WO2021065968A1 - Resin laminate for low-dielectric material - Google Patents

Resin laminate for low-dielectric material Download PDF

Info

Publication number
WO2021065968A1
WO2021065968A1 PCT/JP2020/037053 JP2020037053W WO2021065968A1 WO 2021065968 A1 WO2021065968 A1 WO 2021065968A1 JP 2020037053 W JP2020037053 W JP 2020037053W WO 2021065968 A1 WO2021065968 A1 WO 2021065968A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
film
dielectric material
laminate
styrene
Prior art date
Application number
PCT/JP2020/037053
Other languages
French (fr)
Japanese (ja)
Inventor
壮弘 岩本
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2021065968A1 publication Critical patent/WO2021065968A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a resin laminate for a low dielectric material and a method for producing the same.
  • Polystyrene resin having a syndiotactic structure (hereinafter, also referred to as SPS) has excellent performances such as mechanical strength, heat resistance, electrical characteristics, water absorption dimensional stability, and chemical resistance. Therefore, SPS is very useful as a resin used for various purposes such as electric / electronic equipment materials, in-vehicle / electrical parts, home appliances, various mechanical parts, and industrial materials. Further, SPS is a hydrocarbon resin obtained by polymerizing a styrene monomer, has a small dielectric loss, and has an insulating property. Therefore, it is considered to be used as an electric / electronic device material in the above applications.
  • Patent Document 1 discloses a polystyrene-based film for electrical insulation having specific values for tensile elastic modulus, hinge characteristics, film thickness, and haze for the purpose of obtaining a film that is not deteriorated by a refrigerant.
  • Patent Document 2 describes a resin layer containing a thermoplastic resin, a resin layer containing a syndiotactic polystyrene-based resin laminated on the resin layer, and a first layer on the resin layer.
  • a laminate for an electronic circuit substrate having a first and second metal layers and having a specific value in peel strength between the metal layers is disclosed.
  • Patent Document 3 describes a biaxially oriented film containing a syndiotactic polystyrene-based resin as a main component and having a constant heat shrinkage rate of the film before and after heat treatment for the purpose of suppressing wrinkles in the manufacturing process of a printed circuit board.
  • a laminate for manufacturing a flexible printed circuit board in which a soft film is laminated is disclosed.
  • the present invention provides a resin laminate for a low dielectric material, which has a small dielectric loss and high toughness, and is suitable for electronic components, particularly a circuit board, a resin plate for a millimeter wave radome, and a resin plate for good radio wave transmission. Is an issue.
  • the present inventors have found that a laminate obtained by laminating an SPS layer and a styrene resin layer having a lower softening point at a certain level or more solves the above-mentioned problems. That is, the present invention relates to the following [1] to [15].
  • a total of three or more layers of a resin layer (S) containing a styrene resin (S1) having a syndiotactic structure and a resin layer (M) containing a resin (M1) having a softening point of 260 ° C. or lower are alternately laminated, and the outermost layer.
  • a resin layer (S) which is a resin laminate for low dielectric materials.
  • An alignment film (SF) containing a styrene resin (S1) having a syndiotactic structure and a film (MF) containing a resin (M1) having a softening point of 260 ° C. or lower are alternately alternated, and the outermost layer is a film (SF).
  • a method for producing a resin laminate for a low dielectric material which comprises a step of laminating a total of three or more layers and pressing to integrate them.
  • an electronic component having a small dielectric loss and high toughness particularly a resin laminate for a low dielectric material suitable for a circuit board, a resin plate for a millimeter wave radome, a resin plate for good radio wave transmission, and a method for producing the same.
  • a resin laminate for a low dielectric material suitable for a circuit board a resin plate for a millimeter wave radome, a resin plate for good radio wave transmission, and a method for producing the same.
  • the resin laminate for a low dielectric material of the present invention has a resin layer (S) containing a styrene resin (S1) having a syndiotactic structure and a resin layer (M1) containing a resin (M1) having a softening point of 260 ° C. or lower.
  • S1 a resin layer containing a styrene resin having a syndiotactic structure
  • a resin layer (M1) containing a resin (M1) having a softening point of 260 ° C. or lower are alternately laminated in a total of three or more layers, and the outermost layer is a resin layer (S).
  • the resin laminate for a low dielectric material of the present invention has a resin layer (S) containing a styrene resin (S1) having a syndiotactic structure and a resin layer (M1) containing a resin (M1) having a softening point of 260 ° C. or lower.
  • S1 a resin layer containing a styrene resin having a syndiotactic structure
  • a resin layer (M1) containing a resin (M1) having a softening point of 260 ° C. or lower are alternately laminated in a total of three or more layers, and the outermost layer is a resin layer (S).
  • S styrene resin
  • M1 containing a resin (M1) having a softening point of 260 ° C. or lower.
  • the resin laminate 1 for a low dielectric material of the present invention is a styrene-based resin having a syndiotactic structure on both sides of a resin layer 2 (corresponding to a resin layer (M)) containing a resin (M1) having a softening point of 260 ° C. or lower. It is sandwiched between resin layers 3 (corresponding to resin layer (S)) containing resin (S1), and the outermost layers are all resin layers 3.
  • the resin layers are alternately laminated, and the outermost layer is the resin layer (S). That is, in the case of 3 layers, it is S / M / S, in the case of 5 layers, it is S / M / S / M / S, and in the case of 7 layers, it is S / M / S / M / S.
  • the number of layers is 3 or more, preferably 5 or more, more preferably 7 or more, further preferably 9 or more, even more preferably 15 or more, and even more preferably 22 or more.
  • the upper limit is preferably 39 layers or less, more preferably 35 layers or less, and even more preferably 29 layers or less.
  • the relatively flexible resin layer at the low softening point existing between the SPS layers disperses and relaxes the impact force and enhances toughness. It is thought that it is.
  • the resin layer (S) contains a styrene resin (S1) having a syndiotactic structure.
  • the styrene resin (S1) having a syndiotactic structure is preferably 30% by mass or more, more preferably 50% by mass or more, further preferably 80% by mass or more, and more preferably 90% by mass or more. More preferably, 95% by mass or more is further preferable, 99% by mass or more is further preferable, and 100% by mass is further preferable.
  • the styrene resin (S1) having a syndiotactic structure constituting the resin layer (S) is 75 mol% or more, preferably 85 mol% or more, and 30 mol of racemic pentad (rrrr). It has a syndiotacticity of% or more, preferably 50 mol% or more. Tacticity means the ratio of phenyl rings in adjacent styrene units to which the phenyl rings are arranged alternately with respect to the plane formed by the main chain of the polymer block.
  • Syndiotacticity can be quantified by nuclear magnetic resonance spectroscopy ( 13 C-NMR method). Diad indicates syndiotacticity with two consecutive monomer units, and pentad indicates syndiotacticity with five monomer units.
  • the styrene resin (S1) examples include polystyrene or a copolymer containing styrene as a main component, and polystyrene (styrene homopolymer) is preferable.
  • the styrene component is preferably 90 mol% or more, more preferably 95 mol% or more, further preferably 99 mol% or more, and 100 mol%. Even more preferable.
  • the weight average molecular weight of the styrene resin (S1) is preferably 100,000 to 300,000, more preferably 150,000 to 250,000, and even more preferably 200,000 to 250,000.
  • the weight average molecular weight is determined by gel permeation chromatography using monodisperse polystyrene as a standard substance. Specifically, it is obtained by the measurement method described in the examples.
  • the softening point of the styrene resin (S1) is preferably larger than 260 ° C., more preferably 261 ° C. or higher, further preferably 262 ° C. or higher, still more preferably 263 to 267 ° C.
  • the softening point can be measured according to JIS K7206: 2016, and specifically, it can be measured by the method shown in the examples.
  • the melting point of the styrene resin (S1) is preferably 265 ° C. or higher, more preferably 267 ° C. or higher, and even more preferably 269 ° C. or higher. Further, 275 ° C. or lower is preferable, and 273 ° C. or lower is more preferable.
  • the dielectric loss tangent (tan ⁇ ) of the resin (S1) is preferably 0.00030 or less, more preferably 0.00025 or less.
  • the dielectric loss tangent (tan ⁇ ) can be obtained by the same measurement method as the method for measuring the dielectric loss tangent of the resin laminate described in Examples.
  • the resin laminate of the present invention is laminated with an SPS film having excellent insulating properties, it has a low dielectric loss tangent (tan ⁇ ), and is particularly an electronic material such as a circuit board, a resin plate for a millimeter wave radome, and a good radio wave transmitting resin plate. It is considered that a laminate suitable for the above can be obtained.
  • the thickness of the resin layer (S) is preferably 2 to 100 ⁇ m. Among them, when used for a circuit board application, 10 to 80 ⁇ m is preferable, 15 to 60 ⁇ m is more preferable, and 20 to 50 ⁇ m is further preferable. When the thickness of the resin layer (S) is within the above range, it can be sufficiently oriented, especially during film molding, and excellent toughness can be obtained when it is formed into a laminated body.
  • the resin layer (S) is preferably made of an alignment film.
  • the alignment film means that the alignment coefficient calculated by wide-angle X-ray diffraction (WAXD) in the crystal portion in the film plane is -0.1000 or more and 0.0100 or less in the Throw direction and -0.5000 in the Edge direction. It is more than -0.1000 and more than -0.5000 and less than -0.1000 in the End direction.
  • the End direction is the X-ray incident from a direction parallel to the film longitudinal direction
  • the Edge direction is the X-ray incident perpendicular to this and also the thickness direction
  • the Throw direction is perpendicular to the film surface. X-ray incident.
  • the orientation coefficient is within the above range, sufficient impact strength required for a resin laminate used for applications such as circuit boards, millimeter-wave radomes, and good radio wave transmitting resin plates can be obtained.
  • the above-mentioned diffraction images in the Throwh direction, the Edge direction, and the End direction were obtained, respectively.
  • the crystal orientation coefficient f of the plane normal vector with respect to the orientation axis is calculated based on the equation (F1).
  • is the azimuth in the X-ray diffraction measurement
  • is 1/2 of the diffraction angle 2 ⁇ in the equatorial direction
  • is the inclination angle from the meridian on the diffraction image to the diffraction peak position.
  • I ( ⁇ ) is the diffraction intensity at the angle ⁇ of the (110) plane.
  • the orientation coefficient of the resin layer (S) is -0.0500 or more and 0.0050 or less in the Throw direction and -0 in the Edge direction. .4800 or more and -0.1200 or less, preferably -0.4800 or more and -0.1200 or less in the End direction.
  • the means for setting the orientation coefficient within the above-mentioned range can be realized by adjusting the stretching ratio, stretching temperature, and heat fixing temperature after stretching during film production.
  • the resin layer (S) is more preferably made of a biaxially stretched film.
  • the biaxially stretched film is preferably obtained by the method described in the method for producing a laminated body of the present invention described later.
  • the resin layer (S) is stretched in both the longitudinal direction (MD) and the width direction (TD), so that the resin molecules are parallel to the plane. It is oriented in the (MD, TD direction), and when it is a laminated body, it has excellent toughness when the surface is impacted.
  • the resin layer (M) contains a resin (M1) having a softening point of 260 ° C. or lower.
  • the resin (M1) having a softening point of 260 ° C. or lower is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and further preferably 99% by mass or more.
  • 100% by mass is even more preferable.
  • the softening point of the resin (M1) is 260 ° C. or lower, preferably 255 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 240 ° C. or lower.
  • the lower limit is not limited, but 220 ° C. or higher is preferable.
  • the softening point can be measured by JIS K7206: 2016, and specifically, it can be measured by the method shown in Examples.
  • the resin (M1) a styrene resin and a polyphenylene ether resin are preferable, and a styrene resin is more preferable. Since the resin used for the resin (M1) is a styrene-based resin, the affinity between the resin layer (M) and the resin layer (S) is enhanced, each layer is difficult to peel off, and the toughness of the laminate of the present invention is improved. It is thought that it will be done.
  • the styrene-based resin used for the resin (M1) may have any three-dimensional regularity (tacticity) of syndiotactic, isotactic, and tactic, but syndiotactic and tactic are preferable, and syndiotactic is more preferable. ..
  • the stereoregularity of the styrene resin used for the resin (M1) is syndiotactic
  • the melting point is 265 ° C. or lower, preferably 262 ° C. or lower, more preferably 259 ° C. or lower, and further preferably 256 ° C. or lower. preferable.
  • the lower limit is not limited, but is preferably 245 ° C. or higher.
  • styrene-based resin used for the resin (M1) include polystyrene, poly (hydrocarbon-substituted styrene), poly (styrene halide), poly (alkyl styrene halide), poly (alkoxystyrene), and poly (vinyl).
  • (Salute benzoate), hydrides or mixtures thereof, or copolymers containing these as the main copolymerization component preferably polystyrene, poly (hydrocarbon-substituted styrene), or copolymers containing styrene as the main copolymerization component.
  • a copolymer containing styrene as a main copolymer component hereinafter, also referred to as a styrene-based copolymer is more preferable.
  • the monomer other than styrene used as the copolymerization component of the styrene-based copolymer may be a monomer having a vinyl group and capable of copolymerizing with styrene, and may be a styrene-based monomer, an olefin monomer, a diene monomer, a cyclic olefin monomer, or a cyclic monomer. Examples thereof include a diene monomer and a polar vinyl monomer, and a styrene-based monomer is preferable.
  • styrene-based monomer examples include hydrocarbon-substituted styrene, halogenated styrene, halogenated alkylstyrene, alkoxystyrene, and vinyl benzoic acid ester, and hydrocarbon-substituted styrene is preferable.
  • Examples of the hydrocarbon-substituted styrene contained in the styrene-based copolymer include methylstyrene, ethylstyrene, isopropylstyrene, tert-butylstyrene, (phenyl) styrene, vinylnaphthalene, and divinylbenzene, and methylstyrene and ethylstyrene. , Divinylbenzene is preferable, and methylstyrene is more preferable.
  • Examples of halogenated styrene include chlorostyrene, bromostyrene, fluorostyrene and the like.
  • Examples of the halogenated alkylstyrene include chloromethylstyrene and the like.
  • Examples of alkoxystyrene include methoxystyrene and ethoxystyrene.
  • Examples of the olefin monomer include ethylene, propylene, butene, hexene, and octene.
  • Examples of the diene monomer include butadiene and isoprene.
  • Examples of the polar vinyl monomer include methyl methacrylate, maleic anhydride, acrylonitrile and the like.
  • the styrene-based copolymer examples include a copolymer of styrene and paramethylstyrene, a copolymer of styrene and p-tert-butylstyrene, a copolymer of styrene and divinylbenzene, and the like. Of these, a copolymer of styrene and paramethylstyrene is preferable. That is, among the styrene-based resins, the resin (M1) is more preferably a styrene-based resin containing paramethylstyrene as a copolymerization component.
  • the paramethylstyrene component in the copolymerization component is preferably 3 to 15 mol%, more preferably 4 to 12 mol%. More preferably, 5-10 mol%.
  • the weight average molecular weight of the resin (M1) is preferably 100,000 to 300,000, more preferably 150,000 to 250,000, and even more preferably 150,000 to 200,000.
  • the weight average molecular weight is determined by gel permeation chromatography using monodisperse polystyrene as a standard substance.
  • the dielectric loss tangent (tan ⁇ ) of the resin (M1) is preferably 0.00030 or less, more preferably 0.00020 or less.
  • the dielectric loss tangent (tan ⁇ ) can be obtained by the same measurement method as the method for measuring the dielectric loss tangent of the resin laminate described in Examples.
  • the thickness of the resin layer (M) is preferably 2 to 100 ⁇ m. Among them, when used for circuit board applications, 10 to 80 ⁇ m is preferable, 15 to 60 ⁇ m is more preferable, and 20 to 50 ⁇ m is even more preferable. When the thickness of the resin layer (M) is within the above range, it is possible to achieve both sufficient adhesiveness between the layers and excellent impact strength when the resin laminate is formed.
  • the resin layer (M) may or may not be an alignment film.
  • the thickness of the resin laminate of the present invention is preferably 0.01 to 3.0 mm, more preferably 0.02 to 3.0 mm, and even more preferably 0.03 to 3.0 mm.
  • 0.03 to 1.5 mm is preferable, 0.10 to 1.0 mm is more preferable, and 0.2 to 0.9 mm is further preferable.
  • 0.9 to 3.0 mm is preferable, and 0.9 to 2.5 mm is more preferable.
  • the dielectric loss tangent (tan ⁇ ) of the resin laminate of the present invention is preferably 0.00030 or less, more preferably 0.00025 or less.
  • the dielectric loss tangent (tan ⁇ ) is a value obtained by the measuring method described in the examples. The smaller the value of the dielectric loss tangent (tan ⁇ ), the smaller the dielectric loss and the better the dielectric characteristics. Since the resin laminate of the present invention is laminated with an SPS film having excellent insulating properties, it has a low dielectric loss tangent (tan ⁇ ), and is particularly an electronic material such as a circuit board, a resin plate for a millimeter wave radome, and a good radio wave transmitting resin plate. It is considered that a laminate suitable for the above can be obtained.
  • the impact strength is preferably 0.1 J or more, more preferably 0.6 J or more, still more preferably 0.8 J or more.
  • the impact strength is a value obtained by the measuring method described in the examples.
  • the resin laminate of the present invention is considered to be excellent in impact strength because it is composed of an SPS film having excellent strength and a more flexible resin having a low softening point in close contact with each other.
  • a more suitable SPS film is an alignment film, which is considered to have high strength, and particularly in the case of a biaxially stretched film, the orientation of polystyrene molecules is higher and the strength is further increased.
  • the method for producing a resin laminate for a low dielectric material of the present invention is a film containing an alignment film (SF) containing a styrene resin (S1) having a syndiotactic structure and a resin (M1) having a softening point of 260 ° C. or lower.
  • SF alignment film
  • M1 resin having a softening point of 260 ° C. or lower.
  • MF styrene resin
  • a resin layer (S) containing a styrene resin (S1) having a syndiotactic structure and a resin layer (M) containing a resin (M1) having a softening point of 260 ° C. or lower are alternately arranged.
  • a resin laminate for a low dielectric material is obtained in which a total of three or more layers are laminated and the outermost layer is a resin layer (S).
  • the reason why the resin laminate thus obtained has excellent toughness and low dielectric loss is not clear, but it is considered as follows.
  • the oriented SPS film has excellent impact resistance, but becomes a relatively thin film for alignment.
  • the SPS film By fusing the SPS film with a resin having a relatively low softening point, the SPS film can be formed into an appropriate thickness without impairing the molecular orientation of the SPS film. Furthermore, by using a styrene resin for the resin having a low softening point, a laminate that achieves both small dielectric loss and excellent toughness can be obtained, especially for circuit boards, millimeter-wave radome resin plates, good radio wave transmitting resin plates, etc. It is considered that a laminate suitable for an electronic material can be obtained.
  • ⁇ Orientation film (SF)> an oriented film (SF) is used as the film used for each resin layer (S).
  • the resin used for the alignment film (SF) it is preferable to use the SPS described in the above (styrene resin (S1) having a syndiotactic structure), and the preferable range is also described in the description of the resin (S1). Is similar to. That is, polystyrene (styrene homopolymer) is preferable.
  • the alignment coefficient of the alignment film (SF) calculated by wide-angle X-ray diffraction (WAXD) in the crystal portion in the film plane is -0.1000 or more and 0.0100 or less in the Throw direction and -0.5000 or more in the Edge direction. Less than 0.1000, -0.5000 or more and less than -0.1000 in the End direction, -0.0500 or more and 0.0050 or less in the Throw direction, -0.4800 or more and -0.1200 or less in the Edge direction. , -0.4800 or more and -0.1200 or less in the End direction is preferable.
  • the alignment film is a stretched film obtained by melt-extruding the resin (S1) with an extruder, cooling and solidifying with a cast roll, stretching with a stretching machine, and heat-treating the obtained film as necessary. It is preferable to have. Of these, a biaxially stretched film obtained by biaxially stretching is more preferable.
  • the production of the alignment film (SF) in the case of the biaxially stretched film will be described below.
  • the resin (S1) is preferably pre-dried before being charged into the extruder. It is more preferable to dry the pelletized resin (S1) under the conditions of 60 to 150 ° C. and 10 to 180 minutes.
  • the extruder a single-screw extruder or a twin-screw extruder can be used, and it is preferable to use an extruder with a vacuum vent in that the drying of the resin is promoted.
  • the filter material of the polymer filter As the filter material of the polymer filter, a sintered metal type is preferable.
  • the collected particle size is preferably 1 to 100 ⁇ m.
  • the extrusion temperature in the extruder is preferably 290 to 330 ° C. It is preferable to adjust the extrusion temperature from the heater of the extruder to the polymer line, gear pump, polymer filter and T-die.
