WO2021066389A1 - Method and device for determining priority between scheduling request for secondary cell (scell) beam failure report and other uplink transmissions in wireless communication system - Google Patents

Method and device for determining priority between scheduling request for secondary cell (scell) beam failure report and other uplink transmissions in wireless communication system Download PDF

Info

Publication number
WO2021066389A1
WO2021066389A1 PCT/KR2020/012952 KR2020012952W WO2021066389A1 WO 2021066389 A1 WO2021066389 A1 WO 2021066389A1 KR 2020012952 W KR2020012952 W KR 2020012952W WO 2021066389 A1 WO2021066389 A1 WO 2021066389A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmitting
beam failure
transmit
resource
Prior art date
Application number
PCT/KR2020/012952
Other languages
French (fr)
Korean (ko)
Inventor
장재혁
에기월아닐
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Publication of WO2021066389A1 publication Critical patent/WO2021066389A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • the present invention relates to a method of determining priority between a scheduling request for SCell beam failure report and other uplink transmission in a wireless communication system.
  • the 5G communication system or the pre-5G communication system is called a communication system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE).
  • the 5G communication system is being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Giga (60 GHz) band).
  • mmWave ultra-high frequency
  • 5G communication systems include beamforming, massive MIMO, and Full Dimensional MIMO (FD-MIMO). ), array antenna, analog beam-forming, and large scale antenna technologies are being discussed.
  • FD-MIMO Full Dimensional MIMO
  • array antenna analog beam-forming, and large scale antenna technologies are being discussed.
  • cloud RAN cloud radio access network
  • D2D Device to Device communication
  • wireless backhaul moving network
  • CoMP Coordinatd Multi-Points
  • interference cancellation And other technologies are being developed.
  • ACM advanced coding modulation
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Small Cellular Cellular System
  • FBMC Filter Bank Multi Carrier
  • NOMA non orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • M2M Machine Type Communication
  • MTC Machine Type Communication
  • SR scheduling request
  • a method for controlling a terminal includes the steps of detecting a beam failure in a secondary cell (scell); Checking whether a resource for transmitting a scheduling request (SR) related to the detected beam failure overlaps in time with a resource for transmitting data; And when the resource for transmitting the SR overlaps in time with the resource for transmitting the data, determining to transmit one of the SR and the data. Including, wherein the determining step, when the resource for transmitting the SR overlaps in time with the resource for transmitting the data, determining to transmit the SR related to the detected beam failure have.
  • SR scheduling request
  • a terminal includes a transceiver; And whether a resource for detecting a beam failure in a secondary cell (scell) and transmitting a scheduling request (SR) related to the detected beam failure overlaps in time with a resource for transmitting data.
  • a control unit configured to determine to transmit one of the SR and the data when the resource for transmitting the SR overlaps in time with the resource for transmitting the data; And when the resource for transmitting the SR overlaps in time with the resource for transmitting the data, the control unit may determine to transmit the SR related to the detected beam failure.
  • the terminal when a scheduling request (SR) transmitted to make a transmission resource request and data transmission overlap, the terminal can easily determine the priority.
  • SR scheduling request
  • FIG. 1 is a diagram illustrating a structure of an LTE system referred to for description of the present invention.
  • FIG. 2 is a diagram showing a radio protocol structure of an LTE system referred to for description of the present invention.
  • FIG 3 is an exemplary diagram of a downlink and uplink channel frame structure when communication is performed based on a beam in an NR system.
  • FIG. 4 is an exemplary diagram for an operation sequence of a terminal performing SR transmission for a SCell BFR MAC Control Element (CE).
  • CE MAC Control Element
  • FIG. 5 is a diagram illustrating an exemplary block configuration of a terminal according to an embodiment of the present invention.
  • FIG. 6 is a block diagram illustrating an exemplary configuration of a base station according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of controlling a terminal according to an embodiment of the present invention.
  • each block of the flowchart diagrams and combinations of the flowchart diagrams may be executed by computer program instructions. Since these computer program instructions can be mounted on the processor of a general purpose computer, special purpose computer or other programmable data processing equipment, the instructions executed by the processor of the computer or other programmable data processing equipment are described in the flowchart block(s). It creates a means to perform functions.
  • These computer program instructions can also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular way, so that the computer-usable or computer-readable memory It is also possible for the instructions stored in the flow chart to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block(s). Since computer program instructions can also be mounted on a computer or other programmable data processing equipment, a series of operating steps are performed on a computer or other programmable data processing equipment to create a computer-executable process to create a computer or other programmable data processing equipment. It is also possible for instructions to perform processing equipment to provide steps for executing the functions described in the flowchart block(s).
  • each block may represent a module, segment, or part of code that contains one or more executable instructions for executing the specified logical function(s).
  • the functions mentioned in the blocks may occur out of order. For example, two blocks shown in succession may in fact be executed substantially simultaneously, or the blocks may sometimes be executed in the reverse order depending on the corresponding function.
  • the term' ⁇ unit' used in this embodiment refers to software or hardware components such as FPGA or ASIC, and' ⁇ unit' performs certain roles.
  • The' ⁇ unit' may be configured to be in an addressable storage medium, or may be configured to reproduce one or more processors.
  • ' ⁇ unit' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • components and functions provided in the' ⁇ units' may be combined into a smaller number of elements and' ⁇ units', or may be further separated into additional elements and' ⁇ units'.
  • components and' ⁇ units' may be implemented to play one or more CPUs in a device or a security multimedia card.
  • a term for identifying an access node used in the following description a term for network entities, a term for messages, a term for an interface between network objects, a term for various identification information And the like are illustrated for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms referring to objects having an equivalent technical meaning may be used.
  • the present invention uses terms and names defined in the 3GPP The 3rd Generation Partnership Project Long Term Evolution (LTE) standard, which is the most up-to-date among currently existing communication standards.
  • LTE Long Term Evolution
  • the present invention is not limited by the terms and names, and may be equally applied to systems conforming to other standards.
  • the present invention can be applied to 3GPP NR (New Radio: 5th generation mobile communication standard).
  • FIG. 1 is a diagram illustrating a structure of an LTE system referred to for description of the present invention.
  • the wireless communication system includes several base stations (1-05) (1-10) (1-15) (1-20) and MME (Mobility Management Entity) (1-20) and S -It is composed of GW (Serving-Gateway)(1-30).
  • UE or terminal User equipment (hereinafter referred to as UE or terminal) (1-35) is external through the base station (1-05) (1-10) (1-15) (1-20) and S-GW (1-30). Connect to the network.
  • the base stations (1-05) (1-10) (1-15) (1-20) are access nodes of a cellular network and provide wireless access to terminals accessing the network. That is, the base station (1-05) (1-10) (1-15) (1-20) collects status information such as buffer status, available transmission power status, and channel status of terminals to service users' traffic. Thus, the scheduling is performed to support connection between the terminals and the core network (CN).
  • the MME 1-25 is a device in charge of various control functions as well as a mobility management function for a terminal, and is connected to a plurality of base stations
  • the S-GW 1-30 is a device that provides a data bearer.
  • the MME (1-25) and the S-GW (1-30) can further perform authentication, bearer management, etc. for a terminal accessing the network, and the base station 1-05 Processes a packet arriving from (1-10)(1-15)(1-20) or a packet to be delivered to the base station (1-05)(1-10)(1-15)(1-20).
  • FIG. 2 is a diagram showing a radio protocol structure of an LTE system referred to for description of the present invention.
  • the NR to be defined in the future may be partially different from the radio protocol structure in this drawing, but will be described for convenience of description of the present invention.
  • the radio protocol of the LTE system is PDCP (Packet Data Convergence Protocol) (2-05) (2-40), RLC (Radio Link Control) (2-10) (2-35) in the terminal and the ENB, respectively. ), MAC (Medium Access Control) (2-15) (2-30).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • PDU Packet Data Unit
  • the MAC (2-15) (2-30) is connected to several RLC layer devices configured in one terminal, and performs an operation of multiplexing RLC PDUs to MAC PDUs and demultiplexing RLC PDUs from MAC PDUs.
  • the physical layer (2-20) (2-25) channel-codes and modulates the upper layer data, converts it into OFDM symbols, and transmits it to the radio channel, or demodulates and channel-decodes the OFDM symbol received through the radio channel to the upper layer. It does the act of delivering.
  • the physical layer also uses HARQ (Hybrid ARQ) for additional error correction, and the receiving end transmits whether or not the packet transmitted by the transmitting end is received in 1 bit.
  • HARQ Hybrid ARQ
  • HARQ ACK/NACK information Downlink HARQ ACK/NACK information for uplink transmission is transmitted through a PHICH (Physical Hybrid-ARQ Indicator Channel) physical channel, and uplink HARQ ACK/NACK information for downlink transmission is PUCCH (Physical Uplink Control Channel) or PUSCH. (Physical Uplink Shared Channel) It can be transmitted through a physical channel.
  • the PUCCH is used for the UE to transmit not only the HARQ ACK/NACK information, but also downlink channel status information (CSI, Channel Status Information), scheduling request (SR, Scheduling Request), and the like to the base station.
  • CSI Physical Uplink Control Channel
  • SR Scheduling Request
  • the SR is 1-bit information, and when a terminal transmits an SR to a resource in a PUCCH set by a base station, the base station recognizes that there is data to be transmitted by the corresponding terminal in an uplink, and allocates an uplink resource.
  • the UE may transmit a detailed buffer status report (BSR) message through the uplink resource.
  • BSR buffer status report
  • the base station can allocate a plurality of SR resources to one terminal.
  • the PHY layer may consist of one or a plurality of frequencies/carriers, and a technology in which a plurality of frequencies are simultaneously set and used by one base station is referred to as a carrier aggregation technology (carrier aggreagation, hereinafter referred to as CA).
  • CA technology refers to using only one carrier for communication between a terminal (or user equipment, UE) and a base station (eNB of LTE or gNB of NR), and additionally using a primary carrier and one or a plurality of subcarriers. it means. Accordingly, the amount of transmission can be dramatically increased by the number of additionally used subcarriers.
  • a cell in a base station using a primary carrier is called a PCell (Primary Cell), and a subcarrier is called a SCell (Secondary Cell).
  • PCell Primary Cell
  • SCell Secondary Cell
  • a technology in which the CA function is extended to two base stations is referred to as dual connectivity technology (hereinafter referred to as DC).
  • DC dual connectivity technology
  • the terminal is simultaneously connected to a primary base station (Master E-UTRAN NodeB, hereinafter referred to as MeNB) and a secondary base station (Secondary E-UTRAN NodeB, hereinafter referred to as SeNB).
  • MeNB Master E-UTRAN NodeB
  • SeNB secondary base station
  • MCG master cell group
  • SCG secondary cell group
  • PCell primary cell
  • PSCell primary secondary cell
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • FIG 3 is an exemplary diagram of a downlink and uplink channel frame structure when communication is performed based on a beam in an NR system.
  • the base station (3-01) transmits a signal in the form of a beam in order to transmit a wider coverage or stronger signal (3-11)(3-13)(3-15)(3-17). Accordingly, the terminal (3-03) in the cell must transmit and receive data using a specific beam transmitted by the base station (beam #1 (3-13) in this example drawing).
  • the state of the terminal is divided into a dormant mode (RRC_IDLE) and a connection mode (RRC_CONNECTED). Accordingly, the base station does not know the location of the terminal in the dormant mode.
  • the terminal sends a synchronization block (SSB) transmitted by the base station (3-21)(3-23)(3-25)(3-27). ) Can be received.
  • This SSB is an SSB signal periodically transmitted according to a period set by the base station, and each SSB is a Primary Synchronization Signal (PSS) (3-41), a Secondary Synchronization Signal (SSS) (3 -43) and Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • SSB#0 (3-21) transmits using beam #0 (3-11)
  • SSB#1 (3-23) transmits using beam #1 (3-13).
  • transmission using beam #2 (3-15) in case of SSB#2 (3-25)
  • transmission using beam #3 (3-17) in case of SSB#3 (3-27)
  • the terminal receives SSB #1 transmitted through beam #1.
  • the terminal acquires a physical cell identifier (PCI) of the base station through PSS and SSS, and by receiving the PBCH, the identifier of the currently received SSB (i.e., #1) and the current SSB It is possible to determine not only which position within a 10 ms frame is received, but also which SFN within the System Frame Number (SFN) having a period of 10.24 seconds.
  • a master information block (MIB) is included in the PBCH.
  • the MIB includes information indicating at which location the system information block type 1 (SIB1), which broadcasts more detailed cell configuration information, can be received.
  • the terminal Upon receiving SIB1, the terminal can know the total number of SSBs transmitted by the base station, and can perform random access to transition to the connected mode state (e.g., physically designed specifically for uplink synchronization
  • the UE recognizes the location of the PRACH occasion (3-32)(3-33) for SSB#1, and accordingly, the current time among the PRACH Occasions (3-32)(3-33) corresponding to SSB#1
  • the random access preamble can be transmitted with the fastest PRACH Occasion in (e.g. (3-32)). Since the base station has received the preamble in the PRACH Occasion of (3-32), it can be seen that the corresponding terminal has transmitted the preamble by selecting SSB#1. Accordingly, when performing subsequent random access, data is transmitted and received through the corresponding beam. can do.
  • the terminal when the connected terminal moves from the current (source) base station to the target (target) base station for reasons such as handover, the terminal performs random access at the target base station, and transmits random access by selecting the SSB as described above. You can perform the operation that you do.
  • a handover command is transmitted to the terminal to move from the source base station to the target base station, and in this case, the message is dedicated to the corresponding terminal for each SSB of the target base station so that it can be used when performing random access at the target base station.
  • a random access preamble identifier can be assigned.
  • the base station may not allocate a dedicated random access preamble identifier for all beams (depending on the current location of the terminal, etc.), and thus, a dedicated random access preamble may not be allocated to some SSBs (e.g., Beam Dedicated random access preamble assigned to #2 and #3 only). If the UE does not have a dedicated random access preamble assigned to the SSB selected for preamble transmission, random access may be performed by randomly selecting a contention-based random access preamble.
  • SSBs e.g., Beam Dedicated random access preamble assigned to #2 and #3 only.
  • a scenario in which a UE is located in Beam #1 and performs random access for the first time, but after a failure, is located in Beam #3 and transmits a dedicated preamble when transmitting the random access preamble again is possible.
  • preamble retransmission occurs even within one random access procedure, depending on whether a dedicated random access preamble is allocated to the selected SSB for each preamble transmission, a contention-based random access procedure and a contention-based random access procedure May be mixed.
  • the UE in the connected state is set up as a message of the RRC layer to tell the base station to detect beam failure for the SSBs corresponding to beam #1 (3-13) and beam #2 (3-15).
  • the physical layer of the terminal can transmit a beam failure instance indication to the MAC layer of the terminal. have.
  • the MAC layer receiving the beam failure occurrence notification starts a beam failure detection timer (or restarts if the beam failure detection timer has already been driven), and may increase the counter (BFI_COUNTER) by 1. If the counter value reaches the threshold (beamFailureInstanceMaxCount) set by the message of the RRC layer (e.g., equal to or greater than), the terminal concludes that a beam failure has occurred and can perform a procedure to recover the beam failure. Yes (beam failure recovery, BFR).
  • the beam failure may occur in PCell or SCell.
  • PCell when a low frequency that hardly uses a beam is used, and a high frequency that uses a narrow beam in the SCell is used, a beam failure may occur in the SCell.
  • the terminal can recover using a random access procedure. For example, the base station can allocate a dedicated random access preamble for each beam in preparation for a beam failure to the terminal.For example, if a dedicated preamble identifier is set for beam #3 in this drawing, the terminal detects a beam failure. When beam #3 is selected when performing random access afterwards, the corresponding dedicated preamble identifier is transmitted to immediately inform the base station that the corresponding terminal has selected beam #3 by detecting a beam failure, so that the base station transmits the beam for the corresponding terminal. You can make it adjustable. Alternatively, even if the dedicated random access preamble is not allocated, the terminal may perform contention-based random access to inform the base station that the corresponding terminal is present in the selected beam during the current random access.
  • the UE may notify the fact that the beam failure has occurred in a certain SCell by transmitting a MAC Control Element (MAC CE), a control message of the MAC layer. More specifically, the MAC CE may include additional information on which SCell has a beam failure and which beam of the corresponding SCell should be used. In order to transmit the MAC CE, the UE needs to request uplink resources from the base station.
  • MAC CE MAC Control Element
  • Uplink resource requests in the existing LTE and NR are made by transmitting a buffer status report (BSR) MAC CE, and in the case of a regular BSR (Regular BSR) among the conditions in which the BSR transmission is triggered, a scheduling request By triggering (Scheduling Request, SR), 1-bit information is transmitted to the base station in the PUCCH resource allocated for the SR previously allocated as a message of the RRC layer, so that the base station can allocate uplink for transmitting the BSR. have.
  • BSR buffer status report
  • SR scheduling request By triggering
  • the BSR is classified as follows according to the conditions under which transmission is triggered.
  • the BSR retransmission timer (retxBSR-Timer) is BSR sent when expired
  • Truncated BSR is transmitted
  • Regular BSR is intended to trigger SR.
  • regular BSR occurs according to the above conditions, it is determined in which logical channel the regular BSR is generated due to data. Accordingly, when there is an SR configuration mapped to a corresponding logical channel, the corresponding SR can be transmitted.
  • the base station may assume a scenario in which three SRs are set to the UE, and SR #1 maps to LCH x and LCH y, and SR #2 to LCH z.
  • LCH, x, y, and z have priorities 1,2,3, if there is traffic only in LCH z in the buffer and data is generated in LCH y, a regular BSR is triggered due to LCH y, Accordingly, SR #1 is triggered.
  • the MAC CE eg, SCell BFR MAC CE
  • the Regular BSR cannot be triggered.
  • the message size difference is not large compared to the BSR MAC CE, it may be unnecessary to transmit the BSR MAC CE to transmit the SCell BFR MAC CE.
  • the base station may allocate uplink resources at a time when 1-bit scheduling request information transmitted through the PUCCH is transmitted.
  • the UE cannot simultaneously transmit the PUCCH and data (Physical Uplink Shared CHannel: PUSCH: This is used to transmit the UL-SCH).
  • the PUCCH is not transmitted, and data Can only be transmitted.
  • factory automation considered as an operation scenario of 5G and traffic with very high priority occurs suddenly, SR mapped to the traffic with very high priority (logical channel) rather than generating previously generated data. It may be more important to allow the base station to allocate an uplink for transmission of the corresponding traffic by transmitting.
  • the base station may set the UE as an RRC layer message to determine which one to transmit by comparing the priority between the data to be transmitted and the logical channel mapped to the SR to be transmitted. Accordingly, only when it is set to perform the corresponding determination operation, the terminal may determine which transmission and which are not transmitted when the PUCCH and the PUSCH overlap in time as described above.
  • the UE must determine whether to transmit SR or data for this when transmitting SCell BFR MAC CE.
  • the following schemes are proposed in a situation in which the UE needs to make a determination when PUCCH and PUSCH resources overlap as described above.
  • the first scheme is a scheme for always prioritizing the SR for transmitting the SCell BFR MAC CE. Since this is a situation in which communication in the SCell is interrupted, it can be used under the judgment that the SCell should be restored with priority over other data transmission. In this case, uplink data transmission overlapping in time with the SR for transmitting the SCell BFR MAC CE is not performed.
  • the second method is a method for the base station to set a predetermined threshold to force PUSCH transmission when this situation occurs. In this case, if the priority of a logical channel included in the PUSCH transmission is greater than a preset threshold, PUSCH transmission is performed. Otherwise, the SR for transmitting the SCell BFR MAC CE is prioritized and transmitted.
  • the terminal may perform the PUSCH transmission.
  • the UE may transmit an SR for transmitting the SCell BFR MAC CE.
  • uplink data transmission overlapping in time with the SR for transmitting the SCell BFR MAC CE is not performed.
  • This scheme can be used as a method for the base station to protect data transmission with very high priority.
  • the third scheme is a scheme in which PUSCH is always prioritized and transmitted.
  • the SR for transmitting the SCell BFR MAC CE is not always transmitted.
  • the UE may perform PUSCH transmission.
  • the fourth scheme is to separately set the priority of the SR for transmitting the SCell BFR MAC CE using a message of the RRC layer, and when this situation occurs, the priority (the highest of the logical channels) of the PUSCH to be transmitted and the SCell BFR MAC.
  • This is a method of performing transmission having a high priority by comparing the priority set in the SR for transmitting the CE.
  • This is similar to the second scheme, but is a method in which the priorities of the SR for transmitting the SCell BFR MAC CE can be directly signaled and the priorities can be compared with other logical channels.
  • the fifth scheme is a method of transmitting the PUSCH if the SCell BFR MAC CE is included in the present PUSCH, and if not, prioritizing the SR for transmitting the SCell BFR MAC CE.
  • the corresponding MAC CE is immediately transmitted to allow the base station to transmit the SCell BFR MAC CE as soon as possible. CE information can be transmitted.
  • the UE may determine through the above method and perform the corresponding transmission.
  • FIG. 4 is an exemplary diagram of an operation sequence of a terminal performing SR transmission for SCell BFR MAC CE.
  • the terminal is connected to the LTE base station and is in a connection mode (RRC_CONNECTED) (4-01).
  • the base station to which the terminal is connected may be an NR base station.
  • the UE receives configuration information for a radio bearer and a logical channel related thereto, and SR resources and related configuration information for each logical channel from the base station, and transmits a confirmation message thereon (4-03).
  • the configuration information transmitted by the base station may be received using an RRCReconfiguration message of the RRC layer, and a confirmation message transmitted by the terminal may be transmitted using an RRCReconfigurationComplete message of the RRC layer.
  • the configuration information message may also include configuration information on whether the terminal can report the beam failure when determining the SCell.
  • configuration information on which one to transmit by determining priority may be included. If the separate configuration information for this is not included, the UE prioritizes the PUSCH when the PUCCH transmission and the PUSCH overlap in time.
  • the terminal receiving the configuration information may determine whether a beam failure occurs for not only the PCell but also the SCell, as described above (4-05). Accordingly, if a beam failure of the SCell is detected, it may be determined whether the PUCCH SR resource is allocated as a message of the RRC layer to transmit the SCell BFR MAC CE (4-07). If a separate SR resource is not allocated, the UE performs a random access procedure and transmits the SCell BFR MAC CE to the base station by including the SCell BFR MAC CE in the Msg3 message of the random access to notify that a beam failure has occurred in a specific SCell (4 -13).
  • the base station sets the PUCCH SR resource to transmit the SCell BFR MAC CE, it can be determined whether the corresponding resource overlaps the resource for data transmission dynamically or periodically allocated by the base station (4-09). . If they do not overlap, the UE may transmit the corresponding SR and then transmit the SCell BFR MAC CE to the uplink resource received from the base station (4-15). However, if the PUCCH SR resource and the base station dynamically or periodically allocated a resource for data transmission overlap in time, the terminal may determine whether to compare priorities according to the configuration information of the RRC layer (4 -11).
  • the terminal may determine whether the corresponding configuration information is set. If not configured separately, the UE transmits the PUSCH and the SR for SCell BFR MAC CE transmission attempts to transmit to the next SR resource (4-19), and then determines whether the next PUCCH SR resource overlaps with the PUSCH resource again. Can be judged (4-09). However, if the terminal needs to perform an operation for this, the terminal can determine whether to transmit the PUCCH or the PUSCH according to one of several methods below (4-17).
  • the first scheme is a scheme for always prioritizing the SR for transmitting the SCell BFR MAC CE. Since this is a situation in which communication in the SCell is interrupted, it can be used under the judgment that it should be restored prior to other data transmission. In this case, uplink data transmission overlapping in time with the SR for transmitting the SCell BFR MAC CE is not performed.
  • the second method is a method for the base station to set a predetermined threshold to force PUSCH transmission when this situation occurs. In this case, if the priority of a logical channel included in the PUSCH transmission is greater than a preset threshold, PUSCH transmission is performed. Otherwise, the SR for transmitting the SCell BFR MAC CE is prioritized and transmitted. This scheme can be used as a method for the base station to protect data transmission with very high priority.
  • the third scheme is a scheme in which PUSCH is always prioritized and transmitted.
  • the SR for transmitting the SCell BFR MAC CE is not always transmitted. This can be used under the assumption that the priority does not need to be very high since communication is still possible in the remaining serving cells (eg, PCell), even though a beam failure occurs in the SCell.
  • the fourth scheme is to separately set the priority of the SR for transmitting the SCell BFR MAC CE using a message of the RRC layer, and when this situation occurs, the priority (the highest of the logical channels) of the PUSCH to be transmitted and the SCell BFR MAC.
  • This is a method of performing transmission having a high priority by comparing the priority set in the SR for transmitting the CE.
  • This is similar to the second scheme, but is a method in which the priorities of the SR for transmitting the SCell BFR MAC CE can be directly signaled and the priorities can be compared with other logical channels.
  • the fifth scheme is a method of transmitting the PUSCH if the SCell BFR MAC CE is included in the present PUSCH, and if not, prioritizing the SR for transmitting the SCell BFR MAC CE.
  • the corresponding MAC CE is immediately transmitted to allow the base station to transmit the SCell BFR MAC CE as soon as possible. CE information can be transmitted.
  • the UE may determine through the above method and perform the corresponding transmission.
  • the UE may transmit the SR and transmit the SCell BFR MAC CE with uplink support received thereafter (4-15).
  • the PUSCH resource is transmitted and the SR transmission is attempted to the next SR PUCCH resource, or if the corresponding PUSCH resource including the SCell BFR MAC CE is transmitted according to the above scheme, the procedure is terminated. can do.
  • the terminal notifies the base station of the beam failure of the SCell, and the base station adjusts the beam in the corresponding SCell to recover the beam failure.
  • FIG. 5 shows a block configuration of a terminal according to an embodiment of the present invention.
  • the terminal includes a radio frequency (RF) processing unit 5-10, a baseband processing unit 5-20, a storage unit 5-30, and a control unit 5-40. do.
  • RF radio frequency
  • the RF processing unit 5-10 performs a function of transmitting and receiving a signal through a wireless channel such as band conversion and amplification of a signal. That is, the RF processing unit 5-10 up-converts the baseband signal provided from the baseband processing unit 5-20 into an RF band signal and transmits it through an antenna, and the RF band signal received through the antenna Downconvert to a baseband signal.
  • the RF processing unit 5-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. I can. In FIG. 5, only one antenna is shown, but the terminal may include a plurality of antennas.
  • the RF processing unit 5-10 may include a plurality of RF chains. Further, the RF processing unit 5-10 may perform beamforming. For the beamforming, the RF processing unit 5-10 may adjust a phase and a magnitude of each of signals transmitted/received through a plurality of antennas or antenna elements.
  • the baseband processing unit 5-20 performs a function of converting between a baseband signal and a bit stream according to the physical layer standard of the system. For example, when transmitting data, the baseband processing unit 5-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processing unit 5-20 restores a received bit stream through demodulation and decoding of the baseband signal provided from the RF processing unit 5-10. For example, in the case of the OFDM (orthogonal frequency division multiplexing) method, when transmitting data, the baseband processor 5-20 generates complex symbols by encoding and modulating a transmission bit stream, and subcarriers the complex symbols.
  • OFDM orthogonal frequency division multiplexing
  • OFDM symbols are constructed through an inverse fast Fourier transform (IFFT) operation and a cyclic prefix (CP) insertion.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the baseband processing unit 5-20 divides the baseband signal provided from the RF processing unit 5-10 in units of OFDM symbols, and applies a fast Fourier transform (FFT) operation to subcarriers. After restoring the mapped signals, the received bit stream is restored through demodulation and decoding.
  • FFT fast Fourier transform
  • the baseband processing unit 5-20 and the RF processing unit 5-10 transmit and receive signals as described above. Accordingly, the baseband processing unit 5-20 and the RF processing unit 5-10 may be referred to as a transmission unit, a reception unit, a transmission/reception unit, or a communication unit. In addition, at least one of the baseband processing unit 5-20 and the RF processing unit 5-10 may include different communication modules to process signals of different frequency bands.
  • the different frequency bands may include a super high frequency (SHF) (eg, 2.5GHz, 5Ghz) band, and a millimeter wave (eg, 60GHz) band.
  • SHF super high frequency
  • 5Ghz millimeter wave
  • the storage unit 5-30 stores data such as a basic program, an application program, and setting information for the operation of the terminal.
  • the controller 5-40 controls overall operations of the terminal.
  • the control unit 5-40 transmits and receives signals through the baseband processing unit 5-20 and the RF processing unit 5-10.
  • the control unit 5-40 writes and reads data in the storage unit 5-40.
  • the control unit 5-40 may include at least one processor.
  • the controller 5-40 may include a communication processor (CP) that controls communication and an application processor (AP) that controls an upper layer such as an application program.
  • the control unit 5-40 includes a multiple connection processing unit 5-42 that performs processing for operating in a multiple connection mode.
  • the controller 5-40 may control the terminal to perform a procedure shown in the operation of the terminal illustrated in FIG. 5.
  • the UE receives the configuration related to transmission of the SCell BFR MAC CE from the base station, and determines which transmission to perform when PUSCH transmission and SR transmission for transmitting the SCell BFR MAC CE overlap in time. I can.
  • FIG. 6 is a diagram showing the structure of a base station according to an embodiment of the present invention.
  • the base station may include a transmission/reception unit 610, a control unit 620, and a storage unit 630.
  • the control unit may be defined as a circuit or an application-specific integrated circuit or at least one processor.
  • the transceiver 610 may transmit and receive signals with other network entities.
  • the transceiver 610 may transmit, to the terminal, an RRC message including configuration information for a radio bearer and a logical channel related thereto, and SR resources for each logical channel and related configuration information.
  • the controller 620 may control the overall operation of the base station according to the embodiment proposed in the present invention. For example, the controller 620 may control a signal flow between blocks to perform an operation according to the above-described flowchart. Specifically, the controller 620 may control to generate and transmit the setting information to the terminal according to an embodiment of the present invention. In addition, when an SR for transmitting the SCell BFR MAC CE is received, the control unit 620 may allocate an uplink transmission resource for transmission of the SCell BFR MAC CE to the terminal.
  • the storage unit 630 may store at least one of information transmitted and received through the transmission/reception unit 610 and information generated through the control unit 520.
  • the storage unit 630 may store configuration information for a radio bearer and a logical channel related thereto, SR resources for each logical channel, and related configuration information.
  • FIG. 7 is a flowchart illustrating a method of controlling a terminal according to an embodiment of the present invention.
  • the terminal may detect a beam failure in a secondary cell (scell).
  • scell secondary cell
  • the terminal may check whether the resource for transmitting a scheduling request (SR) related to the detected beam failure overlaps in time with the resource for transmitting data.
  • SR scheduling request
  • step S720 when the resource for transmitting the SR overlaps in time with the resource for transmitting the data, the terminal may determine to transmit one of the SR and the data.
  • a computer-readable storage medium storing one or more programs (software modules) may be provided.
  • One or more programs stored in a computer-readable storage medium are configured to be executable by one or more processors in an electronic device (device).
  • the one or more programs include instructions that cause the electronic device to execute methods according to the embodiments described in the claims or specification of the present invention.
  • These programs include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM.
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • magnetic disc storage device Compact Disc-ROM (CD-ROM), Digital Versatile Discs (DVDs), or other types of It may be stored in an optical storage device or a magnetic cassette. Alternatively, it may be stored in a memory composed of a combination of some or all of them. In addition, a plurality of configuration memories may be included.
  • the program is through a communication network composed of a communication network such as the Internet, an intranet, a local area network (LAN), a wide LAN (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an accessible storage device. Such a storage device can access a device performing an embodiment of the present invention through an external port. In addition, a separate storage device on the communication network may access a device performing an embodiment of the present invention.
  • a communication network such as the Internet, an intranet, a local area network (LAN), a wide LAN (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an accessible storage device. Such a storage device can access a device performing an embodiment of the present invention through an external port.
  • a separate storage device on the communication network may access a device performing an embodiment of the present invention.
  • the constituent elements included in the invention are expressed in the singular or plural according to the presented specific embodiment.
  • the singular or plural expression is selected appropriately for the situation presented for convenience of description, and the present invention is not limited to the singular or plural constituent elements, and even constituent elements expressed in plural are composed of the singular or singular. Even the expressed constituent elements may be composed of pluralities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present disclosure relates to a communication technique for combining an IoT technology with a 5G communication system for supporting a higher data transmission rate than a 4G system, and a system therefor. The present disclosure can be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart cars or connected cars, health care, digital education, retail businesses, security and safety-related services, and the like) on the basis of 5G communication technologies and IoT-related technologies. According to the present disclosure, a terminal can request for resources by means of a plurality of scheduling requests in accordance with the traffic characteristics and transmission resource request cause and thus can receive an allocation of uplink resources in a timely manner and transmit data.

