WO2021066378A1 - Soil moisture sensor for measuring amount of moisture through refractive index - Google Patents

Soil moisture sensor for measuring amount of moisture through refractive index Download PDF

Info

Publication number
WO2021066378A1
WO2021066378A1 PCT/KR2020/012812 KR2020012812W WO2021066378A1 WO 2021066378 A1 WO2021066378 A1 WO 2021066378A1 KR 2020012812 W KR2020012812 W KR 2020012812W WO 2021066378 A1 WO2021066378 A1 WO 2021066378A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
soil
moisture
amount
refractive index
Prior art date
Application number
PCT/KR2020/012812
Other languages
French (fr)
Korean (ko)
Inventor
김민회
심은선
유경민
이상훈
Original Assignee
한밭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한밭대학교 산학협력단 filed Critical 한밭대학교 산학협력단
Publication of WO2021066378A1 publication Critical patent/WO2021066378A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content

Definitions

  • the present invention relates to a soil moisture sensor that measures the amount of moisture through a refractive index, and more particularly, light irradiated from the light emitting unit is reflected or refracted according to the ratio of water, air or soil in contact with the outer wall surface of the light reflecting rod to reach the light receiving unit.
  • the present invention relates to a soil moisture sensor that improves measurement accuracy by minimizing the influence of soil constituents and organic matter content by measuring the moisture content in the soil using varying degrees.
  • Soil moisture measurement methods include a Time Domain Reflectometry (TDR) method, a tension meter method, a method using a gypsum block, a method using electrical resistance, and a method using light reflection.
  • TDR Time Domain Reflectometry
  • the electromagnetic wave generated by the waveform generator flows through the transmission line. If the cross section of the transmission line changes while the electromagnetic wave is flowing through the transmission line, the impedance of the point changes and the electromagnetic wave is reflected in that section.
  • the water content of the soil can be obtained by using the property of changing the propagation speed of a wave according to a change in permittivity.
  • the TDR measurement method varies depending on the density of the soil.
  • the tensiometer method measures the metric potential gradient in the soil using a porous cup, a tube filled with water, and a vacuum gauge connected thereto.
  • the tensiometer is a ceramic sensing unit, which is a porous cup capable of permeating both moisture and solute. It consists of a water column to supplement and a pressure gauge that indicates the metric potential in the soil.
  • the tensiometer requires additional supplementation to maintain a certain amount of water, and has disadvantages such as the ceramic sensing unit being easily damaged.
  • the measurement method using a gypsum block is a method of measuring moisture until the moisture content of gypsum and soil moisture is equilibrated after mounting it on a flat plate and inserting it into the soil. This may increase the error of the moisture measurement value according to the corrosion of the gypsum caused by moisture in the soil, and there is a trouble of having to frequently replace the gypsum block.
  • the method using electrical resistance is a method of measuring the moisture content in the soil by using the change in the electrical resistance value between two points.
  • the method of using electrical resistance does not take into account changes in soil density and temperature, so there is a disadvantage that even if the value of soil moisture changes according to the density of the soil, it cannot be recognized.
  • the method using light reflection is a method of detecting the moisture content in the soil by irradiating light from the light source to the soil and collecting and analyzing the reflected light by the light receiving unit.
  • the method using light reflection as a method of detecting the moisture distribution in the soil through the reflective characteristics of the soil has the following problems.
  • the light reflected off the soil varies greatly depending on the composition of the soil and the level of organic matter content in addition to the moisture contained in the soil, and the absorption amount varies greatly depending on the wavelength of the light used. This is because soil constituents and organic substances each have their own absorption wavelength.
  • the measured value may vary due to factors other than the moisture content of the soil, there is a problem that it is not accurate to measure the moisture content of the soil to the degree of reflection of light.
  • Such a soil moisture measurement method has a problem that the cost is too expensive even if the measurement reliability is low or high, and thus a proposal of a soil moisture sensor having a relatively low cost and high reliability is urgently required.
  • the present invention has been devised to solve the above problems, and the total amount of light reaching the light receiving unit is changed according to the moisture content of the soil in contact with the outer wall of the light reflecting rod.
  • the purpose of this is to provide a soil moisture sensor that measures the moisture content through a refractive index that minimizes the influence of soil constituents and organic matter content by measuring the moisture content in the soil, thereby improving measurement accuracy.
  • the present invention has the following features to achieve the above object.
  • the present invention is a soil moisture sensor located inside the soil for measuring the moisture content in the soil, the soil moisture sensor is formed in a rod shape having a bent portion or a bent portion, and a light reflecting rod for receiving a certain portion or more in the soil, A light-emitting unit positioned at one end of the light reflecting rod to irradiate light inside the light reflecting rod, and a light-emitting unit positioned at the other end of the light reflecting rod and irradiated from the light emitting unit to detect light reflected from the inner side of the light reflecting rod to reach the other end. ; And a control unit for calculating the moisture content in the soil through the total amount of light irradiated from the light emitting unit and the total amount of light sensed from the light receiving unit.
  • the light reflecting rod is made of a transparent medium having a refractive index (n) of 1.3 or more, and preferably has a'U' shape.
  • the light receiving unit is a photodiode.
  • the moisture content in the soil is measured by using the refractive index between the light reflecting rod and the medium in contact with the outer wall surface thereof, there is an effect of minimizing changes in the measured value according to the constituents of the existing soil and the organic matter content.
  • FIG. 1 is a perspective view schematically showing a soil moisture sensor according to an embodiment of the present invention.
  • FIG. 2 is a state diagram showing a sensing process of the soil moisture sensor according to an embodiment of the present invention.
  • 3A and 3B are enlarged views of part A of FIG. 2.
  • FIG. 4 is a graph measuring a change in water amount and light amount over time of a soil moisture sensor according to an embodiment of the present invention.
  • FIG. 5 is a graph showing a relationship between the amount of moisture in the soil through the measured amount of FIG. 4 and the amount of relative light detected by the light receiving unit.
  • FIG. 6 is a graph of measuring moisture content and relative light intensity for 30000 minutes with a soil moisture sensor according to an embodiment of the present invention.
  • FIG. 7 is a graph showing a relationship between the amount of moisture in the soil through the measured amount of FIG. 6 and the amount of relative light detected by the light receiving unit.
  • FIG. 1 is a perspective view schematically showing a soil moisture sensor according to an embodiment of the present invention
  • FIG. 2 is a state diagram showing a sensing process of the soil moisture sensor according to an embodiment of the present invention
  • FIG. 3 is FIG. It is an enlarged view of part A of.
  • the soil moisture sensor 100 has a large bent portion or a bent portion and is formed in a rod shape to accommodate a predetermined portion or more in the soil, and the light reflecting rod 10
  • the light-emitting unit 20 is positioned at one end of the rod 10 to irradiate light into the light-reflecting rod 10, and the light-emitting unit 20 is located at the other end of the light-reflecting rod 10 and is irradiated from the light-emitting unit 20 to reflect light.
  • the moisture content in the soil is determined through the total amount of light irradiated from the light-receiving unit 30 and the light irradiated from the light-emitting unit 20 and the total amount of light detected from the light-receiving unit 30 to detect light reflected from the inner wall of the rod 10 and reaching the other end. It consists of a control unit 40 that calculates.
  • the light reflecting rod 10 is a bent or bent rod and is positioned in a state accommodated in the soil, and a light-emitting portion 20 and a light-receiving portion 30 are disposed at one end and the other end, respectively.
  • the light-emitting unit 20 and the light-receiving unit 30 may be located inside from both ends of the light reflecting rod 10, but it is preferable that the light-emitting unit 20 and the light-receiving unit 30 are located at the end side to provide a sufficient length for light to be reflected. .
  • the light reflecting rod 10 guides the light irradiated from the light emitting unit 20 to reach the light receiving unit 30, and a'U' shape, an'L' shape, or a curved straight shape is also possible.
  • 1 and 2 are shown in the shape of a'U'-shaped rod according to an embodiment of the present invention.
  • a'U'-shaped light reflecting rod 10 when formed as a'U'-shaped light reflecting rod 10, sufficient The curved surface is formed so that when the light irradiated from the light emitting unit 20 reaches the outer wall surface of the light reflecting rod 10, the incident angle is large, so that total reflection can be smoothly performed.
  • the refraction index of the medium in contact with it from the outer wall side the reflection or refraction of the irradiated light is determined to be reflected or refracted inside the light reflecting rod 10 to pass to the outside.
  • the refractive index of the light reflecting rod 10 according to the present invention is composed of a medium of at least 1.3 or more, which is similar to or greater than the refractive index of water, and preferably glass or polymer may be applied.
  • the light irradiated from the light emitting unit 20 is the critical angle ( ⁇ ) in the case of (a) filled with air (A) in the soil (S) in contact with the light reflecting rod 10 and the outer wall surface.
  • the critical angle
  • the critical angle ( ⁇ c ) is relatively high, so that the probability of occurrence of total reflection is lowered.
  • the total sensing amount of the light receiving unit 30 according to the soil moisture content outside the light reflecting rod 10, that is, the total amount of light reached by reflection is determined, and accordingly, the control unit 40
  • the moisture content in the soil is measured by detecting the total amount of light reaching the light receiving unit 30 relative to the total amount of light irradiated from (20).
  • the present invention has a problem that the refractive index varies depending on the component medium of the soil in contact with the light reflecting rod (10). Since the change is used, the change of the refractive index changed by the moisture content has a much greater effect than the change of the refractive index by the constituents of the soil and the content of organic substances, so more precise and reliable moisture content measurement is possible.
  • the light source of the light emitting unit 20 applied to the present invention can be applied as long as it is a light source capable of irradiating light, and the wavelength of light can be any electromagnetic wave series such as visible light, ultraviolet light, infrared light, etc. When considering, it is preferable to be irradiated with visible light.
  • the light-receiving unit 30 is provided to sense light reflected from the light-emitting unit 20, and various types of light-receiving elements may be applied, and a photodiode may be applied as a representative example.
  • the controller 40 receives information on the total amount of light reached from the light-receiving unit 30 and compares it with the light irradiation amount of the light-emitting unit 20 to generate moisture content or content rate data in the soil.
  • This control unit 40 can detect the total amount of light detected by the light receiving unit 30, but configured to detect the light detected by the light receiving unit 30 by wavelength, and through the detection amount by wavelength or the distribution of light by wavelength. A correction process of moisture content or content rate data may be performed.
  • the light-receiving characteristics according to the wavelength of light for each soil component and the data on the light-receiving characteristics according to the type or content of organic substances are previously stored, the light-receiving characteristics according to the amount and wavelength of light detected by the light receiving unit 30 are analyzed. This makes it possible to generate more precise moisture content or content rate data.
  • FIG. 4 is a graph measuring a change in water amount and light amount over time of a soil moisture sensor according to an embodiment of the present invention
  • FIG. 5 is a graph showing a relationship between the amount of moisture in the soil and the relative amount of light detected by the light receiving unit through the measured amount of FIG. 4
  • FIG. 7 is a graph showing the moisture content in the soil through the measurement amount of FIG. 6 and the relative light amount detected by the light receiving unit. It is a relationship graph.
  • FIG. 4 is a data measured while the light reflecting rod 10 of the soil moisture sensor according to an embodiment of the present invention is composed of a polymer (polydimethylsiloxane) rod, and water is continuously added. It can be seen that the moisture content increases as the passing time, and accordingly, it can be seen that the relative amount of light detected by the light receiving unit 30 decreases. As illustrated in FIG. 5, it can be seen that the relative amount of light decreases as the amount of moisture increases, and the amount of relative light increases as the amount of moisture decreases.
  • FIG. 6 is also a measurement of the amount of moisture and the relative amount of light detected by the light receiving unit 30 for 30000 minutes by configuring the light reflecting rod 10 as a glass rod.
  • the relative amount of light is reversed. It can be seen that the amount of light decreases or increases, and as shown in FIG. 7, the relative amount of light and the amount of water increase as the amount of water increases, and the amount of light increases as the amount of water decreases.

