AI server 400 through the network 300. The network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network. The wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may communicate directly (e.g. sidelink communication) without passing through the base station/network. For example, the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. V2V (Vehicle to Vehicle)/V2X (Vehicle to Everything) communication). In addition, the IoT device (eg, sensor) may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.Wireless communication/ connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f/base station 200, and the base station 200/base station 200. Here, wireless communication/connection includes various wireless access such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, Integrated Access Backhaul). This can be achieved through technology (eg 5G NR) Through wireless communication/ connections 150a, 150b, 150c, the wireless device and the base station/wireless device, and the base station and the base station can transmit/receive radio signals to each other. For example, the wireless communication/ connection 150a, 150b, 150c can transmit/receive signals through various physical channels. To this end, based on various proposals of the present invention, At least some of a process of setting various configuration information, various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation process, and the like may be performed.
본 발명이 적용되는 무선 기기 예Examples of wireless devices to which the present invention is applied
도 17은 본 명세서에 적용될 수 있는 무선 기기를 예시한다.17 illustrates a wireless device applicable to the present specification.
도 17을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 16의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.Referring to FIG. 17, the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR). Here, {the first wireless device 100, the second wireless device 200} is the {wireless device 100x, the base station 200} and/or {wireless device 100x, wireless device 100x) of FIG. } Can be matched.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 명세서에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108. The processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. For example, the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a radio signal including the first information/signal through the transceiver 106. In addition, the processor 102 may store information obtained from signal processing of the second information/signal in the memory 104 after receiving a radio signal including the second information/signal through the transceiver 106. The memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed herein. It is possible to store software code including: Here, the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR). The transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108. Transceiver 106 may include a transmitter and/or a receiver. The transceiver 106 may be mixed with an RF (Radio Frequency) unit. In the present specification, a wireless device may mean a communication modem/circuit/chip.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 명세서에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.The second wireless device 200 includes one or more processors 202 and one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208. The processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. For example, the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206. Further, the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204. The memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, the memory 204 may perform some or all of the processes controlled by the processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It is possible to store software code including: Here, the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR). The transceiver 206 may be connected to the processor 202 and may transmit and/or receive radio signals through one or more antennas 208. The transceiver 206 may include a transmitter and/or a receiver. The transceiver 206 may be used interchangeably with an RF unit. In the present specification, a wireless device may mean a communication modem/circuit/chip.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.Hereinafter, hardware elements of the wireless devices 100 and 200 will be described in more detail. Although not limited thereto, one or more protocol layers may be implemented by one or more processors 102, 202. For example, one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, and SDAP). One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed in this document. Can be generated. One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or operational flow chart disclosed herein. At least one processor (102, 202) generates a signal (e.g., a baseband signal) containing PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , Can be provided to one or more transceivers (106, 206). One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다. One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer. One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof. For example, one or more application specific integrated circuits (ASICs), one or more digital signal processors (DSPs), one or more digital signal processing devices (DSPDs), one or more programmable logic devices (PLDs), or one or more field programmable gate arrays (FPGAs) May be included in one or more processors 102 and 202. The description, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like. The description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document are configured to perform firmware or software included in one or more processors 102, 202, or stored in one or more memories 104, 204, and It may be driven by the above processors 102 and 202. The descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions, and/or sets of instructions.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.One or more memories 104, 204 may be connected to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions. One or more of the memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage media, and/or combinations thereof. One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202. In addition, one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.One or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices. One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc., mentioned in the description, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document from one or more other devices. have. For example, one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals. For example, one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices. In addition, one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices. In addition, one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), one or more transceivers (106, 206) through the one or more antennas (108, 208), the description and functions disclosed in this document. It may be set to transmit and receive user data, control information, radio signals/channels, and the like mentioned in procedures, proposals, methods and/or operation flowcharts. In this document, one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports). One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal. One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal. To this end, one or more of the transceivers 106 and 206 may include (analog) oscillators and/or filters.