  • the cooling medium of the cast roll is preferably oil or water, and the cooling temperature is preferably 50 to 95 ° C, more preferably 60 to 90 ° C.
  • the resin (S1) melt-extruded from the T-die of the extruder it is preferable to use an air chamber method, an electrostatic application method, or a combination thereof.
  • the pulling speed of the cast roll is preferably 1 to 30 m / min, more preferably 3 to 15 m / min.
  • biaxial stretching is performed.
  • the alignment film (SF) used in the present invention is obtained, either a simultaneous biaxial stretching method or a sequential biaxial stretching method in which transverse stretching is performed after longitudinal stretching may be performed, but simultaneous biaxial stretching may be performed.
  • the stretching method is preferable.
  • the simultaneous biaxial stretching method since the longitudinal direction (MD) and the width direction (TD) are stretched at the same time, the physical properties of MD and TD are less likely to be biased. For example, since there is little bias in orientation between MD and TD, a laminated body having a small difference in superiority or inferiority depending on the direction can be obtained in terms of toughness when impacted.
  • the simultaneous biaxial stretching method it is preferable to use the pantograph method. It is preferable to use a roll type longitudinal stretching machine and a tenter type transverse stretching machine for the sequential biaxial stretching method.
  • the preheating temperature is preferably 90 to 150 ° C., more preferably 100 to 140 ° C., and even more preferably 105 to 120 ° C.
  • the stretching temperature is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, and even more preferably 105 to 120 ° C.
  • the heat fixing temperature is preferably 180 to 265 ° C, more preferably 200 to 260 ° C, and even more preferably 200 to 250 ° C.
  • the draw ratio is preferably 2.5 to 4.0 in the vertical direction and 2.5 to 4.0 in the horizontal direction.
  • the heat-fixing zone it is preferable to heat-treat (anneal) the stretched film, and in this way, a biaxially stretched film (SF) is obtained.
  • the thickness of the obtained biaxially stretched film (SF) is preferably 2 to 100 ⁇ m. Among them, when used for a circuit board application, 10 to 80 ⁇ m is preferable, 15 to 60 ⁇ m is more preferable, and 20 to 50 ⁇ m is further preferable. If the thickness of the biaxially stretched film (SF) is within the above range, it can be sufficiently oriented, especially during film molding, and excellent toughness can be obtained when the laminate is formed.
  • the roll temperature is preferably 98 to 105 ° C.
  • the medium for adjusting the roll temperature is preferably oil or pressurized water.
  • the longitudinal stretching is performed by two rolls having different pulling speeds, but it is preferable to provide an auxiliary heater for heating the film between the two rolls.
  • As the auxiliary heater it is preferable to use a far-infrared heater.
  • the draw ratio is preferably 2.5 to 4.0 in the vertical direction.
  • the preheating temperature is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, still more preferably 105 to 120 ° C.
  • the stretching temperature is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, and even more preferably 105 to 120 ° C.
  • the heat fixing temperature is preferably 180 to 265 ° C, more preferably 200 to 260 ° C, and even more preferably 200 to 250 ° C.
  • the draw ratio is preferably 2.5 to 4.0 in the horizontal direction. In the heat-fixing zone, it is preferable to provide a relaxation rate of 0.5 to 10% in order to suppress the post-shrinkage of the film.
  • the heat-fixing zone it is preferable to heat-treat (anneal) the stretched film, and in this way, a biaxially stretched film (SF) is obtained.
  • the thickness of the obtained biaxially stretched film (SF) is preferably 2 to 100 ⁇ m. Among them, when used for a circuit board application, 10 to 80 ⁇ m is preferable, 15 to 60 ⁇ m is more preferable, and 20 to 50 ⁇ m is further preferable. If the thickness of the biaxially stretched film (SF) is within the above range, it can be sufficiently oriented, especially during film molding, and excellent toughness can be obtained when it is formed into a laminated body.
  • the film (MF) forms the resin layer (M) of the obtained laminate.
  • the film (MF) may be a cast film, an alignment film, or a stretched film, but an alignment film or a stretched film is preferable, and a biaxially stretched film is more preferable.
  • the film (MF) contains a resin (M1) having a softening point of 260 ° C. or lower.
  • the resin (M1) include a polyphenylene ether resin and a styrene-based resin. Among them, a styrene-based resin is preferably contained, and the preferable range is the same as that described in the description of the resin (M1).
  • a styrene resin containing paramethylstyrene as a copolymerization component is preferable, and among the copolymer components, the paramethylstyrene component is more preferably 3 to 15 mol%, further preferably 4 to 12 mol%, and 5 to 10 More preferably mol%.
  • the stereoregularity (tacticity) is preferably syndiotactic.
  • Examples of the method for producing a film (MF) include a melt extrusion molding method, a solution casting method, a calender method, and the like.
  • the melt extrusion molding method is preferable, and stretching is more preferable after melt extrusion, and stretching is biaxial stretching. The method is even more preferred.
  • the method for producing a film by a preferable biaxially stretched method is the same as that of the biaxially stretched film (SF).
  • the resin (M1) is melt-extruded by an extruder, cooled and solidified by a cast roll, and biaxially stretched by a stretcher, and the obtained film is obtained as needed. Obtained by heat treatment.
  • the resin (M1) is preferably pre-dried before being charged into the extruder. It is more preferable to dry the pelletized resin (M1) under the conditions of 60 to 150 ° C. and 10 to 180 minutes.
  • the extruder a single-screw extruder or a twin-screw extruder can be used, and it is preferable to use an extruder with a vacuum vent in that the drying of the resin is promoted.
  • the filter material of the polymer filter As the filter material of the polymer filter, a sintered metal type is preferable.
  • the collected particle size is preferably 1 to 100 ⁇ m.
  • the extrusion temperature in the extruder is preferably 270 to 330 ° C. It is preferable to adjust the extrusion temperature from the heater of the extruder to the polymer line, gear pump, polymer filter and T-die.
  • the cooling medium of the cast roll is preferably oil or water, and the cooling temperature is preferably 50 to 95 ° C, more preferably 60 to 90 ° C.
  • the resin (M1) melt-extruded from the T-die of the extruder it is preferable to use an air chamber method, an electrostatic application method, or a combination thereof.
  • the pulling speed of the cast roll is preferably 1 to 30 m / min, more preferably 3 to 15 m / min.
  • the film (MF) used in the present invention may be either a simultaneous biaxial stretching method or a sequential biaxial stretching method in which transverse stretching is performed after longitudinal stretching, but the simultaneous biaxial stretching method is used. preferable.
  • the simultaneous biaxial stretching method since the longitudinal direction (MD) and the width direction (TD) are stretched at the same time, the physical properties of MD and TD are less likely to be biased. For example, since there is no bias in orientation between MD and TD, a laminated body having no superiority or inferiority in toughness when subjected to an impact can be obtained.
  • the simultaneous biaxial stretching method it is preferable to use the pantograph method. It is preferable to use a roll type longitudinal stretching machine and a tenter type transverse stretching machine for the sequential biaxial stretching method.
  • the preheating temperature is preferably 90 to 150 ° C., more preferably 100 to 140 ° C., and even more preferably 110 to 130 ° C.
  • the stretching temperature is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, and even more preferably 110 to 130 ° C.
  • the heat fixing temperature is preferably 180 to 250 ° C., more preferably 180 to 240 ° C., and even more preferably 180 to 220 ° C.
  • the draw ratio is preferably 2.5 to 4.0 in the vertical direction and 2.5 to 4.0 in the horizontal direction.
  • the film (MF) is obtained.
  • the film thus obtained is a biaxially stretched film.
  • the thickness of the obtained biaxially stretched film (MF) is preferably 2 to 100 ⁇ m. Among them, when used for a circuit board application, 10 to 80 ⁇ m is preferable, 15 to 60 ⁇ m is more preferable, and 20 to 50 ⁇ m is further preferable.
  • the thickness of the biaxially stretched film (MF) is within the above range, it is possible to achieve both sufficient adhesiveness between the layers and excellent impact strength when the resin laminate is formed.
  • the roll temperature is preferably 98 to 105 ° C.
  • the medium for adjusting the roll temperature is preferably oil or pressurized water.
  • the longitudinal stretching is performed by two rolls having different pulling speeds, but it is preferable to provide an auxiliary heater for heating the film between the two rolls.
  • As the auxiliary heater it is preferable to use a far-infrared heater.
  • the draw ratio is preferably 2.5 to 4.0 in the vertical direction.
  • the preheating temperature is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, still more preferably 110 to 130 ° C.
  • the stretching temperature is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, and even more preferably 110 to 130 ° C.
  • the heat fixing temperature is preferably 180 to 250 ° C., more preferably 180 to 240 ° C., and even more preferably 180 to 220 ° C.
  • the draw ratio is preferably 2.5 to 4.0 in the horizontal direction. In the heat-fixing zone, it is preferable to provide a relaxation rate of 0.5 to 10% in order to suppress the post-shrinkage of the film.
  • the film (MF) is obtained.
  • the thickness of the obtained film (MF) is preferably 2 to 100 ⁇ m. Among them, when used for a circuit board application, 10 to 80 ⁇ m is preferable, 15 to 60 ⁇ m is more preferable, and 20 to 50 ⁇ m is further preferable. When the thickness of the film (MF) is within the above range, it is possible to achieve both sufficient adhesiveness between the layers and excellent impact strength when the resin laminate is formed.
  • the laminating step a total of three or more layers are laminated so that the film (SF) and the film (MF) are alternately arranged and the outermost layer is the film (SF).
  • the number of layers in this step is 3 or more, preferably 5 or more, more preferably 7 or more, further preferably 9 or more, even more preferably 15 or more, and even more preferably 22 or more.
  • the upper limit is preferably 39 layers or less, more preferably 35 layers or less, and even more preferably 29 layers or less.
  • the press integration step it is preferable to press at 250 to 268 ° C. for integration, more preferably 255 to 265 ° C., and even more preferably 257 to 263 ° C.
  • the pressing method used is not limited, but it is preferable to press and integrate by the vacuum pressing method. Further, in this step, it is preferable to use a vacuum press machine.
  • the degree of vacuum is preferably ⁇ 0.05 MPa or less
  • the press temperature is preferably 250 to 268 ° C
  • the press pressure is preferably 0.5 to 5.0 MPa, 1.0. It is more preferably about 4.0 MPa, further preferably 1.5 to 3.0 MPa.
  • the press holding time is preferably 1 to 60 minutes, more preferably 1 to 30 minutes, and even more preferably 1 to 10 minutes. It is preferable to obtain a resin laminate by integrating the laminated films in this way.
  • the suitable resin laminate obtained by the production method of the present invention comprises a resin layer (S) containing a styrene resin (S1) having a syndiotactic structure and a resin (M1) having a softening point of 260 ° C. or lower.
  • S1 a resin layer containing a styrene resin (S1) having a syndiotactic structure
  • M1 a resin having a softening point of 260 ° C. or lower.
  • a total of three or more layers of the containing resin layers (M) are alternately laminated, and the outermost layer is the resin layer (S). As shown in FIG.
  • both sides of the resin layer 2 (corresponding to the resin layer (M)) containing the resin (M1) having a softening point of 260 ° C. or lower.
  • a resin layer 3 (corresponding to the resin layer (S)) containing a styrene resin (S1) having a syndiotactic structure, and the outermost layer is preferably the resin layer 3.
  • the resin layers are alternately laminated and the outermost layer is the resin layer (S). That is, in the case of 3 layers, it is S / M / S, in the case of 5 layers, it is S / M / S / M / S, and in the case of 7 layers, it is S / M / S / M / S.
  • the number of layers is 3 or more, preferably 5 or more, more preferably 7 or more, further preferably 9 or more, even more preferably 15 or more, and even more preferably 22 or more.
  • the upper limit is preferably 39 layers or less, more preferably 35 layers or less, and even more preferably 29 layers or less.
  • the relatively flexible styrene resin layer with a low softening point existing between the SPS layers disperses and relaxes the impact force, and toughness is achieved. It is thought that it can be enhanced.
  • the thickness of the resin laminate obtained by the production method of the present invention is preferably 0.01 to 3.0 mm, more preferably 0.02 to 3.0 mm, and even more preferably 0.03 to 3.0 mm. .. Among them, when used for a circuit board application, 0.03 to 1.5 mm is preferable, 0.10 to 1.0 mm is more preferable, and 0.2 to 0.9 mm is further preferable. Further, when used for a millimeter-wave radome resin plate or a good radio wave transmitting resin plate, 0.9 to 3.0 mm is preferable, and 0.9 to 2.5 mm is more preferable.
  • the dielectric loss of the resin laminate obtained by the production method of the present invention is preferably 0.00030 or less, more preferably 0.00025 or less.
  • the dielectric loss is a value obtained by the measuring method described in Examples. Since the entire laminate is made of a styrene resin having excellent insulating properties, it is considered that a laminate having low dielectric loss and particularly suitable for electronic materials such as circuit boards can be obtained.
  • the impact strength of the resin laminate obtained by the production method of the present invention is preferably 0.1 J or more, more preferably 0.6 J or more, still more preferably 0.8 J or more.
  • the impact strength is a value obtained by the measuring method described in the examples.
  • the resin laminate obtained by the production method of the present invention is considered to have excellent impact strength because it is composed of an SPS film having excellent strength and a more flexible resin having a low softening point in close contact with each other.
  • a more suitable SPS film is a biaxially stretched film, which is considered to have a high orientation of polystyrene molecules and a higher strength.
  • the electronic circuit board of the present invention includes the resin laminate for a low dielectric material. Further, the electronic circuit board of the second aspect of the present invention includes a resin laminate for a low dielectric material obtained by the above-mentioned manufacturing method. Further, the resin laminate of the present invention or the resin laminate obtained by the production method of the present invention may be used as a resin plate for a millimeter-wave radome, a good radio wave transmitting resin plate, an optical waveguide circuit plate, an array antenna, and the like. It can also be used for MIMO antennas, array antenna electrodes, electrical engineering modulators, and the like.
  • the total thickness of the electronic circuit board is preferably 0.05 to 2.0 mm, preferably 0.4 to 2.0 mm. 1.6 mm is more preferable.
  • the electronic circuit board of the present invention is manufactured by laminating a metal layer on one side or both sides of a substrate for an electronic circuit and patterning the metal layer. The patterning is preferably performed by etching the metal layer by a photolithography method. It is also possible to use an electroless plating method, an electrolytic plating method, a vapor deposition method, or a metal adhesion method using triazine.
  • the resin laminate of the present invention is preferably 0 to 7.0 mm, more preferably 1.5 to 5.0 mm, and even more preferably 2.0 to 2.5 mm.
  • a coating material or the like can be further laminated if necessary.
  • the softening point (Vicat softening point) was measured in accordance with JIS K7206: 2016.
  • the measurement conditions were 3M-2 manufactured by Toyo Seiki Seisakusho Co., Ltd., A120 method, test load 10N, temperature rise rate 120 ° C / h, test start temperature 50 ° C, maximum penetration 1 mm, and measurement was performed 3 times. , The average was calculated.
  • the measurement sample was prepared as follows. A mold having a depth of 3 mm was filled with resin powder, sealed, and evacuated, and at the same time, the temperature was raised and pressurized (vacuum degree: ⁇ 0.1 MPa or less, press pressure: 2 MPa).
  • the SPS (weight average molecular weight 230,000) was heated to 280 ° C. and held for 5 minutes, and then naturally cooled to 250 ° C., the pressure was returned to normal pressure, the press pressure was released, and the sample was placed in a mold. After taking it out from the water, it was naturally cooled to room temperature.
  • the paramethylstyrene copolymer SPS (weight average molecular weight 180,000) was heated to 260 ° C. and held for 5 minutes, then naturally cooled to 230 ° C., returned to normal pressure, and the press pressure was released. After cooling and removing the sample from the mold, it was naturally cooled to room temperature.
  • the SPS sample and the paramethylstyrene copolymer SPS sample were annealed at 150 ° C. for 10 minutes. After annealing, each piece was cut into approximately 3 mm square pieces to prepare a sample for measurement.
  • is the azimuth in the X-ray diffraction measurement
  • is 1/2 of the diffraction angle 2 ⁇ in the equatorial direction
  • is the inclination angle from the meridian on the diffraction image to the diffraction peak position.
  • I ( ⁇ ) is the diffraction intensity at the angle ⁇ of the (110) plane.
  • Example 1 Manufacture of resin laminate for low dielectric material
  • SPS biaxially stretched SPS film
  • SPS synthetic polystyrene, styrene homopolymer, softening point 265 ° C., melting point 271 ° C.
  • pellets having a weight average molecular weight of 230,000 are 300 by a single screw extruder. It was melted at ° C., extruded from a T-die, and cooled with a cast roll at 80 ° C. at a pulling speed of 6 m / min. The thickness of the obtained cast film was 541 ⁇ m.
  • the obtained cast film is simultaneously biaxially stretched using a pantograph type biaxial stretching machine, and the stretched film is heat-treated (annealed) to obtain a biaxially stretched SPS film (SF) having a thickness of 50 ⁇ m. Obtained.
  • the conditions of the biaxial stretching machine are that the preheating zone and the stretching zone are set to 120 ° C. and the heat fixing zone is set to 200 ° C., and the stretching ratio of the stretching zone is 3.5 in both MD (longitudinal direction) and TD (width direction).
  • the relaxation rate of the heat fixing zone was set to 6% in both MD (longitudinal direction) and TD (width direction).
  • the orientation coefficient of the obtained biaxially stretched SPS film (SF) was 0.0004 in the Throw direction, -0.3048 in the Edge direction, and -0.2758 in the End direction.
  • the obtained cast film was simultaneously biaxially stretched using a pantograph type biaxial stretching machine, and the stretched film was heat-treated (annealed) to have a 25 ⁇ m thick biaxially stretched paramethylstyrene copolymer SPS.
  • a film (biaxially stretched PMS / SPS film) (MF) was obtained.
  • the conditions of the biaxial stretching machine were the same as in (1) production of the biaxially stretched SPS film (SF).
  • Comparative Example 1 A total of 20 films (SF) obtained in (1) were stacked and pressed with a vacuum press at a vacuum degree of -0.1 MPa or less and a press pressure of 1.5 MPa and 280 ° C. for 3 minutes, and then to 230 ° C. After cooling and returning to atmospheric pressure, a resin laminate was obtained. The thickness of the resin laminated board was 0.9 mm. Table 1 shows the values of impact strength and dielectric loss tangent (tan ⁇ ).
  • Comparative Example 2 (4) Manufacture of biaxially stretched paramethylstyrene copolymer SPS film (MF) having a thickness of 50 ⁇ m
  • the melt extrusion is performed under the same conditions as in (2) except that the discharge amount of the resin used in the extruder is adjusted, and the thickness is increased.
  • a 541 ⁇ m cast film was obtained.
  • the obtained cast film is simultaneously biaxially stretched using a pantograph type biaxial stretching machine, and the stretched film is heat-treated (annealed) to obtain a biaxially stretched paramethylstyrene copolymer SPS film having a thickness of 50 ⁇ m.
  • Biaxially stretched PMS / SPS film (MF) was obtained.
  • the conditions of the biaxial stretching machine were the same as in (1) production of the biaxially stretched SPS film (SF).
  • a total of 20 films (MF) obtained in (4) were stacked and pressed with a vacuum press machine under the conditions of a vacuum degree of -0.1 MPa or less and a press pressure of 1.5 MPa and 260 ° C. for 3 minutes, and then to 230 ° C. After cooling and returning to atmospheric pressure, a resin laminate was obtained. The thickness of the resin laminated board was 0.9 mm. Table 1 shows the values of impact strength and dielectric loss tangent (tan ⁇ ).
  • Comparative Example 3 Manufacturing of resin molded body (1) 80/20 (mass / mass) of SPS pellets having a weight average molecular weight of 230,000 and a styrene-based elastomer (styrene / ethylene / butylene / styrene block copolymer, SEBS) used in the production of biaxially stretched SPS film (SF). ), And pelletized with a twin-screw extruder to obtain pellets of mixed resin. The pellet was pulverized with a disc mill to obtain a resin powder having an average particle size of 500 ⁇ m.
  • SEBS styrene-based elastomer
  • the resin laminate for low dielectric material of Example 1 has a small dielectric loss and has high toughness, whereas the laminates of Comparative Examples 1 and 2 have low impact strength and poor toughness. It was. Further, Comparative Example 3, which is a resin molded body containing an elastomer, had excellent impact strength but a large dielectric loss.
  • Resin laminate for low-dielectric material 2 Resin layer (resin layer (M)) containing resin (M1) having a softening point of 260 ° C or less 3 Resin layer containing styrene resin (S1) having a syndiotactic structure (resin layer (S))

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

A resin laminate for low-dielectric material, having a total of at least three laminated layers, comprising, layered alternately, a resin layer (S) that includes a styrene resin (S1) having a syndiotactic structure and a resin layer (M) that includes a resin (M1) having a softening point of no more than 260° C. The outermost layers are resin layers (S).