Description

무선통신시스템에서 SCELL(SECONDARY CELL) 빔실패보고를 위한 스케쥴링 요청과 다른 상향링크 전송 간에 우선순위를 결정하는 방법 및 장치 Method and apparatus for determining priority between scheduling request for SCELL (SECONDARY CELL) beam failure report and other uplink transmission in a wireless communication system
무선통신시스템에서 SCell 빔실패보고를 위한 스케쥴링 요청과 다른 상향링크 전송 간에 우선순위를 결정하는 방법에 관한 것이다.The present invention relates to a method of determining priority between a scheduling request for SCell beam failure report and other uplink transmission in a wireless communication system.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.Efforts are being made to develop an improved 5G communication system or a pre-5G communication system in order to meet the increasing demand for wireless data traffic after the commercialization of 4G communication systems. For this reason, the 5G communication system or the pre-5G communication system is called a communication system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE). In order to achieve a high data rate, the 5G communication system is being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Giga (60 GHz) band). In order to mitigate the path loss of radio waves in the ultra-high frequency band and increase the transmission distance of radio waves, 5G communication systems include beamforming, massive MIMO, and Full Dimensional MIMO (FD-MIMO). ), array antenna, analog beam-forming, and large scale antenna technologies are being discussed. In addition, in order to improve the network of the system, in 5G communication system, evolved small cell, advanced small cell, cloud radio access network (cloud RAN), ultra-dense network , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, CoMP (Coordinated Multi-Points), and interference cancellation And other technologies are being developed. In addition, in 5G systems, advanced coding modulation (ACM) methods such as Hybrid FSK and QAM Modulation (FQAM) and SWSC (Sliding Window Superposition Coding), advanced access technologies such as Filter Bank Multi Carrier (FBMC), NOMA (non orthogonal multiple access), and sparse code multiple access (SCMA) are being developed.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.Meanwhile, the Internet is evolving from a human-centered connection network in which humans create and consume information, to an Internet of Things (IoT) network that exchanges and processes information between distributed components such as objects. IoE (Internet of Everything) technology, which combines IoT technology with big data processing technology through connection with cloud servers, etc., is also emerging. In order to implement IoT, technological elements such as sensing technology, wired/wireless communication and network infrastructure, service interface technology, and security technology are required. , M2M), and MTC (Machine Type Communication) technologies are being studied. In the IoT environment, intelligent IT (Internet Technology) services that create new value in human life by collecting and analyzing data generated from connected objects can be provided. IoT is the field of smart home, smart building, smart city, smart car or connected car, smart grid, healthcare, smart home appliance, advanced medical service, etc. through the convergence and combination of existing IT (information technology) technology and various industries. Can be applied to.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술인 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.Accordingly, various attempts have been made to apply a 5G communication system to an IoT network. For example, technologies such as sensor network, machine to machine (M2M), and machine type communication (MTC) are implemented by techniques such as beamforming, MIMO, and array antenna, which are 5G communication technologies. will be. The application of a cloud radio access network (cloud RAN) as the big data processing technology described above can be said as an example of the convergence of 5G technology and IoT technology.
한편, 차세대 이동통신 시스템에서 기지국이 복수 개의 스케쥴링요청 자원을 설정하는 경우, 상기 복수 개의 스케줄링 요청에 대해 설정된 자원을 활용하는 방법에 대한 필요성이 대두하였다. Meanwhile, when a base station sets a plurality of scheduling request resources in a next-generation mobile communication system, there is a need for a method of using the resources set for the plurality of scheduling requests.
무선통신시스템에서 단말이 전송자원요청을 하기 위해 전송하는 스케줄링 요청(scheduling request, SR) 및 데이터 전송이 중첩되는 경우 우선 순위를 결정하기 위한 필요성이 대두하였다. In a wireless communication system, when a scheduling request (SR) transmitted by a terminal to request a transmission resource and data transmission overlap, the need to determine the priority has emerged.
본 발명의 일 실시 예에 따른 단말의 제어 방법은, 세컨더리 셀 (secondary cell, scell)에서의 빔 실패를 감지하는 단계; 상기 감지된 빔 실패와 관련된 스케줄링 리퀘스트 (scheduling request, SR)을 전송하기 위한 자원이 데이터를 전송하기 위한 자원과 시간상에서 중첩되는지 여부를 확인하는 단계; 및 상기 SR을 전송하기 위한 자원이 상기 데이터를 전송하기 위한 자원과 시간상에서 중첩되는 경우, 상기 SR 및 상기 데이터 중에서 하나를 전송하도록 결정하는 단계; 를 포함하고, 상기 결정하는 단계는, 상기 SR을 전송하기 위한 자원이 상기 데이터를 전송하기 위한 자원과 시간상에서 중첩되는 경우, 상기 감지된 빔 실패와 관련된 SR을 전송하도록 결정하는 것을 특징으로 할 수 있다. A method for controlling a terminal according to an embodiment of the present invention includes the steps of detecting a beam failure in a secondary cell (scell); Checking whether a resource for transmitting a scheduling request (SR) related to the detected beam failure overlaps in time with a resource for transmitting data; And when the resource for transmitting the SR overlaps in time with the resource for transmitting the data, determining to transmit one of the SR and the data. Including, wherein the determining step, when the resource for transmitting the SR overlaps in time with the resource for transmitting the data, determining to transmit the SR related to the detected beam failure have.
한편, 본 발명의 다른 실시 예에 따른 단말은 송수신부; 및 세컨더리 셀 (secondary cell, scell)에서의 빔 실패를 감지하고, 상기 감지된 빔 실패와 관련된 스케줄링 리퀘스트 (scheduling request, SR)을 전송하기 위한 자원이 데이터를 전송하기 위한 자원과 시간상에서 중첩되는지 여부를 확인하며, 상기 SR을 전송하기 위한 자원이 상기 데이터를 전송하기 위한 자원과 시간상에서 중첩되는 경우, 상기 SR 및 상기 데이터 중에서 하나를 전송하도록 결정하도록 제어하는 제어부; 를 포함하고, 상기 제어부는, 상기 SR을 전송하기 위한 자원이 상기 데이터를 전송하기 위한 자원과 시간상에서 중첩되는 경우, 상기 감지된 빔 실패와 관련된 SR을 전송하도록 결정하는 것을 특징으로 할 수 있다.On the other hand, a terminal according to another embodiment of the present invention includes a transceiver; And whether a resource for detecting a beam failure in a secondary cell (scell) and transmitting a scheduling request (SR) related to the detected beam failure overlaps in time with a resource for transmitting data. A control unit configured to determine to transmit one of the SR and the data when the resource for transmitting the SR overlaps in time with the resource for transmitting the data; And when the resource for transmitting the SR overlaps in time with the resource for transmitting the data, the control unit may determine to transmit the SR related to the detected beam failure.
본 발명을 통해, 단말은 전송자원요청을 하기 위해 전송하는 스케줄링 요청(scheduling request, SR) 및 데이터 전송이 중첩되는 경우 용이하게 우선 순위를 결정할 수 있게 된다. Through the present invention, when a scheduling request (SR) transmitted to make a transmission resource request and data transmission overlap, the terminal can easily determine the priority.
도 1은 본 발명의 설명을 위해 참고로 하는 LTE 시스템의 구조를 도시하는 도면이다.1 is a diagram illustrating a structure of an LTE system referred to for description of the present invention.
도 2는 본 발명의 설명을 위해 참고로 하는 LTE 시스템의 무선 프로토콜 구조를 나타낸 도면이다.2 is a diagram showing a radio protocol structure of an LTE system referred to for description of the present invention.
도 3는 NR 시스템에서 빔 (beam) 기반으로 통신 수행 시 하향링크와 상향링크 채널 프레임 구조의 예시 도면이다.3 is an exemplary diagram of a downlink and uplink channel frame structure when communication is performed based on a beam in an NR system.
도 4는 SCell BFR MAC Control Element (CE)를 위한 SR을 전송을 수행하는 단말의 동작 순서에 대한 예시 도면이다.4 is an exemplary diagram for an operation sequence of a terminal performing SR transmission for a SCell BFR MAC Control Element (CE).
도 5는 본 발명의 실시 예에 따른 단말의 블록 구성 예시 도면이다.5 is a diagram illustrating an exemplary block configuration of a terminal according to an embodiment of the present invention.
도 6은 본 발명의 실시 예에 따른 기지국의 블록 구성 예시 도면이다.6 is a block diagram illustrating an exemplary configuration of a base station according to an embodiment of the present invention.
도 7은 본 발명의 일 실시 예에 따른 단말의 제어 방법을 나타낸 흐름도이다. 7 is a flowchart illustrating a method of controlling a terminal according to an embodiment of the present invention.
본 명세서에서 실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.In describing the embodiments herein, descriptions of technical contents that are well known in the technical field to which the present invention pertains and are not directly related to the present invention will be omitted. This is to more clearly convey the gist of the present invention by omitting unnecessary description.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.For the same reason, some elements in the accompanying drawings are exaggerated, omitted, or schematically illustrated. In addition, the size of each component does not fully reflect the actual size. The same reference numerals are assigned to the same or corresponding components in each drawing.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention, and a method of achieving them will become apparent with reference to the embodiments described below in detail together with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only these embodiments make the disclosure of the present invention complete, and the general knowledge in the technical field to which the present invention pertains. It is provided to completely inform the scope of the invention to the possessor, and the invention is only defined by the scope of the claims. The same reference numerals refer to the same elements throughout the specification.
이때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.At this time, it will be appreciated that each block of the flowchart diagrams and combinations of the flowchart diagrams may be executed by computer program instructions. Since these computer program instructions can be mounted on the processor of a general purpose computer, special purpose computer or other programmable data processing equipment, the instructions executed by the processor of the computer or other programmable data processing equipment are described in the flowchart block(s). It creates a means to perform functions. These computer program instructions can also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular way, so that the computer-usable or computer-readable memory It is also possible for the instructions stored in the flow chart to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block(s). Since computer program instructions can also be mounted on a computer or other programmable data processing equipment, a series of operating steps are performed on a computer or other programmable data processing equipment to create a computer-executable process to create a computer or other programmable data processing equipment. It is also possible for instructions to perform processing equipment to provide steps for executing the functions described in the flowchart block(s).
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.In addition, each block may represent a module, segment, or part of code that contains one or more executable instructions for executing the specified logical function(s). In addition, it should be noted that in some alternative execution examples, the functions mentioned in the blocks may occur out of order. For example, two blocks shown in succession may in fact be executed substantially simultaneously, or the blocks may sometimes be executed in the reverse order depending on the corresponding function.
이때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다.In this case, the term'~ unit' used in this embodiment refers to software or hardware components such as FPGA or ASIC, and'~ unit' performs certain roles. However,'~ part' is not limited to software or hardware. The'~ unit' may be configured to be in an addressable storage medium, or may be configured to reproduce one or more processors. Thus, as an example,'~ unit' refers to components such as software components, object-oriented software components, class components, and task components, processes, functions, properties, and procedures. , Subroutines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables. Components and functions provided in the'~ units' may be combined into a smaller number of elements and'~ units', or may be further separated into additional elements and'~ units'. In addition, components and'~ units' may be implemented to play one or more CPUs in a device or a security multimedia card.
이하 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명하기에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.With reference to the accompanying drawings will be described in detail the operating principle of the present invention. In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to the intention or custom of users or operators. Therefore, the definition should be made based on the contents throughout the present specification.
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.A term for identifying an access node used in the following description, a term for network entities, a term for messages, a term for an interface between network objects, a term for various identification information And the like are illustrated for convenience of description. Accordingly, the present invention is not limited to the terms described below, and other terms referring to objects having an equivalent technical meaning may be used.
이하 설명의 편의를 위하여, 본 발명은 현재 존재하는 통신표준가운데 가장 최신의 표준인 3GPP LTE (The 3rd Generation Partnership Project Long Term Evolution) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다. 특히 본 발명은 3GPP NR (New Radio: 5세대 이동통신 표준)에 적용할 수 있다.For the convenience of description below, the present invention uses terms and names defined in the 3GPP The 3rd Generation Partnership Project Long Term Evolution (LTE) standard, which is the most up-to-date among currently existing communication standards. However, the present invention is not limited by the terms and names, and may be equally applied to systems conforming to other standards. In particular, the present invention can be applied to 3GPP NR (New Radio: 5th generation mobile communication standard).
도 1은 본 발명의 설명을 위해 참고로 하는 LTE 시스템의 구조를 도시하는 도면이다.1 is a diagram illustrating a structure of an LTE system referred to for description of the present invention.
상기 도 1을 참고하면, 상기 무선 통신 시스템은 여러 개의 기지국들 (1-05)(1-10)(1-15)(1-20)과 MME (Mobility Management Entity)(1-20) 및 S-GW (Serving-Gateway)(1-30)로 구성된다. 사용자 단말(User Equipment, 이하 UE 또는 단말)(1-35)은 기지국(1-05)(1-10)(1-15)(1-20) 및 S-GW(1-30)을 통해 외부 네트워크에 접속한다.Referring to FIG. 1, the wireless communication system includes several base stations (1-05) (1-10) (1-15) (1-20) and MME (Mobility Management Entity) (1-20) and S -It is composed of GW (Serving-Gateway)(1-30). User equipment (hereinafter referred to as UE or terminal) (1-35) is external through the base station (1-05) (1-10) (1-15) (1-20) and S-GW (1-30). Connect to the network.