Abstract

The present invention relates to a soil moisture sensor for measuring the amount of moisture through a refractive index and, more specifically, to a soil moisture sensor, which measures the amount of moisture in soil by using the variance, according to the proportion of water, air, or soil coming in contact with the outer wall surface of a light reflective bar, in the amount of light arriving at a light-receiving unit after being emitted from a light-emitting unit and then reflected or refracted, and thus minimizes the influence of the constituent components and organic content of soil, thereby improving measurement accuracy. To this end, a soil moisture sensor located in soil in order to measure the amount of moisture in the soil, according to the present invention, comprises: a light reflective bar which has a bending part or a curved part and which is formed in a bar shape so that at least a predetermined portion thereof is accommodated in the soil; a light-emitting unit located at one end of the light reflective bar so as to emit light toward the inside of the light reflective bar; a light-receiving unit located at the other end of the light reflective bar so as to detect light, which is emitted from the light-emitting unit so as to be reflected on the inner side of the light reflective bar and arrive at the other end thereof; and a control unit for calculating the moisture content in the soil through the total amount of light emitted from the light-emitting unit and the total amount of light detected by the light-receiving unit.

Description

굴절률을 통해 수분량을 측정하는 토양 수분 센서Soil moisture sensor measuring moisture content through refractive index
본 발명은 굴절률을 통해 수분량을 측정하는 토양 수분 센서에 관한 것으로서 더욱 상세하게는 광반사봉의 외벽면에 접하는 물, 공기 또는 토양의 비율에 따라 발광부로부터 조사되는 빛이 반사 또는 굴절되어 수광부로 도달하는 정도가 달라지는 것을 이용하여 토양 내 수분 함유량을 측정함에 따라 토양의 구성 성분과 유기질 함유량에 따른 영향이 최소화되어 측정 정확도가 향상되는 토양 수분 센서에 관한 것이다. The present invention relates to a soil moisture sensor that measures the amount of moisture through a refractive index, and more particularly, light irradiated from the light emitting unit is reflected or refracted according to the ratio of water, air or soil in contact with the outer wall surface of the light reflecting rod to reach the light receiving unit. The present invention relates to a soil moisture sensor that improves measurement accuracy by minimizing the influence of soil constituents and organic matter content by measuring the moisture content in the soil using varying degrees.
농업, 토목, 방재 등의 분야에서 토양이 포함하고 있는 토양이 포함하고 있는 수분의 양을 측정할 필요성이 있으며, 다양한 토양 내 수분 측정 방식이 개발되어 사용되고 있다.In fields such as agriculture, civil engineering, and disaster prevention, there is a need to measure the amount of moisture contained in the soil, and various soil moisture measurement methods have been developed and used.
토양수분측정 방법에는 크게 TDR(Time Domain Reflectometry) 방법, 텐시오미터(tentionmeter)방법, 석고블럭을 이용한 방법, 전기저항을 이용한 방법 및 광반사를 이용한 방법 등이 있다.Soil moisture measurement methods include a Time Domain Reflectometry (TDR) method, a tension meter method, a method using a gypsum block, a method using electrical resistance, and a method using light reflection.
TDR 측정방법은 파형발생기에서 발생된 전자기파가 전송선을 통해서 흐르게 되는데 전자기파가 전송선을 통하여 흐르던 중 전송선의 단면이 변하면 그 지점의 임피던스가 변하여 그 구간에서 전자기파가 반향되어 오게 된다.In the TDR measurement method, the electromagnetic wave generated by the waveform generator flows through the transmission line. If the cross section of the transmission line changes while the electromagnetic wave is flowing through the transmission line, the impedance of the point changes and the electromagnetic wave is reflected in that section.
전송선을 통과하는 전자기파의 전파속도를 알고 있다면 반향시간을 통해 전송선의 길이를 구할 수 있다. 이러한 원리를 이용하여 유전율의 변화에 따른 파의 전파속도가 변하는 성질을 이용하여 토양의 함수비를 구할 수 있다. 하지만, TDR 측정방법은 토양의 밀도에 따라 측정값의 변화가 있다.If you know the propagation speed of an electromagnetic wave passing through a transmission line, you can find the length of the transmission line through the reverberation time. Using this principle, the water content of the soil can be obtained by using the property of changing the propagation speed of a wave according to a change in permittivity. However, the TDR measurement method varies depending on the density of the soil.
텐시오미터방법은 다공성 컵과 이것에 연결되어 물로 채워진 관 및 진공계를 이용하여 토양내 매트릭포텐셜 구배를 측정하며, 텐시오미터는 수분과 용질을 모두 투과시킬 수 있는 다공성 컵인 세라믹감지부, 물을 보충하는 물기둥부, 토양내 매트릭포텐셜을 지시하는 압력게이지로 구성된다. 텐시오미터는 물을 일정량 유지하기 위한 추가적인 보충이 필요하며 세라믹감지부가 쉽게 파손되는 등의 단점이 있다.The tensiometer method measures the metric potential gradient in the soil using a porous cup, a tube filled with water, and a vacuum gauge connected thereto. The tensiometer is a ceramic sensing unit, which is a porous cup capable of permeating both moisture and solute. It consists of a water column to supplement and a pressure gauge that indicates the metric potential in the soil. The tensiometer requires additional supplementation to maintain a certain amount of water, and has disadvantages such as the ceramic sensing unit being easily damaged.
그리고, 석고블럭을 이용한 측정방법은 평판에 장착하여 토양내에 삽입한 후 석고와 토양수분의 함수율이 평형을 이룰 때까지 수분을 측정하는 방법이다. 이는 토양내의 수분에 의한 석고의 부식에 따라 수분측정값의 오차가 커질 수 있으며, 석고블럭을 자주 교체해야하는 번거로움이 있다.In addition, the measurement method using a gypsum block is a method of measuring moisture until the moisture content of gypsum and soil moisture is equilibrated after mounting it on a flat plate and inserting it into the soil. This may increase the error of the moisture measurement value according to the corrosion of the gypsum caused by moisture in the soil, and there is a trouble of having to frequently replace the gypsum block.
