WO2021066102A1 - Filament for three-dimensional printing - Google Patents

Filament for three-dimensional printing Download PDF

Info

Publication number
WO2021066102A1
WO2021066102A1 PCT/JP2020/037443 JP2020037443W WO2021066102A1 WO 2021066102 A1 WO2021066102 A1 WO 2021066102A1 JP 2020037443 W JP2020037443 W JP 2020037443W WO 2021066102 A1 WO2021066102 A1 WO 2021066102A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
olefin
filament
dimensional modeling
propylene
Prior art date
Application number
PCT/JP2020/037443
Other languages
French (fr)
Japanese (ja)
Inventor
亜希子 平野
二朗 佐野
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021551456A priority Critical patent/JPWO2021066102A1/ja
Publication of WO2021066102A1 publication Critical patent/WO2021066102A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • B29C64/259Interchangeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/314Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a three-dimensional modeling filament, a resin molded body, a wound body, and a three-dimensional modeling cartridge.
  • the Fused Deposition Modeling System by Extrusion is a system generally called a 3D printer (3D printer) today, and examples thereof include a Fused Deposition Modeling System manufactured by Stratasys Incorporated in the United States.
  • Fused Deposition Modeling Systems by Extrusion are used to extrude a fluid raw material from a nozzle site on an extrusion head to build a three-dimensional object in layers based on a computer-aided design (CAD) model.
  • CAD computer-aided design
  • the Fused Deposition Modeling method inserts a raw material made of a thermoplastic resin into an extrusion head as a filament, and continuously heats and melts the material from the nozzle portion provided on the extrusion head onto the XY plane substrate in the chamber. It is a simple system in which the extruded resin is deposited and fused on a resin laminate that has already been deposited, and this is integrally solidified as it cools. Therefore, the ME method has come to be widely used.
  • Patent Document 1 a three-dimensional object similar to a CAD model is usually constructed by repeating an extrusion process while the nozzle position with respect to the substrate rises in the Z-axis direction perpendicular to the XY plane (Patent Document 1, Patent Document 1, 2).
  • an amorphous or hard-to-crystallize thermoplastic resin such as an acrylonitrile-butadiene-styrene resin or polylactic acid is generally preferable from the viewpoint of molding processability and fluidity. It has been used (Patent Documents 3 to 5).
  • Patent Document 6 a three-dimensional modeling material using a low crystallinity polyolefin resin is disclosed.
  • the low crystallinity polyolefin resin as described in Patent Document 6 can suppress the occurrence of molding defects such as warpage due to crystallization shrinkage during three-dimensional modeling, and can improve the three-dimensional formability. is there. Further, the formability of the polyolefin resin at a relatively low speed such as 0.5 mm / s can be improved.
  • the low crystallinity of the low crystallinity polyolefin resin lowers the elastic modulus especially near room temperature, so that the strength of the three-dimensionally molded resin molded product and the filament It became clear that the hardness was not sufficient. Therefore, the fields to which the low crystallinity polyolefin resin as mentioned in Patent Document 6 can be applied are limited, and a problem has been found when the molding speed is increased in order to improve the productivity. .. Specifically, when the filament is sent to the extrusion head at high speed, as in the case of high-speed 3D modeling of polyolefin resin, a new problem is clarified that the filament bends and the high-speed 3D formability becomes poor. became.
  • the gist of the present invention is as follows.
  • ⁇ 1> A filament for three-dimensional modeling containing an olefin resin composition ( ⁇ ) satisfying the following formula [1]. 700 ⁇ 24 ⁇ ⁇ Hc ( ⁇ ) -E'( ⁇ ) ... [1]
  • E'( ⁇ ) Storage elastic modulus (MPa) of the olefin resin composition ( ⁇ ) measured at 40 ° C. and 10 Hz.
  • the olefin-based resin composition ( ⁇ ) contains the olefin-based resin composition (A) and the resin composition (B).
  • the resin composition (B) has a crystallization calorific value ( ⁇ Hc (B)) of less than 10 J / g when measured at a temperature lowering rate of 10 ° C./min with a differential scanning calorimeter, ⁇ 1> to ⁇ 3.
  • the filament for three-dimensional modeling according to any one of. ⁇ 5> The crystallization temperature when measured at a temperature decrease rate of 10 ° C./min with the differential scanning calorimeter of the olefin resin composition (A) and the differential scanning calorimetry of the olefin resin composition ( ⁇ ).
  • the olefin-based resin composition ( ⁇ ) contains the olefin-based resin composition (A).
  • the olefin resin composition (A) is a propylene homopolymer, a random copolymer of ethylene and at least one monomer of ⁇ -olefin having 4 to 12 carbon atoms and propylene, ethylene and ⁇ having 4 to 12 carbon atoms.
  • a dynamically crosslinked product a polymer of at least one of propylene and polyethylene and an ethylene-propylene rubber, at least one resin composition selected from the group consisting of high density polyethylene, low density polyethylene, and linear low density polyethylene.
  • the olefin-based resin composition ( ⁇ ) contains the resin composition (B).
  • ⁇ 9> A resin molded product containing the three-dimensional molding filament according to any one of ⁇ 1> to ⁇ 8>.
  • ⁇ 10> The wound body of the three-dimensional modeling filament according to any one of ⁇ 1> to ⁇ 8>.
  • ⁇ 11> A three-dimensional modeling cartridge containing the three-dimensional modeling filament according to any one of ⁇ 1> to ⁇ 8>.
  • the filament does not bend even when the filament is sent to the extrusion head at high speed, as in the case of warpage of a modeled object (resin molded product) during 3D modeling or high-speed 3D modeling, and high speed 3 It is possible to provide a polyolefin-based three-dimensional molding filament having good dimensional moldability and excellent strength of a molded product (resin molded product). Further, according to the present invention, it is possible to provide a resin molded body, a wound body, and a three-dimensional modeling cartridge containing the three-dimensional modeling filament.
  • the reason why the present invention will be effective is not yet clear, but it can be inferred that the reason is as follows. That is, the three-dimensional modeling filament of the present invention has a low amount of heat of crystallization. Therefore, the filament for three-dimensional modeling of the present invention has a small amount of crystallization shrinkage, and warpage during three-dimensional modeling is suppressed. Further, the filament for three-dimensional modeling of the present invention has a high elastic modulus near room temperature. Therefore, the three-dimensional modeling filament of the present invention can also suppress bending during filament feeding.
  • the calorific value of crystallization and the elastic modulus near room temperature are in a proportional relationship. Therefore, if the calorific value of crystallization is lowered in order to suppress warpage, the elastic modulus near room temperature decreases and the filament easily bends. It is difficult to suppress warpage and filament bending at the same time during molding.
  • the filament for three-dimensional modeling of the present invention can simultaneously suppress warpage and bending by containing a specific resin.
  • the filament for three-dimensional modeling of the present invention can achieve both a low amount of crystallization shrinkage and a high room temperature elastic modulus while ensuring interlayer adhesiveness by containing a specific resin.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with various modifications within the scope of the gist thereof.
  • the three-dimensional modeling filament of the present invention is characterized by containing an olefin resin composition ( ⁇ ).
  • the olefin resin composition ( ⁇ ) is characterized by satisfying the following formula [1].
  • the olefin-based resin composition ( ⁇ ) referred to in the present invention contains an olefin-based resin and, if necessary, contains other resins, and additives are excluded.
  • ⁇ Hc ( ⁇ ) The amount of heat of crystallization (J / g) when the olefin resin composition ( ⁇ ) was measured with a differential scanning calorimeter at a temperature lowering rate of 10 ° C./min.
  • E'( ⁇ ) Storage elastic modulus (MPa) of the olefin resin composition ( ⁇ ) measured at 40 ° C. and 10 Hz.
  • the upper limit of "24 x ⁇ Hc ( ⁇ ) -E'( ⁇ )" is not particularly limited, but is preferably 500 or less, preferably 300 or less, from the viewpoint of achieving both high-speed formability and interlayer adhesion. More preferably, it is more preferably 100 or less, particularly preferably 0 or less, still more preferably -100 or less, and most preferably -200 or less.
  • the lower limit of "24 x ⁇ Hc ( ⁇ ) -E'( ⁇ )" is preferably ⁇ 2000 or more, and more preferably -1500 or more, from the viewpoint of achieving both high-speed formability and interlayer adhesion. It is preferably ⁇ 1000 or more, more preferably ⁇ 500 or higher, and most preferably ⁇ 300 or higher.
  • ⁇ Hc ( ⁇ ) is not particularly limited, but is usually 75 J / g or less, preferably 60 J / g or less, more preferably 55 J / g or less, still more preferably 50 J / g or less. , 45 J / g or less, more preferably 40 J / g or less, and most preferably 30 J / g or less. As a result, it is possible to reduce the warp of the modeled product (resin molded product) due to crystallization shrinkage during three-dimensional modeling.
  • ⁇ Hc ( ⁇ ) is preferably 1 J / g or more, more preferably 5 J / g or more, further preferably 8 J / g or more, particularly preferably 10 J / g or more, and 15 J / g or more from the viewpoint of heat resistance. Most preferred.
  • ⁇ Hc ( ⁇ ) can be adjusted by the composition of the resin, the blend ratio of the olefin resin composition (A) and the resin composition (B) described later, and the like.
  • E'( ⁇ ) is not particularly limited, but is usually 350 MPa or more. When E'( ⁇ ) is within this range, bending during filament feeding is suppressed, the formability is excellent, and the strength of the molded resin molded body is excellent.
  • E'( ⁇ ) is preferably 400 MPa or more, more preferably 500 MPa or more, further preferably 800 MPa or more, particularly preferably 1000 MPa or more, and most preferably 1200 MPa or more.
  • E'( ⁇ ) is not particularly limited, but E'( ⁇ ) is preferably 5000 MPa or less, more preferably 4500 MPa or less, further preferably 4000 MPa or less, particularly preferably 3500 MPa or less, and 3000 MPa or less. It is more preferable, and 2500 MPa or less is most preferable.
  • E'( ⁇ ) is within this range, the hardness of the filament becomes appropriate, and handling during modeling work (setting of the filament to the printer, etc.) is easy, which is preferable.
  • E'( ⁇ ) can be adjusted by the composition of the resin, the blend ratio of the olefin resin composition (A) and the resin composition (B) described later, and the like.
  • the crystallization temperature (Tc ( ⁇ )) of the olefin resin composition ( ⁇ ) when measured at a temperature lowering rate of 10 ° C./min with a differential scanning calorimeter is not particularly limited, but at the time of modeling. From the viewpoint of suppressing warpage, it is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, further preferably 120 ° C. or lower, particularly preferably 110 ° C. or lower, and 100 ° C. or lower. Is the most preferable.
  • Tc ( ⁇ ) is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, further preferably 50 ° C. or higher, particularly preferably 60 ° C. or higher, and most preferably 70 ° C. or higher.
  • Tc ( ⁇ ) can be adjusted by the composition of the resin, the blend ratio of the olefin resin composition (A) and the resin composition (B) described later, and the like.
  • the crystal melting temperature (Tm ( ⁇ )) of the olefin resin composition ( ⁇ ) when measured at a heating rate of 10 ° C./min with a differential scanning calorimeter is not particularly limited, but is general-purpose. From the viewpoint of easy modeling with a three-dimensional printer, the temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, further preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower, and 140 ° C. Most preferably:
  • Tm ( ⁇ ) is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, further preferably 60 ° C. or higher, particularly preferably 80 ° C. or higher, and most preferably 100 ° C. or higher.
  • Tm ( ⁇ ) can be adjusted by the composition of the resin, the blend ratio of the olefin resin composition (A) and the resin composition (B) described later, and the like.
  • the olefin-based resin composition ( ⁇ ) preferably contains the olefin-based resin composition (A) described later and the resin composition (B).
  • the resin composition (B) has a crystallization heat quantity ( ⁇ Hc (B)) of less than 10 J / g when measured with a differential scanning calorimeter at a temperature lowering rate of 10 ° C./min.
  • the difference between ⁇ ) and the crystallization temperature (Tc ( ⁇ )) measured at a temperature lowering rate of 10 ° C./min with a differential scanning calorimeter is not particularly limited, but is 10 ° C. or less. It is preferably 8 ° C. or lower, more preferably 6 ° C. or lower, particularly preferably 4 ° C. or lower, and most preferably 2 ° C. or lower.
  • the crystallization of the olefin resin composition (A) is not easily inhibited by the resin composition (B).
  • the heat resistance of the resin molded product formed by the three-dimensional molding filament of the present invention is excellent.
  • the olefin-based resin composition (A) is not particularly limited, and specific examples thereof include the following.
  • a propylene homopolymer a random copolymer of ethylene and at least one monomer of ⁇ -olefin having 4 to 12 carbon atoms and propylene, and at least one monomer of ethylene and ⁇ -olefin having 4 to 12 carbon atoms and propylene.
  • Block copolymer with, blend of at least one of propylene and polyethylene and ethylene-propylene rubber, dynamically crosslinked product of at least one of propylene and polyethylene and ethylene-propylene rubber examples thereof include a polymer product of at least one of propylene and polyethylene and ethylene-propylene rubber (reactor TPO), high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (LLDPE).
  • a propylene homopolymer a random copolymer of ethylene and at least one monomer of an ⁇ -olefin having 4 to 12 carbon atoms and propylene, and an ⁇ -olefin having ethylene and 4 to 12 carbon atoms.
  • the olefin-based resin composition (A) may consist of one resin selected from the above, or may be a combination of a plurality of resins selected from the above.
  • the calorific value for crystallization ( ⁇ Hc (A)) measured by the differential scanning calorimeter of the olefin resin composition (A) at a temperature lowering rate of 10 ° C./min is not particularly limited, but from the viewpoint of formability. Therefore, 120 J / g or less is preferable, 110 J / g or less is more preferable, 100 J / g or less is further preferable, 85 J / g or less is particularly preferable, and 70 J / g or less is most preferable.
  • ⁇ Hc (A) is preferably 10 J / g or more, more preferably 20 J / g or more, further preferably 30 J / g or more, particularly preferably 40 J / g or more, and particularly preferably 50 J / g or more, from the viewpoint of heat resistance. Most preferred.
  • the crystallization calorie ( ⁇ Hc) in the present invention is a crystal melting temperature (Tm) from room temperature at a heating rate of 10 ° C./min for about 10 mg of a sample according to JIS K7122 using a differential scanning calorimeter (DSC). It is a value measured when the temperature is raised to + 20 ° C. or higher, held at the temperature for 1 minute, and then lowered to 0 ° C. at a temperature lowering rate of 10 ° C./min.
  • the crystallization temperature (Tc (A)) measured by the differential scanning calorimeter of the olefin resin composition (A) at a temperature lowering rate of 10 ° C./min is not particularly limited, but is 150 ° C. from the viewpoint of formability.
  • the temperature is preferably 140 ° C. or lower, more preferably 130 ° C. or lower, particularly preferably 120 ° C. or lower, and most preferably 110 ° C. or lower.
  • Tc (A) is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, further preferably 70 ° C. or higher, and more preferably 80 ° C. or higher. It is particularly preferable, and most preferably 90 ° C. or higher.
  • Tc (A) can be adjusted by the composition of the resin and the stereoregularity.
  • the crystal melting temperature (Tm (A)) of the olefin resin composition (A) is not particularly limited, but is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and 120 ° C. or higher from the viewpoint of heat resistance. Is more preferable, 130 ° C. or higher is particularly preferable, and 135 ° C. or higher is most preferable.
  • Tm (A) is not particularly limited, and Tm (A) is generally preferably 200 ° C. or lower, more preferably 195 ° C. or lower, further preferably 190 ° C. or lower, and particularly preferably 185 ° C. or lower. It is preferably 180 ° C. or lower.
  • Tm (A) can be adjusted by the composition of the resin, the stereoregularity, and the like.
  • the storage elastic modulus (E'(A)) of the olefin resin composition (A) measured at 40 ° C. and 10 Hz is not particularly limited, but it is not particularly limited, but it is possible to suppress filament refraction during molding and to mold the molded resin. From the viewpoint of body strength, 100 MPa or more is preferable, 200 MPa or more is more preferable, 300 MPa or more is further preferable, 350 MPa or more is particularly preferable, and 400 MPa or more is most preferable.
  • E'(A) is preferably 3000 MPa or less, more preferably 2000 MPa or less, further preferably 1500 MPa or less, particularly preferably 1250 MPa or less, and most preferably 1000 MPa or less from the viewpoint of filament handleability.
  • E'(A) can be adjusted by the composition of the resin, the three-dimensional regularity, and the like.
  • the olefin-based resin composition ( ⁇ ) preferably contains the olefin-based resin composition (A), and may contain the resin composition (B) described later if necessary.
  • the filament for three-dimensional modeling of the present invention may contain a filler, other resin and other additives described later in addition to the olefin resin composition ( ⁇ ).
  • the content of the olefin resin composition ( ⁇ ) in the filament for three-dimensional modeling of the present invention is not particularly limited, but is usually 50% by mass or more from the viewpoint of excellent heat resistance and formability, which is 60. By mass% or more is more preferable, 80% by mass or more is further preferable, 90% by mass or more is particularly preferable, and 95% by mass or more is most preferable.
  • the content of the olefin resin composition ( ⁇ ) in the filament for three-dimensional modeling of the present invention is preferably 100% by mass or less, preferably 99% by mass or less, from the viewpoint of the strength of the modeled object and the addition of other functionality. Is more preferable, 98.5% by mass or less is further preferable, and 98% by mass or less is particularly preferable.
  • the olefin-based resin composition ( ⁇ ) contains the olefin-based resin composition (A) and the resin composition (B) described later, the olefin-based resin composition ( ⁇ ) in the olefin-based resin composition ( ⁇ ) From the viewpoint of heat resistance, the content of A) is preferably 30% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, particularly preferably 60% by mass or more, and most preferably 70% by mass or more. preferable.
  • the content of the olefin resin composition (A) in the olefin resin composition ( ⁇ ) is preferably 95% by mass or less, more preferably 90% by mass or less, and 85% by mass from the viewpoint of formability.
  • the following is more preferable, 80% by mass or less is particularly preferable, and 75% by mass or less is most preferable.
  • the olefin-based resin composition ( ⁇ ) can contain the resin composition (B).
  • the resin composition (B) is not particularly limited as long as the amount of heat of crystallization ( ⁇ Hc (B)) measured at a temperature lowering rate of 10 ° C./min with a differential scanning calorimeter is less than 10 J / g. Absent.
  • ⁇ Hc (B) is preferably 9 J / g or less, more preferably 8 J / g or less, still more preferably 7 J / g or less, from the viewpoint that the amount of heat of crystallization of the olefin resin composition ( ⁇ ) can be easily adjusted. 6 J / g or less is particularly preferable.
  • the lower limit of ⁇ Hc (B) is not particularly limited, but is 0 J / g or more, preferably 1 J / g or more, more preferably 1.5 J / g or more, and 2 J / g from the viewpoint of heat resistance.
  • the above is more preferable, and 2.5 J / g or more is particularly preferable.
  • the resin composition (B) include cyclic olefin resin, ABS (acrylonitrile butadiene styrene), MBS (methyl methacrylate butadiene styrene copolymer), PETG (PolyEthylene Terephthalate Glycol-modified), and the like.
  • examples include PLA (polylactic acid) and PC (polycarbonate).
  • the cyclic olefin resin is preferable from the viewpoint of kneadability with the olefin resin composition (A).
  • the cyclic olefin resin is an olefin resin having an alicyclic structure in the molecular chain.
  • the alicyclic structure include a monocyclic structure such as cyclopropane, cyclobutane, cyclopentane, and cyclohexane, and a bicyclic structure such as norbornane, decalin, and spiropentane.
  • These may be contained in the polymer main chain or the side chain, but in order to further enhance the kneadability and heat-sealing property with the olefin resin composition (A), they may be contained in the side chain. It is preferable that it is contained.
  • Cyclic olefin resins include copolymers of ethylene and cyclic olefins (cycloalkenes), copolymers of ⁇ -olefins and cyclic olefins (cycloalkenes), cyclic olefins (cycloalkenes), and cyclic olefins. Examples thereof include a hydrogenated compound of a ring-opening polymer, a hydride block copolymer which is a hydride of a block copolymer containing at least one aromatic vinyl monomer unit and at least one conjugated diene monomer unit.
  • At least one aromatic vinyl monomer unit and at least one kind as a resin having an alicyclic structure in the side chain from the viewpoint of kneadability and heat-sealing property with the olefin resin composition (A).
  • a hydride block copolymer which is a hydride of the block copolymer containing the conjugated diene monomer unit of the above, is preferable.
  • the resin composition (B) may consist of one resin selected from the above, or may be a combination of a plurality of resins selected from the above.
  • the hydrogenated block copolymer is a hydrogenated product of a hydrogenated aromatic vinyl polymer block unit, which is a hydride of a polymer block composed of the aromatic vinyl monomer unit, and hydrogen, which is a hydride of a polymer block composed of the conjugated diene monomer unit. It has a modified conjugated diene polymer block unit. Further, the hydrogenated block copolymer has at least two hydrogenated aromatic vinyl polymer block units and at least one hydrogenated conjugated diene polymer block unit.
  • a "block” means a polymerized segment of a copolymer which represents a microlayer separation from a polymerized segment which is structurally or compositionally different from the copolymer, as described later.
  • “having at least two block units” means that the hydrogenated block copolymer has at least two polymerized segments of the copolymer representing microlayer separation from structurally or structurally different polymerized segments.
  • the aromatic vinyl monomer used as a raw material for the aromatic vinyl monomer unit is a monomer represented by the following general formula (1).
  • R is a hydrogen atom or an alkyl group
  • Ar is a phenyl group, a halophenyl group, an alkylphenyl group, an alkylhalophenyl group, a naphthyl group, a pyridinyl group, or an anthrasenyl group.
  • the alkyl group may be a mono- or multiple-substituted alkyl group with a functional group such as a halo group, a nitro group, an amino group, a hydroxy group, a cyano group, a carbonyl group, and a carboxyl group.
  • the alkyl group preferably has 1 to 6 carbon atoms.
  • the Ar is preferably a phenyl group or an alkylphenyl group, and more preferably a phenyl group.
  • aromatic vinyl monomer examples include styrene, ⁇ -methylstyrene, vinyltoluene (including all isomers, particularly p-vinyltoluene), ethylstyrene, propylstyrene, butylstyrene, vinylbiphenyl, vinylnaphthalene, and vinyl.
  • Anthracene all isomers, and mixtures thereof.
  • the conjugated diene monomer used as a raw material for the conjugated diene monomer unit may be a monomer having two conjugated double bonds, and is not particularly limited.
  • conjugated diene monomer examples include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2-methyl-1,3 pentadiene and similar compounds, and mixtures thereof.
  • Polybutadiene which is a polymer of 1,3-butadiene, has either a 1,2 configuration that gives an equivalent of 1-butane repeating units by hydrogenation, or a 1,4 configuration that gives an equivalent of ethylene repeating units by hydrogenation. Can be included.
  • the hydrogenated block copolymer composed of the aromatic vinyl monomer and the conjugated diene monomer containing 1,3-butadiene is included in the hydrogenated block copolymer used in the present invention.
  • the hydrogenated block copolymer is a functional group-free block copolymer.
  • "without functional groups” means that there are no functional groups in the block copolymer, that is, there are no groups containing elements other than carbon and hydrogen.
  • Preferable examples of the hydrogenated aromatic vinyl polymer block unit include polystyrene hydride, and preferred examples of the hydrogenated conjugated diene polymer block unit include hydrogenated polybutadiene.
  • a preferred embodiment of the hydrogenated block copolymer is a hydrogenated triblock or pentablock copolymer of styrene and butadiene, preferably free of any other functional group or structural modifier.
  • a "block” is defined as a polymerized segment of a copolymer that represents microlayer separation from structurally or compositionally different polymerized segments of the copolymer. Microlayer separation occurs due to the immiscibility of the polymerized segments in the block copolymer.
  • the lower limit of the content (mol%) of the hydrogenated aromatic vinyl polymer block unit is preferably 30 mol% or more, more preferably 40 mol% or more, based on the cyclic polyolefin.
  • the upper limit of the content (mol%) of the hydrogenated aromatic vinyl polymer block unit is preferably 99 mol% or less, more preferably 90 mol% or less, based on the cyclic polyolefin.
  • the ratio of hydrogenated aromatic vinyl polymer block units is equal to or higher than the above lower limit value, the rigidity does not decrease, and if it is equal to or lower than the above upper limit value, brittleness does not deteriorate.
  • the lower limit of the content of the hydrogenated conjugated diene polymer block unit is preferably 1 mol% or more, more preferably 10 mol% or more, based on the cyclic polyolefin.
  • the upper limit of the content of the hydrogenated conjugated diene polymer block unit is preferably 70 mol% or less, more preferably 60 mol% or less, based on the cyclic polyolefin.
  • the ratio of hydrogenated conjugated diene polymer block units is at least the above lower limit value, brittleness does not deteriorate, and if it is at least the above upper limit value, rigidity does not decrease, so that the strength of the molded resin molded product is excellent. ..
  • the hydrogenated block copolymers are triblocks, multiblocks, tapered blocks, such as SBS, SBSBS, SIS, SISIS, and SISBS (where S stands for polystyrene, B stands for polybutadiene, and I stands for polyisoprene).
  • S stands for polystyrene
  • B stands for polybutadiene
  • I stands for polyisoprene
  • the hydrogenated block copolymer contains a segment made of an aromatic vinyl polymer at each end. Therefore, the hydrogenated block copolymer will have at least two hydrogenated aromatic vinyl polymer block units. Then, at least one hydrogenated conjugated diene polymer block unit will be provided between the two hydrogenated aromatic vinyl polymer block units.
  • the pre-hydrogenation block copolymer constituting the hydrogenation block may contain several additional blocks, and these blocks may be bonded to any position in the triblock polymer backbone.
  • the linear block includes, for example, SBS, SBSB, SBBSS, and SBBSSB.
  • the copolymer may be branched and the polymerization chain may be attached at any position along the backbone of the copolymer.
  • the lower limit of the weight average molecular weight (Mw) of the hydrogenated block copolymer is preferably 30,000 or more, more preferably 40,000 or more, still more preferably 45,000 or more, and particularly preferably 50,000 or more.
  • the upper limit of Mw of the hydrogenated block copolymer is preferably 120,000 or less, more preferably 100,000 or less, still more preferably 95,000 or less, particularly preferably 90,000 or less, and most preferably 85,000 or less. , Very preferably 80,000 or less.
  • Mw is determined using gel permeation chromatography (GPC).
  • the hydrogenation level of the block copolymer is preferably 90% or more for the hydrogenated aromatic vinyl polymer block unit, 95% or more for the hydrogenated conjugated diene polymer block unit, and more preferably 95% or more for the hydrogenated aromatic vinyl polymer block unit.
  • the hydrogenated conjugated diene polymer block unit is 99% or more, more preferably the hydrogenated aromatic vinyl polymer block unit is 98% or more, and the hydrogenated conjugated diene polymer block unit is 99.5% or more, particularly.
  • the hydrogenated aromatic vinyl polymer block unit is 99.5% or more, and the hydrogenated conjugated diene polymer block unit is 99.5% or more.
  • the hydrogenation level of the hydrogenated aromatic vinyl polymer block unit indicates the rate at which the aromatic vinyl polymer block unit is saturated by hydrogenation, and the hydrogenation level of the conjugated diene polymer block unit is the conjugated diene polymer block. Indicates the rate at which the unit is saturated by hydrogenation. Such high levels of hydrogenation are preferred for heat resistance and transparency.
  • the hydrogenation level of the aromatic vinyl polymer block unit and the hydrogenation level of the conjugated diene polymer block unit are determined by using proton NMR.
  • the glass transition temperature (Tg) of the resin composition (B) is not particularly limited, but is preferably 50 ° C. or higher, preferably 70 ° C. or higher, from the viewpoint of strength and heat resistance of the filament and the resin molded product formed by using the filament. Is more preferable, 80 ° C. or higher is further preferable, 90 ° C. or higher is particularly preferable, and 100 ° C. or higher is most preferable.
  • the glass transition temperature (Tg) of the resin composition (B) is preferably 200 ° C. or lower from the viewpoint of kneadability with the olefin resin composition (A) and formability (suppression of warpage during modeling). 180 ° C. or lower is more preferable, 160 ° C. or lower is further preferable, 150 ° C. or lower is particularly preferable, and 140 ° C. or lower is most preferable.
  • the glass transition temperature (Tg) is defined by raising the temperature of about 10 mg of a sample from room temperature to 250 ° C. at a heating rate of 10 ° C./min according to JIS K7121 using a differential scanning calorimeter (DSC). It is a value measured when the temperature is maintained for 1 minute, the temperature is lowered to 30 ° C. at a temperature lowering rate of 10 ° C./min, and the temperature is raised to 250 ° C. again at a temperature rising rate of 10 ° C./min.
  • DSC differential scanning calorimeter
  • the content of the resin composition (B) in the olefin resin composition ( ⁇ ) is preferably less than 70% by mass, more preferably less than 60% by mass, still more preferably less than 50% by mass, from the viewpoint of heat resistance. , Less than 40% by mass is more preferable. Further, from the viewpoint of formability, the content is preferably more than 5% by mass, more preferably more than 10% by mass, further preferably more than 15% by mass, and particularly preferably more than 20% by mass. , 25% by mass or more is most preferable.
  • the olefin resin composition ( ⁇ ) may be used in a shape suitable for the embodiment.
  • the shape include pellets, powders, granules, filaments and the like. Above all, it is preferable to use it in a filament shape.
  • the filament for three-dimensional modeling of the present invention includes fillers (organic particles, inorganic particles, reinforcing materials, etc.), other resins, and the like to the extent that the effects of the present invention are not impaired. May contain the components of.
  • fillers organic particles, inorganic particles, reinforcing materials, etc.
  • resins include PLA, polyester resin, polyamide resin, polyacetal resin and the like.
  • Other components include heat resistant agents, UV absorbers, light stabilizers, antioxidants, antistatic agents, lubricants, slip agents, crystal nucleating agents, tackifiers, sealability improvers, antifogging agents, and mold release agents.
  • agents plasticizers, pigments, dyes, fragrances, flame retardants and the like.
  • organic particles among the fillers include acrylic resin particles, melamine resin particles, silicone resin particles, polystyrene resin particles, and the like.
  • inorganic particles among the fillers include silica, alumina, kaolin, titanium dioxide, calcium carbonate, magnesium carbonate, zinc carbonate, calcium stearate, magnesium stearate, zinc stearate and the like.
  • examples of the reinforcing material among the fillers include an inorganic filler and an inorganic fiber.
  • the inorganic filler include calcium carbonate, zinc oxide, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminate, magnesium silicate, potassium titanate, glass balloon, glass flakes, and glass powder.
  • inorganic fibers include glass cut fibers, glass milled fibers, glass fibers, gypsum whiskers, metal fibers, metal whiskers, ceramic whiskers, carbon fibers, cellulose nanofibers, and the like.
  • the content of the filler is not particularly specified, but from the viewpoint of the strength of the resin molded product to be molded, it is preferably 1% by mass or more, preferably 5% by mass or more, based on 100% by mass of the resin composition ( ⁇ ). More preferably, 10% by mass or more is further preferable. Further, from the viewpoint of suppressing deterioration of the interlayer adhesiveness of the resin molded product to be molded, 50% by mass or less is preferable, 40% by mass or less is more preferable, and 30% by mass or less is further preferable.
  • the filament for three-dimensional modeling of the present invention is produced by using the above-mentioned olefin resin composition ( ⁇ ).
  • the method for mixing the olefin resin composition ( ⁇ ) is not particularly limited, but a known method, for example, a melt-kneading device such as a single-screw extruder, a multi-screw extruder, a Banbury mixer, or a kneader can be used. it can.
  • a twin-screw extruder in the same direction from the viewpoint of dispersibility and miscibility of each component.
  • Excellent dispersibility and miscibility are preferable because the accuracy and roundness of the filament diameter can be improved.
  • the method for producing the three-dimensional molding filament of the present invention is not particularly limited, but a method for molding the above-mentioned olefin resin composition ( ⁇ ) by a known molding method such as extrusion molding, or an olefin resin. It can be obtained by a method or the like in which the composition ( ⁇ ) is directly used as a filament at the time of production.
  • the conditions thereof are appropriately adjusted depending on the flow characteristics, molding processability, etc. of the resin composition used, but are usually 150 to 300 ° C., preferably 170 to 170. It is 250 ° C.
  • the diameter of the three-dimensional molding filament of the present invention depends on the specifications of the system used for molding the resin molded product by the fused deposition modeling method, but is usually 1.0 mm or more, preferably 1.5 mm or more, more preferably 1. It is 1.6 mm or more, particularly preferably 1.7 mm or more.
  • the diameter of the three-dimensional modeling filament of the present invention is usually 5.0 mm or less, preferably 4.0 mm or less, more preferably 3.5 mm or less, and particularly preferably 3.0 mm or less.
  • the accuracy of the diameter is within ⁇ 5% with respect to an arbitrary measurement point of the filament from the viewpoint of stability of raw material supply.
  • the three-dimensional modeling filament of the present invention has a standard deviation of diameter of preferably 0.07 mm or less, and particularly preferably 0.06 mm or less.
  • the filament for three-dimensional modeling of the present invention has a roundness of preferably 0.93 or more, and particularly preferably 0.95 or more.
  • the upper limit of roundness is 1.0.
  • a three-dimensional molding filament having a small standard deviation in diameter and high roundness uneven ejection during molding is suppressed, and a resin molded body having excellent appearance and surface properties can be stably manufactured. can do.
  • olefin resin composition ( ⁇ ) a three-dimensional modeling filament satisfying such standard deviation and roundness can be produced relatively easily.
  • the 3D modeling filament is stably stored and the 3D modeling filament is stably supplied to the 3D printer. Is required. Therefore, the filament for three-dimensional modeling of the present invention is packaged as a winding body wound around a bobbin, or the winding body is housed in a cartridge for long-term storage, stable feeding, and ultraviolet rays. It is preferable from the viewpoint of protection from environmental factors such as, twist prevention, and the like.
  • the cartridge include a wound body wound around a bobbin, a structure in which a moisture-proof material or a moisture-absorbing material is used inside, and at least an orifice portion for feeding the filament is sealed.
  • a winding body in which a filament for 3D modeling is wound on a bobbin, or a cartridge containing the winding body is installed in or around the 3D printer, and the filament is always introduced from the cartridge into the 3D printer during molding. to continue.
  • a resin molded product is obtained by molding with a three-dimensional printer using the filament for three-dimensional molding of the present invention.
  • the molding method using a 3D printer include a hot melting lamination method (ME method), a powder sintering method, an inkjet method, and a stereolithography method (SLA method).
  • the filament for a 3D printer of the present invention is thermally melted. It is particularly preferable to use it in the lamination method.
  • the case of the Fused Deposition Modeling method will be described as an example.
  • a three-dimensional printer generally has a chamber, and in the chamber, a heatable base, an extrusion head installed in a gantry structure, a heating melter, a filament guide, a raw material supply unit such as a filament cartridge installation unit, etc. I have.
  • the extrusion head and the heating / melting device are integrated.
  • the base is a platform for constructing a target three-dimensional object, support material, etc., and by heating and keeping warm, adhesiveness to the laminate can be obtained, and the obtained resin molded body can be used as a desired three-dimensional object to improve dimensional stability. It is preferable that the specifications are such that they can be used. Further, in order to improve the adhesiveness with the laminate, an adhesive glue may be applied on the substrate, or a sheet or the like having good adhesiveness with the laminate may be attached.
  • the sheet having good adhesiveness to the laminate examples include a sheet having fine irregularities on the surface such as an inorganic fiber sheet, and a sheet made of the same type of resin as the laminate.
  • a sheet having fine irregularities on the surface such as an inorganic fiber sheet
  • a sheet made of the same type of resin as the laminate Normally, at least one of the extrusion head and the substrate is movable in the Z-axis direction perpendicular to the XY plane.
  • the number of extrusion heads is usually one or two. With two extrusion heads, two different polymers can be melted in different heads and selectively printed.
  • one of the polymers can be a modeling material for modeling a 3D object, and the other can be, for example, a supporting material needed as temporary equipment. The supporting material can then be removed, for example, by complete or partial dissolution in an aqueous system (eg, basic or acidic medium).
  • aqueous system eg, basic or acidic medium
  • the three-dimensional modeling filament is unwound from the raw material supply unit, fed to the extrusion head by a pair of opposing rollers or gears, heated and melted by the extrusion head, and extruded from the tip nozzle.
  • the extrusion head moves its position and supplies the raw material onto the substrate for stacking and deposition.
  • the laminated deposit can be taken out from the substrate, and if necessary, the support material or the like can be peeled off or the excess portion can be cut off to obtain a resin molded body as a desired three-dimensional object. ..
  • the means for continuously supplying the raw material to the extrusion head is a method of feeding out filaments or fibers, a method of supplying powder or liquid from a tank or the like via a quantitative feeder, and plasticizing pellets or granules with an extruder or the like.
  • An example is an example of a method of extruding and supplying the converted product.
  • the method of feeding and supplying the filament that is, the method of feeding and supplying the above-mentioned three-dimensional modeling filament of the present invention is the most preferable.
  • the temperature for obtaining appropriate fluidity for extrusion is usually about 180 to 300 ° C., which is a temperature that can be set by a normal three-dimensional printer.
  • the temperature of the heat extrusion head is usually 290 ° C. or lower, preferably 200 to 280 ° C.
  • the substrate temperature is usually 120 ° C. or lower to stably produce the resin molded product.
  • the temperature (discharge temperature) of the molten resin discharged from the extrusion head is preferably 180 ° C. or higher, more preferably 190 ° C. or higher, and preferably 300 ° C. or lower, preferably 290 ° C. or lower. More preferably, it is more preferably 280 ° C. or lower.
  • the temperature of the molten resin is at least the above lower limit value, it is preferable for extruding the resin having high heat resistance, and it is possible to discharge the molten resin at a high speed, which tends to improve the molding efficiency, which is preferable.
  • the temperature of the molten resin is not more than the above upper limit value, it is easy to prevent the occurrence of problems such as thermal decomposition of the resin, burning, smoke generation, odor, and stickiness. Further, when the temperature of the molten resin is equal to or lower than the above upper limit value, generally, fragments of the molten resin called stringing and lumps of excess resin called lumps adhere to the resin molded body. It is also preferable from the viewpoint of preventing deterioration of the appearance.
  • the molten resin discharged from the extrusion head is preferably discharged in the form of a strand having a diameter of 0.01 to 1.0 mm, more preferably 0.02 to 0.5 mm in diameter. It is preferable that the molten resin is discharged in such a shape because the reproducibility of the CAD model tends to be good.
  • High-speed modeling in the three-dimensional modeling filament of the present invention means that the modeling speed is 1 mm / s or more. From the viewpoint of the time required for modeling, the modeling speed is preferably 3 mm / s or more, more preferably 5 mm / s or more, further preferably 7 mm / s or more, and most preferably 10 mm / s or more.
  • the upper limit is not particularly limited, but the faster the speed, the more preferable.
  • the molding speed is preferably 100 mm / s or less, more preferably 80 mm / s or less, and more preferably 60 mm / s, in order to have a speed at which there is no problem in formability such as bending of the filament described above and deterioration of appearance described later. The following is more preferable.
  • the filament for three-dimensional molding of the present invention has good adhesiveness between the resin strands discharged earlier and the resin strands discharged on the strands, and has a high elastic modulus near room temperature, so that the filaments can be bent. Since it is difficult to occur, that is, the roundness of the diameter is high, uneven ejection during molding is suppressed, and a molded product having excellent appearance, surface texture, etc. can be stably manufactured.
  • the filament for three-dimensional molding of the present invention has a high elastic modulus near room temperature and is unlikely to bend, that is, the standard deviation of the diameter is small, the roundness is high, and the crystallization rate is moderate and the fracture is high. Since it has strain, stringing is suppressed, and a molded product having excellent appearance, surface texture, etc. can be stably produced.
  • the resin molded product of the present invention may promote or complete crystallization by heat treatment after molding, depending on the intended use.
  • the supporting material may be molded at the same time.
  • the type of supporting material is not particularly limited, and examples thereof include BVOH (butenediol vinyl alcohol), PVOH (polyvinyl alcohol), EVOH (ethylene-vinyl alcohol copolymer), and HIPS (haimpact polystyrene).
  • the resin molded product of the present invention is excellent in strength and heat resistance.
  • the use is not particularly limited, but stationery; toys; covers for mobile phones and smartphones; parts such as grips; school teaching materials, home appliances, repair parts for OA equipment, various parts such as automobiles, motorcycles, and bicycles. It can be suitably used for applications such as electric / electronic equipment materials, agricultural materials, horticultural materials, fishery materials, civil engineering / building materials, and medical supplies.
  • When modeling was performed at a modeling speed of 10 mm / s, the modeling could be completed without bending of the filament during modeling.
  • X When molding was performed at a molding speed of 10 mm / s, the filament was bent in the middle (or from the beginning), and the molding could not be completed.
  • ⁇ Z-axis strength, horizontal strength> In accordance with JIS K 7161, the maximum tensile strength (horizontal strength) and breaking elongation of the dumbbell-shaped sample (sample 1) produced by the warp evaluation during molding, which will be described later, were measured. The maximum tensile strength (Z-axis strength) and breaking elongation of the following sample 2 in the Z-axis direction were measured. Moreover, the value of Z-axis strength / horizontal strength was calculated. The larger the horizontal strength and the Z-axis strength, the more preferable it is. Further, the larger the value of the elongation at break, the more preferable it is. In particular, the closer the Z-axis strength / horizontal strength is to 1, the better.
  • Sample 2 was produced as follows. That is, a dumbbell-shaped sample (length 75 mm, width 10 mm, thickness 5 mm) is used as a 3D printer (manufactured by Muto Kogyo Co., Ltd., trade name: MF-2200D) with the sample length direction as the Z-axis direction (stacking direction). Was modeled using. At that time, PP tape (3M Scotch 315SN) was attached to the modeling table, and sample 2 was produced under modeling conditions of a modeling table temperature of 70 ° C., a nozzle temperature of 240 ° C., a modeling speed of 7 mm / s, and an internal filling rate of 100%. ..
  • the evaluation sample (this was designated as sample 1) was produced as follows. That is, a dumbbell-shaped sample (length 75 mm, width 10 mm, thickness 5 mm) is used as a 3D printer (manufactured by Mutoh Industries, Ltd., trade name: MF-2200D) with the sample thickness direction as the Z-axis direction (stacking direction).
  • MF-2200D 3D printer
  • PP tape 3M Scotch 315SN
  • an evaluation sample is manufactured under modeling conditions of a modeling table temperature of 70 ° C., a nozzle temperature of 220 ° C., a modeling speed of 7 mm / s, and an internal filling rate of 100%. did.
  • the evaluation sample was removed from the modeling table and placed on a horizontal surface. At that time, the distances between the four corners of the evaluation sample and the horizontal plane were measured, and the average value of the obtained values was taken as the amount of warpage. From this amount of warpage, the warp at the time of modeling was evaluated based on the following criteria. Among the following criteria, the smaller the value of the warp amount, the more preferable it is.
  • The amount of warpage was less than 3 mm.
  • X The amount of warpage was 3 mm or more, or a large warp occurred during modeling, so that modeling could not be completed.
  • the raw materials used in the examples and comparative examples are as follows.
  • ⁇ Resin composition (B)> (B-1); manufactured by Mitsubishi Chemical Co., Ltd., trade name: Tefablock (registered trademark) MC931, Tg: 108 ° C, ⁇ Hc: 5J / g, composition: hydrogenated aromatic vinyl polymer block unit 60 mol%, hydrogen Conjugated conjugated diene polymer block unit 40 mol%, hydrogenation level: 99.5% or more, pentablock structure (B-2); manufactured by Polyplastics Co., Ltd., trade name: TOPAS (registered trademark) 5013L-10, Tg : 130 ° C., ⁇ Hc: 0 J / g, composition: cycloolefin polymer
  • Example 1 80 parts by mass of olefin resin (A-1) and 20 parts by mass of resin (B-1) are mixed, and the melting temperature is 200 ° C. from a nozzle with a diameter of 2.5 mm using a 20 mm ⁇ isodirectional biaxial kneader. After extrusion, the mixture was cooled in cooling water at 30 ° C. to obtain a filament having a diameter of 1.75 mm. Table 1 shows the results of various evaluations of this filament.
  • Example 2 In Example 1, a filament was produced in the same manner as in Example 1 except that 60 parts by mass of the olefin resin composition (A-1) and 40 parts by mass of the resin composition (B-1) were blended. did. Table 1 shows the results of various evaluations of this filament.
  • Example 3 Filaments were produced in the same manner as in Example 2 except that the olefin resin composition (A-1) was changed to the olefin resin composition (A-2) in Example 2. Table 1 shows the results of various evaluations of this filament.
  • Example 4 In Example 2, filaments were produced in the same manner as in Example 2 except that the resin (B-1) was changed to the resin (B-2). Table 1 shows the results of various evaluations of this filament.
  • Example 1 In Example 1, filaments were produced in the same manner as in Example 1 except that the olefin resin composition was produced using only the olefin resin composition (A-1). Table 1 shows the results of various evaluations of this filament.
  • Example 2 In Example 1, filaments were produced in the same manner as in Example 1 except that the olefin resin composition was produced using only the olefin resin composition (A-2). Table 1 shows the results of various evaluations of this filament.
  • Table 1 shows the results of various evaluation results using a commercially available PP filament (manufactured by Mutoh Industries, Ltd., product name: Value3D MagiX material, PP, 1.75 mm).
  • thermogravimetric measuring device manufactured by TA Instruments Japan, TGA Q5000IR was used to raise the temperature from room temperature to 700 ° C. in air at a heating rate of 20 ° C./min. The temperature was raised, the amount of the obtained residue was measured, and the IR measurement of the residue was carried out. From the results, it was determined that the filament of Comparative Example 3 contained 39% by mass of talc.
  • “24 ⁇ ⁇ Hc—E'" in Examples 1 to 4 and Comparative Examples 1 and 2 is a value relating to a filament composed of at least one of the olefin resin composition (A) and the resin composition (B).
  • “24 ⁇ ⁇ Hc—E ′” in Comparative Example 3 is a value relating to a filament containing talc. That is, “24 ⁇ ⁇ Hc—E ′” in Comparative Example 3 is different from the above equation [1].
  • the filaments of Examples 1 and 2 have the same or higher interlayer adhesiveness as those of the filament made of the low crystallinity olefin resin composition (A) (Comparative Example 1), and the resin composition. It can be seen that the substance (B-1) does not inhibit the interlayer adhesiveness.
  • Example 2 by comparing Example 2 and Example 4, in Example 2 using the resin composition (B-1) having a cyclic structure in the side chain, the resin composition (B-2) having a cyclic structure in the main chain. It can be seen that higher Z-axis strength and interlayer adhesiveness are obtained than in Example 4 using).
  • the filament of Comparative Example 1 has a low storage elastic modulus measured at 40 ° C. and 10 Hz, so that the filament is easily bent and is inferior in high-speed formability.
  • the filament of Comparative Example 2 has a large ⁇ Hc, it has a large warp during modeling and is inferior in formability.
  • the filament of Comparative Example 3 has a high-speed formability and a warp suppressing effect, but has a low interlayer adhesiveness. It is considered that this is because talc hinders interlayer adhesion.