Description

低誘電材用樹脂積層体Resin laminate for low dielectric material
 本発明は、低誘電材用樹脂積層体及びその製造方法に関する。 The present invention relates to a resin laminate for a low dielectric material and a method for producing the same.
 シンジオタクチック構造を有するポリスチレン系樹脂(以下、SPSともいう。)は、機械的強度、耐熱性、電気特性、吸水寸法安定性、及び耐薬品性等の優れた性能を有する。そのため、SPSは、電気・電子機器材料、車載・電装部品、家電製品、各種機械部品、産業用資材等の様々な用途に使用される樹脂として非常に有用である。
 更に、SPSはスチレンモノマーを重合して得られる炭化水素樹脂であり、誘電損失が少なく、絶縁性も有するため、前記用途の中でも電気・電子機器材料として使用することが検討されている。
Polystyrene resin having a syndiotactic structure (hereinafter, also referred to as SPS) has excellent performances such as mechanical strength, heat resistance, electrical characteristics, water absorption dimensional stability, and chemical resistance. Therefore, SPS is very useful as a resin used for various purposes such as electric / electronic equipment materials, in-vehicle / electrical parts, home appliances, various mechanical parts, and industrial materials.
Further, SPS is a hydrocarbon resin obtained by polymerizing a styrene monomer, has a small dielectric loss, and has an insulating property. Therefore, it is considered to be used as an electric / electronic device material in the above applications.
 たとえば、特許文献1には、冷媒により劣化を生じないフィルムを得ることを目的として、引張弾性率、ヒンジ特性、フィルム厚み及びヘイズがそれぞれ特定の値を有する電気絶縁用ポリスチレン系フィルムが開示されている。
 また、SPSを用いた積層体の例として、特許文献2には、熱可塑性樹脂を含む樹脂層と、その上に積層されたシンジオタクチックポリスチレン系樹脂を含む樹脂層と、更にその上に第一、第二の金属層を有し、金属層間のピール強度が特定の値を有する電子回路基板用積層体が開示されている。更に特許文献3には、プリント基板の製造工程におけるしわの抑制を目的として、シンジオタクチックポリスチレン系樹脂を主成分とし、熱処理前後のフィルムの熱収縮率が一定の範囲である二軸配向フィルムと軟質フィルムを積層したフレキシブルプリント基板製造用積層体が開示されている。
For example, Patent Document 1 discloses a polystyrene-based film for electrical insulation having specific values for tensile elastic modulus, hinge characteristics, film thickness, and haze for the purpose of obtaining a film that is not deteriorated by a refrigerant. There is.
Further, as an example of a laminated body using SPS, Patent Document 2 describes a resin layer containing a thermoplastic resin, a resin layer containing a syndiotactic polystyrene-based resin laminated on the resin layer, and a first layer on the resin layer. A laminate for an electronic circuit substrate having a first and second metal layers and having a specific value in peel strength between the metal layers is disclosed. Further, Patent Document 3 describes a biaxially oriented film containing a syndiotactic polystyrene-based resin as a main component and having a constant heat shrinkage rate of the film before and after heat treatment for the purpose of suppressing wrinkles in the manufacturing process of a printed circuit board. A laminate for manufacturing a flexible printed circuit board in which a soft film is laminated is disclosed.
特開2000-164038号公報Japanese Unexamined Patent Publication No. 2000-164038 特開2015-2334号公報JP 2015-2334 特開2011-088387号公報Japanese Unexamined Patent Publication No. 2011-088387
 近年、電子機器の小型化や、機械の精密化に伴い、電子・電気部品の小型化や薄型化が要求されている。そのため、これらの部品に用いられる樹脂、たとえば、電子回路基板や、筐体等に用いられる良電波透過性樹脂板にはより高い靭性と優れた誘電特性が求められている。
 更に、最近ではレーダー用のカバーとして高い電波透過性を要求されるミリ波レドームに用いる樹脂についても、従来の樹脂より高い耐衝撃性と優れた誘電特性が必要とされている。
 したがって、本発明は、誘電損失が小さく、高い靭性を有する、電子部品、特に回路基板、ミリ波レドーム用樹脂板、良電波透過性樹脂板に適した低誘電材用樹脂積層体を提供することを課題とする。
In recent years, with the miniaturization of electronic devices and the refinement of machines, there is a demand for miniaturization and thinning of electronic and electrical parts. Therefore, resins used for these parts, for example, electronic circuit boards, good radio wave transmitting resin plates used for housings, and the like are required to have higher toughness and excellent dielectric properties.
Further, recently, a resin used for a millimeter-wave radome, which is required to have high radio wave transmission as a cover for radar, is also required to have higher impact resistance and excellent dielectric properties than conventional resins.
Therefore, the present invention provides a resin laminate for a low dielectric material, which has a small dielectric loss and high toughness, and is suitable for electronic components, particularly a circuit board, a resin plate for a millimeter wave radome, and a resin plate for good radio wave transmission. Is an issue.
 本発明者らは鋭意検討の結果、SPS層と、より低軟化点のスチレン樹脂層を一定以上積層することによって得られる積層体が前記課題を解決することを見出した。すなわち、本発明は以下の[1]~[15]に関する。 As a result of diligent studies, the present inventors have found that a laminate obtained by laminating an SPS layer and a styrene resin layer having a lower softening point at a certain level or more solves the above-mentioned problems. That is, the present invention relates to the following [1] to [15].
[1]
 シンジオタクチック構造を有するスチレン系樹脂(S1)を含む樹脂層(S)と軟化点が260℃以下の樹脂(M1)を含む樹脂層(M)が交互に合計3層以上積層され、最外層が樹脂層(S)である、低誘電材用樹脂積層体。
[2]
 樹脂層(S)が配向フィルムからなる、[1]に記載の低誘電材用樹脂積層体。
[3]
 樹脂層(S)が二軸延伸フィルムからなる、[1]又は[2]に記載の低誘電材用樹脂積層体。
[4]
 スチレン系樹脂(S1)の重量平均分子量が、150,000~250,000である、[1]~[3]のいずれかに1つに記載の低誘電材用樹脂積層体。
[5]
 樹脂(M1)が、スチレン系樹脂である、[1]~[4]のいずれかに1つに記載の低誘電材用樹脂積層体。
[6]
 樹脂(M1)が、パラメチルスチレンを共重合成分とするスチレン系樹脂である、[1]~[5]のいずれかに1つに記載の低誘電材用樹脂積層体。
[7]
 樹脂(M1)の重量平均分子量が、150,000~250,000である、[1]~[6]のいずれかに1つに記載の低誘電材用樹脂積層体。
[8]
 樹脂(M1)の共重合成分中、パラメチルスチレン成分が3~15モル%である、[6]又は[7]に記載の低誘電材用樹脂積層体。
[9]
 [1]~[8]のいずれかに1つに記載の低誘電材用樹脂積層体を含む電子回路基板。
[10]
 シンジオタクチック構造を有するスチレン系樹脂(S1)を含む配向フィルム(SF)と軟化点が260℃以下の樹脂(M1)を含むフィルム(MF)を交互に、かつ最外層がフィルム(SF)となるように、合計3層以上積層し、プレスして一体化する工程を有する、低誘電材用樹脂積層体の製造方法。
[11]
 前記工程において、配向フィルム(SF)が二軸延伸フィルムである、[10]に記載の低誘電材用樹脂積層体の製造方法。
[12]
 前記工程において、250~268℃でプレスして一体化する、[10]又は[11]に記載の低誘電材用樹脂積層体の製造方法。
[13]
 前記工程において、真空プレス法によって、プレスして一体化する、[10]~[12]のいずれか1つに記載の低誘電材用樹脂積層体の製造方法。
[14]
 前記真空プレス法のプレス圧力が0.5~5.0MPaであり、プレス保持時間が1~60分である、[13]に記載の低誘電材用樹脂積層体の製造方法。
[15]
 [10]~[14]のいずれかに1つに記載の製造方法で得られた低誘電材用樹脂積層体を含む電子回路基板。
[1]
A total of three or more layers of a resin layer (S) containing a styrene resin (S1) having a syndiotactic structure and a resin layer (M) containing a resin (M1) having a softening point of 260 ° C. or lower are alternately laminated, and the outermost layer. Is a resin layer (S), which is a resin laminate for low dielectric materials.
[2]
The resin laminate for a low-dielectric material according to [1], wherein the resin layer (S) is made of an alignment film.
[3]
The resin laminate for a low-dielectric material according to [1] or [2], wherein the resin layer (S) is a biaxially stretched film.
[4]
The resin laminate for a low dielectric material according to any one of [1] to [3], wherein the styrene resin (S1) has a weight average molecular weight of 150,000 to 250,000.
[5]
The resin laminate for a low dielectric material according to any one of [1] to [4], wherein the resin (M1) is a styrene resin.
[6]
The resin laminate for a low dielectric material according to any one of [1] to [5], wherein the resin (M1) is a styrene-based resin containing paramethylstyrene as a copolymerization component.
[7]
The resin laminate for a low dielectric material according to any one of [1] to [6], wherein the resin (M1) has a weight average molecular weight of 150,000 to 250,000.
[8]
The resin laminate for a low dielectric material according to [6] or [7], wherein the paramethylstyrene component is 3 to 15 mol% in the copolymerization component of the resin (M1).
[9]
An electronic circuit board containing the resin laminate for a low dielectric material according to any one of [1] to [8].
[10]
An alignment film (SF) containing a styrene resin (S1) having a syndiotactic structure and a film (MF) containing a resin (M1) having a softening point of 260 ° C. or lower are alternately alternated, and the outermost layer is a film (SF). A method for producing a resin laminate for a low dielectric material, which comprises a step of laminating a total of three or more layers and pressing to integrate them.
[11]
The method for producing a resin laminate for a low-dielectric material according to [10], wherein the alignment film (SF) is a biaxially stretched film in the above step.
[12]
The method for producing a resin laminate for a low-dielectric material according to [10] or [11], which is pressed and integrated at 250 to 268 ° C. in the above step.
[13]
The method for producing a resin laminate for a low dielectric material according to any one of [10] to [12], which is pressed and integrated by a vacuum press method in the above step.
[14]
The method for producing a resin laminate for a low dielectric material according to [13], wherein the press pressure of the vacuum press method is 0.5 to 5.0 MPa, and the press holding time is 1 to 60 minutes.
[15]
An electronic circuit board containing a resin laminate for a low-dielectric material obtained by the production method according to any one of [10] to [14].
 本発明によれば、誘電損失が小さく、高い靭性を有する、電子部品、特に回路基板、ミリ波レドーム用樹脂板、良電波透過性樹脂板に適した低誘電材用樹脂積層体及びその製造方法を提供することができる。 According to the present invention, an electronic component having a small dielectric loss and high toughness, particularly a resin laminate for a low dielectric material suitable for a circuit board, a resin plate for a millimeter wave radome, a resin plate for good radio wave transmission, and a method for producing the same. Can be provided.
本発明の低誘電材用樹脂積層体の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the resin laminate for a low dielectric material of this invention.
 本発明の低誘電材用樹脂積層体は、シンジオタクチック構造を有するスチレン系樹脂(S1)を含む樹脂層(S)と軟化点が260℃以下の樹脂(M1)を含む樹脂層(M)が交互に合計3層以上積層され、最外層が樹脂層(S)である。
 以下、各項目について詳細に説明する。
The resin laminate for a low dielectric material of the present invention has a resin layer (S) containing a styrene resin (S1) having a syndiotactic structure and a resin layer (M1) containing a resin (M1) having a softening point of 260 ° C. or lower. Are alternately laminated in a total of three or more layers, and the outermost layer is a resin layer (S).
Hereinafter, each item will be described in detail.
[低誘電材用樹脂積層体]
 本発明の低誘電材用樹脂積層体は、シンジオタクチック構造を有するスチレン系樹脂(S1)を含む樹脂層(S)と軟化点が260℃以下の樹脂(M1)を含む樹脂層(M)が交互に合計3層以上積層され、最外層が樹脂層(S)である。
 本発明の一実施形態である3層の場合を図1に示す。本発明の低誘電材用樹脂積層体1は、軟化点が260℃以下の樹脂(M1)を含む樹脂層2(樹脂層(M)に相当)の両側を、シンジオタクチック構造を有するスチレン系樹脂(S1)を含む樹脂層3(樹脂層(S)に相当)で挟み、最外層がいずれも樹脂層3となる。
[Resin laminate for low dielectric material]
The resin laminate for a low dielectric material of the present invention has a resin layer (S) containing a styrene resin (S1) having a syndiotactic structure and a resin layer (M1) containing a resin (M1) having a softening point of 260 ° C. or lower. Are alternately laminated in a total of three or more layers, and the outermost layer is a resin layer (S).
The case of three layers which is one embodiment of the present invention is shown in FIG. The resin laminate 1 for a low dielectric material of the present invention is a styrene-based resin having a syndiotactic structure on both sides of a resin layer 2 (corresponding to a resin layer (M)) containing a resin (M1) having a softening point of 260 ° C. or lower. It is sandwiched between resin layers 3 (corresponding to resin layer (S)) containing resin (S1), and the outermost layers are all resin layers 3.
 本発明の積層体において、樹脂層は交互に積層され、最外層が樹脂層(S)である。すなわち、3層の場合はS/M/S、5層の場合はS/M/S/M/Sとなり、7層の場合はS/M/S/M/S/M/Sとなる。
 積層数は3層以上であり、5層以上が好ましく、7層以上がより好ましく、9層以上が更に好ましく、15層以上がより更に好ましく、22層以上がより更に好ましい。上限値は、39層以下が好ましく、35層以下がより好ましく、29層以下が更に好ましい。積層数を3層以上とすることで、本積層体に衝撃力が加わった際に、SPS層間に存在する低軟化点の比較的柔軟な樹脂層が衝撃力を分散、緩和し、靭性を高めているものと考えられる。
In the laminated body of the present invention, the resin layers are alternately laminated, and the outermost layer is the resin layer (S). That is, in the case of 3 layers, it is S / M / S, in the case of 5 layers, it is S / M / S / M / S, and in the case of 7 layers, it is S / M / S / M / S / M / S.
The number of layers is 3 or more, preferably 5 or more, more preferably 7 or more, further preferably 9 or more, even more preferably 15 or more, and even more preferably 22 or more. The upper limit is preferably 39 layers or less, more preferably 35 layers or less, and even more preferably 29 layers or less. By setting the number of layers to 3 or more, when an impact force is applied to the laminated body, the relatively flexible resin layer at the low softening point existing between the SPS layers disperses and relaxes the impact force and enhances toughness. It is thought that it is.
<樹脂層(S)>
 樹脂層(S)にはシンジオタクチック構造を有するスチレン系樹脂(S1)を含む。
 樹脂層(S)において、シンジオタクチック構造を有するスチレン系樹脂(S1)は、30質量%以上が好ましく、50質量%以上がより好ましく、80質量%以上が更に好ましく、90質量%以上がより更に好ましく、95質量%以上がより更に好ましく、99質量%以上がより更に好ましく、100質量%がより更に好ましい。
<Resin layer (S)>
The resin layer (S) contains a styrene resin (S1) having a syndiotactic structure.
In the resin layer (S), the styrene resin (S1) having a syndiotactic structure is preferably 30% by mass or more, more preferably 50% by mass or more, further preferably 80% by mass or more, and more preferably 90% by mass or more. More preferably, 95% by mass or more is further preferable, 99% by mass or more is further preferable, and 100% by mass is further preferable.
(シンジオタクチック構造を有するスチレン系樹脂(S1))
 樹脂層(S)を構成するシンジオタクチック構造を有するスチレン系樹脂(S1)は、ラセミダイアッド(r)で75モル%以上、好ましくは85モル%以上、ラセミペンタッド(rrrr)で30モル%以上、好ましくは50モル%以上のシンジオタクティシティを有する。
 タクティシティは、隣り合うスチレン単位におけるフェニル環が、重合体ブロックの主鎖によって形成される平面に対して交互に配置されている割合のことを意味する。シンジオタクティシティは、核磁気共鳴法(13C-NMR法)により定量できる。ダイアッドは連続した2つのモノマーユニット、ペンタッドは5つのモノマーユニットでのシンジオタクティシティを示す。
(Styrene-based resin having a syndiotactic structure (S1))
The styrene resin (S1) having a syndiotactic structure constituting the resin layer (S) is 75 mol% or more, preferably 85 mol% or more, and 30 mol of racemic pentad (rrrr). It has a syndiotacticity of% or more, preferably 50 mol% or more.
Tacticity means the ratio of phenyl rings in adjacent styrene units to which the phenyl rings are arranged alternately with respect to the plane formed by the main chain of the polymer block. Syndiotacticity can be quantified by nuclear magnetic resonance spectroscopy ( 13 C-NMR method). Diad indicates syndiotacticity with two consecutive monomer units, and pentad indicates syndiotacticity with five monomer units.
 スチレン系樹脂(S1)としては、ポリスチレン、又はスチレンを主成分とする共重合体等が挙げられ、ポリスチレン(スチレンホモポリマー)が好ましい。
 スチレン系樹脂(S1)にスチレンを主成分とする共重合体を用いる場合、スチレン成分は90モル%以上が好ましく、95モル%以上がより好ましく、99モル%以上が更に好ましく、100モル%がより更に好ましい。
Examples of the styrene resin (S1) include polystyrene or a copolymer containing styrene as a main component, and polystyrene (styrene homopolymer) is preferable.
When a copolymer containing styrene as a main component is used for the styrene resin (S1), the styrene component is preferably 90 mol% or more, more preferably 95 mol% or more, further preferably 99 mol% or more, and 100 mol%. Even more preferable.
 スチレン系樹脂(S1)の重量平均分子量は、100,000~300,000が好ましく、150,000~250,000がより好ましく、200,000~250,000が更に好ましい。重量平均分子量は、単分散ポリスチレンを標準物質としたゲル浸透クロマトグラフィーで求められる。具体的には、実施例に記載した測定方法によって求められる。
 スチレン系樹脂(S1)の軟化点は、260℃より大きいことが好ましく、261℃以上がより好ましく、262℃以上が更に好ましく、263~267℃がより更に好ましい。軟化点はJIS K7206:2016に準拠して測定することができ、具体的には実施例に示す方法で測定することができる。
 スチレン系樹脂(S1)の融点は、265℃以上が好ましく、267℃以上がより好ましく、269℃以上がさらに好ましい。また、275℃以下が好ましく、273℃以下がより好ましい。
 樹脂(S1)の誘電正接(tanδ)は、0.00030以下が好ましく、0.00025以下がより好ましい。誘電正接(tanδ)は、実施例に記載された樹脂積層体の誘電正接の測定方法と同様の測定方法によって得ることができる。誘電正接(tanδ)の値が小さいほど、誘電損失が小さく、誘電特性に優れる。本発明の樹脂積層体は、絶縁性に優れるSPSフィルムが積層されているため、誘電正接(tanδ)が低く、特に回路基板、ミリ波レドーム用樹脂板、良電波透過性樹脂板等の電子材料に適した積層体を得ることができるものと考えられる。
The weight average molecular weight of the styrene resin (S1) is preferably 100,000 to 300,000, more preferably 150,000 to 250,000, and even more preferably 200,000 to 250,000. The weight average molecular weight is determined by gel permeation chromatography using monodisperse polystyrene as a standard substance. Specifically, it is obtained by the measurement method described in the examples.
The softening point of the styrene resin (S1) is preferably larger than 260 ° C., more preferably 261 ° C. or higher, further preferably 262 ° C. or higher, still more preferably 263 to 267 ° C. The softening point can be measured according to JIS K7206: 2016, and specifically, it can be measured by the method shown in the examples.
The melting point of the styrene resin (S1) is preferably 265 ° C. or higher, more preferably 267 ° C. or higher, and even more preferably 269 ° C. or higher. Further, 275 ° C. or lower is preferable, and 273 ° C. or lower is more preferable.
The dielectric loss tangent (tan δ) of the resin (S1) is preferably 0.00030 or less, more preferably 0.00025 or less. The dielectric loss tangent (tan δ) can be obtained by the same measurement method as the method for measuring the dielectric loss tangent of the resin laminate described in Examples. The smaller the value of the dielectric loss tangent (tan δ), the smaller the dielectric loss and the better the dielectric characteristics. Since the resin laminate of the present invention is laminated with an SPS film having excellent insulating properties, it has a low dielectric loss tangent (tan δ), and is particularly an electronic material such as a circuit board, a resin plate for a millimeter wave radome, and a good radio wave transmitting resin plate. It is considered that a laminate suitable for the above can be obtained.
(樹脂層(S)の特性等)
 樹脂層(S)の厚さは、2~100μmが好ましい。なかでも、回路基板の用途に用いる場合には、10~80μmが好ましく、15~60μmがより好ましく、20~50μmが更に好ましい。樹脂層(S)の厚さが前記の範囲であれば、特にフィルム成形時に、十分に配向させることができ、積層体としたときに優れた靭性を得ることができる。
 樹脂層(S)は、配向フィルムからなることが好ましい。本明細書において配向フィルムとは、フィルム面内の結晶部における広角X線回折(WAXD)により算出された配向係数がThrough方向で-0.1000以上0.0100以下、Edge方向で-0.5000以上-0.1000未満、End方向で-0.5000以上-0.1000未満であるものである。End方向とはフィルム長手方向に平行な方向からのX線入射であり、Edge方向とはこれと直角のしかも厚み方向にも直角なX線入射であり、Through方向とはフィルム面に対して垂直なX線入射である。配向係数が上記範囲であれば、回路基板用、ミリ波レドーム用、良電波透過性樹脂板用などの用途に用いる樹脂積層体に必要な十分な衝撃強度を得ることができる。
(Characteristics of resin layer (S), etc.)
The thickness of the resin layer (S) is preferably 2 to 100 μm. Among them, when used for a circuit board application, 10 to 80 μm is preferable, 15 to 60 μm is more preferable, and 20 to 50 μm is further preferable. When the thickness of the resin layer (S) is within the above range, it can be sufficiently oriented, especially during film molding, and excellent toughness can be obtained when it is formed into a laminated body.
The resin layer (S) is preferably made of an alignment film. In the present specification, the alignment film means that the alignment coefficient calculated by wide-angle X-ray diffraction (WAXD) in the crystal portion in the film plane is -0.1000 or more and 0.0100 or less in the Throw direction and -0.5000 in the Edge direction. It is more than -0.1000 and more than -0.5000 and less than -0.1000 in the End direction. The End direction is the X-ray incident from a direction parallel to the film longitudinal direction, the Edge direction is the X-ray incident perpendicular to this and also the thickness direction, and the Throw direction is perpendicular to the film surface. X-ray incident. When the orientation coefficient is within the above range, sufficient impact strength required for a resin laminate used for applications such as circuit boards, millimeter-wave radomes, and good radio wave transmitting resin plates can be obtained.
 配向係数は以下のように算出することができる。
 まず、広角X線回折測定においては、X線発生装置(理学電気社製、ultraX 18HF)を用いて50KV、250mAの出力でCuKα線(波長=1.5418Å)の単色光を5分間照射し、イメージングプレート型二次元検出器により回折像を得た。この時、試料と検出器の間の距離(カメラ長)は105mmに調整した。
 作製した配向フィルムを厚さが1mm以上になるように方向を揃えて積層し、測定試料として準備した。測定試料の向きを調整し、X線の入射方向を変えることで、前述したThrough方向、Edge方向、End方向の回折像をそれぞれ得た。
 結晶配向係数の算出にあたっては、得られた回折像の赤道方向の強度プロフィールから、α型結晶の(110)面に帰属される回折角2θ=6.7degの回折ピークを使用した。
 配向軸に対する面法線ベクトルの結晶配向係数fは、式(F1)に基づいて算出する。
The orientation coefficient can be calculated as follows.
First, in wide-angle X-ray diffraction measurement, a monochromatic light of CuKα ray (wavelength = 1.5418 Å) is irradiated for 5 minutes at an output of 50 KV and 250 mA using an X-ray generator (ultraX 18HF manufactured by Rigaku Denki Co., Ltd.). A diffraction image was obtained by an imaging plate type two-dimensional detector. At this time, the distance (camera length) between the sample and the detector was adjusted to 105 mm.
The prepared alignment films were laminated in the same direction so as to have a thickness of 1 mm or more, and prepared as a measurement sample. By adjusting the orientation of the measurement sample and changing the incident direction of the X-ray, the above-mentioned diffraction images in the Throwh direction, the Edge direction, and the End direction were obtained, respectively.
In calculating the crystal orientation coefficient, a diffraction peak with a diffraction angle of 2θ = 6.7 deg assigned to the (110) plane of the α-type crystal was used from the intensity profile in the equatorial direction of the obtained diffraction image.
The crystal orientation coefficient f of the plane normal vector with respect to the orientation axis is calculated based on the equation (F1).
Figure JPOXMLDOC01-appb-M000001
 上式(F1)におけるcosφは式(F2)で、<cos2φ>は式(F3)で、それぞれ求めることができる。
Figure JPOXMLDOC01-appb-M000001
The cosφ in the above formula (F1) by the formula (F2), <cos 2 φ > in formula (F3), can be obtained respectively.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003

