WO2021066017A1 - Estimation device and estimation method - Google Patents

Estimation device and estimation method Download PDF

Info

Publication number
WO2021066017A1
WO2021066017A1 PCT/JP2020/037161 JP2020037161W WO2021066017A1 WO 2021066017 A1 WO2021066017 A1 WO 2021066017A1 JP 2020037161 W JP2020037161 W JP 2020037161W WO 2021066017 A1 WO2021066017 A1 WO 2021066017A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
electrical characteristic
characteristic value
estimation
chest
Prior art date
Application number
PCT/JP2020/037161
Other languages
French (fr)
Japanese (ja)
Inventor
筱薇 呂
信一郎 須田
圭 本田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2021551376A priority Critical patent/JPWO2021066017A1/ja
Publication of WO2021066017A1 publication Critical patent/WO2021066017A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body

Definitions

  • the present invention relates to an estimation device and an estimation method for estimating electrical characteristic values of a living body.
  • Patent Document 1 Conventional techniques for estimating the amount of change in the volume of body fluid in a living organ such as cardiac output include the device described in Patent Document 1 including a transmitting antenna, a receiving antenna, and an estimation unit.
  • the transmitting antenna transmits microwaves and the like to the chest of the patient
  • the receiving antenna receives the microwaves and the like transmitted through the chest
  • the estimating unit estimates the cardiac output from the electric field strength of the received microwaves.
  • the microwaves when microwaves propagate in a living body, the microwaves are attenuated due to electrical characteristics such as the dielectric properties of the living body. Therefore, for example, when estimating the amount of change in the volume of body fluid in a living organ such as cardiac output using transmitted microwaves, it is important to grasp the electrical characteristic value of the living body.
  • an object of the present invention is to provide an estimation device and an estimation method capable of estimating the electrical characteristic values of a living body.
  • the estimation device that achieves the above object is an estimation device for the electrical characteristic value of a living body, and is a transmitting unit that transmits microwaves to the living body and a receiving unit that receives the microwave transmitted through the living body. And, based on the relationship between the waveform difference of the transmitted microwave and the waveform of the received microwave and the electrical characteristic value, the estimation of the electrical characteristic value is estimated from the waveform difference of the transmitted microwave and the received microwave. It has a part and.
  • the estimation method according to the present invention that achieves the above object is a method of estimating the electrical characteristic value of a living body, which transmits microwaves to the living body, receives microwaves transmitted through the living body, and transmits microwaves and receives. Based on the relationship between the microwave waveform difference and the electrical characteristic value, the electrical characteristic value is estimated from the waveform difference between the transmitted microwave and the received microwave.
  • the electrical characteristic value of the living body can be estimated.
  • the estimation device 100 shown in FIG. 1 has a cardiac output ⁇ V blood (change amount ⁇ V) in the living body of a patient (subject) in a heart failure test, follow-up after heart surgery, verification of a medication effect of heart disease, and the like. It is composed so that it can be estimated (corresponding to body fluid).
  • the cardiac output ⁇ V blood is an expanded state (corresponding to the first volume) of the blood (corresponding to the body fluid) contained in the heart H1 (corresponding to a biological organ) having the maximum volume (corresponding to the first volume). It means the amount of change in blood volume between the contraction state (corresponding to the second state) of the heart H1 in which the blood is the minimum volume (corresponding to the second volume) (corresponding to the state 1). That is, in the present specification, the cardiac output ⁇ V blood means the so-called stroke volume.
  • the estimation device 100 includes a transmitting antenna 111 (corresponding to a transmitting unit), a receiving antenna 112 (corresponding to a receiving unit), a transmitting waveform generating unit 113, and a receiving waveform preprocessing unit 114. ..
  • the estimation device 100 includes a control unit 120, a start switch 130, a notification unit 140, and an input unit 150.
  • the estimation device 100 is configured to be able to communicate with the external terminal 160. The details will be described below.
  • the transmitting antenna 111 is electrically connected to the transmitting waveform generating unit 113, and the patient's chest H (heart H1 and living tissue H2 other than the heart H2) in the expanded and contracted states of the heart H1.
  • (Including) is configured to be able to transmit microwaves.
  • the biological tissue H2 other than the heart H1 include skin, adipose tissue, and muscle.
  • the receiving antenna 112 is arranged so as to face the transmitting antenna 111.
  • the receiving antenna 112 is configured to be able to receive microwaves transmitted by the transmitting antenna 111 and transmitted through the patient's chest H.
  • the transmitting antenna 111 and the receiving antenna 112 can be configured by a dipole type linear antenna or the like.
  • the formats of the transmitting antenna 111 and the receiving antenna 112 are not particularly limited as long as microwaves can be transmitted and received.
  • the transmitting antenna 111 and the receiving antenna 112 may be a linear antenna of a microloop type or a helical type, or may be a flat antenna of a patch type or an inverted F type.
  • the transmission waveform generator 113 is composed of a microwave generator.
  • the frequency of the generated microwave is not particularly limited as long as it can pass through the human heart H1, but can be, for example, 0.4 to 1.0 GHz.
  • the power of the generated microwave is not particularly limited as long as sufficient power can be detected by the receiving antenna 112, but can be, for example, several mW to several tens of mW. Further, the generated microwave may be a continuous wave, a pulse wave, or an electromagnetic wave subjected to phase modulation or frequency modulation.
  • the reception waveform preprocessing unit 114 performs preprocessing such as AD conversion so that the control unit 120, which will be described later, can process the microwave received from the reception antenna 112.
  • the received waveform preprocessing unit 114 can be configured by, for example, an AD converter or the like.
  • control unit 120 includes a processor 121 such as a CPU, a storage unit 122, and a communication unit 123.
  • the processor 121, the storage unit 122, and the communication unit 123 are connected to each other by a bus (not shown).
  • the processor 121 has functions as an acquisition unit 124, a signal processing unit 125, and an estimation unit 126.
  • an acquisition unit 124 receives signals from the central processing unit 121 and processes signals.
  • a signal processing unit 125 receives signals from the central processing unit 121 and processes signals.
  • an estimation unit 126 receives signals from the central processing unit 121 and processes signals.
  • each function of the processor 121 will be described in detail.
  • the acquisition unit 124 controls the operation of the transmission waveform generation unit 113 so that the transmission antenna 111 transmits microwaves during a period in which the expansion and contraction cycle of the heart H1 is included at least once. Further, the acquisition unit 124 receives a microwave (transmitted microwave) transmitted by the transmitting antenna 111 and a microwave (received microwave) received by the receiving antenna during a period in which the expansion and contraction cycle of the heart H1 is included at least once. To get.
  • the transmitted microwave and received microwave data acquired by the acquisition unit 124 are stored in the storage unit 122.
  • the signal processing unit 125 performs processing such as filtering on the transmitted microwave and the received microwave acquired by the acquisition unit 124. Details of the processing of the signal processing unit 125 will be described later.
  • the estimation unit 126 estimates the electrical characteristic value of the chest H from the waveform difference between the transmitted microwave and the received microwave. Further, the estimation unit 126 estimates the energy absorption amount difference ⁇ P from the received microwaves in the expanded state and the contracted state by using the estimated electrical characteristic value of the chest H.
  • the energy absorption difference ⁇ P is the energy absorption amount P d (corresponding to the energy absorption amount P 1 ) absorbed by the chest H from the microwave in the expanded state and the energy absorption amount absorbed by the chest H from the microwave in the contracted state. This is the difference from P s (corresponding to the amount of energy absorbed P 2).
  • the estimation unit 126 estimates the cardiac output ⁇ V blood using the energy absorption amount difference ⁇ P.
  • the method of estimating each value of the estimation unit 126 will be described in detail.
  • the microwave (received microwave) transmitted through the chest H has a waveform difference such as attenuation or phase delay with respect to the transmitted microwave due to the electrical characteristics of the chest H.
  • the estimation unit 126 determines the waveform of the transmitted microwave and the waveform of the received microwave based on the relationship between the waveform difference between the transmitted microwave and the received microwave and the electrical characteristic value of the chest H. The electrical characteristic value of the chest H is estimated from the waveform difference.
  • the estimation unit 126 estimates the dielectric loss tangent tan ⁇ and the dielectric constant ⁇ as the electrical characteristic values of the chest H.
  • the microwave transmitted by the transmitting antenna 111 is actually a spherical wave, but the microwave observed by the receiving antenna 112 installed at a point sufficiently distant from the transmitting antenna 111 has a spherical radius approaching infinity. Therefore, it can be regarded as a plane wave. From the solution of the wave equation of the plane wave propagating in the loss medium, the microwave Ez propagating from the transmitting antenna 111 toward the receiving antenna 112 (in the microwave transmitting direction z) is expressed by the following equation (1-1). Can be done.
  • the attenuation constant ⁇ can be expressed by the following equation (1-2), and the phase constant ⁇ can be expressed by the following equation (1-3).
  • the amplitude difference A (see FIG. 3) between the amplitude E 0 of the transmitted microwave and the amplitude E i of the received microwave can be expressed by the following equation (1-5).
  • the amplitude difference A means a quantity expressed by the logarithm (decibel) of the ratio of the amplitude E i of the lower received microwave and the amplitude E 0 of the transmitted microwave.
  • Equation (1-9) is obtained.
  • the estimation unit 126 is based on the relational expression (1-9) between the amplitude difference A and the dielectric loss tangent tan ⁇ of the chest H and the relational expression (1-10) between the phase difference ⁇ and the dielectric loss tangent tan ⁇ of the chest H.
  • the dielectric loss tangent tan ⁇ of the chest H is estimated from the amplitude difference A and the phase difference ⁇ .
  • the amplitude difference A and the phase difference ⁇ of the transmitted microwave and the received microwave are values calculated from the transmitted microwave and the received microwave measured by the estimation unit 126.
  • the speed of light c is a known value.
  • the frequency f of the transmitted microwave is a set value of the frequency of the microwave generated by the transmission waveform generation unit 113.
  • the thickness L of the chest H may be a value obtained by measuring the thickness L of the chest H of the patient by the estimation device 100 using a length measuring instrument or the like, or the user such as a doctor or a nurse may be the patient. The thickness L of the chest H may be measured, and the thickness L of the chest H may be input to the estimation device 100 by the input unit 150.
  • equation (1-9) can be transformed as follows.
  • the estimation unit 126 uses the relational expression (1-11) between the estimated dielectric loss tangent tan ⁇ and the amplitude difference A and the magnetic permeability ⁇ and the permittivity ⁇ of the chest H, and the estimated dielectric loss tangent tan ⁇ and the phase difference ⁇ and the transparency of the chest H. Based on the relational expression (1-12) between the magnetic coefficient ⁇ and the dielectric constant ⁇ , the dielectric constant ⁇ of the chest H is estimated from the amplitude difference A and the phase difference ⁇ .
  • the estimation unit 126 includes the relational expressions (1-9) and (1-11) between the amplitude difference A and the electrical characteristic values of the chest H, and the electrical characteristic values of the phase difference ⁇ and the chest H.
  • the dielectric loss tang tan ⁇ and the permittivity ⁇ of the chest H are estimated from the amplitude difference A and the phase difference ⁇ based on the relational expressions (1-10) and (1-12) of.
  • the electric field strength of the microwave transmitted through the heart H1 changes according to the blood volume of the heart H1 (that is, according to the expansion and contraction of the heart H1). Therefore, the received microwave not only causes an amplitude difference A and a phase difference ⁇ with respect to the transmitted microwave by passing through the chest H, which is a loss medium, but also has a periodic electric field strength due to the expansion and contraction of the heart H1. Changes also occur. Therefore, the estimation unit 126 excludes the periodic change in the electric field strength due to the expansion and contraction of the heart H1 when estimating the electrical characteristic value, and the amplitude difference A and the phase difference ⁇ of the transmitted microwave and the received microwave. It is desirable to calculate.
  • the estimation unit 126 estimates the energy absorption amount difference ⁇ P using the electrical characteristic value of the chest H and the received microwaves in the expanded state and the contracted state.
  • the energy absorption amount p (power consumption or dielectric loss) absorbed by the dielectric per unit volume can be expressed by the following equation (2-1).
  • the electric field strength of the received microwave varies depending on the amount of blood in the heart H1. Therefore, from the electric field strength of the received microwave, it is possible to determine in which state the heart H1 has transmitted the microwave.
  • Field strength E d expanded state of the chest H in the field strength of the received microwave corresponds to the minimum value in the period of one expansion shrinkage (minimum value).
  • Field strength E s deflated chest H in the field strength of the received microwave corresponds to the maximum value in the period of one expansion shrinkage (maximum value).
  • the estimation unit 126 sets the average value obtained by averaging the maximum values within the plurality of expansion contraction cycles as the electric field strength E in the expanded state of the chest H.
  • an average value obtained by averaging the local minimum values in the period of the plurality of extended contraction may be the electric field strength E s deflated chest H.
  • the signal processing unit 125 performs filtering processing such as a bandpass filter so that the estimation unit 126 removes components other than the fluctuation component due to expansion and contraction from the received microwave before calculating the maximum value and the minimum value. You may.
  • the energy absorption difference ⁇ P between the energy absorption amount P d of the entire chest H in the expanded state and the energy absorption amount P s of the entire chest H in the contracted state can be expressed by the following equation (2-4).
  • the volume V body of the portion of the chest H through which microwaves are transmitted can be calculated by, for example, (chest thickness L ⁇ antenna area S). Strictly speaking, the volume V body changes as the volume of blood in the heart H1 changes due to the expansion and contraction of the heart H1. However, since the volume that changes with the expansion and contraction of the heart H1 is sufficiently smaller than the volume that does not change with the expansion and contraction of the heart H1, the volume V body can be treated as a constant value.
  • the estimation unit 126 does not necessarily have to estimate the electrical characteristic value of the chest H.
  • the estimation unit 126 may estimate the energy absorption amount difference ⁇ P by using a known electric characteristic value of a living body or an electric characteristic value measured by another device.
  • the electrical characteristic value may change depending on the environment even for the same patient due to environmental conditions such as temperature and humidity.
  • the electrical characteristic value may differ from patient to patient due to differences in fat content, water content, and the like. In particular, patients with heart failure have a larger amount of water than normal people due to body congestion and the like, so the electrical characteristic values may differ significantly from normal people.
  • the time interval between the diastole and the systole is short, for example, about 0.5 seconds. Therefore, it is considered that the electrical characteristic value does not change during that period, and the same electricity is used in the diastole and the systole. Characteristic values are used.
  • the estimation unit 126 estimates the electrical characteristic value in the expanded state from the waveform difference between the transmitted microwave and the received microwave in the expanded state, and the contracted state is derived from the waveform difference between the transmitted microwave and the received microwave in the contracted state. The electrical characteristic value may be estimated. As a result, a more accurate electrical characteristic value can be estimated according to each state.
  • the absorbed energy amount P blood absorbed by the blood in the amount of the heartbeat output amount ⁇ V blood is the specific absorption rate SAR indicating the energy absorption amount per unit mass of blood as shown in the following formula (3-2).
  • blood (corresponding to SAR body fluid) can be represented by the cardiac output [Delta] V blood, and the density of the blood [rho blood (corresponding to [rho body fluid).
  • the estimation unit 126 estimates the cardiac output ⁇ V blood from the energy absorption difference ⁇ P, the specific absorption rate SAR blood of blood , and the blood density ⁇ blood .
  • the energy absorption amount difference ⁇ P is an estimated value estimated by the estimation unit 126 from the electrical characteristic value and the received microwaves in the expanded state and the contracted state as described above.
  • the specific absorption rate of blood, SAR blood, and the density of blood, ⁇ blood are known values.
  • the estimation unit 126 receives the received microwaves in the expanded state and the contracted state based on the relationship that the absorbed energy amount P blood absorbed by the blood in the amount of the cardiac output ⁇ V blood is equal to the energy absorption amount difference ⁇ P. From this, the cardiac output ⁇ V blood can be estimated.
  • the electric field strength of the heart H1 in each state is replaced with the electric field strength of the received microwave in each state, and the energy absorption amount of the heart H1 per unit volume in each state is set to ". It was estimated as "the electric field strength of the received microwave in each state x the conductivity of the heart". However, since microwaves pass through not only the heart H1 but also living tissues H2 other than the heart H1, strictly speaking, the amount of energy absorbed by the heart H1 alone cannot be calculated from the electric field strength of the received microwaves.
  • the storage unit 122 stores data such as a waveform of the transmitted microwave and a waveform of the received microwave.
  • the storage unit 122 stores an input value such as a patient ID.
  • the storage unit 122 stores the measured values such as the thickness L of the chest H, the antenna area S, and the set values such as the frequency f of the transmitted microwave.
  • the storage unit 122 stores predetermined values such as the speed of light c, the blood absorption rate SAR blood, and the blood density ⁇ blood.
  • the storage unit 122 stores estimated values such as the dielectric constant ⁇ , the dielectric loss tangent tan ⁇ , the energy absorption amount difference ⁇ P, and the cardiac output ⁇ V blood.
  • the start switch 130 is configured so that a user such as a medical worker such as a doctor or a nurse can instruct the start of estimation of the cardiac output ⁇ V blood.
  • the specific mode of the start switch 130 is not particularly limited as long as it can be switched on and off, and examples thereof include a toggle type switch and a button type switch.
  • the notification unit 140 notifies the cardiac output ⁇ V blood estimated by the estimation unit 126 by various means.
  • the specific mode of the notification unit 140 is not particularly limited as long as it can notify the user of the cardiac output ⁇ V blood , but it can be configured by, for example, a display unit such as a speaker that performs voice notification or a display that performs display notification.
  • the external terminal 160 is configured to enable communication of index data related to the heart with the estimation device 100 through the communication unit 116.
  • the external terminal 160 can be configured by a known tablet (type terminal), a personal computer, or the like.
  • the acquisition unit 124 controls the operation of each unit to transmit and receive microwaves (S1). Specifically, the transmission waveform generation unit 113 generates a microwave to irradiate the patient's chest H and transmits it from the transmission antenna 111. The microwave transmitted through the chest H is received by the receiving antenna 112. The reception waveform preprocessing unit 114 converts the microwave received by the reception antenna 112 from an analog signal to a digital signal. The acquisition unit 124 acquires the transmitted microwave and the received microwave during a period including at least one expansion / contraction cycle.
  • the estimation unit 126 of the control unit 120 describes the relational expression (1-9) between the amplitude difference A of the transmission microwave and the reception microwave and the dielectric constant ⁇ and the dielectric loss tangent tan ⁇ of the chest H, and the transmission microwave and the reception. Based on the relational expression (1-10) between the phase difference ⁇ of the microwave and the permittivity ⁇ of the chest H and the dielectric loss tangent tan ⁇ , from the amplitude difference A and the phase difference ⁇ of the transmitted microwave and the received microwave, the chest The permittivity ⁇ of H and the dielectric loss tangent tan ⁇ are estimated (S3).
  • the estimation unit 126 includes the dielectric constant ⁇ and the dielectric loss tangent tan ⁇ of the chest H estimated in step S3 based on the equations (2-2) to (2-4), and the electric field of the received microwave in the expanded state.
  • the energy absorption amount difference ⁇ P is calculated from the electric field strength Es of the received microwave in the contracted state and the strength Ed and the volume V body of the portion where the microwave is transmitted in the chest H (S4).
  • the estimation method according to the present embodiment is a method for estimating the electrical characteristic value of a living body.
  • microwaves are transmitted to a living body and microwaves transmitted through the living body are received. Then, based on the relationship between the waveform difference between the transmitted microwave and the received microwave and the electrical characteristic value, the electrical characteristic value is estimated from the waveform difference between the transmitted microwave and the received microwave.
  • the estimation unit 126 has at least one of the relationship between the amplitude difference A of the transmitted microwave and the received microwave and the electrical characteristic value, and the relationship between the phase difference ⁇ of the transmitted microwave and the received microwave and the electrical characteristic value. Estimate the electrical characteristic values based on the relationship. Therefore, the estimation unit 126 can estimate the electrical characteristic value by a simple method of calculating the amplitude difference A and / or the phase difference ⁇ of the received microwave and the transmitted microwave.
  • the estimation unit 126 estimates the dielectric constant ⁇ and / or the dielectric loss tangent tan ⁇ as electrical characteristic values. Therefore, it is possible to estimate the energy absorption amount (dielectric loss) of the living body from the estimated dielectric constant ⁇ and / or the dielectric loss tangent tan ⁇ .
  • the microwave frequency is 0.4 to 1.0 GHz.
  • the higher the frequency the greater the attenuation of electromagnetic waves by the living tissue, and the more important it is to grasp the electrical characteristic values of the living body. Therefore, the effect of the present invention becomes remarkable in the measuring device using microwaves.
  • the embodiment in which the electrical characteristic value of the chest is estimated and the estimated electrical characteristic value is used for the estimation of the cardiac output has been described.
  • the part for estimating the electrical characteristic value and the use of the electrical characteristic value are not particularly limited.
  • the electrical characteristic value of the living body may be used for estimating the amount of change in the volume of body fluid in other living organs such as the lung and the bladder.
  • the so-called stroke volume is estimated as the cardiac output ⁇ V blood , but the so-called cardiac output is calculated by the sum of the ⁇ V blood in one minute.
  • the cardiac index may be estimated by estimating or further dividing by the body surface area.

Abstract

An estimation device (100) is an estimation device for estimating an electrical characteristic value of a chest (H). The estimation device has: a transmission antenna (111) that transmits microwaves to the chest; a reception antenna (112) that receives the microwaves that have passed through the chest; and an estimation unit (126) that estimates the electrical characteristic value from a waveform difference between the waveform of the transmitted microwaves and the waveform of the received microwaves on the basis of the relationship between the electrical characteristic value and the waveform difference between the waveform of the transmitted microwaves and the waveform of the received microwaves.