Abstract

The present invention pertains to a filament for three-dimensional printing, the filament containing an olefin-based resin composition (α) satisfying 700≥24×ΔHc(α)-E'(α). ΔHc(α) is the heat of crystallization (J/g) of the olefin-based resin composition (α) as measured at a cooling rate of 10 °C/min by a differential scanning calorimeter, and E'(α) is the storage modulus (MPa) of the olefin-based resin composition (α) as measured with 10 Hz at 40°C.

Description

3次元造形用フィラメントFilament for 3D modeling
 本発明は、3次元造形用フィラメント、樹脂成形体、巻回体及び3次元造形用カートリッジに関する。 The present invention relates to a three-dimensional modeling filament, a resin molded body, a wound body, and a three-dimensional modeling cartridge.
 押出による熱積層堆積システムは、今日一般的に3次元プリンタ(3Dプリンター)と呼称されているシステムであり、例えば米国のストラタシス・インコーポレイテッド社製の熱積層堆積システムが挙げられる。押出による熱積層堆積システムは、流動性を有する原料を押出ヘッドに備えたノズル部位から押し出してコンピュータ支援設計(CAD)モデルを基にして3次元物体を層状に構築するために用いられている。 The Fused Deposition Modeling System by Extrusion is a system generally called a 3D printer (3D printer) today, and examples thereof include a Fused Deposition Modeling System manufactured by Stratasys Incorporated in the United States. Fused Deposition Modeling Systems by Extrusion are used to extrude a fluid raw material from a nozzle site on an extrusion head to build a three-dimensional object in layers based on a computer-aided design (CAD) model.
 その中でも熱溶解積層法(ME法)は、熱可塑性樹脂からなる原料をフィラメントとして押出ヘッドへ挿入し、加熱溶融しながら押出ヘッドに備えたノズル部位からチャンバー内のX-Y平面基盤上に連続的に押し出し、押し出した樹脂を既に堆積している樹脂積層体上に堆積させると共に融着させ、これが冷却するにつれ一体固化する、という簡単なシステムである。そのため、ME法は、広く用いられるようになってきている。ME法では、通常、基盤に対するノズル位置がX-Y平面に垂直方向なZ軸方向に上昇しつつ押出工程が繰り返されることによりCADモデルに類似した3次元物体が構築される(特許文献1、2)。 Among them, the Fused Deposition Modeling method (ME method) inserts a raw material made of a thermoplastic resin into an extrusion head as a filament, and continuously heats and melts the material from the nozzle portion provided on the extrusion head onto the XY plane substrate in the chamber. It is a simple system in which the extruded resin is deposited and fused on a resin laminate that has already been deposited, and this is integrally solidified as it cools. Therefore, the ME method has come to be widely used. In the ME method, a three-dimensional object similar to a CAD model is usually constructed by repeating an extrusion process while the nozzle position with respect to the substrate rises in the Z-axis direction perpendicular to the XY plane (Patent Document 1, Patent Document 1, 2).
 従来、ME法の原料としては、一般的にアクリロニトリル-ブタジエン-スチレン系樹脂やポリ乳酸等の、非晶性あるいは結晶化がしにくい熱可塑性樹脂が、成形加工性や流動性の観点から好適に用いられてきた(特許文献3~5)。 Conventionally, as a raw material for the ME method, an amorphous or hard-to-crystallize thermoplastic resin such as an acrylonitrile-butadiene-styrene resin or polylactic acid is generally preferable from the viewpoint of molding processability and fluidity. It has been used (Patent Documents 3 to 5).
 一方で、近年、上記のプラスチックだけでなく、ポリプロピレン系樹脂などの結晶性樹脂についても、ME方式の3次元造形材料としての使用が検討されてきている。これらは、耐熱性、耐薬品性、強度などに優れる。そのため、製品や製造ツールの造形といった産業用途も含めて広く活用の可能性がある。 On the other hand, in recent years, not only the above-mentioned plastics but also crystalline resins such as polypropylene-based resins have been studied for use as ME-type three-dimensional modeling materials. These are excellent in heat resistance, chemical resistance, strength and the like. Therefore, it may be widely used for industrial purposes such as modeling of products and manufacturing tools.
 しかし、このようなポリオレフィン系樹脂は一般的に結晶化しやすい。そのため、ポリオレフィン系樹脂を使ったME方式の3次元造形では、造形物中の層間の接着性が低下したり、結晶化収縮により造形物(樹脂成形体)の反りが発生するなど、造形性の低さが問題であった。 However, such polyolefin resins are generally easy to crystallize. Therefore, in the ME method three-dimensional molding using a polyolefin resin, the adhesiveness between the layers in the molded product is lowered, and the molded product (resin molded product) is warped due to crystallization shrinkage. Lowness was a problem.
 これに対して、低結晶性のポリオレフィン系樹脂を用いた3次元造形材料が開示されている(特許文献6)。 On the other hand, a three-dimensional modeling material using a low crystallinity polyolefin resin is disclosed (Patent Document 6).
日本国特表2003-502184号公報Japan Special Table 2003-502184 日本国特表2003-534159号公報Japan Special Table 2003-534159 日本国特表2010-521339号公報Japan Special Table 2010-521339 Gazette 日本国特開2008-194968号公報Japanese Patent Application Laid-Open No. 2008-194966 国際公開第2015/037574号International Publication No. 2015/037574 日本国特開2017-197627号公報Japanese Patent Application Laid-Open No. 2017-197627
 しかしながら、特許文献6に挙げられるような低結晶性のポリオレフィン系樹脂は、3次元造形中に、結晶化収縮による反り等の造形不良の発生を抑え、3次元造形性を改良することは可能である。さらに、0.5mm/sのような比較的低速でのポリオレフィン系樹脂の造形性は改良できている。 However, the low crystallinity polyolefin resin as described in Patent Document 6 can suppress the occurrence of molding defects such as warpage due to crystallization shrinkage during three-dimensional modeling, and can improve the three-dimensional formability. is there. Further, the formability of the polyolefin resin at a relatively low speed such as 0.5 mm / s can be improved.
 しかしながら、本発明者らの検討の結果、低結晶性のポリオレフィン系樹脂は、低結晶化することで、特に室温付近の弾性率が低下するため、3次元造形した樹脂成形体の強度やフィラメントの硬度が十分でないことが明らかとなった。そのため、特許文献6に挙げられるような低結晶性のポリオレフィン系樹脂は、適用できる分野が限定的であり、また、生産性を向上させるために造形速度を上げた場合に課題が見出された。具体的には、ポリオレフィン系樹脂の高速3次元造形のように、高速でフィラメントを押し出しヘッドに送った場合、フィラメントに屈曲が起き、高速3次元造形性が不良となるという新たな課題が明らかになった。 However, as a result of the studies by the present inventors, the low crystallinity of the low crystallinity polyolefin resin lowers the elastic modulus especially near room temperature, so that the strength of the three-dimensionally molded resin molded product and the filament It became clear that the hardness was not sufficient. Therefore, the fields to which the low crystallinity polyolefin resin as mentioned in Patent Document 6 can be applied are limited, and a problem has been found when the molding speed is increased in order to improve the productivity. .. Specifically, when the filament is sent to the extrusion head at high speed, as in the case of high-speed 3D modeling of polyolefin resin, a new problem is clarified that the filament bends and the high-speed 3D formability becomes poor. became.
 そこで、本発明の目的は、3次元造形時の造形物(樹脂成形体)の反りや、高速3次元造形のように、高速でフィラメントを押し出しヘッドに送った場合であっても、フィラメントに屈曲が起きず、高速3次元造形性が良好となり、かつ造形物(樹脂成形体)の強度に優れた3次元造形用フィラメントを提供することにある。また、本発明の目的は、当該3次元造形用フィラメントを含有する、樹脂成形体、巻回体及び3次元造形用カートリッジを提供することにある。 Therefore, an object of the present invention is to bend the filament even when the filament is sent to the extrusion head at high speed, such as warpage of a modeled object (resin molded body) during three-dimensional modeling or high-speed three-dimensional modeling. It is an object of the present invention to provide a filament for three-dimensional modeling, which does not cause a problem, has good high-speed three-dimensional formability, and has excellent strength of a modeled object (resin molded body). Another object of the present invention is to provide a resin molded body, a wound body, and a three-dimensional modeling cartridge containing the three-dimensional modeling filament.
 本発明者らは、鋭意検討を重ねた結果、特定の熱特性及び貯蔵弾性率を有するポリオレフィン系樹脂組成物を用いることにより、前記課題を解消できると考察した。 As a result of diligent studies, the present inventors have considered that the above-mentioned problems can be solved by using a polyolefin-based resin composition having a specific thermal property and storage elastic modulus.
 即ち、本発明の要旨は以下のとおりである。
<1>下記式[1]を満たすオレフィン系樹脂組成物(α)を含有する、3次元造形用フィラメント。
  700≧24×ΔHc(α)-E´(α)・・・[1]
 ΔHc(α):該オレフィン系樹脂組成物(α)を示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化熱量(J/g)
 E´(α):該オレフィン系樹脂組成物(α)を40℃及び10Hzで測定した貯蔵弾性率(MPa)
<2>前記ΔHc(α)が75J/g以下である、<1>に記載の3次元造形用フィラメント。
<3>前記E´(α)が350MPa以上である、<1>又は<2>に記載の3次元造形用フィラメント。
<4>前記オレフィン系樹脂組成物(α)が、オレフィン系樹脂組成物(A)及び樹脂組成物(B)を含有し、
 前記樹脂組成物(B)は、示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化熱量(ΔHc(B))が10J/g未満である、<1>~<3>のいずれか1つに記載の3次元造形用フィラメント。
<5>前記オレフィン系樹脂組成物(A)の示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化温度と、前記オレフィン系樹脂組成物(α)の示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化温度との差が10℃以下である、<4>に記載の3次元造形用フィラメント。
<6>前記オレフィン系樹脂組成物(α)が、オレフィン系樹脂組成物(A)を含有し、
 前記オレフィン系樹脂組成物(A)は、プロピレン単独重合体、エチレン及び炭素数4~12のα-オレフィンの少なくとも一つのモノマーとプロピレンとのランダム共重合体、エチレン及び炭素数4~12のα-オレフィンの少なくとも一つのモノマーとプロピレンとのブロック共重合体、無水マレイン酸グラフトポリプロピレン、プロピレン及びポリエチレンの少なくとも一つとエチレン-プロピレンゴムとのブレンド、プロピレン及びポリエチレンの少なくとも一つとエチレン-プロピレンゴムとの動的架橋品、プロピレン及びポリエチレンの少なくとも一つとエチレン-プロピレンゴムとの重合品、高密度ポリエチレン、低密度ポリエチレン、並びに線状低密度ポリエチレンからなる群から選ばれる少なくとも1つの樹脂組成物である、<1>~<5>のいずれか1つに記載の3次元造形用フィラメント。
<7>前記オレフィン系樹脂組成物(α)が樹脂組成物(B)を含有し、
 前記樹脂組成物(B)が環状オレフィン系樹脂を含有する、<1>~<6>のいずれか1つに記載の3次元造形用フィラメント。
<8>さらにフィラーを含有する、<1>~<7>のいずれか1つに記載の3次元造形用フィラメント。
<9><1>~<8>のいずれか1つに記載の3次元造形用フィラメントを含有する樹脂成形体。
<10><1>~<8>のいずれか1つに記載の3次元造形用フィラメントの巻回体。
<11><1>~<8>のいずれか1つに記載の3次元造形用フィラメントを含有する3次元造形用カートリッジ。
That is, the gist of the present invention is as follows.
<1> A filament for three-dimensional modeling containing an olefin resin composition (α) satisfying the following formula [1].
700 ≧ 24 × ΔHc (α) -E'(α) ... [1]
ΔHc (α): The amount of heat of crystallization (J / g) when the olefin resin composition (α) was measured with a differential scanning calorimeter at a temperature lowering rate of 10 ° C./min.
E'(α): Storage elastic modulus (MPa) of the olefin resin composition (α) measured at 40 ° C. and 10 Hz.
<2> The three-dimensional modeling filament according to <1>, wherein the ΔHc (α) is 75 J / g or less.
<3> The three-dimensional modeling filament according to <1> or <2>, wherein the E'(α) is 350 MPa or more.
<4> The olefin-based resin composition (α) contains the olefin-based resin composition (A) and the resin composition (B).
The resin composition (B) has a crystallization calorific value (ΔHc (B)) of less than 10 J / g when measured at a temperature lowering rate of 10 ° C./min with a differential scanning calorimeter, <1> to <3. > The filament for three-dimensional modeling according to any one of.
<5> The crystallization temperature when measured at a temperature decrease rate of 10 ° C./min with the differential scanning calorimeter of the olefin resin composition (A) and the differential scanning calorimetry of the olefin resin composition (α). The three-dimensional molding filament according to <4>, wherein the difference from the crystallization temperature when measured at a temperature lowering rate of 10 ° C./min is 10 ° C. or less.
<6> The olefin-based resin composition (α) contains the olefin-based resin composition (A).
The olefin resin composition (A) is a propylene homopolymer, a random copolymer of ethylene and at least one monomer of α-olefin having 4 to 12 carbon atoms and propylene, ethylene and α having 4 to 12 carbon atoms. -A block copolymer of at least one monomer of olefin and propylene, a blend of at least one maleic anhydride graft polypropylene, propylene and polyethylene and ethylene-propylene rubber, and at least one of propylene and polyethylene and ethylene-propylene rubber. A dynamically crosslinked product, a polymer of at least one of propylene and polyethylene and an ethylene-propylene rubber, at least one resin composition selected from the group consisting of high density polyethylene, low density polyethylene, and linear low density polyethylene. The filament for three-dimensional modeling according to any one of <1> to <5>.
<7> The olefin-based resin composition (α) contains the resin composition (B).
The three-dimensional modeling filament according to any one of <1> to <6>, wherein the resin composition (B) contains a cyclic olefin resin.
<8> The filament for three-dimensional modeling according to any one of <1> to <7>, which further contains a filler.
<9> A resin molded product containing the three-dimensional molding filament according to any one of <1> to <8>.
<10> The wound body of the three-dimensional modeling filament according to any one of <1> to <8>.
<11> A three-dimensional modeling cartridge containing the three-dimensional modeling filament according to any one of <1> to <8>.
 本発明によれば、3次元造形時の造形物(樹脂成形体)の反りや、高速3次元造形のように、高速でフィラメントを押し出しヘッドに送った場合でもフィラメントに屈曲が起きず、高速3次元造形性が良好となり、かつ造形物(樹脂成形体)の強度に優れたポリオレフィン系3次元造形用フィラメントを提供することができる。また、本発明によれば、当該3次元造形用フィラメントを含有する、樹脂成形体、巻回体及び3次元造形用カートリッジを提供することができる。 According to the present invention, the filament does not bend even when the filament is sent to the extrusion head at high speed, as in the case of warpage of a modeled object (resin molded product) during 3D modeling or high-speed 3D modeling, and high speed 3 It is possible to provide a polyolefin-based three-dimensional molding filament having good dimensional moldability and excellent strength of a molded product (resin molded product). Further, according to the present invention, it is possible to provide a resin molded body, a wound body, and a three-dimensional modeling cartridge containing the three-dimensional modeling filament.
[発明の効果の理由]
 本発明が効果を奏するであろう理由は、未だ明らかではないが、以下のような理由と推察できる。
 すなわち、本発明の3次元造形用フィラメントは、結晶化熱量が低い。そのため、本発明の3次元造形用フィラメントは、結晶化収縮量が小さく、3次元造形時の反りが抑制される。
 また、本発明の3次元造形用フィラメントは、室温付近の弾性率が高い。そのため、本発明の3次元造形用フィラメントは、フィラメント送り時の屈曲も抑制することが可能である。
[Reason for the effect of the invention]
The reason why the present invention will be effective is not yet clear, but it can be inferred that the reason is as follows.
That is, the three-dimensional modeling filament of the present invention has a low amount of heat of crystallization. Therefore, the filament for three-dimensional modeling of the present invention has a small amount of crystallization shrinkage, and warpage during three-dimensional modeling is suppressed.
Further, the filament for three-dimensional modeling of the present invention has a high elastic modulus near room temperature. Therefore, the three-dimensional modeling filament of the present invention can also suppress bending during filament feeding.
 一般的なポリオレフィン系樹脂は、結晶化熱量と室温付近の弾性率は比例関係にあるため、反りを抑制しようと結晶化熱量を下げると、室温付近の弾性率が下がってフィラメントが屈曲しやすくなり、造形時の反り抑制とフィラメントの屈曲抑制を同時に達成することは困難である。しかし、本発明の3次元造形用フィラメントは特定の樹脂を含有することで、反り抑制と屈曲抑制を同時に達成することができる。 In general polyolefin resins, the calorific value of crystallization and the elastic modulus near room temperature are in a proportional relationship. Therefore, if the calorific value of crystallization is lowered in order to suppress warpage, the elastic modulus near room temperature decreases and the filament easily bends. It is difficult to suppress warpage and filament bending at the same time during molding. However, the filament for three-dimensional modeling of the present invention can simultaneously suppress warpage and bending by containing a specific resin.
 また、このような効果は、例えば、フィラー等を単純にフィラメントに添加しても得られる。しかし、この場合、フィラーが樹脂同士の層間接着を阻害し、3次元造形した際に、造形物(樹脂成形体)の層間に対する垂直方向の強度(Z軸強度)を低下させる懸念がある。一方、本発明の3次元造形用フィラメントは、特定の樹脂を含有することにより、層間接着性を担保しながら、低い結晶化収縮量と、高い室温弾性率を両立することが可能である。 Further, such an effect can be obtained by simply adding a filler or the like to the filament, for example. However, in this case, there is a concern that the filler inhibits the interlayer adhesion between the resins and reduces the strength (Z-axis strength) of the modeled product (resin molded product) in the vertical direction with respect to the interlayer when the resin is three-dimensionally molded. On the other hand, the filament for three-dimensional modeling of the present invention can achieve both a low amount of crystallization shrinkage and a high room temperature elastic modulus while ensuring interlayer adhesiveness by containing a specific resin.
 以下、本発明を実施するための形態( 以下、「本実施形態」という。) について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be implemented with various modifications within the scope of the gist thereof.
 本発明の3次元造形用フィラメントは、オレフィン系樹脂組成物(α)を含有することを特徴としている。 The three-dimensional modeling filament of the present invention is characterized by containing an olefin resin composition (α).
<オレフィン系樹脂組成物(α)>
 オレフィン系樹脂組成物(α)は、下記式[1]を満たすことを特徴とする。
 なお、本発明でいうオレフィン系樹脂組成物(α)は、オレフィン系樹脂を含み、必要によりその他の樹脂を含むものであり、添加剤は除外される。
<Olefin resin composition (α)>
The olefin resin composition (α) is characterized by satisfying the following formula [1].
The olefin-based resin composition (α) referred to in the present invention contains an olefin-based resin and, if necessary, contains other resins, and additives are excluded.
  700≧24×ΔHc(α)-E´(α)・・・[1]
 ΔHc(α):該オレフィン系樹脂組成物(α)を示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化熱量(J/g)
 E´(α):該オレフィン系樹脂組成物(α)を40℃及び10Hzで測定した貯蔵弾性率(MPa)
700 ≧ 24 × ΔHc (α) -E'(α) ... [1]
ΔHc (α): The amount of heat of crystallization (J / g) when the olefin resin composition (α) was measured with a differential scanning calorimeter at a temperature lowering rate of 10 ° C./min.
E'(α): Storage elastic modulus (MPa) of the olefin resin composition (α) measured at 40 ° C. and 10 Hz.
 ここで、「24×ΔHc(α)-E´(α)」が上記の範囲にあることにより、3次元造形時の反りが抑制され、フィラメント送り時の屈曲も抑制することができる。 Here, when "24 x ΔHc (α) -E'(α)" is in the above range, warpage during three-dimensional modeling can be suppressed, and bending during filament feeding can also be suppressed.
 また、「24×ΔHc(α)-E´(α)」の上限は、特に限定されないが、高速造形性と層間接着性の両立の観点から、500以下であることが好ましく、300以下であることがより好ましく、100以下であることがさらに好ましく、0以下であることが特に好ましく、-100以下であることが尚好ましく、-200以下であることが最も好ましい。 The upper limit of "24 x ΔHc (α) -E'(α)" is not particularly limited, but is preferably 500 or less, preferably 300 or less, from the viewpoint of achieving both high-speed formability and interlayer adhesion. More preferably, it is more preferably 100 or less, particularly preferably 0 or less, still more preferably -100 or less, and most preferably -200 or less.
 また、「24×ΔHc(α)-E´(α)」の下限は、高速造形性と層間接着性の両立の観点から、-2000以上であることが好ましく、-1500以上であることがより好ましく、-1000以上であることがさらに好ましく、-500以上であることが特に好ましく、-300以上であることが最も好ましい。 Further, the lower limit of "24 x ΔHc (α) -E'(α)" is preferably −2000 or more, and more preferably -1500 or more, from the viewpoint of achieving both high-speed formability and interlayer adhesion. It is preferably −1000 or more, more preferably −500 or higher, and most preferably −300 or higher.
 ΔHc(α)は特に限定されないが、通常、75J/g以下であり、60J/g以下であることが好ましく、55J/g以下であることがより好ましく、50J/g以下であることがさらに好ましく、45J/g以下であることが特に好ましく、40J/g以下であることが尚好ましく、30J/g以下であることが最も好ましい。これにより、3次元造形時の結晶化収縮による造形物(樹脂成形体)の反りを低減することができる。 ΔHc (α) is not particularly limited, but is usually 75 J / g or less, preferably 60 J / g or less, more preferably 55 J / g or less, still more preferably 50 J / g or less. , 45 J / g or less, more preferably 40 J / g or less, and most preferably 30 J / g or less. As a result, it is possible to reduce the warp of the modeled product (resin molded product) due to crystallization shrinkage during three-dimensional modeling.
 また、ΔHc(α)は、耐熱性の観点から、1J/g以上が好ましく、5J/g以上がより好ましく、8J/g以上がさらに好ましく、10J/g以上が特に好ましく、15J/g以上が最も好ましい。 Further, ΔHc (α) is preferably 1 J / g or more, more preferably 5 J / g or more, further preferably 8 J / g or more, particularly preferably 10 J / g or more, and 15 J / g or more from the viewpoint of heat resistance. Most preferred.
 また、ΔHc(α)は、樹脂の組成や、後述するオレフィン系樹脂組成物(A)と樹脂組成物(B)とのブレンド比率などによって調整できる。 Further, ΔHc (α) can be adjusted by the composition of the resin, the blend ratio of the olefin resin composition (A) and the resin composition (B) described later, and the like.