또한, 전기저항을 이용한 방법은 두 지점사이의 전기저항 값의 변화를 이용하여 토양내의 수분율을 측정하는 방법이다. 전기저항을 이용하는 방법은 토양의 밀도와 온도의 변화를 고려하지 않아 토양의 밀도에 따라 토양수분의 값이 변해도 이를 인식하지 못하는 단점이 있다.In addition, the method using electrical resistance is a method of measuring the moisture content in the soil by using the change in the electrical resistance value between two points. The method of using electrical resistance does not take into account changes in soil density and temperature, so there is a disadvantage that even if the value of soil moisture changes according to the density of the soil, it cannot be recognized.
아울러 광반사를 이용한 방법은 토양에 광원부의 광을 조사하여 반사되는 광을 수광부로 수집하여 분석함에 따라 토양 내 수분율을 검출하는 방법이다.In addition, the method using light reflection is a method of detecting the moisture content in the soil by irradiating light from the light source to the soil and collecting and analyzing the reflected light by the light receiving unit.
즉, 토양의 반사특성을 통해 토양 내 수분 분포를 검출하는 방법으로 이러한 광반사를 이용한 방법은 아래와 같은 문제점을 가진다. That is, the method using light reflection as a method of detecting the moisture distribution in the soil through the reflective characteristics of the soil has the following problems.
토양에 반사되는 빛은 토양에 포함된 수분 이외에도 토양의 구성과 유기질의 함유 정도에 따라서 크게 달라지고, 사용하는 빛의 파장에 따라서 그 흡수량이 매우 심하게 달라지게 된다. 이는 토양의 구성 성분이나 유기질이 각각 고유의 흡수 파장을 가지고 있기 때문이다. The light reflected off the soil varies greatly depending on the composition of the soil and the level of organic matter content in addition to the moisture contained in the soil, and the absorption amount varies greatly depending on the wavelength of the light used. This is because soil constituents and organic substances each have their own absorption wavelength.
따라서 흙의 수분량이외의 요인으로 인하여 측정값이 달라질 수 있기 때문에 토양의 수분량을 빛의 반사 정도로 측정하는 것은 정확하지 않은 문제점이 있다. Therefore, since the measured value may vary due to factors other than the moisture content of the soil, there is a problem that it is not accurate to measure the moisture content of the soil to the degree of reflection of light.
이러한 토양수분 측정방법은 측정 신뢰도가 낮거나 혹은 높더라도 비용이 너무 고가인 문제점을 가지고 있어 비용이 상대적으로 저가이면서 신뢰도가 높은 토양수분센서의 제안이 절실히 요구된다. Such a soil moisture measurement method has a problem that the cost is too expensive even if the measurement reliability is low or high, and thus a proposal of a soil moisture sensor having a relatively low cost and high reliability is urgently required.
본 발명은 상기의 문제점을 해결하기 위해 안출된 것으로서 광반사봉의 외벽면에 접하는 토양의 수분 함유량에 따라 발광부로부터 조사되는 빛이 반사 또는 굴절되어 수광부로 도달하는 빛의 총량이 달라지는 것을 이용하여 토양 내 수분함량을 측정함으로써 토양의 구성 성분과 유기질 함유량에 따른 영향이 최소화되어 측정 정확도가 향상되도록 하는 굴절률을 통해 수분량을 측정하는 토양 수분 센서를 제공함에 그 목적이 있다. The present invention has been devised to solve the above problems, and the total amount of light reaching the light receiving unit is changed according to the moisture content of the soil in contact with the outer wall of the light reflecting rod. The purpose of this is to provide a soil moisture sensor that measures the moisture content through a refractive index that minimizes the influence of soil constituents and organic matter content by measuring the moisture content in the soil, thereby improving measurement accuracy.
본 발명은 상기의 목적을 달성하기 위해 아래와 같은 특징을 갖는다.The present invention has the following features to achieve the above object.
본 발명은 토양 내부에 위치되어 토양 내 수분함량을 계측하기 위한 토양 수분 센서에 있어서, 상기 토양 수분 센서는 절곡부 또는 굴곡부를 가지며 봉형태로 형성되어 토양 내에 일정 부분 이상이 수용되는 광반사봉과, 상기 광반사봉의 일단에 위치되어 광반사봉 내측으로 광을 조사하는 발광부와, 상기 광반사봉의 타단에 위치되어 발광부로부터 조사되어 광반사봉 내측에서 반사되어 타단까지 도달하는 광을 감지하는 수광부; 및 상기 발광부로부터 조사된 광의 총량과 수광부로부터 감지된 광의 총량을 통해 토양 내 수분 함유율을 산출하는 제어부;를 포함한다. The present invention is a soil moisture sensor located inside the soil for measuring the moisture content in the soil, the soil moisture sensor is formed in a rod shape having a bent portion or a bent portion, and a light reflecting rod for receiving a certain portion or more in the soil, A light-emitting unit positioned at one end of the light reflecting rod to irradiate light inside the light reflecting rod, and a light-emitting unit positioned at the other end of the light reflecting rod and irradiated from the light emitting unit to detect light reflected from the inner side of the light reflecting rod to reach the other end. ; And a control unit for calculating the moisture content in the soil through the total amount of light irradiated from the light emitting unit and the total amount of light sensed from the light receiving unit.
여기서 상기 광반사봉은 굴절율(n)이 1.3 이상인 투명매질로 이루어지며, 'U'자 형상인 것이 바람직하다. Here, the light reflecting rod is made of a transparent medium having a refractive index (n) of 1.3 or more, and preferably has a'U' shape.
아울러 상기 수광부는 포토다이오드인 것이 바람직하다. In addition, it is preferable that the light receiving unit is a photodiode.
본 발명에 따르면 광반사봉과 그 외벽면에 접하는 매질 간의 굴절률을 이용하여 토양 내 수분 함유량을 측정함에 따라 기존 토양의 구성 성분과 유기질 함유량에 따른 측정값이 달라지는 것을 최소화할 수 있는 효과가 있다. According to the present invention, as the moisture content in the soil is measured by using the refractive index between the light reflecting rod and the medium in contact with the outer wall surface thereof, there is an effect of minimizing changes in the measured value according to the constituents of the existing soil and the organic matter content.
아울러 토양의 구성 성분이나 유기질 함유량에 따라 조사되는 빛에 파장에 따른 흡수량이 현격히 달라짐에 따라 토양의 수분량 이외의 다른 요인으로 인한 측정값의 상이함이 증대되는 문제를 해결할 수 있는 효과가 있다. In addition, there is an effect of solving the problem of increasing the difference in measured values due to factors other than the moisture content of the soil as the absorption amount according to the wavelength of light irradiated according to the composition of the soil or the content of organic matter changes significantly.
도 1은 본 발명의 일실시예에 따른 토양 수분 센서를 개략적으로 도시한 사시도이다.1 is a perspective view schematically showing a soil moisture sensor according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 토양 수분 센서의 센싱 과정을 나타내는 사용상태도이다. 2 is a state diagram showing a sensing process of the soil moisture sensor according to an embodiment of the present invention.
도 3a 및 도 3b는 도 2의 A 부분 확대도이다. 3A and 3B are enlarged views of part A of FIG. 2.