본 발명이 적용되는 신호 처리 회로 예Example of a signal processing circuit to which the present invention is applied
도 18은 본 명세서에 적용되는 신호 처리 회로를 예시한다.18 illustrates a signal processing circuit applied to the present specification.
도 18을 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 18의 동작/기능은 도 17의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 18의 하드웨어 요소는 도 17의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 17의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 17의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 17의 송수신기(106, 206)에서 구현될 수 있다.Referring to FIG. 18, the signal processing circuit 1000 may include a scrambler 1010, a modulator 1020, a layer mapper 1030, a precoder 1040, a resource mapper 1050, and a signal generator 1060. have. Although not limited thereto, the operations/functions of FIG. 18 may be performed in the processors 102 and 202 and/or the transceivers 106 and 206 of FIG. 17. The hardware elements of FIG. 18 may be implemented in the processors 102 and 202 and/or the transceivers 106 and 206 of FIG. 17. For example, blocks 1010 to 1060 may be implemented in the processors 102 and 202 of FIG. 17. Further, blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 17, and block 1060 may be implemented in the transceivers 106 and 206 of FIG. 17.
코드워드는 도 18의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.The codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 18. Here, the codeword is an encoded bit sequence of an information block. The information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block). The radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.Specifically, the codeword may be converted into a scrambled bit sequence by the scrambler 1010. The scramble sequence used for scramble is generated based on an initialization value, and the initialization value may include ID information of a wireless device, and the like. The scrambled bit sequence may be modulated by the modulator 1020 into a modulation symbol sequence. The modulation scheme may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like. The complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030. The modulation symbols of each transport layer may be mapped to the corresponding antenna port(s) by the precoder 1040 (precoding). The output z of the precoder 1040 can be obtained by multiplying the output y of the layer mapper 1030 by the precoding matrix W of N*M. Here, N is the number of antenna ports, and M is the number of transmission layers. Here, the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transform) on complex modulation symbols. Also, the precoder 1040 may perform precoding without performing transform precoding.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.The resource mapper 1050 may map modulation symbols of each antenna port to a time-frequency resource. The time-frequency resource may include a plurality of symbols (eg, CP-OFDMA symbols, DFT-s-OFDMA symbols) in the time domain, and may include a plurality of subcarriers in the frequency domain. The signal generator 1060 generates a radio signal from the mapped modulation symbols, and the generated radio signal may be transmitted to another device through each antenna. To this end, the signal generator 1060 may include an Inverse Fast Fourier Transform (IFFT) module and a Cyclic Prefix (CP) inserter, a Digital-to-Analog Converter (DAC), a frequency uplink converter, and the like. .
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 18의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 17의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.The signal processing process for the received signal in the wireless device may be configured as the reverse of the signal processing process 1010 to 1060 of FIG. 18. For example, a wireless device (eg, 100 and 200 in FIG. 17) may receive a wireless signal from the outside through an antenna port/transmitter. The received radio signal may be converted into a baseband signal through a signal restorer. To this end, the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP canceller, and a Fast Fourier Transform (FFT) module. Thereafter, the baseband signal may be reconstructed into a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a de-scramble process. The codeword may be restored to an original information block through decoding. Accordingly, a signal processing circuit (not shown) for a received signal may include a signal restorer, a resource demapper, a postcoder, a demodulator, a descrambler, and a decoder.
본 발명이 적용되는 무선 기기 활용 예Examples of wireless devices to which the present invention is applied
도 19는 본 명세서에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 16 참조).19 shows another example of a wireless device applied to the present specification. The wireless device may be implemented in various forms according to use-examples/services (see FIG. 16).
도 19를 참조하면, 무선 기기(100, 200)는 도 17의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 17의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 17의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.Referring to FIG. 19, the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 17, and various elements, components, units/units, and/or modules ). For example, the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140. The communication unit may include a communication circuit 112 and a transceiver(s) 114. For example, the communication circuit 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 17. For example, the transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 17. The control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or externally through the communication unit 110 (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 16, 100a), 차량(도 16, 100b-1, 100b-2), XR 기기(도 16, 100c), 휴대 기기(도 16, 100d), 가전(도 16, 100e), IoT 기기(도 16, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 16, 400), 기지국(도 16, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.The additional element 140 may be configured in various ways depending on the type of wireless device. For example, the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit. Although not limited to this, wireless devices include robots (FIGS. 16, 100a), vehicles (FIGS. 16, 100b-1, 100b-2), XR devices (FIGS. 16, 100c), portable devices (FIGS. 16, 100d), and home appliances. (Figs. 16, 100e), IoT devices (Figs. 16, 100f), digital broadcasting terminals, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, climate/environment devices, It may be implemented in the form of an AI server/device (FIGS. 16 and 400), a base station (FIGS. 16 and 200), and a network node. The wireless device can be used in a mobile or fixed place depending on the use-example/service.
도 19에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.In FIG. 19, various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 110. For example, in the wireless devices 100 and 200, the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110. Can be connected wirelessly. In addition, each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements. For example, the control unit 120 may be configured with one or more processor sets. For example, the control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor. As another example, the memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
본 발명이 적용되는 휴대기기 예Examples of mobile devices to which the present invention is applied