 E´(α)は特に限定されないが、通常、350MPa以上である。E´(α)がこの範囲内であれば、フィラメント送り時の屈曲が抑制されて造形性が優れ、また造形した樹脂成形体の強度が優れる。E´(α)は、400MPa以上が好ましく、500MPa以上がより好ましく、800MPa以上がさらに好ましく、1000MPa以上が特に好ましく、1200MPa以上が最も好ましい。 E'(α) is not particularly limited, but is usually 350 MPa or more. When E'(α) is within this range, bending during filament feeding is suppressed, the formability is excellent, and the strength of the molded resin molded body is excellent. E'(α) is preferably 400 MPa or more, more preferably 500 MPa or more, further preferably 800 MPa or more, particularly preferably 1000 MPa or more, and most preferably 1200 MPa or more.
 E´(α)の上限は特に限定されるものではないが、E´(α)は、5000MPa以下が好ましく、4500MPa以下がより好ましく、4000MPa以下がさらに好ましく、3500MPa以下が特に好ましく、3000MPa以下が尚好ましく、2500MPa以下が最も好ましい。E´(α)がこの範囲内であれば、フィラメントの硬度が適度になり、造形作業の際のハンドリング(プリンタへのフィラメントのセッティング等)がしやすいため、好ましい。 The upper limit of E'(α) is not particularly limited, but E'(α) is preferably 5000 MPa or less, more preferably 4500 MPa or less, further preferably 4000 MPa or less, particularly preferably 3500 MPa or less, and 3000 MPa or less. It is more preferable, and 2500 MPa or less is most preferable. When E'(α) is within this range, the hardness of the filament becomes appropriate, and handling during modeling work (setting of the filament to the printer, etc.) is easy, which is preferable.
 また、E´(α)は、樹脂の組成や、後述するオレフィン系樹脂組成物(A)と樹脂組成物(B)とのブレンド比率などによって調整できる。 Further, E'(α) can be adjusted by the composition of the resin, the blend ratio of the olefin resin composition (A) and the resin composition (B) described later, and the like.
 オレフィン系樹脂組成物(α)の、示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化温度(Tc(α))は特に限定されるものではないが、造形時の反り抑制の観点から、200℃以下であること好ましく、150℃以下であることがより好ましく、120℃以下であることがさらに好ましく、110℃以下であることが特に好ましく、100℃以下であることが最も好ましい。 The crystallization temperature (Tc (α)) of the olefin resin composition (α) when measured at a temperature lowering rate of 10 ° C./min with a differential scanning calorimeter is not particularly limited, but at the time of modeling. From the viewpoint of suppressing warpage, it is preferably 200 ° C. or lower, more preferably 150 ° C. or lower, further preferably 120 ° C. or lower, particularly preferably 110 ° C. or lower, and 100 ° C. or lower. Is the most preferable.
 また、Tc(α)は、耐熱性の観点から、20℃以上が好ましく、40℃以上がより好ましく、50℃以上がさらに好ましく、60℃以上が特に好ましく、70℃以上が最も好ましい。 Further, from the viewpoint of heat resistance, Tc (α) is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, further preferably 50 ° C. or higher, particularly preferably 60 ° C. or higher, and most preferably 70 ° C. or higher.
 また、Tc(α)は、樹脂の組成や、後述するオレフィン系樹脂組成物(A)と樹脂組成物(B)とのブレンド比率などによって調整できる。 Further, Tc (α) can be adjusted by the composition of the resin, the blend ratio of the olefin resin composition (A) and the resin composition (B) described later, and the like.
 オレフィン系樹脂組成物(α)の、示差走査熱量計にて10℃/分の昇温速度で測定した際の結晶融解温度(Tm(α))は特に限定されるものではないが、汎用の3次元プリンタで造形しやすい観点から、300℃以下であること好ましく、250℃以下であることがより好ましく、200℃以下であることがさらに好ましく、150℃以下であることが特に好ましく、140℃以下であることが最も好ましい。 The crystal melting temperature (Tm (α)) of the olefin resin composition (α) when measured at a heating rate of 10 ° C./min with a differential scanning calorimeter is not particularly limited, but is general-purpose. From the viewpoint of easy modeling with a three-dimensional printer, the temperature is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, further preferably 200 ° C. or lower, particularly preferably 150 ° C. or lower, and 140 ° C. Most preferably:
 また、Tm(α)は、耐熱性の観点から、20℃以上が好ましく、40℃以上がより好ましく、60℃以上がさらに好ましく、80℃以上が特に好ましく、100℃以上が最も好ましい。 Further, from the viewpoint of heat resistance, Tm (α) is preferably 20 ° C. or higher, more preferably 40 ° C. or higher, further preferably 60 ° C. or higher, particularly preferably 80 ° C. or higher, and most preferably 100 ° C. or higher.
 また、Tm(α)は、樹脂の組成や、後述するオレフィン系樹脂組成物(A)と樹脂組成物(B)とのブレンド比率などによって調整できる。 Further, Tm (α) can be adjusted by the composition of the resin, the blend ratio of the olefin resin composition (A) and the resin composition (B) described later, and the like.
 オレフィン系樹脂組成物(α)は、後述するオレフィン系樹脂組成物(A)と、樹脂組成物(B)を含有することが好ましい。樹脂組成物(B)は、示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化熱量(ΔHc(B))が10J/g未満である。 The olefin-based resin composition (α) preferably contains the olefin-based resin composition (A) described later and the resin composition (B). The resin composition (B) has a crystallization heat quantity (ΔHc (B)) of less than 10 J / g when measured with a differential scanning calorimeter at a temperature lowering rate of 10 ° C./min.
 また、このとき、オレフィン系樹脂組成物(A)の、示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化温度(Tc(A))と、オレフィン系樹脂組成物(α)の、示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化温度(Tc(α))との差は、特に限定されるものではないが、10℃以下であることが好ましく、8℃以下がより好ましく、6℃以下がさらに好ましく、4℃以下が特に好ましく、2℃以下が最も好ましい。 At this time, the crystallization temperature (Tc (A)) of the olefin resin composition (A) when measured at a temperature lowering rate of 10 ° C./min with a differential scanning calorimeter and the olefin resin composition (Tc (A)) and the olefin resin composition ( The difference between α) and the crystallization temperature (Tc (α)) measured at a temperature lowering rate of 10 ° C./min with a differential scanning calorimeter is not particularly limited, but is 10 ° C. or less. It is preferably 8 ° C. or lower, more preferably 6 ° C. or lower, particularly preferably 4 ° C. or lower, and most preferably 2 ° C. or lower.
 すなわち、オレフィン系樹脂組成物(A)の結晶化が、樹脂組成物(B)によって阻害されにくいことが好ましい。これにより、本発明の3次元造形用フィラメントにより造形された樹脂成形体の耐熱性が優れる。 That is, it is preferable that the crystallization of the olefin resin composition (A) is not easily inhibited by the resin composition (B). As a result, the heat resistance of the resin molded product formed by the three-dimensional molding filament of the present invention is excellent.
<オレフィン系樹脂組成物(A)>
 ここで、オレフィン系樹脂組成物(A)としては、特に限定されるものではないが、具体例としては以下のようなものが挙げられる。
<Olefin resin composition (A)>
Here, the olefin-based resin composition (A) is not particularly limited, and specific examples thereof include the following.
 すなわち、プロピレン単独重合体、エチレン及び炭素数4~12のα-オレフィンの少なくとも一つのモノマーとプロピレンとのランダム共重合体、エチレン及び炭素数4~12のα-オレフィンの少なくとも一つのモノマーとプロピレンとのブロック共重合体、無水マレイン酸グラフトポリプロピレン、プロピレン及びポリエチレンの少なくとも一つとエチレン―プロピレンゴムとのブレンド、プロピレン及びポリエチレンの少なくとも一つとエチレン―プロピレンゴムとの動的架橋品(Themoplastic Vulcanizates)、プロピレン及びポリエチレンの少なくとも一つとエチレン―プロピレンゴムとの重合品(リアクターTPO)、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、線状低密度ポリエチレン(LLDPE)などが挙げられる。 That is, a propylene homopolymer, a random copolymer of ethylene and at least one monomer of α-olefin having 4 to 12 carbon atoms and propylene, and at least one monomer of ethylene and α-olefin having 4 to 12 carbon atoms and propylene. Block copolymer with, blend of at least one of propylene and polyethylene and ethylene-propylene rubber, dynamically crosslinked product of at least one of propylene and polyethylene and ethylene-propylene rubber (Themoplastic Vulcanizates), Examples thereof include a polymer product of at least one of propylene and polyethylene and ethylene-propylene rubber (reactor TPO), high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (LLDPE).
 この中でも、耐熱性の観点から、プロピレン単独重合体、エチレン及び炭素数4~12のα-オレフィンの少なくとも一つのモノマーとプロピレンとのランダム共重合体、エチレン及び炭素数4~12のα-オレフィンの少なくとも一つのモノマーとプロピレンとのブロック共重合体、プロピレン及びポリエチレンの少なくとも一つとエチレン―プロピレンゴムとの動的架橋品(Themoplastic Vulcanizates)、プロピレン及びポリエチレンの少なくとも一つとエチレン―プロピレンゴムとの重合品(リアクターTPO)が好ましい。 Among these, from the viewpoint of heat resistance, a propylene homopolymer, a random copolymer of ethylene and at least one monomer of an α-olefin having 4 to 12 carbon atoms and propylene, and an α-olefin having ethylene and 4 to 12 carbon atoms. Block copolymer of at least one monomer and propylene, dynamic cross-linked product of at least one of propylene and polyethylene and ethylene-propylene rubber (Themoplastic Vulcanizates), polymerization of at least one of propylene and polyethylene and ethylene-propylene rubber The product (reactor TPO) is preferable.
 オレフィン系樹脂組成物(A)は、上記から選ばれる1つの樹脂からなっていてもよいし、上記から選ばれる複数の樹脂を組み合わせてもよい。 The olefin-based resin composition (A) may consist of one resin selected from the above, or may be a combination of a plurality of resins selected from the above.
 オレフィン系樹脂組成物(A)の示差走査熱量計にて10℃/分の降温速度で測定される結晶化熱量(ΔHc(A))は、特に限定されるものではないが、造形性の観点から、120J/g以下が好ましく、110J/g以下がより好ましく、100J/g以下がさらに好ましく、85J/g以下が特に好ましく、70J/g以下が最も好ましい。 The calorific value for crystallization (ΔHc (A)) measured by the differential scanning calorimeter of the olefin resin composition (A) at a temperature lowering rate of 10 ° C./min is not particularly limited, but from the viewpoint of formability. Therefore, 120 J / g or less is preferable, 110 J / g or less is more preferable, 100 J / g or less is further preferable, 85 J / g or less is particularly preferable, and 70 J / g or less is most preferable.
 また、ΔHc(A)は、耐熱性の観点から、10J/g以上が好ましく、20J/g以上がより好ましく、30J/g以上がさらに好ましく、40J/g以上が特に好ましく、50J/g以上が最も好ましい。 Further, ΔHc (A) is preferably 10 J / g or more, more preferably 20 J / g or more, further preferably 30 J / g or more, particularly preferably 40 J / g or more, and particularly preferably 50 J / g or more, from the viewpoint of heat resistance. Most preferred.
 ここで、本発明における結晶化熱量(ΔHc)は、示差走査熱量計(DSC)を用い、JIS K7122に準じて、試料約10mgを昇温速度10℃/分で室温から結晶融解温度(Tm)+20℃以上まで昇温し、該温度で1分間保持した後、10℃/分の降温速度で0℃まで降温した時に測定される値である。 Here, the crystallization calorie (ΔHc) in the present invention is a crystal melting temperature (Tm) from room temperature at a heating rate of 10 ° C./min for about 10 mg of a sample according to JIS K7122 using a differential scanning calorimeter (DSC). It is a value measured when the temperature is raised to + 20 ° C. or higher, held at the temperature for 1 minute, and then lowered to 0 ° C. at a temperature lowering rate of 10 ° C./min.
 オレフィン系樹脂組成物(A)の示差走査熱量計にて10℃/分の降温速度で測定される結晶化温度(Tc(A))は、特に限定されないが、造形性の観点から、150℃以下であることが好ましく、140℃以下であることがより好ましく、130℃以下であることがさらに好ましく、120℃以下であることが特に好ましく、110℃以下であることが最も好ましい。 The crystallization temperature (Tc (A)) measured by the differential scanning calorimeter of the olefin resin composition (A) at a temperature lowering rate of 10 ° C./min is not particularly limited, but is 150 ° C. from the viewpoint of formability. The temperature is preferably 140 ° C. or lower, more preferably 130 ° C. or lower, particularly preferably 120 ° C. or lower, and most preferably 110 ° C. or lower.
 また、Tc(A)は、耐熱性の観点から、40℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることがさらに好ましく、80℃以上であることが特に好ましく、90℃以上であることが最も好ましい。 Further, from the viewpoint of heat resistance, Tc (A) is preferably 40 ° C. or higher, more preferably 60 ° C. or higher, further preferably 70 ° C. or higher, and more preferably 80 ° C. or higher. It is particularly preferable, and most preferably 90 ° C. or higher.
 また、Tc(A)は、樹脂の組成や立体規則性によって調整できる。 Further, Tc (A) can be adjusted by the composition of the resin and the stereoregularity.
 オレフィン系樹脂組成物(A)の結晶融解温度(Tm(A))は、特に限定されるものではないが、耐熱性の観点から100℃以上が好ましく、110℃以上がより好ましく、120℃以上がさらに好ましく、130℃以上が特に好ましく、135℃以上が最も好ましい。 The crystal melting temperature (Tm (A)) of the olefin resin composition (A) is not particularly limited, but is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and 120 ° C. or higher from the viewpoint of heat resistance. Is more preferable, 130 ° C. or higher is particularly preferable, and 135 ° C. or higher is most preferable.
 Tm(A)の上限については特に制限されるものではなく、Tm(A)は、一般的に200℃以下が好ましく、195℃以下がより好ましく、190℃以下がさらに好ましく、185℃以下が特に好ましく、180℃以下が最も好ましい。 The upper limit of Tm (A) is not particularly limited, and Tm (A) is generally preferably 200 ° C. or lower, more preferably 195 ° C. or lower, further preferably 190 ° C. or lower, and particularly preferably 185 ° C. or lower. It is preferably 180 ° C. or lower.
 また、Tm(A)は、樹脂の組成や立体規則性などによって調整できる。 Further, Tm (A) can be adjusted by the composition of the resin, the stereoregularity, and the like.
 オレフィン系樹脂組成物(A)の40℃及び10Hzで測定した貯蔵弾性率(E´(A))は、特に制限されるものではないが、造形時のフィラメント屈折の抑制や、造形した樹脂成形体の強度の点から、100MPa以上が好ましく、200MPa以上がより好ましく、300MPa以上がさらに好ましく、350MPa以上が特に好ましく、400MPa以上が最も好ましい。 The storage elastic modulus (E'(A)) of the olefin resin composition (A) measured at 40 ° C. and 10 Hz is not particularly limited, but it is not particularly limited, but it is possible to suppress filament refraction during molding and to mold the molded resin. From the viewpoint of body strength, 100 MPa or more is preferable, 200 MPa or more is more preferable, 300 MPa or more is further preferable, 350 MPa or more is particularly preferable, and 400 MPa or more is most preferable.
 また、E´(A)は、フィラメントのハンドリング性の点から、3000MPa以下が好ましく、2000MPa以下がより好ましく、1500MPa以下がさらに好ましく、1250MPa以下が特に好ましく、1000MPa以下が最も好ましい。 Further, E'(A) is preferably 3000 MPa or less, more preferably 2000 MPa or less, further preferably 1500 MPa or less, particularly preferably 1250 MPa or less, and most preferably 1000 MPa or less from the viewpoint of filament handleability.
 また、E´(A)は、樹脂の組成や立体規則性などによって調整できる。 Further, E'(A) can be adjusted by the composition of the resin, the three-dimensional regularity, and the like.
 オレフィン系樹脂組成物(α)は、オレフィン系樹脂組成物(A)を含有することが好ましく、必要に応じて後述の樹脂組成物(B)を含有していてもよい。 The olefin-based resin composition (α) preferably contains the olefin-based resin composition (A), and may contain the resin composition (B) described later if necessary.
 また、本発明の3次元造形用フィラメントは、オレフィン系樹脂組成物(α)の他に、後述のフィラー、その他の樹脂やその他の添加剤を含有していてもよい。この場合、本発明の3次元造形用フィラメント中のオレフィン系樹脂組成物(α)の含有量は、特に制限されないが、耐熱性や造形性に優れる点から、通常50質量%以上であり、60質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上が特に好ましく、95質量%以上が最も好ましい。 Further, the filament for three-dimensional modeling of the present invention may contain a filler, other resin and other additives described later in addition to the olefin resin composition (α). In this case, the content of the olefin resin composition (α) in the filament for three-dimensional modeling of the present invention is not particularly limited, but is usually 50% by mass or more from the viewpoint of excellent heat resistance and formability, which is 60. By mass% or more is more preferable, 80% by mass or more is further preferable, 90% by mass or more is particularly preferable, and 95% by mass or more is most preferable.
 また、本発明の3次元造形用フィラメント中のオレフィン系樹脂組成物(α)の含有量は、造形物の強度や、その他機能性付与の観点から、100質量%以下が好ましく、99質量%以下がより好ましく、98.5質量%以下がさらに好ましく、98質量%以下が特に好ましい。 Further, the content of the olefin resin composition (α) in the filament for three-dimensional modeling of the present invention is preferably 100% by mass or less, preferably 99% by mass or less, from the viewpoint of the strength of the modeled object and the addition of other functionality. Is more preferable, 98.5% by mass or less is further preferable, and 98% by mass or less is particularly preferable.
 なお、オレフィン系樹脂組成物(α)がオレフィン系樹脂組成物(A)と後述の樹脂組成物(B)を含有する場合、オレフィン系樹脂組成物(α)中の、オレフィン系樹脂組成物(A)の含有量は、耐熱性の観点から、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましく、60質量%以上が特に好ましく、70質量%以上が最も好ましい。 When the olefin-based resin composition (α) contains the olefin-based resin composition (A) and the resin composition (B) described later, the olefin-based resin composition (α) in the olefin-based resin composition (α) From the viewpoint of heat resistance, the content of A) is preferably 30% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, particularly preferably 60% by mass or more, and most preferably 70% by mass or more. preferable.
 また、オレフィン系樹脂組成物(α)中の、オレフィン系樹脂組成物(A)の含有量は、造形性の観点から、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下がさらに好ましく、80質量%以下が特に好ましく、75質量%以下が最も好ましい。 The content of the olefin resin composition (A) in the olefin resin composition (α) is preferably 95% by mass or less, more preferably 90% by mass or less, and 85% by mass from the viewpoint of formability. The following is more preferable, 80% by mass or less is particularly preferable, and 75% by mass or less is most preferable.
<樹脂組成物(B)>
 オレフィン系樹脂組成物(α)は、樹脂組成物(B)を含有することができる。
 樹脂組成物(B)は、示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化熱量(ΔHc(B))が10J/g未満であれば、特に限定されるものではない。ΔHc(B)は、オレフィン系樹脂組成物(α)の結晶化熱量の調整が容易である点から、9J/g以下が好ましく、8J/g以下がより好ましく、7J/g以下がさらに好ましく、6J/g以下が特に好ましい。
<Resin composition (B)>
The olefin-based resin composition (α) can contain the resin composition (B).
The resin composition (B) is not particularly limited as long as the amount of heat of crystallization (ΔHc (B)) measured at a temperature lowering rate of 10 ° C./min with a differential scanning calorimeter is less than 10 J / g. Absent. ΔHc (B) is preferably 9 J / g or less, more preferably 8 J / g or less, still more preferably 7 J / g or less, from the viewpoint that the amount of heat of crystallization of the olefin resin composition (α) can be easily adjusted. 6 J / g or less is particularly preferable.
 ΔHc(B)の下限としては特に限定されるものではないが、0J/g以上であり、耐熱性の点から、1J/g以上が好ましく、1.5J/g以上がより好ましく、2J/g以上がさらに好ましく、2.5J/g以上が特に好ましい。 The lower limit of ΔHc (B) is not particularly limited, but is 0 J / g or more, preferably 1 J / g or more, more preferably 1.5 J / g or more, and 2 J / g from the viewpoint of heat resistance. The above is more preferable, and 2.5 J / g or more is particularly preferable.
 樹脂組成物(B)の具体例としては、環状オレフィン系樹脂、ABS(アクリロ二トリル・ブタジエン・スチレン)、MBS(メチルメタクリレート・ブタジエン・スチレン共重合)、PETG(Poly Ethylene Terephthalate Glycol-modified)、PLA(ポリ乳酸)、PC(ポリカーボネート)、などが挙げられる。 Specific examples of the resin composition (B) include cyclic olefin resin, ABS (acrylonitrile butadiene styrene), MBS (methyl methacrylate butadiene styrene copolymer), PETG (PolyEthylene Terephthalate Glycol-modified), and the like. Examples include PLA (polylactic acid) and PC (polycarbonate).
 中でもオレフィン系樹脂組成物(A)との混練性の観点から、環状オレフィン系樹脂が好ましい。環状オレフィン系樹脂とは、分子鎖中に脂環式構造を有するオレフィン系樹脂のことである。脂環式構造とは、例えば、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサンなどの単環構造、ノルボルナン、デカリン、スピロペンタンなどの2環構造などが挙げられる。これらは、ポリマー主鎖中に入っていても、側鎖中に入っていてもよいが、よりオレフィン系樹脂組成物(A)との混練性や熱融着性を高めるため、側鎖中に入っていることが好ましい。 Among them, the cyclic olefin resin is preferable from the viewpoint of kneadability with the olefin resin composition (A). The cyclic olefin resin is an olefin resin having an alicyclic structure in the molecular chain. Examples of the alicyclic structure include a monocyclic structure such as cyclopropane, cyclobutane, cyclopentane, and cyclohexane, and a bicyclic structure such as norbornane, decalin, and spiropentane. These may be contained in the polymer main chain or the side chain, but in order to further enhance the kneadability and heat-sealing property with the olefin resin composition (A), they may be contained in the side chain. It is preferable that it is contained.
 環状オレフィン系樹脂としては、エチレンと環状オレフィン(シクロアルケン)との共重合体、α-オレフィンと環状オレフィン(シクロアルケン)との共重合体、環状オレフィン(シクロアルケン)開環重合体、環状オレフィン開環重合体の水素添加物、少なくとも1種の芳香族ビニルモノマー単位及び少なくとも1種の共役ジエンモノマー単位を含むブロックコポリマーの水素化体である水素化ブロックコポリマーなどが挙げられる。 Cyclic olefin resins include copolymers of ethylene and cyclic olefins (cycloalkenes), copolymers of α-olefins and cyclic olefins (cycloalkenes), cyclic olefins (cycloalkenes), and cyclic olefins. Examples thereof include a hydrogenated compound of a ring-opening polymer, a hydride block copolymer which is a hydride of a block copolymer containing at least one aromatic vinyl monomer unit and at least one conjugated diene monomer unit.
