WO2021065905A1 - Piston-type compressor - Google Patents

Piston-type compressor Download PDF

Info

Publication number
WO2021065905A1
WO2021065905A1 PCT/JP2020/036897 JP2020036897W WO2021065905A1 WO 2021065905 A1 WO2021065905 A1 WO 2021065905A1 JP 2020036897 W JP2020036897 W JP 2020036897W WO 2021065905 A1 WO2021065905 A1 WO 2021065905A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive shaft
communication
sided
passage
lid
Prior art date
Application number
PCT/JP2020/036897
Other languages
French (fr)
Japanese (ja)
Inventor
島田賢
山本真也
村西明広
稲垣洋介
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to BR112022005098A priority Critical patent/BR112022005098A2/en
Priority to CN202080069534.3A priority patent/CN114585813B/en
Priority to KR1020227010194A priority patent/KR20220051001A/en
Publication of WO2021065905A1 publication Critical patent/WO2021065905A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/12Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders having plural sets of cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0878Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/0873Component parts, e.g. sealings; Manufacturing or assembly thereof
    • F04B27/0895Component parts, e.g. sealings; Manufacturing or assembly thereof driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1009Distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1045Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1054Actuating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1081Casings, housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/14Refrigerants with particular properties, e.g. HFC-134a

Definitions

  • the present invention relates to a piston type compressor.
  • Patent Document 1 discloses a conventional piston type compressor (hereinafter, simply referred to as a compressor).
  • the compressor includes a housing, a drive shaft, a fixed swash plate, a plurality of pistons, a discharge valve, a moving body, and a control valve.
  • the housing has a cylinder block.
  • the cylinder block is formed with a first connecting passage that communicates with the cylinder bores.
  • the housing is formed with a discharge chamber, a swash plate chamber, and a shaft hole. Refrigerant is sucked into the swash plate chamber from the outside of the compressor.
  • the swash plate chamber communicates with the shaft hole.
  • the drive shaft is rotatably supported in the shaft hole.
  • the fixed swash plate can be rotated in the swash plate chamber by the rotation of the drive shaft.
  • the fixed swash plate has a constant inclination angle with respect to a plane perpendicular to the drive axis.
  • the piston forms a compression chamber in the cylinder bore and is connected to a fixed swash plate.
  • a reed valve type discharge valve for discharging the refrigerant in the compression chamber to the discharge chamber is provided between the compression chamber and the discharge chamber.
  • the moving body has a cylindrical shape and is provided on the outer peripheral surface of the drive shaft, and is arranged in the shaft hole.
  • the moving body rotates integrally with the drive shaft in the shaft hole, and can move with respect to the drive shaft in the drive axis direction of the drive shaft based on the control pressure.
  • a second passage is formed on the outer peripheral surface of the moving body.
  • the control valve controls the pressure of the refrigerant to obtain the control pressure.
  • the drive shaft rotates and the fixed swash plate rotates, so that the piston reciprocates in the cylinder bore between top dead center and bottom dead center.
  • the compression chamber becomes a suction stroke.
  • the refrigerant is sucked into the compression chamber by communicating the first passage and the second passage.
  • the first passage and the second passage are not communicated with each other, and the piston moves from the bottom dead center to the top dead center, so that the compression chamber becomes a compression stroke for compressing the sucked refrigerant.
  • the discharge flow rate which is the flow rate of the refrigerant discharged from the compression chamber to the discharge chamber, changes according to the position in the drive axis direction of the moving body.
  • the compression load acts on the moving body through the first communication passage communicating with the compression chamber during the compression stroke or the discharge stroke.
  • the moving body is pressed in the shaft hole in the direction intersecting the drive axis direction, so that the moving body is pressed against the inner wall of the shaft hole. Therefore, the frictional force between the moving body and the shaft hole when moving in the direction of the drive axis becomes large. As a result, it becomes difficult for the moving body to move suitably in the direction of the drive axis, and the controllability is lowered.
  • the present invention has been made in view of the above-mentioned conventional circumstances, and it is an object to be solved to provide a piston type compressor capable of exhibiting high controllability and realizing miniaturization.
  • the piston type compressor of the present invention has a cylinder block in which a plurality of cylinder bores are formed, and has a discharge chamber, a swash plate chamber in which a refrigerant is sucked, and a housing in which a shaft hole is formed.
  • a drive shaft rotatably supported in the shaft hole, A fixed swash plate that can be rotated in the swash plate chamber by rotation of the drive shaft and has a constant inclination angle with respect to a plane perpendicular to the drive shaft.
  • a control valve for controlling the control pressure is provided.
  • a piston type compressor in which the discharge flow rate, which is the flow rate of the refrigerant discharged from the compression chamber to the discharge chamber, changes according to the position of the moving body in the drive axis direction.
  • the cylinder block is formed with a first communication passage that communicates with the cylinder bore.
  • the drive shaft includes an axis extending in the direction of the drive axis, communicating with the axis and extending in the radial direction of the drive shaft, and intermittently communicating with the first passage as the drive shaft rotates.
  • Axle is formed
  • the moving body is arranged in the axial path by engaging with a spool that is movably arranged in the drive axis direction and is arranged in the path, and has a communication area between the path and the first communication passage.
  • Has a changeable lid and The lid is characterized in that the communication area is maximized when the discharge flow rate is maximum, while the communication area is minimized when the discharge flow rate is minimum.
  • the spool of the moving body moves in the axial path of the drive shaft in the direction of the drive axis. Therefore, no compressive load acts on the spool of the moving body. Further, the lid of the moving body is engaged with the spool and arranged in the path, and the communication area between the path and the first communication passage is changed. The route only intermittently communicates with the first communication passage as the drive shaft rotates, and the lid maximizes the communication area when the discharge flow rate is maximum, while the communication area is maximum when the discharge flow rate is minimum. To minimize.
  • the lid body communicates the path with the first passage when the compression chamber is in the suction stroke, and makes the route non-communication with the first passage when the compression chamber is in the compression stroke or the discharge stroke.
  • the compressive load acts on the drive shaft through the first continuous passage, while the compressive load does not easily act on the moving body. Therefore, in this compressor, the moving body easily moves in the direction of the drive axis. Further, in this compressor, it is not necessary to make the moving body larger than necessary in order to obtain a large thrust.
  • the piston type compressor of the present invention can exhibit high controllability and can realize miniaturization.
  • the drive shaft may have a guide surface that guides the lid in the direction of the drive axis. It is preferable that the communication start timing between the first communication passage and the route is defined by the guide surface thereof. In this case, a lid having a simple shape can be adopted, and processing to the drive shaft becomes easy. Further, since the minimum capacity can be realized by the lid, other controls can be omitted. Therefore, it is possible to reduce the manufacturing cost of the piston type compressor. Further, since the length of the lid in the direction of the drive axis can be shortened, it is possible to improve the mountability on a vehicle or the like by shortening the axis of the piston type compressor. Further, since the lid body has no weak portion, the durability is improved and high controllability can be exhibited.
  • the timing of the end of communication between the first communication passage and the path is defined by the guide surface when the discharge flow rate is maximum, and by the lid when the discharge flow rate is minimum.
  • a lid having a simple shape can be adopted.
  • the cylinder bore may consist of a one-sided cylinder bore arranged on one side in the drive axis direction and a other-side cylinder bore arranged on the other side in the drive axis direction.
  • the piston may have a one-sided head that forms a one-sided compression chamber in the one-sided cylinder bore and a other-sided head that forms the other-side compression chamber in the other-side cylinder bore.
  • the first continuous passage may include a one-sided first continuous passage communicating with the one-side cylinder bore and a other-side first continuous passage communicating with the other side cylinder bore.
  • the route may be composed of a one-sided route communicating with the one-sided first communication passage and the other-side route communicating with the other-side first communication passage.
  • the lid is arranged on the one-sided path and the one-sided lid whose communication area between the one-sided path and the one-sided first communication passage can be changed, and the other side path, and the other side and the other side. It may consist of a lid on the other side whose communication area with the first passage can be changed.
  • the piston type compressor is a double-headed type.
  • the other side lid has a part of its outer peripheral edge forming the other side second communication passage forming the communication area between the other side path and the other side first communication passage. It is preferable that the shutter is used.
  • the lid on the other side has a simple shape, and the position of a part of the outer peripheral edge of the shutter in the drive axis direction with respect to the position of the first passage on the other side changes, so that the second passage on the other side has a simple shape.
  • the communication area can be changed, and the capacity of the compression chamber on the other side can be easily controlled.
  • the other side lid is a shutter, and the one side lid has its own second passage that constitutes the communication area between the one side path and the one side first passage. It is preferable that the frame is formed inside. In this case, the one-sided lid can precisely control the capacity of the one-sided compression chamber.
  • the other side lid is a shutter and the one side lid is also a shutter.
  • the other side lid and the one side lid have a simple shape, and the capacities of the other side compression chamber and the one side compression chamber can be easily controlled.
  • the shutter preferably has an engaging piece that is engaged with the spool on the rear side in the rotation direction of the drive shaft. Since the shutter is pushed in the rotation direction on the rear side in the rotation direction of the drive shaft, if the engaging claw is engaged with the spool there, the engagement between the spool and the shutter becomes strong.
  • the spool may consist of a first spool with which one side lid is engaged and a second spool that is movable in the drive axis direction with respect to the first spool and with which the other side lid is engaged.
  • the capacitance of the one-side compression chamber and the other-side compression chamber can be precisely controlled.
  • the spool is a single spool in which one side lid and the other side lid are engaged. In this case, the capacity control of the one-side compression chamber and the other-side compression chamber can be easily performed.
  • the piston type compressor of the present invention can exhibit high controllability and can realize miniaturization.
  • FIG. 1 is a cross-sectional view of the piston type compressor of the first embodiment in the direction of the drive axis at the minimum flow rate.
  • FIG. 2 is a cross-sectional view of the piston type compressor of the first embodiment in the drive axis direction at a predetermined flow rate.
  • FIG. 3 is a cross-sectional view of the piston type compressor of the first embodiment in the drive axis direction at the maximum flow rate.
  • FIG. 4 is a cross-sectional view of the drive shaft in the drive axis direction according to the piston type compressor of the first embodiment.
  • FIG. 5 is an enlarged cross-sectional view of the moving body in the drive axis direction according to the piston type compressor of the first embodiment.
  • FIG. 6 is an enlarged perspective view of the rear side frame body as viewed from a certain direction with respect to the piston type compressor of the first embodiment.
  • FIG. 7 is an enlarged perspective view of the rear side frame body as viewed from another direction with respect to the piston type compressor of the first embodiment.
  • FIG. 8 is a cross-sectional view of the piston type compressor of the first embodiment in a direction perpendicular to the drive shaft center of the drive shaft, the first spool, and the rear side frame.
  • FIG. 9 is a cross-sectional view of a main part on the rear side in FIG. 1 relating to the piston type compressor of the first embodiment.
  • FIG. 10 is a development view of the rear side frame, the drive shaft, and the like at the maximum flow rate, related to the piston type compressor of the first embodiment.
  • FIG. 11 is a development view of the rear side frame, the drive shaft, and the like at a predetermined flow rate, related to the piston type compressor of the first embodiment.
  • FIG. 12 is a development view of the rear side frame, the drive shaft, and the like at the minimum flow rate, related to the piston type compressor of the first embodiment.
  • FIG. 13 is a perspective view of the front shutter viewed from a certain direction according to the piston type compressor of the first embodiment.
  • FIG. 14 is a perspective view of the front shutter viewed from another direction according to the piston type compressor of the first embodiment.
  • FIG. 15 is a cross-sectional view of the piston type compressor of the first embodiment in a direction perpendicular to the drive axis of the drive shaft, the second spool, and the front shutter.
  • FIG. 16 is a cross-sectional view of a main part on the front side in FIG. 1 relating to the piston type compressor of the first embodiment.
  • FIG. 17 is a development view of the front side shutter, the drive shaft, and the like at the maximum flow rate, relating to the piston type compressor of the first embodiment.
  • FIG. 18 is a development view of the front side shutter, the drive shaft, and the like at a predetermined flow rate, relating to the piston type compressor of the first embodiment.
  • FIG. 19 is a development view of the front shutter, the drive shaft, and the like at the minimum flow rate, relating to the piston type compressor of the first embodiment.
  • FIG. 20 is a cross-sectional view of the moving body in the drive axis direction according to the piston type compressor of the second embodiment.
  • FIG. 21 is a cross-sectional view of the moving body in the drive axis direction according to the piston type compressor of the third embodiment.
  • FIG. 22 is a developed view of the rear shutter, the drive shaft, and the like at the minimum flow rate, relating to the piston type compressor of the modified example.
  • FIG. 23 is a developed view of the front shutter, the drive shaft, and the like at the minimum flow rate, relating to the piston type compressor of the modified example.
  • Examples 1 to 3 embodying the present invention will be described with reference to the drawings.
  • the compressors of Examples 1 to 3 are double-headed piston type compressors. These compressors are mounted on the vehicle and constitute the refrigeration circuit of the air conditioner.
  • the compressor of the first embodiment includes a housing 1, a drive shaft 3, a fixed swash plate 5, a plurality of pistons 7, a rear side valve forming plate 9, and a front side valve forming. It includes a plate 11, a moving body 13, and a control valve 15.
  • the housing 1 includes a rear housing 17, a front housing 19, a rear cylinder block 21, and a front cylinder block 23.
  • the rear side corresponds to one side in the present invention
  • the front side corresponds to the other side in the present invention.