Description

推定装置及び推定方法Estimator and estimation method
 本発明は、生体の電気特性値を推定する推定装置及び推定方法に関する。 The present invention relates to an estimation device and an estimation method for estimating electrical characteristic values of a living body.
 心拍出量等の生体器官内の体液の容量の変化量を推定する従来技術には、送信アンテナと、受信アンテナと、推定部と、を備えた特許文献1に記載の装置等がある。上記装置において送信アンテナは患者の胸部にマイクロ波等を送信し、受信アンテナは胸部を透過したマイクロ波等を受信し、推定部は、受信マイクロ波の電界強度から心拍出量を推定する。 Conventional techniques for estimating the amount of change in the volume of body fluid in a living organ such as cardiac output include the device described in Patent Document 1 including a transmitting antenna, a receiving antenna, and an estimation unit. In the above device, the transmitting antenna transmits microwaves and the like to the chest of the patient, the receiving antenna receives the microwaves and the like transmitted through the chest, and the estimating unit estimates the cardiac output from the electric field strength of the received microwaves.
国際公開第2018/194093号International Publication No. 2018/194093
 ところで、マイクロ波が生体内を伝播する際、生体の誘電特性等の電気特性に起因して、マイクロ波には減衰等が生じる。そのため、例えば、透過マイクロ波を用いて心拍出量等の生体器官内の体液の容量の変化量を推定する際等において、生体の電気特性値を把握することが重要である。 By the way, when microwaves propagate in a living body, the microwaves are attenuated due to electrical characteristics such as the dielectric properties of the living body. Therefore, for example, when estimating the amount of change in the volume of body fluid in a living organ such as cardiac output using transmitted microwaves, it is important to grasp the electrical characteristic value of the living body.
 そこで本発明は、生体の電気特性値を推定できる推定装置及び推定方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an estimation device and an estimation method capable of estimating the electrical characteristic values of a living body.
 上記目的を達成する本発明に係る推定装置は、生体の電気特性値の推定装置であって、前記生体にマイクロ波を送信する送信部と、前記生体を透過した前記マイクロ波を受信する受信部と、送信マイクロ波の波形及び受信マイクロ波の波形差と前記電気特性値との関係に基づいて、前記送信マイクロ波の波形及び前記受信マイクロ波の波形差から、前記電気特性値を推定する推定部と、を有する。 The estimation device according to the present invention that achieves the above object is an estimation device for the electrical characteristic value of a living body, and is a transmitting unit that transmits microwaves to the living body and a receiving unit that receives the microwave transmitted through the living body. And, based on the relationship between the waveform difference of the transmitted microwave and the waveform of the received microwave and the electrical characteristic value, the estimation of the electrical characteristic value is estimated from the waveform difference of the transmitted microwave and the received microwave. It has a part and.
 上記目的を達成する本発明に係る推定方法は、生体の電気特性値の推定方法であって、前記生体にマイクロ波を送信し、前記生体を透過したマイクロ波を受信し、送信マイクロ波及び受信マイクロ波の波形差と前記電気特性値との関係に基づいて、前記送信マイクロ波及び前記受信マイクロ波の波形差から、前記電気特性値を推定する。 The estimation method according to the present invention that achieves the above object is a method of estimating the electrical characteristic value of a living body, which transmits microwaves to the living body, receives microwaves transmitted through the living body, and transmits microwaves and receives. Based on the relationship between the microwave waveform difference and the electrical characteristic value, the electrical characteristic value is estimated from the waveform difference between the transmitted microwave and the received microwave.
 本発明に係る推定装置及び方法によれば、生体の電気特性値を推定できる。 According to the estimation device and method according to the present invention, the electrical characteristic value of the living body can be estimated.
本発明の一実施形態に係る推定装置を示すブロック図である。It is a block diagram which shows the estimation apparatus which concerns on one Embodiment of this invention. 図1に示す推定装置が備える送信アンテナおよび受信アンテナを示す概略図である。It is the schematic which shows the transmitting antenna and the receiving antenna provided in the estimation apparatus shown in FIG. 図1に示す推定装置の送信マイクロ波の電界強度および受信マイクロ波の電界強度の時間変化の一例を示すグラフである。It is a graph which shows an example of the electric field strength of the transmission microwave and the electric field strength of the reception microwave of the estimation apparatus shown in FIG. 図1に示す推定装置による推定方法を示すフローチャートである。It is a flowchart which shows the estimation method by the estimation apparatus shown in FIG.
 以下、添付した図面を参照しながら、本発明の実施形態について説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面における部材の大きさや比率は、説明の都合上誇張され実際の大きさや比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted. The size and ratio of the members in the drawings may be exaggerated for convenience of explanation and may differ from the actual size and ratio.
 (推定装置)
 図1に示す推定装置100は、心不全の検査、心臓の手術後の経過観察、心臓病の投薬効果の検証等において、患者(被検者)の生体において心拍出量ΔVblood(変化量ΔV体液に相当)を推定可能に構成している。心拍出量ΔVbloodは、本明細書では、心臓H1(生体器官に相当)が含有する血液(体液に相当)が最大容量(第1の容量に相当)である心臓H1の拡張状態(第1の状態に相当)と、血液が最小容量(第2の容量に相当)である心臓H1の収縮状態(第2の状態に相当)との間の血液の容量の変化量を意味する。すなわち、本明細書において心拍出量ΔVbloodとは、所謂一回拍出量を意味する。
(Estimator)
The estimation device 100 shown in FIG. 1 has a cardiac output ΔV blood (change amount ΔV) in the living body of a patient (subject) in a heart failure test, follow-up after heart surgery, verification of a medication effect of heart disease, and the like. It is composed so that it can be estimated (corresponding to body fluid). In the present specification, the cardiac output ΔV blood is an expanded state (corresponding to the first volume) of the blood (corresponding to the body fluid) contained in the heart H1 (corresponding to a biological organ) having the maximum volume (corresponding to the first volume). It means the amount of change in blood volume between the contraction state (corresponding to the second state) of the heart H1 in which the blood is the minimum volume (corresponding to the second volume) (corresponding to the state 1). That is, in the present specification, the cardiac output ΔV blood means the so-called stroke volume.
 推定装置100は、図1に示すように送信アンテナ111(送信部に相当)と、受信アンテナ112(受信部に相当)と、送信波形生成部113と、受信波形前処理部114と、を有する。推定装置100は、制御部120と、開始スイッチ130と、報知部140と、入力部150と、を有する。推定装置100は、外部端末160と通信可能に構成している。以下、詳述する。 As shown in FIG. 1, the estimation device 100 includes a transmitting antenna 111 (corresponding to a transmitting unit), a receiving antenna 112 (corresponding to a receiving unit), a transmitting waveform generating unit 113, and a receiving waveform preprocessing unit 114. .. The estimation device 100 includes a control unit 120, a start switch 130, a notification unit 140, and an input unit 150. The estimation device 100 is configured to be able to communicate with the external terminal 160. The details will be described below.
 (送信アンテナおよび受信アンテナ)
 送信アンテナ111は、図1および図2に示すように、送信波形生成部113に電気的に接続され、心臓H1の拡張状態及び収縮状態において患者の胸部H(心臓H1および心臓以外の生体組織H2を含む)にマイクロ波を送信可能に構成している。なお、心臓H1以外の生体組織H2としては、例えば、皮膚、脂肪、及び筋肉等が挙げられる。
(Transmitting antenna and receiving antenna)
As shown in FIGS. 1 and 2, the transmitting antenna 111 is electrically connected to the transmitting waveform generating unit 113, and the patient's chest H (heart H1 and living tissue H2 other than the heart H2) in the expanded and contracted states of the heart H1. (Including) is configured to be able to transmit microwaves. Examples of the biological tissue H2 other than the heart H1 include skin, adipose tissue, and muscle.
 受信アンテナ112は、図2に示すように、送信アンテナ111と対向するように離間して配置している。受信アンテナ112は、送信アンテナ111が送信し、患者の胸部Hを透過したマイクロ波を受信可能に構成している。 As shown in FIG. 2, the receiving antenna 112 is arranged so as to face the transmitting antenna 111. The receiving antenna 112 is configured to be able to receive microwaves transmitted by the transmitting antenna 111 and transmitted through the patient's chest H.
 送信アンテナ111及び受信アンテナ112は、ダイポール形式の線状アンテナ等によって構成できる。ただし、マイクロ波の送受信ができれば送信アンテナ111及び受信アンテナ112の形式は特に限定されない。送信アンテナ111及び受信アンテナ112は、微小ループ形式やヘリカル形式の線状アンテナでもよく、パッチ型式や逆F型形式の平面アンテナであってもよい。 The transmitting antenna 111 and the receiving antenna 112 can be configured by a dipole type linear antenna or the like. However, the formats of the transmitting antenna 111 and the receiving antenna 112 are not particularly limited as long as microwaves can be transmitted and received. The transmitting antenna 111 and the receiving antenna 112 may be a linear antenna of a microloop type or a helical type, or may be a flat antenna of a patch type or an inverted F type.
 (送信波形生成部)
 送信波形生成部113は、マイクロ波生成器によって構成している。生成するマイクロ波の周波数は、人体の心臓H1を透過することができれば特に限定されないが、例えば、0.4~1.0GHzとすることができる。生成するマイクロ波の電力は、受信アンテナ112において十分な電力が検出できれば特に限定されないが、例えば、数mW~数十mWとすることができる。また、生成するマイクロ波は、連続波、パルス波、又は位相変調若しくは周波数変調を施した電磁波でもよい。
(Transmission waveform generator)
The transmission waveform generator 113 is composed of a microwave generator. The frequency of the generated microwave is not particularly limited as long as it can pass through the human heart H1, but can be, for example, 0.4 to 1.0 GHz. The power of the generated microwave is not particularly limited as long as sufficient power can be detected by the receiving antenna 112, but can be, for example, several mW to several tens of mW. Further, the generated microwave may be a continuous wave, a pulse wave, or an electromagnetic wave subjected to phase modulation or frequency modulation.
 (受信波形前処理部)
 受信波形前処理部114は、後述する制御部120が受信アンテナ112から受信したマイクロ波を処理できるように、AD変換等の前処理をする。受信波形前処理部114は、例えば、AD変換器等によって構成できる。
(Received waveform pre-processing unit)
The reception waveform preprocessing unit 114 performs preprocessing such as AD conversion so that the control unit 120, which will be described later, can process the microwave received from the reception antenna 112. The received waveform preprocessing unit 114 can be configured by, for example, an AD converter or the like.
 (制御部)
 制御部120は、図1に示すように、CPU等のプロセッサー121と、記憶部122と、通信部123と、を有する。プロセッサー121、記憶部122、および通信部123は、バス(図示省略)によって相互に接続されている。
(Control unit)
As shown in FIG. 1, the control unit 120 includes a processor 121 such as a CPU, a storage unit 122, and a communication unit 123. The processor 121, the storage unit 122, and the communication unit 123 are connected to each other by a bus (not shown).
 プロセッサー121は、本実施形態では、取得部124、信号処理部125及び推定部126としての機能を備える。以下、プロセッサー121の各機能について詳述する。 In the present embodiment, the processor 121 has functions as an acquisition unit 124, a signal processing unit 125, and an estimation unit 126. Hereinafter, each function of the processor 121 will be described in detail.
 取得部124は、少なくとも心臓H1の拡張収縮の周期が1回以上含まれる期間、送信アンテナ111がマイクロ波を送信するように送信波形生成部113の動作を制御する。また、取得部124は、少なくとも心臓H1の拡張収縮の周期が1回以上含まれる期間、送信アンテナ111の送信するマイクロ波(送信マイクロ波)及び受信アンテナで受信されるマイクロ波(受信マイクロ波)を取得する。取得部124が取得した送信マイクロ波及び受信マイクロ波のデータは、記憶部122に記憶される。 The acquisition unit 124 controls the operation of the transmission waveform generation unit 113 so that the transmission antenna 111 transmits microwaves during a period in which the expansion and contraction cycle of the heart H1 is included at least once. Further, the acquisition unit 124 receives a microwave (transmitted microwave) transmitted by the transmitting antenna 111 and a microwave (received microwave) received by the receiving antenna during a period in which the expansion and contraction cycle of the heart H1 is included at least once. To get. The transmitted microwave and received microwave data acquired by the acquisition unit 124 are stored in the storage unit 122.