 なかでも、オレフィン系樹脂組成物(A)との混練性や熱融着性の観点から、側鎖中に脂環式構造を有する樹脂として、少なくとも1種の芳香族ビニルモノマー単位及び少なくとも1種の共役ジエンモノマー単位を含むブロックコポリマーの水素化体である水素化ブロックコポリマーが好ましい。また、樹脂組成物(B)は、上記から選ばれる1つの樹脂からなっていてもよいし、上記から選ばれる複数の樹脂を組み合わせてもよい。 Among them, at least one aromatic vinyl monomer unit and at least one kind as a resin having an alicyclic structure in the side chain from the viewpoint of kneadability and heat-sealing property with the olefin resin composition (A). A hydride block copolymer, which is a hydride of the block copolymer containing the conjugated diene monomer unit of the above, is preferable. Further, the resin composition (B) may consist of one resin selected from the above, or may be a combination of a plurality of resins selected from the above.
 前記水素化ブロックコポリマーは、前記芳香族ビニルモノマー単位からなるポリマーブロックの水素化体である水素化芳香族ビニルポリマーブロック単位、及び、前記共役ジエンモノマー単位からなるポリマーブロックの水素化体である水素化共役ジエンポリマーブロック単位を有する。また、該水素化ブロックコポリマーは、前記水素化芳香族ビニルポリマーブロック単位を少なくとも2個有すると共に、前記水素化共役ジエンポリマーブロック単位を少なくとも1個有するものである。 The hydrogenated block copolymer is a hydrogenated product of a hydrogenated aromatic vinyl polymer block unit, which is a hydride of a polymer block composed of the aromatic vinyl monomer unit, and hydrogen, which is a hydride of a polymer block composed of the conjugated diene monomer unit. It has a modified conjugated diene polymer block unit. Further, the hydrogenated block copolymer has at least two hydrogenated aromatic vinyl polymer block units and at least one hydrogenated conjugated diene polymer block unit.
 なお、本明細書において、「ブロック」とは、後記するように、コポリマーの構造的又は組成的に異なった重合セグメントからのミクロ層分離を表すコポリマーの重合セグメントをいう。このため、例えば「ブロック単位を少なくとも2個有する」とは、水素化ブロックコポリマーの中に、構造的又は組成的に異なった重合セグメントからのミクロ層分離を表すコポリマーの重合セグメントを少なくとも2個有することをいう。 In addition, in this specification, a "block" means a polymerized segment of a copolymer which represents a microlayer separation from a polymerized segment which is structurally or compositionally different from the copolymer, as described later. For this reason, for example, "having at least two block units" means that the hydrogenated block copolymer has at least two polymerized segments of the copolymer representing microlayer separation from structurally or structurally different polymerized segments. Say that.
 前記の芳香族ビニルモノマー単位の原料となる芳香族ビニルモノマーは、下記一般式(1)で示されるモノマーである。 The aromatic vinyl monomer used as a raw material for the aromatic vinyl monomer unit is a monomer represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rは水素原子又はアルキル基、Arはフェニル基、ハロフェニル基、アルキルフェニル基、アルキルハロフェニル基、ナフチル基、ピリジニル基、又はアントラセニル基である。 In the formula (1), R is a hydrogen atom or an alkyl group, Ar is a phenyl group, a halophenyl group, an alkylphenyl group, an alkylhalophenyl group, a naphthyl group, a pyridinyl group, or an anthrasenyl group.
 前記アルキル基は、ハロ基、ニトロ基、アミノ基、ヒドロキシ基、シアノ基、カルボニル基、及びカルボキシル基のような官能基で単置換若しくは多重置換されたアルキル基であってもよい。また、前記アルキル基の炭素数は、1~6が好ましい。また、前記のArは、フェニル基又はアルキルフェニル基が好ましく、フェニル基がより好ましい。 The alkyl group may be a mono- or multiple-substituted alkyl group with a functional group such as a halo group, a nitro group, an amino group, a hydroxy group, a cyano group, a carbonyl group, and a carboxyl group. The alkyl group preferably has 1 to 6 carbon atoms. Further, the Ar is preferably a phenyl group or an alkylphenyl group, and more preferably a phenyl group.
 前記芳香族ビニルモノマーとしては、例えば、スチレン、α-メチルスチレン、ビニルトルエン(全ての異性体を含み、特にp-ビニルトルエン)、エチルスチレン、プロピルスチレン、ブチルスチレン、ビニルビフェニル、ビニルナフタレン、ビニルアントラセン(全ての異性体)、及びこれらの混合物が挙げられる。 Examples of the aromatic vinyl monomer include styrene, α-methylstyrene, vinyltoluene (including all isomers, particularly p-vinyltoluene), ethylstyrene, propylstyrene, butylstyrene, vinylbiphenyl, vinylnaphthalene, and vinyl. Anthracene (all isomers), and mixtures thereof.
 前記の共役ジエンモノマー単位の原料となる共役ジエンモノマーは、2個の共役二重結合を持つモノマーであればよく、特に限定されるものではない。 The conjugated diene monomer used as a raw material for the conjugated diene monomer unit may be a monomer having two conjugated double bonds, and is not particularly limited.
 共役ジエンモノマーとしては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレンン)、2-メチル-1,3ペンタジエンとその類似化合物、及びこれらの混合物が挙げられる。 Examples of the conjugated diene monomer include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2-methyl-1,3 pentadiene and similar compounds, and mixtures thereof.
 前記1,3-ブタジエンの重合体であるポリブタジエンは、水素化で1-ブテン繰り返し単位の等価物を与える1,2配置、又は水素化でエチレン繰り返し単位の等価物を与える1,4配置のいずれかを含むことができる。 Polybutadiene, which is a polymer of 1,3-butadiene, has either a 1,2 configuration that gives an equivalent of 1-butane repeating units by hydrogenation, or a 1,4 configuration that gives an equivalent of ethylene repeating units by hydrogenation. Can be included.
 前記の芳香族ビニルモノマーや、1,3-ブタジエンを含む前記共役ジエンモノマーから構成される重合性ブロックの水素化体は、本発明で使用される水素化ブロックコポリマーに含まれる。好ましくは、水素化ブロックコポリマーは官能基のないブロックコポリマーである。なお、「官能基のない」とはブロックコポリマー中に如何なる官能基も存在しないこと、即ち、炭素と水素以外の元素を含む基が存在しないことを意味する。 The hydrogenated block copolymer composed of the aromatic vinyl monomer and the conjugated diene monomer containing 1,3-butadiene is included in the hydrogenated block copolymer used in the present invention. Preferably, the hydrogenated block copolymer is a functional group-free block copolymer. In addition, "without functional groups" means that there are no functional groups in the block copolymer, that is, there are no groups containing elements other than carbon and hydrogen.
 前記の水素化芳香族ビニルポリマーブロック単位の好ましい例としては、水素化ポリスチレンを挙げることができ、前記の水素化共役ジエンポリマーブロック単位の好ましい例としては、水素化ポリブタジエンを挙げることができる。そして、水素化ブロックコポリマーの好ましい一態様としては、スチレンとブタジエンの水素化トリブロック又はペンタブロックコポリマーを挙げることができ、他の如何なる官能基又は構造的変性剤も含まないことが好ましい。 Preferable examples of the hydrogenated aromatic vinyl polymer block unit include polystyrene hydride, and preferred examples of the hydrogenated conjugated diene polymer block unit include hydrogenated polybutadiene. A preferred embodiment of the hydrogenated block copolymer is a hydrogenated triblock or pentablock copolymer of styrene and butadiene, preferably free of any other functional group or structural modifier.
 「ブロック」とは、コポリマーの構造的又は組成的に異なった重合セグメントからのミクロ層分離を表すコポリマーの重合セグメントとして定義される。ミクロ層分離は、ブロックコポリマー中で重合セグメントが混じり合わないことにより生ずる。 A "block" is defined as a polymerized segment of a copolymer that represents microlayer separation from structurally or compositionally different polymerized segments of the copolymer. Microlayer separation occurs due to the immiscibility of the polymerized segments in the block copolymer.
 なお、ミクロ層分離とブロックコポリマーは、PHYSICS TODAYの1999年2月号32-38頁の“Block Copolymers-Designer Soft Materials”で広範に議論されている。 Microlayer separation and block copolymers are widely discussed in "Block Copolymers-Designer Soft Materials", pp. 32-38 of the February 1999 issue of PHYSICS TODAY.
 水素化芳香族ビニルポリマーブロック単位の含有率(モル%)の下限は、前記環状ポリオレフィンに対して、好ましくは30モル%以上、より好ましくは40モル%以上である。また、水素化芳香族ビニルポリマーブロック単位の含有率(モル%)の上限は、前記環状ポリオレフィンに対して、好ましくは99モル%以下、より好ましくは90モル%以下である。 The lower limit of the content (mol%) of the hydrogenated aromatic vinyl polymer block unit is preferably 30 mol% or more, more preferably 40 mol% or more, based on the cyclic polyolefin. The upper limit of the content (mol%) of the hydrogenated aromatic vinyl polymer block unit is preferably 99 mol% or less, more preferably 90 mol% or less, based on the cyclic polyolefin.
 水素化芳香族ビニルポリマーブロック単位の比率が上記下限値以上であれば剛性が低下することがなく、上記上限値以下であれば脆性が悪化することがない。 If the ratio of hydrogenated aromatic vinyl polymer block units is equal to or higher than the above lower limit value, the rigidity does not decrease, and if it is equal to or lower than the above upper limit value, brittleness does not deteriorate.
 水素化共役ジエンポリマーブロック単位の含有率の下限は、前記環状ポリオレフィンに対して、好ましくは1モル%以上、より好ましくは10モル%以上である。また、水素化共役ジエンポリマーブロック単位の含有率の上限は、前記環状ポリオレフィンに対して、好ましくは70モル%以下、より好ましくは60モル%以下である。 The lower limit of the content of the hydrogenated conjugated diene polymer block unit is preferably 1 mol% or more, more preferably 10 mol% or more, based on the cyclic polyolefin. The upper limit of the content of the hydrogenated conjugated diene polymer block unit is preferably 70 mol% or less, more preferably 60 mol% or less, based on the cyclic polyolefin.
 水素化共役ジエンポリマーブロック単位の比率が上記下限値以上であれば脆性が悪化することがなく、上記上限値以下であれば剛性が低下することがないため、造形した樹脂成形体の強度に優れる。 If the ratio of hydrogenated conjugated diene polymer block units is at least the above lower limit value, brittleness does not deteriorate, and if it is at least the above upper limit value, rigidity does not decrease, so that the strength of the molded resin molded product is excellent. ..
 前記水素化ブロックコポリマーはSBS、SBSBS、SIS、SISIS、及びSISBS(ここで、Sはポリスチレン、Bはポリブタジエン、Iはポリイソプレンを意味する。)のようなトリブロック、マルチブロック、テーパーブロック、及びスターブロックコポリマーを含むブロックコポリマーの水素化によって製造される。 The hydrogenated block copolymers are triblocks, multiblocks, tapered blocks, such as SBS, SBSBS, SIS, SISIS, and SISBS (where S stands for polystyrene, B stands for polybutadiene, and I stands for polyisoprene). Manufactured by hydrogenation of block copolymers, including star block copolymers.
 前記水素化ブロックコポリマーはそれぞれの末端に芳香族ビニルポリマーからなるセグメントを含む。このため、水素化ブロックコポリマーは、少なくとも2個の水素化芳香族ビニルポリマーブロック単位を有することとなる。そして、この2個の水素化芳香族ビニルポリマーブロック単位の間には、少なくとも1つの水素化共役ジエンポリマーブロック単位を有することとなる。 The hydrogenated block copolymer contains a segment made of an aromatic vinyl polymer at each end. Therefore, the hydrogenated block copolymer will have at least two hydrogenated aromatic vinyl polymer block units. Then, at least one hydrogenated conjugated diene polymer block unit will be provided between the two hydrogenated aromatic vinyl polymer block units.
 前記水素化ブロックを構成する水素化前のブロックコポリマーは、何個かの追加ブロックを含んでいてもよく、これらのブロックはトリブロックポリマー骨格のどの位置に結合していてもよい。このように、線状ブロックは例えばSBS、SBSB、SBSBS、そしてSBSBSBを含む。コポリマーは分岐していてもよく、重合連鎖はコポリマーの骨格に沿ってどの位置に結合していてもよい。 The pre-hydrogenation block copolymer constituting the hydrogenation block may contain several additional blocks, and these blocks may be bonded to any position in the triblock polymer backbone. Thus, the linear block includes, for example, SBS, SBSB, SBBSS, and SBBSSB. The copolymer may be branched and the polymerization chain may be attached at any position along the backbone of the copolymer.
 水素化ブロックコポリマーの重量平均分子量(Mw)の下限は、好ましくは30,000以上、より好ましくは40,000以上、更に好ましくは45,000以上、特に好ましくは50,000以上である。また、水素化ブロックコポリマーのMwの上限は、好ましくは120,000以下、より好ましくは100,000以下、更に好ましくは95,000以下、特に好ましくは90,000以下、最も好ましくは85,000以下、極めて好ましくは80,000以下である。 The lower limit of the weight average molecular weight (Mw) of the hydrogenated block copolymer is preferably 30,000 or more, more preferably 40,000 or more, still more preferably 45,000 or more, and particularly preferably 50,000 or more. The upper limit of Mw of the hydrogenated block copolymer is preferably 120,000 or less, more preferably 100,000 or less, still more preferably 95,000 or less, particularly preferably 90,000 or less, and most preferably 85,000 or less. , Very preferably 80,000 or less.
 水素化ブロックコポリマーのMwが上記下限値以上であれば機械強度が低下せず、上記上限値以下であれば成形加工性が悪化しない。
 本明細書のMwは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて決定される。
If the Mw of the hydrogenated block copolymer is at least the above lower limit value, the mechanical strength does not decrease, and if it is at least the above upper limit value, the molding processability does not deteriorate.
Mw herein is determined using gel permeation chromatography (GPC).
 ブロックコポリマーの水素化レベルは、好ましくは水素化芳香族ビニルポリマーブロック単位が90%以上、水素化共役ジエンポリマーブロック単位が95%以上であり、より好ましくは水素化芳香族ビニルポリマーブロック単位が95%以上、水素化共役ジエンポリマーブロック単位が99%以上であり、更に好ましくは水素化芳香族ビニルポリマーブロック単位が98%以上、水素化共役ジエンポリマーブロック単位が99.5%以上であり、特に好ましくは水素化芳香族ビニルポリマーブロック単位が99.5%以上、水素化共役ジエンポリマーブロック単位が99.5%以上である。 The hydrogenation level of the block copolymer is preferably 90% or more for the hydrogenated aromatic vinyl polymer block unit, 95% or more for the hydrogenated conjugated diene polymer block unit, and more preferably 95% or more for the hydrogenated aromatic vinyl polymer block unit. % Or more, the hydrogenated conjugated diene polymer block unit is 99% or more, more preferably the hydrogenated aromatic vinyl polymer block unit is 98% or more, and the hydrogenated conjugated diene polymer block unit is 99.5% or more, particularly. Preferably, the hydrogenated aromatic vinyl polymer block unit is 99.5% or more, and the hydrogenated conjugated diene polymer block unit is 99.5% or more.
 なお、水素化芳香族ビニルポリマーブロック単位の水素化レベルとは、芳香族ビニルポリマーブロック単位が水素化によって飽和される割合を示し、共役ジエンポリマーブロック単位の水素化レベルとは、共役ジエンポリマーブロック単位が水素化によって飽和される割合を示す。このように高レベルの水素化は、耐熱性及び透明性のために好ましい。 The hydrogenation level of the hydrogenated aromatic vinyl polymer block unit indicates the rate at which the aromatic vinyl polymer block unit is saturated by hydrogenation, and the hydrogenation level of the conjugated diene polymer block unit is the conjugated diene polymer block. Indicates the rate at which the unit is saturated by hydrogenation. Such high levels of hydrogenation are preferred for heat resistance and transparency.
 芳香族ビニルポリマーブロック単位の水素化レベルと共役ジエンポリマーブロック単位の水素化レベルは、プロトンNMRを用いて決定される。 The hydrogenation level of the aromatic vinyl polymer block unit and the hydrogenation level of the conjugated diene polymer block unit are determined by using proton NMR.
 樹脂組成物(B)のガラス転移温度(Tg)は、特に限定されないが、フィラメントやそれを用いて造形する樹脂成形体の、強度や耐熱性の観点から、50℃以上が好ましく、70℃以上がより好ましく、80℃以上がさらに好ましく、90℃以上が特に好ましく、100℃以上が最も好ましい。また、オレフィン系樹脂組成物(A)との混練性や、造形性(造形時の反り抑制)の観点から、樹脂組成物(B)のガラス転移温度(Tg)は、200℃以下が好ましく、180℃以下がより好ましく、160℃以下がさらに好ましく、150℃以下が特に好ましく、140℃以下が最も好ましい。 The glass transition temperature (Tg) of the resin composition (B) is not particularly limited, but is preferably 50 ° C. or higher, preferably 70 ° C. or higher, from the viewpoint of strength and heat resistance of the filament and the resin molded product formed by using the filament. Is more preferable, 80 ° C. or higher is further preferable, 90 ° C. or higher is particularly preferable, and 100 ° C. or higher is most preferable. The glass transition temperature (Tg) of the resin composition (B) is preferably 200 ° C. or lower from the viewpoint of kneadability with the olefin resin composition (A) and formability (suppression of warpage during modeling). 180 ° C. or lower is more preferable, 160 ° C. or lower is further preferable, 150 ° C. or lower is particularly preferable, and 140 ° C. or lower is most preferable.
 ここで、該ガラス転移温度(Tg)とは、示差走査熱量計(DSC)を用いJIS K7121に準じて、試料約10mgを昇温速度10℃/分で室温から250℃まで昇温し、該温度で1分間保持した後、10℃/分の降温速度で30℃まで降温し、再度、昇温速度10℃/分で250℃まで昇温した時に測定される値である。 Here, the glass transition temperature (Tg) is defined by raising the temperature of about 10 mg of a sample from room temperature to 250 ° C. at a heating rate of 10 ° C./min according to JIS K7121 using a differential scanning calorimeter (DSC). It is a value measured when the temperature is maintained for 1 minute, the temperature is lowered to 30 ° C. at a temperature lowering rate of 10 ° C./min, and the temperature is raised to 250 ° C. again at a temperature rising rate of 10 ° C./min.
 オレフィン系樹脂組成物(α)中の、樹脂組成物(B)の含有量は、耐熱性の観点から、70質量%未満が好ましく、60質量%未満がより好ましく、50質量%未満がさらに好ましく、40質量%未満がより好ましい。また造形性の観点から、当該含有量は、5質量%より多いことが好ましく、10質量%より多いことがより好ましく、15質量%より多いことがさらに好ましく、20質量%より多いことが特に好ましく、25質量%より多いことが最も好ましい。 The content of the resin composition (B) in the olefin resin composition (α) is preferably less than 70% by mass, more preferably less than 60% by mass, still more preferably less than 50% by mass, from the viewpoint of heat resistance. , Less than 40% by mass is more preferable. Further, from the viewpoint of formability, the content is preferably more than 5% by mass, more preferably more than 10% by mass, further preferably more than 15% by mass, and particularly preferably more than 20% by mass. , 25% by mass or more is most preferable.
<3次元造形用フィラメント>
 オレフィン系樹脂組成物(α)は、実施の形態に合わせた形状で用いて構わない。形状は例えば、ペレット、粉体、顆粒、フィラメント等が挙げられる。中でも、フィラメント形状で用いることが好ましい。
<Filament for 3D modeling>
The olefin resin composition (α) may be used in a shape suitable for the embodiment. Examples of the shape include pellets, powders, granules, filaments and the like. Above all, it is preferable to use it in a filament shape.
 本発明の3次元造形用フィラメントは、オレフィン系樹脂組成物(α)以外に、本発明の効果を損なわない程度にフィラー(有機系粒子、無機系粒子及び補強材など)やその他の樹脂、その他の成分を含んでもよい。 In addition to the olefin resin composition (α), the filament for three-dimensional modeling of the present invention includes fillers (organic particles, inorganic particles, reinforcing materials, etc.), other resins, and the like to the extent that the effects of the present invention are not impaired. May contain the components of.
 フィラー(有機系粒子、無機系粒子及び補強材など)としては、以下に詳細を詳述する。その他の樹脂としては、PLA、ポリエステル系樹脂、ポリアミド系樹脂、ポリアセタール系樹脂等が挙げられる。その他の成分としては、耐熱剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑剤、スリップ剤、結晶核剤、粘着性付与剤、シール性改良剤、防曇剤、離型剤、可塑剤、顔料、染料、香料、難燃剤などが挙げられる。 Details of fillers (organic particles, inorganic particles, reinforcing materials, etc.) will be described below. Examples of other resins include PLA, polyester resin, polyamide resin, polyacetal resin and the like. Other components include heat resistant agents, UV absorbers, light stabilizers, antioxidants, antistatic agents, lubricants, slip agents, crystal nucleating agents, tackifiers, sealability improvers, antifogging agents, and mold release agents. Examples include agents, plasticizers, pigments, dyes, fragrances, flame retardants and the like.
 ここで、フィラーのうち有機系粒子の具体例としては、アクリル樹脂粒子、メラミン樹脂粒子、シリコーン樹脂粒子、ポリスチレン樹脂粒子などが挙げられる。 Here, specific examples of the organic particles among the fillers include acrylic resin particles, melamine resin particles, silicone resin particles, polystyrene resin particles, and the like.
 ここで、フィラーのうち無機系粒子の具体例としては、シリカ、アルミナ、カオリン、二酸化チタン、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸亜鉛などが挙げられる。 Here, specific examples of the inorganic particles among the fillers include silica, alumina, kaolin, titanium dioxide, calcium carbonate, magnesium carbonate, zinc carbonate, calcium stearate, magnesium stearate, zinc stearate and the like.
 ここで、フィラーのうち補強材の具体例としては、無機充填材や無機繊維が挙げられる。
 無機充填材の具体例としては、炭酸カルシウム、炭酸亜鉛、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、チタン酸カリウム、ガラスバルーン、ガラスフレーク、ガラス粉末、炭化ケイ素、窒化ケイ素、窒化ホウ素、石膏、焼成カオリン、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、ワラストナイト、シリカ、タルク、金属粉、アルミナ、グラファイト、カーボンブラック、カーボンナノチューブなどが挙げられる。
Here, examples of the reinforcing material among the fillers include an inorganic filler and an inorganic fiber.
Specific examples of the inorganic filler include calcium carbonate, zinc oxide, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminate, magnesium silicate, potassium titanate, glass balloon, glass flakes, and glass powder. Silicon carbide, silicon nitride, boron nitride, gypsum, calcined kaolin, zinc oxide, antimony trioxide, zeolite, hydrotalcite, wallastonite, silica, talc, metal powder, alumina, graphite, carbon black, carbon nanotubes, etc. Be done.
 無機繊維の具体例としては、ガラスカットファイバー、ガラスミルドファイバー、ガラスファイバー、石膏ウィスカー、金属繊維、金属ウィスカー、セラミックウィスカー、炭素繊維、セルロースナノファイバーなどが挙げられる。 Specific examples of inorganic fibers include glass cut fibers, glass milled fibers, glass fibers, gypsum whiskers, metal fibers, metal whiskers, ceramic whiskers, carbon fibers, cellulose nanofibers, and the like.