도 20은 본 명세서에 적용되는 휴대 기기를 예시한다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.20 illustrates a portable device applied to the present specification. Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), and portable computers (eg, notebook computers). The portable device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
도 20을 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 19의 블록 110~130/140에 대응한다.Referring to FIG. 20, the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input/output unit 140c. ) Can be included. The antenna unit 108 may be configured as a part of the communication unit 110. Blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. 19, respectively.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.The communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations. The controller 120 may perform various operations by controlling components of the portable device 100. The controller 120 may include an application processor (AP). The memory unit 130 may store data/parameters/programs/codes/commands required for driving the portable device 100. In addition, the memory unit 130 may store input/output data/information, and the like. The power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like. The interface unit 140b may support connection between the portable device 100 and other external devices. The interface unit 140b may include various ports (eg, audio input/output ports, video input/output ports) for connection with external devices. The input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user. The input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.For example, in the case of data communication, the input/output unit 140c acquires information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130. Can be saved. The communication unit 110 may convert the information/signal stored in the memory into a wireless signal, and may directly transmit the converted wireless signal to another wireless device or to a base station. In addition, after receiving a radio signal from another radio device or a base station, the communication unit 110 may restore the received radio signal to the original information/signal. After the restored information/signal is stored in the memory unit 130, it may be output in various forms (eg, text, voice, image, video, heptic) through the input/output unit 140c.
본 명세서에 실시예에 따른 무선 통신 시스템에서 사운딩 참조 신호 송수신 방법 및 장치의 효과를 설명하면 다음과 같다.In the present specification, an effect of a method and apparatus for transmitting and receiving a sounding reference signal in a wireless communication system according to an embodiment will be described as follows.
본 명세서의 일 실시예에 의하면, 상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지가 전송된다. 상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며, 상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반한다.According to an embodiment of the present specification, a message including information on power headroom (PH) related to transmission power of the SRS is transmitted. The PH is related to a specific type of Power Headroom Report (PHR), and the specific type is a physical uplink shared channel (PUSCH) and a physical uplink control channel. It is based on the type of power headroom report for a serving cell in which the Uplink Control Channel (PUCCH) is not configured.
기존의 타입(Type 3)의 방식에 기초하여 추가적인 SRS(additional SRS)의 전력 헤드룸 보고가 수행될 수 있다. 따라서, 기존의 전력 헤드룸 보고 동작에 다른 영향을 미치지 않으면서 추가적인 SRS를 위해 레거시 SRS와는 독립적인 전력 제어가 수행될 수 있다.An additional SRS (additional SRS) power headroom report may be performed based on an existing type (Type 3) scheme. Accordingly, power control independent of the legacy SRS may be performed for additional SRS without any other influence on the existing power headroom reporting operation.
여기서, 본 명세서의 무선 기기(예: 도 17의 100/200)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(예: 도 17의 100/200)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(예: 도 17의 100/200)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.Here, the wireless communication technology implemented in the wireless device (eg, 100/200 of FIG. 17) of the present specification may include LTE, NR, and 6G, as well as Narrowband Internet of Things for low-power communication. At this time, for example, the NB-IoT technology may be an example of a Low Power Wide Area Network (LPWAN) technology, and may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and limited to the above name no. Additionally or alternatively, the wireless communication technology implemented in the wireless device (eg, 100/200 of FIG. 17) of the present specification may perform communication based on the LTE-M technology. In this case, as an example, the LTE-M technology may be an example of an LPWAN technology, and may be referred to by various names such as enhanced machine type communication (eMTC). For example, LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-Bandwidth Limited (BL), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above-described name. Additionally or alternatively, the wireless communication technology implemented in the wireless device (eg, 100/200 in FIG. 17) of the present specification is ZigBee, Bluetooth, and Low Power Wide Area Network in consideration of low power communication. , LPWAN) may include at least one of, but is not limited to the above-described name. For example, ZigBee technology can create personal area networks (PANs) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and may be referred to by various names.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are those in which components and features of the present invention are combined in a predetermined form. Each component or feature should be considered optional unless explicitly stated otherwise. Each component or feature may be implemented in a form that is not combined with other components or features. In addition, it is possible to configure an embodiment of the present invention by combining some components and/or features. The order of operations described in the embodiments of the present invention may be changed. Some configurations or features of one embodiment may be included in other embodiments, or may be replaced with corresponding configurations or features of other embodiments. It is apparent that claims that do not have an explicit citation relationship in the claims may be combined to constitute an embodiment or may be included as a new claim by amendment after filing.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.The embodiment according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof. In the case of implementation by hardware, an embodiment of the present invention provides one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, etc.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above. The software code can be stored in a memory and driven by a processor. The memory may be located inside or outside the processor, and may exchange data with the processor through various known means.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It is apparent to those skilled in the art that the present invention can be embodied in other specific forms without departing from the essential features of the present invention. Therefore, the detailed description above should not be construed as restrictive in all respects and should be considered as illustrative. The scope of the present invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the present invention are included in the scope of the present invention.