상기 기지국들(1-05)(1-10)(1-15)(1-20)은 셀룰러 망의 접속 노드로서 망에 접속하는 단말들에게 무선 접속을 제공한다. 즉, 상기 기지국(1-05)(1-10)(1-15)(1-20)은 사용자들의 트래픽을 서비스하기 위해 단말들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케쥴링을 하여 상기 단말들과 코어 망(CN, Core network)간에 연결을 지원한다. 상기 MME(1-25)는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국들과 연결되며, S-GW(1-30)는 데이터 베어러를 제공하는 장치이다. 또한, 상기 MME(1-25) 및 S-GW(1-30)는 망에 접속하는 단말에 대한 인증(authentication), 베어러(bearer) 관리 등을 더 수행할 수 있으며 상기 기지국(1-05)(1-10)(1-15)(1-20)으로부터 도착한 패킷 또는 상기 기지국 (1-05)(1-10)(1-15)(1-20)으로 전달할 패킷을 처리한다.The base stations (1-05) (1-10) (1-15) (1-20) are access nodes of a cellular network and provide wireless access to terminals accessing the network. That is, the base station (1-05) (1-10) (1-15) (1-20) collects status information such as buffer status, available transmission power status, and channel status of terminals to service users' traffic. Thus, the scheduling is performed to support connection between the terminals and the core network (CN). The MME 1-25 is a device in charge of various control functions as well as a mobility management function for a terminal, and is connected to a plurality of base stations, and the S-GW 1-30 is a device that provides a data bearer. In addition, the MME (1-25) and the S-GW (1-30) can further perform authentication, bearer management, etc. for a terminal accessing the network, and the base station 1-05 Processes a packet arriving from (1-10)(1-15)(1-20) or a packet to be delivered to the base station (1-05)(1-10)(1-15)(1-20).
한편, 도 2는 본 발명의 설명을 위해 참고로 하는 LTE 시스템의 무선 프로토콜 구조를 나타낸 도면이다. 향후 정의될 NR에서는 본 도면에서의 무선 프로토콜 구조와는 일부 상이할 수 있으나, 본 발명의 설명의 편의를 위해 설명하도록 한다.Meanwhile, FIG. 2 is a diagram showing a radio protocol structure of an LTE system referred to for description of the present invention. The NR to be defined in the future may be partially different from the radio protocol structure in this drawing, but will be described for convenience of description of the present invention.
도 2를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 ENB에서 각각 PDCP(Packet Data Convergence Protocol)(2-05)(2-40), RLC(Radio Link Control)(2-10)(2-35), MAC (Medium Access Control)(2-15)(2-30)으로 이루어진다. PDCP(Packet Data Convergence Protocol) (2-05)(2-40)는 IP 헤더 압축/복원 등의 동작을 담당하고, 무선 링크 제어(Radio Link Control, 이하 RLC라고 한다) (2-10)(2-35)는 PDCP PDU(Packet Data Unit)를 적절한 크기로 재구성한다. MAC(2-15)(2-30)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행한다. 물리 계층(2-20)(2-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다. 또한 물리 계층에서도 추가적인 오류 정정을 위해, HARQ (Hybrid ARQ) 를 사용하고 있으며, 수신단에서는 송신단에서 전송한 패킷의 수신여부를 1 비트로 전송한다. 상기 1비트로 전송되는 패킷의 수신 여부를 HARQ ACK/NACK 정보라 한다. 업링크 전송에 대한 다운링크 HARQ ACK/NACK 정보는 PHICH (Physical Hybrid-ARQ Indicator Channel) 물리 채널을 통해 전송되며 다운링크 전송에 대한 업링크 HARQ ACK/NACK 정보는 PUCCH (Physical Uplink Control Channel)이나 PUSCH (Physical Uplink Shared Channel) 물리 채널을 통해 전송될 수 있다. 상기 PUCCH는 상기 HARQ ACK/NACK 정보뿐만 아니라, 단말이 하향링크채널 상황 정보 (CSI, Channel Status Information), 스케쥴링 요청 (SR, Scheduling Request) 등을 기지국에 전달하는데 이용된다. 상기 SR은 1 비트 정보로, 기지국이 설정한 PUCCH 내의 자원에 단말이 SR을 전송하면, 기지국은 해당 단말이 상향링크로 보낼 데이터가 있음을 인지하여, 상향링크 자원을 할당해준다. 상기 상향링크 자원으로 단말은 상세한 버퍼상태보고 (BSR, Buffer Status Report) 메시지를 전송할 수 있다. 기지국은 한 단말에게 복수 개의 SR 자원을 할당할 수 있다.2, the radio protocol of the LTE system is PDCP (Packet Data Convergence Protocol) (2-05) (2-40), RLC (Radio Link Control) (2-10) (2-35) in the terminal and the ENB, respectively. ), MAC (Medium Access Control) (2-15) (2-30). PDCP (Packet Data Convergence Protocol) (2-05)(2-40) is in charge of operations such as IP header compression/restore, and Radio Link Control (hereinafter referred to as RLC) (2-10)(2 -35) reconfigures the PDCP Packet Data Unit (PDU) to an appropriate size. The MAC (2-15) (2-30) is connected to several RLC layer devices configured in one terminal, and performs an operation of multiplexing RLC PDUs to MAC PDUs and demultiplexing RLC PDUs from MAC PDUs. The physical layer (2-20) (2-25) channel-codes and modulates the upper layer data, converts it into OFDM symbols, and transmits it to the radio channel, or demodulates and channel-decodes the OFDM symbol received through the radio channel to the upper layer. It does the act of delivering. In addition, the physical layer also uses HARQ (Hybrid ARQ) for additional error correction, and the receiving end transmits whether or not the packet transmitted by the transmitting end is received in 1 bit. Whether the packet transmitted in 1 bit is received is referred to as HARQ ACK/NACK information. Downlink HARQ ACK/NACK information for uplink transmission is transmitted through a PHICH (Physical Hybrid-ARQ Indicator Channel) physical channel, and uplink HARQ ACK/NACK information for downlink transmission is PUCCH (Physical Uplink Control Channel) or PUSCH. (Physical Uplink Shared Channel) It can be transmitted through a physical channel. The PUCCH is used for the UE to transmit not only the HARQ ACK/NACK information, but also downlink channel status information (CSI, Channel Status Information), scheduling request (SR, Scheduling Request), and the like to the base station. The SR is 1-bit information, and when a terminal transmits an SR to a resource in a PUCCH set by a base station, the base station recognizes that there is data to be transmitted by the corresponding terminal in an uplink, and allocates an uplink resource. The UE may transmit a detailed buffer status report (BSR) message through the uplink resource. The base station can allocate a plurality of SR resources to one terminal.
한편, 상기 PHY 계층은 하나 혹은 복수 개의 주파수/반송파로 이루어질 수 있으며, 하나의 기지국에서 복수 개의 주파수를 동시에 설정하여 사용하는 기술을 반송파 집적 기술 (carrier aggreagation, 이하 CA라 칭함)이라 한다. CA 기술이란 단말 (혹은 User Equipment, UE) 과 기지국 (LTE의 eNB 혹은 NR의 gNB) 사이의 통신을 위해 하나의 반송파만 사용하던 것을, 주반송파와 하나 혹은 복수개의 부차반송파를 추가로 사용하는 것을 의미한다. 따라서, 추가로 사용되는 부차반송파의 갯수만큼 전송량을 획기적으로 늘릴 수 있다. 한편, LTE에서는 주반송파를 사용하는 기지국 내의 셀을 PCell (Primary Cell)이라 하며, 부차반송파를 SCell (Secondary Cell)이라 칭한다. 상기의 CA기능을 두개의 기지국으로 확장한 기술을 이중 연결 기술 (dual connectivity, 이하 DC라 칭함)이라 한다. 상기 DC 기술에서는 단말이 주기지국 (Master E-UTRAN NodeB, 이하 MeNB라 칭함)과 보조기지국 (Secondary E-UTRAN NodeB, 이하 SeNB라 칭함)을 동시에 연결해서 사용하고 있다. 주기지국 내에 속한 셀들을 주셀그룹 (Master Cell Group, 이하 MCG라 칭함)이라 하고, 보조기지국에 속한 셀들을 보조셀그룹 (Secondary Cell Group, 이하 SCG라 칭함)이라 한다. 상기 각 셀그룹별로 대표셀이 있으며, 주셀그룹의 대표 셀을 주셀(Primary Cell, 이하 PCell이라 칭함)이라 하고, 보조셀그룹의 대표 셀을 주보조셀 (Primary Secondary Cell, 이하 PSCell이라 칭함)이라 한다. 전술한 NR을 사용할 때, 상기 MCG를 LTE 기술을 사용하고 상기 SCG를 NR로 사용하여, LTE와 NR을 단말이 동시에 사용할 수 있다.Meanwhile, the PHY layer may consist of one or a plurality of frequencies/carriers, and a technology in which a plurality of frequencies are simultaneously set and used by one base station is referred to as a carrier aggregation technology (carrier aggreagation, hereinafter referred to as CA). CA technology refers to using only one carrier for communication between a terminal (or user equipment, UE) and a base station (eNB of LTE or gNB of NR), and additionally using a primary carrier and one or a plurality of subcarriers. it means. Accordingly, the amount of transmission can be dramatically increased by the number of additionally used subcarriers. Meanwhile, in LTE, a cell in a base station using a primary carrier is called a PCell (Primary Cell), and a subcarrier is called a SCell (Secondary Cell). A technology in which the CA function is extended to two base stations is referred to as dual connectivity technology (hereinafter referred to as DC). In the DC technology, the terminal is simultaneously connected to a primary base station (Master E-UTRAN NodeB, hereinafter referred to as MeNB) and a secondary base station (Secondary E-UTRAN NodeB, hereinafter referred to as SeNB). Cells belonging to the primary base station are referred to as a master cell group (hereinafter referred to as MCG), and cells belonging to the secondary base station are referred to as a secondary cell group (hereinafter referred to as SCG). There is a representative cell for each cell group, and the representative cell of the primary cell group is referred to as a primary cell (hereinafter referred to as a PCell), and the representative cell of the auxiliary cell group is referred to as a primary secondary cell (hereinafter referred to as a PSCell). do. When using the aforementioned NR, the MCG is used as LTE technology and the SCG is used as the NR, so that the UE can use both LTE and NR at the same time.
본 도면에 도시하지 않았지만, 단말과 기지국의 PDCP 계층의 상위에는 각각 RRC (Radio Resource Control, 이하 RRC라고 한다) 계층이 존재하며, 상기 RRC 계층은 무선 자원 제어를 위해 접속 및 측정 관련 설정 제어 메시지를 주고 받을 수 있다. 예를 들어, 상기 RRC 계층의 메시지를 사용하여 단말에게 측정을 지시할 수 있으며, 단말은 측정 결과를 상기 RRC계층의 메시지를 사용하여 기지국에게 보고할 수 있다.Although not shown in this figure, there is an RRC (Radio Resource Control, hereinafter referred to as RRC) layer, respectively, above the PDCP layer of the terminal and the base station, and the RRC layer transmits access and measurement-related configuration control messages for radio resource control. You can give and take. For example, measurement may be instructed to the UE using the message of the RRC layer, and the UE may report the measurement result to the base station using the message of the RRC layer.
도 3는 NR 시스템에서 빔 (beam) 기반으로 통신 수행 시 하향링크와 상향링크 채널 프레임 구조의 예시 도면이다.3 is an exemplary diagram of a downlink and uplink channel frame structure when communication is performed based on a beam in an NR system.
도 3에서 기지국 (3-01)은 더 넓은 커버리지 혹은 강한 신호를 전송하기 위해서 신호를 빔의 형태로 전송한다 (3-11)(3-13)(3-15)(3-17). 이에 따라, 셀 내의 단말 (3-03)은 기지국이 전송하는 특정 빔 (본 예시 도면에서는 빔 #1 (3-13))을 사용하여 데이터를 송수신하여야 한다.In FIG. 3, the base station (3-01) transmits a signal in the form of a beam in order to transmit a wider coverage or stronger signal (3-11)(3-13)(3-15)(3-17). Accordingly, the terminal (3-03) in the cell must transmit and receive data using a specific beam transmitted by the base station (beam #1 (3-13) in this example drawing).
한편, 단말이 기지국에 연결되어 있느냐 여부에 따라 단말의 상태를 휴면모드 (RRC_IDLE)과 연결모드 (RRC_CONNECTED) 상태로 나뉜다. 이에 따라, 휴면 모드 상태에 있는 단말의 위치는 기지국이 알지 못한다.Meanwhile, depending on whether the terminal is connected to the base station, the state of the terminal is divided into a dormant mode (RRC_IDLE) and a connection mode (RRC_CONNECTED). Accordingly, the base station does not know the location of the terminal in the dormant mode.
만약 휴면모드 상태의 단말이 연결모드 상태로 천이하고자 하는 경우, 단말은 기지국이 전송하는 동기화 블록 (Synchronization Signal Block, SSB) (3-21)(3-23)(3-25)(3-27)들을 수신할 수 있다. 본 SSB는 기지국이 설정한 주기에 따라 주기적으로 전송되는 SSB신호이며, 각각의 SSB는 주동기신호 (Primary Synchronization Signal, PSS) (3-41), 부동기신호 (Secondary Synchronization Signal, SSS) (3-43), 물리방송채널 (Physical Broadcast CHannel, PBCH)로 나뉜다.If the terminal in the dormant mode wants to transition to the connected mode state, the terminal sends a synchronization block (SSB) transmitted by the base station (3-21)(3-23)(3-25)(3-27). ) Can be received. This SSB is an SSB signal periodically transmitted according to a period set by the base station, and each SSB is a Primary Synchronization Signal (PSS) (3-41), a Secondary Synchronization Signal (SSS) (3 -43) and Physical Broadcast Channel (PBCH).
본 예시 도면에서는 각 빔 별로 SSB가 전송되는 시나리오를 가정하였다. 예를 들어, SSB#0 (3-21)의 경우 빔 #0 (3-11)을 사용하여 전송하고, SSB#1 (3-23)의 경우 빔 #1 (3-13)을 사용하여 전송하고, SSB#2 (3-25)의 경우 빔 #2 (3-15)을 사용하여 전송하고, SSB#3 (3-27)의 경우 빔 #3 (3-17)을 사용하여 전송하는 경우를 가정하였다. 본 예시 도면에서는 휴면모드의 단말이 빔 #1에 위치하는 상황을 가정하였으나, 연결모드의 단말이 랜덤엑세스를 수행하는 경우에도 단말은 랜덤엑세스를 수행하는 시점에 수신되는 SSB를 선택할 수 있다.In this example drawing, a scenario in which an SSB is transmitted for each beam is assumed. For example, SSB#0 (3-21) transmits using beam #0 (3-11), and SSB#1 (3-23) transmits using beam #1 (3-13). In the case of transmission using beam #2 (3-15) in case of SSB#2 (3-25), and transmission using beam #3 (3-17) in case of SSB#3 (3-27) Was assumed. In this example drawing, it is assumed that the terminal in the dormant mode is located in beam #1, but even when the terminal in the connected mode performs random access, the terminal may select the SSB received at the time when the random access is performed.
이에 따라 본 도면에서는 단말은 빔 #1으로 전송되는 SSB #1을 수신하게 된다. 상기 SSB #1을 수신하면, 단말은 PSS, SSS를 통해서 기지국의 물리식별자 (Physical Cell Identifier, PCI)를 획득하며, PBCH를 수신함으로서 현재 수신한 SSB의 식별자 (즉, #1) 및, 현재 SSB를 수신한 위치가 10 ms 프레임 내에서 어느 위치인지 뿐만 아니라, 10.24 초의 주기를 갖는 System Frame Number (SFN) 내에서 어떠한 SFN에 있는지를 파악할 수 있다. 또한, 상기 PBCH 내에는 MIB (master information block) 이 포함된다. 상기 MIB 내에는 보다 상세한 셀의 설정정보를 방송해주는 SIB1 (system information block type 1)을 어느 위치에서 수신할 수 있을 지를 알려주는 정보가 포함된다. SIB1을 수신하면, 단말은 본 기지국이 전송하는 총 SSB의 개수를 알 수 있고, 연결모드 상태로 천이하기 위해 랜덤엑세스를 수행할 수 있는 (예를 들면, 상향링크동기화를 맞추기 위해 특수히 설계된 물리 신호인 프리앰블을 전송할 수 있는) PRACH occasion (Physical Random Access CHannel)의 위치 (본 예시 도면에서는 1ms 마다 할당되는 시나리오를 가정(예를 들면, (3-30)부터 (3-39)까지)를 파악할 수 있다. 뿐만 아니라 상기 정보를 바탕으로 상기 PRACH occasion들 가운데 어떠한 PRACH occasion이 어떠한 SSB index에 매핑되는 지를 알 수 있다. 예를 들어, 본 예시 도면에서는 1ms 마다 할당되는 시나리오를 가정하였으며, PRACH Occasion 당 SSB가 1/2 개가 할당되는 (즉, SSB당 PRACH Occasion 2개) 시나리오를 가정하였다. 이에 따라, SFN 값에 따라 시작되는 PRACH Occasion의 시작부터 SSB별로 각각 2개씩 PRACH occasion이 할당되는 시나리오를 도시하였다. 예를 들면, (3-30)(3-31)은 SSB#0을 위해 할당, (3-32)(3-33)은 SSB#1을 위해 할당되는 등의 시나리오 이다. 모든 SSB에 대해 설정한 다음에는 다시 처음의 SSB 를 위해 PRACH Occasion이 할당될 수 있다 (3-38)(3-39).Accordingly, in this drawing, the terminal receives SSB #1 transmitted through beam #1. Upon receiving the SSB #1, the terminal acquires a physical cell identifier (PCI) of the base station through PSS and SSS, and by receiving the PBCH, the identifier of the currently received SSB (i.e., #1) and the current SSB It is possible to determine not only which position within a 10 ms frame is received, but also which SFN within the System Frame Number (SFN) having a period of 10.24 seconds. In addition, a master information block (MIB) is included in the PBCH. The MIB includes information indicating at which location the system information block type 1 (SIB1), which broadcasts more detailed cell configuration information, can be received. Upon receiving SIB1, the terminal can know the total number of SSBs transmitted by the base station, and can perform random access to transition to the connected mode state (e.g., physically designed specifically for uplink synchronization The location of the PRACH occasion (Physical Random Access CHannel) that can transmit a signal, a preamble (in this example drawing, a scenario allocated every 1 ms is assumed (e.g., from (3-30) to (3-39)). In addition, based on the information, it is possible to know which PRACH occasion is mapped to which SSB index among the PRACH occasions For example, in this example drawing, a scenario allocated every 1 ms is assumed, and per PRACH Occasion A scenario in which 1/2 SSBs are allocated (that is, 2 PRACH Occasions per SSB) is assumed, accordingly, a scenario in which 2 PRACH occasions are allocated for each SSB from the start of the PRACH Occasion starting according to the SFN value is shown. For example, (3-30)(3-31) is assigned for SSB#0, (3-32)(3-33) is assigned for SSB#1, and so on. After setting, the PRACH Occasion may be allocated again for the first SSB (3-38)(3-39).