 ここで、フィラーの含有量は、特に規定されないが、造形する樹脂成形体の強度の観点から、樹脂組成物(α)100質量%に対して、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上がさらに好ましい。また、造形する樹脂成形体の層間接着性低下を抑制する観点から、50質量%以下が好ましく、40質量%以下がより好ましく、30質量%以下がさらに好ましい。 Here, the content of the filler is not particularly specified, but from the viewpoint of the strength of the resin molded product to be molded, it is preferably 1% by mass or more, preferably 5% by mass or more, based on 100% by mass of the resin composition (α). More preferably, 10% by mass or more is further preferable. Further, from the viewpoint of suppressing deterioration of the interlayer adhesiveness of the resin molded product to be molded, 50% by mass or less is preferable, 40% by mass or less is more preferable, and 30% by mass or less is further preferable.
<3次元造形用フィラメントの製造方法>
 本発明の3次元造形用フィラメントは、上述のオレフィン系樹脂組成物(α)を用いて製造される。オレフィン系樹脂組成物(α)の混合方法としては特に制限されるものではないが、公知の方法、例えば単軸押出機、多軸押出機、バンバリーミキサー、ニーダーなどの溶融混練装置を用いることができる。
<Manufacturing method of filament for 3D modeling>
The filament for three-dimensional modeling of the present invention is produced by using the above-mentioned olefin resin composition (α). The method for mixing the olefin resin composition (α) is not particularly limited, but a known method, for example, a melt-kneading device such as a single-screw extruder, a multi-screw extruder, a Banbury mixer, or a kneader can be used. it can.
 本発明においては、各成分の分散性や混和性などの観点から、同方向二軸押出機を用いることが好ましい。分散性や混和性に優れると、フィラメント径の精度や真円度を高めることができるため好ましい。 In the present invention, it is preferable to use a twin-screw extruder in the same direction from the viewpoint of dispersibility and miscibility of each component. Excellent dispersibility and miscibility are preferable because the accuracy and roundness of the filament diameter can be improved.
 本発明の3次元造形用フィラメントの製造方法は特に制限されるものではないが、上述のオレフィン系樹脂組成物(α)を、押出成形等の公知の成形方法により成形する方法や、オレフィン系樹脂組成物(α)の製造時にそのままフィラメントとする方法等によって得ることができる。例えば、本発明の3次元造形用フィラメントを押出成形により得る場合、その条件は、用いる樹脂組成物の流動特性や成形加工性等によって適宜調整されるが、通常150~300℃、好ましくは170~250℃である。 The method for producing the three-dimensional molding filament of the present invention is not particularly limited, but a method for molding the above-mentioned olefin resin composition (α) by a known molding method such as extrusion molding, or an olefin resin. It can be obtained by a method or the like in which the composition (α) is directly used as a filament at the time of production. For example, when the filament for three-dimensional molding of the present invention is obtained by extrusion molding, the conditions thereof are appropriately adjusted depending on the flow characteristics, molding processability, etc. of the resin composition used, but are usually 150 to 300 ° C., preferably 170 to 170. It is 250 ° C.
<3次元造形用フィラメントの物性等>
 本発明の3次元造形用フィラメントの直径は、熱溶解積層法による樹脂成形体の成形に使用するシステムの仕様に依存するが、通常1.0mm以上、好ましくは1.5mm以上、より好ましくは1.6mm以上、特に好ましくは1.7mm以上である。一方、本発明の3次元造形用フィラメントの直径は、通常5.0mm以下、好ましくは4.0mm以下、より好ましくは3.5mm以下、特に好ましくは3.0mm以下である。
<Physical characteristics of filaments for 3D modeling>
The diameter of the three-dimensional molding filament of the present invention depends on the specifications of the system used for molding the resin molded product by the fused deposition modeling method, but is usually 1.0 mm or more, preferably 1.5 mm or more, more preferably 1. It is 1.6 mm or more, particularly preferably 1.7 mm or more. On the other hand, the diameter of the three-dimensional modeling filament of the present invention is usually 5.0 mm or less, preferably 4.0 mm or less, more preferably 3.5 mm or less, and particularly preferably 3.0 mm or less.
 更に径の精度はフィラメントの任意の測定点に対して±5%以内の誤差に収めることが原料供給の安定性の観点から好ましい。特に、本発明の3次元造形用フィラメントは、径の標準偏差が好ましくは0.07mm以下であり、特に好ましくは0.06mm以下である。 Further, it is preferable that the accuracy of the diameter is within ± 5% with respect to an arbitrary measurement point of the filament from the viewpoint of stability of raw material supply. In particular, the three-dimensional modeling filament of the present invention has a standard deviation of diameter of preferably 0.07 mm or less, and particularly preferably 0.06 mm or less.
 また、本発明の3次元造形用フィラメントは、真円度が好ましくは0.93以上であり、特に好ましくは0.95以上である。真円度の上限は1.0である。このように、径の標準偏差が小さく、真円度が高い3次元造形用フィラメントであれば、造形時の吐出ムラが抑制され、外観や表面性状等に優れた樹脂成形体を安定して製造することができる。前述のオレフィン系樹脂組成物(α)を用いることで、このような標準偏差及び真円度を満たす3次元造形用フィラメントを比較的容易に製造することができる。 Further, the filament for three-dimensional modeling of the present invention has a roundness of preferably 0.93 or more, and particularly preferably 0.95 or more. The upper limit of roundness is 1.0. In this way, with a three-dimensional molding filament having a small standard deviation in diameter and high roundness, uneven ejection during molding is suppressed, and a resin molded body having excellent appearance and surface properties can be stably manufactured. can do. By using the above-mentioned olefin resin composition (α), a three-dimensional modeling filament satisfying such standard deviation and roundness can be produced relatively easily.
<3次元造形用フィラメントの巻回体>
 本発明の3次元造形用フィラメントを用いて3次元プリンタにより樹脂成形体を製造するにあたり、3次元造形用フィラメントを安定に保存すること、及び、3次元プリンタに3次元造形用フィラメントを安定供給することが求められる。そのために、本発明の3次元造形用フィラメントは、ボビンに巻きとった巻回体として包装されている、又は、巻回体がカートリッジに収納されていることが、長期保存、安定した繰り出し、紫外線等の環境要因からの保護、捩れ防止等の観点から好ましい。カートリッジとしては、ボビンに巻き取った巻回体の他、内部に防湿材または吸湿材を使用し、少なくともフィラメントを繰り出すオリフィス部以外が密閉されている構造のものが挙げられる。
<Filament winding body for 3D modeling>
In manufacturing a resin molded body by a 3D printer using the 3D modeling filament of the present invention, the 3D modeling filament is stably stored and the 3D modeling filament is stably supplied to the 3D printer. Is required. Therefore, the filament for three-dimensional modeling of the present invention is packaged as a winding body wound around a bobbin, or the winding body is housed in a cartridge for long-term storage, stable feeding, and ultraviolet rays. It is preferable from the viewpoint of protection from environmental factors such as, twist prevention, and the like. Examples of the cartridge include a wound body wound around a bobbin, a structure in which a moisture-proof material or a moisture-absorbing material is used inside, and at least an orifice portion for feeding the filament is sealed.
 通常、3次元造形用フィラメントをボビンに巻きとった巻回体、又は、巻回体を含むカートリッジは3次元プリンタ内又は周囲に設置され、成形中は常にカートリッジからフィラメントが3次元プリンタに導入され続ける。 Usually, a winding body in which a filament for 3D modeling is wound on a bobbin, or a cartridge containing the winding body is installed in or around the 3D printer, and the filament is always introduced from the cartridge into the 3D printer during molding. to continue.
<樹脂成形体の製造方法>
 本発明の樹脂成形体の製造方法においては、本発明の3次元造形用フィラメントを用い、3次元プリンタにより成形することにより樹脂成形体を得る。3次元プリンタによる成形方法としては熱溶解積層法(ME法)、粉末焼結方式、インクジェット方式、光造形方式(SLA法)などが挙げられるが、本発明の3次元プリンタ用フィラメントは、熱溶解積層法に用いることが特に好ましい。以下、熱溶解積層法の場合を例示して説明する。
<Manufacturing method of resin molded product>
In the method for producing a resin molded product of the present invention, a resin molded product is obtained by molding with a three-dimensional printer using the filament for three-dimensional molding of the present invention. Examples of the molding method using a 3D printer include a hot melting lamination method (ME method), a powder sintering method, an inkjet method, and a stereolithography method (SLA method). The filament for a 3D printer of the present invention is thermally melted. It is particularly preferable to use it in the lamination method. Hereinafter, the case of the Fused Deposition Modeling method will be described as an example.
 3次元プリンタは一般に、チャンバーを有しており、該チャンバー内に、加熱可能な基盤、ガントリー構造に設置された押出ヘッド、加熱溶融器、フィラメントのガイド、フィラメントカートリッジ設置部等の原料供給部を備えている。3次元プリンタの中には押出ヘッドと加熱溶融器とが一体化されているものもある。 A three-dimensional printer generally has a chamber, and in the chamber, a heatable base, an extrusion head installed in a gantry structure, a heating melter, a filament guide, a raw material supply unit such as a filament cartridge installation unit, etc. I have. In some 3D printers, the extrusion head and the heating / melting device are integrated.
 押出ヘッドはガントリー構造に設置されることにより、基盤のX-Y平面上に任意に移動させることができる。基盤は目的の3次元物体や支持材等を構築するプラットフォームであり、加熱保温することで積層物との接着性を得たり、得られる樹脂成形体を所望の3次元物体として寸法安定性を改善したりできる仕様であることが好ましい。また、積層物との接着性を向上させるため、基盤上に粘着性のある糊を塗布したり、積層物との接着性が良好なシート等を貼りつけてもよい。ここで積層物との接着性が良好なシートとしては、無機繊維のシートなど表面に細かな凹凸を有するシートや、積層物と同種の樹脂からなるシートなどが挙げられる。なお、押出ヘッドと基盤とは、通常、少なくとも一方がX-Y平面に垂直なZ軸方向に可動となっている。 By installing the extrusion head in the gantry structure, it can be arbitrarily moved on the XY plane of the base. The base is a platform for constructing a target three-dimensional object, support material, etc., and by heating and keeping warm, adhesiveness to the laminate can be obtained, and the obtained resin molded body can be used as a desired three-dimensional object to improve dimensional stability. It is preferable that the specifications are such that they can be used. Further, in order to improve the adhesiveness with the laminate, an adhesive glue may be applied on the substrate, or a sheet or the like having good adhesiveness with the laminate may be attached. Examples of the sheet having good adhesiveness to the laminate include a sheet having fine irregularities on the surface such as an inorganic fiber sheet, and a sheet made of the same type of resin as the laminate. Normally, at least one of the extrusion head and the substrate is movable in the Z-axis direction perpendicular to the XY plane.
 押出ヘッドの数は、通常1~2つである。押出ヘッドが2つあれば、2つの異なるポリマーをそれぞれ異なるヘッド内で溶融し、選択的に印刷することができる。この場合、ポリマーの1つは3D対象物を造形する造形材料であり、もう一方は、例えば一時的な機材として必要とされる支持材料とすることができる。この支持材料は、例えば、水性系(例えば、塩基性又は酸性媒体)における完全な又は部分的な溶解によって、その後除去することができる。 The number of extrusion heads is usually one or two. With two extrusion heads, two different polymers can be melted in different heads and selectively printed. In this case, one of the polymers can be a modeling material for modeling a 3D object, and the other can be, for example, a supporting material needed as temporary equipment. The supporting material can then be removed, for example, by complete or partial dissolution in an aqueous system (eg, basic or acidic medium).
 3次元造形用フィラメントは原料供給部から繰り出され、対向する1組のローラー又はギアーにより押出ヘッドへ送り込まれ、押出ヘッドにて加熱溶融され、先端ノズルより押し出される。CADモデルを基にして発信される信号により、押出ヘッドはその位置を移動しながら原料を基盤上に供給して積層堆積させていく。この工程が完了した後、基盤から積層堆積物を取り出し、必要に応じて支持材等を剥離したり、余分な部分を切除したりして所望の3次元物体として樹脂成形体を得ることができる。 The three-dimensional modeling filament is unwound from the raw material supply unit, fed to the extrusion head by a pair of opposing rollers or gears, heated and melted by the extrusion head, and extruded from the tip nozzle. According to the signal transmitted based on the CAD model, the extrusion head moves its position and supplies the raw material onto the substrate for stacking and deposition. After this step is completed, the laminated deposit can be taken out from the substrate, and if necessary, the support material or the like can be peeled off or the excess portion can be cut off to obtain a resin molded body as a desired three-dimensional object. ..
 押出ヘッドへ連続的に原料を供給する手段は、フィラメント又はファイバーを繰り出て供給する方法、粉体又は液体をタンク等から定量フィーダを介して供給する方法、ペレット又は顆粒を押出機等で可塑化したものを押し出して供給する方法等が例示できる。これらの中でも、工程の簡便さと供給安定性の観点から、フィラメントを繰り出して供給する方法、即ち、前述の本発明の3次元造形用フィラメントを繰り出して供給する方法が最も好ましい。 The means for continuously supplying the raw material to the extrusion head is a method of feeding out filaments or fibers, a method of supplying powder or liquid from a tank or the like via a quantitative feeder, and plasticizing pellets or granules with an extruder or the like. An example is an example of a method of extruding and supplying the converted product. Among these, from the viewpoint of simplicity of the process and supply stability, the method of feeding and supplying the filament, that is, the method of feeding and supplying the above-mentioned three-dimensional modeling filament of the present invention is the most preferable.
 3次元プリンタにフィラメントを供給する場合、ニップロールやギアロール等の駆動ロールにフィラメントを係合させて、引き取りながら押出ヘッドへ供給することが一般的である。ここでフィラメントと駆動ロールとの係合による把持をより強固にすることで原料供給を安定化させるために、フィラメントの表面に微小凹凸形状を転写させておいたり、係合部との摩擦抵抗を大きくするための無機添加剤、展着剤、粘着剤、ゴム等を配合したりすることも好ましい。フィラメントに太さムラがある場合、フィラメントと駆動ロールとの係合による把持が行えず、駆動ロールが空転しフィラメントを押出ヘッドに供給出来なくなる場合がある。 When supplying filaments to a 3D printer, it is common to engage the filaments with drive rolls such as nip rolls and gear rolls and supply them to the extrusion head while taking them back. Here, in order to stabilize the raw material supply by strengthening the grip by the engagement between the filament and the drive roll, the minute uneven shape is transferred to the surface of the filament, and the frictional resistance with the engaging portion is increased. It is also preferable to add an inorganic additive, a spreading agent, an adhesive, a rubber, or the like to increase the size. If the filament has uneven thickness, gripping may not be possible due to engagement between the filament and the drive roll, and the drive roll may idle and the filament may not be supplied to the extrusion head.
 本発明の3次元造形用フィラメントは、押出に適当な流動性を得るための温度が、通常180~300℃程度と、通常の3次元プリンタが設定可能な温度である。本発明の製造方法においては、加熱押出ヘッドの温度を通常290℃以下、好ましくは200~280℃とし、また、基盤温度を通常120℃以下として安定的に樹脂成形体を製造することができる。 In the three-dimensional modeling filament of the present invention, the temperature for obtaining appropriate fluidity for extrusion is usually about 180 to 300 ° C., which is a temperature that can be set by a normal three-dimensional printer. In the production method of the present invention, the temperature of the heat extrusion head is usually 290 ° C. or lower, preferably 200 to 280 ° C., and the substrate temperature is usually 120 ° C. or lower to stably produce the resin molded product.
 押出ヘッドから吐出される溶融樹脂の温度(吐出温度)は180℃以上であることが好ましく、190℃以上であることがより好ましく、一方、300℃以下であることが好ましく、290℃以下であることがより好ましく、280℃以下であることが更に好ましい。溶融樹脂の温度が上記下限値以上であると、耐熱性の高い樹脂を押し出す上で好ましく、また、高速で吐出することが可能となり、造形効率が向上する傾向にあるため好ましい。一方、溶融樹脂の温度が上記上限値以下であると、樹脂の熱分解や焼け、発煙、臭い、べたつきといった不具合の発生を防ぎやすくい。また、溶融樹脂の温度が上記上限値以下であると、一般に、糸引きと呼ばれる溶融樹脂が細く伸ばされた破片や、ダマと呼ばれる余分な樹脂が塊状になったものが樹脂成形体に付着し、外観を悪化させることを防ぐ観点からも好ましい。 The temperature (discharge temperature) of the molten resin discharged from the extrusion head is preferably 180 ° C. or higher, more preferably 190 ° C. or higher, and preferably 300 ° C. or lower, preferably 290 ° C. or lower. More preferably, it is more preferably 280 ° C. or lower. When the temperature of the molten resin is at least the above lower limit value, it is preferable for extruding the resin having high heat resistance, and it is possible to discharge the molten resin at a high speed, which tends to improve the molding efficiency, which is preferable. On the other hand, when the temperature of the molten resin is not more than the above upper limit value, it is easy to prevent the occurrence of problems such as thermal decomposition of the resin, burning, smoke generation, odor, and stickiness. Further, when the temperature of the molten resin is equal to or lower than the above upper limit value, generally, fragments of the molten resin called stringing and lumps of excess resin called lumps adhere to the resin molded body. It is also preferable from the viewpoint of preventing deterioration of the appearance.
 押出ヘッドから吐出される溶融樹脂は、好ましくは直径0.01~1.0mm、より好ましくは直径0.02~0.5mmのストランド状で吐出される。溶融樹脂がこのような形状で吐出されると、CADモデルの再現性が良好となる傾向にあるために好ましい。 The molten resin discharged from the extrusion head is preferably discharged in the form of a strand having a diameter of 0.01 to 1.0 mm, more preferably 0.02 to 0.5 mm in diameter. It is preferable that the molten resin is discharged in such a shape because the reproducibility of the CAD model tends to be good.
 本発明の3次元造形用フィラメントにおける高速造形とは、造形速度が1mm/s以上であることを表す。造形に要する時間の観点から、造形速度は3mm/s以上が好ましく、5mm/s以上がより好ましく、7mm/s以上がさらに好ましく、10mm/s以上が最も好ましい。上限は特に限定されないが、速ければ速いほど好ましい。ただし、前述のフィラメントの屈曲や、後述の外観の悪化等、造形性に問題のない速度であるためには、造形速度は100mm/s以下が好ましく、80mm/s以下がより好ましく、60mm/s以下がさらに好ましい。 High-speed modeling in the three-dimensional modeling filament of the present invention means that the modeling speed is 1 mm / s or more. From the viewpoint of the time required for modeling, the modeling speed is preferably 3 mm / s or more, more preferably 5 mm / s or more, further preferably 7 mm / s or more, and most preferably 10 mm / s or more. The upper limit is not particularly limited, but the faster the speed, the more preferable. However, the molding speed is preferably 100 mm / s or less, more preferably 80 mm / s or less, and more preferably 60 mm / s, in order to have a speed at which there is no problem in formability such as bending of the filament described above and deterioration of appearance described later. The following is more preferable.
 3次元造形用フィラメントを用いて3次元プリンタにより樹脂成形体を製造するにあたり、押出ヘッドから吐出させたストランド状の樹脂を積層しながら成形体を作る際に、先に吐出させた樹脂のストランドと、その上に吐出させた樹脂ストランドとの接着性が十分でないことや吐出ムラによって、成形物の表面に、凹凸部(スジ等)が生じることがある。成形物の表面にこのような凹凸部が存在すると、外観の悪化だけでなく、成形体が破損しやすい等の問題が生じることがある。 When manufacturing a resin molded product by a 3D printer using a filament for 3D modeling, when making a molded product while laminating the strand-shaped resin discharged from the extrusion head, the strands of the resin discharged earlier are used. On the surface of the molded product, uneven portions (streaks, etc.) may occur due to insufficient adhesion to the resin strands discharged on the resin strands or uneven discharge. If such uneven portions are present on the surface of the molded product, not only the appearance may be deteriorated, but also problems such as the molded product being easily damaged may occur.
 本発明の3次元造形用フィラメントは、先に吐出させた樹脂のストランドと、その上に吐出させた樹脂ストランドとの接着性が良好であり、また、室温付近の弾性率が高くフィラメントの屈曲が生じづらい、すなわち径の真円度が高いため成形時の吐出ムラが抑制され、外観や表面性状等に優れた成形体を安定して製造することができる。 The filament for three-dimensional molding of the present invention has good adhesiveness between the resin strands discharged earlier and the resin strands discharged on the strands, and has a high elastic modulus near room temperature, so that the filaments can be bent. Since it is difficult to occur, that is, the roundness of the diameter is high, uneven ejection during molding is suppressed, and a molded product having excellent appearance, surface texture, etc. can be stably manufactured.
 3次元プリンタによって押出ヘッドから吐出させたストランド状の樹脂を積層しながら成形体を作る際に、樹脂の吐出を止めた上で次工程の積層箇所にノズルを移動する工程がある。この時、樹脂が途切れずに細い樹脂繊維が生じ、糸を引いたように成形体表面に残ることがある。上記の様な糸引きが発生すると成形体の外観が悪化する等の問題が生じることがある。 When making a molded product while laminating the strand-shaped resin discharged from the extrusion head by a three-dimensional printer, there is a step of stopping the resin discharge and then moving the nozzle to the laminating point in the next step. At this time, the resin is not interrupted and fine resin fibers are generated, which may remain on the surface of the molded product as if a thread was pulled. When the above-mentioned stringing occurs, problems such as deterioration of the appearance of the molded product may occur.