도 4는 본 발명의 일실시예에 따른 토양 수분 센서의 시간에 따른 수분량과 광량 변화를 측정한 그래프이다. 4 is a graph measuring a change in water amount and light amount over time of a soil moisture sensor according to an embodiment of the present invention.
도 5는 도 4의 측정량을 통한 토양 내 수분량과 수광부에서 감지되는 상대 광량 관계 그래프이다. 5 is a graph showing a relationship between the amount of moisture in the soil through the measured amount of FIG. 4 and the amount of relative light detected by the light receiving unit.
도 6은 본 발명의 일실시예에 따른 토양 수분 센서로 30000분 동안 수분량과 상대광량을 측정한 그래프이다. 6 is a graph of measuring moisture content and relative light intensity for 30000 minutes with a soil moisture sensor according to an embodiment of the present invention.
도 7은 도 6의 측정량을 통한 토양 내 수분량과 수광부에서 감지되는 상대 광량 관계 그래프이다. 7 is a graph showing a relationship between the amount of moisture in the soil through the measured amount of FIG. 6 and the amount of relative light detected by the light receiving unit.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 설명하기 위하여 이하에서는 본 발명의 바람직한 실시예를 예시하고 이를 참조하여 살펴본다.In order to explain the present invention and the operational advantages of the present invention and the object achieved by the implementation of the present invention, the following describes a preferred embodiment of the present invention and looks at with reference thereto.
먼저, 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서, 본 발명을 한정하려는 의도가 아니며, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 또한 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.First, terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention, and expressions in the singular may include a plurality of expressions unless clearly differently in context. In addition, in the present application, terms such as "comprise" or "have" are intended to designate the existence of features, numbers, steps, actions, components, parts, or a combination thereof described in the specification, but one or more other It is to be understood that the presence or addition of features, numbers, steps, actions, components, parts, or combinations thereof, does not preclude the possibility of preliminary exclusion.
본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.In describing the present invention, when it is determined that a detailed description of a related known configuration or function may obscure the subject matter of the present invention, a detailed description thereof will be omitted.
도 1은 본 발명의 일실시예에 따른 토양 수분 센서를 개략적으로 도시한 사시도이며, 도 2는 본 발명의 일실시예에 따른 토양 수분 센서의 센싱 과정을 나타내는 사용상태도이고, 도 3은 도 2의 A 부분 확대도이다. 1 is a perspective view schematically showing a soil moisture sensor according to an embodiment of the present invention, FIG. 2 is a state diagram showing a sensing process of the soil moisture sensor according to an embodiment of the present invention, and FIG. 3 is FIG. It is an enlarged view of part A of.
도면을 참조하면 본 발명의 일실시예에 따른 토양 수분 센서(100)는 크게 절곡부 또는 굴곡부를 가지며 봉형태로 형성되어 토양 내에 일정 부분 이상이 수용되는 광반사봉(10)과, 상기 광반사봉(10)의 일단에 위치되어 광반사봉(10) 내측으로 광을 조사하는 발광부(20)와, 상기 광반사봉(10)의 타단에 위치되어 발광부(20)로부터 조사되어 광반사봉(10) 내벽면으로부터 반사되어 타단까지 도달하는 광을 감지하는 수광부(30) 및 상기 발광부(20)로부터 조사된 광의 총량과 수광부(30)로부터 감지된 광의 총량을 통해 토양 내 수분 함유율을 산출하는 제어부(40)로 이루어진다. Referring to the drawings, the soil moisture sensor 100 according to an embodiment of the present invention has a large bent portion or a bent portion and is formed in a rod shape to accommodate a predetermined portion or more in the soil, and the light reflecting rod 10 The light-emitting unit 20 is positioned at one end of the rod 10 to irradiate light into the light-reflecting rod 10, and the light-emitting unit 20 is located at the other end of the light-reflecting rod 10 and is irradiated from the light-emitting unit 20 to reflect light. The moisture content in the soil is determined through the total amount of light irradiated from the light-receiving unit 30 and the light irradiated from the light-emitting unit 20 and the total amount of light detected from the light-receiving unit 30 to detect light reflected from the inner wall of the rod 10 and reaching the other end. It consists of a control unit 40 that calculates.
여기서 상기 광반사봉(10)은 굴곡 또는 절곡진 형태의 봉으로 토양 내에 수용된 상태로 위치되며 일단과 타단에는 각각 발광부(20) 및 수광부(30)가 배치된다. Here, the light reflecting rod 10 is a bent or bent rod and is positioned in a state accommodated in the soil, and a light-emitting portion 20 and a light-receiving portion 30 are disposed at one end and the other end, respectively.
물론 필요에 따라 발광부(20) 및 수광부(30)가 광반사봉(10)의 양 단부로부터 내측에 위치될 수 있으나 광이 반사되기 위한 충분한 길이를 제공하기 위해 단부측에 위치됨이 바람직하다. Of course, if necessary, the light-emitting unit 20 and the light-receiving unit 30 may be located inside from both ends of the light reflecting rod 10, but it is preferable that the light-emitting unit 20 and the light-receiving unit 30 are located at the end side to provide a sufficient length for light to be reflected. .
이와 같은 광반사봉(10)은 발광부(20)로부터 조사된 광이 수광부(30)로 도달하도록 안내하며, 'U'자 형태나 'L'자 또는 곡률진 일자형 또한 가능하다. The light reflecting rod 10 guides the light irradiated from the light emitting unit 20 to reach the light receiving unit 30, and a'U' shape, an'L' shape, or a curved straight shape is also possible.
도 1 및 도 2에서는 본 발명의 일실시예에 따라 'U'자 형태의 봉형상으로 도시하고 있는데, 일실시예에서와 같이 'U'자 형태의 광반사봉(10)으로 형성되는 경우 충분한 곡면이 형성되어 발광부(20)로부터 조사된 빛이 광반사봉(10)의 외벽면에 도달할 때 입사각이 크게 형성됨에 따라 전반사가 원활하게 이루어질 수 있게 된다. 1 and 2 are shown in the shape of a'U'-shaped rod according to an embodiment of the present invention. As in one embodiment, when formed as a'U'-shaped light reflecting rod 10, sufficient The curved surface is formed so that when the light irradiated from the light emitting unit 20 reaches the outer wall surface of the light reflecting rod 10, the incident angle is large, so that total reflection can be smoothly performed.