 ここで、φはX線回折測定における方位角であり、θは赤道方向の回折角2θの1/2、δは回折像上の子午線から回折ピーク位置までの傾き角を示す。
 また、I(φ)は(110)面の角度φにおける回折強度である。
Figure JPOXMLDOC01-appb-M000003

Here, φ is the azimuth in the X-ray diffraction measurement, θ is 1/2 of the diffraction angle 2θ in the equatorial direction, and δ is the inclination angle from the meridian on the diffraction image to the diffraction peak position.
Further, I (φ) is the diffraction intensity at the angle φ of the (110) plane.
 樹脂層(S)にシンジオタクチック構造を有するスチレン系樹脂(S1)を含む場合、樹脂層(S)の配向係数は、Through方向で-0.0500以上0.0050以下、Edge方向で-0.4800以上-0.1200以下、End方向で-0.4800以上-0.1200以下であるものが好ましい。なお、配向係数を上述した範囲にする手段としては、フィルム製造時の延伸倍率や延伸温度、延伸後の熱固定温度を調整することで実現できる。
 さらに、樹脂層(S)は、二軸延伸フィルムからなることがより好ましい。二軸延伸フィルムは後述の本発明の積層体の製造方法に記載の方法で得られるものが好ましい。樹脂層(S)に二軸延伸フィルムを用いた場合、樹脂層(S)は、長手方向(MD)と幅方向(TD)の両方向に延伸されているため、樹脂の分子が面と平行に(MD、TD方向)に配向しており、積層体とした場合、その面に衝撃を受けた際の靭性に優れる。
When the resin layer (S) contains a styrene resin (S1) having a syndiotactic structure, the orientation coefficient of the resin layer (S) is -0.0500 or more and 0.0050 or less in the Throw direction and -0 in the Edge direction. .4800 or more and -0.1200 or less, preferably -0.4800 or more and -0.1200 or less in the End direction. The means for setting the orientation coefficient within the above-mentioned range can be realized by adjusting the stretching ratio, stretching temperature, and heat fixing temperature after stretching during film production.
Further, the resin layer (S) is more preferably made of a biaxially stretched film. The biaxially stretched film is preferably obtained by the method described in the method for producing a laminated body of the present invention described later. When a biaxially stretched film is used for the resin layer (S), the resin layer (S) is stretched in both the longitudinal direction (MD) and the width direction (TD), so that the resin molecules are parallel to the plane. It is oriented in the (MD, TD direction), and when it is a laminated body, it has excellent toughness when the surface is impacted.
<樹脂層(M)>
 樹脂層(M)には、軟化点が260℃以下の樹脂(M1)を含む。
 樹脂層(M)において、軟化点が260℃以下の樹脂(M1)は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、99質量%以上がより更に好ましく、100質量%がより更に好ましい。
<Resin layer (M)>
The resin layer (M) contains a resin (M1) having a softening point of 260 ° C. or lower.
In the resin layer (M), the resin (M1) having a softening point of 260 ° C. or lower is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and further preferably 99% by mass or more. Preferably, 100% by mass is even more preferable.
(軟化点が260℃以下の樹脂(M1))
 樹脂(M1)の軟化点は、260℃以下であり、255℃以下が好ましく、250℃以下がより好ましく、240℃以下が更に好ましい。下限値には制限はないが、220℃以上が好ましい。軟化点は、JIS K7206:2016によって測定することができ、具体的には実施例に示す方法で測定することができる。
(Resin (M1) having a softening point of 260 ° C. or lower)
The softening point of the resin (M1) is 260 ° C. or lower, preferably 255 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 240 ° C. or lower. The lower limit is not limited, but 220 ° C. or higher is preferable. The softening point can be measured by JIS K7206: 2016, and specifically, it can be measured by the method shown in Examples.
 樹脂(M1)としては、スチレン系樹脂、ポリフェニレンエーテル樹脂が好ましく、スチレン系樹脂がより好ましい。
 樹脂(M1)に用いられる樹脂が、スチレン系樹脂であることによって、樹脂層(M)と樹脂層(S)の親和性が高まり、各層が剥離しにくく、本発明の積層体の靭性が向上するものと考えられる。
As the resin (M1), a styrene resin and a polyphenylene ether resin are preferable, and a styrene resin is more preferable.
Since the resin used for the resin (M1) is a styrene-based resin, the affinity between the resin layer (M) and the resin layer (S) is enhanced, each layer is difficult to peel off, and the toughness of the laminate of the present invention is improved. It is thought that it will be done.
 樹脂(M1)に用いられるスチレン系樹脂の立体規則性(タクティシティ)としては、シンジオタクチック、アイソタクチック、アタクチックのいずれでもよいが、シンジオタクチック、アタクチックが好ましく、シンジオタクチックがより好ましい。
 樹脂(M1)に用いられるスチレン系樹脂の立体規則性が、シンジオタクチックである場合、融点は、265℃以下であり、262℃以下が好ましく、259℃以下がより好ましく、256℃以下が更に好ましい。下限値に制限はないが、245℃以上が好ましい。
The styrene-based resin used for the resin (M1) may have any three-dimensional regularity (tacticity) of syndiotactic, isotactic, and tactic, but syndiotactic and tactic are preferable, and syndiotactic is more preferable. ..
When the stereoregularity of the styrene resin used for the resin (M1) is syndiotactic, the melting point is 265 ° C. or lower, preferably 262 ° C. or lower, more preferably 259 ° C. or lower, and further preferably 256 ° C. or lower. preferable. The lower limit is not limited, but is preferably 245 ° C. or higher.
 樹脂(M1)に用いられるスチレン系樹脂の具体例としては、ポリスチレン、ポリ(炭化水素置換スチレン)、ポリ(ハロゲン化スチレン)、ポリ(ハロゲン化アルキルスチレン)、ポリ(アルコキシスチレン)、ポリ(ビニル安息香酸エステル)、これらの水素化重合体若しくは混合物、又はこれらを主たる共重合成分とする共重合体が好ましく、ポリスチレン、ポリ(炭化水素置換スチレン)、スチレンを主たる共重合成分とする共重合体が好ましく、スチレンを主たる共重合成分とする共重合体(以下、スチレン系共重合体、ともいう。)がより好ましい。 Specific examples of the styrene-based resin used for the resin (M1) include polystyrene, poly (hydrocarbon-substituted styrene), poly (styrene halide), poly (alkyl styrene halide), poly (alkoxystyrene), and poly (vinyl). (Salute benzoate), hydrides or mixtures thereof, or copolymers containing these as the main copolymerization component, preferably polystyrene, poly (hydrocarbon-substituted styrene), or copolymers containing styrene as the main copolymerization component. Is preferable, and a copolymer containing styrene as a main copolymer component (hereinafter, also referred to as a styrene-based copolymer) is more preferable.
 スチレン系共重合体の共重合成分として用いられるスチレン以外のモノマーは、ビニル基を有し、スチレンと共重合できるモノマーであればよく、スチレン系モノマー、オレフィンモノマー、ジエンモノマー、環状オレフィンモノマー、環状ジエンモノマー、極性ビニルモノマーが挙げられ、スチレン系モノマーが好ましい。 The monomer other than styrene used as the copolymerization component of the styrene-based copolymer may be a monomer having a vinyl group and capable of copolymerizing with styrene, and may be a styrene-based monomer, an olefin monomer, a diene monomer, a cyclic olefin monomer, or a cyclic monomer. Examples thereof include a diene monomer and a polar vinyl monomer, and a styrene-based monomer is preferable.
 スチレン系モノマーとしては、炭化水素置換スチレン、ハロゲン化スチレン、ハロゲン化アルキルスチレン、アルコキシスチレン、ビニル安息香酸エステルが挙げられ、なかでも炭化水素置換スチレンが好ましい。 Examples of the styrene-based monomer include hydrocarbon-substituted styrene, halogenated styrene, halogenated alkylstyrene, alkoxystyrene, and vinyl benzoic acid ester, and hydrocarbon-substituted styrene is preferable.
 前記スチレン系共重合体に含まれる炭化水素置換スチレンとしては、メチルスチレン、エチルスチレン、イソプロピルスチレン、tert-ブチルスチレン、(フェニル)スチレン、ビニルナフタレン、ジビニルベンゼン等が挙げられ、メチルスチレン、エチルスチレン、ジビニルベンゼンが好ましく、メチルスチレンがより好ましい。
 ハロゲン化スチレンとしては、クロロスチレン、ブロモスチレン、フルオロスチレン等が挙げられる。
 ハロゲン化アルキルスチレンとしては、クロロメチルスチレン等が挙げられる。
 アルコキシスチレンとしては、メトキシスチレン、エトキシスチレン等が挙げられる。
Examples of the hydrocarbon-substituted styrene contained in the styrene-based copolymer include methylstyrene, ethylstyrene, isopropylstyrene, tert-butylstyrene, (phenyl) styrene, vinylnaphthalene, and divinylbenzene, and methylstyrene and ethylstyrene. , Divinylbenzene is preferable, and methylstyrene is more preferable.
Examples of halogenated styrene include chlorostyrene, bromostyrene, fluorostyrene and the like.
Examples of the halogenated alkylstyrene include chloromethylstyrene and the like.
Examples of alkoxystyrene include methoxystyrene and ethoxystyrene.
 オレフィンモノマーとしては、エチレン、プロピレン、ブテン、ヘキセン、オクテン等が挙げられる。ジエンモノマーとしては、ブタジエン、イソプレン等が挙げられる。極性ビニルモノマーとしては、メタクリル酸メチル、無水マレイン酸、アクリロニトリル等が挙げられる。 Examples of the olefin monomer include ethylene, propylene, butene, hexene, and octene. Examples of the diene monomer include butadiene and isoprene. Examples of the polar vinyl monomer include methyl methacrylate, maleic anhydride, acrylonitrile and the like.
 スチレン系共重合体の具体例としては、スチレンとパラメチルスチレンとの共重合体、スチレンとp-tert-ブチルスチレンとの共重合体、スチレンとジビニルベンゼンとの共重合体等を挙げることができ、なかでもスチレンとパラメチルスチレンとの共重合体が好ましい。すなわち、樹脂(M1)は、スチレン系樹脂のなかでも、パラメチルスチレンを共重合成分とするスチレン系樹脂であることがより好ましい。
 樹脂(M1)が、パラメチルスチレンを共重合成分とするスチレン系樹脂である場合、共重合成分中、パラメチルスチレン成分は、3~15モル%が好ましく、4~12モル%がより好ましく、5~10モル%が更に好ましい。
Specific examples of the styrene-based copolymer include a copolymer of styrene and paramethylstyrene, a copolymer of styrene and p-tert-butylstyrene, a copolymer of styrene and divinylbenzene, and the like. Of these, a copolymer of styrene and paramethylstyrene is preferable. That is, among the styrene-based resins, the resin (M1) is more preferably a styrene-based resin containing paramethylstyrene as a copolymerization component.
When the resin (M1) is a styrene-based resin containing paramethylstyrene as a copolymerization component, the paramethylstyrene component in the copolymerization component is preferably 3 to 15 mol%, more preferably 4 to 12 mol%. More preferably, 5-10 mol%.
 樹脂(M1)の重量平均分子量は、100,000~300,000が好ましく、150,000~250,000がより好ましく、150,000~200,000が更に好ましい。重量平均分子量は、単分散ポリスチレンを標準物質としたゲル浸透クロマトグラフィーで求められる。
 樹脂(M1)の誘電正接(tanδ)は、0.00030以下が好ましく、0.00020以下がより好ましい。誘電正接(tanδ)は、実施例に記載された樹脂積層体の誘電正接の測定方法と同様の測定方法によって得ることができる。
The weight average molecular weight of the resin (M1) is preferably 100,000 to 300,000, more preferably 150,000 to 250,000, and even more preferably 150,000 to 200,000. The weight average molecular weight is determined by gel permeation chromatography using monodisperse polystyrene as a standard substance.
The dielectric loss tangent (tan δ) of the resin (M1) is preferably 0.00030 or less, more preferably 0.00020 or less. The dielectric loss tangent (tan δ) can be obtained by the same measurement method as the method for measuring the dielectric loss tangent of the resin laminate described in Examples.
(樹脂(M)の特性等)
 樹脂層(M)の厚さは、2~100μmが好ましい。なかでも、回路基板の用途に用いる場合には、10~80μmが好ましく、15~60μmがより好ましく、20~50μmがより更に好ましい。樹脂層(M)の厚さが前記の範囲であると、樹脂積層体としたときに各層同士の十分な接着性と優れた衝撃強度を両立させることができる。
 樹脂層(M)は、配向フィルムであってもなくてもよい。
(Characteristics of resin (M), etc.)
The thickness of the resin layer (M) is preferably 2 to 100 μm. Among them, when used for circuit board applications, 10 to 80 μm is preferable, 15 to 60 μm is more preferable, and 20 to 50 μm is even more preferable. When the thickness of the resin layer (M) is within the above range, it is possible to achieve both sufficient adhesiveness between the layers and excellent impact strength when the resin laminate is formed.
The resin layer (M) may or may not be an alignment film.
<低誘電材用樹脂積層体の特性等>
 本発明の樹脂積層体の厚さは、0.01~3.0mmが好ましく、0.02~3.0mmがより好ましく、0.03~3.0mmが更に好ましい。
 なかでも、回路基板の用途に用いる場合には、0.03~1.5mmが好ましく、0.10~1.0mmがより好ましく、0.2~0.9mmが更に好ましい。また、ミリ波レドーム用樹脂板、良電波透過性樹脂板の用途に用いる場合には、0.9~3.0mmが好ましく、0.9~2.5mmがより好ましい。
 本発明の樹脂積層体の誘電正接(tanδ)は、0.00030以下が好ましく、0.00025以下がより好ましい。誘電正接(tanδ)は実施例に記載の測定方法によって得られる値である。誘電正接(tanδ)の値が小さいほど、誘電損失が小さく、誘電特性に優れる。本発明の樹脂積層体は、絶縁性に優れるSPSフィルムが積層されているため、誘電正接(tanδ)が低く、特に回路基板、ミリ波レドーム用樹脂板、良電波透過性樹脂板等の電子材料に適した積層体を得ることができるものと考えられる。
 本発明の樹脂積層体の衝撃強度は、厚さを0.9mmとした場合、0.1J以上が好ましく、0.6J以上がより好ましく、0.8J以上が更に好ましい。ここでの衝撃強度は、実施例に記載の測定方法によって得られる値である。
 本発明の樹脂積層体は、強度にも優れるSPSフィルムと、軟化点の低いより柔軟な樹脂が密着して構成されているため、衝撃強度に優れるものと考えられる。更に好適なSPSフィルムは配向フィルムであり、強度が高く、特に二軸延伸フィルムである場合には、ポリスチレン分子の配向性がより高く、更に強度が高まるものと考えられる。
<Characteristics of resin laminate for low dielectric material, etc.>
The thickness of the resin laminate of the present invention is preferably 0.01 to 3.0 mm, more preferably 0.02 to 3.0 mm, and even more preferably 0.03 to 3.0 mm.
Among them, when used for a circuit board application, 0.03 to 1.5 mm is preferable, 0.10 to 1.0 mm is more preferable, and 0.2 to 0.9 mm is further preferable. Further, when used for a millimeter-wave radome resin plate or a good radio wave transmitting resin plate, 0.9 to 3.0 mm is preferable, and 0.9 to 2.5 mm is more preferable.
The dielectric loss tangent (tan δ) of the resin laminate of the present invention is preferably 0.00030 or less, more preferably 0.00025 or less. The dielectric loss tangent (tan δ) is a value obtained by the measuring method described in the examples. The smaller the value of the dielectric loss tangent (tan δ), the smaller the dielectric loss and the better the dielectric characteristics. Since the resin laminate of the present invention is laminated with an SPS film having excellent insulating properties, it has a low dielectric loss tangent (tan δ), and is particularly an electronic material such as a circuit board, a resin plate for a millimeter wave radome, and a good radio wave transmitting resin plate. It is considered that a laminate suitable for the above can be obtained.
When the thickness of the resin laminate of the present invention is 0.9 mm, the impact strength is preferably 0.1 J or more, more preferably 0.6 J or more, still more preferably 0.8 J or more. The impact strength here is a value obtained by the measuring method described in the examples.
The resin laminate of the present invention is considered to be excellent in impact strength because it is composed of an SPS film having excellent strength and a more flexible resin having a low softening point in close contact with each other. A more suitable SPS film is an alignment film, which is considered to have high strength, and particularly in the case of a biaxially stretched film, the orientation of polystyrene molecules is higher and the strength is further increased.
[低誘電材用樹脂積層体の製造方法]
 本発明の低誘電材用樹脂積層体の製造方法は、シンジオタクチック構造を有するスチレン系樹脂(S1)を含む配向フィルム(SF)と軟化点が260℃以下の樹脂(M1)を含むフィルム(MF)を交互に、かつ最外層がフィルム(SF)となるように、合計3層以上積層し、プレスして一体化する工程を有する。
 本発明の製造方法によれば、シンジオタクチック構造を有するスチレン系樹脂(S1)を含む樹脂層(S)と軟化点が260℃以下の樹脂(M1)を含む樹脂層(M)が交互に合計3層以上積層され、最外層が樹脂層(S)である、低誘電材用樹脂積層体が得られる。
 このようにして得られた樹脂積層体が、優れた靭性と低い誘電損失を備える理由は定かではないが、次のように考えられる。
 配向したSPSフィルムは耐衝撃性に優れる一方で、配向させるために比較的薄いフィルムになる。そのSPSフィルムを軟化点が比較的低い樹脂を融着させることにより、SPSフィルムの分子配向性を損なうことなく、適度な厚さに成形することができる。さらに前記の軟化点の低い樹脂をスチレン系樹脂にすることで、小さな誘電損失と優れた靭性を両立する積層体となり、特に回路基板、ミリ波レドーム用樹脂板、良電波透過性樹脂板等の電子材料に適した積層体を得ることができるものと考えられる。
[Manufacturing method of resin laminate for low dielectric material]
The method for producing a resin laminate for a low dielectric material of the present invention is a film containing an alignment film (SF) containing a styrene resin (S1) having a syndiotactic structure and a resin (M1) having a softening point of 260 ° C. or lower. MF) is alternately laminated, and a total of three or more layers are laminated so that the outermost layer is a film (SF), and the process is pressed to integrate them.
According to the production method of the present invention, a resin layer (S) containing a styrene resin (S1) having a syndiotactic structure and a resin layer (M) containing a resin (M1) having a softening point of 260 ° C. or lower are alternately arranged. A resin laminate for a low dielectric material is obtained in which a total of three or more layers are laminated and the outermost layer is a resin layer (S).
The reason why the resin laminate thus obtained has excellent toughness and low dielectric loss is not clear, but it is considered as follows.
The oriented SPS film has excellent impact resistance, but becomes a relatively thin film for alignment. By fusing the SPS film with a resin having a relatively low softening point, the SPS film can be formed into an appropriate thickness without impairing the molecular orientation of the SPS film. Furthermore, by using a styrene resin for the resin having a low softening point, a laminate that achieves both small dielectric loss and excellent toughness can be obtained, especially for circuit boards, millimeter-wave radome resin plates, good radio wave transmitting resin plates, etc. It is considered that a laminate suitable for an electronic material can be obtained.
<配向フィルム(SF)>
 本製造方法において、各樹脂層(S)に用いられるフィルムは、配向フィルム(SF)を用いる。
 配向フィルム(SF)に用いる樹脂は、前記(シンジオタクチック構造を有するスチレン系樹脂(S1))に記載したSPSを用いることが好ましく、好適な範囲も前記樹脂(S1)の説明に記載したものと同様である。すなわち、ポリスチレン(スチレンホモポリマー)が好ましい。
<Orientation film (SF)>
In this production method, an oriented film (SF) is used as the film used for each resin layer (S).
As the resin used for the alignment film (SF), it is preferable to use the SPS described in the above (styrene resin (S1) having a syndiotactic structure), and the preferable range is also described in the description of the resin (S1). Is similar to. That is, polystyrene (styrene homopolymer) is preferable.
 配向フィルム(SF)は、フィルム面内の結晶部における広角X線回折(WAXD)により算出された配向係数がThrough方向で-0.1000以上0.0100以下、Edge方向で-0.5000以上-0.1000未満、End方向で-0.5000以上-0.1000未満であるものであり、Through方向で-0.0500以上0.0050以下、Edge方向で-0.4800以上-0.1200以下、End方向で-0.4800以上-0.1200以下であるものが好ましい。配向係数が上記範囲であれば、回路基板用、ミリ波レドーム用、良電波透過性樹脂板用などの用途に用いる樹脂積層体に必要な十分な衝撃強度を得ることができる。
 配向フィルムは、樹脂(S1)を押出機にて溶融押出し、キャストロールにて冷却固化し、延伸機にて延伸を行い、必要に応じて得られたフィルムを熱処理して、得られる延伸フィルムであることが好ましい。なかでも、二軸延伸することで得られる、二軸延伸フィルムがより好ましい。
 以下に二軸延伸フィルムである場合の配向フィルム(SF)の製造について説明する。
The alignment coefficient of the alignment film (SF) calculated by wide-angle X-ray diffraction (WAXD) in the crystal portion in the film plane is -0.1000 or more and 0.0100 or less in the Throw direction and -0.5000 or more in the Edge direction. Less than 0.1000, -0.5000 or more and less than -0.1000 in the End direction, -0.0500 or more and 0.0050 or less in the Throw direction, -0.4800 or more and -0.1200 or less in the Edge direction. , -0.4800 or more and -0.1200 or less in the End direction is preferable. When the orientation coefficient is within the above range, sufficient impact strength required for a resin laminate used for applications such as circuit boards, millimeter-wave radomes, and good radio wave transmitting resin plates can be obtained.
The alignment film is a stretched film obtained by melt-extruding the resin (S1) with an extruder, cooling and solidifying with a cast roll, stretching with a stretching machine, and heat-treating the obtained film as necessary. It is preferable to have. Of these, a biaxially stretched film obtained by biaxially stretching is more preferable.
The production of the alignment film (SF) in the case of the biaxially stretched film will be described below.
 押出機に投入する前に、樹脂(S1)は、予め乾燥させておくことが好ましい。60~150℃、10~180分の条件で、ペレット状の樹脂(S1)を乾燥させることがより好ましい。
 押出機は、単軸押出機又は二軸押出機を用いることができ、真空ベント付き押出機を用いることが樹脂の乾燥を促進する点で好ましい。また、押出変動を抑えるため、ギヤポンプを設置することが好ましく、異物混入を避けるため、ギヤポンプの後にポリマーフィルタを設けることがより好ましい。
 ポリマーフィルタとしては、リーフディスクタイプ、キャンドルタイプが挙げられる。
 ポリマーフィルタの濾過材としては、焼結金属タイプが好ましい。捕集粒径としては、1~100μmが好ましい。
 押出機での押出温度は、290~330℃が好ましい。押出機のヒーターから、ポリマーライン、ギヤポンプ、ポリマーフィルタ、Tダイスまで押出温度に調整することが好ましい。