 本発明の3次元造形用フィラメントは、室温付近の弾性率が高くフィラメントの屈曲が生じづらい、すなわち径の標準偏差が小さく、真円度が高いことに加え、適度な結晶化速度と、高い破断ひずみを有することから糸引きが抑制され、外観や表面性状等に優れた成形体を安定して製造することができる。 The filament for three-dimensional molding of the present invention has a high elastic modulus near room temperature and is unlikely to bend, that is, the standard deviation of the diameter is small, the roundness is high, and the crystallization rate is moderate and the fracture is high. Since it has strain, stringing is suppressed, and a molded product having excellent appearance, surface texture, etc. can be stably produced.
 本発明の樹脂成形体は、使用する用途などに応じて、造形後、熱処理により結晶化を促進あるいは完了させてもよい。 The resin molded product of the present invention may promote or complete crystallization by heat treatment after molding, depending on the intended use.
 本発明の樹脂成形体を製造するにあたり、支持材料を同時に造形してもよい。支持材料の種類は特に限定されるものではないが、BVOH(ブテンジオールビニルアルコール)、PVOH(ポリビニルアルコール)、EVOH(エチレン-ビニルアルコール共重合体)、HIPS(ハインパクトポリスチレン)などが挙げられる。 In producing the resin molded product of the present invention, the supporting material may be molded at the same time. The type of supporting material is not particularly limited, and examples thereof include BVOH (butenediol vinyl alcohol), PVOH (polyvinyl alcohol), EVOH (ethylene-vinyl alcohol copolymer), and HIPS (haimpact polystyrene).
(樹脂成形体の用途)
 本発明の樹脂成形体は、強度や耐熱性に優れたものである。用途については特に制限されるものではないが、文房具;玩具;携帯電話やスマートフォン等のカバー;グリップ等の部品;学校教材、家電製品、OA機器の補修部品、自動車、オートバイ、自転車等の各種パーツ;電機・電子機器用資材、農業用資材、園芸用資材、漁業用資材、土木・建築用資材、医療用品等の用途に好適に用いることができる。
(Use of resin molded product)
The resin molded product of the present invention is excellent in strength and heat resistance. The use is not particularly limited, but stationery; toys; covers for mobile phones and smartphones; parts such as grips; school teaching materials, home appliances, repair parts for OA equipment, various parts such as automobiles, motorcycles, and bicycles. It can be suitably used for applications such as electric / electronic equipment materials, agricultural materials, horticultural materials, fishery materials, civil engineering / building materials, and medical supplies.
 以下に実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、本明細書中に表示される種々の測定値及び評価は次のようにして行った。 Although the following will be described in more detail in Examples, the present invention is not limited by these. The various measured values and evaluations displayed in the present specification were performed as follows.
(1)結晶化熱量(ΔHc)及び結晶化温度(Tc)
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JISK7122に準じて、試料約10mgを昇温速度10℃/分で0℃から250℃まで昇温し、該温度で1分間保持した後、10℃/分の降温速度で0℃まで降温した時に測定されたサーモグラムから結晶化熱量(ΔHc)及び結晶化温度(Tc)(どちらも降温過程)を求めた。
(1) Crystallization heat (ΔHc) and crystallization temperature (Tc)
Using a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd., trade name "Pyris1 DSC", the temperature of about 10 mg of the sample was raised from 0 ° C. to 250 ° C. at a heating rate of 10 ° C./min according to JIS K7122. The calorific value of crystallization (ΔHc) and the crystallization temperature (Tc) (both are temperature lowering processes) were determined from the thermogram measured when the temperature was kept at the temperature for 1 minute and then the temperature was lowered to 0 ° C. at a temperature lowering rate of 10 ° C./min. ..
(2)結晶融解温度(Tm)、ガラス転移温度(Tg)
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JISK7121に準じて、試料約10mgを昇温速度10℃/分で0℃から250℃まで昇温し、該温度で1分間保持した後、10℃/分の降温速度で0℃まで降温し、再度、昇温速度10℃/分で250℃まで昇温した時に測定された各サーモグラムから結晶融解温度(Tm)(℃)(再昇温過程)を求めた。
(2) Crystal melting temperature (Tm), glass transition temperature (Tg)
Using a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd., trade name "Pyris1 DSC", about 10 mg of the sample was heated from 0 ° C to 250 ° C at a heating rate of 10 ° C / min according to JIS K7121. After holding at the temperature for 1 minute, the temperature was lowered to 0 ° C. at a temperature lowering rate of 10 ° C./min, and again, the crystal melting temperature (crystal melting temperature) was measured from each thermogram measured when the temperature was raised to 250 ° C. at a heating rate of 10 ° C./min. Tm) (° C.) (reheating process) was determined.
(3)40℃における貯蔵弾性率(E´)
 実施例及び比較例で得られたフィラメントを、熱プレスによりそれぞれ厚み約0.5mmのシートに成形し、測定用サンプルとした。動的粘弾性測定機(アイティ計測(株)製、商品名:粘弾性スペクトロメーターDVA-200)を用いて、振動周波数:10Hz、昇温速度:3℃/分、歪0.1%の条件で、貯蔵弾性率(E´)を-100℃から250℃まで測定し、得られたデータから、40℃における貯蔵弾性率(E´)を求めた。
(3) Storage elastic modulus at 40 ° C. (E')
The filaments obtained in Examples and Comparative Examples were formed into sheets having a thickness of about 0.5 mm by heat pressing to prepare samples for measurement. Using a dynamic viscoelasticity measuring machine (manufactured by IT Measurement Co., Ltd., trade name: viscoelasticity spectrometer DVA-200), vibration frequency: 10 Hz, heating rate: 3 ° C./min, strain 0.1%. The storage elastic modulus (E') was measured from −100 ° C. to 250 ° C., and the storage elastic modulus (E ′) at 40 ° C. was obtained from the obtained data.
(4)3次元造形用フィラメントの造形評価
<高速造形性>
 3Dプリンタ(武藤工業(株)製、商品名:MF-2200D)を用いて、ノズル温度220℃で、また、造形テーブルにPPテープ(3Mスコッチ315SN)を貼付けて、造形テーブル温度70℃で、ダンベル状サンプル(長さ75mm、幅10mm、厚み5mm)を、サンプルの厚さ方向をZ軸方向(積層方向)として造形した際の挙動を、以下基準に基づき評価した。
(4) Modeling evaluation of filament for 3D modeling <High-speed formability>
Using a 3D printer (Muto Kogyo Co., Ltd., trade name: MF-2200D), the nozzle temperature is 220 ° C., and PP tape (3M Scotch 315SN) is attached to the modeling table, and the modeling table temperature is 70 ° C. The behavior of a dumbbell-shaped sample (length 75 mm, width 10 mm, thickness 5 mm) when shaped with the sample thickness direction as the Z-axis direction (stacking direction) was evaluated based on the following criteria.
〇:造形速度10mm/sにて造形した際、造形中にフィラメントの屈曲が起こらずに造形を完了することができた。
×:造形速度10mm/sにて造形した際、途中(あるいは最初から)でフィラメントの屈曲が発生し、造形を完了することができなかった。
〇: When modeling was performed at a modeling speed of 10 mm / s, the modeling could be completed without bending of the filament during modeling.
X: When molding was performed at a molding speed of 10 mm / s, the filament was bent in the middle (or from the beginning), and the molding could not be completed.
<Z軸強度、水平強度>
 JIS K 7161に準拠して、後述する造形時反り評価で作製されるダンベル状サンプル(サンプル1)の最大引張強度(水平強度)及び破断伸びを測定した。下記サンプル2のZ軸方向の最大引張強度(Z軸強度)及び破断伸びを測定した。また、Z軸強度/水平強度の値を計算した。なお、水平強度およびZ軸強度は値が大きければ大きい方がより好ましい。また、破断伸びについても値が大きければ大きい方がより好ましい。特に、Z軸強度/水平強度が1に近ければ近いほど良い。
<Z-axis strength, horizontal strength>
In accordance with JIS K 7161, the maximum tensile strength (horizontal strength) and breaking elongation of the dumbbell-shaped sample (sample 1) produced by the warp evaluation during molding, which will be described later, were measured. The maximum tensile strength (Z-axis strength) and breaking elongation of the following sample 2 in the Z-axis direction were measured. Moreover, the value of Z-axis strength / horizontal strength was calculated. The larger the horizontal strength and the Z-axis strength, the more preferable it is. Further, the larger the value of the elongation at break, the more preferable it is. In particular, the closer the Z-axis strength / horizontal strength is to 1, the better.
 サンプル2は以下のように製造した。
 すなわち、ダンベル状サンプル(長さ75mm、幅10mm、厚み5mm)を、サンプルの長さ方向をZ軸方向(積層方向)として、3Dプリンタ(武藤工業(株)製、商品名:MF-2200D)を用いて造形した。その際、造形テーブルにPPテープ(3Mスコッチ315SN)を貼付けて、造形テーブル温度70℃、ノズル温度240℃、造形速度7mm/s、内部充填率100%の造形条件にて、サンプル2を製造した。
Sample 2 was produced as follows.
That is, a dumbbell-shaped sample (length 75 mm, width 10 mm, thickness 5 mm) is used as a 3D printer (manufactured by Muto Kogyo Co., Ltd., trade name: MF-2200D) with the sample length direction as the Z-axis direction (stacking direction). Was modeled using. At that time, PP tape (3M Scotch 315SN) was attached to the modeling table, and sample 2 was produced under modeling conditions of a modeling table temperature of 70 ° C., a nozzle temperature of 240 ° C., a modeling speed of 7 mm / s, and an internal filling rate of 100%. ..
<層間接着性>
 上記サンプル1及びサンプル2にて、初期のチャック間距離45mm、速度50mm/min、23℃の条件で引張試験を行い、測定した最大引張強度から、以下の基準に基づき層間接着性を評価した。
<Interlayer adhesiveness>
Tensile tests were performed on Samples 1 and 2 under the conditions of an initial chuck distance of 45 mm, a speed of 50 mm / min, and 23 ° C., and the interlayer adhesiveness was evaluated from the measured maximum tensile strength based on the following criteria.
〇:サンプル2の最大引張強度(Z軸強度)/サンプル1の最大引張強度(水平強度)≧0.4
△:0.4>サンプル2の最大引張強度(Z軸強度)/サンプル1の最大引張強度(水平強度)≧0.25
×:0.25>サンプル2の最大引張強度(Z軸強度)/サンプル1の最大引張強度(水平強度)
〇: Maximum tensile strength of sample 2 (Z-axis strength) / Maximum tensile strength of sample 1 (horizontal strength) ≥ 0.4
Δ: 0.4> Maximum tensile strength of sample 2 (Z-axis strength) / Maximum tensile strength of sample 1 (horizontal strength) ≧ 0.25
X: 0.25> Maximum tensile strength of sample 2 (Z-axis strength) / Maximum tensile strength of sample 1 (horizontal strength)
<造形時反り>
 評価用サンプル(これをサンプル1とした。)は以下のように製造した。
 すなわち、ダンベル状サンプル(長さ75mm、幅10mm、厚み5mm)を、サンプルの厚さ方向をZ軸方向(積層方向)として、3Dプリンタ(武藤工業(株)製、商品名:MF-2200D)を用いて造形した。その際、造形テーブルにPPテープ(3Mスコッチ315SN)を貼付けて、造形テーブル温度70℃、ノズル温度220℃、造形速度7mm/s、内部充填率100%の造形条件にて、評価用サンプルを製造した。
<Warp during modeling>
The evaluation sample (this was designated as sample 1) was produced as follows.
That is, a dumbbell-shaped sample (length 75 mm, width 10 mm, thickness 5 mm) is used as a 3D printer (manufactured by Mutoh Industries, Ltd., trade name: MF-2200D) with the sample thickness direction as the Z-axis direction (stacking direction). Was modeled using. At that time, PP tape (3M Scotch 315SN) is attached to the modeling table, and an evaluation sample is manufactured under modeling conditions of a modeling table temperature of 70 ° C., a nozzle temperature of 220 ° C., a modeling speed of 7 mm / s, and an internal filling rate of 100%. did.
 評価用サンプル製造後に、評価用サンプルを造形テーブルから取り外して、水平面に置いた。その際の評価用サンプルの四隅と水平面との距離を測定し、得られた値の平均値を反り量とした。この反り量から、以下の基準に基づき造形時の反りを評価した。なお、以下の基準の中でも反り量は値が小さければ小さい方がより好ましい。 After manufacturing the evaluation sample, the evaluation sample was removed from the modeling table and placed on a horizontal surface. At that time, the distances between the four corners of the evaluation sample and the horizontal plane were measured, and the average value of the obtained values was taken as the amount of warpage. From this amount of warpage, the warp at the time of modeling was evaluated based on the following criteria. Among the following criteria, the smaller the value of the warp amount, the more preferable it is.
〇:反り量が3mm未満であった。
×:反り量が3mm以上であった、あるいは造形途中に大きな反りが発生したため造形が完了できなかった。
〇: The amount of warpage was less than 3 mm.
X: The amount of warpage was 3 mm or more, or a large warp occurred during modeling, so that modeling could not be completed.
 実施例、比較例で用いた原料を下記する。 The raw materials used in the examples and comparative examples are as follows.
<オレフィン系樹脂組成物(A)>
(A-1);日本ポリプロ(株)製、商品名:ウェルネクスRMG02、リアクターTPO、Tm:130℃、Tc:86℃、ΔHc:44J/g、E´:340MPa、組成比(質量比):プロピレン/エチレン=95/5
(A-2);日本ポリプロ(株)製、商品名:ウィンテックWMG03、プロピレンとエチレンランダム重合体、Tm:142℃、Tc:106℃、ΔHc:80J/g、E´:1200MPa、組成比(質量比):プロピレン/エチレン=98/2
<Olefin resin composition (A)>
(A-1); manufactured by Japan Polypropylene Corporation, trade name: Wellnex RMG02, reactor TPO, Tm: 130 ° C., Tc: 86 ° C., ΔHc: 44J / g, E': 340MPa, composition ratio (mass ratio): Propylene / ethylene = 95/5
(A-2); manufactured by Japan Polypropylene Corporation, trade name: Wintech WMG03, propylene and ethylene random polymer, Tm: 142 ° C, Tc: 106 ° C, ΔHc: 80J / g, E': 1200MPa, composition ratio (Mass ratio): Propylene / ethylene = 98/2
<樹脂組成物(B)>
(B-1);三菱ケミカル(株)製、商品名:テファブロック(商標登録)MC931、Tg:108℃、ΔHc:5J/g、組成:水素化芳香族ビニルポリマーブロック単位60モル%、水素化共役ジエンポリマーブロック単位40モル%、水素化レベル:99.5%以上、ペンタブロック構造
(B-2);ポリプラスチックス(株)製、商品名:TOPAS(商標登録)5013L-10、Tg:130℃、ΔHc:0J/g、組成:シクロオレフィンコポリマー
<Resin composition (B)>
(B-1); manufactured by Mitsubishi Chemical Co., Ltd., trade name: Tefablock (registered trademark) MC931, Tg: 108 ° C, ΔHc: 5J / g, composition: hydrogenated aromatic vinyl polymer block unit 60 mol%, hydrogen Conjugated conjugated diene polymer block unit 40 mol%, hydrogenation level: 99.5% or more, pentablock structure (B-2); manufactured by Polyplastics Co., Ltd., trade name: TOPAS (registered trademark) 5013L-10, Tg : 130 ° C., ΔHc: 0 J / g, composition: cycloolefin polymer
(実施例1)
 オレフィン系樹脂(A-1)を80質量部と、樹脂(B-1)を20質量部とを配合し、20mmφ同方向二軸混練機にて直径2.5mmのノズルから溶融温度200℃にて押出後、30℃の冷却水中で冷却することで、直径1.75mmのフィラメントを得た。このフィラメントについての各種評価結果を表1に示す。
(Example 1)
80 parts by mass of olefin resin (A-1) and 20 parts by mass of resin (B-1) are mixed, and the melting temperature is 200 ° C. from a nozzle with a diameter of 2.5 mm using a 20 mmφ isodirectional biaxial kneader. After extrusion, the mixture was cooled in cooling water at 30 ° C. to obtain a filament having a diameter of 1.75 mm. Table 1 shows the results of various evaluations of this filament.
(実施例2)
 実施例1において、オレフィン系樹脂組成物(A-1)を60質量部と、前記樹脂組成物(B-1)を40質量部とを配合した以外は、実施例1と同様にフィラメントを製造した。このフィラメントについての各種評価結果を表1に示す。
(Example 2)
In Example 1, a filament was produced in the same manner as in Example 1 except that 60 parts by mass of the olefin resin composition (A-1) and 40 parts by mass of the resin composition (B-1) were blended. did. Table 1 shows the results of various evaluations of this filament.
(実施例3)
 実施例2において、オレフィン系樹脂組成物(A-1)をオレフィン系樹脂組成物(A-2)に変更した以外は、実施例2と同様にフィラメントを製造した。このフィラメントについての各種評価結果を表1に示す。
(Example 3)
Filaments were produced in the same manner as in Example 2 except that the olefin resin composition (A-1) was changed to the olefin resin composition (A-2) in Example 2. Table 1 shows the results of various evaluations of this filament.
(実施例4)
 実施例2において、樹脂(B-1)を樹脂(B-2)に変更した以外は実施例2と同様に、フィラメントを製造した。このフィラメントについての各種評価結果を表1に示す。
(Example 4)
In Example 2, filaments were produced in the same manner as in Example 2 except that the resin (B-1) was changed to the resin (B-2). Table 1 shows the results of various evaluations of this filament.
(比較例1)
 実施例1において、オレフィン系樹脂組成物(A-1)のみを用いてオレフィン系樹脂組成物を製造した以外は実施例1と同様にフィラメントを製造した。このフィラメントについての各種評価結果を表1に示す。
(Comparative Example 1)
In Example 1, filaments were produced in the same manner as in Example 1 except that the olefin resin composition was produced using only the olefin resin composition (A-1). Table 1 shows the results of various evaluations of this filament.
(比較例2)
 実施例1において、オレフィン系樹脂組成物(A-2)のみを用いてオレフィン系樹脂組成物を製造した以外は実施例1と同様にフィラメントを製造した。このフィラメントについての各種評価結果を表1に示す。
(Comparative Example 2)
In Example 1, filaments were produced in the same manner as in Example 1 except that the olefin resin composition was produced using only the olefin resin composition (A-2). Table 1 shows the results of various evaluations of this filament.
 なお、比較例2のフィラメントを用いた造形時反り評価においては、造形中に大きな反りが発生したため造形を最後まで終了することができなかった。そのため、造形時反り評価は造形途中の造形物を用いて行った。また、水平強度の評価は、引張試験が可能な造形物が得られなかったため、代わりに、フィラメントを熱プレスした0.5mm厚みのシートを、5mm幅の短冊にカットしたものを使用した。 In the evaluation of warpage during modeling using the filament of Comparative Example 2, the modeling could not be completed because a large warp occurred during modeling. Therefore, the warp evaluation at the time of modeling was performed using a modeled object in the middle of modeling. Further, in the evaluation of the horizontal strength, since a modeled product capable of a tensile test could not be obtained, a 0.5 mm thick sheet obtained by heat-pressing the filament was cut into 5 mm wide strips instead.
(比較例3)
 市販のPPフィラメント(武藤工業(株)製、製品名:Value3D MagiX材料、PP、1.75mm)を用いて、各種評価結果を行った結果を表1に示す。
(Comparative Example 3)
Table 1 shows the results of various evaluation results using a commercially available PP filament (manufactured by Mutoh Industries, Ltd., product name: Value3D MagiX material, PP, 1.75 mm).
 なお、比較例3のフィラメントについて、熱重量測定装置(ティー・エイ・インスツルメント・ジャパン製、TGA Q5000IR)を用いて、昇温速度20℃/分にて、空気中で室温から700℃まで昇温し、得られた残渣量測定及び、残渣のIR測定を実施した。その結果から、比較例3のフィラメントにはタルクが39質量%含有されていると判断した。 Regarding the filament of Comparative Example 3, a thermogravimetric measuring device (manufactured by TA Instruments Japan, TGA Q5000IR) was used to raise the temperature from room temperature to 700 ° C. in air at a heating rate of 20 ° C./min. The temperature was raised, the amount of the obtained residue was measured, and the IR measurement of the residue was carried out. From the results, it was determined that the filament of Comparative Example 3 contained 39% by mass of talc.
 また、実施例1~4及び比較例1~2の「24×ΔHc-E´」は、オレフィン系樹脂組成物(A)及び樹脂組成物(B)の少なくとも一方からなるフィラメントに関する値であるが、比較例3の「24×ΔHc-E´」は、タルクを含有するフィラメントに関する値である。すなわち、比較例3の「24×ΔHc-E´」は、上記式[1]とは異なるものである。 Further, "24 × ΔHc—E'" in Examples 1 to 4 and Comparative Examples 1 and 2 is a value relating to a filament composed of at least one of the olefin resin composition (A) and the resin composition (B). , “24 × ΔHc—E ′” in Comparative Example 3 is a value relating to a filament containing talc. That is, “24 × ΔHc—E ′” in Comparative Example 3 is different from the above equation [1].
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1より、実施例1~4のフィラメントは、上記式[1]を満たすため、高速造形性を保持しながら造形時の反り抑制などの造形性にも優れたフィラメントとなっている。 From Table 1, since the filaments of Examples 1 to 4 satisfy the above formula [1], they are filaments having excellent formability such as suppression of warpage during modeling while maintaining high-speed formability.
 また、実施例1~2のフィラメントは、低結晶性のオレフィン系樹脂組成物(A)からなるフィラメント(比較例1)と比較して、同等以上の層間接着性が得られており、樹脂組成物(B-1)が層間接着性を阻害していないことがわかる。 Further, the filaments of Examples 1 and 2 have the same or higher interlayer adhesiveness as those of the filament made of the low crystallinity olefin resin composition (A) (Comparative Example 1), and the resin composition. It can be seen that the substance (B-1) does not inhibit the interlayer adhesiveness.
 さらに、実施例2と実施例4の比較により、側鎖に環状構造を持つ樹脂組成物(B-1)を用いた実施例2において、主鎖に環状構造を持つ樹脂組成物(B-2)を用いた実施例4よりも、高いZ軸強度及び層間接着性が得られていることが分かる。 Further, by comparing Example 2 and Example 4, in Example 2 using the resin composition (B-1) having a cyclic structure in the side chain, the resin composition (B-2) having a cyclic structure in the main chain. It can be seen that higher Z-axis strength and interlayer adhesiveness are obtained than in Example 4 using).
 これに対して、比較例1のフィラメントは、40℃及び10Hzで測定した貯蔵弾性率が低いため、フィラメントが屈曲しやすく、高速造形性に劣る。
 一方、比較例2のフィラメントは、ΔHcが大きいため、造形時の反りが大きく、造形性に劣る。
 また、比較例3のフィラメントは、高速造形性や反り抑制効果はみられているが、層間接着性が低くなっている。これは、タルクが層間接着性を阻害しているためと考えられる。
On the other hand, the filament of Comparative Example 1 has a low storage elastic modulus measured at 40 ° C. and 10 Hz, so that the filament is easily bent and is inferior in high-speed formability.
On the other hand, since the filament of Comparative Example 2 has a large ΔHc, it has a large warp during modeling and is inferior in formability.
Further, the filament of Comparative Example 3 has a high-speed formability and a warp suppressing effect, but has a low interlayer adhesiveness. It is considered that this is because talc hinders interlayer adhesion.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2019年10月2日出願の日本特許出願(特願2019-182009)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on October 2, 2019 (Japanese Patent Application No. 2019-182009), the contents of which are incorporated herein by reference.