Claims (15)

  1. 무선 통신 시스템에서 단말이 사운딩 참조 신호(Sounding Reference Signal, SRS)를 전송하는 방법에 있어서,In a method for transmitting a sounding reference signal (SRS) by a terminal in a wireless communication system,
    사운딩 참조 신호(SRS)의 설정 정보를 수신하는 단계;Receiving setting information of a sounding reference signal (SRS);
    상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지를 전송하는 단계;Transmitting a message including information on power headroom (PH) related to transmission power of the SRS;
    상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계; 및Receiving downlink control information (DCI) triggering transmission of the SRS; And
    상기 SRS를 전송하는 단계;를 포함하되,Transmitting the SRS; Including,
    상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정되고,The SRS is set in a region consisting of at least one symbol excluding the last symbol of a subframe,
    상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송되며,The SRS is transmitted as transmission power based on a transmission power control command (TPC command) related to transmission power control,
    상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며,The PH is related to a specific type of Power Headroom Report (PHR),
    상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반하는 것을 특징으로 하는 방법.The specific type is a type of power headroom report for a serving cell in which a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) are not configured. Method, characterized in that based.
  2. 제1 항에 있어서,The method of claim 1,
    상기 메시지는 PHR MAC CE(Power Headroom Report MAC CE)에 기반하는 것을 특징으로 하는 방법.The message is a method characterized in that based on the PHR MAC CE (Power Headroom Report MAC CE).
  3. 제2 항에 있어서,The method of claim 2,
    상기 PH는 Type 3 PH인 것을 특징으로 하는 방법.The method, characterized in that the PH is Type 3 PH.
  4. 제3 항에 있어서,The method of claim 3,
    상기 메시지가 미리 설정된 타이머(pre-configured timer) 또는 트리거 조건(trigger condition)에 기반하여 전송되는 경우, 상기 Type 3 PH의 보고를 위한 설정 정보에 기반하여 상기 PH의 획득을 위한 대상이 결정되는 것을 특징으로 하는 방법.When the message is transmitted based on a pre-configured timer or a trigger condition, the object for obtaining the PH is determined based on the setting information for reporting of the Type 3 PH. How to characterize.
  5. 제4 항에 있어서,The method of claim 4,
    상기 PH의 획득을 위한 대상은 i) 상기 SRS 또는 ii) 물리 상향링크 공유 채널(PUSCH) 및 물리 상향링크 제어 채널(PUCCH)이 설정되지 않은 세컨더리 셀(SCell)에서의 SRS인 것을 특징으로 하는 방법.The object for obtaining the PH is i) the SRS or ii) an SRS in a secondary cell in which a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured. .
  6. 제4 항에 있어서,The method of claim 4,
    상기 Type 3 PH의 보고를 위한 설정 정보는 상위 계층(higher layer)을 통해 설정되는 것을 특징으로 하는 방법.The method of claim 1, wherein the setting information for reporting of the Type 3 PH is set through a higher layer.
  7. 제1 항에 있어서,The method of claim 1,
    상기 TPC command는 하향링크 제어 정보(Downlink Control Information, DCI)와 관련된 블라인드 검출(blind detection)에 기반하여 획득되며,The TPC command is obtained based on blind detection related to downlink control information (DCI),
    상기 블라인드 검출은 TPC와 관련된 복수의 RNTI들에 기반하여 수행되는 것을 특징으로 하는 방법.Wherein the blind detection is performed based on a plurality of RNTIs related to TPC.
  8. 제7 항에 있어서,The method of claim 7,
    상기 TPC와 관련된 복수의 RNTI들은 제1 RNTI 및 제2 RNTI를 포함하며,The plurality of RNTIs related to the TPC includes a first RNTI and a second RNTI,
    상기 제2 RNTI에 기반하는 상기 블라인드 검출을 통해 상기 TPC command가 획득되는 것을 특징으로 하는 방법.The method characterized in that the TPC command is obtained through the blind detection based on the second RNTI.
  9. 제8 항에 있어서,The method of claim 8,
    상기 제1 RNTI는 srs-TPC-RNTI에 기반하며,The first RNTI is based on srs-TPC-RNTI,
    상기 srs-TPC-RNTI에 기반하는 상기 블라인드 검출을 통해 물리 상향링크 공유 채널(PUSCH) 및 물리 상향링크 제어 채널(PUCCH)이 설정되지 않은 세컨더리 셀(SCell)에서의 SRS를 위한 TPC command가 획득되는 것을 특징으로 하는 방법.Through the blind detection based on the srs-TPC-RNTI, a TPC command for SRS in a secondary cell in which a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) are not configured is obtained. The method characterized in that.
  10. 무선 통신 시스템에서 사운딩 참조 신호(Sounding Reference Signal, SRS)를 전송하는 단말에 있어서,In a terminal transmitting a sounding reference signal (SRS) in a wireless communication system,
    하나 이상의 송수신기;One or more transceivers;
    상기 하나 이상의 송수신기를 제어하는 하나 이상의 프로세서들; 및One or more processors controlling the one or more transceivers; And
    상기 하나 이상의 프로세서들에 동작 가능하게 접속 가능하고, 상기 하나 이상의 프로세서들에 의해 상기 사운딩 참조 신호의 전송이 실행될 때, 동작들을 수행하는 지시(instruction)들을 저장하는 하나 이상의 메모리들을 포함하며,And one or more memories operatively connectable to the one or more processors and storing instructions for performing operations when transmission of the sounding reference signal is executed by the one or more processors,