  • the side where the front housing 19 is located is the front side of the compressor
  • the side where the rear housing 17 is located is the rear side of the compressor
  • the front-rear direction of the compressor is defined.
  • the vertical direction of the compressor is defined with the upper side of the paper surface of FIGS. 1 to 3 as the upper side of the compressor and the lower side of the paper surface as the lower side of the compressor.
  • FIGS. 4 and 4 the front-back direction and the up-down direction are displayed corresponding to FIGS. 1 to 3.
  • the front-rear direction and the like in the embodiment are examples, and the posture of the compressor of the present invention is appropriately changed according to the vehicle on which the compressor is mounted.
  • the drive axis O of the drive shaft 3 extends in the front-rear direction of the compressor.
  • an annular front side discharge chamber 19a is formed around the drive shaft center O.
  • the front housing 19 is formed with a boss portion 19b and a front shaft hole 19c.
  • the boss portion 19b projects forward in the drive axis O direction.
  • the front shaft hole 19c penetrates the front housing 19 in the drive shaft center O direction.
  • a shaft sealing device 25 is provided in the front shaft hole 19c.
  • the rear housing 17 is formed with a control pressure chamber 17a and a rear discharge chamber 17b.
  • the control pressure chamber 17a is located on the center side of the rear housing 17.
  • the rear discharge chamber 17b is formed in an annular shape around the drive shaft center O, and is located on the outer peripheral side of the control pressure chamber 17a.
  • the front side cylinder block 23 and the rear side cylinder block 21 are provided between the front housing 19 and the rear housing 17.
  • a front valve forming plate 11 is provided between the front housing 19 and the front cylinder block 23, a gasket 27 is provided between the front cylinder block 23 and the rear cylinder block 21, and a rear cylinder block is provided.
  • a rear side valve forming plate 9 is provided between the 21 and the rear housing 17, and these are fastened by bolts (not shown) extending in the drive axis O direction.
  • the front side cylinder block 23 and the rear side cylinder block 21 form a swash plate chamber 29.
  • the swash plate chamber 29 is connected to an external evaporator (not shown) by a suction port 29a formed in the front cylinder block 23, and sucks a low-pressure refrigerant.
  • the front side cylinder block 23 and the rear side cylinder block 21 form a discharge passage 31 extending in the drive axis O direction.
  • the discharge passage 31 penetrates the front side valve forming plate 11 and communicates with the front side discharge chamber 19a.
  • the discharge passage 31 penetrates the rear side valve forming plate 9 and communicates with the rear side discharge chamber 17b.
  • the discharge passage 31 is connected to an external condenser (not shown) by a discharge port 31a formed in the front cylinder block 23, and discharges a high-pressure refrigerant.
  • the refrigerant contains oil.
  • the rear cylinder block 21 has a boss portion 21a that projects rearward in the drive axis O direction.
  • the boss portion 21a penetrates the front side valve forming plate 11 and extends into the control pressure chamber 17a.
  • a rear side shaft hole 33a which is a columnar space, is formed in the drive shaft center O direction.
  • the rear shaft hole 33a is open to the control pressure chamber 17a.
  • a front side shaft hole 33b which is a columnar space, is formed in the drive axis O direction.
  • the front shaft hole 33b is coaxial with the rear shaft hole 33a and has a slightly larger diameter than the rear shaft hole 33a.
  • the front side shaft hole 33b communicates with the front side shaft hole 19c by an insertion hole 11g formed in the front side valve forming plate 11.
  • the rear side cylinder block 21 is formed with rear side cylinder bores 35a to 35e.
  • the rear cylinder bores 35a to 35e are columnar spaces extending in the drive axis O direction, and are equally spaced from each other around the drive axis O.
  • the rear side cylinder block 21 is formed with rear side first continuous passages 37a to 37e connecting the rear side cylinder bores 35a to 35e and the rear side shaft hole 33a.
  • the rear-side first communication passages 37a to 37e extend in the radial direction from the drive shaft center O. As shown in FIGS. 1 to 3, the first continuous passages 37a to 37e on the rear side are inclined rearward while being separated from the drive shaft center O.
  • the front side cylinder block 23 is formed with front side cylinder bores 39a to 39e.
  • the front side cylinder bores 39a to 39e are columnar spaces extending in the drive axis O direction, and are equally spaced from each other around the drive axis O.
  • the rear cylinder bores 35a to 35e and the front cylinder bores 39a to 39e are coaxial and have the same diameter, respectively.
  • the front side cylinder block 23 is formed with front side first continuous passages 41a to 41e for connecting the front side cylinder bores 39a to 39e and the front side shaft hole 33b.
  • the front-side first communication passages 41a to 41e extend in the radial direction from the drive shaft center O. As shown in FIGS. 1 to 3, the first continuous passages 41a to 41e on the front side are inclined forward while being separated from the drive shaft center O.
  • a fixed swash plate 5 is fixed to the outer peripheral surface of the drive shaft 3 by press fitting in the swash plate chamber 29.
  • the fixed swash plate 5 is formed with inclined surfaces 5a and 5b having a constant inclination angle with respect to a plane perpendicular to the drive axis O of the drive shaft 3 in the front-rear direction.
  • the fixed swash plate 5 is sandwiched between the front cylinder block 23 and the rear cylinder block 21 via thrust bearings 43 and 45, respectively.
  • Hemispherical shoes 49a and 49b are provided on the inclined surfaces 5a and 5b of the fixed swash plate 5, respectively.
  • the shoes 49a and 49b are provided with double-headed pistons 7.
  • Each piston 7 has a rear side head 7a and a front side head 7b.
  • the rear side head 7a forms a rear side compression chamber 51 in the rear side cylinder bores 35a to 35e.
  • the front side head 7b forms a front side compression chamber 53 in the front side cylinder bore 39a.
  • the rear side valve forming plate 9 includes a valve plate 9a arranged on the rear side cylinder block 21 side, a discharge valve plate 9b arranged behind the valve plate 9a, and a retainer arranged further behind the discharge valve plate 9b. It consists of a plate 9c.
  • the valve plate 9a is formed with discharge ports 9d for communicating the rear cylinder bores 35a to 35e with the rear discharge chambers 17b, respectively.
  • the discharge valve plate 9b is formed with a discharge reed valve 9e that closes each discharge port 9d by an elastic restoring force.
  • the retainer plate 9c is formed with a retainer 9f that regulates the opening degree of each discharge reed valve 9e.
  • the front side valve forming plate 11 includes a valve plate 11a arranged on the front side cylinder block 23 side, a discharge valve plate 11b arranged in front of the valve plate 11a, and a retainer arranged further in front of the discharge valve plate 11b. It consists of a plate 11c.
  • the valve plate 11a is formed with discharge ports 11d for communicating the front cylinder bores 39a to 39e with the front discharge chamber 19a, respectively.
  • the discharge valve plate 11b is formed with a discharge reed valve 11e that closes each discharge port 11d by an elastic restoring force.
  • the retainer plate 11c is formed with a retainer 11f that regulates the opening degree of each discharge reed valve 11e.
  • the discharge reed valves 9e and 11e correspond to the discharge valves of the present invention.
  • the control valve 15 is provided in the rear housing 17.
  • the control pressure chamber 17a and the rear discharge chamber 17b are connected by an air supply passage 47a.
  • the control pressure chamber 17a and the swash plate chamber 29 are connected by an bleed air passage 47b, and a control valve 15 is arranged in the middle of the bleed air passage 47b.
  • the control valve 15 adjusts the opening degree of the bleed air passage 47b by a signal of a controller (not shown) to control the control pressure in the control pressure chamber 17a.
  • the outer peripheral surface of the drive shaft 3 is preferably inside the rear shaft hole 33a and the front shaft hole 33b, except for the portion where the fixed swash plate 5 is press-fitted and the portion where the thrust bearings 43 and 45 are arranged.
  • the coating is applied so that it can rotate and slide.
  • the first axis 3a extending in the drive axis O direction on the rear side and the first axis 3a in front of the first axis 3a are communicated with each other to drive.
  • a second axis path 3b extending in the axis O direction is formed.
  • the first axis path 3a is a columnar space, which is opened at the rear end of the drive shaft 3 so as to communicate with the control pressure chamber 17a.
  • the second axis 3b is a columnar space having a diameter smaller than that of the first axis 3a.
  • a step 3j is formed between the first axis 3a and the second axis 3b.
  • the drive shaft 3 has a rear side radial path 3c that communicates with the first axis path 3a on the rear side and extends in the radial direction of the drive shaft 3, and a drive shaft 3 that communicates with the second axis path 3b at substantially the center.
  • An internal suction port 3d extending in the radial direction and a front side radial path 3e extending in the radial direction of the drive shaft 3 in front of the second axis 3b are formed.
  • the rear side path 3c is formed at a predetermined angle around the drive shaft center O as shown in FIG. 8, and has a predetermined length parallel to the drive shaft center O as shown in FIGS. 10 and 11. Is formed of.
  • the rear end of the rear side path 3c is a rear end regulation surface 3f
  • the front end of the rear side path 3c is a front end regulation surface 3g.
  • the rear end regulation surface 3f and the front end regulation surface 3g extend in a direction perpendicular to the drive axis O.
  • the drive shaft 3 forms guide surfaces 32a and 32b extending in the drive shaft center O direction by its own thickness portion which is the difference between the inner diameter and the outer diameter of the drive shaft 3. ..
  • the guide surface 32a and the guide surface 32b are flush with each other and extend parallel to the drive axis O.
  • the guide surface 32a is located on the leading side of the drive shaft 3 in the rotational direction
  • the guide surface 32b is located on the trailing side of the drive shaft 3 in the rotational direction.
  • the front side path 3e is also formed at a predetermined angle around the drive axis O, and as shown in FIGS. 17 to 19, it has a predetermined length parallel to the drive axis O. It is formed.
  • the rear end of the front side path 3e is the rear end regulation surface 3h
  • the front end of the front side path 3e is the front end regulation surface 3i.
  • the rear end regulation surface 3h and the front end regulation surface 3i extend in a direction perpendicular to the drive axis O.
  • the front side path 3e has a smaller angle around the drive axis O and a shorter length in the drive axis O direction than the rear side path 3c.
  • the drive shaft 3 also forms guide surfaces 34a and 34b extending in the drive axis O direction due to its own thickness portion which is the difference between the inner diameter and the outer diameter of the drive shaft 3. ..
  • the guide surface 34a and the guide surface 34b are flush with each other and extend parallel to the drive axis O.
  • the guide surface 34a is located on the leading side of the drive shaft 3 in the rotational direction
  • the guide surface 34b is located on the trailing side of the drive shaft 3 in the rotational direction.
  • a first spool 55 and a second spool 57 are provided in the drive shaft 3.
  • the first spool 55 is arranged so as to be movable in the drive axis O direction in the first axial path 3a via the first spring 2 between the first spool 55 and the step 3j.
  • the first spool 55 has a thick cylinder portion 55a having an outer diameter slightly smaller than the inner diameter of the first axis 3a and formed into a thick cylindrical shape, and a thick cylinder portion 55a.
  • a thin-walled cylinder 55b located in the front and having an outer diameter equal to that of the thick-walled cylinder 55a and formed in a cylindrical shape thinner than the thick-walled cylinder 55a, and an end 55c that closes the rear end of the thick cylinder 55a. It consists of.
  • the first spool 55 is made of resin.
  • a seal 55d made of a material is provided so that the first spool 55 can easily move in the first axis 3a in the drive axis O direction and the control pressure of the control pressure chamber 17a cannot be easily released. There is.
  • a first internal flow path 59 is formed in the thick-walled cylinder portion 55a and the thin-walled cylinder portion 55b, and the drive axis O is formed between the inner peripheral surface of the thick-walled cylinder portion 55a and the inner peripheral surface of the thin-walled cylinder portion 55b.
  • a contact surface 55 g orthogonal to the above is formed.
  • the thick-walled cylinder portion 55a is formed with a first communication window 55e that opens the first internal flow path 59 to the outside.
  • the second spool 57 is connected to the front end of the second axis 3b via the second spring 4 in the second axis 3b and the thin-walled cylinder portion 55b in the drive axis O direction. It is arranged so that it can be moved to.
  • the urging force of the second spring 4 is set stronger than the urging force of the first spring 2.
  • the second spool 57 has a cylindrical tubular portion 57a whose outer diameter is slightly smaller than the inner diameter of the second axial path 3b and the thin-walled tubular portion 55b, and a cylindrical portion 57a at the front end of the tubular portion 57a. It is composed of a formed spring seat portion 57b.
  • the second spool 57 is also made of resin.
  • a seal 57c made of a material that allows the second spool 57 to easily move in the thin-walled cylinder portion 55b in the drive axis O direction and the control pressure of the control pressure chamber 17a is difficult to escape is provided. Has been done.
  • a second internal flow path 61 communicating with the first internal flow path 59 of the first spool 55 is formed in the tubular portion 57a. Further, an internal intake 57d communicating with the second internal flow path 61 is formed substantially in the center of the tubular portion 57a in the drive axis O direction, and the second internal flow path 61 is outward in front of the tubular portion 57a. A second communication window 57e to be opened is formed.
  • the fixed swash plate 5 is formed with an internal suction port 5c formed so as to extend radially from the swash plate chamber 29.
  • the internal suction port 5c coincides with the internal suction port 3d of the drive shaft 3.
  • the internal intake 57d of the tubular portion 57a of the second spool 57 has an internal suction throttle mechanism SV whose communication area with the internal suction port 3d and the internal suction port 5c changes depending on the position of the second spool 57 in the drive axis O direction. It is configured.