즉, 광반사봉(10)이 토양 내에 수용되면 발광부(20)에서 조사된 광이 광반사봉(10)의 외벽면, 즉 외부와의 경계지점에 도달했을 때 입사각과 광반사봉(10)의 매질 및 이와 외벽면측에서 접하는 매질의 굴절율에 따라 조사된 광의 반사 또는 굴절이 결정되어 광반사봉(10) 내측으로 반사되거나 굴절되면서 외부로 통과하게 된다. That is, when the light reflection rod 10 is accommodated in the soil, the incident angle and the light reflection rod 10 when the light irradiated from the light emitting unit 20 reaches the outer wall surface of the light reflection rod 10, that is, a boundary point with the outside. ) And the refraction index of the medium in contact with it from the outer wall side, the reflection or refraction of the irradiated light is determined to be reflected or refracted inside the light reflecting rod 10 to pass to the outside.
이는 스넬의 굴절 법칙에 따라 설명될 수 있는데, 스넬의 굴절 법칙에 의하면 전반사가 일어나는 임계각(θc)는 θc =sin-1(n2/n1)이 되는데, 임계각의 예를 몇가지 들자면, 빛이 물(n=1.33)에서 공기로 진행하는 경우, θc = 48.8°이고, 크라운 유리(n=1.52)에서 공기로 진행하는 경우 θc = 41.1°이다. 이 임계각 보다 더 큰 각도로 입사하는 빛은 모두 반사된다. This can be explained according to Snell's law of refraction. According to Snell's law of refraction, the critical angle (θ c ) at which total reflection occurs is θ c =sin -1 (n 2 /n 1 ). When light travels from water (n=1.33) to air, θ c = 48.8°, and when it travels from crown glass (n=1.52) to air, θ c = 41.1°. Any light incident at an angle greater than this critical angle is reflected.
따라서 본 발명에 따른 광반사봉(10)의 굴절률은 물의 굴절률과 유사하거나 큰 적어도 1.3이상의 매질로 구성되며 바람직하게는 유리 또는 고분자가 적용될 수 있다. Accordingly, the refractive index of the light reflecting rod 10 according to the present invention is composed of a medium of at least 1.3 or more, which is similar to or greater than the refractive index of water, and preferably glass or polymer may be applied.
이에 따라 본 발명의 일실시예에 따라 크라운 유리(n=1.52)로 광반사봉(10)이 구성될 경우, 외벽면에 물이 접하면 임계각(θc)는 θc =sin-1(1.33/1.52) = 61°가 되고, 외벽면에 공기가 접하면 임계각(θc)는 θc =sin-1(1/1.52) = 41.1°가 된다. Accordingly, when the light reflecting rod 10 is formed of crown glass (n=1.52) according to an embodiment of the present invention, when water contacts the outer wall surface, the critical angle (θ c ) is θ c =sin -1 (1.33 /1.52) = 61°, and when air contacts the outer wall, the critical angle (θ c ) becomes θ c =sin -1 (1/1.52) = 41.1°.
이에 따라 물이 접하면 입사각이 61°보다 작은 빛은 외측으로 굴절되어 통과되고, 공기가 접하면 입사각이 41.1°보다 작은 빛은 외측으로 굴절되어 통과되게 되어 물이 접할 경우 보다 공기가 접할 경우에 수광부(30)측으로 훨씬 많은 양의 빛이 감지될 것이다. Accordingly, when water comes in contact, light with an incidence angle less than 61° is refracted outward and passes through, and when air contacts light, light with an incidence angle less than 41.1° is refracted and passed outward. A much larger amount of light will be detected toward the light receiving unit 30.
즉, 도 3에 도시된 바와 같이 발광부(20)로부터 조사된 빛은 광반사봉(10)과 외벽면에 접하는 토양(S)에서 공기(A)가 채우고 있는 (a)의 경우 임계각(θc)가 낮아져 전반사가 발생될 확률이 높아지며, 물(W)이 채우고 있는 (b)의 경우 임계각(θc)이 상대적으로 높아져 전반사가 발생될 확률이 낮아지게 된다. That is, as shown in FIG. 3, the light irradiated from the light emitting unit 20 is the critical angle (θ) in the case of (a) filled with air (A) in the soil (S) in contact with the light reflecting rod 10 and the outer wall surface. As c ) is lowered, the probability of occurrence of total reflection is increased, and in the case of (b) filled with water (W), the critical angle (θ c ) is relatively high, so that the probability of occurrence of total reflection is lowered.
본 발명은 이와 같은 광반사봉(10) 외측의 토양 수분 함유량에 따른 수광부(30)의 총 감지량 즉, 반사에 의해 도달하는 빛의 총량이 결정되게 되고, 이에 따라 제어부(40)는 발광부(20)로부터 조사된 빛의 총량 대비 수광부(30)에 도달되는 빛의 총량을 감지하여 토양 내의 수분 함유량을 측정한다. In the present invention, the total sensing amount of the light receiving unit 30 according to the soil moisture content outside the light reflecting rod 10, that is, the total amount of light reached by reflection is determined, and accordingly, the control unit 40 The moisture content in the soil is measured by detecting the total amount of light reaching the light receiving unit 30 relative to the total amount of light irradiated from (20).
기존에는 토양으로 빛을 조사하여 토양 내 성분들에 의해 반사되어 되돌아오는 빛을 분석하여 토양 내 수분함유량을 측정하였으나, 전술한 바와 같이 이 경우 토양에 반사되는 빛은 토양에 포함된 수분이외에도 토양의 구성과 유기질의 함유 정도에 따라서 크게 달라지고, 조사하는 빛의 파장에 따라서 그 흡수량이 매우 심하게 달라지게 되는 문제점을 가지나, 본 발명은 광반사봉(10)과 접하는 토양의 성분 매질에 따라 굴절률이 달라지는 것을 이용하므로 토양의 구성 성분과 유기질의 함유량에 의한 굴절률의 변화보다는 수분 함유량에 의해 변화되는 굴절률의 변화가 훨씬 큰 영향을 미치므로 보다 정밀하고 신뢰도 높은 수분 함유량 계측이 가능해진다. Previously, light was irradiated into the soil and the moisture content in the soil was measured by analyzing the light reflected and returned by the components in the soil. It varies greatly depending on the composition and the degree of organic matter content, and has a problem in that the amount of absorption varies greatly depending on the wavelength of light to be irradiated. However, the present invention has a problem that the refractive index varies depending on the component medium of the soil in contact with the light reflecting rod (10). Since the change is used, the change of the refractive index changed by the moisture content has a much greater effect than the change of the refractive index by the constituents of the soil and the content of organic substances, so more precise and reliable moisture content measurement is possible.
물론 조사되는 빛의 파장에 따라서 약간의 굴절률 변화가 있기는 하나 이 또한 수분 함유량에 의해 변화되는 굴절률의 변화보다는 그 영향이 매우 낮은 수준이다. Of course, there is a slight change in the refractive index depending on the wavelength of the irradiated light, but this also has a very low effect than the change in the refractive index changed by the moisture content.
본 발명에 적용되는 발광부(20)의 광원은 빛을 조사할 수 있는 광원이면 모두 적용가능하며 빛의 파장은 가시광선, 자외선, 적외선 등 전자기파 계열은 모두 가능하나 현재 일반적인 발광, 수광 소자의 성능을 고려할 때 가시광선으로 조사되는 것이 바람직하다. The light source of the light emitting unit 20 applied to the present invention can be applied as long as it is a light source capable of irradiating light, and the wavelength of light can be any electromagnetic wave series such as visible light, ultraviolet light, infrared light, etc. When considering, it is preferable to be irradiated with visible light.