 信号処理部125は、取得部124が取得した送信マイクロ波及び受信マイクロ波にフィルタリング等の処理を施す。信号処理部125の処理についての詳細は後述する。 The signal processing unit 125 performs processing such as filtering on the transmitted microwave and the received microwave acquired by the acquisition unit 124. Details of the processing of the signal processing unit 125 will be described later.
 推定部126は、送信マイクロ波及び受信マイクロ波の波形差から、胸部Hの電気特性値を推定する。さらに推定部126は、推定した胸部Hの電気特性値を用い、拡張状態及び収縮状態の受信マイクロ波から、エネルギー吸収量差ΔPを推定する。ここで、エネルギー吸収量差ΔPは、拡張状態においてマイクロ波から胸部Hが吸収したエネルギー吸収量P(エネルギー吸収量Pに相当)と収縮状態においてマイクロ波から胸部Hが吸収したエネルギー吸収量P(エネルギー吸収量Pに相当)との差である。そして、推定部126は、エネルギー吸収量差ΔPを用いて心拍出量ΔVbloodを推定する。以下、推定部126の各値の推定方法について詳述する。 The estimation unit 126 estimates the electrical characteristic value of the chest H from the waveform difference between the transmitted microwave and the received microwave. Further, the estimation unit 126 estimates the energy absorption amount difference ΔP from the received microwaves in the expanded state and the contracted state by using the estimated electrical characteristic value of the chest H. Here, the energy absorption difference ΔP is the energy absorption amount P d (corresponding to the energy absorption amount P 1 ) absorbed by the chest H from the microwave in the expanded state and the energy absorption amount absorbed by the chest H from the microwave in the contracted state. This is the difference from P s (corresponding to the amount of energy absorbed P 2). Then, the estimation unit 126 estimates the cardiac output ΔV blood using the energy absorption amount difference ΔP. Hereinafter, the method of estimating each value of the estimation unit 126 will be described in detail.
 まず、推定部126が胸部Hの電気特性値を推定する方法について説明する。 First, a method in which the estimation unit 126 estimates the electrical characteristic value of the chest H will be described.
 マイクロ波のような高周波電磁波が損失媒体を透過した際に、損失媒体の誘電特性等の電気特性に起因して損失媒体を透過する前のマイクロ波に対して減衰(振幅の低減)や位相遅れが生じる。生体も損失媒体であるから、胸部Hを透過したマイクロ波(受信マイクロ波)には、胸部Hの電気特性に起因して、送信マイクロ波に対して減衰や位相遅れ等の波形差が生じる。このような原理を利用して、推定部126は、送信マイクロ波の波形及び受信マイクロ波の波形差と胸部Hの電気特性値との関係に基づいて、送信マイクロ波の波形及び受信マイクロ波の波形差から、胸部Hの電気特性値を推定する。 When a high-frequency electromagnetic wave such as a microwave passes through a loss medium, it is attenuated (reduced in amplitude) or phase-delayed with respect to the microwave before passing through the loss medium due to electrical characteristics such as the dielectric property of the loss medium. Occurs. Since the living body is also a loss medium, the microwave (received microwave) transmitted through the chest H has a waveform difference such as attenuation or phase delay with respect to the transmitted microwave due to the electrical characteristics of the chest H. Utilizing such a principle, the estimation unit 126 determines the waveform of the transmitted microwave and the waveform of the received microwave based on the relationship between the waveform difference between the transmitted microwave and the received microwave and the electrical characteristic value of the chest H. The electrical characteristic value of the chest H is estimated from the waveform difference.
 以下では、推定部126が、胸部Hの電気特性値として誘電正接tanδ及び誘電率εを推定する例を説明する。 In the following, an example will be described in which the estimation unit 126 estimates the dielectric loss tangent tan δ and the dielectric constant ε as the electrical characteristic values of the chest H.
 送信アンテナ111が送信するマイクロ波は実際には球面波であるが、送信アンテナ111から十分に離れた地点に設置されている受信アンテナ112で観測されるマイクロ波は球面の半径が無限大に近づくため、平面波とみなすことができる。損失媒体を伝播する平面波の波動方程式の解から、送信アンテナ111から受信アンテナ112に向かって(マイクロ波の送信方向zに)伝播するマイクロ波Ezは、下記の式(1-1)によって表すことができる。 The microwave transmitted by the transmitting antenna 111 is actually a spherical wave, but the microwave observed by the receiving antenna 112 installed at a point sufficiently distant from the transmitting antenna 111 has a spherical radius approaching infinity. Therefore, it can be regarded as a plane wave. From the solution of the wave equation of the plane wave propagating in the loss medium, the microwave Ez propagating from the transmitting antenna 111 toward the receiving antenna 112 (in the microwave transmitting direction z) is expressed by the following equation (1-1). Can be done.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、減衰定数αは、下記式(1-2)によって表すことができ、位相定数βは、下記式(1-3)によって表すことができることが知られている。 Here, it is known that the attenuation constant α can be expressed by the following equation (1-2), and the phase constant β can be expressed by the following equation (1-3).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 胸部Hの厚みをLとすれば、胸部Hを透過した後の受信マイクロ波の振幅Eは上記式(1-1)の振幅部分にz=Lを代入して、下記式(1-4)によって表すことができる。 If the thickness of the thoracic H and L, and the amplitude E i of the received microwave passes through the chest H by substituting z = L to the amplitude part of the above formula (1-1), the following equation (1-4 ) Can be expressed.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 したがって、送信マイクロ波の振幅Eと受信マイクロ波の振幅Eとの振幅差A(図3参照)は、下記式(1-5)のように表すことができる。なお、ここで、振幅差Aは、下受信マイクロ波の振幅Eと送信マイクロ波の振幅Eとの比の対数(デシベル)で表した量を意味する。 Therefore, the amplitude difference A (see FIG. 3) between the amplitude E 0 of the transmitted microwave and the amplitude E i of the received microwave can be expressed by the following equation (1-5). Here, the amplitude difference A means a quantity expressed by the logarithm (decibel) of the ratio of the amplitude E i of the lower received microwave and the amplitude E 0 of the transmitted microwave.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、一般的に下記の関係が成り立つことが知られている。 Here, it is generally known that the following relationship holds.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式(1-6)~(1~8)を式(1-5)に代入することによって、送信マイクロ波及び受信マイクロ波の振幅差Aと誘電率ε及び誘電正接tanδとの関係を表す下記式(1-9)が得られる。 By substituting equations (1-6) to (1-8) into equation (1-5), the relationship between the amplitude difference A of the transmitted microwave and the received microwave and the dielectric constant ε and the dielectric loss tangent tan δ is expressed as follows. Equation (1-9) is obtained.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 また、式(1-1)から、送信マイクロ波及び受信マイクロ波の位相差θ(図3参照)と誘電率ε及び誘電正接tanδとの関係は、下記式(1-10)のように表せる。 Further, from the equation (1-1), the relationship between the phase difference θ (see FIG. 3) of the transmitted microwave and the received microwave and the dielectric constant ε and the dielectric loss tangent tan δ can be expressed by the following equation (1-10). ..
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 推定部126は、振幅差Aと胸部Hの誘電正接tanδとの関係式(1-9)と、位相差θと胸部Hの誘電正接tanδとの関係式(1-10)と、に基づいて、振幅差A及び位相差θから、胸部Hの誘電正接tanδを推定する。 The estimation unit 126 is based on the relational expression (1-9) between the amplitude difference A and the dielectric loss tangent tan δ of the chest H and the relational expression (1-10) between the phase difference θ and the dielectric loss tangent tan δ of the chest H. , The dielectric loss tangent tan δ of the chest H is estimated from the amplitude difference A and the phase difference θ.
 ここで、送信マイクロ波及び受信マイクロ波の振幅差A及び位相差θは、推定部126によって、測定された送信マイクロ波及び受信マイクロ波から算出される値である。また、光速cは公知の値である。また、送信マイクロ波の周波数fは、送信波形生成部113が発生するマイクロ波の周波数の設定値である。また、胸部Hの厚さLは、推定装置100が長さ計測器等によって患者の胸部Hの厚さLを測定した値であってもよいし、医師や看護師等の使用者が患者の胸部Hの厚さLを測定し、入力部150で胸部Hの厚さLを推定装置100に入力した値であってもよい。 Here, the amplitude difference A and the phase difference θ of the transmitted microwave and the received microwave are values calculated from the transmitted microwave and the received microwave measured by the estimation unit 126. The speed of light c is a known value. Further, the frequency f of the transmitted microwave is a set value of the frequency of the microwave generated by the transmission waveform generation unit 113. Further, the thickness L of the chest H may be a value obtained by measuring the thickness L of the chest H of the patient by the estimation device 100 using a length measuring instrument or the like, or the user such as a doctor or a nurse may be the patient. The thickness L of the chest H may be measured, and the thickness L of the chest H may be input to the estimation device 100 by the input unit 150.
 また、式(1-9)は下記のように変形できる。 Also, equation (1-9) can be transformed as follows.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 また、式(1-1)から、送信マイクロ波及び受信マイクロ波の位相差θ(図3参照)と誘電率ε及び誘電正接tanδとの関係は、下記式(1-12)のように表せる。 Further, from the equation (1-1), the relationship between the phase difference θ (see FIG. 3) of the transmitted microwave and the received microwave and the dielectric constant ε and the dielectric loss tangent tan δ can be expressed by the following equation (1-12). ..
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 推定部126は、推定した誘電正接tanδ及び振幅差Aと胸部Hの透磁率μ及び誘電率εとの関係式(1-11)と、推定した誘電正接tanδ及び位相差θと胸部Hの透磁率μ及び誘電率εとの関係式(1-12)と、に基づいて、振幅差A及び位相差θから、胸部Hの誘電率εを推定する。 The estimation unit 126 uses the relational expression (1-11) between the estimated dielectric loss tangent tan δ and the amplitude difference A and the magnetic permeability μ and the permittivity ε of the chest H, and the estimated dielectric loss tangent tan δ and the phase difference θ and the transparency of the chest H. Based on the relational expression (1-12) between the magnetic coefficient μ and the dielectric constant ε, the dielectric constant ε of the chest H is estimated from the amplitude difference A and the phase difference θ.
 以上説明したように、推定部126は、振幅差Aと胸部Hの電気特性値との関係式(1-9)や式(1-11)と、位相差θと胸部Hの電気特性値との関係式(1-10)や式(1-12)と、に基づいて、振幅差A及び位相差θから、胸部Hの誘電正接tanδ及び誘電率εを推定する。 As described above, the estimation unit 126 includes the relational expressions (1-9) and (1-11) between the amplitude difference A and the electrical characteristic values of the chest H, and the electrical characteristic values of the phase difference θ and the chest H. The dielectric loss tang tan δ and the permittivity ε of the chest H are estimated from the amplitude difference A and the phase difference θ based on the relational expressions (1-10) and (1-12) of.