  • the swash plate chamber 29 passes through the internal suction port 5c of the fixed swash plate 5, the internal suction port 3d of the drive shaft 3, and the internal suction throttle mechanism SV, and as shown in FIG. 5, the second internal flow path 61 of the second spool 57. And communicate with the first internal flow path 59 of the first spool 55.
  • the first internal flow path 59 communicates with the first communication window 55e
  • the second internal flow path 61 communicates with the second communication window 57e.
  • the first communication window 55e and the second communication window 57e are 180 ° out of phase around the drive axis O.
  • the first communication window 55e communicates with the rear side first communication passages 37a to 37e that communicate with the rear side compression chamber 51 that performs the suction stroke.
  • the second communication window 57e communicates with the front side first communication passages 41a to 41e communicating with the front side compression chamber 53 that performs the suction stroke.
  • An engaging hole 55f is formed in the thick cylinder portion 55a of the first spool 55.
  • the engagement hole 55f is located behind the first communication window 55e in the drive axis O direction.
  • the engaging piece 63a of the rear side frame body 63 is engaged with the engaging hole 55f, whereby the frame body 63 is arranged in the thick cylinder portion 55a of the first spool 55.
  • the frame body 63 corresponds to the rear side lid body.
  • the frame body 63 is guided to the guide surfaces 32a and 32b of the drive shaft 3 according to the position of the first spool 55 in the drive shaft center O direction.
  • an engaging hole 57f is also formed in the tubular portion 57a of the second spool 57.
  • the engagement hole 57f is located in front of the second communication window 57e in the drive axis O direction.
  • An engaging piece 65a of the front shutter 65 is engaged with the engaging hole 57f, whereby the shutter 65 is arranged in the tubular portion 57a of the second spool 57.
  • the shutter 65 corresponds to the front side lid.
  • the shutter 65 is guided to the guide surfaces 34a and 34b of the drive shaft 3 according to the position of the second spool 57 in the drive shaft center O direction.
  • the first and second spools 55 and 57, the frame body 63 and the shutter 65 correspond to the moving body of the present invention.
  • the frame 63 includes a semi-cylindrical shielding portion 63b, a first rim portion 63c extending from one end of the shielding portion 63b in the drive axis O direction, and a shielding portion 63b. It has a second rim portion 63d extending from the end in the drive axis O direction, and a third rim portion 63e connecting the first rim portion 63c and the second rim portion 63d in a semi-cylindrical shape.
  • the engaging piece 63a is formed by bending from the third rim portion 63e in the drive axis O direction.
  • the front end surface of the shielding portion 63b is a contact surface 63h formed at right angles to the drive axis O
  • the rear end surface of the third rim portion 63e is a contact surface formed at right angles to the drive axis O. It is said to be 63i.
  • the first rim portion 63c is formed with a recess 63f bent so as to approach the drive shaft center O.
  • the frame body 63 is movably provided in the rear side radial path 3c of the drive shaft 3 by being engaged with the first spool 55, and is provided together with the drive shaft 3 on the rear side shaft hole 33a. Rotate inside.
  • the rear end surface of the shielding portion 63b has a profile 63g having a predetermined shape.
  • the profile 63g forms the rear side second continuous passage 64 together with the first to third rim portions 63c, 63d, 63e.
  • the rear side second communication passage 64 constitutes a communication area between the rear side path 3c and the rear side first communication passages 37a to 37e.
  • the inside of the frame body 63 forms the rear side second communication passage 64 which constitutes the communication area between the rear side path 3c and the rear side first communication passages 37a to 37e.
  • the rear side path 3c intermittently communicates with the rear side first communication passages 37a to 37e as the drive shaft 3 rotates.
  • the profile 63g includes a first straight line portion 631 extending from the second rim portion 63d to the front side in the rotation direction of the drive shaft 3, a first inclined portion 632 inclined with respect to the drive axis O direction, and a second inclined portion 633. , A second straight line portion 634 extending rearward from the first rim portion 63c in the rotational direction of the drive shaft 3.
  • the profile 63g includes a first straight portion 631, a first inclined portion 632, a second inclined portion 633, and a second straight portion 634 from the second rim portion 63d to the first rim portion 63c on the rear side in the rotation direction of the drive shaft 3. It is formed continuously in the order of.
  • the first inclined portion 632 is located on the rear side of the profile 63 g in the rotational direction of the drive shaft 3.
  • the second inclined portion 633 is located on the front side of the profile 63g in the rotational direction of the drive shaft 3.
  • the inclination angle ⁇ 1 of the second inclined portion 633 with respect to the drive axis O direction is set to be smaller than the inclination angle ⁇ 1 of the first inclined portion 632 with respect to the drive axis O direction.
  • the profile 63g is composed of the first straight portion 631, the first inclined portion 632, the second inclined portion 633, and the second straight portion 634, but the number of the inclined portions and the straight portions is appropriately designed. May be good.
  • the shutter 65 includes a semi-cylindrical shielding portion 65b and an engaging piece 65a. That is, the shutter 65 does not have the first to third rim portions 63c to 63e like the frame body 63.
  • the front end surface is a contact surface 65d formed at a right angle to the drive axis O
  • the rear end surface is a contact surface 65e formed at a right angle to the drive axis O. It is said that.
  • the contact surface 65e is located on the rear side of the drive shaft 3 in the rotational direction.
  • the contact surface 65e is an end surface on the rear side of the engaging piece 65a.
  • the other portion of the rear end surface is a profile 65c having a predetermined shape.
  • the profile 65c includes a first straight portion 651 formed by the rear end surface of the engaging piece 65a, a first inclined portion 652 and a second inclined portion 653 inclined with respect to the drive axis O direction, and a second inclined portion. It is composed of a second straight line portion 654 extending from the portion 653 to the front side in the rotation direction of the drive shaft 3.
  • the profile 65c is continuously formed in the order of the first straight line portion 651, the first inclined portion 652, the second inclined portion 653, and the second straight line portion 654.
  • the first inclined portion 652 is located on the rear side of the profile 65c in the rotational direction of the drive shaft 3.
  • the second inclined portion 653 is located on the front side of the profile 65c in the rotational direction of the drive shaft 3.
  • the inclination angle ⁇ 2 of the second inclined portion 653 with respect to the drive axis O direction is set to be smaller than the inclination angle ⁇ 2 of the first inclined portion 652 with respect to the drive axis O direction.
  • the profile 65c is composed of the first straight portion 651, the first inclined portion 652, the second inclined portion 653, and the second straight portion 654, but the number of the inclined portions and the straight portions is appropriately designed.
  • the second straight line portion 654 may be deleted so that the second inclined portion 653 is connected to the guide surface 34a on the front side in the rotation direction.
  • the engaging piece 65a is formed by bending in the drive axis O direction from the contact surface 65e of the shielding portion 65b.
  • the engaging piece 65a is provided on the rear side of the drive shaft 3 in the rotational direction. It can be said that the engaging piece 65a is provided on the rear side of the shielding portion 65b in the rotation direction. Further, it can be said that the engaging piece 65a is provided on the rear side in the rotational direction with respect to the central position of the inner peripheral surface of the shutter 65.
  • the left and right end faces of the shielding portion 65b extend parallel to the drive axis O.
  • the shutter 65 includes a rear end surface 65f mounted on the guide surface 34b and a front end surface 65g mounted on the guide surface 34a.
  • the rear end surface 65f extends in the drive axis O direction at the rear end portion in the rotation direction of the shutter 65.
  • the front end surface 65g extends in the drive axis O direction at the front end portion in the rotation direction of the shutter 65.
  • the rear end surface 65f is formed to have a longer length in the drive axis O direction than the front end surface 65g.
  • the area where the guide surface 34b, which is the rear side of the drive shaft 3 in the rotation direction, and the rear end surface 65f come into contact with each other is such that the guide surface 34a, which is the front side of the drive shaft 3 in the rotation direction, and the front end surface 65g come into contact with each other. It is wider than the area.
  • the shutter 65 is movably provided in the front side path 3e of the drive shaft 3 by being engaged with the second spool 57, and is provided in the front side shaft hole 33b together with the drive shaft 3.
  • the profile 65c which is a part of the outer peripheral edge of the shutter 65, forms the front side second passage 66.
  • the front side second communication passage 66 constitutes a communication area between the front side path 3e and the front side first communication passages 41a to 41e.
  • the front side path 3e intermittently communicates with the front side first communication passages 41a to 41e as the drive shaft 3 rotates.
  • the rear side compression chamber 51 becomes a suction stroke.
  • a low-pressure refrigerant that has passed through an evaporator through a suction port 29a exists in the swash plate chamber 29.
  • the refrigerant in the swash plate chamber 29 passes through the internal suction port 5c of the fixed swash plate 5, the internal suction port 3d of the drive shaft 3, and the internal suction throttle mechanism SV, and as shown in FIG. 5, the second inside of the second spool 57. It exists in the flow path 61, the first internal flow path 59 of the first spool 55, and the first communication window 55e. Then, as shown in FIGS.
  • the rear side first communication passages 37a to 37e and the rear side second communication passage 64 communicate with each other, so that the refrigerant is sucked into the rear side compression chamber 51.
  • the rear side first communication passages 37a to 37e and the rear side second communication passage 64 are not communicated with each other, and the rear side head 7a moves from the bottom dead center to the top dead center, so that the rear side compression chamber 51 Is a compression stroke for compressing the sucked refrigerant, and further is a discharge stroke for discharging the compressed refrigerant to the rear side discharge chamber 17b.
  • the front compression chamber 53 becomes a suction stroke.
  • the refrigerant in the swash plate chamber 29 is also present in the second internal flow path 61 of the second spool 57 and the second communication window 57e.
  • the front side first communication passages 41a to 41e and the front side second communication passage 66 communicate with each other, so that the refrigerant is sucked into the front side compression chamber 53.
  • the front side first communication passages 41a to 41e and the front side second communication passage 66 are not communicated with each other, and the front side head 7b moves from the bottom dead center to the top dead center, so that the front side compression chamber 53 Is a compression stroke for compressing the sucked refrigerant, and further is a discharge stroke for discharging the compressed refrigerant to the front side discharge chamber 19a.
  • the refrigerant discharged to the rear side discharge chamber 17b and the refrigerant discharged to the front side discharge chamber 19a are discharged from the discharge port 31a to the condenser via the discharge passage 31.
  • the first spool 55 moves forward against the urging force of the first spring 2 and the second spool 55, as shown in FIG. 57 also moves forward against the urging force of the second spring 2.
  • the first spool 55 moves forward independently until the contact surface 55g of the first spool 55 comes into contact with the second spool 57.
  • the first spool 55 and the second spool 57 move forward as one. Therefore, as shown in FIG.
  • the frame body 63 has the contact surface 63h in contact with the front end regulation surface 3g and is located at the front end of the rear side path 3c. Therefore, since the rear side first communication passages 37a to 37e communicate with the rear side second communication passage 64 under a large communication area, a large amount of refrigerant is sucked into the rear side compression chamber 51.
  • the shutter 65 is located at the front end of the front side path 3e with the contact surface 65d in contact with the front end regulation surface 3i. Therefore, since the front side first communication passages 41a to 41e communicate with the front side second communication passage 66 under a large communication area, a large amount of refrigerant is sucked into the front side compression chamber 53.
  • the discharge flow rate discharged from the rear side compression chamber 51 to the rear side discharge chamber 17b is maximized, and the discharge flow rate discharged from the front side compression chamber 53 to the front side discharge chamber 19a is also maximum. It has become. Therefore, the refrigerant having the maximum discharge flow rate is discharged to the condenser. That is, when the discharge flow rate is maximum, the frame body 63 maximizes the communication area between the rear side first communication passages 37a to 37e and the rear side second communication passage 64. Further, the shutter 65 maximizes the communication area between the front side first communication passages 41a to 41e and the front side second communication passage 66 when the discharge flow rate is maximum.
  • the frame body 63 moves rearward from the state shown in FIG. 10 with the contact surface 63h separated from the front end regulation surface 3g. Therefore, as the rear side first communication passages 37a to 37e overlap the profile 63g, the communication area between the rear side first communication passages 37a to 37e and the rear side second communication passage 64 decreases. Therefore, the amount of the refrigerant sucked into the rear compression chamber 51 is reduced.
  • the shutter 65 is as shown in FIG. 18 from the state shown in FIG. 17 when the control valve 15 slightly lowers the pressure in the control pressure chamber 17a from the state shown in FIG. 3 in which the control valve 15 increases the pressure in the control pressure chamber 17a.
  • the contact surface 65d is separated from the front end regulation surface 3i, and the shutter 65 moves rearward. Therefore, as the front side first communication passages 41a to 41e overlap the profile 65c, the communication area between the front side first communication passages 41a to 41e and the front side second communication passage 66 decreases. Therefore, the amount of the refrigerant sucked into the front compression chamber 53 is reduced.
  • the shutter 65 moves rearward until the contact surface 65e abuts on the rear end regulation surface 3h, and is located at the rear end of the front side path 3e, as shown in FIG. To do. Therefore, the end timing of communication between the front side first communication passages 41a to 41e and the front side second communication passage 66 is defined by the second inclined portion 653. In this case, a small amount of refrigerant is sucked into the front compression chamber 53.
  • the discharge flow rate discharged from the front side compression chamber 53 to the front side discharge chamber 19a is almost zero.