    상기 동작들은,The above operations are:
    사운딩 참조 신호(SRS)의 설정 정보를 수신하는 단계;Receiving setting information of a sounding reference signal (SRS);
    상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지를 전송하는 단계;Transmitting a message including information on power headroom (PH) related to transmission power of the SRS;
    상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하는 단계; 및Receiving downlink control information (DCI) triggering transmission of the SRS; And
    상기 SRS를 전송하는 단계;를 포함하되,Transmitting the SRS; Including,
    상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정되고,The SRS is set in a region consisting of at least one symbol excluding the last symbol of a subframe,
    상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송되며,The SRS is transmitted as transmission power based on a transmission power control command (TPC command) related to transmission power control,
    상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며,The PH is related to a specific type of Power Headroom Report (PHR),
    상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반하는 것을 특징으로 하는 단말.The specific type is a type of power headroom report for a serving cell in which a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) are not configured. Terminal, characterized in that based.
  11. 제10 항에 있어서,The method of claim 10,
    상기 메시지는 PHR MAC CE(Power Headroom Report MAC CE)에 기반하는 것을 특징으로 하는 단말.The message is a terminal, characterized in that based on the PHR MAC CE (Power Headroom Report MAC CE).
  12. 하나 이상의 메모리들 및 상기 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함하는 장치에 있어서,An apparatus comprising one or more memories and one or more processors functionally connected to the one or more memories,
    상기 하나 이상의 프로세서들은 상기 장치가,The one or more processors are the device,
    사운딩 참조 신호(SRS)의 설정 정보를 수신하고,Receiving the setting information of the sounding reference signal (SRS),
    상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지를 전송하며,Transmitting a message including information on the power headroom (Power Headroom, PH) related to the transmission power of the SRS,
    상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하고,Receiving Downlink Control Information (DCI) triggering the transmission of the SRS,
    상기 SRS를 전송하도록 설정되며,It is set to transmit the SRS,
    상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정되고,The SRS is set in a region consisting of at least one symbol excluding the last symbol of a subframe,
    상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송되며,The SRS is transmitted as transmission power based on a transmission power control command (TPC command) related to transmission power control,
    상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며,The PH is related to a specific type of Power Headroom Report (PHR),
    상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반하는 것을 특징으로 하는 장치.The specific type is a type of power headroom report for a serving cell in which a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) are not configured. Device, characterized in that based on.
  13. 하나 이상의 명령어를 저장하는 하나 이상의 비일시적(non-transitory) 컴퓨터 판독 가능 매체에 있어서,In one or more non-transitory computer-readable media storing one or more instructions,
    하나 이상의 프로세서에 의해 실행 가능한 하나 이상의 명령어는 단말이,One or more instructions executable by one or more processors are the terminal,
    사운딩 참조 신호(SRS)의 설정 정보를 수신하고,Receiving the setting information of the sounding reference signal (SRS),
    상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지를 전송하며,Transmitting a message including information on the power headroom (Power Headroom, PH) related to the transmission power of the SRS,
    상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 수신하고,Receiving Downlink Control Information (DCI) triggering the transmission of the SRS,
    상기 SRS를 전송하도록 설정되며,It is set to transmit the SRS,
    상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정되고,The SRS is set in a region consisting of at least one symbol excluding the last symbol of a subframe,
    상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송되며,The SRS is transmitted as transmission power based on a transmission power control command (TPC command) related to transmission power control,
    상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며,The PH is related to a specific type of Power Headroom Report (PHR),
    상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반하는 것을 특징으로 하는 비일시적(non-transitory) 컴퓨터 판독 가능 매체.The specific type is a type of power headroom report for a serving cell in which a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) are not configured. Non-transitory computer-readable medium, characterized in that based.