이에 따라, 단말은 SSB#1을 위한 PRACH occasion (3-32)(3-33)의 위치를 인지하고 이에 따라 SSB#1에 대응되는 PRACH Occasion (3-32)(3-33) 가운데 현재 시점에서 가장 빠른 PRACH Occasion으로 랜덤엑세스 프리앰블을 전송할 수 있다 (예를 들어 (3-32)). 기지국은 프리앰블을 (3-32)의 PRACH Occasion 에서 수신하였으므로, 해당 단말이 SSB#1를 선택하여 프리앰블을 전송하였다는 사실을 알 수 있으며, 이에 따라 이어지는 랜덤엑세스 수행 시 해당 빔을 통해서 데이터를 송수신할 수 있다.Accordingly, the UE recognizes the location of the PRACH occasion (3-32)(3-33) for SSB#1, and accordingly, the current time among the PRACH Occasions (3-32)(3-33) corresponding to SSB#1 The random access preamble can be transmitted with the fastest PRACH Occasion in (e.g. (3-32)). Since the base station has received the preamble in the PRACH Occasion of (3-32), it can be seen that the corresponding terminal has transmitted the preamble by selecting SSB#1. Accordingly, when performing subsequent random access, data is transmitted and received through the corresponding beam. can do.
한편 연결 상태의 단말이, 핸드오버 등의 이유로 현재(소스) 기지국에서 목적(타겟) 기지국으로 이동을 할 때도 단말은 타겟 기지국에서 랜덤엑세스를 수행하며, 상기와 같이 SSB를 선택하여 랜덤엑세스를 전송하는 동작을 수행할 수 있다. 뿐만 아니라, 핸드오버시에는 소스 기지국에서 타겟 기지국으로 이동하도록 핸드오버 명령을 단말에게 전송하며, 이때 상기 메시지에는 타겟 기지국에서의 랜덤엑세스 수행 시 사용할 수 있도록 타겟 기지국의 SSB 별로 해당 단말 전용 (dedicated) 랜덤엑세스 프리앰블 식별자를 할당할 수 있다. 이때, 기지국은 (단말의 현재 위치 등에 따라) 모든 빔에 대해 전용 랜덤엑세스 프리앰블 식별자를 할당하지 않을 수 있으며, 이에 따라 일부의 SSB에는 전용 랜덤엑세스 프리앰블이 할당되지 않을 수 있다 (예를 들어, Beam #2, #3에만 전용 랜덤엑세스 프리앰블 할당). 만약 단말이 프리앰블 전송을 위해 선택한 SSB에 전용 랜덤엑세스 프리앰블이 할당 되어 있지 않은 경우에는 경쟁기반의 랜덤엑세스 프리앰블을 임의로 선택하여 랜덤엑세스를 수행할 수 있다. 예를 들어, 본 도면에서 단말이 처음 Beam #1에 위치하여 랜덤엑세스를 수행하였으나 실패한 후, 다시 랜덤엑세스 프리앰블 전송 시 Beam #3에 위치하여 전용 프리앰블 전송을 하는 시나리오가 가능하다. 예를 들면, 하나의 랜덤엑세스 절차 내에서도, 프리앰블 재전송이 발생하는 경우, 각 프리앰블 전송 시마다 선택한 SSB에 전용 랜덤엑세스 프리앰블이 할당되어 있는지 여부에 따라, 경쟁기반의 랜덤엑세스 절차와 비경쟁기반의 랜덤엑세스 절차가 혼재될 수 있다.Meanwhile, when the connected terminal moves from the current (source) base station to the target (target) base station for reasons such as handover, the terminal performs random access at the target base station, and transmits random access by selecting the SSB as described above. You can perform the operation that you do. In addition, during handover, a handover command is transmitted to the terminal to move from the source base station to the target base station, and in this case, the message is dedicated to the corresponding terminal for each SSB of the target base station so that it can be used when performing random access at the target base station. A random access preamble identifier can be assigned. In this case, the base station may not allocate a dedicated random access preamble identifier for all beams (depending on the current location of the terminal, etc.), and thus, a dedicated random access preamble may not be allocated to some SSBs (e.g., Beam Dedicated random access preamble assigned to #2 and #3 only). If the UE does not have a dedicated random access preamble assigned to the SSB selected for preamble transmission, random access may be performed by randomly selecting a contention-based random access preamble. For example, in this drawing, a scenario in which a UE is located in Beam #1 and performs random access for the first time, but after a failure, is located in Beam #3 and transmits a dedicated preamble when transmitting the random access preamble again, is possible. For example, if preamble retransmission occurs even within one random access procedure, depending on whether a dedicated random access preamble is allocated to the selected SSB for each preamble transmission, a contention-based random access procedure and a contention-based random access procedure May be mixed.
또한, 상기와 같이 핸드오버를 하지 않는 경우에도 한 기지국 내에서 단말이 급작스럽게 이동하면 현재 데이터 송수신에 사용하던 빔을 벗어날 수 있으며, 기지국이 이를 인지하지 못하여 빔을 변경해 주지 않으면 빔 실패를 감지할 수 있다. 예를 들어, 연결상태의 단말에게 기지국이 빔#1 (3-13)과 빔#2(3-15)에 해당하는 SSB에 대해 빔 실패를 감지하라고 RRC 계층의 메시지로 설정해두었는데, 갑자기 단말이 빔 #3 (3-17)으로 이동한 경우 빔#1과 빔#2가 모두 감지가 되지 않으므로, 단말의 물리 계층은 단말의 MAC 계층으로 빔실패발생알림 (beam failure instance indication)을 전송할 수 있다. 상기 빔실패발생알림을 수신한 MAC 계층은 빔실패감지타이머 (beamFailureDetectionTimer)를 시작 (혹은 만약 빔실패감지타이머가 이미 구동되고 있던 경우에는 재시작)하고, 카운터 (BFI_COUNTER)를 1 증가 시킬 수 있다. 만약 카운터 값이 RRC 계층의 메시지로 설정한 임계치 (beamFailureInstanceMaxCount)에 도달한 경우 (예를 들면, 같거나 큰 경우), 단말은 빔실패가 발생하였다고 결론내리고, 빔실패를 복구하는 절차를 수행할 수 있다 (beam failure recovery, BFR).In addition, even when the handover is not performed as described above, if the terminal moves abruptly within one base station, the beam used for current data transmission and reception may escape, and if the base station does not recognize this and does not change the beam, a beam failure may be detected. I can. For example, the UE in the connected state is set up as a message of the RRC layer to tell the base station to detect beam failure for the SSBs corresponding to beam #1 (3-13) and beam #2 (3-15). When moving to this beam #3 (3-17), since both beam #1 and beam #2 are not detected, the physical layer of the terminal can transmit a beam failure instance indication to the MAC layer of the terminal. have. The MAC layer receiving the beam failure occurrence notification starts a beam failure detection timer (or restarts if the beam failure detection timer has already been driven), and may increase the counter (BFI_COUNTER) by 1. If the counter value reaches the threshold (beamFailureInstanceMaxCount) set by the message of the RRC layer (e.g., equal to or greater than), the terminal concludes that a beam failure has occurred and can perform a procedure to recover the beam failure. Yes (beam failure recovery, BFR).
상기 빔실패는 PCell 혹은 SCell에서 발생할 수 있다. 예를 들어, PCell의 경우 빔을 거의 사용하지 않은 저주파를 사용하고, SCell에서 좁은 폭의 빔을 사용하는 고주파를 사용하는 경우 SCell에서 빔실패가 발생할 수 있다.The beam failure may occur in PCell or SCell. For example, in the case of a PCell, when a low frequency that hardly uses a beam is used, and a high frequency that uses a narrow beam in the SCell is used, a beam failure may occur in the SCell.
만약 PCell에서 빔실패가 발생한 경우, 단말은 랜덤엑세스 절차를 사용하여 복구할 수 있다. 예를 들어, 기지국은 단말에게 빔 실패를 대비하여 각 빔 별로 전용 랜덤엑세스 프리앰블을 할당할 수 있으며, 예를 들어 본 도면의 빔 #3에 대해 전용 프리앰블 식별자를 설정해둔 경우, 단말이 빔실패 감지 후 랜덤엑세스 수행 시 빔 #3을 선택한 경우, 해당 전용 프리앰블 식별자를 전송하여 기지국에게 해당 단말이 빔실패를 감지하여 빔 #3을 선택하였다는 사실을 바로 알려서, 기지국으로 하여금 해당 단말에 대한 빔을 조정할 수 있도록 할 수 있다. 혹은 전용 랜덤엑세스 프리앰블을 할당하지 않은 경우에도 단말은 경쟁 기반의 랜덤엑세스를 수행하여, 해당 단말이 현재 랜덤엑세스 시 선택한 빔에 존재함을 기지국에게 알릴 수 있다.If a beam failure occurs in the PCell, the terminal can recover using a random access procedure. For example, the base station can allocate a dedicated random access preamble for each beam in preparation for a beam failure to the terminal.For example, if a dedicated preamble identifier is set for beam #3 in this drawing, the terminal detects a beam failure. When beam #3 is selected when performing random access afterwards, the corresponding dedicated preamble identifier is transmitted to immediately inform the base station that the corresponding terminal has selected beam #3 by detecting a beam failure, so that the base station transmits the beam for the corresponding terminal. You can make it adjustable. Alternatively, even if the dedicated random access preamble is not allocated, the terminal may perform contention-based random access to inform the base station that the corresponding terminal is present in the selected beam during the current random access.
만약 SCell에서 빔 실패가 발생한 경우, 단말은 어떠한 SCell에서 빔 실패가 발생했다는 사실을 MAC 계층의 제어 메시지인 MAC Control Element (MAC CE)를 전송하여 이를 알릴 수 있다. 보다 구체적으로는 상기 MAC CE에는 어떠한 SCell에서 빔 실패가 발생했으며, 해당 SCell의 어떠한 빔을 사용해야하는지에 대한 추가정보도 포함될 수 있다. 상기 MAC CE를 전송하기 위해서 단말은 기지국으로 상향링크 자원을 요청해야 한다.If a beam failure occurs in the SCell, the UE may notify the fact that the beam failure has occurred in a certain SCell by transmitting a MAC Control Element (MAC CE), a control message of the MAC layer. More specifically, the MAC CE may include additional information on which SCell has a beam failure and which beam of the corresponding SCell should be used. In order to transmit the MAC CE, the UE needs to request uplink resources from the base station.
기존 LTE 및 NR에서의 상향링크 자원 요청은 버퍼상태 보고 (Buffer Status Report, BSR) MAC CE를 전송하는 방식으로 이루어지며, 상기 BSR 전송이 트리거링 되는 조건 가운데 일반 BSR (Regular BSR) 의 경우, 스케쥴링요청 (Scheduling Request, SR)을 트리거링하여, 이전에 RRC 계층의 메시지로 할당된 SR을 위해 할당된 PUCCH 자원에 1비트 정보를 기지국으로 전송하므로서 기지국이 BSR을 전송하기 위한 상향링크를 할당해주도록 할 수 있다.Uplink resource requests in the existing LTE and NR are made by transmitting a buffer status report (BSR) MAC CE, and in the case of a regular BSR (Regular BSR) among the conditions in which the BSR transmission is triggered, a scheduling request By triggering (Scheduling Request, SR), 1-bit information is transmitted to the base station in the PUCCH resource allocated for the SR previously allocated as a message of the RRC layer, so that the base station can allocate uplink for transmitting the BSR. have.
상기 BSR은 전송이 트리거링 되는 조건에 따라 아래와 같이 나뉜다.The BSR is classified as follows according to the conditions under which transmission is triggered.
- 제1종류: Regular BSR-Type 1: Regular BSR
o 단말이 논리채널그룹 (Logical Channel Group, 이하 LCG라 칭함)에 속해있는 어떠한 논리채널/무선 베어러 (Radio Bearer, RB)에 대해 전송이 가능한 데이터가 있을 때, BSR 재전송 타이머 (retxBSR-Timer)가 만료된 경우에 전송되는 BSRo When the terminal has data that can be transmitted for any logical channel/radio bearer (RB) belonging to a logical channel group (Logical Channel Group, hereinafter referred to as LCG), the BSR retransmission timer (retxBSR-Timer) is BSR sent when expired
o 상기의 LCG에 속해있는 논리채널/무선 베어러에 대해 상위 계층 (RLC 혹은 PDCP 계층)으로부터 전송할 데이터가 발생하고, 이 데이터가 어떠한 LCG에 속해있는 논리채널/무선 베어러보다 높은 우선순위를 가질 때 전송되는 BSRo Transmission when data to be transmitted from an upper layer (RLC or PDCP layer) is generated for a logical channel/radio bearer belonging to the above LCG, and this data has a higher priority than a logical channel/radio bearer belonging to a certain LCG. BSR
o 상기의 LCG에 속해있는 논리채널/무선 베어러에 대해 상위 계층 (RLC 혹은 PDCP 계층)으로부터 전송할 데이터가 발생하고, 이 데이터를 제외하고 어떠한 LCG에도 데이터가 없을 경우에 전송되는 BSRo BSR transmitted when data to be transmitted from an upper layer (RLC or PDCP layer) is generated for the logical channel/radio bearer belonging to the above LCG and there is no data in any LCG except this data
- 제2종류: Periodic BSR-2nd type: Periodic BSR
o 단말에게 설정된 주기적BSR타이머 (periodicBSR-Timer)가 만료되었을 경우에 전송되는 BSRo BSR transmitted when the periodic BSR-Timer set to the terminal expires
- 제3종류: Padding BSR-3rd type: Padding BSR
o 상향링크 자원이 할당되고, 데이터를 전송하고 남는 공간을 채우는 패딩 비트가 BSR MAC CE의 크기와 BSR MAC CE의 서브헤더 크기를 합친 것과 같거나 더 클 경우에 전송되는 BSRo BSR transmitted when uplink resources are allocated and the padding bit filling the remaining space after transmitting data is equal to or greater than the sum of the size of the BSR MAC CE and the size of the subheader of the BSR MAC CE.
o 만약, 복수 개의 LCG의 버퍼에 패킷이 있는 경우, Truncated BSR을 전송o If there are packets in the buffers of multiple LCGs, Truncated BSR is transmitted
상기의 3가지 종류 가운데 Regular BSR만이 SR을 트리거링하도록 되어 있다. 예를 들어, 상기의 조건에 따라 Regular BSR이 발생하는 경우, 어떠한 논리채널에 데이터로 인해 Regular BSR이 발생되었는지를 판단한다. 이에 따라, 해당 논리채널과 매핑되어 있는 SR 설정이 있는 경우에, 해당 SR을 전송할 수 있다. 예를 들어, 기지국은 단말에게 SR 3개를 설정하고, SR #1은 LCH x, LCH y와, SR #2는 LCH z에 매핑 시키는 시나리오를 가정할 수 있다. 만약 LCH, x, y, z가 우선순위 1,2,3을 갖고 있다고 가정하면, 만약 버퍼에 LCH z에만 트래픽이 있다가 LCH y에 데이터가 발생하면, LCH y로 인해 regular BSR이 트리거링 되고, 이에 따라 SR #1이 트리거링 된다.Among the above three types, only Regular BSR is intended to trigger SR. For example, when regular BSR occurs according to the above conditions, it is determined in which logical channel the regular BSR is generated due to data. Accordingly, when there is an SR configuration mapped to a corresponding logical channel, the corresponding SR can be transmitted. For example, the base station may assume a scenario in which three SRs are set to the UE, and SR #1 maps to LCH x and LCH y, and SR #2 to LCH z. Assuming that LCH, x, y, and z have priorities 1,2,3, if there is traffic only in LCH z in the buffer and data is generated in LCH y, a regular BSR is triggered due to LCH y, Accordingly, SR #1 is triggered.
전술한 바와 같이 SCell에서의 BFR 상황을 알리기 위해 전송하는 MAC CE(예를 들면, SCell BFR MAC CE)의 경우 어떠한 LCG에도 포함되지 않으므로 Regular BSR을 트리거링 할 수 없다. 뿐만 아니라 상기 MAC CE의 경우 BSR MAC CE와 비교하여 메시지 크기 차이가 크지 않기 때문에 굳이 SCell BFR MAC CE를 전송하기 위해 BSR MAC CE를 전송하는 것은 불필요한 동작일 수 있다.As described above, since the MAC CE (eg, SCell BFR MAC CE) transmitted to notify the BFR situation in the SCell is not included in any LCG, the Regular BSR cannot be triggered. In addition, in the case of the MAC CE, since the message size difference is not large compared to the BSR MAC CE, it may be unnecessary to transmit the BSR MAC CE to transmit the SCell BFR MAC CE.
이에 따라 SCell BFR MAC CE를 전송하기 위해 상기 Regular BSR을 트리거링하지 않고, 바로 스케쥴링 요청을 트리거링 하는 방법을 고려할 수 있다.Accordingly, it is possible to consider a method of triggering a scheduling request immediately without triggering the Regular BSR in order to transmit the SCell BFR MAC CE.
한편, PUCCH로 전송하는 1비트의 스케쥴링 요청 정보를 전송하는 시점에 기지국이 상향링크 자원을 할당할 수 있다. 일반적으로 NR 시스템에서는 단말이 PUCCH와 데이터 (Physical Uplink Shared CHannel: PUSCH: 이는 상향링크 공유채널 (UL-SCH)를 전송하는데 사용됨)를 동시에 전송할 수 없으며, 이때 일반적인 경우에는 PUCCH를 전송하지 않고, 데이터만을 전송할 수 있다. 하지만, 5G 의 동작 시나리오로 간주되는 공장 자동화 및 매우 높은우선순위를 갖는 트래픽이 갑자기 발생한 경우, 기존 생성한 데이터를 생성하는 것 보다, 상기 매우 높은우선순위를 갖는 트래픽 (논리채널)에 매핑되는 SR을 전송하여 기지국으로 하여금 해당 트래픽의 전송을 위한 상향링크를 할당하도록 하는 것이 보다 더 중요할 수 있다.Meanwhile, the base station may allocate uplink resources at a time when 1-bit scheduling request information transmitted through the PUCCH is transmitted. In general, in the NR system, the UE cannot simultaneously transmit the PUCCH and data (Physical Uplink Shared CHannel: PUSCH: This is used to transmit the UL-SCH). In this case, in the general case, the PUCCH is not transmitted, and data Can only be transmitted. However, if factory automation considered as an operation scenario of 5G and traffic with very high priority occurs suddenly, SR mapped to the traffic with very high priority (logical channel) rather than generating previously generated data. It may be more important to allow the base station to allocate an uplink for transmission of the corresponding traffic by transmitting.
이에 따라, 단말이 전송할 데이터와 전송할 SR에 매핑되는 논리채널 간의 우선순위를 비교하여 어떠한 것을 전송할지를 판단하도록 기지국은 단말에게 RRC 계층의 메시지로 설정할 수 있다. 이에 따라 해당 판단 동작을 수행하도록 설정된 경우에 한하여, 단말은 상기와 같이 PUCCH와 PUSCH가 시간상으로 겹치는 경우에, 어떠한 것을 전송하고 어떤 것을 전송하지 않을지를 판단할 수 있다.Accordingly, the base station may set the UE as an RRC layer message to determine which one to transmit by comparing the priority between the data to be transmitted and the logical channel mapped to the SR to be transmitted. Accordingly, only when it is set to perform the corresponding determination operation, the terminal may determine which transmission and which are not transmitted when the PUCCH and the PUSCH overlap in time as described above.