  • the discharge flow rate discharged from the rear side compression chamber 51 to the rear side discharge chamber 17b depends on the position of the profile 63g with respect to the rear side first communication passages 37a to 37e, and is discharged from the rear side compression chamber 51 to the rear side discharge chamber 17b. It is the flow rate between the maximum and minimum of the discharged flow rate. Therefore, the refrigerant having a predetermined discharge flow rate is discharged to the condenser.
  • the first spool 55 succumbs to the urging force of the first spring 2 and moves further rearward, as shown in FIG.
  • the second spool 57 does not move further rearward because the contact surface 65e is in contact with the rear end regulation surface 3h due to the urging force of the second spring 2. Therefore, as shown in FIG. 12 from the state of FIG. 11, the frame body 63 has the contact surface 63i in contact with the rear end regulation surface 3f and is located at the rear end of the rear side path 3c. Therefore, the end timing of communication between the rear side first communication passages 37a to 37e and the rear side second communication passage 64 is defined by the second inclined portion 633. In this case, a small amount of refrigerant is sucked into the rear compression chamber 51.
  • the shutter 65 is located at the rear end of the front side path 3e with the contact surface 65e in contact with the rear end regulation surface 3h. Therefore, the end timing of communication between the front side first communication passages 41a to 41e and the front side second communication passage 66 is defined by the second inclined portion 653. In this case, a small amount of refrigerant is sucked into the front compression chamber 53.
  • the discharge flow rate discharged from the rear side compression chamber 51 to the rear side discharge chamber 17b and the discharge flow rate discharged from the front side compression chamber 53 to the front side discharge chamber 19a are small, and the condenser has a small discharge flow rate. Discharges only the refrigerant with the minimum discharge flow rate. That is, the frame body 63 minimizes the communication area between the rear side first communication passages 37a to 37e and the rear side second communication passage 64 when the discharge flow rate is the minimum. Further, the shutter 65 minimizes the communication area between the front side first communication passages 41a to 41e and the front side second communication passage 66 when the discharge flow rate is the minimum.
  • the control valve 15 can easily increase the pressure in the control pressure chamber 17a, and the controllability is improved.
  • the refrigerant flows into the rear side compression chamber 51 and the front side compression chamber 53, so that the refrigerant does not flow into the respective compression chambers 51 and 53.
  • the amount of pressure drop in the inhalation stroke can be reduced. As a result, the load applied to the piston 7 and the shoes 49a and 49b in the suction stroke can be reduced.
  • the power of the compressor can be reduced. Further, the differential pressure between the compression chambers 51 and 53 and the swash plate chamber 29 at the minimum discharge flow rate can reduce the inflow of oil contained in the refrigerant from the swash plate chamber 29 into the compression chambers 51 and 53. Therefore, the oil can be easily retained in the swash plate chamber 29, and the lubricity in the swash plate chamber 29 can be improved.
  • the communication area between the rear side first communication passages 37a to 37e and the rear side second communication passage 64 and the communication area between the front side first communication passages 41a to 41e and the front side second communication passage 66 are maximized.
  • the discharge flow rate of 3 is in the maximum state.
  • the first spool 55 moves in the first axis 3a of the drive shaft 3 in the drive axis O direction
  • the second spool 57 drives in the second axis 3b of the drive shaft 3. It moves in the O direction of the axis. Therefore, the compressive load does not directly act on the first and second spools 55 and 57.
  • the frame body 63 when the rear side compression chamber 51 communicates with the rear side first communication passages 37a to 37e during the suction stroke, and when the rear side compression chamber 51 communicates with the rear side first communication passages 37a to 37e Makes the rear side route 3c non-communication with the rear side first communication passages 37a to 37e.
  • the compressive load acts on the drive shaft 3 through the rear-side first continuous passages 37a to 37e, while the compressive load does not easily act on the first spool 55 and the frame body 63.
  • the shutter 65 communicates the front side path 3e with the front side first communication passages 41a to 41e when the front side compression chamber 53 is in the suction stroke, and the front side when the front side compression chamber 53 is in the compression stroke or the discharge stroke.
  • the route 3e is not communicated with the front side first communication passages 41a to 41e.
  • the first spool 55, the second spool 57, the frame body 63, and the shutter 65 can easily move in the drive axis O direction. Further, in this compressor, it is not necessary to make the moving body larger than necessary in order to obtain a large thrust.
  • this compressor can exhibit high controllability and can be miniaturized.
  • the communication start timing between the rear side first communication passages 37a to 37e and the rear side path 3c is the first. It is defined by the rim portion 63c. Therefore, it is difficult for the high-pressure refrigerant remaining in the rear side compression chamber 51 to return to the rear side path 3c. If the discharge flow rate is reduced and the frame body 63 moves slightly rearward so that the recess 63f communicates with the rear side first communication passages 37a to 37e, the recess 63f realizes an early communication start timing. Can be done.
  • the shutter 65 does not have the first rim portion 63c like the frame body 63, the communication start timing between the front side first communication passages 41a to 41e and the front side path 3e is set. It is defined by the guide surface 34a. Therefore, the shutter 65 having a simple shape can be adopted, and the processing to the drive shaft 3 is also easy. Further, since the minimum capacity can be realized by the shutter 65, other control can be omitted. Therefore, it is possible to reduce the manufacturing cost of the compressor. Further, since the length of the shutter 65 in the drive axis O direction can be shortened, the mountability on a vehicle or the like can be improved by shortening the axis of the compressor.
  • the shutter 65 does not have a weak portion such as the first rim portion 63c of the frame body 63, the durability is improved and high controllability can be exhibited. Further, the first rim portion 63c is near the communication start timing and is easily affected by the load due to the high-pressure refrigerant remaining in the compression chamber. In this respect, the shutter 65 is less likely to be affected by the load of the high-pressure refrigerant remaining in the compression chamber like the first rim portion 63c, and the durability is further improved.
  • the communication end timing between the front side first communication passages 41a to 41e and the front side path 3e is defined by the guide surface 34b when the discharge flow rate is maximum.
  • the shutter 65 when the discharge flow rate is the minimum, it is defined by the shutter 65. Therefore, the shape of the shutter 65 is the simplest. Further, since the guide surfaces 34a and 34b can form the front side axle 3e at a position shallow from the outer peripheral surface of the drive shaft 3, the strength against twisting of the drive shaft 3 is improved and high durability can be exhibited. ..
  • the frame 63 has a slightly more complicated shape than the shutter 65, but the rear side.
  • the capacity of the compression chamber 51 can be precisely controlled.
  • this compressor employs the first spool 55 and the second spool 57, the capacity of the rear side compression chamber 51 and the front side compression chamber 53 can be precisely controlled.
  • the drive shaft 3 pushes the engaging piece 65a in the rotational direction to the second spool 57.
  • the engagement with the shutter 65 is strong.
  • the area where the guide surface 34b on the rear side in the rotation direction of the drive shaft 3 and the rear end surface 65f abut is wider than the area where the guide surface 34a on the front side in the rotation direction of the drive shaft 3 and the front end surface 65g abut. Therefore, it is possible to secure a wide contact area when the drive shaft 3 pushes the shutter 65 in the rotational direction, and the posture of the shutter 65 is stable.
  • the compressor of the second embodiment employs a single spool 58, and the shutter 65 and the frame body 63 are engaged with the spool 58.
  • the spool 58 includes a tubular portion 58a, an end portion 58b that closes the rear end of the tubular portion 58a, and a spring seat portion 58c formed in a cylindrical shape at the front end of the tubular portion 58a.
  • An internal flow path 60, an internal intake 58d that opens the internal flow path 60 to the outside, a first communication window 58e, and a second communication window 58f are formed in the tubular portion 58a.
  • a seal 58g is provided on the outer peripheral surface of the end portion 58b.
  • Other configurations are the same as those of the compressor of the first embodiment.
  • the capacity control of the front side compression chamber 53 and the rear side compression chamber 51 can be easily performed. Other effects are the same as those of the compressor of Example 1.
  • the compressor of the third embodiment employs a single spool 58, and the front side shutter 65 and the rear side shutter 65 are engaged with the spool 58.
  • the front side shutter 65 and the rear side shutter 65 have the same structure as the shutter 65 of the first embodiment.
  • Other configurations are the same as those of the compressors of Examples 1 and 2.
  • the rear side second communication passage constitutes a communication area between the rear side path 3c and the rear side first communication passages 37a to 37e, similarly to the front side second communication passage 66.
  • the capacity control of the front side compression chamber 53 and the rear side compression chamber 51 can be performed more easily.
  • Other effects are the same as those of the compressor of Example 1.
  • the piston type compressor of the present invention may be a single-headed piston type compressor using a single-headed piston having a head on only one side.
  • the compressors of Examples 1 to 3 when the discharge flow rate is set to the minimum flow rate state, by changing the shape of the profile 63 g, as shown in FIG. 22, the rear side first passages 37a to 37e As shown in FIG. 23, the communication area between the front side first communication passage 64 and the rear side second communication passage 64 is set to substantially zero, and the shape of the profile 65c is changed so that the front side first communication passage 41a to 41e and the front side second communication passage 41a to 41e are changed.
  • the communication area with 66 may be set to substantially zero.
  • the rear side first passages 37a to 37e do not overlap with the rear side second passage 64 but overlap only with the shielding portion 63b due to the rotation of the drive shaft 3.
  • the front-side first passages 41a to 41e may not overlap with the front-side second passage 66, but may overlap only with the shielding portion 65b.
  • external control may be performed to control the control pressure by switching ON and OFF of the current from the outside to the control valve 15, and the control may be performed regardless of the current from the outside.
  • Internal control to control the pressure may be performed.
  • the control valve 15 is configured to increase the valve opening degree by turning off the current to the control valve 15, the valve opening degree is increased when the compressor is stopped. Can be increased, and the control pressure in the control pressure chamber 17a can be lowered. Therefore, since the compressor can be started with the discharge flow rate being the minimum flow rate, the start-up shock can be reduced.
  • the compressors of the first to third embodiments even if the inlet control is performed by changing the flow rate of the refrigerant gas introduced from the rear side discharge chamber 17b to the control pressure chamber 17a through the air supply passage 47a by the control valve 15. good.
  • the control pressure chamber 17a can be quickly increased in pressure, and the discharge flow rate can be rapidly increased.
  • the control valve 15 is configured to reduce the valve opening degree by turning off the current to the control valve 15, the valve opening degree is increased when the compressor is stopped. Can be reduced, and the control pressure in the control pressure chamber 17a can be lowered. Therefore, since the compressor can be started with the discharge flow rate being the minimum flow rate, the start-up shock can be reduced.
  • the present invention can be used for vehicle air conditioners and the like.
  • Front side compression chamber 7 ... Piston (7a ... Rear head, 7b ... Front head) 9e, 11e ... Discharge valve (discharge reed valve) O ... Drive shaft center 55, 57, 63, 65 ... Moving body (55 ... 1st spool, 57 ... 2nd spool, 63 ... Frame body, 65 ... Shutter) 15 ... Control valves 37a to 37e, 41a to 41e ... 1st passage (37a to 37e ... 1st passage on the rear side, 41a to 41e ... 1st passage on the front side) 3a, 3b ... Axle (3a ... 1st axis, 3b ... 2nd axis) 3c, 3e ... Route (3c ... Rear side route, 3e ... Front side route) 32a, 32b, 34a, 34b ... Guide surface

Abstract

A piston-type compressor according to the present invention has formed in cylinder blocks (21, 23) thereof first communication channels (37a, 41a) or the like connected to cylinder bores (35a, 39a) or the like. A drive shaft (3) has formed therein shaft channels (3a, 3b) which extend in the drive shaft axial (O) direction and path channels (3c, 3e) which extend in a radial direction of the drive shaft (3) in communication with the shaft channels (3a, 3b) and which are intermittently in communication with the first communication channels (37a, 41a) or the like in conjunction with rotation of the drive shaft (3). A movable body comprises: spools (55, 57) which are disposed within the shaft channels (3a, 3b) in such a manner as to be movable in the drive shaft axial direction (O); and lids (63, 65) which are disposed in the path channels (3c, 3e) in such a manner as to engage the spools (55, 57) and which are capable of changing communication areas with respect to the path channels (3c, 3e), the first communication channels (37a, 41a), and the like. The lids (63, 65) are configured to maximize the communication areas when the discharge flow rate is at a maximum level, and to minimize the communication areas when the discharge flow rate is at a minimum level.

Description

ピストン式圧縮機Piston compressor
 本発明はピストン式圧縮機に関する。 The present invention relates to a piston type compressor.
 特許文献1に従来のピストン式圧縮機(以下、単に圧縮機という。)が開示されている。この圧縮機は、ハウジングと、駆動軸と、固定斜板と、複数のピストンと、吐出弁と、移動体と、制御弁とを備えている。 Patent Document 1 discloses a conventional piston type compressor (hereinafter, simply referred to as a compressor). The compressor includes a housing, a drive shaft, a fixed swash plate, a plurality of pistons, a discharge valve, a moving body, and a control valve.
 ハウジングは、シリンダブロックを有している。シリンダブロックには、複数のシリンダボアが形成されている他、シリンダボアに連通する第1連通路が形成されている。また、ハウジングには、吐出室と、斜板室と、軸孔とが形成されている。斜板室には圧縮機の外部から冷媒が吸入される。また、斜板室は軸孔と連通している。 The housing has a cylinder block. In addition to forming a plurality of cylinder bores, the cylinder block is formed with a first connecting passage that communicates with the cylinder bores. Further, the housing is formed with a discharge chamber, a swash plate chamber, and a shaft hole. Refrigerant is sucked into the swash plate chamber from the outside of the compressor. In addition, the swash plate chamber communicates with the shaft hole.