아울러 수광부(30)는 발광부(20)로부터 조사되어 반사된 빛을 감지하도록 구비되며 다양한 종류의 수광 소자가 적용될 수 있는데, 대표적으로는 포토다이오드가 적용될 수 있다. In addition, the light-receiving unit 30 is provided to sense light reflected from the light-emitting unit 20, and various types of light-receiving elements may be applied, and a photodiode may be applied as a representative example.
한편 제어부(40)는 전술한 바와 같이 수광부(30)로부터 도달된 빛의 총량정보를 전달받아 발광부(20)의 빛 조사량과 비교하여 토양 내 수분 함유량 또는 함유율 데이터를 생성한다. Meanwhile, as described above, the controller 40 receives information on the total amount of light reached from the light-receiving unit 30 and compares it with the light irradiation amount of the light-emitting unit 20 to generate moisture content or content rate data in the soil.
이러한 제어부(40)는 수광부(30)에서 감지되는 빛의 총량으로 감지할 수 있으나,수광부(30)에서 감지되는 빛을 파장별로 감지가능하도록 구성하고 파장별 감지량 또는 파장별 빛의 분포를 통해 수분 함유량 또는 함유율 데이터의 보정 과정이 수행될 수 있다. This control unit 40 can detect the total amount of light detected by the light receiving unit 30, but configured to detect the light detected by the light receiving unit 30 by wavelength, and through the detection amount by wavelength or the distribution of light by wavelength. A correction process of moisture content or content rate data may be performed.
이러한 보정 과정은 토양 내 수분 분포 이외에 토양의 성분 구성과 유기질 함유량에 따라 빛의 굴절률에 차이가 발생되고 수광부(30)에서 감지되는 빛의 양이 달라져 제어부(40)에서 생성되는 수분 함유량 또는 함유율 데이터의 오차를 보정하기 위한 것이다. In this correction process, in addition to the moisture distribution in the soil, a difference in the refractive index of light is generated depending on the composition of the soil and the content of organic matter, and the amount of light detected by the light receiving unit 30 is different, so that the moisture content or content rate data generated by the control unit 40 It is to correct the error of
이를 위해 각 토양 성분별 빛의 파장에 따른 수광 특성에 대한 데이터와 유기질 종류 또는 함량에 따른 수광 특성에 대한 데이터가 기 저장되면 수광부(30)에서 감지되는 빛의 양 및 파장에 따른 수광 특성을 분석하여 보다 정밀한 수분 함유량 또는 함유율 데이터를 생성가능하게 된다. To this end, when data on the light-receiving characteristics according to the wavelength of light for each soil component and the data on the light-receiving characteristics according to the type or content of organic substances are previously stored, the light-receiving characteristics according to the amount and wavelength of light detected by the light receiving unit 30 are analyzed. This makes it possible to generate more precise moisture content or content rate data.
도 4는 본 발명의 일실시예에 따른 토양 수분 센서의 시간에 따른 수분량과 광량 변화를 측정한 그래프이며, 도 5는 도 4의 측정량을 통한 토양 내 수분량과 수광부에서 감지되는 상대 광량 관계 그래프이고, 도 6은 본 발명의 일실시예에 따른 토양 수분 센서로 30000분 동안 수분량과 상대광량을 측정한 그래프이며, 도 7은 도 6의 측정량을 통한 토양 내 수분량과 수광부에서 감지되는 상대 광량 관계 그래프이다. FIG. 4 is a graph measuring a change in water amount and light amount over time of a soil moisture sensor according to an embodiment of the present invention, and FIG. 5 is a graph showing a relationship between the amount of moisture in the soil and the relative amount of light detected by the light receiving unit through the measured amount of FIG. 4 6 is a graph in which the moisture content and the relative light amount are measured for 30000 minutes by the soil moisture sensor according to an embodiment of the present invention, and FIG. 7 is a graph showing the moisture content in the soil through the measurement amount of FIG. 6 and the relative light amount detected by the light receiving unit. It is a relationship graph.
도면을 참조하면 도 4는 본 발명의 일실시예에 따른 토양 수분 센서의 광반사봉(10)을 고분자(PDMS:polydimethylsiloxane)봉으로 구성하고, 물을 지속적으로 추가하면서 측정한 자료인데, 시간이 지날수록 수분량이 증대됨을 알 수 있고, 이에 따라 수광부(30)에서 감지되는 상대 광량이 낮아짐을 알 수 있다. 도 5에서 살펴지는 바와 같이 수분량이 많아질수록 상대 광량은 낮고 수분량이 적어질수록 상대 광량은 커짐을 확인할 수 있다. Referring to the drawings, FIG. 4 is a data measured while the light reflecting rod 10 of the soil moisture sensor according to an embodiment of the present invention is composed of a polymer (polydimethylsiloxane) rod, and water is continuously added. It can be seen that the moisture content increases as the passing time, and accordingly, it can be seen that the relative amount of light detected by the light receiving unit 30 decreases. As illustrated in FIG. 5, it can be seen that the relative amount of light decreases as the amount of moisture increases, and the amount of relative light increases as the amount of moisture decreases.
아울러 도 6 또한 광반사봉(10)을 유리봉으로 구성하고 30000분 동안 수분량과 수광부(30)에서 감지되는 상대 광량을 측정한 것으로서, 도시된 바와 같이 수분량이 증가하거나 감소함에 따라 상대 광량은 반대로 감소하거나 증가하게 되는 것을 확인할 수 있으며, 도 7에 나타난 바와 같이 상대 광량과 수분량은 도 5에서 처럼 수분량이 많아질수록 상대 광량은 낮고 수분량이 적어질수록 상대 광량은 커짐을 확인할 수 있다. In addition, FIG. 6 is also a measurement of the amount of moisture and the relative amount of light detected by the light receiving unit 30 for 30000 minutes by configuring the light reflecting rod 10 as a glass rod. As shown in the figure, as the amount of water increases or decreases, the relative amount of light is reversed. It can be seen that the amount of light decreases or increases, and as shown in FIG. 7, the relative amount of light and the amount of water increase as the amount of water increases, and the amount of light increases as the amount of water decreases.
이와 같이 본 발명은 도면에 도시된 일실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. As described above, the present invention has been described with reference to an embodiment shown in the drawings, but this is only exemplary, and those of ordinary skill in the art can recognize that various modifications and other equivalent embodiments are possible therefrom. I will understand.
따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.Therefore, the true technical scope of the present invention should be determined by the technical spirit of the appended claims.