만약 이러한 기능이 단말에게 설정된 경우, 단말은 SCell BFR MAC CE를 전송 시 이를 위한 SR을 전송할 지 데이터를 전송할지를 판단하여야 한다.If this function is configured for the UE, the UE must determine whether to transmit SR or data for this when transmitting SCell BFR MAC CE.
본 발명에서는 상기와 같이 PUCCH와 PUSCH 자원이 겹치는 경우 단말이 판단을 해야하는 상황에서 아래의 방안들을 제안한다.In the present invention, the following schemes are proposed in a situation in which the UE needs to make a determination when PUCCH and PUSCH resources overlap as described above.
첫번째 방안은 SCell BFR MAC CE를 전송하기 위한 SR을 항상 우선해서 전송하는 방안이다. 이는 SCell에서의 통신이 중단된 상황이기 때문에 다른 데이터 전송보다 상기 SCell을 우선해서 복구 시켜야 한다는 판단하에 사용할 수 있다. 이 경우 상기 SCell BFR MAC CE를 전송하기 위한 SR과 시간상으로 겹치는 상향링크 데이터 전송은 수행되지 않는다.The first scheme is a scheme for always prioritizing the SR for transmitting the SCell BFR MAC CE. Since this is a situation in which communication in the SCell is interrupted, it can be used under the judgment that the SCell should be restored with priority over other data transmission. In this case, uplink data transmission overlapping in time with the SR for transmitting the SCell BFR MAC CE is not performed.
두번째 방안은 기지국이 본 상황 발생 시 PUSCH 전송을 강행할 소정의 임계치를 설정하는 방안이다. 이 경우, 만약 PUSCH 전송에 포함되는 논리채널의 우선순위가 본 설정된 임계치보다 큰 경우 PUSCH 전송을 수행하고, 그렇지 않은 경우 SCell BFR MAC CE를 전송하기 위한 SR을 우선하여 전송하는 방법이다. The second method is a method for the base station to set a predetermined threshold to force PUSCH transmission when this situation occurs. In this case, if the priority of a logical channel included in the PUSCH transmission is greater than a preset threshold, PUSCH transmission is performed. Otherwise, the SR for transmitting the SCell BFR MAC CE is prioritized and transmitted.
예를 들면, 상기 PUSCH 전송에 포함되는 논리채널의 우선순위가 기설정된 임계값보다 큰(또는 이상인) 경우, 단말은 상기 PUSCH 전송을 수행할 수 있다. 그리고 상기 PUSCH 전송에 포함되는 논리채널의 우선순위가 기설정된 임계값보다 작거나 같은(또는 미만인) 경우, 단말은 SCell BFR MAC CE를 전송하기 위한 SR을 전송할 수 있다. 이때, 상기 SCell BFR MAC CE를 전송하기 위한 SR과 시간상으로 겹치는 상향링크 데이터 전송은 수행되지 않는다.For example, when the priority of a logical channel included in the PUSCH transmission is greater than (or greater than) a preset threshold, the terminal may perform the PUSCH transmission. And when the priority of the logical channel included in the PUSCH transmission is less than or equal to (or less than) a preset threshold, the UE may transmit an SR for transmitting the SCell BFR MAC CE. At this time, uplink data transmission overlapping in time with the SR for transmitting the SCell BFR MAC CE is not performed.
이 방안은 기지국으로 하여금 우선순위가 매우 높은 데이터 전송을 보호할 수 있는 방법으로 사용될 수 있다.This scheme can be used as a method for the base station to protect data transmission with very high priority.
세번째 방안은 PUSCH를 항상 우선하여 전송하는 방안이다. 이 경우 본 상황 발생 시 SCell BFR MAC CE를 전송하기 위한 SR은 항상 전송되지 않는다. 예를 들면, PUSCH 전송과 시간상으로 자원에서 중첩되는 SCell BFR MAC CE를 전송하기 위한 SR이 존재하는 경우, 상기 단말은 PUSCH 전송을 수행할 수 있다. The third scheme is a scheme in which PUSCH is always prioritized and transmitted. In this case, when this situation occurs, the SR for transmitting the SCell BFR MAC CE is not always transmitted. For example, when there is an SR for transmitting a PUSCH transmission and a SCell BFR MAC CE overlapping in a resource in time, the UE may perform PUSCH transmission.
이는, SCell에 빔 실패가 발생함에도 불구하고 나머지 서빙셀 (예를 들어 PCell) 등에서는 여전히 통신이 가능하기 때문에 우선순위가 그다지 높지 않아도 된다는 가정하에 사용될 수 있다.This can be used under the assumption that the priority does not need to be very high since communication is still possible in the remaining serving cells (eg, PCell), even though a beam failure occurs in the SCell.
네번째 방안은 SCell BFR MAC CE를 전송하기 위한 SR에 대한 우선 순위를 RRC 계층의 메시지를 사용하여 별도로 설정하고, 본 상황 발생 시 전송하게 될 PUSCH의 (논리채널 중 가장 높은) 우선순위와 SCell BFR MAC CE를 전송하기 위한 SR에 설정된 우선순위를 비교하여 높은 우선순위를 갖는 전송을 수행하는 방안이다. 이는 기지국이 두번째 방안과 유사하지만, SCell BFR MAC CE를 전송하기 위한 SR에 대한 우선순위를 직접 시그널링하여 우선순위를 다른 논리채널과 함께 비교할 수 있는 방법이다.The fourth scheme is to separately set the priority of the SR for transmitting the SCell BFR MAC CE using a message of the RRC layer, and when this situation occurs, the priority (the highest of the logical channels) of the PUSCH to be transmitted and the SCell BFR MAC This is a method of performing transmission having a high priority by comparing the priority set in the SR for transmitting the CE. This is similar to the second scheme, but is a method in which the priorities of the SR for transmitting the SCell BFR MAC CE can be directly signaled and the priorities can be compared with other logical channels.
다섯번째 방안은, 만약 본 PUSCH에 SCell BFR MAC CE가 포함되는 경우에는 PUSCH를 전송하고, 그렇지 않은 경우에는 SCell BFR MAC CE를 전송하기 위한 SR를 우선하여 전송하는 방법이다. 본 방법을 사용하면, SCell BFR MAC CE를 전송하기 위한 SR을 우선하여 전송하는 것뿐만 아니라, PUSCH가 SCell BFR MAC CE를 포함하는 경우, 해당 MAC CE를 바로 전송하여 기지국으로 하여금 최대한 빨리 SCell BFR MAC CE 정보를 전송할 수 있다.The fifth scheme is a method of transmitting the PUSCH if the SCell BFR MAC CE is included in the present PUSCH, and if not, prioritizing the SR for transmitting the SCell BFR MAC CE. Using this method, in addition to prioritizing the SR for transmitting the SCell BFR MAC CE, when the PUSCH includes the SCell BFR MAC CE, the corresponding MAC CE is immediately transmitted to allow the base station to transmit the SCell BFR MAC CE as soon as possible. CE information can be transmitted.
단말은 PUCCH (SR)과 PUSCH 전송 중 어떤 것을 수행해야하는지를 판단할 때, 상기와 같은 방법을 통하여 결정하여, 해당 전송을 수행할 수 있다.When determining which of PUCCH (SR) and PUSCH transmission should be performed, the UE may determine through the above method and perform the corresponding transmission.
도 4는 SCell BFR MAC CE를 위한 SR을 전송을 수행하는 단말의 동작 순서에 대한 예시 도면이다.4 is an exemplary diagram of an operation sequence of a terminal performing SR transmission for SCell BFR MAC CE.
도 4에서는 단말이 LTE 기지국에 연결되어, 연결 모드 (RRC_CONNECTED)에 있는 상태를 가정한다 (4-01). 다만, 본원 발명은 LTE 통신 시스템에 한정되지 않으므로, 단말이 연결된 기지국은 NR 기지국일수도 있다. 이후 단말은 기지국으로부터 무선 베어러 및 이와 관련된 논리채널에 대한 설정정보 및 각 논리 채널을 위한 SR 자원 및 관련 설정정보를 설정받고 이에 대한 확인 메시지를 전송한다 (4-03). 상기 기지국이 전송하는 설정정보는 RRC 계층의 RRCReconfiguration 메시지를 사용하여 수신할 수 있으며, 단말이 전송하는 확인 메시지는 RRC 계층의 RRCReconfigurationComplete 메시지를 사용하여 전송할 수 있다. 상기 설정 정보 메시지에는 단말이 SCell에 대한 빔실패 판단시 이를 보고할 수 있는지에 대한 설정정보도 포함될 수 있다. 또한, 시간상으로 SR 전송을 위한 PUCCH 전송과 PUSCH가 시간상으로 겹치는 경우 우선순위를 판단해서 어떠한 것을 전송할지를 결정해야하는지에 대한 설정정보가 포함될 수 있다. 만약 상기 이를 위한 별도의 설정정보가 포함되지 않는 경우에 단말은 PUCCH 전송과 PUSCH가 시간상으로 겹치는 경우 PUSCH를 우선하여 전송하게 된다.In FIG. 4, it is assumed that the terminal is connected to the LTE base station and is in a connection mode (RRC_CONNECTED) (4-01). However, since the present invention is not limited to the LTE communication system, the base station to which the terminal is connected may be an NR base station. Thereafter, the UE receives configuration information for a radio bearer and a logical channel related thereto, and SR resources and related configuration information for each logical channel from the base station, and transmits a confirmation message thereon (4-03). The configuration information transmitted by the base station may be received using an RRCReconfiguration message of the RRC layer, and a confirmation message transmitted by the terminal may be transmitted using an RRCReconfigurationComplete message of the RRC layer. The configuration information message may also include configuration information on whether the terminal can report the beam failure when determining the SCell. In addition, when PUCCH transmission for SR transmission and PUSCH overlap in time in time, configuration information on which one to transmit by determining priority may be included. If the separate configuration information for this is not included, the UE prioritizes the PUSCH when the PUCCH transmission and the PUSCH overlap in time.
상기 설정정보를 수신한 단말은, 상술한 바와 같이, PCell 뿐만 아니라 SCell에 대한 빔실패가 발생하는지 여부를 판단할 수 있다 (4-05). 이에 따라 만약 SCell의 빔실패가 감지된 경우 SCell BFR MAC CE를 전송하기 위해 PUCCH SR 자원이 상기 RRC 계층의 메시지로 할당되었는지를 판단할 수 있다 (4-07). 만약 별도의 SR 자원이 할당되지 않은 경우, 단말은 랜덤엑세스 절차를 수행하여, 랜덤엑세스의 Msg3 메시지 내에 SCell BFR MAC CE를 포함시켜 기지국으로 전송하여 특정 SCell 에 빔실패가 발생했음을 알릴 수 있다 (4-13).The terminal receiving the configuration information may determine whether a beam failure occurs for not only the PCell but also the SCell, as described above (4-05). Accordingly, if a beam failure of the SCell is detected, it may be determined whether the PUCCH SR resource is allocated as a message of the RRC layer to transmit the SCell BFR MAC CE (4-07). If a separate SR resource is not allocated, the UE performs a random access procedure and transmits the SCell BFR MAC CE to the base station by including the SCell BFR MAC CE in the Msg3 message of the random access to notify that a beam failure has occurred in a specific SCell (4 -13).
만약 기지국이 SCell BFR MAC CE를 전송하기 위해 PUCCH SR 자원을 설정한 경우, 해당 자원이 기지국이 동적으로 혹은 주기적으로 할당한 데이터 전송을 위한 자원과 겹치는지 여부를 판단할 수 있다 (4-09). 만약 겹치지 않는 경우에 단말은 해당 SR을 전송하고 이후 기지국으로부터 수신한 상향링크 자원에 SCell BFR MAC CE를 전송할 수 있다 (4-15). 하지만 만약 PUCCH SR 자원과 기지국이 동적으로 혹은 주기적으로 할당한 데이터 전송을 위한 자원과 시간상으로 겹치는 경우, 단말은 상기 RRC 계층의 설정정보에 따라, 우선순위를 비교해야하는지 여부를 판단할 수 있다 (4-11). 예를 들면, 전술한 바와 같이 공장자동화 등의 목적으로 우선순위가 높은 SR을 보내는 등의 목적으로, 본 시나리오와 같이 PUCCH SR 자원과 PUSCH 자원이 겹치는 경우, 어떠한 것을 먼저 보내야하는지를 추가적으로 판단을 해야하는지 여부를 기지국이 설정할 수 있으며, 단말은 해당 설정정보가 설정되었는지 여부를 판단할 수 있다. 만약 별도로 설정되지 않은 경우에는 단말은 PUSCH 를 전송하고 SCell BFR MAC CE 전송을 위한 SR은 다음 SR 자원에 전송을 시도하여 (4-19), 이후 다음 PUCCH SR 자원이 또 PUSCH 자원과 겹치는지 여부를 판단할 수 있다 (4-09). 하지만 만약 이를 위한 동작을 단말이 수행해야하는 경우 단말은 아래의 여러 방안 중 한가지 방법에 따라 PUCCH 를 전송할지 PUSCH를 전송할지를 판단할 수 있다 (4-17).If the base station sets the PUCCH SR resource to transmit the SCell BFR MAC CE, it can be determined whether the corresponding resource overlaps the resource for data transmission dynamically or periodically allocated by the base station (4-09). . If they do not overlap, the UE may transmit the corresponding SR and then transmit the SCell BFR MAC CE to the uplink resource received from the base station (4-15). However, if the PUCCH SR resource and the base station dynamically or periodically allocated a resource for data transmission overlap in time, the terminal may determine whether to compare priorities according to the configuration information of the RRC layer (4 -11). For example, as described above, if the PUCCH SR resource and the PUSCH resource overlap as in this scenario for the purpose of sending a high-priority SR for the purpose of factory automation, etc., whether to additionally determine which one to send first May be set by the base station, and the terminal may determine whether the corresponding configuration information is set. If not configured separately, the UE transmits the PUSCH and the SR for SCell BFR MAC CE transmission attempts to transmit to the next SR resource (4-19), and then determines whether the next PUCCH SR resource overlaps with the PUSCH resource again. Can be judged (4-09). However, if the terminal needs to perform an operation for this, the terminal can determine whether to transmit the PUCCH or the PUSCH according to one of several methods below (4-17).
첫번째 방안은 SCell BFR MAC CE를 전송하기 위한 SR을 항상 우선해서 전송하는 방안이다. 이는 SCell에서의 통신이 중단된 상황이기 때문에 다른 데이터 전송보다 이를 우선해서 복구 시켜야 한다는 판단하에 사용할 수 있다. 이 경우 상기 SCell BFR MAC CE를 전송하기 위한 SR과 시간상으로 겹치는 상향링크 데이터 전송은 수행되지 않는다.The first scheme is a scheme for always prioritizing the SR for transmitting the SCell BFR MAC CE. Since this is a situation in which communication in the SCell is interrupted, it can be used under the judgment that it should be restored prior to other data transmission. In this case, uplink data transmission overlapping in time with the SR for transmitting the SCell BFR MAC CE is not performed.
두번째 방안은 기지국이 본 상황 발생 시 PUSCH 전송을 강행할 소정의 임계치를 설정하는 방안이다. 이 경우, 만약 PUSCH 전송에 포함되는 논리채널의 우선순위가 본 설정된 임계치보다 큰 경우 PUSCH 전송을 수행하고, 그렇지 않은 경우 SCell BFR MAC CE를 전송하기 위한 SR을 우선하여 전송하는 방법이다. 이 방안은 기지국으로 하여금 우선순위가 매우 높은 데이터 전송을 보호할 수 있는 방법으로 사용될 수 있다.The second method is a method for the base station to set a predetermined threshold to force PUSCH transmission when this situation occurs. In this case, if the priority of a logical channel included in the PUSCH transmission is greater than a preset threshold, PUSCH transmission is performed. Otherwise, the SR for transmitting the SCell BFR MAC CE is prioritized and transmitted. This scheme can be used as a method for the base station to protect data transmission with very high priority.
세번째 방안은 PUSCH를 항상 우선하여 전송하는 방안이다. 이 경우 본 상황 발생 시 SCell BFR MAC CE를 전송하기 위한 SR은 항상 전송되지 않는다. 이는, SCell에 빔 실패가 발생함에도 불구하고 나머지 서빙셀 (예를 들어 PCell) 등에서는 여전히 통신이 가능하기 때문에 우선순위가 그다지 높지 않아도 된다는 가정하에 사용될 수 있다.The third scheme is a scheme in which PUSCH is always prioritized and transmitted. In this case, when this situation occurs, the SR for transmitting the SCell BFR MAC CE is not always transmitted. This can be used under the assumption that the priority does not need to be very high since communication is still possible in the remaining serving cells (eg, PCell), even though a beam failure occurs in the SCell.
네번째 방안은 SCell BFR MAC CE를 전송하기 위한 SR에 대한 우선 순위를 RRC 계층의 메시지를 사용하여 별도로 설정하고, 본 상황 발생 시 전송하게 될 PUSCH의 (논리채널 중 가장 높은) 우선순위와 SCell BFR MAC CE를 전송하기 위한 SR에 설정된 우선순위를 비교하여 높은 우선순위를 갖는 전송을 수행하는 방안이다. 이는 기지국이 두번째 방안과 유사하지만, SCell BFR MAC CE를 전송하기 위한 SR에 대한 우선순위를 직접 시그널링하여 우선순위를 다른 논리채널과 함께 비교할 수 있는 방법이다.The fourth scheme is to separately set the priority of the SR for transmitting the SCell BFR MAC CE using a message of the RRC layer, and when this situation occurs, the priority (the highest of the logical channels) of the PUSCH to be transmitted and the SCell BFR MAC This is a method of performing transmission having a high priority by comparing the priority set in the SR for transmitting the CE. This is similar to the second scheme, but is a method in which the priorities of the SR for transmitting the SCell BFR MAC CE can be directly signaled and the priorities can be compared with other logical channels.
다섯번째 방안은, 만약 본 PUSCH에 SCell BFR MAC CE가 포함되는 경우에는 PUSCH를 전송하고, 그렇지 않은 경우에는 SCell BFR MAC CE를 전송하기 위한 SR를 우선하여 전송하는 방법이다. 본 방법을 사용하면, SCell BFR MAC CE를 전송하기 위한 SR을 우선하여 전송하는 것뿐만 아니라, PUSCH가 SCell BFR MAC CE를 포함하는 경우, 해당 MAC CE를 바로 전송하여 기지국으로 하여금 최대한 빨리 SCell BFR MAC CE 정보를 전송할 수 있다.The fifth scheme is a method of transmitting the PUSCH if the SCell BFR MAC CE is included in the present PUSCH, and if not, prioritizing the SR for transmitting the SCell BFR MAC CE. Using this method, in addition to prioritizing the SR for transmitting the SCell BFR MAC CE, when the PUSCH includes the SCell BFR MAC CE, the corresponding MAC CE is immediately transmitted to allow the base station to transmit the SCell BFR MAC CE as soon as possible. CE information can be transmitted.
단말은 PUCCH (SR)과 PUSCH 전송 중 어떤 것을 수행해야하는지를 판단할 때, 상기와 같은 방법을 통하여 결정하여, 해당 전송을 수행할 수 있다.When determining which of PUCCH (SR) and PUSCH transmission should be performed, the UE may determine through the above method and perform the corresponding transmission.