 駆動軸は、軸孔内で回転可能に支承されている。固定斜板は、駆動軸の回転によって斜板室内で回転可能である。固定斜板は、駆動軸に垂直な平面に対する傾斜角度が一定である。ピストンは、シリンダボア内に圧縮室を形成し、固定斜板に連結される。圧縮室と吐出室との間には、圧縮室内の冷媒を吐出室に吐出させるリード弁式の吐出弁が設けられている。 The drive shaft is rotatably supported in the shaft hole. The fixed swash plate can be rotated in the swash plate chamber by the rotation of the drive shaft. The fixed swash plate has a constant inclination angle with respect to a plane perpendicular to the drive axis. The piston forms a compression chamber in the cylinder bore and is connected to a fixed swash plate. A reed valve type discharge valve for discharging the refrigerant in the compression chamber to the discharge chamber is provided between the compression chamber and the discharge chamber.
 移動体は、円筒状をなして駆動軸の外周面に設けられており、軸孔内に配置されている。移動体は、軸孔内で駆動軸と一体回転するとともに、制御圧力に基づいて駆動軸の駆動軸心方向に駆動軸に対して移動可能となっている。移動体の外周面には、第2連通路が形成されている。制御弁は、冷媒の圧力を制御して制御圧力とする。 The moving body has a cylindrical shape and is provided on the outer peripheral surface of the drive shaft, and is arranged in the shaft hole. The moving body rotates integrally with the drive shaft in the shaft hole, and can move with respect to the drive shaft in the drive axis direction of the drive shaft based on the control pressure. A second passage is formed on the outer peripheral surface of the moving body. The control valve controls the pressure of the refrigerant to obtain the control pressure.
 この圧縮機では、駆動軸が回転し、固定斜板が回転することで、ピストンがシリンダボア内を上死点と下死点との間で往復動する。ここで、ピストンが上死点から下死点に向かって移動することで、圧縮室は吸入行程となる。そして、この際に第1連通路と第2連通路とが連通することで、圧縮室に冷媒が吸入される。一方、第1連通路と第2連通路とが非連通となり、ピストンが下死点から上死点に向かって移動することにより、圧縮室は吸入した冷媒を圧縮する圧縮行程となり、さらには、圧縮した冷媒を吐出室に吐出する吐出行程となる。そして、この圧縮機は、移動体の駆動軸心方向の位置に応じて、圧縮室から吐出室に吐出される冷媒の流量である吐出流量が変化する。 In this compressor, the drive shaft rotates and the fixed swash plate rotates, so that the piston reciprocates in the cylinder bore between top dead center and bottom dead center. Here, as the piston moves from the top dead center to the bottom dead center, the compression chamber becomes a suction stroke. Then, at this time, the refrigerant is sucked into the compression chamber by communicating the first passage and the second passage. On the other hand, the first passage and the second passage are not communicated with each other, and the piston moves from the bottom dead center to the top dead center, so that the compression chamber becomes a compression stroke for compressing the sucked refrigerant. It is a discharge process in which the compressed refrigerant is discharged to the discharge chamber. Then, in this compressor, the discharge flow rate, which is the flow rate of the refrigerant discharged from the compression chamber to the discharge chamber, changes according to the position in the drive axis direction of the moving body.
特開平5-306680号公報Japanese Unexamined Patent Publication No. 5-306680
 しかし、上記従来の圧縮機では、円筒状の移動体が駆動軸の外周面に設けられている。このため、圧縮行程中や吐出行程中の圧縮室に連通する第1連通路を通じ、圧縮室内で圧縮された高圧の冷媒による荷重(以下、圧縮荷重という。)が移動体に作用する。これにより、この圧縮機では、移動体が軸孔内で駆動軸心方向に交差する方向に押圧されることで、移動体は軸孔の内壁に押し付けられる状態となる。このため、駆動軸心方向に移動する際の移動体と軸孔との摩擦力が大きくなる。これにより、移動体が駆動軸心方向に好適に移動し難くなることから、制御性が低下する。 However, in the above-mentioned conventional compressor, a cylindrical moving body is provided on the outer peripheral surface of the drive shaft. Therefore, the load of the high-pressure refrigerant compressed in the compression chamber (hereinafter referred to as the compression load) acts on the moving body through the first communication passage communicating with the compression chamber during the compression stroke or the discharge stroke. As a result, in this compressor, the moving body is pressed in the shaft hole in the direction intersecting the drive axis direction, so that the moving body is pressed against the inner wall of the shaft hole. Therefore, the frictional force between the moving body and the shaft hole when moving in the direction of the drive axis becomes large. As a result, it becomes difficult for the moving body to move suitably in the direction of the drive axis, and the controllability is lowered.
 そこで、より大きな推力によって移動体を駆動軸心方向に移動させるために、移動体を大型化することが考えられる。しかし、この場合には、移動体の大型化に応じて軸孔等も大型化させる必要があることから、結果として圧縮機が大型化する。 Therefore, in order to move the moving body in the direction of the drive axis by a larger thrust, it is conceivable to increase the size of the moving body. However, in this case, it is necessary to increase the size of the shaft hole and the like in accordance with the increase in size of the moving body, and as a result, the size of the compressor increases.
 本発明は、上記従来の実情に鑑みてなされたものであって、高い制御性を発揮するとともに小型化を実現可能なピストン式圧縮機を提供することを解決すべき課題としている。 The present invention has been made in view of the above-mentioned conventional circumstances, and it is an object to be solved to provide a piston type compressor capable of exhibiting high controllability and realizing miniaturization.
 本発明のピストン式圧縮機は、複数のシリンダボアが形成されたシリンダブロックを有し、吐出室と、冷媒が吸入される斜板室と、軸孔とが形成されたハウジングと、
 前記軸孔内に回転可能に支承された駆動軸と、
 前記駆動軸の回転によって前記斜板室内で回転可能であり、前記駆動軸に垂直な平面に対する傾斜角度が一定である固定斜板と、
 前記シリンダボア内に圧縮室を形成し、前記固定斜板に連結されるピストンと、
 前記圧縮室内の冷媒を前記吐出室に吐出させる吐出弁と、
 前記駆動軸に設けられ、前記駆動軸と一体回転するとともに、制御圧力に基づいて前記駆動軸の駆動軸心方向に前記駆動軸に対して移動可能である移動体と、
 前記制御圧力を制御する制御弁とを備え、
 前記移動体の前記駆動軸心方向の位置に応じて、前記圧縮室から前記吐出室に吐出される冷媒の流量である吐出流量が変化するピストン式圧縮機であって、
 前記シリンダブロックには、前記シリンダボアに連通する第1連通路が形成され、
 前記駆動軸には、前記駆動軸心方向に延びる軸路と、前記軸路と連通して前記駆動軸の径方向に延び、前記駆動軸の回転に伴い間欠的に前記第1連通路と連通する径路とが形成され、
 前記移動体は、前記軸路内に前記駆動軸心方向に移動可能に配置されたスプールと、前記スプールと係合されて前記径路に配置され、前記径路と前記第1連通路との連通面積を変更可能な蓋体とを有し、
 前記蓋体は、前記吐出流量が最大であるときには前記連通面積を最大にする一方、前記吐出流量が最少であるときには前記連通面積を最小にすることを特徴とする。
The piston type compressor of the present invention has a cylinder block in which a plurality of cylinder bores are formed, and has a discharge chamber, a swash plate chamber in which a refrigerant is sucked, and a housing in which a shaft hole is formed.
A drive shaft rotatably supported in the shaft hole,
A fixed swash plate that can be rotated in the swash plate chamber by rotation of the drive shaft and has a constant inclination angle with respect to a plane perpendicular to the drive shaft.
A piston that forms a compression chamber in the cylinder bore and is connected to the fixed swash plate,
A discharge valve that discharges the refrigerant in the compression chamber to the discharge chamber,
A moving body provided on the drive shaft, which rotates integrally with the drive shaft and is movable with respect to the drive shaft in the drive axis direction of the drive shaft based on a control pressure.
A control valve for controlling the control pressure is provided.
A piston type compressor in which the discharge flow rate, which is the flow rate of the refrigerant discharged from the compression chamber to the discharge chamber, changes according to the position of the moving body in the drive axis direction.
The cylinder block is formed with a first communication passage that communicates with the cylinder bore.
The drive shaft includes an axis extending in the direction of the drive axis, communicating with the axis and extending in the radial direction of the drive shaft, and intermittently communicating with the first passage as the drive shaft rotates. Axle is formed
The moving body is arranged in the axial path by engaging with a spool that is movably arranged in the drive axis direction and is arranged in the path, and has a communication area between the path and the first communication passage. Has a changeable lid and
The lid is characterized in that the communication area is maximized when the discharge flow rate is maximum, while the communication area is minimized when the discharge flow rate is minimum.
 本発明のピストン式圧縮機では、移動体のスプールが駆動軸の軸路内を駆動軸心方向に移動する。このため、移動体のスプールには圧縮荷重が作用しない。また、移動体の蓋体は、スプールと係合されて径路に配置され、径路と第1連通路との連通面積を変更する。径路は駆動軸の回転に伴い間欠的に第1連通路と連通するに過ぎず、蓋体は、吐出流量が最大であるときには連通面積を最大にする一方、吐出流量が最少であるときには連通面積を最小にする。この間、蓋体は、圧縮室が吸入行程の際に径路を第1連通路と連通させ、圧縮室が圧縮行程又は吐出行程の際には径路を第1連通路と非連通とする。これにより、駆動軸には、第1連通路を通じて圧縮荷重が作用する一方、移動体には、圧縮荷重が作用し難くなる。このため、この圧縮機では、移動体が駆動軸心方向に移動し易い。また、この圧縮機では、大きな推力を得るために移動体を必要以上に大型化させなくても足りる。 In the piston type compressor of the present invention, the spool of the moving body moves in the axial path of the drive shaft in the direction of the drive axis. Therefore, no compressive load acts on the spool of the moving body. Further, the lid of the moving body is engaged with the spool and arranged in the path, and the communication area between the path and the first communication passage is changed. The route only intermittently communicates with the first communication passage as the drive shaft rotates, and the lid maximizes the communication area when the discharge flow rate is maximum, while the communication area is maximum when the discharge flow rate is minimum. To minimize. During this time, the lid body communicates the path with the first passage when the compression chamber is in the suction stroke, and makes the route non-communication with the first passage when the compression chamber is in the compression stroke or the discharge stroke. As a result, the compressive load acts on the drive shaft through the first continuous passage, while the compressive load does not easily act on the moving body. Therefore, in this compressor, the moving body easily moves in the direction of the drive axis. Further, in this compressor, it is not necessary to make the moving body larger than necessary in order to obtain a large thrust.
 したがって、本発明のピストン式圧縮機は、高い制御性を発揮するとともに小型化を実現できる。 Therefore, the piston type compressor of the present invention can exhibit high controllability and can realize miniaturization.
 駆動軸は、蓋体を駆動軸心方向に案内する案内面を有し得る。第1連通路と径路との連通開始タイミングは、その案内面によって規定されていることが好ましい。この場合、簡易な形状の蓋体を採用できるとともに、駆動軸への加工も簡易になる。また、蓋体によって最少容量を実現できることから、他の制御を省略できる。このため、ピストン式圧縮機の製造コストの低廉化を実現できる。また、蓋体の駆動軸心方向の長さを短くできるため、ピストン式圧縮機の短軸化により、車両等への搭載性を上げることができる。さらに、蓋体は、強度の弱い部分がなくなるため、耐久性が上がり、かつ高い制御性を発揮することができる。 The drive shaft may have a guide surface that guides the lid in the direction of the drive axis. It is preferable that the communication start timing between the first communication passage and the route is defined by the guide surface thereof. In this case, a lid having a simple shape can be adopted, and processing to the drive shaft becomes easy. Further, since the minimum capacity can be realized by the lid, other controls can be omitted. Therefore, it is possible to reduce the manufacturing cost of the piston type compressor. Further, since the length of the lid in the direction of the drive axis can be shortened, it is possible to improve the mountability on a vehicle or the like by shortening the axis of the piston type compressor. Further, since the lid body has no weak portion, the durability is improved and high controllability can be exhibited.
 また、第1連通路と径路との連通終了タイミングは、吐出流量が最大であるときには案内面によって規定され、吐出流量が最少であるときには蓋体によって規定されていることが好ましい。この場合も、簡易な形状の蓋体を採用できる。 Further, it is preferable that the timing of the end of communication between the first communication passage and the path is defined by the guide surface when the discharge flow rate is maximum, and by the lid when the discharge flow rate is minimum. In this case as well, a lid having a simple shape can be adopted.
 連通開始タイミングが案内面によって規定され、かつ、連通終了タイミングは、吐出流量が最大であるときには案内面によって規定され、吐出流量が最少であるときには蓋体によって規定されている場合、最も簡易な形状の蓋体を採用できる。また、この場合、駆動軸の外周面から浅い位置で案内面が径路を形成することができるため、駆動軸のねじりに対する強度が向上し、高い耐久性を発揮することができる。 The simplest shape when the communication start timing is defined by the guide surface and the communication end timing is defined by the guide surface when the discharge flow rate is maximum and by the lid when the discharge flow rate is minimum. Lid body can be adopted. Further, in this case, since the guide surface can form a path at a position shallow from the outer peripheral surface of the drive shaft, the strength against twisting of the drive shaft is improved, and high durability can be exhibited.