 なお、心臓H1を透過するマイクロ波の電界強度は、心臓H1の血液の容量に応じて(すなわち心臓H1の拡張収縮に応じて)変化する。したがって、受信マイクロ波には、損失媒体である胸部Hを透過したことによって送信マイクロ波に対して振幅差A及び位相差θが生じるだけでなく、心臓H1の拡張収縮による電界強度の周期的な変化も生じる。そのため、推定部126は、電気特性値の推定の際に、心臓H1の拡張収縮による電界強度の周期的な変化を除外した状態で、送信マイクロ波及び受信マイクロ波の振幅差A及び位相差θを算出することが望ましい。 The electric field strength of the microwave transmitted through the heart H1 changes according to the blood volume of the heart H1 (that is, according to the expansion and contraction of the heart H1). Therefore, the received microwave not only causes an amplitude difference A and a phase difference θ with respect to the transmitted microwave by passing through the chest H, which is a loss medium, but also has a periodic electric field strength due to the expansion and contraction of the heart H1. Changes also occur. Therefore, the estimation unit 126 excludes the periodic change in the electric field strength due to the expansion and contraction of the heart H1 when estimating the electrical characteristic value, and the amplitude difference A and the phase difference θ of the transmitted microwave and the received microwave. It is desirable to calculate.
 本実施形態では、損失媒体である胸部Hを透過したことによって生じる受信マイクロ波の送信マイクロ波に対する振幅差A及び位相差θは、拡張収縮の周波数よりも極めて高い送信マイクロ波の周波数(GHzオーダー)付近の成分における波形変化である。したがって、損失媒体である胸部Hを透過したことによって生じる振幅差A及び位相差θと、心臓H1の拡張収縮による電界強度の周期的な変化とは、明確に区別し得る。例えば、推定部126は、送信マイクロ波及び受信マイクロ波の時系列データから、心臓H1の拍出状態が略一定とみなせる期間の時系列データを抽出し、抽出した送信マイクロ波及び受信マイクロ波から、振幅差A及び位相差θを算出してもよい。また、例えば、信号処理部125が受信マイクロ波にバンドパスフィルタ等のフィルタリング処理を行って拡張収縮による変動成分を除外し、推定部126は、フィルタリング処理後の送信マイクロ波及び受信マイクロ波から、振幅差A及び位相差θを算出してもよい。 In the present embodiment, the amplitude difference A and the phase difference θ of the received microwave generated by passing through the chest H, which is a loss medium, with respect to the transmitted microwave are extremely higher than the frequency of expansion contraction (GHz order). ) This is the waveform change in the nearby components. Therefore, the amplitude difference A and the phase difference θ caused by passing through the chest H, which is a loss medium, and the periodic change in the electric field strength due to the expansion and contraction of the heart H1 can be clearly distinguished. For example, the estimation unit 126 extracts time-series data for a period in which the pumping state of the heart H1 can be regarded as substantially constant from the time-series data of the transmission microwave and the reception microwave, and extracts the time-series data from the extracted transmission microwave and the reception microwave. , Amplitude difference A and phase difference θ may be calculated. Further, for example, the signal processing unit 125 performs a filtering process such as a bandpass filter on the received microwave to exclude the fluctuation component due to the expansion contraction, and the estimation unit 126 extracts the received microwave and the received microwave after the filtering process. The amplitude difference A and the phase difference θ may be calculated.
 次に、推定部126が、胸部Hの電気特性値と、拡張状態及び収縮状態における受信マイクロ波と、を用いてエネルギー吸収量差ΔPを推定する方法について説明する。 Next, a method in which the estimation unit 126 estimates the energy absorption amount difference ΔP using the electrical characteristic value of the chest H and the received microwaves in the expanded state and the contracted state will be described.
 誘電体が電界強度Eの中にある場合、単位体積あたりの誘電体に吸収されるエネルギー吸収量p(消費電力または誘電損失)は、下記式(2-1)のように表すことができる。 When the dielectric is in the electric field strength E, the energy absorption amount p (power consumption or dielectric loss) absorbed by the dielectric per unit volume can be expressed by the following equation (2-1).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 したがって、拡張状態において単位体積あたりの胸部Hに吸収されるエネルギー吸収量p、及び、収縮状態において単位体積あたりの胸部Hに吸収されるエネルギー吸収量pは、下記式(2-2)及び(2-3)のように表すことができる。 Therefore, the energy absorption amount p d which is absorbed into the chest H per unit volume in the expanded state, and the energy absorption amount p s to be absorbed into the chest H per unit volume in the contracted state, the following equation (2-2) And (2-3).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 受信マイクロ波の電界強度は、心臓H1内の血液量に応じて変化する。そのため、受信マイクロ波の電界強度から、心臓H1がどの状態においてマイクロ波が透過したのかを判別できる。胸部Hの拡張状態の電界強度Eは、受信マイクロ波の電界強度において、1回の拡張収縮の周期内の極小値(最小値)にあたる。胸部Hの収縮状態の電界強度Eは、受信マイクロ波の電界強度において、1回の拡張収縮の周期内の極大値(最大値)にあたる。推定部126は、複数の拡張収縮の周期に亘って受信マイクロ波が取得された場合、複数の拡張収縮の周期内の極大値を平均化した平均値を、胸部Hの拡張状態の電界強度Eとし、複数の拡張収縮の周期内の極小値を平均化した平均値を、胸部Hの収縮状態の電界強度Eとしてもよい。なお、信号処理部125は、推定部126が極大値や極小値を算出する前に、受信マイクロ波から拡張収縮による変動成分以外の成分を除去するように、バンドパスフィルタ等のフィルタリング処理を施してもよい。 The electric field strength of the received microwave varies depending on the amount of blood in the heart H1. Therefore, from the electric field strength of the received microwave, it is possible to determine in which state the heart H1 has transmitted the microwave. Field strength E d expanded state of the chest H, in the field strength of the received microwave corresponds to the minimum value in the period of one expansion shrinkage (minimum value). Field strength E s deflated chest H, in the field strength of the received microwave corresponds to the maximum value in the period of one expansion shrinkage (maximum value). When the received microwave is acquired over a plurality of expansion contraction cycles, the estimation unit 126 sets the average value obtained by averaging the maximum values within the plurality of expansion contraction cycles as the electric field strength E in the expanded state of the chest H. and d, an average value obtained by averaging the local minimum values in the period of the plurality of extended contraction may be the electric field strength E s deflated chest H. The signal processing unit 125 performs filtering processing such as a bandpass filter so that the estimation unit 126 removes components other than the fluctuation component due to expansion and contraction from the received microwave before calculating the maximum value and the minimum value. You may.
 拡張状態の胸部H全体のエネルギー吸収量Pと、収縮状態の胸部H全体のエネルギー吸収量Pと、のエネルギー吸収量差ΔPは、下記式(2-4)によって表すことができる。 The energy absorption difference ΔP between the energy absorption amount P d of the entire chest H in the expanded state and the energy absorption amount P s of the entire chest H in the contracted state can be expressed by the following equation (2-4).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 なお、胸部Hにおいてマイクロ波が透過する部分の体積Vbodyは、例えば、(胸部の厚みL×アンテナ面積S)によって算出できる。体積Vbodyは、厳密には、心臓H1の拡張収縮によって心臓H1内の血液の容量が変化するのに応じて変化する。ただし、心臓H1の拡張収縮に伴って変化する体積は、心臓H1の拡張収縮に伴って変化しない体積よりも十分に小さいため、体積Vbodyは、一定の値として扱うことができる。 The volume V body of the portion of the chest H through which microwaves are transmitted can be calculated by, for example, (chest thickness L × antenna area S). Strictly speaking, the volume V body changes as the volume of blood in the heart H1 changes due to the expansion and contraction of the heart H1. However, since the volume that changes with the expansion and contraction of the heart H1 is sufficiently smaller than the volume that does not change with the expansion and contraction of the heart H1, the volume V body can be treated as a constant value.
 推定部126は、式(2-2)~式(2-4)に基づいて、胸部Hの電気特性値、拡張状態の受信マイクロ波の電界強度E及び収縮状態の受信マイクロ波の電界強度E、送信マイクロ波の周波数f、アンテナ面積S、及び胸部の厚みL、からエネルギー吸収量差ΔPを推定する。なお、胸部Hの電気特性値は、前述したように推定部126が推定した推定値である。また、拡張状態の受信マイクロ波の電界強度E及び収縮状態の受信マイクロ波の電界強度Eは、前述したように推定部126が受信マイクロ波から算出した値である。また、アンテナ面積Sは、送信アンテナ111及び受信アンテナ112においてマイクロ波が送受信される面積を意味し、推定装置100に組み込む送信アンテナ111及び受信アンテナ112に依存する設定値である。 Estimating unit 126, based on the equation (2-2) to formula (2-4), electric characteristic values of the chest H, the electric field intensity of the received microwave field strength E d and the contracted state of the received microwave expanded state E s, the frequency f of the transmitted microwave, antenna area S, and the thickness of the thoracic L, estimates the energy absorption amount difference ΔP from. The electrical characteristic value of the chest H is an estimated value estimated by the estimation unit 126 as described above. Further, the electric field strength E s of the received microwave field strength E d and the contracted state of the received microwave expanded state, a value estimating unit 126 has calculated from the received microwaves as described above. Further, the antenna area S means an area where microwaves are transmitted and received in the transmitting antenna 111 and the receiving antenna 112, and is a set value depending on the transmitting antenna 111 and the receiving antenna 112 incorporated in the estimation device 100.
 なお、推定部126は、必ずしも、胸部Hの電気特性値の推定を行わなくてもよい。例えば、推定部126は、公知の生体の電気特性値や他の装置で測定された電気特性値を用いて、エネルギー吸収量差ΔPを推定してもよい。ただし、電気特性値は、温度や湿度等の環境条件に起因して同一患者でも環境に応じて変化し得る。また、電気特性値は、患者によって脂肪量や水分量等が異なることに起因して、患者毎に異なる場合がある。特に心不全の患者は、体うっ血等によって正常人と比較して水分量が多いため、電気特性値は正常人と大きく異なる場合がある。したがって、推定部126は、心拍出量ΔVbloodの推定の度に患者毎の電気特性値を推定し、推定した電気特性値を用いてエネルギー吸収量差ΔPを推定する方が、エネルギー吸収量差ΔPを精度よく推定する観点から、好ましい。 The estimation unit 126 does not necessarily have to estimate the electrical characteristic value of the chest H. For example, the estimation unit 126 may estimate the energy absorption amount difference ΔP by using a known electric characteristic value of a living body or an electric characteristic value measured by another device. However, the electrical characteristic value may change depending on the environment even for the same patient due to environmental conditions such as temperature and humidity. In addition, the electrical characteristic value may differ from patient to patient due to differences in fat content, water content, and the like. In particular, patients with heart failure have a larger amount of water than normal people due to body congestion and the like, so the electrical characteristic values may differ significantly from normal people. Therefore, it is better for the estimation unit 126 to estimate the electrical characteristic value for each patient each time the cardiac output ΔV blood is estimated, and to estimate the energy absorption amount difference ΔP using the estimated electrical characteristic value. This is preferable from the viewpoint of accurately estimating the difference ΔP.
 なお、本実施形態では、拡張期と収縮期の時間間隔は短く、例えば0.5秒程度であることから、その間に電気特性値は変化しないと考え、拡張状態と収縮状態とで同一の電気特性値を用いている。しかしながら、推定部126は、拡張状態における送信マイクロ波と受信マイクロ波の波形差から拡張状態の電気特性値を推定し、かつ、収縮状態における送信マイクロ波と受信マイクロ波の波形差から収縮状態の電気特性値を推定してもよい。これによって、各状態に応じたより正確な電気特性値を推定できる。 In this embodiment, the time interval between the diastole and the systole is short, for example, about 0.5 seconds. Therefore, it is considered that the electrical characteristic value does not change during that period, and the same electricity is used in the diastole and the systole. Characteristic values are used. However, the estimation unit 126 estimates the electrical characteristic value in the expanded state from the waveform difference between the transmitted microwave and the received microwave in the expanded state, and the contracted state is derived from the waveform difference between the transmitted microwave and the received microwave in the contracted state. The electrical characteristic value may be estimated. As a result, a more accurate electrical characteristic value can be estimated according to each state.
 次に、推定部126が、エネルギー吸収量差ΔPを用いて、心拍出量ΔVbloodを推定する方法について説明する。 Next, a method in which the estimation unit 126 estimates the cardiac output ΔV blood using the energy absorption amount difference ΔP will be described.