이에 따라 단말이 PUCCH (SR)을 전송하기로 결정한 경우 단말은 SR을 전송하여 이후 수신한 상향링크 지원으로 SCell BFR MAC CE를 전송할 수 있다 (4-15). 하지만 PUSCH를 전송하기로 결정한 경우, PUSCH자원을 전송하고 다음으로 도래하는 SR PUCCH 자원에 SR 전송을 시도하거나, 혹은 상기 방안에 따라 해당 PUSCH 자원에 SCell BFR MAC CE를 포함하여 전송한 경우 절차를 종료할 수 있다.Accordingly, when the UE decides to transmit the PUCCH (SR), the UE may transmit the SR and transmit the SCell BFR MAC CE with uplink support received thereafter (4-15). However, if it is decided to transmit the PUSCH, the PUSCH resource is transmitted and the SR transmission is attempted to the next SR PUCCH resource, or if the corresponding PUSCH resource including the SCell BFR MAC CE is transmitted according to the above scheme, the procedure is terminated. can do.
상기 방법 들을 통해 단말은 SCell의 빔실패를 기지국에 알려 기지국으로 하여금 해당 SCell에서의 빔을 조정하여 빔실패를 복구할 수 있다.Through the above methods, the terminal notifies the base station of the beam failure of the SCell, and the base station adjusts the beam in the corresponding SCell to recover the beam failure.
도 5는 본 발명의 실시 예에 따른 단말의 블록 구성을 도시한다.5 shows a block configuration of a terminal according to an embodiment of the present invention.
상기 도 5를 참고하면, 상기 단말은 RF (Radio Frequency) 처리부 (5-10), 기저대역 (baseband) 처리부 (5-20), 저장부 (5-30), 제어부 (5-40)를 포함한다.Referring to FIG. 5, the terminal includes a radio frequency (RF) processing unit 5-10, a baseband processing unit 5-20, a storage unit 5-30, and a control unit 5-40. do.
상기 RF처리부 (5-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부 (5-10)는 상기 기저대역처리부 (5-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향변환한다. 예를 들어, 상기 RF처리부(5-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 상기 도 5에서, 하나의 안테나만이 도시되었으나, 상기 단말은 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부 (5-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부 (5-10)는 빔포밍(beamforming)을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부 (5-10)는 다수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다.The RF processing unit 5-10 performs a function of transmitting and receiving a signal through a wireless channel such as band conversion and amplification of a signal. That is, the RF processing unit 5-10 up-converts the baseband signal provided from the baseband processing unit 5-20 into an RF band signal and transmits it through an antenna, and the RF band signal received through the antenna Downconvert to a baseband signal. For example, the RF processing unit 5-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. I can. In FIG. 5, only one antenna is shown, but the terminal may include a plurality of antennas. In addition, the RF processing unit 5-10 may include a plurality of RF chains. Further, the RF processing unit 5-10 may perform beamforming. For the beamforming, the RF processing unit 5-10 may adjust a phase and a magnitude of each of signals transmitted/received through a plurality of antennas or antenna elements.
상기 기저대역처리부 (5-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부 (5-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부 (5-20)은 상기 RF처리부 (5-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역처리부(5-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(5-20)은 상기 RF처리부(5-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다.The baseband processing unit 5-20 performs a function of converting between a baseband signal and a bit stream according to the physical layer standard of the system. For example, when transmitting data, the baseband processing unit 5-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processing unit 5-20 restores a received bit stream through demodulation and decoding of the baseband signal provided from the RF processing unit 5-10. For example, in the case of the OFDM (orthogonal frequency division multiplexing) method, when transmitting data, the baseband processor 5-20 generates complex symbols by encoding and modulating a transmission bit stream, and subcarriers the complex symbols. After mapping to, OFDM symbols are constructed through an inverse fast Fourier transform (IFFT) operation and a cyclic prefix (CP) insertion. In addition, when receiving data, the baseband processing unit 5-20 divides the baseband signal provided from the RF processing unit 5-10 in units of OFDM symbols, and applies a fast Fourier transform (FFT) operation to subcarriers. After restoring the mapped signals, the received bit stream is restored through demodulation and decoding.
상기 기저대역처리부 (5-20) 및 상기 RF처리부 (5-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역처리부 (5-20) 및 상기 RF처리부 (5-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 또한, 상기 기저대역처리부 (5-20) 및 상기 RF처리부(5-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 상기 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.5GHz, 5Ghz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다.The baseband processing unit 5-20 and the RF processing unit 5-10 transmit and receive signals as described above. Accordingly, the baseband processing unit 5-20 and the RF processing unit 5-10 may be referred to as a transmission unit, a reception unit, a transmission/reception unit, or a communication unit. In addition, at least one of the baseband processing unit 5-20 and the RF processing unit 5-10 may include different communication modules to process signals of different frequency bands. The different frequency bands may include a super high frequency (SHF) (eg, 2.5GHz, 5Ghz) band, and a millimeter wave (eg, 60GHz) band.
상기 저장부 (5-30)는 상기 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다.The storage unit 5-30 stores data such as a basic program, an application program, and setting information for the operation of the terminal.
상기 제어부 (5-40)는 상기 단말의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부 (5-40)는 상기 기저대역처리부 (5-20) 및 상기 RF처리부 (5-10)을 통해 신호를 송수신한다. 또한, 상기 제어부(5-40)는 상기 저장부(5-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부 (5-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상기 제어부 (5-40)는 통신을 위한 제어를 수행하는 CP (communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP (application processor)를 포함할 수 있다. 본 발명의 실시 예에 따라, 상기 제어부 (5-40)는 다중 연결 모드로 동작하기 위한 처리를 수행하는 다중연결처리부 (5-42)를 포함한다. 예를 들어, 상기 제어부(5-40)는 상기 단말이 상기 도 5에 도시된 단말의 동작에 도시된 절차를 수행하도록 제어할 수 있다.The controller 5-40 controls overall operations of the terminal. For example, the control unit 5-40 transmits and receives signals through the baseband processing unit 5-20 and the RF processing unit 5-10. In addition, the control unit 5-40 writes and reads data in the storage unit 5-40. To this end, the control unit 5-40 may include at least one processor. For example, the controller 5-40 may include a communication processor (CP) that controls communication and an application processor (AP) that controls an upper layer such as an application program. According to an embodiment of the present invention, the control unit 5-40 includes a multiple connection processing unit 5-42 that performs processing for operating in a multiple connection mode. For example, the controller 5-40 may control the terminal to perform a procedure shown in the operation of the terminal illustrated in FIG. 5.
본 발명의 실시 예에 따라 단말은 기지국으로부터 SCell BFR MAC CE의 전송과 관련된 설정을 수신하여, PUSCH 전송과 상기 SCell BFR MAC CE를 전송하기 위한 SR 전송이 시간상으로 겹칠 때 어떠한 전송을 수행할지를 판단할 수 있다.According to an embodiment of the present invention, the UE receives the configuration related to transmission of the SCell BFR MAC CE from the base station, and determines which transmission to perform when PUSCH transmission and SR transmission for transmitting the SCell BFR MAC CE overlap in time. I can.
한편, 도 6는 본 발명의 일 실시예에 따른 기지국의 구조를 도시한 도면이다. Meanwhile, FIG. 6 is a diagram showing the structure of a base station according to an embodiment of the present invention.
도 6을 참고하면, 기지국은 송수신부 (610), 제어부 (620), 저장부 (630)을 포함할 수 있다. 본 발명에서 제어부는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다. Referring to FIG. 6, the base station may include a transmission/reception unit 610, a control unit 620, and a storage unit 630. In the present invention, the control unit may be defined as a circuit or an application-specific integrated circuit or at least one processor.
송수신부 (610)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(610)는 예를 들어, 단말로 무선 베어러 및 이와 관련된 논리 채널에 대한 설정 정보 및 각 논리 채널을 위한 SR 자원 및 관련 설정 정보를 포함하는 RRC 메시지를 전송할 수 있다. The transceiver 610 may transmit and receive signals with other network entities. The transceiver 610 may transmit, to the terminal, an RRC message including configuration information for a radio bearer and a logical channel related thereto, and SR resources for each logical channel and related configuration information.
제어부 (620)은 본 발명에서 제안하는 실시예에 따른 기지국의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (620)는 상기에서 기술한 순서도에 따른 동작을 수행하도록 각 블록 간 신호 흐름을 제어할 수 있다. 구체적으로, 제어부 (620)는 본 발명의 실시예에 따른 상기 설정 정보를 생성하고 단말로 전송하도록 제어할 수 있다. 그리고 상기 제어부 (620)는 SCell BFR MAC CE를 전송하기 위한 SR이 수신된 경우, 상기 SCell BFR MAC CE의 전송을 위한 상향링크 전송 자원을 단말로 할당할 수 있다.The controller 620 may control the overall operation of the base station according to the embodiment proposed in the present invention. For example, the controller 620 may control a signal flow between blocks to perform an operation according to the above-described flowchart. Specifically, the controller 620 may control to generate and transmit the setting information to the terminal according to an embodiment of the present invention. In addition, when an SR for transmitting the SCell BFR MAC CE is received, the control unit 620 may allocate an uplink transmission resource for transmission of the SCell BFR MAC CE to the terminal.
저장부(630)는 상기 송수신부 (610)를 통해 송수신되는 정보 및 제어부 (520)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다. 예를 들어, 저장부 (630)는 무선 베어러 및 이와 관련된 논리 채널에 대한 설정 정보 및 각 논리 채널을 위한 SR 자원 및 관련 설정 정보 등을 저장할 수 있다. The storage unit 630 may store at least one of information transmitted and received through the transmission/reception unit 610 and information generated through the control unit 520. For example, the storage unit 630 may store configuration information for a radio bearer and a logical channel related thereto, SR resources for each logical channel, and related configuration information.
한편, 도 7은 본 발명의 일 실시 예에 따른 단말의 제어 방법을 나타낸 흐름도이다. 먼저, 단계 S700에서, 단말은 세컨더리 셀 (secondary cell, scell)에서의 빔 실패를 감지할 수 있다. Meanwhile, FIG. 7 is a flowchart illustrating a method of controlling a terminal according to an embodiment of the present invention. First, in step S700, the terminal may detect a beam failure in a secondary cell (scell).
그리고 단계 S710 에서 단말은 상기 감지된 빔 실패와 관련된 스케줄링 리퀘스트 (scheduling request, SR)을 전송하기 위한 자원이 데이터를 전송하기 위한 자원과 시간상에서 중첩되는지 여부를 확인할 수 있다. And in step S710, the terminal may check whether the resource for transmitting a scheduling request (SR) related to the detected beam failure overlaps in time with the resource for transmitting data.
단계 S720에서, 단말은 상기 SR을 전송하기 위한 자원이 상기 데이터를 전송하기 위한 자원과 시간상에서 중첩되는 경우, 상기 SR 및 상기 데이터 중에서 하나를 전송하도록 결정할 수 있다. In step S720, when the resource for transmitting the SR overlaps in time with the resource for transmitting the data, the terminal may determine to transmit one of the SR and the data.
본 발명의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다. The methods according to the embodiments described in the claims or the specification of the present invention may be implemented in the form of hardware, software, or a combination of hardware and software.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 발명의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함한다. When implemented in software, a computer-readable storage medium storing one or more programs (software modules) may be provided. One or more programs stored in a computer-readable storage medium are configured to be executable by one or more processors in an electronic device (device). The one or more programs include instructions that cause the electronic device to execute methods according to the embodiments described in the claims or specification of the present invention.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: Read Only Memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: Electrically Erasable Programmable Read Only Memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: Compact Disc-ROM), 디지털 다목적 디스크(DVDs: Digital Versatile Discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 다수 개 포함될 수도 있다. These programs (software modules, software) include random access memory, non-volatile memory including flash memory, read only memory (ROM), and electrically erasable programmable ROM. (EEPROM: Electrically Erasable Programmable Read Only Memory), magnetic disc storage device, Compact Disc-ROM (CD-ROM), Digital Versatile Discs (DVDs), or other types of It may be stored in an optical storage device or a magnetic cassette. Alternatively, it may be stored in a memory composed of a combination of some or all of them. In addition, a plurality of configuration memories may be included.
또한, 상기 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(Local Area Network), WLAN(Wide LAN), 또는 SAN(Storage Area Network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 발명의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크상의 별도의 저장장치가 본 발명의 실시 예를 수행하는 장치에 접속할 수도 있다.In addition, the program is through a communication network composed of a communication network such as the Internet, an intranet, a local area network (LAN), a wide LAN (WLAN), or a storage area network (SAN), or a combination thereof. It may be stored in an accessible storage device. Such a storage device can access a device performing an embodiment of the present invention through an external port. In addition, a separate storage device on the communication network may access a device performing an embodiment of the present invention.
상술한 본 발명의 구체적인 실시 예들에서, 발명에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 발명이 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.In the specific embodiments of the present invention described above, the constituent elements included in the invention are expressed in the singular or plural according to the presented specific embodiment. However, the singular or plural expression is selected appropriately for the situation presented for convenience of description, and the present invention is not limited to the singular or plural constituent elements, and even constituent elements expressed in plural are composed of the singular or singular. Even the expressed constituent elements may be composed of pluralities.
한편 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.Meanwhile, although specific embodiments have been described in the detailed description of the present invention, various modifications are possible without departing from the scope of the present invention. Therefore, the scope of the present invention is limited to the described embodiments and should not be determined, and should be determined by the scope of the claims and equivalents as well as the scope of the claims to be described later.