The resin (S1) is preferably pre-dried before being charged into the extruder. It is more preferable to dry the pelletized resin (S1) under the conditions of 60 to 150 ° C. and 10 to 180 minutes.
As the extruder, a single-screw extruder or a twin-screw extruder can be used, and it is preferable to use an extruder with a vacuum vent in that the drying of the resin is promoted. Further, it is preferable to install a gear pump in order to suppress extrusion fluctuation, and it is more preferable to install a polymer filter after the gear pump in order to avoid foreign matter from entering.
Examples of the polymer filter include a leaf disc type and a candle type.
As the filter material of the polymer filter, a sintered metal type is preferable. The collected particle size is preferably 1 to 100 μm.
The extrusion temperature in the extruder is preferably 290 to 330 ° C. It is preferable to adjust the extrusion temperature from the heater of the extruder to the polymer line, gear pump, polymer filter and T-die.
 キャストロールの冷却媒体は、油又は水が好ましく、冷却温度は50~95℃が好ましく、60~90℃がより好ましい。
 前記押出機のTダイスより溶融押出された樹脂(S1)をキャストロールに密着させるため、エアーチャンバー方式、静電印加方式あるいはそれらを組み合わせて用いることが好ましい。
 このようにキャストロール上に溶融した樹脂を密着させ、急冷することにより、延伸工程にて安定して連続したキャストフィルムを得ることができる。
 キャストロールの引速は1~30m/分が好ましく、3~15m/分がより好ましい。
The cooling medium of the cast roll is preferably oil or water, and the cooling temperature is preferably 50 to 95 ° C, more preferably 60 to 90 ° C.
In order to bring the resin (S1) melt-extruded from the T-die of the extruder into close contact with the cast roll, it is preferable to use an air chamber method, an electrostatic application method, or a combination thereof.
By bringing the molten resin into close contact with the cast roll and quenching it in this way, a stable and continuous cast film can be obtained in the stretching step.
The pulling speed of the cast roll is preferably 1 to 30 m / min, more preferably 3 to 15 m / min.
 次に二軸延伸を行うが、本発明に用いられる配向フィルム(SF)を得る場合、同時二軸延伸方式、縦延伸後に横延伸を行う逐次二軸延伸方式のいずれでもよいが、同時二軸延伸方式が好ましい。
 同時二軸延伸方式は、長手方向(MD)、幅方向(TD)を同時に延伸するため、MDとTDで物性に偏りが生じにくい。たとえば、MDとTDで配向性に偏りが少ないため、衝撃を受けた際の靭性にも方向による優劣の差が小さい積層体が得られる。
 同時二軸延伸方式としては、パンタグラフ方式を用いることが好ましい。
 逐次二軸延伸方式には、ロール式縦延伸機及びテンター式横延伸機を用いることが好ましい。
Next, biaxial stretching is performed. When the alignment film (SF) used in the present invention is obtained, either a simultaneous biaxial stretching method or a sequential biaxial stretching method in which transverse stretching is performed after longitudinal stretching may be performed, but simultaneous biaxial stretching may be performed. The stretching method is preferable.
In the simultaneous biaxial stretching method, since the longitudinal direction (MD) and the width direction (TD) are stretched at the same time, the physical properties of MD and TD are less likely to be biased. For example, since there is little bias in orientation between MD and TD, a laminated body having a small difference in superiority or inferiority depending on the direction can be obtained in terms of toughness when impacted.
As the simultaneous biaxial stretching method, it is preferable to use the pantograph method.
It is preferable to use a roll type longitudinal stretching machine and a tenter type transverse stretching machine for the sequential biaxial stretching method.
 延伸温度において、予熱温度は90~150℃が好ましく、100~140℃がより好ましく、105~120℃が更に好ましい。
 延伸温度は90~150℃が好ましく、100~140℃がより好ましく、105~120℃が更に好ましい。
 熱固定温度は180~265℃が好ましく、200~260℃がより好ましく、200~250℃が更に好ましい。
 パンタグラフ方式の二軸延伸機を用いる場合、予熱温度は予熱ゾーン、延伸温度は延伸ゾーン、熱固定温度は熱固定ゾーンに設定する。
 延伸倍率は、縦は2.5~4.0が好ましく、横は2.5~4.0が好ましい。
 前記熱固定ゾーンでは、フィルムの後収縮を抑えるために、縦0.5~10%、横0.5~10%の弛緩率を設けることが好ましい。
Regarding the stretching temperature, the preheating temperature is preferably 90 to 150 ° C., more preferably 100 to 140 ° C., and even more preferably 105 to 120 ° C.
The stretching temperature is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, and even more preferably 105 to 120 ° C.
The heat fixing temperature is preferably 180 to 265 ° C, more preferably 200 to 260 ° C, and even more preferably 200 to 250 ° C.
When a pantograph type biaxial stretching machine is used, the preheating temperature is set in the preheating zone, the stretching temperature is set in the stretching zone, and the heat fixing temperature is set in the heat fixing zone.
The draw ratio is preferably 2.5 to 4.0 in the vertical direction and 2.5 to 4.0 in the horizontal direction.
In the heat-fixing zone, it is preferable to provide a relaxation rate of 0.5 to 10% in length and 0.5 to 10% in width in order to suppress post-shrinkage of the film.
 前記熱固定ゾーンにおいて、延伸後のフィルムを熱処理(アニール)することが好ましく、このようにして、二軸延伸フィルム(SF)が得られる。
 得られる二軸延伸フィルム(SF)の厚さは、2~100μmが好ましい。なかでも、回路基板の用途に用いる場合には、10~80μmが好ましく、15~60μmがより好ましく、20~50μmが更に好ましい。二軸延伸フィルム(SF)の厚さが前記の範囲であれば、特にフィルム成形時に、十分に配向させることができ、積層体としたときに優れた靭性を得ることができる。
In the heat-fixing zone, it is preferable to heat-treat (anneal) the stretched film, and in this way, a biaxially stretched film (SF) is obtained.
The thickness of the obtained biaxially stretched film (SF) is preferably 2 to 100 μm. Among them, when used for a circuit board application, 10 to 80 μm is preferable, 15 to 60 μm is more preferable, and 20 to 50 μm is further preferable. If the thickness of the biaxially stretched film (SF) is within the above range, it can be sufficiently oriented, especially during film molding, and excellent toughness can be obtained when the laminate is formed.
 逐次二軸延伸方式でロール式縦延伸機を用いる場合、ロール温度は98~105℃が好ましい。ロール温度を調節する媒体は、油又は加圧水が好ましい。縦延伸は引速の異なる2本のロールで行うが、2本のロール間のフィルムを加熱する補助ヒーターを設けることが好ましい。補助ヒーターとしては、遠赤外線ヒーターを用いることが好ましい。延伸倍率は、縦は2.5~4.0が好ましい。
 逐次二軸延伸方式でテンター式横延伸機を用いる場合、延伸温度において、予熱温度は90~150℃が好ましく、100~140℃がより好ましく、105~120℃が更に好ましい。
 延伸温度は90~150℃が好ましく、100~140℃がより好ましく、105~120℃が更に好ましい。
 熱固定温度は180~265℃が好ましく、200~260℃がより好ましく、200~250℃が更に好ましい。
 延伸倍率は、横は2.5~4.0が好ましい。
 前記熱固定ゾーンでは、フィルムの後収縮を抑えるために、0.5~10%の弛緩率を設けることが好ましい。
When a roll type longitudinal stretching machine is used in the sequential biaxial stretching method, the roll temperature is preferably 98 to 105 ° C. The medium for adjusting the roll temperature is preferably oil or pressurized water. The longitudinal stretching is performed by two rolls having different pulling speeds, but it is preferable to provide an auxiliary heater for heating the film between the two rolls. As the auxiliary heater, it is preferable to use a far-infrared heater. The draw ratio is preferably 2.5 to 4.0 in the vertical direction.
When a tenter type transverse stretching machine is used in the sequential biaxial stretching method, the preheating temperature is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, still more preferably 105 to 120 ° C.
The stretching temperature is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, and even more preferably 105 to 120 ° C.
The heat fixing temperature is preferably 180 to 265 ° C, more preferably 200 to 260 ° C, and even more preferably 200 to 250 ° C.
The draw ratio is preferably 2.5 to 4.0 in the horizontal direction.
In the heat-fixing zone, it is preferable to provide a relaxation rate of 0.5 to 10% in order to suppress the post-shrinkage of the film.
 前記熱固定ゾーンにおいて、延伸後のフィルムを熱処理(アニール)することが好ましく、このようにして、二軸延伸フィルム(SF)が得られる。
 得られる二軸延伸フィルム(SF)の厚さは、2~100μmが好ましい。なかでも、回路基板の用途に用いる場合には、10~80μmが好ましく、15~60μmがより好ましく、20~50μmが更に好ましい。二軸延伸フィルム(SF)の厚さが前記の範囲であれば、特にフィルム成形時に、十分に配向させることができ、積層体としたときに優れた靭性を得ることができる。
In the heat-fixing zone, it is preferable to heat-treat (anneal) the stretched film, and in this way, a biaxially stretched film (SF) is obtained.
The thickness of the obtained biaxially stretched film (SF) is preferably 2 to 100 μm. Among them, when used for a circuit board application, 10 to 80 μm is preferable, 15 to 60 μm is more preferable, and 20 to 50 μm is further preferable. If the thickness of the biaxially stretched film (SF) is within the above range, it can be sufficiently oriented, especially during film molding, and excellent toughness can be obtained when it is formed into a laminated body.
<フィルム(MF)>
 本製造方法において、フィルム(MF)は、得られる積層体の樹脂層(M)を形成する。フィルム(MF)は、キャストフィルム、配向フィルム、延伸フィルムであってもよいが、配向フィルム、延伸フィルムが好ましく、なかでも二軸延伸フィルムがより好ましい。
 フィルム(MF)は、軟化点が260℃以下の樹脂(M1)を含む。樹脂(M1)としては、ポリフェニレンエーテル樹脂やスチレン系樹脂等が挙げられ、中でも、スチレン系樹脂を含むことが好ましく、好適な範囲も前記樹脂(M1)の説明に記載したものと同様である。すなわち、パラメチルスチレンを共重合成分とするスチレン系樹脂が好ましく、共重合体成分中、パラメチルスチレン成分は、3~15モル%がより好ましく、4~12モル%が更に好ましく、5~10モル%がより更に好ましい。立体規則性(タクティシティ)は、シンジオタクチックであるものが好ましい。
<Film (MF)>
In the present production method, the film (MF) forms the resin layer (M) of the obtained laminate. The film (MF) may be a cast film, an alignment film, or a stretched film, but an alignment film or a stretched film is preferable, and a biaxially stretched film is more preferable.
The film (MF) contains a resin (M1) having a softening point of 260 ° C. or lower. Examples of the resin (M1) include a polyphenylene ether resin and a styrene-based resin. Among them, a styrene-based resin is preferably contained, and the preferable range is the same as that described in the description of the resin (M1). That is, a styrene resin containing paramethylstyrene as a copolymerization component is preferable, and among the copolymer components, the paramethylstyrene component is more preferably 3 to 15 mol%, further preferably 4 to 12 mol%, and 5 to 10 More preferably mol%. The stereoregularity (tacticity) is preferably syndiotactic.
 フィルム(MF)の製造方法には、溶融押出成型法、溶液流延法、カレンダー法等が挙げられ、溶融押出成型法が好ましく、溶融押出後に延伸を行うことがより好ましく、延伸は二軸延伸法であることが更に好ましい。好ましい二軸延伸法によるフィルムの製造方法は、前記二軸延伸フィルム(SF)と同様である。 Examples of the method for producing a film (MF) include a melt extrusion molding method, a solution casting method, a calender method, and the like. The melt extrusion molding method is preferable, and stretching is more preferable after melt extrusion, and stretching is biaxial stretching. The method is even more preferred. The method for producing a film by a preferable biaxially stretched method is the same as that of the biaxially stretched film (SF).
 具体的には、二軸延伸フィルムは、樹脂(M1)を押出機にて溶融押出し、キャストロールにて冷却固化し、延伸機にて二軸延伸を行い、必要に応じて得られたフィルムを熱処理して、得られる。 Specifically, as the biaxially stretched film, the resin (M1) is melt-extruded by an extruder, cooled and solidified by a cast roll, and biaxially stretched by a stretcher, and the obtained film is obtained as needed. Obtained by heat treatment.
 押出機に投入する前に、樹脂(M1)は、予め乾燥させておくことが好ましい。60~150℃、10~180分の条件で、ペレット状の樹脂(M1)を乾燥させることがより好ましい。
 押出機は、単軸押出機又は二軸押出機を用いることができ、真空ベント付き押出機を用いることが樹脂の乾燥を促進する点で好ましい。また、押出変動を抑えるため、ギヤポンプを設置することが好ましく、異物混入を避けるため、ギヤポンプの後にポリマーフィルタを設けることがより好ましい。
 ポリマーフィルタとしては、リーフディスクタイプ、キャンドルタイプが挙げられる。
 ポリマーフィルタの濾過材としては、焼結金属タイプが好ましい。捕集粒径としては、1~100μmが好ましい。
 押出機での押出温度は、270~330℃が好ましい。押出機のヒーターから、ポリマーライン、ギヤポンプ、ポリマーフィルタ、Tダイスまで押出温度に調整することが好ましい。
The resin (M1) is preferably pre-dried before being charged into the extruder. It is more preferable to dry the pelletized resin (M1) under the conditions of 60 to 150 ° C. and 10 to 180 minutes.
As the extruder, a single-screw extruder or a twin-screw extruder can be used, and it is preferable to use an extruder with a vacuum vent in that the drying of the resin is promoted. Further, it is preferable to install a gear pump in order to suppress extrusion fluctuation, and it is more preferable to install a polymer filter after the gear pump in order to avoid foreign matter from entering.
Examples of the polymer filter include a leaf disc type and a candle type.
As the filter material of the polymer filter, a sintered metal type is preferable. The collected particle size is preferably 1 to 100 μm.
The extrusion temperature in the extruder is preferably 270 to 330 ° C. It is preferable to adjust the extrusion temperature from the heater of the extruder to the polymer line, gear pump, polymer filter and T-die.
 キャストロールの冷却媒体は、油又は水が好ましく、冷却温度は50~95℃が好ましく、60~90℃がより好ましい。
 前記押出機のTダイスより溶融押出された樹脂(M1)をキャストロールに密着させるため、エアーチャンバー方式、静電印加方式あるいはそれらを組み合わせて用いることが好ましい。
 このようにキャストロール上に溶融した樹脂を密着させ、急冷することにより、延伸工程にて安定して連続したフィルムを得ることができる。
 キャストロールの引速は1~30m/分が好ましく、3~15m/分がより好ましい。
The cooling medium of the cast roll is preferably oil or water, and the cooling temperature is preferably 50 to 95 ° C, more preferably 60 to 90 ° C.
In order to bring the resin (M1) melt-extruded from the T-die of the extruder into close contact with the cast roll, it is preferable to use an air chamber method, an electrostatic application method, or a combination thereof.
By bringing the molten resin into close contact with the cast roll and quenching it in this way, a stable and continuous film can be obtained in the stretching step.
The pulling speed of the cast roll is preferably 1 to 30 m / min, more preferably 3 to 15 m / min.
 次に二軸延伸を行うが、本発明に用いられるフィルム(MF)は、同時二軸延伸方式、縦延伸後に横延伸を行う逐次二軸延伸方式のいずれでもよいが、同時二軸延伸方式が好ましい。
 同時二軸延伸方式は、長手方向(MD)、幅方向(TD)を同時に延伸するため、MDとTDで物性に偏りが生じにくい。たとえば、MDとTDで配向性に偏りがないため、衝撃を受けた際の靭性にも方向による優劣がない積層体が得られる。
 同時二軸延伸方式としては、パンタグラフ方式を用いることが好ましい。
 逐次二軸延伸方式には、ロール式縦延伸機及びテンター式横延伸機を用いることが好ましい。
Next, biaxial stretching is performed. The film (MF) used in the present invention may be either a simultaneous biaxial stretching method or a sequential biaxial stretching method in which transverse stretching is performed after longitudinal stretching, but the simultaneous biaxial stretching method is used. preferable.
In the simultaneous biaxial stretching method, since the longitudinal direction (MD) and the width direction (TD) are stretched at the same time, the physical properties of MD and TD are less likely to be biased. For example, since there is no bias in orientation between MD and TD, a laminated body having no superiority or inferiority in toughness when subjected to an impact can be obtained.
As the simultaneous biaxial stretching method, it is preferable to use the pantograph method.
It is preferable to use a roll type longitudinal stretching machine and a tenter type transverse stretching machine for the sequential biaxial stretching method.
 延伸温度において、予熱温度は90~150℃が好ましく、100~140℃がより好ましく、110~130℃が更に好ましい。
 延伸温度は90~150℃が好ましく、100~140℃がより好ましく、110~130℃が更に好ましい。
 熱固定温度は180~250℃が好ましく、180~240℃がより好ましく、180~220℃が更に好ましい。
 パンタグラフ方式の二軸延伸機を用いる場合、予熱温度は予熱ゾーン、延伸温度は延伸ゾーン、熱固定温度は熱固定ゾーンに設定する。
 延伸倍率は、縦は2.5~4.0が好ましく、横は2.5~4.0が好ましい。
 前記熱固定ゾーンでは、フィルムの後収縮を抑えるために、縦0.5~10%、横0.5~10%の弛緩率を設けることが好ましい。
Regarding the stretching temperature, the preheating temperature is preferably 90 to 150 ° C., more preferably 100 to 140 ° C., and even more preferably 110 to 130 ° C.
The stretching temperature is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, and even more preferably 110 to 130 ° C.
The heat fixing temperature is preferably 180 to 250 ° C., more preferably 180 to 240 ° C., and even more preferably 180 to 220 ° C.
When a pantograph type biaxial stretching machine is used, the preheating temperature is set in the preheating zone, the stretching temperature is set in the stretching zone, and the heat fixing temperature is set in the heat fixing zone.
The draw ratio is preferably 2.5 to 4.0 in the vertical direction and 2.5 to 4.0 in the horizontal direction.
In the heat-fixing zone, it is preferable to provide a relaxation rate of 0.5 to 10% in length and 0.5 to 10% in width in order to suppress post-shrinkage of the film.
 前記熱固定ゾーンにおいて、延伸後のフィルムを熱処理(アニール)することが好ましく、このようにして、フィルム(MF)が得られる。このようにして得られたフィルムは、二軸延伸フィルムである。
 得られる二軸延伸フィルム(MF)の厚さは、2~100μmが好ましい。なかでも、回路基板の用途に用いる場合には、10~80μmが好ましく、15~60μmがより好ましく、20~50μmが更に好ましい。二軸延伸フィルム(MF)の厚さが前記の範囲であると、樹脂積層体としたときに各層同士の十分な接着性と優れた衝撃強度を両立させることができる。
In the heat-fixing zone, it is preferable to heat-treat (anneal) the stretched film, and in this way, the film (MF) is obtained. The film thus obtained is a biaxially stretched film.
The thickness of the obtained biaxially stretched film (MF) is preferably 2 to 100 μm. Among them, when used for a circuit board application, 10 to 80 μm is preferable, 15 to 60 μm is more preferable, and 20 to 50 μm is further preferable. When the thickness of the biaxially stretched film (MF) is within the above range, it is possible to achieve both sufficient adhesiveness between the layers and excellent impact strength when the resin laminate is formed.
 逐次二軸延伸方式でロール式縦延伸機を用いる場合、ロール温度は98~105℃が好ましい。ロール温度を調節する媒体は、油又は加圧水が好ましい。縦延伸は引速の異なる2本のロールで行うが、2本のロール間のフィルムを加熱する補助ヒーターを設けることが好ましい。補助ヒーターとしては、遠赤外線ヒーターを用いることが好ましい。延伸倍率は、縦は2.5~4.0が好ましい。
 逐次二軸延伸方式でテンター式横延伸機を用いる場合、延伸温度において、予熱温度は90~150℃が好ましく、100~140℃がより好ましく、110~130℃が更に好ましい。
 延伸温度は90~150℃が好ましく、100~140℃がより好ましく、110~130℃が更に好ましい。
 熱固定温度は180~250℃が好ましく、180~240℃がより好ましく、180~220℃が更に好ましい。
 延伸倍率は、横は2.5~4.0が好ましい。
 前記熱固定ゾーンでは、フィルムの後収縮を抑えるために、0.5~10%の弛緩率を設けることが好ましい。
When a roll type longitudinal stretching machine is used in the sequential biaxial stretching method, the roll temperature is preferably 98 to 105 ° C. The medium for adjusting the roll temperature is preferably oil or pressurized water. The longitudinal stretching is performed by two rolls having different pulling speeds, but it is preferable to provide an auxiliary heater for heating the film between the two rolls. As the auxiliary heater, it is preferable to use a far-infrared heater. The draw ratio is preferably 2.5 to 4.0 in the vertical direction.
When a tenter type transverse stretching machine is used in the sequential biaxial stretching method, the preheating temperature is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, still more preferably 110 to 130 ° C.
The stretching temperature is preferably 90 to 150 ° C, more preferably 100 to 140 ° C, and even more preferably 110 to 130 ° C.
The heat fixing temperature is preferably 180 to 250 ° C., more preferably 180 to 240 ° C., and even more preferably 180 to 220 ° C.
The draw ratio is preferably 2.5 to 4.0 in the horizontal direction.
In the heat-fixing zone, it is preferable to provide a relaxation rate of 0.5 to 10% in order to suppress the post-shrinkage of the film.
 前記熱固定ゾーンにおいて、延伸後のフィルムを熱処理(アニール)することが好ましく、このようにして、フィルム(MF)が得られる。
 得られるフィルム(MF)の厚さは、2~100μmが好ましい。なかでも、回路基板の用途に用いる場合には、10~80μmが好ましく、15~60μmがより好ましく、20~50μmが更に好ましい。フィルム(MF)の厚さが前記の範囲であると、樹脂積層体としたときに各層同士の十分な接着性と優れた衝撃強度を両立させることができる。
In the heat-fixing zone, it is preferable to heat-treat (anneal) the stretched film, and in this way, the film (MF) is obtained.