 前述したように、拡張状態の胸部H全体のエネルギー吸収量Pdと収縮状態の胸部H全体のエネルギー吸収量Psには、エネルギー吸収量差ΔPがある。胸部Hを構成する成分としては、皮膚、筋肉、脂肪や血液等が挙げられる。マイクロ波が透過する部分において、拡張状態と収縮状態において容量が変化する成分は、血液のみであり、皮膚、筋肉、脂肪等の他の成分の容量は変化しないと考えられる。本発明者らは、この点に着目し、拡張状態と収縮状態の血液の容量が心拍出量ΔVbloodの分量だけ変化するが、心拍出量ΔVbloodの分量の血液が吸収する吸収エネルギー量Pblood(P体液に相当)が、拡張状態の胸部全体のエネルギー吸収量Pdと収縮状態の胸部全体のエネルギー吸収量Psとのエネルギー吸収量差ΔPに等しい、という新規な着想を得た。この新規な着想は、具体的には、下記式(3-1)によって表すことができる。 As described above, there is an energy absorption difference ΔP between the energy absorption amount Pd of the entire chest H in the expanded state and the energy absorption amount Ps of the entire chest H in the contracted state. Examples of the components constituting the chest H include skin, muscle, fat, blood and the like. In the portion where microwaves are transmitted, the only component whose volume changes in the expanded state and the contracted state is blood, and it is considered that the volume of other components such as skin, muscle, and fat does not change. The present inventors focused on this point, the capacity of blood and expanded state contracted state is changed by amount of cardiac output [Delta] V blood, absorbing energy blood aliquot of cardiac output [Delta] V blood absorbs A new idea was obtained that the amount P blood ( corresponding to P body fluid ) is equal to the energy absorption difference ΔP between the energy absorption amount Pd of the entire chest in the expanded state and the energy absorption amount Ps of the entire chest in the contracted state. Specifically, this new idea can be expressed by the following equation (3-1).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、心拍出量ΔVbloodの分量の血液が吸収する吸収エネルギー量Pbloodは、下記式(3-2)に示すように、血液の単位質量あたりのエネルギー吸収量を示す比吸収率SARblood(SAR体液に相当)と、心拍出量ΔVbloodと、血液の密度ρblood(ρ体液に相当)と、で表すことができる。 Here, the absorbed energy amount P blood absorbed by the blood in the amount of the heartbeat output amount ΔV blood is the specific absorption rate SAR indicating the energy absorption amount per unit mass of blood as shown in the following formula (3-2). blood (corresponding to SAR body fluid) can be represented by the cardiac output [Delta] V blood, and the density of the blood [rho blood (corresponding to [rho body fluid).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 そのため、式(3-1)及び式(3-2)から、下記式(3-3)を得ることができる。 Therefore, the following equation (3-3) can be obtained from the equations (3-1) and (3-2).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 推定部126は、上記式(3-3)に基づいて、エネルギー吸収量差ΔP、血液の比吸収率SARblood、及び血液の密度ρbloodから、心拍出量ΔVbloodを推定する。なお、エネルギー吸収量差ΔPは、前述したように電気特性値及び拡張状態及び収縮状態の受信マイクロ波から推定部126が推定した推定値である。血液の比吸収率SARblood及び血液の密度ρbloodは、公知の値である。このように、推定部126は、心拍出量ΔVbloodの分量の血液が吸収する吸収エネルギー量Pbloodが、エネルギー吸収量差ΔPに等しいという関係に基づき、拡張状態及び収縮状態の受信マイクロ波から、心拍出量ΔVbloodを推定できる。 Based on the above equation (3-3), the estimation unit 126 estimates the cardiac output ΔV blood from the energy absorption difference ΔP, the specific absorption rate SAR blood of blood , and the blood density ρ blood . The energy absorption amount difference ΔP is an estimated value estimated by the estimation unit 126 from the electrical characteristic value and the received microwaves in the expanded state and the contracted state as described above. The specific absorption rate of blood, SAR blood, and the density of blood, ρ blood, are known values. As described above, the estimation unit 126 receives the received microwaves in the expanded state and the contracted state based on the relationship that the absorbed energy amount P blood absorbed by the blood in the amount of the cardiac output ΔV blood is equal to the energy absorption amount difference ΔP. From this, the cardiac output ΔV blood can be estimated.
 本実施形態に係る推定部126は、血液の容量の変化量(心拍出量ΔVblood)によって生じるエネルギー吸収量差ΔPから、心拍出量ΔVbloodを推定している。そのため、推定部126は、心臓H1の質量Mを一定として心拍出量ΔVbloodを推定する従来技術と比較して、心拍出量ΔVbloodを精度よく推定できる。 Estimation unit 126 according to this embodiment, the energy absorption amount difference ΔP caused by the amount of change in volume of blood (cardiac output [Delta] V blood), estimates cardiac output [Delta] V blood. Therefore, the estimation unit 126 can accurately estimate the cardiac output ΔV blood as compared with the conventional technique of estimating the cardiac output ΔV blood with the mass M of the heart H1 constant.
 また、前述したように、従来技術では、各状態の心臓H1の電界強度を、各状態の受信マイクロ波の電界強度で置き換え、各状態での単位体積あたりの心臓H1のエネルギー吸収量を、「各状態の受信マイクロ波の電界強度×心臓の導電率」として推定していた。しかしながら、マイクロ波は、心臓H1だけでなく心臓H1以外の生体組織H2も透過するため、厳密には、心臓H1のみのエネルギー吸収量を受信マイクロ波の電界強度から算出することはできない。これに対し、本実施形態に係る推定部126は、心臓H1及び心臓H1以外の生体組織H2を含む胸部Hの電気特性値及び受信マイクロ波の電界強度から、拡張状態と収縮状態の胸部Hのエネルギー吸収量差ΔPを推定している。そして、推定部126は、心臓H1内の血液の容量の変化量(心拍出量ΔVblood)によって生じるエネルギー吸収量差ΔPから、心拍出量ΔVbloodを推定している。そのため、推定部126は、心臓H1と受信アンテナ112との間に心臓H1以外の生体組織H2の介在があっても、心拍出量ΔVbloodを精度よく推定できる。 Further, as described above, in the prior art, the electric field strength of the heart H1 in each state is replaced with the electric field strength of the received microwave in each state, and the energy absorption amount of the heart H1 per unit volume in each state is set to ". It was estimated as "the electric field strength of the received microwave in each state x the conductivity of the heart". However, since microwaves pass through not only the heart H1 but also living tissues H2 other than the heart H1, strictly speaking, the amount of energy absorbed by the heart H1 alone cannot be calculated from the electric field strength of the received microwaves. On the other hand, the estimation unit 126 according to the present embodiment is based on the electrical characteristic values of the chest H including the heart H1 and the biological tissue H2 other than the heart H1 and the electric field strength of the received microwave, and the chest H in the expanded state and the contracted state The energy absorption difference ΔP is estimated. Then, the estimation unit 126, the energy absorption amount difference ΔP caused by the amount of change in volume of blood in the heart H1 (cardiac output [Delta] V blood), estimates cardiac output [Delta] V blood. Therefore, the estimation unit 126 can accurately estimate the cardiac output ΔV blood even if there is an interposition of a biological tissue H2 other than the heart H1 between the heart H1 and the receiving antenna 112.
 記憶部122は、推定部126による推定に必要な各種データを記憶する。記憶部122は、ROMやRAM等によって構成することができる。 The storage unit 122 stores various data necessary for estimation by the estimation unit 126. The storage unit 122 can be configured by a ROM, RAM, or the like.
 記憶部122は、本実施形態では、送信マイクロ波の波形、受信マイクロ波の波形等のデータを記憶する。記憶部122は、本実施形態では、患者ID等の入力値を記憶する。記憶部122は、本実施形態では、胸部Hの厚みL等の測定値、アンテナ面積S及び送信マイクロ波の周波数f等の設定値を記憶する。記憶部122は、本実施形態では、光速c、血液の吸収率SARblood及び血液の密度ρblood等の所定値を記憶する。記憶部122は、本実施形態では、誘電率ε、誘電正接tanδ、エネルギー吸収量差ΔP、及び心拍出量ΔVblood等の推定値を記憶する。 In the present embodiment, the storage unit 122 stores data such as a waveform of the transmitted microwave and a waveform of the received microwave. In the present embodiment, the storage unit 122 stores an input value such as a patient ID. In the present embodiment, the storage unit 122 stores the measured values such as the thickness L of the chest H, the antenna area S, and the set values such as the frequency f of the transmitted microwave. In the present embodiment, the storage unit 122 stores predetermined values such as the speed of light c, the blood absorption rate SAR blood, and the blood density ρ blood. In the present embodiment, the storage unit 122 stores estimated values such as the dielectric constant ε, the dielectric loss tangent tan δ, the energy absorption amount difference ΔP, and the cardiac output ΔV blood.
 通信部123は、外部端末160等の推定装置100と異なる装置との間でデータの送受信を可能にする。通信部123は、外部端末160との有線又は無線による通信が可能に構成している。通信部123は、例えばネットワークカード又はUSB(Universal Serial Bus)等の有線ケーブルのポート(インターフェース)によって構成できる。 The communication unit 123 enables data to be transmitted / received between the estimation device 100 such as the external terminal 160 and a device different from the estimation device 100. The communication unit 123 is configured to enable wired or wireless communication with the external terminal 160. The communication unit 123 can be configured by, for example, a network card or a port (interface) of a wired cable such as USB (Universal Serial Bus).
 (開始スイッチ)
 開始スイッチ130は、医師、看護師等の医療従事者といった使用者によって心拍出量ΔVbloodの推定の開始が指示できるように構成している。開始スイッチ130は、オンオフの切り替えができれば具体的な態様は特に限定されないが、例えばトグルタイプやボタン式のスイッチを挙げることができる。
(Start switch)
The start switch 130 is configured so that a user such as a medical worker such as a doctor or a nurse can instruct the start of estimation of the cardiac output ΔV blood. The specific mode of the start switch 130 is not particularly limited as long as it can be switched on and off, and examples thereof include a toggle type switch and a button type switch.
 (報知部)
 報知部140は、推定部126によって推定された心拍出量ΔVbloodを各種手段によって報知する。報知部140は、心拍出量ΔVbloodを使用者に報知できれば具体的な態様は特に限定されないが、例えば音声による報知を行うスピーカや表示による報知を行うディスプレイ等の表示部によって構成できる。
(Notification unit)
The notification unit 140 notifies the cardiac output ΔV blood estimated by the estimation unit 126 by various means. The specific mode of the notification unit 140 is not particularly limited as long as it can notify the user of the cardiac output ΔV blood , but it can be configured by, for example, a display unit such as a speaker that performs voice notification or a display that performs display notification.
 (入力部)
 入力部150は、医療従事者等の使用者が推定装置100に対して患者に関する情報の入力等を入力可能に構成している。入力部150は、押しボタン、キーボード、マウス等のポインティングデバイス等のいずれか一つ又はこれらの全部又は部分的な組み合わせによって構成できる。入力部150は、本実施形態において推定装置100の構成要素としているが、これ以外にも入力部150に相当する構成が推定装置に含まれず、外付けとする場合も本発明の他の実施形態に含まれる。
(Input section)
The input unit 150 is configured so that a user such as a medical worker can input information about the patient to the estimation device 100. The input unit 150 can be configured by any one of a push button, a keyboard, a pointing device such as a mouse, or a combination thereof in whole or in part. Although the input unit 150 is a component of the estimation device 100 in the present embodiment, the estimation device does not include a configuration corresponding to the input unit 150 other than this, and the estimation device may be externally attached to other embodiments of the present invention. include.
 (外部端末)
 外部端末160は、通信部116を通じて推定装置100と心臓に関する指標のデータの通信を可能に構成している。外部端末160は、公知のタブレット(型端末)やパーソナルコンピュータ等によって構成できる。
(External terminal)
The external terminal 160 is configured to enable communication of index data related to the heart with the estimation device 100 through the communication unit 116. The external terminal 160 can be configured by a known tablet (type terminal), a personal computer, or the like.
 (推定方法)
 次に本実施形態に係る推定方法について説明する。図4は本実施形態に係る推定方法について示すフローチャートである。図4を用いて本実施形態に係る推定方法について概説すれば、マイクロ波の送受信(S1)、信号処理(S2)、電気特性値(誘電率ε及び誘電正接tanδ)の推定(S3)、エネルギー吸収量差ΔPの推定(S4)、心拍出量ΔVbloodの推定(S5)、及び、心拍出量ΔVbloodの報知(S6)を行う。以下、詳述する。