  14. 무선 통신 시스템에서 기지국이 사운딩 참조 신호(Sounding Reference Signal, SRS)를 수신하는 방법에 있어서,In a method for a base station to receive a sounding reference signal (SRS) in a wireless communication system,
    사운딩 참조 신호(SRS)의 설정 정보를 전송하는 단계;Transmitting configuration information of a sounding reference signal (SRS);
    상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지를 수신하는 단계;Receiving a message including information on power headroom (PH) related to transmission power of the SRS;
    상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 전송하는 단계; 및Transmitting downlink control information (DCI) triggering transmission of the SRS; And
    상기 SRS를 수신하는 단계;를 포함하되,Receiving the SRS; Including,
    상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정되고,The SRS is set in a region consisting of at least one symbol excluding the last symbol of a subframe,
    상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송되며,The SRS is transmitted as transmission power based on a transmission power control command (TPC command) related to transmission power control,
    상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며,The PH is related to a specific type of Power Headroom Report (PHR),
    상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반하는 것을 특징으로 하는 방법.The specific type is a type of power headroom report for a serving cell in which a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) are not configured. Method, characterized in that based.
  15. 무선 통신 시스템에서 사운딩 참조 신호(Sounding Reference Signal, SRS)를 수신하는 기지국에 있어서,In a base station receiving a sounding reference signal (SRS) in a wireless communication system,
    하나 이상의 송수신기;One or more transceivers;
    상기 하나 이상의 송수신기를 제어하는 하나 이상의 프로세서들; 및One or more processors controlling the one or more transceivers; And
    상기 하나 이상의 프로세서들에 동작 가능하게 접속 가능하고, 상기 하나 이상의 프로세서들에 의해 상기 사운딩 참조 신호의 수신이 실행될 때, 동작들을 수행하는 지시(instruction)들을 저장하는 하나 이상의 메모리들을 포함하며,And one or more memories operatively connectable to the one or more processors and storing instructions for performing operations when reception of the sounding reference signal is executed by the one or more processors,
    상기 동작들은,The above operations are:
    사운딩 참조 신호(SRS)의 설정 정보를 전송하는 단계;Transmitting configuration information of a sounding reference signal (SRS);
    상기 SRS의 전송 전력과 관련된 전력 헤드룸(Power Headroom, PH)에 대한 정보를 포함하는 메시지를 수신하는 단계;Receiving a message including information on power headroom (PH) related to transmission power of the SRS;
    상기 SRS의 전송을 트리거 하는 하향링크 제어 정보(Downlink Control Information, DCI)를 전송하는 단계; 및Transmitting downlink control information (DCI) triggering transmission of the SRS; And
    상기 SRS를 수신하는 단계;를 포함하되,Receiving the SRS; Including,
    상기 SRS는 서브프레임의 마지막 심볼을 제외한 적어도 하나의 심볼로 구성된 영역에 설정되고,The SRS is set in a region consisting of at least one symbol excluding the last symbol of a subframe,
    상기 SRS는 전송 전력의 제어와 관련된 TPC 커맨드(Transmission Power Control command, TPC command)에 기반하는 전송 전력으로 전송되며,The SRS is transmitted as transmission power based on a transmission power control command (TPC command) related to transmission power control,
    상기 PH는 특정 타입(specific type)의 전력 헤드룸 보고(Power Headroom Report, PHR)와 관련되며,The PH is related to a specific type of Power Headroom Report (PHR),
    상기 특정 타입은 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH) 및 물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH)이 설정되지 않은 서빙 셀(serving cell)을 위한 전력 헤드룸 보고의 타입에 기반하는 것을 특징으로 하는 기지국.The specific type is a type of power headroom report for a serving cell in which a Physical Uplink Shared Channel (PUSCH) and a Physical Uplink Control Channel (PUCCH) are not configured. Base station, characterized in that based.
PCT/KR2020/013518 2019-10-02 2020-10-05 Method and device for transmitting and receiving sounding reference signal in wireless communication system WO2021066632A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080069462.2A CN114503497B (en) 2019-10-02 2020-10-05 Method and apparatus for transmitting and receiving sounding reference signal in wireless communication system
KR1020227004815A KR102543958B1 (en) 2019-10-02 2020-10-05 Method and apparatus for transmitting and receiving sounding reference signal in wireless communication system
US17/710,000 US11595172B2 (en) 2019-10-02 2022-03-31 Method and device for transmitting and receiving sounding reference signal in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962909739P 2019-10-02 2019-10-02
US62/909,739 2019-10-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/710,000 Continuation US11595172B2 (en) 2019-10-02 2022-03-31 Method and device for transmitting and receiving sounding reference signal in wireless communication system