 シリンダボアは、駆動軸心方向の一方側に配置された一方側シリンダボアと、駆動軸心方向の他方側に配置された他方側シリンダボアとからなり得る。また、ピストンは、一方側シリンダボア内に一方側圧縮室を形成する一方側ヘッドと、他方側シリンダボア内に他方側圧縮室を形成する他方側ヘッドとを有し得る。さらに、第1連通路は、一方側シリンダボアに連通する一方側第1連通路と、他方側シリンダボアに連通する他方側第1連通路とからなり得る。また、径路は、一方側第1連通路と連通する一方側径路と、他方側第1連通路と連通する他方側径路とからなり得る。さらに、蓋体は、一方側径路に配置され、一方側径路と一方側第1連通路との連通面積を変更可能な一方側蓋体と、他方側径路に配置され、他方側径路と他方側第1連通路との連通面積を変更可能な他方側蓋体とからなり得る。この場合、ピストン式圧縮機が両頭型のものとなる。 The cylinder bore may consist of a one-sided cylinder bore arranged on one side in the drive axis direction and a other-side cylinder bore arranged on the other side in the drive axis direction. Further, the piston may have a one-sided head that forms a one-sided compression chamber in the one-sided cylinder bore and a other-sided head that forms the other-side compression chamber in the other-side cylinder bore. Further, the first continuous passage may include a one-sided first continuous passage communicating with the one-side cylinder bore and a other-side first continuous passage communicating with the other side cylinder bore. Further, the route may be composed of a one-sided route communicating with the one-sided first communication passage and the other-side route communicating with the other-side first communication passage. Further, the lid is arranged on the one-sided path and the one-sided lid whose communication area between the one-sided path and the one-sided first communication passage can be changed, and the other side path, and the other side and the other side. It may consist of a lid on the other side whose communication area with the first passage can be changed. In this case, the piston type compressor is a double-headed type.
 両頭型ピストン式圧縮機の場合、他方側蓋体は、他方側径路と他方側第1連通路との連通面積を構成する他方側第2連通路を自己の外周縁の一部が形成しているシャッタであることが好ましい。この場合、他方側蓋体が簡易な形状となるとともに、他方側第1連通路の位置に対するシャッタの外周縁の一部の駆動軸心方向の位置が変わることにより、他方側第2連通路の連通面積を変更し、他方側圧縮室の容量制御を簡易に行うことができる。 In the case of a double-headed piston type compressor, the other side lid has a part of its outer peripheral edge forming the other side second communication passage forming the communication area between the other side path and the other side first communication passage. It is preferable that the shutter is used. In this case, the lid on the other side has a simple shape, and the position of a part of the outer peripheral edge of the shutter in the drive axis direction with respect to the position of the first passage on the other side changes, so that the second passage on the other side has a simple shape. The communication area can be changed, and the capacity of the compression chamber on the other side can be easily controlled.
 両頭型ピストン式圧縮機の場合、他方側蓋体がシャッタであり、一方側蓋体は、一方側径路と一方側第1連通路との連通面積を構成する一方側第2連通路を自己の内部が形成している枠体であることが好ましい。この場合、一方側蓋体は、一方側圧縮室の容量制御を緻密に行うことができる。 In the case of a double-headed piston type compressor, the other side lid is a shutter, and the one side lid has its own second passage that constitutes the communication area between the one side path and the one side first passage. It is preferable that the frame is formed inside. In this case, the one-sided lid can precisely control the capacity of the one-sided compression chamber.
 両頭型ピストン式圧縮機の場合、他方側蓋体がシャッタであり、一方側蓋体もシャッタであることが好ましい。この場合、他方側蓋体及び一方側蓋体が簡易な形状となるとともに、他方側圧縮室及び一方側圧縮室の容量制御を簡易に行うことができる。 In the case of a double-headed piston type compressor, it is preferable that the other side lid is a shutter and the one side lid is also a shutter. In this case, the other side lid and the one side lid have a simple shape, and the capacities of the other side compression chamber and the one side compression chamber can be easily controlled.
 シャッタは、駆動軸の回転方向の後方側でスプールに係合される係合片を有していることが好ましい。駆動軸の回転方向の後方側はシャッタを回転方向に押すことから、そこで係合爪がスプールに係合していれば、スプールとシャッタとの係合が強固になる。 The shutter preferably has an engaging piece that is engaged with the spool on the rear side in the rotation direction of the drive shaft. Since the shutter is pushed in the rotation direction on the rear side in the rotation direction of the drive shaft, if the engaging claw is engaged with the spool there, the engagement between the spool and the shutter becomes strong.
 スプールは、一方側蓋体が係合される第1スプールと、第1スプールに対して駆動軸心方向に移動可能であり、他方側蓋体が係合される第2スプールとからなり得る。この場合、一方側圧縮室と他方側圧縮室とをそれぞれ緻密に容量制御することができる。 The spool may consist of a first spool with which one side lid is engaged and a second spool that is movable in the drive axis direction with respect to the first spool and with which the other side lid is engaged. In this case, the capacitance of the one-side compression chamber and the other-side compression chamber can be precisely controlled.
 スプールは、一方側蓋体及び他方側蓋体が係合されている単一のものであることも好ましい。この場合、一方側圧縮室及び他方側圧縮室の容量制御を簡易に行うことができる。 It is also preferable that the spool is a single spool in which one side lid and the other side lid are engaged. In this case, the capacity control of the one-side compression chamber and the other-side compression chamber can be easily performed.
 本発明のピストン式圧縮機は、高い制御性を発揮するとともに小型化を実現できる。 The piston type compressor of the present invention can exhibit high controllability and can realize miniaturization.
図1は、実施例1のピストン式圧縮機に係り、最少流量時における駆動軸心方向の断面図である。FIG. 1 is a cross-sectional view of the piston type compressor of the first embodiment in the direction of the drive axis at the minimum flow rate. 図2は、実施例1のピストン式圧縮機に係り、所定流量時における駆動軸心方向の断面図である。FIG. 2 is a cross-sectional view of the piston type compressor of the first embodiment in the drive axis direction at a predetermined flow rate. 図3は、実施例1のピストン式圧縮機に係り、最大流量時における駆動軸心方向の断面図である。FIG. 3 is a cross-sectional view of the piston type compressor of the first embodiment in the drive axis direction at the maximum flow rate. 図4は、実施例1のピストン式圧縮機に係り、駆動軸の駆動軸心方向の断面図である。FIG. 4 is a cross-sectional view of the drive shaft in the drive axis direction according to the piston type compressor of the first embodiment. 図5は、実施例1のピストン式圧縮機に係り、移動体の駆動軸心方向の拡大断面図である。FIG. 5 is an enlarged cross-sectional view of the moving body in the drive axis direction according to the piston type compressor of the first embodiment. 図6は、実施例1のピストン式圧縮機に係り、ある方向から見たリヤ側枠体の拡大斜視図である。FIG. 6 is an enlarged perspective view of the rear side frame body as viewed from a certain direction with respect to the piston type compressor of the first embodiment. 図7は、実施例1のピストン式圧縮機に係り、他の方向から見たリヤ側枠体の拡大斜視図である。FIG. 7 is an enlarged perspective view of the rear side frame body as viewed from another direction with respect to the piston type compressor of the first embodiment. 図8は、実施例1のピストン式圧縮機に係り、駆動軸、第1スプール及びリヤ側枠体の駆動軸心に対する直角方向の断面図である。FIG. 8 is a cross-sectional view of the piston type compressor of the first embodiment in a direction perpendicular to the drive shaft center of the drive shaft, the first spool, and the rear side frame. 図9は、実施例1のピストン式圧縮機に係り、図1におけるリヤ側の要部断面図である。FIG. 9 is a cross-sectional view of a main part on the rear side in FIG. 1 relating to the piston type compressor of the first embodiment. 図10は、実施例1のピストン式圧縮機に係り、最大流量時におけるリヤ側枠体、駆動軸等の展開図である。FIG. 10 is a development view of the rear side frame, the drive shaft, and the like at the maximum flow rate, related to the piston type compressor of the first embodiment. 図11は、実施例1のピストン式圧縮機に係り、所定流量時におけるリヤ側枠体、駆動軸等の展開図である。FIG. 11 is a development view of the rear side frame, the drive shaft, and the like at a predetermined flow rate, related to the piston type compressor of the first embodiment. 図12は、実施例1のピストン式圧縮機に係り、最少流量時におけるリヤ側枠体、駆動軸等の展開図である。FIG. 12 is a development view of the rear side frame, the drive shaft, and the like at the minimum flow rate, related to the piston type compressor of the first embodiment. 図13は、実施例1のピストン式圧縮機に係り、ある方向から見たフロント側シャッタの斜視図である。FIG. 13 is a perspective view of the front shutter viewed from a certain direction according to the piston type compressor of the first embodiment. 図14は、実施例1のピストン式圧縮機に係り、他の方向から見たフロント側シャッタの斜視図である。FIG. 14 is a perspective view of the front shutter viewed from another direction according to the piston type compressor of the first embodiment. 図15は、実施例1のピストン式圧縮機に係り、駆動軸、第2スプール及びフロント側シャッタの駆動軸心に対する直角方向の断面図である。FIG. 15 is a cross-sectional view of the piston type compressor of the first embodiment in a direction perpendicular to the drive axis of the drive shaft, the second spool, and the front shutter. 図16は、実施例1のピストン式圧縮機に係り、図1におけるフロント側の要部断面図である。FIG. 16 is a cross-sectional view of a main part on the front side in FIG. 1 relating to the piston type compressor of the first embodiment. 図17は、実施例1のピストン式圧縮機に係り、最大流量時におけるフロント側シャッタ、駆動軸等の展開図である。FIG. 17 is a development view of the front side shutter, the drive shaft, and the like at the maximum flow rate, relating to the piston type compressor of the first embodiment. 図18は、実施例1のピストン式圧縮機に係り、所定流量時におけるフロント側シャッタ、駆動軸等の展開図である。FIG. 18 is a development view of the front side shutter, the drive shaft, and the like at a predetermined flow rate, relating to the piston type compressor of the first embodiment. 図19は、実施例1のピストン式圧縮機に係り、最少流量時におけるフロント側シャッタ、駆動軸等の展開図である。FIG. 19 is a development view of the front shutter, the drive shaft, and the like at the minimum flow rate, relating to the piston type compressor of the first embodiment. 図20は、実施例2のピストン式圧縮機に係り、移動体の駆動軸心方向の断面図である。FIG. 20 is a cross-sectional view of the moving body in the drive axis direction according to the piston type compressor of the second embodiment. 図21は、実施例3のピストン式圧縮機に係り、移動体の駆動軸心方向の断面図である。FIG. 21 is a cross-sectional view of the moving body in the drive axis direction according to the piston type compressor of the third embodiment. 図22は、変形例のピストン式圧縮機に係り、最少流量時におけるリヤ側シャッタ、駆動軸等の展開図である。FIG. 22 is a developed view of the rear shutter, the drive shaft, and the like at the minimum flow rate, relating to the piston type compressor of the modified example. 図23は、変形例のピストン式圧縮機に係り、最少流量時におけるフロント側シャッタ、駆動軸等の展開図である。FIG. 23 is a developed view of the front shutter, the drive shaft, and the like at the minimum flow rate, relating to the piston type compressor of the modified example.
 以下、本発明を具体化した実施例1~3を図面を参照しつつ説明する。実施例1~3の圧縮機は、両頭ピストン式圧縮機である。これらの圧縮機は、車両に搭載されており、空調装置の冷凍回路を構成している。 Hereinafter, Examples 1 to 3 embodying the present invention will be described with reference to the drawings. The compressors of Examples 1 to 3 are double-headed piston type compressors. These compressors are mounted on the vehicle and constitute the refrigeration circuit of the air conditioner.
 実施例1の圧縮機は、図1~3に示すように、ハウジング1と、駆動軸3と、固定斜板5と、複数のピストン7と、リヤ側弁形成プレート9と、フロント側弁形成プレート11と、移動体13と、制御弁15とを備えている。ハウジング1は、リヤハウジング17と、フロントハウジング19と、リヤ側シリンダブロック21と、フロント側シリンダブロック23とを有している。リヤ側が本発明における一方側であり、フロント側が本発明における他方側に相当する。 As shown in FIGS. 1 to 3, the compressor of the first embodiment includes a housing 1, a drive shaft 3, a fixed swash plate 5, a plurality of pistons 7, a rear side valve forming plate 9, and a front side valve forming. It includes a plate 11, a moving body 13, and a control valve 15. The housing 1 includes a rear housing 17, a front housing 19, a rear cylinder block 21, and a front cylinder block 23. The rear side corresponds to one side in the present invention, and the front side corresponds to the other side in the present invention.
 本実施例では、フロントハウジング19が位置する側を圧縮機の前方側とし、リヤハウジング17が位置する側を圧縮機の後方側として、圧縮機の前後方向を規定している。また、図1~3の紙面の上方を圧縮機の上方側とし、紙面の下方を圧縮機の下方側として、圧縮機の上下方向を規定している。そして、図4以降では、図1~3に対応させて前後方向及び上下方向を表示する。なお、実施例における前後方向等は一例であり、本発明の圧縮機は、搭載される車両に対応して、その姿勢が適宜変更される。 In this embodiment, the side where the front housing 19 is located is the front side of the compressor, and the side where the rear housing 17 is located is the rear side of the compressor, and the front-rear direction of the compressor is defined. Further, the vertical direction of the compressor is defined with the upper side of the paper surface of FIGS. 1 to 3 as the upper side of the compressor and the lower side of the paper surface as the lower side of the compressor. Then, in FIGS. 4 and 4, the front-back direction and the up-down direction are displayed corresponding to FIGS. 1 to 3. The front-rear direction and the like in the embodiment are examples, and the posture of the compressor of the present invention is appropriately changed according to the vehicle on which the compressor is mounted.