(Estimation method)
Next, the estimation method according to the present embodiment will be described. FIG. 4 is a flowchart showing an estimation method according to the present embodiment. To outline the estimation method according to the present embodiment with reference to FIG. 4, the transmission / reception of microwaves (S1), signal processing (S2), estimation of electrical characteristic values (dielectric constant ε and dielectric loss tangent tan δ) (S3), energy. The absorption amount difference ΔP is estimated (S4), the cardiac output ΔV blood is estimated (S5), and the cardiac output ΔV blood is notified (S6). The details will be described below.
 推定装置100は、使用者による入力部150からの入力を受け、患者のID等のように患者に関する情報を取得する。 The estimation device 100 receives an input from the input unit 150 by the user and acquires information about the patient such as a patient ID and the like.
 次に、使用者によって開始スイッチ130が作動されると、取得部124は、各部の動作を制御して、マイクロ波の送受信を行う(S1)。具体的には、送信波形生成部113は、患者の胸部Hに照射するマイクロ波を生成し、送信アンテナ111から送信する。胸部Hを透過したマイクロ波は、受信アンテナ112によって受信される。受信波形前処理部114は、受信アンテナ112が受信したマイクロ波をアナログからデジタル信号に変換する。取得部124は、少なくとも拡張収縮の周期が1回以上含まれる期間、送信マイクロ波及び受信マイクロ波を取得する。 Next, when the start switch 130 is operated by the user, the acquisition unit 124 controls the operation of each unit to transmit and receive microwaves (S1). Specifically, the transmission waveform generation unit 113 generates a microwave to irradiate the patient's chest H and transmits it from the transmission antenna 111. The microwave transmitted through the chest H is received by the receiving antenna 112. The reception waveform preprocessing unit 114 converts the microwave received by the reception antenna 112 from an analog signal to a digital signal. The acquisition unit 124 acquires the transmitted microwave and the received microwave during a period including at least one expansion / contraction cycle.
 次に、信号処理部125は、送信マイクロ波及び受信マイクロ波にフィルタリング等の処理を行う(S2)。 Next, the signal processing unit 125 performs processing such as filtering on the transmitted microwave and the received microwave (S2).
 次に、制御部120の推定部126は、送信マイクロ波及び受信マイクロ波の振幅差Aと胸部Hの誘電率ε及び誘電正接tanδとの関係式(1-9)と、送信マイクロ波及び受信マイクロ波の位相差θと胸部Hの誘電率ε及び誘電正接tanδとの関係式(1-10)と、に基づいて、送信マイクロ波及び受信マイクロ波の振幅差A及び位相差θから、胸部Hの誘電率ε及び誘電正接tanδを推定する(S3)。 Next, the estimation unit 126 of the control unit 120 describes the relational expression (1-9) between the amplitude difference A of the transmission microwave and the reception microwave and the dielectric constant ε and the dielectric loss tangent tan δ of the chest H, and the transmission microwave and the reception. Based on the relational expression (1-10) between the phase difference θ of the microwave and the permittivity ε of the chest H and the dielectric loss tangent tan δ, from the amplitude difference A and the phase difference θ of the transmitted microwave and the received microwave, the chest The permittivity ε of H and the dielectric loss tangent tan δ are estimated (S3).
 次に、推定部126は、式(2-2)~式(2-4)に基づいて、ステップS3で推定した胸部Hの誘電率ε及び誘電正接tanδと、拡張状態の受信マイクロ波の電界強度Ed及び収縮状態の受信マイクロ波の電界強度Esと、胸部Hにおいてマイクロ波が透過する部分の体積Vbodyと、から、エネルギー吸収量差ΔPを算出する(S4)。 Next, the estimation unit 126 includes the dielectric constant ε and the dielectric loss tangent tan δ of the chest H estimated in step S3 based on the equations (2-2) to (2-4), and the electric field of the received microwave in the expanded state. The energy absorption amount difference ΔP is calculated from the electric field strength Es of the received microwave in the contracted state and the strength Ed and the volume V body of the portion where the microwave is transmitted in the chest H (S4).
 次に、推定部126は、心拍出量ΔVbloodの分量の血液が吸収するエネルギー吸収量Pbloodは、エネルギー吸収量差ΔPに等しいという関係式(3-3)に基づいて、エネルギー吸収量差ΔPから、心拍出量ΔVbloodを推定する(S5)。 Next, the estimation unit 126 determines the energy absorption amount based on the relational expression (3-3) that the energy absorption amount P blood absorbed by the blood in the amount of the cardiac output ΔV blood is equal to the energy absorption amount difference ΔP. Cardiac output ΔV blood is estimated from the difference ΔP (S5).
 次に、報知部140は、ステップS5で推定された心拍出量ΔVbloodを使用者に報知する(S6)。 Next, the notification unit 140 notifies the user of the cardiac output ΔV blood estimated in step S5 (S6).
 以上説明したように、本実施形態に係る推定装置100は、生体の電気特性値の推定装置である。推定装置100は、送信アンテナ111と、受信アンテナ112と、推定部126と、を有する。送信アンテナ111は、生体にマイクロ波を送信する。受信アンテナ112は、生体を透過したマイクロ波を受信する。推定部126は、送信マイクロ波及び受信マイクロ波の波形差と電気特性値との関係に基づいて、送信マイクロ波及び受信マイクロ波の波形差から、電気特性値を推定する。 As described above, the estimation device 100 according to the present embodiment is an estimation device for the electrical characteristic value of a living body. The estimation device 100 includes a transmission antenna 111, a reception antenna 112, and an estimation unit 126. The transmitting antenna 111 transmits microwaves to the living body. The receiving antenna 112 receives the microwave transmitted through the living body. The estimation unit 126 estimates the electrical characteristic value from the waveform difference between the transmitted microwave and the received microwave based on the relationship between the waveform difference between the transmitted microwave and the received microwave and the electrical characteristic value.
 また、本実施形態に係る推定方法は、生体の電気特性値の推定方法である。本実施形態に係る推定方法では、生体にマイクロ波を送信し、生体を透過したマイクロ波を受信する。そして、送信マイクロ波及び受信マイクロ波の波形差と電気特性値との関係に基づいて、送信マイクロ波及び受信マイクロ波の波形差から、電気特性値を推定する。 Further, the estimation method according to the present embodiment is a method for estimating the electrical characteristic value of a living body. In the estimation method according to the present embodiment, microwaves are transmitted to a living body and microwaves transmitted through the living body are received. Then, based on the relationship between the waveform difference between the transmitted microwave and the received microwave and the electrical characteristic value, the electrical characteristic value is estimated from the waveform difference between the transmitted microwave and the received microwave.
 上記推定装置100及び推定方法によれば、生体の電気特性値を推定できる。 According to the estimation device 100 and the estimation method, the electrical characteristic value of the living body can be estimated.
 また、推定部126は、送信マイクロ波及び受信マイクロ波の振幅差Aと電気特性値との関係、及び、送信マイクロ波及び受信マイクロ波の位相差θと電気特性値との関係の少なくとも一方の関係に基づいて、電気特性値を推定する。そのため、推定部126は、受信マイクロ波及び送信マイクロ波の振幅差A及び/又は位相差θを算出するという簡便な方法によって、電気特性値を推定できる。 Further, the estimation unit 126 has at least one of the relationship between the amplitude difference A of the transmitted microwave and the received microwave and the electrical characteristic value, and the relationship between the phase difference θ of the transmitted microwave and the received microwave and the electrical characteristic value. Estimate the electrical characteristic values based on the relationship. Therefore, the estimation unit 126 can estimate the electrical characteristic value by a simple method of calculating the amplitude difference A and / or the phase difference θ of the received microwave and the transmitted microwave.
 また、推定部126は、電気特性値として誘電率εおよび/または誘電正接tanδを推定する。そのため、推定した誘電率εおよび/または誘電正接tanδから、生体のエネルギー吸収量(誘電損失)等を推定すること等が可能となる。 Further, the estimation unit 126 estimates the dielectric constant ε and / or the dielectric loss tangent tan δ as electrical characteristic values. Therefore, it is possible to estimate the energy absorption amount (dielectric loss) of the living body from the estimated dielectric constant ε and / or the dielectric loss tangent tan δ.
 また、マイクロ波の周波数は、0.4~1.0GHzである。周波数が高いほど、生体組織による電磁波の減衰等は大きくなり、生体の電気特性値を把握することの重要性が増すため、マイクロ波を用いる計測装置においては、本発明の効果が顕著になる。 The microwave frequency is 0.4 to 1.0 GHz. The higher the frequency, the greater the attenuation of electromagnetic waves by the living tissue, and the more important it is to grasp the electrical characteristic values of the living body. Therefore, the effect of the present invention becomes remarkable in the measuring device using microwaves.
 また、推定部126は、胸部Hの電気特性値を推定する。そのため、推定した胸部Hの電気特性値を心拍出量ΔV等の推定に利用できる。 In addition, the estimation unit 126 estimates the electrical characteristic value of the chest H. Therefore, the estimated electrical characteristic value of the chest H can be used for estimating the cardiac output ΔV and the like.
 なお、本実施形態は上述した実施形態にのみ限定されず、特許請求の範囲において種々の変更が可能である。 Note that this embodiment is not limited to the above-described embodiment, and various changes can be made within the scope of claims.
 例えば、本発明が推定する電気特定値は、誘電率ε及び誘電正接tanδに限定されない。例えば、本発明は、導電率σや透磁率μ等を電気特性値として推定してもよい。また、例えば、誘電率ε又は誘電正接tanδの少なくとも一方の電気特性値が既知である場合、式(1-9)及び式(1-10)の少なくとも一方を用いて、他方の電気特性値を推定してもよい。 For example, the electric specific value estimated by the present invention is not limited to the dielectric constant ε and the dielectric loss tangent tan δ. For example, in the present invention, conductivity σ, magnetic permeability μ, and the like may be estimated as electrical characteristic values. Further, for example, when at least one of the dielectric constant ε and the dielectric loss tangent tan δ is known, at least one of the equations (1-9) and (1-10) is used to determine the electrical characteristic value of the other. You may estimate.
 また、例えば、上記実施形態では、胸部の電気特性値を推定し、推定した電気特性値を心拍出量の推定に用いる形態を説明した。しかし、電気特性値を推定する部位、及び電気特性値の用途は特に限定されない。例えば、生体の電気特性値は、肺や膀胱等の他の生体器官内の体液の容量の変化量の推定に用いてもよい。 Further, for example, in the above embodiment, the embodiment in which the electrical characteristic value of the chest is estimated and the estimated electrical characteristic value is used for the estimation of the cardiac output has been described. However, the part for estimating the electrical characteristic value and the use of the electrical characteristic value are not particularly limited. For example, the electrical characteristic value of the living body may be used for estimating the amount of change in the volume of body fluid in other living organs such as the lung and the bladder.
 また、上記実施形態に係る推定装置および推定方法では、心拍出量ΔVbloodとして、所謂一回拍出量を推定することとしたが、1分間におけるΔVbloodの総和により所謂心拍出量を推定することや、更に体表面積で割ることによって心係数を推定することとしてもよい。 Further, in the estimation device and the estimation method according to the above embodiment, the so-called stroke volume is estimated as the cardiac output ΔV blood , but the so-called cardiac output is calculated by the sum of the ΔV blood in one minute. The cardiac index may be estimated by estimating or further dividing by the body surface area.
 本出願は、2019年9月30日に出願された日本国特許出願第2019-179104号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2019-179104, which was filed on September 30, 2019, and the disclosure contents are cited as a whole by reference.
100   推定装置、
111   送信アンテナ(送信部)、
112   受信アンテナ(受信部)、
126   推定部。
100 estimator,
111 Transmitting antenna (transmitter),
112 Receiving antenna (receiver),
126 Estimator.