The thickness of the obtained film (MF) is preferably 2 to 100 μm. Among them, when used for a circuit board application, 10 to 80 μm is preferable, 15 to 60 μm is more preferable, and 20 to 50 μm is further preferable. When the thickness of the film (MF) is within the above range, it is possible to achieve both sufficient adhesiveness between the layers and excellent impact strength when the resin laminate is formed.
<積層・プレス一体化工程>
 本製造方法において、フィルム(SF)とフィルム(MF)を交互に、かつ最外層がフィルム(SF)となるように、合計3層以上積層し、プレスして一体化する。
<Lamination / press integration process>
In this manufacturing method, a total of three or more layers are laminated, pressed, and integrated so that the film (SF) and the film (MF) are alternately laminated and the outermost layer is the film (SF).
 積層工程では、フィルム(SF)とフィルム(MF)を交互に、かつ最外層がフィルム(SF)となるように、合計3層以上積層する。
 本工程おける積層数は3層以上であり、5層以上が好ましく、7層以上がより好ましく、9層以上が更に好ましく、15層以上がより更に好ましく、22層以上がより更に好ましい。上限値は、39層以下が好ましく、35層以下がより好ましく、29層以下が更に好ましい。積層数を3層以上とすることで、本積層体に衝撃力が加わった際に、SPS層間に存在する低軟化点の比較的柔軟なスチレン系樹脂層が衝撃力を分散、緩和し、靭性を高めているものと考えられる。
 プレス一体化工程では、250~268℃でプレスして一体化することが好ましく、255~265℃がより好ましく、257~263℃が更に好ましい。250~268℃でプレスすることで、SPS層の分子配向状態を維持したままで、各樹脂層を密着させることができる。
 本工程において、用いるプレス方法に制限はないが、真空プレス法によって、プレスして一体化することが好ましい。また、本工程では、真空プレス機を用いることが好ましい。真空プレス法を用いた場合のプレス条件としては、真空度は-0.05MPa以下が好ましく、プレス温度は250~268℃が好ましく、プレス圧力は0.5~5.0MPaが好ましく、1.0~4.0MPaがより好ましく、1.5~3.0MPaが更に好ましい。また、プレス保持時間は1~60分が好ましく、1~30分がより好ましく、1~10分が更に好ましい。
 このようにして、積層されたフィルムを一体化することで、樹脂積層体を得ることが好ましい。
In the laminating step, a total of three or more layers are laminated so that the film (SF) and the film (MF) are alternately arranged and the outermost layer is the film (SF).
The number of layers in this step is 3 or more, preferably 5 or more, more preferably 7 or more, further preferably 9 or more, even more preferably 15 or more, and even more preferably 22 or more. The upper limit is preferably 39 layers or less, more preferably 35 layers or less, and even more preferably 29 layers or less. By setting the number of layers to 3 or more, when an impact force is applied to the laminated body, the relatively flexible styrene resin layer with a low softening point existing between the SPS layers disperses and relaxes the impact force, and toughness. It is thought that it is increasing.
In the press integration step, it is preferable to press at 250 to 268 ° C. for integration, more preferably 255 to 265 ° C., and even more preferably 257 to 263 ° C. By pressing at 250 to 268 ° C., each resin layer can be brought into close contact with each other while maintaining the molecular orientation state of the SPS layer.
In this step, the pressing method used is not limited, but it is preferable to press and integrate by the vacuum pressing method. Further, in this step, it is preferable to use a vacuum press machine. When the vacuum press method is used, the degree of vacuum is preferably −0.05 MPa or less, the press temperature is preferably 250 to 268 ° C, and the press pressure is preferably 0.5 to 5.0 MPa, 1.0. It is more preferably about 4.0 MPa, further preferably 1.5 to 3.0 MPa. The press holding time is preferably 1 to 60 minutes, more preferably 1 to 30 minutes, and even more preferably 1 to 10 minutes.
It is preferable to obtain a resin laminate by integrating the laminated films in this way.
<低誘電材用樹脂積層体の特性等>
 本発明の製造方法で得られた樹脂積層体の構造及び特性は、前記[低誘電材用樹脂積層体]の項に記載したものが好ましく、以下の通りである。
 すなわち、本発明の製造方法で得られた好適な樹脂積層体は、シンジオタクチック構造を有するスチレン系樹脂(S1)を含む樹脂層(S)と軟化点が260℃以下の樹脂(M1)を含む樹脂層(M)が交互に合計3層以上積層され、最外層が樹脂層(S)である。
 図1に示すように本発明の低誘電材用樹脂積層体1が3層の場合、軟化点が260℃以下の樹脂(M1)を含む樹脂層2(樹脂層(M)に相当)の両側を、シンジオタクチック構造を有するスチレン系樹脂(S1)を含む樹脂層3(樹脂層(S)に相当)で挟み、最外層がいずれも樹脂層3となることが好ましい。
<Characteristics of resin laminate for low dielectric material, etc.>
The structure and characteristics of the resin laminate obtained by the production method of the present invention are preferably those described in the above section [Resin laminate for low dielectric material], and are as follows.
That is, the suitable resin laminate obtained by the production method of the present invention comprises a resin layer (S) containing a styrene resin (S1) having a syndiotactic structure and a resin (M1) having a softening point of 260 ° C. or lower. A total of three or more layers of the containing resin layers (M) are alternately laminated, and the outermost layer is the resin layer (S).
As shown in FIG. 1, when the resin laminate 1 for a low dielectric material of the present invention has three layers, both sides of the resin layer 2 (corresponding to the resin layer (M)) containing the resin (M1) having a softening point of 260 ° C. or lower. Is sandwiched between a resin layer 3 (corresponding to the resin layer (S)) containing a styrene resin (S1) having a syndiotactic structure, and the outermost layer is preferably the resin layer 3.
 積層体において、樹脂層は交互に積層され、最外層が樹脂層(S)であることが好ましい。すなわち、3層の場合はS/M/S、5層の場合はS/M/S/M/Sとなり、7層の場合はS/M/S/M/S/M/Sとなる。
 積層数は3層以上であり、5層以上が好ましく、7層以上がより好ましく、9層以上が更に好ましく、15層以上がより更に好ましく、22層以上がより更に好ましい。上限値は、39層以下が好ましく、35層以下がより好ましく、29層以下が更に好ましい。積層数を3層以上とすることで、本積層体に衝撃力が加わった際に、SPS層間に存在する低軟化点の比較的柔軟なスチレン系樹脂層が衝撃力を分散、緩和し、靭性を高めることができると考えられる。
In the laminated body, it is preferable that the resin layers are alternately laminated and the outermost layer is the resin layer (S). That is, in the case of 3 layers, it is S / M / S, in the case of 5 layers, it is S / M / S / M / S, and in the case of 7 layers, it is S / M / S / M / S / M / S.
The number of layers is 3 or more, preferably 5 or more, more preferably 7 or more, further preferably 9 or more, even more preferably 15 or more, and even more preferably 22 or more. The upper limit is preferably 39 layers or less, more preferably 35 layers or less, and even more preferably 29 layers or less. By setting the number of layers to 3 or more, when an impact force is applied to this laminate, the relatively flexible styrene resin layer with a low softening point existing between the SPS layers disperses and relaxes the impact force, and toughness is achieved. It is thought that it can be enhanced.
 また、本発明の製造方法で得られた樹脂積層体の厚さは、0.01~3.0mmが好ましく、0.02~3.0mmがより好ましく、0.03~3.0mmが更に好ましい。
 なかでも、回路基板の用途に用いる場合には、0.03~1.5mmが好ましく、0.10~1.0mmがより好ましく、0.2~0.9mmが更に好ましい。また、ミリ波レドーム用樹脂板、良電波透過性樹脂板の用途に用いる場合には、0.9~3.0mmが好ましく、0.9~2.5mmがより好ましい。
 本発明の製造方法で得られた樹脂積層体の誘電損失は、0.00030以下が好ましく、0.00025以下がより好ましい。誘電損失は実施例に記載の測定方法によって得られた値である。積層体全体が絶縁性に優れるスチレン系樹脂からなるため、誘電損失が低く、特に回路基板等の電子材料に適した積層体を得ることができるものと考えられる。
 本発明の製造方法で得られた樹脂積層体の衝撃強度は、厚さを0.9mmとした場合、0.1J以上が好ましく、0.6J以上がより好ましく、0.8J以上が更に好ましい。ここでの衝撃強度は、実施例に記載の測定方法によって得られる値である。
 本発明の製造方法で得られた樹脂積層体は、強度にも優れるSPSフィルムと、軟化点の低いより柔軟な樹脂が密着して構成されているため、衝撃強度に優れるものと考えられる。更に好適なSPSフィルムは二軸延伸フィルムであり、ポリスチレン分子の配向性が高く、より強度が高まっているものと考えられる。
The thickness of the resin laminate obtained by the production method of the present invention is preferably 0.01 to 3.0 mm, more preferably 0.02 to 3.0 mm, and even more preferably 0.03 to 3.0 mm. ..
Among them, when used for a circuit board application, 0.03 to 1.5 mm is preferable, 0.10 to 1.0 mm is more preferable, and 0.2 to 0.9 mm is further preferable. Further, when used for a millimeter-wave radome resin plate or a good radio wave transmitting resin plate, 0.9 to 3.0 mm is preferable, and 0.9 to 2.5 mm is more preferable.
The dielectric loss of the resin laminate obtained by the production method of the present invention is preferably 0.00030 or less, more preferably 0.00025 or less. The dielectric loss is a value obtained by the measuring method described in Examples. Since the entire laminate is made of a styrene resin having excellent insulating properties, it is considered that a laminate having low dielectric loss and particularly suitable for electronic materials such as circuit boards can be obtained.
When the thickness is 0.9 mm, the impact strength of the resin laminate obtained by the production method of the present invention is preferably 0.1 J or more, more preferably 0.6 J or more, still more preferably 0.8 J or more. The impact strength here is a value obtained by the measuring method described in the examples.
The resin laminate obtained by the production method of the present invention is considered to have excellent impact strength because it is composed of an SPS film having excellent strength and a more flexible resin having a low softening point in close contact with each other. A more suitable SPS film is a biaxially stretched film, which is considered to have a high orientation of polystyrene molecules and a higher strength.
[低誘電材用樹脂積層体を含む電子回路基板、及び樹脂板]
 本発明の電子回路基板は、前記低誘電材用樹脂積層体を含む。
 また、本発明の第二の態様の電子回路基板は、前記製造方法で得られた低誘電材用樹脂積層体を含む。
 更に、本発明の樹脂積層体あるいは本発明の製造方法で得られた樹脂積層体は、ミリ波レドーム用樹脂板、良電波透過性樹脂板として用いてもよく、光導波路回路板、アレイアンテナ、MIMOアンテナ、アレイアンテナ電極電気工学変調器などにも利用することができる。
 本発明の樹脂積層体あるいは本発明の製造方法で得られた樹脂積層体を電子回路基板として用いる場合、電子回路基板の全体の厚さは0.05~2.0mmが好ましく、0.4~1.6mmがより好ましい。
 また、本発明の電子回路基板は、電子回路用基板の片面あるいは両面に金属層を積層させ、金属層をパターニングすることにより製造される。パターニングは、フォトリソグラフィ法により金属層をエッチングすることにより行うことが好ましい。無電解メッキ法、電解メッキ法、蒸着法、トリアジンを使用した金属密着法を用いることもできる。本発明の樹脂積層体に置換または無置換のポリアニリンを含むポリアニリン層を積層させ、ポリアニリン層に無電解メッキ等でメタライジングすることもできる。この方法は樹脂積層体と金属層の密着性に優れ、かつ極めて平滑な金属層が得られる。そのため、この方法は伝送損失の小さい電子回路基板を得ることができることから好ましく用いることができる。
 なお、本発明の樹脂積層体あるいは本発明の製造方法で得られた樹脂積層体をミリ波レドーム用樹脂板、良電波透過性樹脂板として用いる場合、該樹脂板の全体の厚さは1.0~7.0mmが好ましく、1.5~5.0mmがより好ましく、2.0~2.5mmが更に好ましい。
 本発明の樹脂積層体をミリ波レドーム用樹脂板、良電波透過性樹脂板として用いる場合、必要に応じてコート材等をさらに積層させることもできる。
[Electronic circuit boards and resin plates containing resin laminates for low-dielectric materials]
The electronic circuit board of the present invention includes the resin laminate for a low dielectric material.
Further, the electronic circuit board of the second aspect of the present invention includes a resin laminate for a low dielectric material obtained by the above-mentioned manufacturing method.
Further, the resin laminate of the present invention or the resin laminate obtained by the production method of the present invention may be used as a resin plate for a millimeter-wave radome, a good radio wave transmitting resin plate, an optical waveguide circuit plate, an array antenna, and the like. It can also be used for MIMO antennas, array antenna electrodes, electrical engineering modulators, and the like.
When the resin laminate of the present invention or the resin laminate obtained by the production method of the present invention is used as an electronic circuit board, the total thickness of the electronic circuit board is preferably 0.05 to 2.0 mm, preferably 0.4 to 2.0 mm. 1.6 mm is more preferable.
Further, the electronic circuit board of the present invention is manufactured by laminating a metal layer on one side or both sides of a substrate for an electronic circuit and patterning the metal layer. The patterning is preferably performed by etching the metal layer by a photolithography method. It is also possible to use an electroless plating method, an electrolytic plating method, a vapor deposition method, or a metal adhesion method using triazine. It is also possible to laminate a polyaniline layer containing substituted or unsubstituted polyaniline on the resin laminate of the present invention, and metallize the polyaniline layer by electroless plating or the like. This method has excellent adhesion between the resin laminate and the metal layer, and an extremely smooth metal layer can be obtained. Therefore, this method can be preferably used because an electronic circuit board having a small transmission loss can be obtained.
When the resin laminate of the present invention or the resin laminate obtained by the production method of the present invention is used as a resin plate for a millimeter wave radome or a good radio wave transmitting resin plate, the total thickness of the resin plate is 1. It is preferably 0 to 7.0 mm, more preferably 1.5 to 5.0 mm, and even more preferably 2.0 to 2.5 mm.
When the resin laminate of the present invention is used as a resin plate for a millimeter wave radome or a resin plate for transmitting good radio waves, a coating material or the like can be further laminated if necessary.
 本発明を実施例によりさらに具体的に説明するが、本発明はこれらに何ら制限されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
(1)樹脂の重量平均分子量
 ゲル浸透クロマトグラフィー(ゲルパーミエイションクロマトグラフィ、略称「GPC」)測定法により測定した。
 測定条件は、東ソー株式会社製GPC装置(HLC-8321GPC/HT)、東ソー株式会社製GPCカラム(GMHHR-H(S)HT)を用い、溶離液として1,2,4-トリクロロベンゼンを用い、145℃で測定した。
 標準ポリスチレンの検量線を用いて、ポリスチレン換算分子量として算出した。
(1) Weight average molecular weight of resin Gel permeation chromatography (gel permeation chromatography, abbreviated as "GPC") was used for measurement.
The measurement conditions were a GPC apparatus manufactured by Tosoh Corporation (HLC-8321GPC / HT), a GPC column manufactured by Tosoh Corporation (GMHHR-H (S) HT), and 1,2,4-trichlorobenzene as an eluent. It was measured at 145 ° C.
It was calculated as a polystyrene-equivalent molecular weight using a standard polystyrene calibration curve.
(2)樹脂の軟化点
 軟化点(ビカット軟化点)は、JIS K7206:2016に準拠して測定を行った。
 測定条件は、東洋精機製作所株式会社製の3M-2を用い、A120法、試験荷重10N及び昇温速度120℃/h、試験開始温度を50℃、最大侵入量1mmとして、3回測定を行い、その平均を求めた。
 測定用サンプルは、次のように作製した。
 深さ3mmの型枠に、樹脂のパウダーを充填して密閉し、真空にすると同時に、昇温、加圧(真空度:-0.1MPa以下、プレス圧:2MPa)した。SPS(重量平均分子量230,000)は280℃まで昇温して5分保持した後、自然冷却して250℃になった時点で、常圧に戻し、プレス圧力を開放し、サンプルを型枠から取り出した後、常温まで自然冷却した。パラメチルスチレン共重合SPS(重量平均分子量180,000)は260℃まで昇温して5分保持した後、自然冷却して230℃になった時点で、常圧に戻し、プレス圧力を開放し、冷却して、サンプルを型枠から取り出した後、常温まで自然冷却した。
 SPSのサンプル及びパラメチルスチレン共重合SPSのサンプルは、150℃、10分アニールした。アニール後、それぞれ略3mm角に裁断し、測定用サンプルとした。
(2) Resin softening point The softening point (Vicat softening point) was measured in accordance with JIS K7206: 2016.
The measurement conditions were 3M-2 manufactured by Toyo Seiki Seisakusho Co., Ltd., A120 method, test load 10N, temperature rise rate 120 ° C / h, test start temperature 50 ° C, maximum penetration 1 mm, and measurement was performed 3 times. , The average was calculated.
The measurement sample was prepared as follows.
A mold having a depth of 3 mm was filled with resin powder, sealed, and evacuated, and at the same time, the temperature was raised and pressurized (vacuum degree: −0.1 MPa or less, press pressure: 2 MPa). The SPS (weight average molecular weight 230,000) was heated to 280 ° C. and held for 5 minutes, and then naturally cooled to 250 ° C., the pressure was returned to normal pressure, the press pressure was released, and the sample was placed in a mold. After taking it out from the water, it was naturally cooled to room temperature. The paramethylstyrene copolymer SPS (weight average molecular weight 180,000) was heated to 260 ° C. and held for 5 minutes, then naturally cooled to 230 ° C., returned to normal pressure, and the press pressure was released. After cooling and removing the sample from the mold, it was naturally cooled to room temperature.
The SPS sample and the paramethylstyrene copolymer SPS sample were annealed at 150 ° C. for 10 minutes. After annealing, each piece was cut into approximately 3 mm square pieces to prepare a sample for measurement.
(3)衝撃強度
 実施例及び比較例の樹脂積層体の衝撃強度を下記の条件で測定した。
  試験方法:JIS K5600-5-3に準拠
  試験装置:デュポン衝撃試験機(テスター産業株式会社製)
  試験片:65mmφ
  撃ち型及び受け台半径:12.7mm
  試験環境:23℃、相対湿度50%
  判定方法:JIS K7211-1準拠
(3) Impact strength The impact strength of the resin laminates of Examples and Comparative Examples was measured under the following conditions.
Test method: Compliant with JIS K5600-5-3 Test equipment: DuPont impact tester (manufactured by Tester Sangyo Co., Ltd.)
Specimen: 65 mmφ
Shooting type and cradle radius: 12.7 mm
Test environment: 23 ° C, relative humidity 50%
Judgment method: JIS K7211-1 compliant
(4)誘電正接(tanδ)
 実施例及び比較例の樹脂積層体の誘電正接(tanδ)を、JIS K6911-1995に準拠して下記の条件で測定した。
 誘電正接(tanδ)の値が小さいものほど、誘電損失が小さく、誘電特性に優れる。
  LCRメータ:HP4284A(ヒューレットパッカード社製、電極:HP16451B、印加電圧範囲:42V)
  測定周波数:1MHz
  試験サイズ:60mmφ
(4) Dissipation factor (tan δ)
The dielectric loss tangent (tan δ) of the resin laminates of Examples and Comparative Examples was measured under the following conditions in accordance with JIS K6911-1995.
The smaller the value of the dielectric loss tangent (tan δ), the smaller the dielectric loss and the better the dielectric characteristics.
LCR meter: HP4284A (manufactured by Hewlett-Packard, electrode: HP16451B, applied voltage range: 42V)
Measurement frequency: 1MHz
Test size: 60 mmφ
(5)配向係数f
 広角X線回折測定においては、X線発生装置(理学電気社製、ultraX 18HF)を用いて50KV、250mAの出力でCuKα線(波長=1.5418Å)の単色光を5分間照射し、イメージングプレート型二次元検出器により回折像を得た。この時、試料と検出器の間の距離(カメラ長)は105mmに調整した。
 作製した配向フィルムを厚さが1mm以上になるように方向を揃えて積層し、測定試料として準備した。測定試料の向きを調整し、X線の入射方向を変えることで、Through方向、Edge方向、End方向の回折像をそれぞれ得た。
 結晶配向係数の算出にあたっては、得られた回折像の赤道方向の強度プロフィールから、α型結晶の(110)面に帰属される回折角2θ=6.7degの回折ピークを使用した。
 配向軸に対する面法線ベクトルの結晶配向係数f(配向係数f)は、式(F1)に基づいて算出した。
(5) Orientation coefficient f
In wide-angle X-ray diffraction measurement, an X-ray generator (ultraX 18HF manufactured by Rigaku Denki Co., Ltd.) is used to irradiate a CuKα ray (wavelength = 1.5418 Å) monochromatic light at an output of 50 KV and 250 mA for 5 minutes, and an imaging plate is used. A diffraction image was obtained by a type two-dimensional detector. At this time, the distance (camera length) between the sample and the detector was adjusted to 105 mm.
The prepared alignment films were laminated in the same direction so as to have a thickness of 1 mm or more, and prepared as a measurement sample. By adjusting the orientation of the measurement sample and changing the incident direction of X-rays, diffraction images in the Throw, Edge, and End directions were obtained, respectively.
In calculating the crystal orientation coefficient, a diffraction peak with a diffraction angle of 2θ = 6.7 deg assigned to the (110) plane of the α-type crystal was used from the intensity profile in the equatorial direction of the obtained diffraction image.
The crystal orientation coefficient f (orientation coefficient f) of the plane normal vector with respect to the orientation axis was calculated based on the equation (F1).
Figure JPOXMLDOC01-appb-M000004
 上式(F1)におけるcosφは式(F2)で、<cos2φ>は式(F3)で、それぞれ求めることができる。
Figure JPOXMLDOC01-appb-M000004
The cosφ in the above formula (F1) by the formula (F2), <cos 2 φ > in formula (F3), can be obtained respectively.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006