Claims (4)

  1. 토양 내부에 위치되어 토양 내 수분함량을 계측하기 위한 토양 수분 센서에 있어서, In the soil moisture sensor located inside the soil to measure the moisture content in the soil,
    상기 토양 수분 센서(100)는 The soil moisture sensor 100
    절곡부 또는 굴곡부를 가지며 봉형태로 형성되어 토양 내에 일정 부분 이상이 수용되는 광반사봉(10)과; A light reflecting rod 10 having a bent portion or a bent portion and formed in a rod shape to accommodate a certain portion or more in the soil;
    상기 광반사봉(10)의 일단에 위치되어 광반사봉(10) 내측으로 광을 조사하는 발광부(20)와;A light-emitting unit 20 positioned at one end of the light-reflecting rod 10 to irradiate light into the light-reflecting rod 10;
    상기 광반사봉(10)의 타단에 위치되어 발광부(20)로부터 조사되어 광반사봉(10) 내측에서 반사되어 타단까지 도달하는 광을 감지하는 수광부(30); 및A light-receiving unit 30 positioned at the other end of the light-reflecting rod 10 and irradiated from the light-emitting unit 20 to detect light reflected from the inner side of the light-reflecting rod 10 and reaching the other end; And
    상기 발광부(20)로부터 조사된 광의 총량과 수광부(30)로부터 감지된 광의 총량을 통해 토양 내 수분 함유율을 산출하는 제어부(40);A control unit 40 for calculating a moisture content in the soil through the total amount of light irradiated from the light emitting unit 20 and the total amount of light sensed by the light receiving unit 30;
    를 포함하는 것을 특징으로 하는 굴절률을 통해 수분량을 측정하는 토양 수분 센서. Soil moisture sensor for measuring the amount of moisture through the refractive index comprising a.
  2. 제1항에 있어서, The method of claim 1,
    상기 광반사봉(10)은 The light reflecting rod 10 is
    굴절율(n)이 1.3 이상인 투명매질로 이루어지는 것을 특징으로 하는 굴절률을 통해 수분량을 측정하는 토양 수분 센서. Soil moisture sensor for measuring the amount of moisture through the refractive index, characterized in that consisting of a transparent medium having a refractive index (n) of 1.3 or more.
  3. 제1항에 있어서, The method of claim 1,
    상기 광반사봉(10)은 The light reflecting rod 10 is
    'U'자 형상인 것을 특징으로 하는 굴절률을 통해 수분량을 측정하는 토양 수분 센서. A soil moisture sensor that measures the amount of moisture through a refractive index, characterized in that it has a'U' shape.
  4. 제1항에 있어서, The method of claim 1,
    상기 수광부(30)는 The light receiving unit 30 is
    포토다이오드인 것을 특징으로 하는 굴절률을 통해 수분량을 측정하는 토양 수분 센서. A soil moisture sensor that measures the amount of moisture through a refractive index, characterized in that it is a photodiode.
PCT/KR2020/012812 2019-10-01 2020-09-23 Soil moisture sensor for measuring amount of moisture through refractive index WO2021066378A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0121622 2019-10-01
KR1020190121622A KR102233557B1 (en) 2019-10-01 2019-10-01 Soil Moisture Sensor to Measure Moisture Through Refractive Index