Claims (6)

  1.  生体の電気特性値の推定装置であって、
     前記生体にマイクロ波を送信する送信部と、
     前記生体を透過した前記マイクロ波を受信する受信部と、
     送信マイクロ波の波形及び受信マイクロ波の波形差と前記電気特性値との関係に基づいて、前記送信マイクロ波の波形及び前記受信マイクロ波の波形差から、前記電気特性値を推定する推定部と、を有する推定装置。
    It is an estimation device for the electrical characteristics of living organisms.
    A transmitter that transmits microwaves to the living body,
    A receiving unit that receives the microwave that has passed through the living body,
    An estimation unit that estimates the electrical characteristic value from the difference between the transmitted microwave waveform and the received microwave waveform based on the relationship between the transmitted microwave waveform and the received microwave waveform difference and the electrical characteristic value. An estimation device having.
  2.  前記推定部は、前記送信マイクロ波及び前記受信マイクロ波の振幅差と前記電気特性値との関係、及び、前記送信マイクロ波及び前記受信マイクロ波の位相差と前記電気特性値との関係の少なくとも一方の関係に基づいて、前記電気特性値を推定する請求項1に記載の推定装置。 The estimation unit is at least the relationship between the amplitude difference between the transmitted microwave and the received microwave and the electrical characteristic value, and the relationship between the phase difference between the transmitted microwave and the received microwave and the electrical characteristic value. The estimation device according to claim 1, wherein the electrical characteristic value is estimated based on one of the relationships.
  3.  前記推定部は、前記電気特性値として誘電率及び/又は誘電正接を推定する請求項2に記載の推定装置。 The estimation device according to claim 2, wherein the estimation unit estimates the dielectric constant and / or the dielectric loss tangent as the electrical characteristic value.
  4.  前記マイクロ波の周波数は、0.4~1.0GHzである請求項1~請求項3のいずれか一項に記載の推定装置。 The estimation device according to any one of claims 1 to 3, wherein the frequency of the microwave is 0.4 to 1.0 GHz.
  5.  前記推定部は、胸部の前記電気特性値を推定する請求項1~4のいずれか一項に記載の推定装置。 The estimation device is the estimation device according to any one of claims 1 to 4, which estimates the electrical characteristic value of the chest.
  6.  生体の電気特性値の推定方法であって、
     前記生体にマイクロ波を送信し、
     前記生体を透過したマイクロ波を受信し、
     送信マイクロ波及び受信マイクロ波の波形差と前記電気特性値との関係に基づいて、前記送信マイクロ波及び前記受信マイクロ波の波形差から、前記電気特性値を推定する推定方法。
    It is a method of estimating the electrical characteristics of living organisms.
    Microwaves are transmitted to the living body to
    Upon receiving the microwave that has passed through the living body,
    An estimation method for estimating the electrical characteristic value from the waveform difference between the transmitted microwave and the received microwave based on the relationship between the waveform difference between the transmitted microwave and the received microwave and the electrical characteristic value.
PCT/JP2020/037161 2019-09-30 2020-09-30 Estimation device and estimation method WO2021066017A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021551376A JPWO2021066017A1 (en) 2019-09-30 2020-09-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019179104 2019-09-30
JP2019-179104 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021066017A1 true WO2021066017A1 (en) 2021-04-08