 ここで、φはX線回折測定における方位角であり、θは赤道方向の回折角2θの1/2、δは回折像上の子午線から回折ピーク位置までの傾き角を示す。
 また、I(φ)は(110)面の角度φにおける回折強度である。
Figure JPOXMLDOC01-appb-M000006

Here, φ is the azimuth in the X-ray diffraction measurement, θ is 1/2 of the diffraction angle 2θ in the equatorial direction, and δ is the inclination angle from the meridian on the diffraction image to the diffraction peak position.
Further, I (φ) is the diffraction intensity at the angle φ of the (110) plane.
実施例1(低誘電材用樹脂積層体の製造)
(1)二軸延伸SPSフィルム(SF)の製造
 重量平均分子量230,000のSPS(シンジオタクチックポリスチレン、スチレンホモポリマー、軟化点265℃、融点271℃)ペレットを、単軸押出機にて300℃で溶融し、Tダイスより押出し、80℃のキャストロールにて引速6m/分で冷却した。得られたキャストフィルムの厚みは541μmであった。その後、得られたキャストフィルムにパンタグラフ方式の二軸延伸機を用いて同時二軸延伸を行い、延伸後のフィルムを熱処理(アニール)して、厚さ50μmの二軸延伸SPSフィルム(SF)を得た。なお、二軸延伸機の条件は、予熱ゾーンと延伸ゾーンを120℃、熱固定ゾーンを200℃に設定し、延伸ゾーンの延伸倍率をMD(長手方向)、TD(幅方向)ともに3.5倍、熱固定ゾーンの弛緩率をMD(長手方向)、TD(幅方向)ともに6%とした。
 得られた二軸延伸SPSフィルム(SF)の配向係数は、Through方向で0.0004、Edge方向で-0.3048、End方向で-0.2758であった。
Example 1 (Manufacture of resin laminate for low dielectric material)
(1) Production of biaxially stretched SPS film (SF) SPS (syndiotactic polystyrene, styrene homopolymer, softening point 265 ° C., melting point 271 ° C.) pellets having a weight average molecular weight of 230,000 are 300 by a single screw extruder. It was melted at ° C., extruded from a T-die, and cooled with a cast roll at 80 ° C. at a pulling speed of 6 m / min. The thickness of the obtained cast film was 541 μm. Then, the obtained cast film is simultaneously biaxially stretched using a pantograph type biaxial stretching machine, and the stretched film is heat-treated (annealed) to obtain a biaxially stretched SPS film (SF) having a thickness of 50 μm. Obtained. The conditions of the biaxial stretching machine are that the preheating zone and the stretching zone are set to 120 ° C. and the heat fixing zone is set to 200 ° C., and the stretching ratio of the stretching zone is 3.5 in both MD (longitudinal direction) and TD (width direction). The relaxation rate of the heat fixing zone was set to 6% in both MD (longitudinal direction) and TD (width direction).
The orientation coefficient of the obtained biaxially stretched SPS film (SF) was 0.0004 in the Throw direction, -0.3048 in the Edge direction, and -0.2758 in the End direction.
(2)厚み25μmの二軸延伸パラメチルスチレン共重合SPSフィルム(MF)の製造
 重量平均分子量180,000のパラメチルスチレンランダム共重合SPS(パラメチルスチレン成分8モル%、軟化点236℃、融点250℃)ペレットを、単軸押出機にて290℃で溶融し、Tダイスより押出し、80℃のキャストロールにて引速6m/分で冷却した。得られたキャストフィルムの厚みは271μmであった。その後、得られたキャストフィルムにパンタグラフ方式の二軸延伸機を用いて同時二軸延伸を行い、延伸後のフィルムを熱処理(アニール)して、厚さ25μmの二軸延伸パラメチルスチレン共重合SPSフィルム(二軸延伸PMS/SPSフィルム)(MF)を得た。なお、二軸延伸機の条件は、(1)二軸延伸SPSフィルム(SF)の製造と同様にした。
(2) Production of Biaxially Stretched Paramethylstyrene Copolymerized SPS Film (MF) with a Thickness of 25 μm Paramethylstyrene Random Copolymerized SPS with a Weight Average Molecular Weight of 180,000 (Paramethylstyrene Component 8 mol%, Softening Point 236 ° C., Melting Point 250 ° C.) The pellet was melted at 290 ° C. with a single-screw extruder, extruded from a T die, and cooled with a cast roll at 80 ° C. at a pulling speed of 6 m / min. The thickness of the obtained cast film was 271 μm. Then, the obtained cast film was simultaneously biaxially stretched using a pantograph type biaxial stretching machine, and the stretched film was heat-treated (annealed) to have a 25 μm thick biaxially stretched paramethylstyrene copolymer SPS. A film (biaxially stretched PMS / SPS film) (MF) was obtained. The conditions of the biaxial stretching machine were the same as in (1) production of the biaxially stretched SPS film (SF).
(3)樹脂積層体の製造
 (1)で得られたフィルム(SF)及び(2)で得られたフィルム(MF)を最外層がSFとなるように交互に計27枚重ね、真空プレス機にて真空度-0.1MPa以下、プレス圧力1.8MPa、260℃の条件で3分プレスし、その後230℃に冷却、大気圧に戻し、樹脂積層体を得た。樹脂積層板の厚さは0.9mmであった。衝撃強度と誘電正接(tanδ)の値を表1に示す。
(3) Production of resin laminate A total of 27 sheets of the film (SF) obtained in (1) and the film (MF) obtained in (2) are alternately stacked so that the outermost layer is SF, and a vacuum press machine is used. The film was pressed for 3 minutes under the conditions of a vacuum degree of −0.1 MPa or less and a press pressure of 1.8 MPa and 260 ° C., then cooled to 230 ° C. and returned to atmospheric pressure to obtain a resin laminate. The thickness of the resin laminated board was 0.9 mm. Table 1 shows the values of impact strength and dielectric loss tangent (tan δ).
比較例1
 (1)で得られたフィルム(SF)を計20枚重ね、真空プレス機にて真空度-0.1MPa以下、プレス圧力1.5MPa、280℃の条件で3分プレスし、その後230℃に冷却、大気圧に戻し、樹脂積層体を得た。樹脂積層板の厚さは0.9mmであった。衝撃強度と誘電正接(tanδ)の値を表1に示す。
Comparative Example 1
A total of 20 films (SF) obtained in (1) were stacked and pressed with a vacuum press at a vacuum degree of -0.1 MPa or less and a press pressure of 1.5 MPa and 280 ° C. for 3 minutes, and then to 230 ° C. After cooling and returning to atmospheric pressure, a resin laminate was obtained. The thickness of the resin laminated board was 0.9 mm. Table 1 shows the values of impact strength and dielectric loss tangent (tan δ).
比較例2
(4)厚み50μmの二軸延伸パラメチルスチレン共重合SPSフィルム(MF)の製造
 押出機で使用する樹脂の吐出量を調整する以外は、(2)と同様の条件で溶融押出を行い、厚み541μmのキャストフィルムを得た。得られたキャストフィルムに、パンタグラフ方式の二軸延伸機を用いて同時二軸延伸を行い、延伸後のフィルムを熱処理(アニール)して、厚さ50μmの二軸延伸パラメチルスチレン共重合SPSフィルム(二軸延伸PMS/SPSフィルム)(MF)を得た。なお、二軸延伸機の条件は、(1)二軸延伸SPSフィルム(SF)の製造と同様にした。
Comparative Example 2
(4) Manufacture of biaxially stretched paramethylstyrene copolymer SPS film (MF) having a thickness of 50 μm The melt extrusion is performed under the same conditions as in (2) except that the discharge amount of the resin used in the extruder is adjusted, and the thickness is increased. A 541 μm cast film was obtained. The obtained cast film is simultaneously biaxially stretched using a pantograph type biaxial stretching machine, and the stretched film is heat-treated (annealed) to obtain a biaxially stretched paramethylstyrene copolymer SPS film having a thickness of 50 μm. (Biaxially stretched PMS / SPS film) (MF) was obtained. The conditions of the biaxial stretching machine were the same as in (1) production of the biaxially stretched SPS film (SF).
 (4)で得られたフィルム(MF)を計20枚重ね、真空プレス機にて真空度-0.1MPa以下、プレス圧力1.5MPa、260℃の条件で3分プレスし、その後230℃に冷却、大気圧に戻し、樹脂積層体を得た。樹脂積層板の厚さは0.9mmであった。衝撃強度と誘電正接(tanδ)の値を表1に示す。 A total of 20 films (MF) obtained in (4) were stacked and pressed with a vacuum press machine under the conditions of a vacuum degree of -0.1 MPa or less and a press pressure of 1.5 MPa and 260 ° C. for 3 minutes, and then to 230 ° C. After cooling and returning to atmospheric pressure, a resin laminate was obtained. The thickness of the resin laminated board was 0.9 mm. Table 1 shows the values of impact strength and dielectric loss tangent (tan δ).
比較例3(樹脂成型体の製造)
 (1)二軸延伸SPSフィルム(SF)の製造で用いた重量平均分子量230,000のSPSペレットとスチレン系エラストマー(スチレン・エチレン・ブチレン・スチレンブロックコポリマー、SEBS)を80/20(質量/質量)の割合となるように混合し、二軸押出機にてペレタイズして、混合樹脂のペレットを得た。そのペレットをディスクミルで粉砕し、平均粒径500μmの樹脂パウダーとした。樹脂パウダーを型枠に敷き、真空プレス機にて真空度-0.1MPa以下、プレス圧力1.5MPa、290℃の条件で3分プレスし、その後230℃に冷却、大気圧に戻し、樹脂成型体を得た。樹脂成形体の厚みは0.9mmであった。衝撃強度と誘電正接(tanδ)の値を表1に示す。
Comparative Example 3 (Manufacturing of resin molded body)
(1) 80/20 (mass / mass) of SPS pellets having a weight average molecular weight of 230,000 and a styrene-based elastomer (styrene / ethylene / butylene / styrene block copolymer, SEBS) used in the production of biaxially stretched SPS film (SF). ), And pelletized with a twin-screw extruder to obtain pellets of mixed resin. The pellet was pulverized with a disc mill to obtain a resin powder having an average particle size of 500 μm. Spread the resin powder on the mold, press it with a vacuum press machine under the conditions of vacuum degree -0.1 MPa or less, press pressure 1.5 MPa, 290 ° C for 3 minutes, then cool to 230 ° C, return to atmospheric pressure, and resin molding. I got a body. The thickness of the resin molded product was 0.9 mm. Table 1 shows the values of impact strength and dielectric loss tangent (tan δ).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1の低誘電材用樹脂積層体は、誘電損失が小さく、高い靭性を有しているのに対して、比較例1及び2の積層体は衝撃強度が低く、靭性に乏しいものであった。また、エラストマーを配合した樹脂成型体である比較例3は、衝撃強度には優れるものの、誘電損失は大きいものであった。 The resin laminate for low dielectric material of Example 1 has a small dielectric loss and has high toughness, whereas the laminates of Comparative Examples 1 and 2 have low impact strength and poor toughness. It was. Further, Comparative Example 3, which is a resin molded body containing an elastomer, had excellent impact strength but a large dielectric loss.
1 低誘電材用樹脂積層体
2 軟化点が260℃以下の樹脂(M1)を含む樹脂層(樹脂層(M))
3 シンジオタクチック構造を有するスチレン系樹脂(S1)を含む樹脂層(樹脂層(S))
1 Resin laminate for low-dielectric material 2 Resin layer (resin layer (M)) containing resin (M1) having a softening point of 260 ° C or less
3 Resin layer containing styrene resin (S1) having a syndiotactic structure (resin layer (S))