Claims (11)

  1.  下記式[1]を満たすオレフィン系樹脂組成物(α)を含有する、3次元造形用フィラメント。
      700≧24×ΔHc(α)-E´(α)・・・[1]
     ΔHc(α):該オレフィン系樹脂組成物(α)を示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化熱量(J/g)
     E´(α):該オレフィン系樹脂組成物(α)を40℃及び10Hzで測定した貯蔵弾性率(MPa)
    A three-dimensional modeling filament containing an olefin resin composition (α) satisfying the following formula [1].
    700 ≧ 24 × ΔHc (α) -E'(α) ... [1]
    ΔHc (α): The amount of heat of crystallization (J / g) when the olefin resin composition (α) was measured with a differential scanning calorimeter at a temperature lowering rate of 10 ° C./min.
    E'(α): Storage elastic modulus (MPa) of the olefin resin composition (α) measured at 40 ° C. and 10 Hz.
  2.  前記ΔHc(α)が75J/g以下である、請求項1に記載の3次元造形用フィラメント。 The three-dimensional modeling filament according to claim 1, wherein the ΔHc (α) is 75 J / g or less.
  3.  前記E´(α)が350MPa以上である、請求項1又は2に記載の3次元造形用フィラメント。 The three-dimensional modeling filament according to claim 1 or 2, wherein the E'(α) is 350 MPa or more.
  4.  前記オレフィン系樹脂組成物(α)が、オレフィン系樹脂組成物(A)及び樹脂組成物(B)を含有し、
     前記樹脂組成物(B)は、示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化熱量(ΔHc(B))が10J/g未満である、請求項1~3のいずれか1項に記載の3次元造形用フィラメント。
    The olefin-based resin composition (α) contains the olefin-based resin composition (A) and the resin composition (B).
    The resin composition (B) has a crystallization heat quantity (ΔHc (B)) of less than 10 J / g when measured with a differential scanning calorimeter at a temperature lowering rate of 10 ° C./min, according to claims 1 to 3. The filament for three-dimensional modeling according to any one of the items.
  5.  前記オレフィン系樹脂組成物(A)の示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化温度と、前記オレフィン系樹脂組成物(α)の示差走査熱量計にて10℃/分の降温速度で測定した際の結晶化温度との差が10℃以下である、請求項4に記載の3次元造形用フィラメント。 The crystallization temperature when measured at a temperature decrease rate of 10 ° C./min by the differential scanning calorimeter of the olefin resin composition (A) and 10 by the differential scanning calorimeter of the olefin resin composition (α). The three-dimensional molding filament according to claim 4, wherein the difference from the crystallization temperature when measured at a temperature lowering rate of ° C./min is 10 ° C. or less.
  6.  前記オレフィン系樹脂組成物(α)が、オレフィン系樹脂組成物(A)を含有し、
     前記オレフィン系樹脂組成物(A)は、プロピレン単独重合体、エチレン及び炭素数4~12のα-オレフィンの少なくとも一つのモノマーとプロピレンとのランダム共重合体、エチレン及び炭素数4~12のα-オレフィンの少なくとも一つのモノマーとプロピレンとのブロック共重合体、無水マレイン酸グラフトポリプロピレン、プロピレン及びポリエチレンの少なくとも一つとエチレン-プロピレンゴムとのブレンド、プロピレン及びポリエチレンの少なくとも一つとエチレン-プロピレンゴムとの動的架橋品、プロピレン及びポリエチレンの少なくとも一つとエチレン-プロピレンゴムとの重合品、高密度ポリエチレン、低密度ポリエチレン、並びに線状低密度ポリエチレンからなる群から選ばれる少なくとも1つの樹脂組成物である、請求項1~5のいずれか1項に記載の3次元造形用フィラメント。
    The olefin-based resin composition (α) contains the olefin-based resin composition (A), and the olefin-based resin composition (α) contains the olefin-based resin composition (A).
    The olefin resin composition (A) is a propylene homopolymer, a random copolymer of ethylene and at least one monomer of α-olefin having 4 to 12 carbon atoms and propylene, ethylene and α having 4 to 12 carbon atoms. -A block copolymer of at least one monomer of olefin and propylene, a blend of at least one maleic anhydride graft polypropylene, propylene and polyethylene and ethylene-propylene rubber, and at least one of propylene and polyethylene and ethylene-propylene rubber. A dynamically crosslinked product, a polymer of at least one of propylene and polyethylene and an ethylene-propylene rubber, at least one resin composition selected from the group consisting of high density polyethylene, low density polyethylene, and linear low density polyethylene. The filament for three-dimensional modeling according to any one of claims 1 to 5.
  7.  前記オレフィン系樹脂組成物(α)が樹脂組成物(B)を含有し、
     前記樹脂組成物(B)が環状オレフィン系樹脂を含有する、請求項1~6のいずれか1項に記載の3次元造形用フィラメント。
    The olefin-based resin composition (α) contains the resin composition (B),
    The three-dimensional modeling filament according to any one of claims 1 to 6, wherein the resin composition (B) contains a cyclic olefin resin.
  8.  さらにフィラーを含有する、請求項1~7のいずれか1項に記載の3次元造形用フィラメント。 The three-dimensional modeling filament according to any one of claims 1 to 7, further containing a filler.
  9.  請求項1~8のいずれか1項に記載の3次元造形用フィラメントを含有する樹脂成形体。 A resin molded product containing the three-dimensional molding filament according to any one of claims 1 to 8.
  10.  請求項1~8のいずれか1項に記載の3次元造形用フィラメントの巻回体。 The wound body of the filament for three-dimensional modeling according to any one of claims 1 to 8.
  11.  請求項1~8のいずれか1項に記載の3次元造形用フィラメントを含有する3次元造形用カートリッジ。
     