 駆動軸3の駆動軸心Oは、圧縮機の前後方向に延びている。フロントハウジング19内には、駆動軸心O周りで環状のフロント側吐出室19aが形成されている。フロントハウジング19には、ボス部19bと、フロント側軸孔19cとが形成されている。ボス部19bは駆動軸心O方向で前方に向かって突出している。フロント側軸孔19cは、駆動軸心O方向でフロントハウジング19を貫通している。フロント側軸孔19c内には軸封装置25が設けられている。 The drive axis O of the drive shaft 3 extends in the front-rear direction of the compressor. In the front housing 19, an annular front side discharge chamber 19a is formed around the drive shaft center O. The front housing 19 is formed with a boss portion 19b and a front shaft hole 19c. The boss portion 19b projects forward in the drive axis O direction. The front shaft hole 19c penetrates the front housing 19 in the drive shaft center O direction. A shaft sealing device 25 is provided in the front shaft hole 19c.
 リヤハウジング17には、制御圧室17aと、リヤ側吐出室17bとが形成されている。制御圧室17aは、リヤハウジング17の中心側に位置している。リヤ側吐出室17bは駆動軸心O周りで環状に形成されており、制御圧室17aの外周側に位置している。 The rear housing 17 is formed with a control pressure chamber 17a and a rear discharge chamber 17b. The control pressure chamber 17a is located on the center side of the rear housing 17. The rear discharge chamber 17b is formed in an annular shape around the drive shaft center O, and is located on the outer peripheral side of the control pressure chamber 17a.
 フロント側シリンダブロック23及びリヤ側シリンダブロック21はフロントハウジング19とリヤハウジング17との間に設けられている。フロントハウジング19とフロント側シリンダブロック23との間にはフロント側弁形成プレート11が設けられ、フロント側シリンダブロック23とリヤ側シリンダブロック21との間にはガスケット27が設けられ、リヤ側シリンダブロック21とリヤハウジング17との間にはリヤ側弁形成プレート9が設けられ、これらは駆動軸心O方向に延びる図示しないボルトによって締結されている。 The front side cylinder block 23 and the rear side cylinder block 21 are provided between the front housing 19 and the rear housing 17. A front valve forming plate 11 is provided between the front housing 19 and the front cylinder block 23, a gasket 27 is provided between the front cylinder block 23 and the rear cylinder block 21, and a rear cylinder block is provided. A rear side valve forming plate 9 is provided between the 21 and the rear housing 17, and these are fastened by bolts (not shown) extending in the drive axis O direction.
 フロント側シリンダブロック23とリヤ側シリンダブロック21とは斜板室29を形成している。斜板室29は、フロント側シリンダブロック23に形成された吸入口29aによって外部の図示しない蒸発器に接続され、低圧の冷媒を吸入するようになっている。また、フロント側シリンダブロック23とリヤ側シリンダブロック21とは駆動軸心O方向に延びる吐出通路31を形成している。吐出通路31は、フロント側弁形成プレート11を貫通し、フロント側吐出室19aと連通している。また、吐出通路31は、リヤ側弁形成プレート9を貫通し、リヤ側吐出室17bと連通している。吐出通路31は、フロント側シリンダブロック23に形成された吐出口31aによって外部の図示しない凝縮器に接続され、高圧の冷媒を吐出するようになっている。なお、冷媒にはオイルが含まれている。 The front side cylinder block 23 and the rear side cylinder block 21 form a swash plate chamber 29. The swash plate chamber 29 is connected to an external evaporator (not shown) by a suction port 29a formed in the front cylinder block 23, and sucks a low-pressure refrigerant. Further, the front side cylinder block 23 and the rear side cylinder block 21 form a discharge passage 31 extending in the drive axis O direction. The discharge passage 31 penetrates the front side valve forming plate 11 and communicates with the front side discharge chamber 19a. Further, the discharge passage 31 penetrates the rear side valve forming plate 9 and communicates with the rear side discharge chamber 17b. The discharge passage 31 is connected to an external condenser (not shown) by a discharge port 31a formed in the front cylinder block 23, and discharges a high-pressure refrigerant. The refrigerant contains oil.
 リヤ側シリンダブロック21は、駆動軸心O方向で後方に向かって突出するボス部21aを有している。ボス部21aは、フロント側弁形成プレート11を貫通し、制御圧室17a内に延びている。リヤ側シリンダブロック21には、円柱状の空間であるリヤ側軸孔33aが駆動軸心O方向に形成されている。リヤ側軸孔33aは制御圧室17aに開口している。 The rear cylinder block 21 has a boss portion 21a that projects rearward in the drive axis O direction. The boss portion 21a penetrates the front side valve forming plate 11 and extends into the control pressure chamber 17a. In the rear side cylinder block 21, a rear side shaft hole 33a, which is a columnar space, is formed in the drive shaft center O direction. The rear shaft hole 33a is open to the control pressure chamber 17a.
 フロント側シリンダブロック23には、円柱状の空間であるフロント側軸孔33bが駆動軸心O方向に形成されている。フロント側軸孔33bは、リヤ側軸孔33aと同軸であり、リヤ側軸孔33aよりやや大径である。フロント側軸孔33bは、フロント側弁形成プレート11に形成された挿通孔11gによってフロント側軸孔19cと連通している。 In the front side cylinder block 23, a front side shaft hole 33b, which is a columnar space, is formed in the drive axis O direction. The front shaft hole 33b is coaxial with the rear shaft hole 33a and has a slightly larger diameter than the rear shaft hole 33a. The front side shaft hole 33b communicates with the front side shaft hole 19c by an insertion hole 11g formed in the front side valve forming plate 11.
 また、リヤ側シリンダブロック21には、図9に示すように、リヤ側シリンダボア35a~35eが形成されている。リヤ側シリンダボア35a~35eは、駆動軸心O方向に延びる円柱状の空間であり、駆動軸心O周りで互いに等角度隔てられている。 Further, as shown in FIG. 9, the rear side cylinder block 21 is formed with rear side cylinder bores 35a to 35e. The rear cylinder bores 35a to 35e are columnar spaces extending in the drive axis O direction, and are equally spaced from each other around the drive axis O.
 リヤ側シリンダブロック21には、各リヤ側シリンダボア35a~35eとリヤ側軸孔33aとを接続するリヤ側第1連通路37a~37eが形成されている。リヤ側第1連通路37a~37eは駆動軸心Oから放射方向に延びている。リヤ側第1連通路37a~37eは、図1~3に示すように、駆動軸心Oから離間しつつ後方に傾斜している。 The rear side cylinder block 21 is formed with rear side first continuous passages 37a to 37e connecting the rear side cylinder bores 35a to 35e and the rear side shaft hole 33a. The rear-side first communication passages 37a to 37e extend in the radial direction from the drive shaft center O. As shown in FIGS. 1 to 3, the first continuous passages 37a to 37e on the rear side are inclined rearward while being separated from the drive shaft center O.
 フロント側シリンダブロック23には、図16に示すように、フロント側シリンダボア39a~39eが形成されている。フロント側シリンダボア39a~39eは、駆動軸心O方向に延びる円柱状の空間であり、駆動軸心O周りで互いに等角度隔てられている。リヤ側シリンダボア35a~35eとフロント側シリンダボア39a~39eとはそれぞれ同軸かつ同径である。 As shown in FIG. 16, the front side cylinder block 23 is formed with front side cylinder bores 39a to 39e. The front side cylinder bores 39a to 39e are columnar spaces extending in the drive axis O direction, and are equally spaced from each other around the drive axis O. The rear cylinder bores 35a to 35e and the front cylinder bores 39a to 39e are coaxial and have the same diameter, respectively.
 フロント側シリンダブロック23には、各フロント側シリンダボア39a~39eとフロント側軸孔33bとを接続するフロント側第1連通路41a~41eが形成されている。フロント側第1連通路41a~41eは駆動軸心Oから放射方向に延びている。フロント側第1連通路41a~41eは、図1~3に示すように、駆動軸心Oから離間しつつ前方に傾斜している。 The front side cylinder block 23 is formed with front side first continuous passages 41a to 41e for connecting the front side cylinder bores 39a to 39e and the front side shaft hole 33b. The front-side first communication passages 41a to 41e extend in the radial direction from the drive shaft center O. As shown in FIGS. 1 to 3, the first continuous passages 41a to 41e on the front side are inclined forward while being separated from the drive shaft center O.
 駆動軸3の外周面には、斜板室29内において、固定斜板5が圧入によって固定されている。固定斜板5には、駆動軸3の駆動軸心Oに垂直な平面に対する傾斜角度が一定である傾斜面5a、5bが前後に形成されている。固定斜板5は、フロント側シリンダブロック23とリヤ側シリンダブロック21との間にそれぞれスラスト軸受43、45を介して挟持されている。 A fixed swash plate 5 is fixed to the outer peripheral surface of the drive shaft 3 by press fitting in the swash plate chamber 29. The fixed swash plate 5 is formed with inclined surfaces 5a and 5b having a constant inclination angle with respect to a plane perpendicular to the drive axis O of the drive shaft 3 in the front-rear direction. The fixed swash plate 5 is sandwiched between the front cylinder block 23 and the rear cylinder block 21 via thrust bearings 43 and 45, respectively.
 固定斜板5の傾斜面5a、5bにはそれぞれ半球状のシュー49a、49bが設けられている。シュー49a、49bには両頭のピストン7が設けられている。各ピストン7は、リヤ側ヘッド7aとフロント側ヘッド7bとを有している。リヤ側ヘッド7aはリヤ側シリンダボア35a~35e内にリヤ側圧縮室51を形成している。フロント側ヘッド7bはフロント側シリンダボア39a内にフロント側圧縮室53を形成している。 Hemispherical shoes 49a and 49b are provided on the inclined surfaces 5a and 5b of the fixed swash plate 5, respectively. The shoes 49a and 49b are provided with double-headed pistons 7. Each piston 7 has a rear side head 7a and a front side head 7b. The rear side head 7a forms a rear side compression chamber 51 in the rear side cylinder bores 35a to 35e. The front side head 7b forms a front side compression chamber 53 in the front side cylinder bore 39a.
 リヤ側弁形成プレート9は、リヤ側シリンダブロック21側に配置された弁板9aと、弁板9aより後方に配置された吐出弁板9bと、吐出弁板9bのさらに後方に配置されたリテーナ板9cとからなる。弁板9aには、リヤ側シリンダボア35a~35eをそれぞれリヤ側吐出室17bに連通させる吐出ポート9dが形成されている。吐出弁板9bには、各吐出ポート9dを弾性復元力によって閉鎖する吐出リード弁9eが形成されている。リテーナ板9cには、各吐出リード弁9eの開度を規制するリテーナ9fが形成されている。 The rear side valve forming plate 9 includes a valve plate 9a arranged on the rear side cylinder block 21 side, a discharge valve plate 9b arranged behind the valve plate 9a, and a retainer arranged further behind the discharge valve plate 9b. It consists of a plate 9c. The valve plate 9a is formed with discharge ports 9d for communicating the rear cylinder bores 35a to 35e with the rear discharge chambers 17b, respectively. The discharge valve plate 9b is formed with a discharge reed valve 9e that closes each discharge port 9d by an elastic restoring force. The retainer plate 9c is formed with a retainer 9f that regulates the opening degree of each discharge reed valve 9e.
 フロント側弁形成プレート11は、フロント側シリンダブロック23側に配置された弁板11aと、弁板11aより前方に配置された吐出弁板11bと、吐出弁板11bのさらに前方に配置されたリテーナ板11cとからなる。弁板11aには、フロント側シリンダボア39a~39eをそれぞれフロント側吐出室19aに連通させる吐出ポート11dが形成されている。吐出弁板11bには、各吐出ポート11dを弾性復元力によって閉鎖する吐出リード弁11eが形成されている。リテーナ板11cには、各吐出リード弁11eの開度を規制するリテーナ11fが形成されている。吐出リード弁9e、11eが本発明の吐出弁に相当する。 The front side valve forming plate 11 includes a valve plate 11a arranged on the front side cylinder block 23 side, a discharge valve plate 11b arranged in front of the valve plate 11a, and a retainer arranged further in front of the discharge valve plate 11b. It consists of a plate 11c. The valve plate 11a is formed with discharge ports 11d for communicating the front cylinder bores 39a to 39e with the front discharge chamber 19a, respectively. The discharge valve plate 11b is formed with a discharge reed valve 11e that closes each discharge port 11d by an elastic restoring force. The retainer plate 11c is formed with a retainer 11f that regulates the opening degree of each discharge reed valve 11e. The discharge reed valves 9e and 11e correspond to the discharge valves of the present invention.
 制御弁15はリヤハウジング17内に設けられている。制御圧室17aとリヤ側吐出室17bとは給気通路47aによって接続されている。制御圧室17aと斜板室29とは抽気通路47bによって接続され、抽気通路47bの途中に制御弁15が配置されている。制御弁15は図示しないコントローラの信号によって抽気通路47bの開度を調整し、制御圧室17a内の制御圧力を制御する。 The control valve 15 is provided in the rear housing 17. The control pressure chamber 17a and the rear discharge chamber 17b are connected by an air supply passage 47a. The control pressure chamber 17a and the swash plate chamber 29 are connected by an bleed air passage 47b, and a control valve 15 is arranged in the middle of the bleed air passage 47b. The control valve 15 adjusts the opening degree of the bleed air passage 47b by a signal of a controller (not shown) to control the control pressure in the control pressure chamber 17a.