Publications (1)

Publication Number Publication Date
WO2021066632A1 true WO2021066632A1 (en) 2021-04-08

Family

ID=75338477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/013518 WO2021066632A1 (en) 2019-10-02 2020-10-05 Method and device for transmitting and receiving sounding reference signal in wireless communication system

Country Status (4)

Country Link
US (1) US11595172B2 (en)
KR (1) KR102543958B1 (en)
CN (1) CN114503497B (en)
WO (1) WO2021066632A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112534889B (en) * 2018-08-09 2024-04-26 联想(新加坡)私人有限公司 Apparatus for uplink transmission power allocation and method thereof
CN114631360A (en) * 2019-11-07 2022-06-14 联想(北京)有限公司 Power headroom reporting for additional SRS
BR112022013335A2 (en) * 2020-01-03 2022-09-13 Zte Corp INCREASE IN TRANSMISSIONS OF SOUND REFERENCE SIGNALS IN WIRELESS COMMUNICATION SYSTEMS
US12081473B2 (en) * 2020-08-26 2024-09-03 Huawei Technologies Co., Ltd. Uplink sounding reference signal carrier aggregation
KR102503667B1 (en) * 2022-03-18 2023-02-24 주식회사 블랙핀 Method and Apparatus for RRC_CONNECTED state uplink transmission and RRC_INACTIVE uplink transmission in wireless mobile communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114685A (en) * 2014-01-29 2016-10-05 인터디지탈 패튼 홀딩스, 인크 Uplink transmissions in wireless communications
US20190044678A1 (en) * 2016-04-01 2019-02-07 Futurewei Technologies, Inc. System and Method for SRS Switching, Transmission, and Enhancements

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101441147B1 (en) * 2008-08-12 2014-09-18 엘지전자 주식회사 Method of transmitting sr in wireless communication system
WO2013065426A1 (en) * 2011-11-01 2013-05-10 シャープ株式会社 Mobile station, communication system, communication method and integrated circuit
US9826514B2 (en) * 2011-11-16 2017-11-21 Qualcomm Incorporated Downlink control information (DCI) design for low cost devices
CN105917719B (en) * 2014-01-28 2019-05-14 寰发股份有限公司 Time division multiplexing UL transmission method and user equipment in multiple serving cells
US10708872B2 (en) * 2017-09-14 2020-07-07 Lenovo (Singapore) Pte Ltd Power headroom report generation
WO2019084909A1 (en) * 2017-11-03 2019-05-09 北京小米移动软件有限公司 Power headroom report transmission method and device
CN109788541B (en) * 2017-11-10 2021-11-30 维沃移动通信有限公司 PHR reporting method and user equipment
CN111903159B (en) * 2018-02-14 2024-01-09 上海诺基亚贝尔股份有限公司 Method, apparatus and computer readable storage medium for communication
CN112205038B (en) * 2018-06-20 2024-04-12 联想(新加坡)私人有限公司 Power headroom report generation
US11477740B2 (en) * 2019-08-05 2022-10-18 Ofinno, Llc Power headroom reporting by a wireless device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160114685A (en) * 2014-01-29 2016-10-05 인터디지탈 패튼 홀딩스, 인크 Uplink transmissions in wireless communications
US20190044678A1 (en) * 2016-04-01 2019-02-07 Futurewei Technologies, Inc. System and Method for SRS Switching, Transmission, and Enhancements