    A three-dimensional modeling cartridge containing the three-dimensional modeling filament according to any one of claims 1 to 8.
PCT/JP2020/037443 2019-10-02 2020-10-01 Filament for three-dimensional printing WO2021066102A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021551456A JPWO2021066102A1 (en) 2019-10-02 2020-10-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019182009 2019-10-02
JP2019-182009 2019-10-02

Publications (1)

Publication Number Publication Date
WO2021066102A1 true WO2021066102A1 (en) 2021-04-08

Family

ID=75337031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037443 WO2021066102A1 (en) 2019-10-02 2020-10-01 Filament for three-dimensional printing

Country Status (2)

Country Link
JP (1) JPWO2021066102A1 (en)
WO (1) WO2021066102A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197627A (en) * 2016-04-26 2017-11-02 日本ポリプロ株式会社 Polypropylene resin composition for thermofusion lamination molding and strand
JP2018035461A (en) * 2016-08-31 2018-03-08 三菱ケミカル株式会社 Monofilament and method for producing the same
JP2019130864A (en) * 2018-02-02 2019-08-08 三菱ケミカル株式会社 Three-dimensional molding material, three-dimensional molding filament, wound body of the filament, and three-dimensional molding cartridge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197627A (en) * 2016-04-26 2017-11-02 日本ポリプロ株式会社 Polypropylene resin composition for thermofusion lamination molding and strand
JP2018035461A (en) * 2016-08-31 2018-03-08 三菱ケミカル株式会社 Monofilament and method for producing the same
JP2019130864A (en) * 2018-02-02 2019-08-08 三菱ケミカル株式会社 Three-dimensional molding material, three-dimensional molding filament, wound body of the filament, and three-dimensional molding cartridge

Also Published As

Publication number Publication date
JPWO2021066102A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
CN107530955B (en) Wire rod for forming material extrusion type three-dimensional printer and method for manufacturing formed body
JP6647749B2 (en) Method for producing filament for molding three-dimensional printer and molded article of crystalline soft resin
WO2020196839A1 (en) Filament for 3d modeling, roll, and cartridge for 3d printer
JP7184079B2 (en) Materials for polyamide-based 3D printers
WO2019151235A1 (en) Material for three-dimensional modeling, filament for three-dimensional modeling, roll of said filament, and cartridge for three-dimensional printer
JP2020037259A (en) Resin composition for three-dimensional printer molding filament, three-dimensional printer molding filament, and method for producing resin molded body
US20210086492A1 (en) 3d printer material
JP6779095B2 (en) Manufacturing method of shaping decorative sheet
WO2021066102A1 (en) Filament for three-dimensional printing
WO2022138954A1 (en) Filament for three-dimensional shaping
US20220267593A1 (en) Filament for three-dimensional printing
JP7336312B2 (en) THERMOPLASTIC RESIN COMPOSITION, MATERIAL EXTRUSION-TYPE 3D PRINTER-MOLDING FILAMENT, AND METHOD FOR MANUFACTURING MOLDED BODY
WO2021025161A1 (en) Filament for material extrusion (me) 3-d printer, resin molded body, wound body, and cartridge for mounting on 3-d printer
JP7337266B2 (en) Composition for additive manufacturing
JP2019130864A (en) Three-dimensional molding material, three-dimensional molding filament, wound body of the filament, and three-dimensional molding cartridge
JP2020128469A (en) Monofilament for 3d printer and method for using the same, and molding method
WO2023149561A1 (en) Material for three-dimensional modeling, and resin molded body using same
WO2022085700A1 (en) 3d modeling material, resin molded body and method for producing same
JP2023053430A (en) Three-dimensional molding material, and resin molding using the same
JP2024037465A (en) Material for 3D printer, filament for 3D printer and its wound body, cartridge for mounting on 3D printer, and method for producing resin molded body
JP2024516085A (en) Improved elastomeric additive manufacturing composition
JP2023142115A (en) Filament for three-dimensional modeling and objects made using the same
JPH1053683A (en) Resin composition for melt-extrusion lamination to paper surface
JP2006007538A (en) Laminate and its molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872770

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872770

Country of ref document: EP

Kind code of ref document: A1