Publications (1)

Publication Number Publication Date
WO2021066378A1 true WO2021066378A1 (en) 2021-04-08

Family

ID=75249794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/012812 WO2021066378A1 (en) 2019-10-01 2020-09-23 Soil moisture sensor for measuring amount of moisture through refractive index

Country Status (2)

Country Link
KR (1) KR102233557B1 (en)
WO (1) WO2021066378A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960011959U (en) * 1994-09-16 1996-04-15 박배식 Moisture meter
JP2006038511A (en) * 2004-07-23 2006-02-09 Tokyo Univ Of Agriculture & Technology Soil analyzing method and soil analyzer
KR20120007238A (en) * 2010-07-14 2012-01-20 서명훈 Device for measuring water content of soil
KR20170064571A (en) * 2015-11-10 2017-06-12 대한민국(농촌진흥청장) Measurement apparatus for soil properties
KR20180131193A (en) * 2017-05-31 2018-12-10 강원대학교산학협력단 Equipment for measuring moisture of soil in different depth

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0795743A3 (en) * 1996-03-15 1998-02-25 Japan Tobacco Inc. Method and apparatus for infra-red moisture measurement
KR200408229Y1 (en) * 2005-11-27 2006-02-07 김선희 soil humidity observation device
KR20190066337A (en) 2017-12-05 2019-06-13 주식회사 아이자랩 TDR type apparatus for measuring soil moisture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960011959U (en) * 1994-09-16 1996-04-15 박배식 Moisture meter
JP2006038511A (en) * 2004-07-23 2006-02-09 Tokyo Univ Of Agriculture & Technology Soil analyzing method and soil analyzer
KR20120007238A (en) * 2010-07-14 2012-01-20 서명훈 Device for measuring water content of soil
KR20170064571A (en) * 2015-11-10 2017-06-12 대한민국(농촌진흥청장) Measurement apparatus for soil properties
KR20180131193A (en) * 2017-05-31 2018-12-10 강원대학교산학협력단 Equipment for measuring moisture of soil in different depth

Also Published As

Publication number Publication date
KR102233557B1 (en) 2021-03-29

Similar Documents

Publication Publication Date Title
US4745293A (en) Method and apparatus for optically measuring fluid levels
US4989452A (en) Liquid-level detector
BRPI1007091B1 (en) side-illuminated fiber optic sensor, multi parametric and with multiple sensor points.
WO2014153633A1 (en) Multiparameter device for measuring by optical means the filling level of tanks and reservoirs of liquids and liquefied products, the index of refraction, and for image analysis, without moving parts
WO2017165907A1 (en) Humidity sensors and uses thereof
CN108398211B (en) Distributed optical fiber water leakage sensor based on external source positioning and water leakage detection method
CN107389674A (en) A kind of urinalysis device
US7628533B2 (en) Systems and methods for detecting corrosion
WO2021066378A1 (en) Soil moisture sensor for measuring amount of moisture through refractive index
FI75669C (en) Method for measuring transmission of light and apparatus for applying the method.
BRPI0913283A2 (en) optical measurement unit and method for performing reflective measurement
US6795598B1 (en) Liquid-level sensor having multiple solid optical conductors with surface discontinuities
FI93583B (en) Prism
US5698775A (en) Device for locating the position of the separation between two mediums, and a receptacle and a detection process employing the device
FI127243B (en) Method and measuring device for continuous measurement of Abbe number
EP3737971B1 (en) Method and system for real-time determination of characteristics of radio-chromic films
WO2021040247A1 (en) Gas sensing system using scattered light measurement
EP0780683A2 (en) Apparatus for dewpoint determination
JPH0234582Y2 (en)
EP1058099A2 (en) Fluid detector
ES2738592T3 (en) Moisture sensor and humidity measurement procedure.
US20220091116A1 (en) Optical sensing based on functionalized evanescent fiber sensor for process fluid flow analysis
CN207066995U (en) A kind of urinalysis device
SU1024808A1 (en) Hygrometer
JPS62204143A (en) Optical fiber type humidity sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871622

Country of ref document: EP

Kind code of ref document: A1