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Miscellaneous non-controversial corrections Set III", 3GPP TSG-RAN2 MEETING #107 R2-1911868, vol. TSG-RAN2, 2 September 2019 (2019-09-02), Prague Czech Republic, pages 1 - 509, XP009526945 *
LENOVO, MOTOROLA MOBILITY: "Discussion of additional SRS symbols", 3GPP DRAFT; R1-1908719 DISCUSSION OF ADDITIONAL SRS SYMBOLS FINAL, vol. RAN WG1, 17 August 2019 (2019-08-17), Prague, CZ, pages 1 - 8, XP051765327 *
QUALCOMM INCORPORATED: "Additional SRS symbols", 3GPP DRAFT; R1-1908840_SRS ADDITIONAL SYMBOLS, vol. RAN WG1, 17 August 2019 (2019-08-17), Prague, CZ, pages 1 - 10, XP051765448 *

Also Published As

Publication number Publication date
KR20220034211A (en) 2022-03-17
US20220231812A1 (en) 2022-07-21
US11595172B2 (en) 2023-02-28
CN114503497A (en) 2022-05-13
CN114503497B (en) 2023-11-07
KR102543958B1 (en) 2023-06-16

Similar Documents

Publication Publication Date Title
WO2020145748A1 (en) Method for transmitting and receiving signal in wireless communication system and apparatus for supporting same
WO2020166818A1 (en) Method by which user equipment transmits srs in wireless communication system, and apparatus
WO2021066632A1 (en) Method and device for transmitting and receiving sounding reference signal in wireless communication system
WO2020145747A1 (en) Method for transmitting and receiving signal in wireless communication system and apparatus for supporting same
WO2022080928A1 (en) Method and device for transmitting and receiving signal in wireless communication system
WO2020145562A1 (en) Method by which user equipment transmits srs in order to cancel remote cross-link interference in wireless communication system, and apparatus
WO2020145750A1 (en) Method for transmitting and receiving signal in wireless communication system and apparatus for supporting same
WO2020231125A1 (en) Method and device for transmitting and receiving sounding reference signal in wireless communication system
WO2021107564A1 (en) Method and apparatus for configuring default beam for network cooperative communication
WO2022031085A1 (en) Method and apparatus to transmit and receive signal for groupcast in wireless communication system
WO2021066634A1 (en) Method and apparatus for transmitting and receiving sounding reference signal in wireless communication system
WO2021066593A1 (en) Method and device for transmitting and receiving signals in wireless communication system
WO2020204497A1 (en) Method and device for transmission or reception of signal for multiple transport block scheduling
WO2020166844A1 (en) Method whereby user equipment receives data signal in wireless communication system, and user equipment and base station which support same
WO2020060381A1 (en) Method for transmitting and receiving signal in wireless communication system and device for supporting same
WO2020218904A1 (en) Method and apparatus for transmitting or receiving sounding reference signal in wireless communication system
WO2020091315A1 (en) Method for relay terminal to transmit and receive signals in wireless communication system and device for same
WO2020167076A1 (en) Method for generating low papr sequence in wireless communication system, and apparatus for same
WO2020032747A1 (en) Method for operating terminal and base station in wireless communication system supporting unlicensed band, and device for supporting same
WO2020197335A1 (en) Method and device for transmitting and receiving sounding reference signal in wireless communication system
WO2020167075A1 (en) Method for transmitting demodulation reference signal regarding uplink control signal in wireless communication system, and apparatus therefor
WO2020167077A1 (en) Method for transmitting demodulation reference signal for uplink data in wireless communication system, and device for same
WO2022030945A1 (en) Method and apparatus for transmitting and receiving signal in wireless communication system
WO2020145732A1 (en) Method for transmitting and receiving signal in wireless communication system and apparatus supporting same
WO2020145652A1 (en) Method for transmitting and receiving signal in wireless communication system, and device for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227004815

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871719

Country of ref document: EP

Kind code of ref document: A1