Claims (14)

  1. 무선 통신 시스템에서 단말의 제어 방법에 있어서, In the control method of a terminal in a wireless communication system,
    세컨더리 셀 (secondary cell, scell)에서의 빔 실패를 감지하는 단계; Detecting a beam failure in a secondary cell (scell);
    상기 감지된 빔 실패와 관련된 스케줄링 리퀘스트 (scheduling request, SR)을 전송하기 위한 자원이 데이터를 전송하기 위한 자원과 시간상에서 중첩되는지 여부를 확인하는 단계; 및Checking whether a resource for transmitting a scheduling request (SR) related to the detected beam failure overlaps in time with a resource for transmitting data; And
    상기 SR을 전송하기 위한 자원이 상기 데이터를 전송하기 위한 자원과 시간상에서 중첩되는 경우, 상기 SR 및 상기 데이터 중에서 하나를 전송하도록 결정하는 단계; 를 포함하고, Determining to transmit one of the SR and the data when the resource for transmitting the SR overlaps in time with the resource for transmitting the data; Including,
    상기 결정하는 단계는, The determining step,
    상기 SR을 전송하기 위한 자원이 상기 데이터를 전송하기 위한 자원과 시간상에서 중첩되는 경우, 상기 감지된 빔 실패와 관련된 SR을 전송하도록 결정하는 것을 특징으로 하는 방법. When the resource for transmitting the SR overlaps in time with the resource for transmitting the data, determining to transmit the SR related to the detected beam failure.
  2. 제1항에 있어서, The method of claim 1,
    상기 감지된 빔 실패와 관련된 SR은, SR related to the detected beam failure,
    상기 감지된 빔 실패에 대한 정보를 포함하는 미디엄 액세스 컨트롤 (medium access control, MAC) 제어 요소(control element, CE)를 기지국으로 전송하기 위한 상향링크 데이터 할당을 요청하기 위한 SR인 것을 특징으로 하는 방법. An SR for requesting uplink data allocation for transmitting a medium access control (MAC) control element (CE) including information on the detected beam failure to a base station. .
  3. 제1항에 있어서, The method of claim 1,
    상기 결정하는 단계는, The determining step,
    상기 데이터 전송과 관련된 논리 채널의 우선순위를 확인하는 단계; 및Checking a priority of a logical channel related to the data transmission; And
    상기 확인된 상기 논리 채널의 우선순위가 임계값 보다 큰지 여부를 판단하는 단계; 및 Determining whether the checked priority of the logical channel is greater than a threshold value; And
    상기 확인된 상기 논리 채널의 우선순위가 상기 임계값 보다 큰 경우, 상기 데이터를 전송하도록 결정하는 단계; 를 더 포함하는 것을 특징으로 하는 방법. Determining to transmit the data when the identified priority of the logical channel is greater than the threshold value; The method further comprising a.
  4. 제3항에 있어서, The method of claim 3,
    상기 결정하는 단계는, The determining step,
    상기 확인된 상기 논리 채널의 우선순위가 상기 임계값 보다 작거나 같은 경우, 상기 SR를 전송하도록 결정하는 단계; 를 더 포함하는 것을 특징으로 하는 방법. Determining to transmit the SR when the identified priority of the logical channel is less than or equal to the threshold value; The method further comprising a.
  5. 제1항에 있어서, The method of claim 1,
    상기 결정하는 단계는, The determining step,
    상기 SR을 전송하기 위한 자원이 상기 데이터를 전송하기 위한 자원과 시간상에서 중첩되는 경우, 상기 데이터를 전송하도록 결정하는 것을 특징으로 하는 방법. When the resource for transmitting the SR overlaps in time with the resource for transmitting the data, determining to transmit the data.
  6. 제1항에 있어서, The method of claim 1,
    상기 결정하는 단계는, The determining step,
    상기 감지된 빔 실패와 관련된 SR에 대한 우선순위 설정 정보를 수신하는 단계; Receiving priority setting information for an SR related to the detected beam failure;
    상기 데이터 전송과 관련된 논리 채널의 우선순위를 확인하는 단계; Checking a priority of a logical channel related to the data transmission;
    상기 설정 정보에 포함된 상기 감지된 빔 실패와 관련된 SR에 대한 우선순위 값 및 상기 데이터 전송과 관련된 논리 채널의 우선순위 값을 비교하는 단계; 및 Comparing a priority value for an SR related to the detected beam failure included in the configuration information and a priority value for a logical channel related to the data transmission; And
    상기 비교 결과에 따라, 상기 설정 정보에 포함된 상기 감지된 빔 실패와 관련된 SR에 대한 우선순위 값이 상기 데이터 전송과 관련된 논리 채널의 우선순위 값보다 큰 경우 상기 SR을 전송하도록 결정하고, 상기 설정 정보에 포함된 상기 감지된 빔 실패와 관련된 SR에 대한 우선순위 값이 상기 데이터 전송과 관련된 논리 채널의 우선순위 값보다 작은 경우 상기 데이터를 전송하도록 결정하는 단계; 를 포함하는 것을 특징으로 하는 방법. According to the comparison result, when the priority value for the SR related to the detected beam failure included in the setting information is greater than the priority value of the logical channel related to the data transmission, it is determined to transmit the SR, and the setting Determining to transmit the data when the priority value for the SR related to the detected beam failure included in the information is less than the priority value of the logical channel related to the data transmission; Method comprising a.
  7. 제1항에 있어서, The method of claim 1,
    상기 결정하는 단계는, The determining step,
    상기 데이터에 상기 감지된 빔 실패에 대한 정보를 포함하는 MAC CE가 포함되는지 여부를 판단하는 단계; Determining whether a MAC CE including information on the detected beam failure is included in the data;
    상기 데이터에 상기 MAC CE가 포함된 경우, 상기 데이터를 전송하도록 결정하는 단계; 및If the data includes the MAC CE, determining to transmit the data; And
    상기 데이터에 상기 MAC CE가 포함되지 않는 경우, 상기 SR을 전송하도록 결정하는 단계; 를 포함하는 것을 특징으로 하는 방법. Determining to transmit the SR if the MAC CE is not included in the data; Method comprising a.
  8. 무선 통신 시스템에서 단말에 있어서, In a terminal in a wireless communication system,
    송수신부; 및 A transmission/reception unit; And
    세컨더리 셀 (secondary cell, scell)에서의 빔 실패를 감지하고, Detecting a beam failure in a secondary cell (scell),
    상기 감지된 빔 실패와 관련된 스케줄링 리퀘스트 (scheduling request, SR)을 전송하기 위한 자원이 데이터를 전송하기 위한 자원과 시간상에서 중첩되는지 여부를 확인하며, Checking whether the resource for transmitting a scheduling request (SR) related to the detected beam failure overlaps in time with the resource for transmitting data,
    상기 SR을 전송하기 위한 자원이 상기 데이터를 전송하기 위한 자원과 시간상에서 중첩되는 경우, 상기 SR 및 상기 데이터 중에서 하나를 전송하도록 결정하도록 제어하는 제어부; 를 포함하고, A controller configured to determine to transmit one of the SR and the data when the resource for transmitting the SR overlaps in time with the resource for transmitting the data; Including,
    상기 제어부는, The control unit,
    상기 SR을 전송하기 위한 자원이 상기 데이터를 전송하기 위한 자원과 시간상에서 중첩되는 경우, 상기 감지된 빔 실패와 관련된 SR을 전송하도록 결정하는 것을 특징으로 하는 단말. When the resource for transmitting the SR overlaps in time with the resource for transmitting the data, the UE determines to transmit the SR related to the detected beam failure.
  9. 제8항에 있어서, The method of claim 8,
    상기 감지된 빔 실패와 관련된 SR은, SR related to the detected beam failure,
    상기 감지된 빔 실패에 대한 정보를 포함하는 미디엄 액세스 컨트롤 (medium access control, MAC) 제어 요소(control element, CE)를 기지국으로 전송하기 위한 상향링크 데이터 할당을 요청하기 위한 SR인 것을 특징으로 하는 단말. UE, characterized in that it is an SR for requesting uplink data allocation for transmitting a medium access control (MAC) control element (CE) including information on the detected beam failure to a base station .
  10. 제8항에 있어서, The method of claim 8,
    상기 제어부는, The control unit,
    상기 데이터 전송과 관련된 논리 채널의 우선순위를 확인하고, Check the priority of the logical channel related to the data transmission,
    상기 확인된 상기 논리 채널의 우선순위가 임계값 보다 큰지 여부를 판단하며, It is determined whether the priority of the identified logical channel is greater than a threshold value,
    상기 확인된 상기 논리 채널의 우선순위가 상기 임계값 보다 큰 경우, 상기 데이터를 전송하도록 결정하는 것을 특징으로 하는 단말. When the priority of the identified logical channel is greater than the threshold value, the terminal, characterized in that to determine to transmit the data.
  11. 제10항에 있어서, The method of claim 10,
    상기 제어부는, The control unit,
    상기 확인된 상기 논리 채널의 우선순위가 상기 임계값 보다 작거나 같은 경우, 상기 SR를 전송하도록 결정하는 것을 특징으로 하는 단말.And if the priority of the identified logical channel is less than or equal to the threshold value, determining to transmit the SR.
  12. 제8항에 있어서, The method of claim 8,
    상기 제어부는, The control unit,
    상기 SR을 전송하기 위한 자원이 상기 데이터를 전송하기 위한 자원과 시간상에서 중첩되는 경우, 상기 데이터를 전송하도록 결정하는 것을 특징으로 하는 단말.When the resource for transmitting the SR overlaps in time with the resource for transmitting the data, determining to transmit the data.
  13. 제7항에 있어서, The method of claim 7,
    상기 제어부는,The control unit,
    상기 감지된 빔 실패와 관련된 SR에 대한 우선순위 설정 정보를 수신하도록 상기 송수신부를 제어하고, Control the transceiver to receive priority setting information for the SR related to the detected beam failure,
    상기 데이터 전송과 관련된 논리 채널의 우선순위를 확인하며, Check the priority of the logical channel related to the data transmission,
    상기 설정 정보에 포함된 상기 감지된 빔 실패와 관련된 SR에 대한 우선순위 값 및 상기 데이터 전송과 관련된 논리 채널의 우선순위 값을 비교하고, Compare a priority value for an SR related to the detected beam failure included in the setting information and a priority value for a logical channel related to the data transmission,
    상기 비교 결과에 따라, 상기 설정 정보에 포함된 상기 감지된 빔 실패와 관련된 SR에 대한 우선순위 값이 상기 데이터 전송과 관련된 논리 채널의 우선순위 값보다 큰 경우 상기 SR을 전송하도록 결정하고, 상기 설정 정보에 포함된 상기 감지된 빔 실패와 관련된 SR에 대한 우선순위 값이 상기 데이터 전송과 관련된 논리 채널의 우선순위 값보다 작은 경우 상기 데이터를 전송하도록 결정하는 것을 특징으로 하는 단말. According to the comparison result, when the priority value for the SR related to the detected beam failure included in the setting information is greater than the priority value of the logical channel related to the data transmission, it is determined to transmit the SR, and the setting And determining to transmit the data when the priority value for the SR related to the detected beam failure included in the information is less than the priority value of the logical channel related to the data transmission.
  14. 제7항에 있어서, The method of claim 7,
    상기 제어부는,The control unit,
    상기 데이터에 상기 감지된 빔 실패에 대한 정보를 포함하는 MAC CE가 포함되는지 여부를 판단하고, It is determined whether the data includes MAC CE including information on the detected beam failure,
    상기 데이터에 상기 MAC CE가 포함된 경우, 상기 데이터를 전송하도록 결정하며, When the data includes the MAC CE, it is determined to transmit the data,
    상기 데이터에 상기 MAC CE가 포함되지 않는 경우, 상기 SR을 전송하도록 결정하는 것을 특징으로 하는 단말. If the MAC CE is not included in the data, the terminal, characterized in that to determine to transmit the SR.
PCT/KR2020/012952 2019-10-02 2020-09-24 Method and device for determining priority between scheduling request for secondary cell (scell) beam failure report and other uplink transmissions in wireless communication system WO2021066389A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0122321 2019-10-02
KR1020190122321A KR20210039727A (en) 2019-10-02 2019-10-02 Method and apparatus for determining priority between scheduling request (SR) for SCell (secondary cell) beam failure report and other uplink transmission in wireless communication system