Claims (15)

  1.  シンジオタクチック構造を有するスチレン系樹脂(S1)を含む樹脂層(S)と軟化点が260℃以下の樹脂(M1)を含む樹脂層(M)が交互に合計3層以上積層され、最外層が樹脂層(S)である、低誘電材用樹脂積層体。 A total of three or more layers of a resin layer (S) containing a styrene resin (S1) having a syndiotactic structure and a resin layer (M) containing a resin (M1) having a softening point of 260 ° C. or lower are alternately laminated, and the outermost layer. Is a resin layer (S), which is a resin laminate for low dielectric materials.
  2.  樹脂層(S)が配向フィルムからなる、請求項1に記載の低誘電材用樹脂積層体。 The resin laminate for a low-dielectric material according to claim 1, wherein the resin layer (S) is made of an oriented film.
  3.  樹脂層(S)が二軸延伸フィルムからなる、請求項1又は2に記載の低誘電材用樹脂積層体。 The resin laminate for a low-dielectric material according to claim 1 or 2, wherein the resin layer (S) is a biaxially stretched film.
  4.  スチレン系樹脂(S1)の重量平均分子量が、150,000~250,000である、請求項1~3のいずれか1つに記載の低誘電材用樹脂積層体。 The resin laminate for a low dielectric material according to any one of claims 1 to 3, wherein the styrene resin (S1) has a weight average molecular weight of 150,000 to 250,000.
  5.  樹脂(M1)が、スチレン系樹脂である、請求項1~4のいずれかに1つに記載の低誘電材用樹脂積層体。 The resin laminate for a low dielectric material according to any one of claims 1 to 4, wherein the resin (M1) is a styrene resin.
  6.  樹脂(M1)が、パラメチルスチレンを共重合成分とするスチレン系樹脂である、請求項1~5のいずれかに1つに記載の低誘電材用樹脂積層体。 The resin laminate for a low dielectric material according to any one of claims 1 to 5, wherein the resin (M1) is a styrene-based resin containing paramethylstyrene as a copolymerization component.
  7.  樹脂(M1)の重量平均分子量が、150,000~250,000である、請求項1~6のいずれかに1つに記載の低誘電材用樹脂積層体。 The resin laminate for a low dielectric material according to any one of claims 1 to 6, wherein the resin (M1) has a weight average molecular weight of 150,000 to 250,000.
  8.  樹脂(M1)の共重合成分中、パラメチルスチレン成分が3~15モル%である、請求項6又は7に記載の低誘電材用樹脂積層体。 The resin laminate for a low dielectric material according to claim 6 or 7, wherein the paramethylstyrene component is 3 to 15 mol% in the copolymerization component of the resin (M1).
  9.  請求項1~8のいずれかに1つに記載の低誘電材用樹脂積層体を含む電子回路基板。 An electronic circuit board containing the resin laminate for a low dielectric material according to any one of claims 1 to 8.
  10.  シンジオタクチック構造を有するスチレン系樹脂(S1)を含む配向フィルム(SF)と軟化点が260℃以下の樹脂(M1)を含むフィルム(MF)を交互に、かつ最外層がフィルム(SF)となるように、合計3層以上積層し、プレスして一体化する工程を有する、低誘電材用樹脂積層体の製造方法。 An alignment film (SF) containing a styrene resin (S1) having a syndiotactic structure and a film (MF) containing a resin (M1) having a softening point of 260 ° C. or lower are alternately alternated, and the outermost layer is a film (SF). A method for producing a resin laminate for a low dielectric material, which comprises a step of laminating a total of three or more layers and pressing to integrate them.
  11.  前記工程において、配向フィルム(SF)が二軸延伸フィルムである、請求項10に記載の低誘電材用樹脂積層体の製造方法。 The method for producing a resin laminate for a low-dielectric material according to claim 10, wherein in the above step, the alignment film (SF) is a biaxially stretched film.
  12.  前記工程において、250~268℃でプレスして一体化する、請求項10又は11に記載の低誘電材用樹脂積層体の製造方法。 The method for producing a resin laminate for a low-dielectric material according to claim 10 or 11, wherein in the above step, the resin laminate is integrated by pressing at 250 to 268 ° C.
  13.  前記工程において、真空プレス法によって、プレスして一体化する、請求項10~12のいずれか1つに記載の低誘電材用樹脂積層体の製造方法。 The method for producing a resin laminate for a low dielectric material according to any one of claims 10 to 12, which is pressed and integrated by a vacuum press method in the above step.
  14.  前記真空プレス法のプレス圧力が0.5~5.0MPaであり、プレス保持時間が1~60分である、請求項13に記載の低誘電材用樹脂積層体の製造方法。 The method for producing a resin laminate for a low dielectric material according to claim 13, wherein the press pressure of the vacuum press method is 0.5 to 5.0 MPa, and the press holding time is 1 to 60 minutes.
  15.  請求項10~14のいずれかに1つに記載の製造方法で得られた低誘電材用樹脂積層体を含む電子回路基板。 An electronic circuit board containing a resin laminate for a low dielectric material obtained by the manufacturing method according to any one of claims 10 to 14.
PCT/JP2020/037053 2019-10-04 2020-09-30 Resin laminate for low-dielectric material WO2021065968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-183812 2019-10-04
JP2019183812A JP7281381B2 (en) 2019-10-04 2019-10-04 Resin laminate for low dielectric materials

Publications (1)

Publication Number Publication Date
WO2021065968A1 true WO2021065968A1 (en) 2021-04-08

Family

ID=75336991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037053 WO2021065968A1 (en) 2019-10-04 2020-09-30 Resin laminate for low-dielectric material

Country Status (3)

Country Link
JP (1) JP7281381B2 (en)
TW (1) TW202120332A (en)
WO (1) WO2021065968A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190997A (en) * 1992-10-01 1994-07-12 Minnesota Mining & Mfg Co <3M> Tear-resistant multilayer film based on sebasic acid copolyester and article containing said film
JPH0922616A (en) * 1995-06-29 1997-01-21 Minnesota Mining & Mfg Co <3M> Electret that contains syndiotactic vinyl aromatic polymer
JP2002086635A (en) * 2000-09-08 2002-03-26 Idemitsu Petrochem Co Ltd Method for manufacturing styrenic resin laminate
JP2011088387A (en) * 2009-10-23 2011-05-06 Idemitsu Kosan Co Ltd Laminate for manufacturing flexible printed board
JP2014019017A (en) * 2012-07-17 2014-02-03 Sumitomo Bakelite Co Ltd Release film
JP2016030419A (en) * 2014-07-30 2016-03-07 住友ベークライト株式会社 Release film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190997A (en) * 1992-10-01 1994-07-12 Minnesota Mining & Mfg Co <3M> Tear-resistant multilayer film based on sebasic acid copolyester and article containing said film
JPH0922616A (en) * 1995-06-29 1997-01-21 Minnesota Mining & Mfg Co <3M> Electret that contains syndiotactic vinyl aromatic polymer
JP2002086635A (en) * 2000-09-08 2002-03-26 Idemitsu Petrochem Co Ltd Method for manufacturing styrenic resin laminate
JP2011088387A (en) * 2009-10-23 2011-05-06 Idemitsu Kosan Co Ltd Laminate for manufacturing flexible printed board
JP2014019017A (en) * 2012-07-17 2014-02-03 Sumitomo Bakelite Co Ltd Release film
JP2016030419A (en) * 2014-07-30 2016-03-07 住友ベークライト株式会社 Release film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PLASTICS PROCESSING DATABOOK (2ND EDITION), 28 January 2002 (2002-01-28), pages 2 - 3 *

Also Published As

Publication number Publication date
JP7281381B2 (en) 2023-05-25
JP2021059038A (en) 2021-04-15
TW202120332A (en) 2021-06-01

Similar Documents

Publication Publication Date Title
JP6854124B2 (en) Thermoplastic liquid crystal polymer film and circuit board using it
TW201323199A (en) Thermotropic liquid crystal polymer film, and laminate and circuit board using same
US20230023832A1 (en) Copolymer and laminate containing same
CN110139738B (en) Biaxially stretched polypropylene film, metallized film and capacitor
US20230364887A1 (en) Polymer film, laminate, and method for manufacturing same
WO2022085619A1 (en) Non-thermoplastic polyimide film, multilayer polyimide film, and metal-clad laminated plate
Tseng et al. Morphological effects on dielectric properties of poly (vinylidene fluoride-co-hexafluoropropylene) blends and multilayer films
TW201841723A (en) Metal-clad laminate and production method thereof
CN113969051A (en) Resin composition for high-frequency substrate and metal laminate
WO2015178365A1 (en) Release film
WO2021065968A1 (en) Resin laminate for low-dielectric material
CN107001661B (en) Alignment film
JP2000506305A (en) Thermoplastic elastomer substrate material with tunable dielectric properties and laminates thereof
EP3633425B1 (en) Retardation film and production method
EP3633424B1 (en) Retardation film and production method
WO2023157369A1 (en) Laminate and metal-clad laminate board having said laminate
KR20210047870A (en) Metal layer-integrated polypropylene film, film capacitor, and metal layer-integrated polypropylene film manufacturing method
JP3152002B2 (en) Resin impregnated fiber sheet
WO2022220248A1 (en) Metallized polypropylene film
WO2022091993A1 (en) Multilayer body for electronic curcuit boards
US20240182614A1 (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
JP7256960B2 (en) Manufacturing method of metal layer integrated polypropylene film
WO2024095642A1 (en) Polymer film and laminate
US11999143B2 (en) Film including polymeric elements interconnecting particles
US20220380558A1 (en) Liquid crystal polymer composite, liquid crystal polymer composite film, and metal-clad laminate including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871523

Country of ref document: EP

Kind code of ref document: A1