Family

ID=75338359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037161 WO2021066017A1 (en) 2019-09-30 2020-09-30 Estimation device and estimation method

Country Status (2)

Country Link
JP (1) JPWO2021066017A1 (en)
WO (1) WO2021066017A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537767A (en) * 2007-09-05 2010-12-09 センシブル メディカル イノヴェイションズ リミテッド Method and system for monitoring thoracic tissue fluid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537767A (en) * 2007-09-05 2010-12-09 センシブル メディカル イノヴェイションズ リミテッド Method and system for monitoring thoracic tissue fluid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIRAKASHI, RYO: "Dielectric spectra and freezing /desiccation characteristics of gelatin-gel", SEISAN KENKYU, vol. 63, no. 3, 2001, pages 350 - 353 *

Also Published As

Publication number Publication date
JPWO2021066017A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
Ravichandran et al. WiBreathe: Estimating respiration rate using wireless signals in natural settings in the home
Celik et al. Microwave stethoscope: Development and benchmarking of a vital signs sensor using computer-controlled phantoms and human studies
JP6566513B2 (en) Estimator for cardiac volume and cardiac output
JP6764022B2 (en) Biometric information estimation device
US20100022900A1 (en) Non-Invasive Method And Device For Measuring Cardiac Output
EP1803396B1 (en) Monitoring apparatus for physical movements of a body organ and method for the same
Obeid et al. Microwave doppler radar for heartbeat detection vs electrocardiogram
Ullah et al. A study of implanted and wearable body sensor networks
CN108577815A (en) A kind of assay method of human body respiration rate and heart rate based on ULTRA-WIDEBAND RADAR
Pancera Medical applications of the ultra wideband technology
Obeid et al. Doppler radar for heartbeat rate and heart rate variability extraction
AlShehri et al. 3D experimental detection and discrimination of malignant and benign breast tumor using NN-based UWB imaging system
Obeid et al. Noncontact heartbeat detection at 2.4, 5.8, and 60 GHz: A comparative study
EP3488778B1 (en) Device for electromagnetic structural characterization
CN111432713B (en) Biodetering device capable of being ingested and implanted in the body
WO2021066017A1 (en) Estimation device and estimation method
Seyedi et al. Limb joint effects on signal transmission in capacitive coupled intra-body communication systems
Zamani et al. Frequency domain method for early stage detection of congestive heart failure
WO2021066028A1 (en) Estimation device and estimation method
Sahu et al. Study of RF signal attenuation of human heart
Brovoll et al. Optimal frequency range for medical radar measurements of human heartbeats using body-contact radar
Tan et al. Defining optimum frequency range for heart failure detection system considering thickness variations in human body tissues
O'Halloran et al. Bladder-state monitoring using ultra wideband radar
Razak et al. BFSK modulation to compare intra-body communication methods for foot plantar pressure measurement
Čuljak et al. UWB Platform for Vital Signs Detection and Monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551376

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871797

Country of ref document: EP

Kind code of ref document: A1