Publications (1)

Publication Number Publication Date
WO2021066389A1 true WO2021066389A1 (en) 2021-04-08

Family

ID=75337218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012952 WO2021066389A1 (en) 2019-10-02 2020-09-24 Method and device for determining priority between scheduling request for secondary cell (scell) beam failure report and other uplink transmissions in wireless communication system

Country Status (2)

Country Link
KR (1) KR20210039727A (en)
WO (1) WO2021066389A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130065622A1 (en) * 2011-09-14 2013-03-14 Samsung Electronics Co., Ltd. Method and apparatus for forming virtual cell in wireless communication system
WO2017024516A1 (en) * 2015-08-11 2017-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Recovery from beam failure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130065622A1 (en) * 2011-09-14 2013-03-14 Samsung Electronics Co., Ltd. Method and apparatus for forming virtual cell in wireless communication system
WO2017024516A1 (en) * 2015-08-11 2017-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Recovery from beam failure

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "BFR on SCell", 3GPP DRAFT; R2-1910357 - BFR ON SCELL, vol. RAN WG2, 15 August 2019 (2019-08-15), Prague, Czech Republic, pages 1 - 7, XP051768136 *
SAMSUNG: "RAN2 Aspects of SCell BFR", 3GPP DRAFT; R2-1908821_RAN2 ASPECTS OF SCELL BFR, vol. RAN WG2, 15 August 2019 (2019-08-15), Prague, Czech Republic, pages 1 - 5, XP051766643 *
ZTE , SANECHIPS: "Consideration on Beam Failure Recovery on SCell", 3GPP DRAFT; R2-1910404- CONSIDERATION ON BEAM FAILURE RECOVERY FOR SCELL, vol. RAN WG2, 16 August 2019 (2019-08-16), Prague, Czech Republic, pages 1 - 5, XP051768183 *

Also Published As

Publication number Publication date
KR20210039727A (en) 2021-04-12

Similar Documents

Publication Publication Date Title
KR102270533B1 (en) Method and apparatus for wireless communication in wireless communication system
WO2021006690A1 (en) Method and apparatus for handling scheduling request (sr) cancellation, random access (ra) prioritization and concurrent occurrence of beam failure recovery (bfr) on primary cell (pcell) and secondary cell (scell)
WO2020197321A1 (en) Method and device for detecting uplink lbt failure in wireless communication system using unlicensed band
CN105898770B (en) Empty channel detection method and node equipment
US8855708B2 (en) Data rate in mobile communication networks
JP7279778B2 (en) Side link data transmission and setting method and device
WO2017034272A1 (en) Method and apparatus for communication in wireless communication system
WO2016144134A1 (en) Apparatus and method for data scheduling of base station using licensed assisted access in wireless communication system
WO2016032304A1 (en) Method and apparatus for communicating using unlicensed bands in mobile communication system
WO2020222549A1 (en) Method and apparatus for transmitting and receiving data in wireless communication system
EP2664211A2 (en) Random access method and apparatus of ue in mobile communication system
EP3829252B1 (en) Method and apparatus for receiving mac pdu in mobile communication system
WO2021066483A1 (en) Method and apparatus for configuring carrier aggregation for serving cells having different start time points in frame in wireless communication system
WO2015020501A1 (en) Method and apparatus for requesting scheduling in cellular mobile communication system
WO2021060669A1 (en) Method and apparatus for transmitting and receiving data in wireless communication system
WO2021194204A1 (en) Method and apparatus for applying harq to multicast broadcast service in wireless communication system
WO2020067693A1 (en) Method and apparatus for transmitting buffer status report in wireless communication system
WO2021215814A1 (en) Method and device for handling lbt failure indicator when daps handover is configured in wireless communication system
KR102536947B1 (en) Method and apparatus for data communicating in a wireless communication system
WO2019054824A1 (en) Apparatus and method of identifying downlink transmission beam in a cellular network
WO2021141475A1 (en) Method and device for measuring beam failure detection resource during discontinuous reception setting in wireless communication system
WO2020262893A1 (en) Method and device for performing backoff in two-step random access procedure in wireless communication system
WO2021235792A1 (en) Apparatus and method for processing sidelink harq retransmission procedure in wireless communication system
WO2021066389A1 (en) Method and device for determining priority between scheduling request for secondary cell (scell) beam failure report and other uplink transmissions in wireless communication system
WO2021187938A1 (en) Method and device for notifying of beam failure recovery in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20870913

Country of ref document: EP

Kind code of ref document: A1