 駆動軸3の外周面には、固定斜板5が圧入された部分と、スラスト軸受43、45が配置されている部分とを除き、リヤ側軸孔33a及びフロント側軸孔33b内を好適に回転摺動するようにコーティングが施されている。この駆動軸3内には、図4に示すように、リヤ側で駆動軸心O方向に延びる第1軸路3aと、第1軸路3aの前方で第1軸路3aと連通し、駆動軸心O方向に延びる第2軸路3bとが形成されている。第1軸路3aは、円柱状の空間であり、駆動軸3の後端に開口して制御圧室17aと連通するようになっている。第2軸路3bは、第1軸路3aよりも小径の円柱状の空間である。第1軸路3aと第2軸路3bとの間には段差3jが形成されている。 The outer peripheral surface of the drive shaft 3 is preferably inside the rear shaft hole 33a and the front shaft hole 33b, except for the portion where the fixed swash plate 5 is press-fitted and the portion where the thrust bearings 43 and 45 are arranged. The coating is applied so that it can rotate and slide. In the drive shaft 3, as shown in FIG. 4, the first axis 3a extending in the drive axis O direction on the rear side and the first axis 3a in front of the first axis 3a are communicated with each other to drive. A second axis path 3b extending in the axis O direction is formed. The first axis path 3a is a columnar space, which is opened at the rear end of the drive shaft 3 so as to communicate with the control pressure chamber 17a. The second axis 3b is a columnar space having a diameter smaller than that of the first axis 3a. A step 3j is formed between the first axis 3a and the second axis 3b.
 また、駆動軸3には、後方側で第1軸路3aと連通して駆動軸3の径方向に延びるリヤ側径路3cと、ほぼ中央で第2軸路3bと連通して駆動軸3の径方向に延びる内部吸入口3dと、前方で第2軸路3bと連通して駆動軸3の径方向に延びるフロント側径路3eとが形成されている。 Further, the drive shaft 3 has a rear side radial path 3c that communicates with the first axis path 3a on the rear side and extends in the radial direction of the drive shaft 3, and a drive shaft 3 that communicates with the second axis path 3b at substantially the center. An internal suction port 3d extending in the radial direction and a front side radial path 3e extending in the radial direction of the drive shaft 3 in front of the second axis 3b are formed.
 リヤ側径路3cは、図8に示すように、駆動軸心O周りで所定の角度で形成されているとともに、図10及び図11に示すように、駆動軸心Oと平行に所定の長さで形成されている。リヤ側径路3cの後端は後端規制面3fとされ、リヤ側径路3cの前端は前端規制面3gとされている。後端規制面3f及び前端規制面3gは駆動軸心Oに対して直角方向に延びている。 The rear side path 3c is formed at a predetermined angle around the drive shaft center O as shown in FIG. 8, and has a predetermined length parallel to the drive shaft center O as shown in FIGS. 10 and 11. Is formed of. The rear end of the rear side path 3c is a rear end regulation surface 3f, and the front end of the rear side path 3c is a front end regulation surface 3g. The rear end regulation surface 3f and the front end regulation surface 3g extend in a direction perpendicular to the drive axis O.
 図8及び図9に示すように、駆動軸3は、駆動軸3の内径と外径との差である自己の厚み部分によって駆動軸心O方向に延びる案内面32a、32bを形成している。案内面32aと案内面32bとは面一であり、かつ駆動軸心Oと平行に延びている。案内面32aは駆動軸3の回転方向の先行側に位置し、案内面32bは駆動軸3の回転方向の後行側に位置している。 As shown in FIGS. 8 and 9, the drive shaft 3 forms guide surfaces 32a and 32b extending in the drive shaft center O direction by its own thickness portion which is the difference between the inner diameter and the outer diameter of the drive shaft 3. .. The guide surface 32a and the guide surface 32b are flush with each other and extend parallel to the drive axis O. The guide surface 32a is located on the leading side of the drive shaft 3 in the rotational direction, and the guide surface 32b is located on the trailing side of the drive shaft 3 in the rotational direction.
 図15に示すように、フロント側径路3eも、駆動軸心O周りで所定の角度で形成されているとともに、図17~19に示すように、駆動軸心Oと平行に所定の長さで形成されている。フロント側径路3eの後端は後端規制面3hとされ、フロント側径路3eの前端は前端規制面3iとされている。後端規制面3h及び前端規制面3iは駆動軸心Oに対して直角方向に延びている。フロント側径路3eは、リヤ側径路3cよりも、駆動軸心O周りの角度が小さく、かつ駆動軸心O方向の長さが短くされている。 As shown in FIG. 15, the front side path 3e is also formed at a predetermined angle around the drive axis O, and as shown in FIGS. 17 to 19, it has a predetermined length parallel to the drive axis O. It is formed. The rear end of the front side path 3e is the rear end regulation surface 3h, and the front end of the front side path 3e is the front end regulation surface 3i. The rear end regulation surface 3h and the front end regulation surface 3i extend in a direction perpendicular to the drive axis O. The front side path 3e has a smaller angle around the drive axis O and a shorter length in the drive axis O direction than the rear side path 3c.
 図15及び図16に示すように、駆動軸3は、駆動軸3の内径と外径との差である自己の厚み部分によって駆動軸心O方向に延びる案内面34a、34bも形成している。案内面34aと案内面34bとは面一であり、かつ駆動軸心Oと平行に延びている。案内面34aは駆動軸3の回転方向の先行側に位置し、案内面34bは駆動軸3の回転方向の後行側に位置している。 As shown in FIGS. 15 and 16, the drive shaft 3 also forms guide surfaces 34a and 34b extending in the drive axis O direction due to its own thickness portion which is the difference between the inner diameter and the outer diameter of the drive shaft 3. .. The guide surface 34a and the guide surface 34b are flush with each other and extend parallel to the drive axis O. The guide surface 34a is located on the leading side of the drive shaft 3 in the rotational direction, and the guide surface 34b is located on the trailing side of the drive shaft 3 in the rotational direction.
 図1~3に示すように、駆動軸3内には第1スプール55と第2スプール57が設けられてる。第1スプール55は、段差3jとの間に第1ばね2を介して第1軸路3a内で駆動軸心O方向に移動可能に配置されている。第1スプール55は、図5に示すように、外径が第1軸路3aの内径よりやや小さくされ、厚肉の円筒状に形成された厚肉筒部55aと、厚肉筒部55aの前方に位置して外径が厚肉筒部55aと等しく、厚肉筒部55aよりも薄肉の円筒状に形成された薄肉筒部55bと、厚肉筒部55aの後端を塞ぐ端部55cとからなる。第1スプール55は樹脂製である。端部55cの外周面には、第1スプール55が第1軸路3a内を駆動軸心O方向に移動し易く、制御圧室17aの制御圧力を逃がし難い材料からなるシール55dが設けられている。 As shown in FIGS. 1 to 3, a first spool 55 and a second spool 57 are provided in the drive shaft 3. The first spool 55 is arranged so as to be movable in the drive axis O direction in the first axial path 3a via the first spring 2 between the first spool 55 and the step 3j. As shown in FIG. 5, the first spool 55 has a thick cylinder portion 55a having an outer diameter slightly smaller than the inner diameter of the first axis 3a and formed into a thick cylindrical shape, and a thick cylinder portion 55a. A thin-walled cylinder 55b located in the front and having an outer diameter equal to that of the thick-walled cylinder 55a and formed in a cylindrical shape thinner than the thick-walled cylinder 55a, and an end 55c that closes the rear end of the thick cylinder 55a. It consists of. The first spool 55 is made of resin. On the outer peripheral surface of the end portion 55c, a seal 55d made of a material is provided so that the first spool 55 can easily move in the first axis 3a in the drive axis O direction and the control pressure of the control pressure chamber 17a cannot be easily released. There is.
 厚肉筒部55a及び薄肉筒部55b内には第1内部流路59が形成され、厚肉筒部55aの内周面と薄肉筒部55bの内周面との間には駆動軸心Oと直交する当接面55gが形成されている。厚肉筒部55aには、第1内部流路59を外側に開く第1連通窓55eが形成されている。 A first internal flow path 59 is formed in the thick-walled cylinder portion 55a and the thin-walled cylinder portion 55b, and the drive axis O is formed between the inner peripheral surface of the thick-walled cylinder portion 55a and the inner peripheral surface of the thin-walled cylinder portion 55b. A contact surface 55 g orthogonal to the above is formed. The thick-walled cylinder portion 55a is formed with a first communication window 55e that opens the first internal flow path 59 to the outside.
 図1~3に示すように、第2スプール57は、第2軸路3bの前端との間に第2ばね4を介し、第2軸路3b及び薄肉筒部55b内に駆動軸心O方向に移動可能に配置されている。第2ばね4の付勢力は第1ばね2の付勢力よりも強く設定されている。 As shown in FIGS. 1 to 3, the second spool 57 is connected to the front end of the second axis 3b via the second spring 4 in the second axis 3b and the thin-walled cylinder portion 55b in the drive axis O direction. It is arranged so that it can be moved to. The urging force of the second spring 4 is set stronger than the urging force of the first spring 2.
 第2スプール57は、図5に示すように、外径が第2軸路3b及び薄肉筒部55bの内径よりやや小さくされた円筒状の筒部57aと、筒部57aの前端で円筒状に形成されたばね座部57bとからなる。第2スプール57も樹脂製である。筒部57aの後方側の外周面には、第2スプール57が薄肉筒部55b内を駆動軸心O方向に移動し易く、制御圧室17aの制御圧力を逃がし難い材料からなるシール57cが設けられている。 As shown in FIG. 5, the second spool 57 has a cylindrical tubular portion 57a whose outer diameter is slightly smaller than the inner diameter of the second axial path 3b and the thin-walled tubular portion 55b, and a cylindrical portion 57a at the front end of the tubular portion 57a. It is composed of a formed spring seat portion 57b. The second spool 57 is also made of resin. On the outer peripheral surface on the rear side of the cylinder portion 57a, a seal 57c made of a material that allows the second spool 57 to easily move in the thin-walled cylinder portion 55b in the drive axis O direction and the control pressure of the control pressure chamber 17a is difficult to escape is provided. Has been done.
 筒部57a内には、第1スプール55の第1内部流路59と連通する第2内部流路61が形成されている。また、筒部57aの駆動軸心O方向のほぼ中央には、第2内部流路61と連通する内部取入口57dが形成され、筒部57aの前方には第2内部流路61を外側に開く第2連通窓57eが形成されている。 A second internal flow path 61 communicating with the first internal flow path 59 of the first spool 55 is formed in the tubular portion 57a. Further, an internal intake 57d communicating with the second internal flow path 61 is formed substantially in the center of the tubular portion 57a in the drive axis O direction, and the second internal flow path 61 is outward in front of the tubular portion 57a. A second communication window 57e to be opened is formed.
 図1~3に示すように、固定斜板5には斜板室29から径方向に延びて形成された内部吸入口5cが形成されている。この内部吸入口5cは駆動軸3の内部吸入口3dと一致している。第2スプール57における筒部57aの内部取入口57dは、第2スプール57の駆動軸心O方向の位置により、内部吸入口3d及び内部吸入口5cと連通面積が変化する内部吸入絞り機構SVを構成している。 As shown in FIGS. 1 to 3, the fixed swash plate 5 is formed with an internal suction port 5c formed so as to extend radially from the swash plate chamber 29. The internal suction port 5c coincides with the internal suction port 3d of the drive shaft 3. The internal intake 57d of the tubular portion 57a of the second spool 57 has an internal suction throttle mechanism SV whose communication area with the internal suction port 3d and the internal suction port 5c changes depending on the position of the second spool 57 in the drive axis O direction. It is configured.
 斜板室29は、固定斜板5の内部吸入口5c、駆動軸3の内部吸入口3d、内部吸入絞り機構SVを経て、図5に示すように、第2スプール57の第2内部流路61及び第1スプール55の第1内部流路59に連通している。第1内部流路59は第1連通窓55eに連通し、第2内部流路61は第2連通窓57eに連通している。 The swash plate chamber 29 passes through the internal suction port 5c of the fixed swash plate 5, the internal suction port 3d of the drive shaft 3, and the internal suction throttle mechanism SV, and as shown in FIG. 5, the second internal flow path 61 of the second spool 57. And communicate with the first internal flow path 59 of the first spool 55. The first internal flow path 59 communicates with the first communication window 55e, and the second internal flow path 61 communicates with the second communication window 57e.
 第1連通窓55eと第2連通窓57eとは、駆動軸心O周りで180°位相がずれている。第1連通窓55eは、吸入行程を行うリヤ側圧縮室51と連通するリヤ側第1連通路37a~37eと連通するようになっている。また、第2連通窓57eは、吸入行程を行うフロント側圧縮室53と連通するフロント側第1連通路41a~41eと連通するようになっている。 The first communication window 55e and the second communication window 57e are 180 ° out of phase around the drive axis O. The first communication window 55e communicates with the rear side first communication passages 37a to 37e that communicate with the rear side compression chamber 51 that performs the suction stroke. Further, the second communication window 57e communicates with the front side first communication passages 41a to 41e communicating with the front side compression chamber 53 that performs the suction stroke.
 第1スプール55の厚肉筒部55aには係合孔55fが形成されている。係合孔55fは第1連通窓55eの駆動軸心O方向の後方に位置している。係合孔55fにはリヤ側枠体63の係合片63aが係合され、これによって第1スプール55の厚肉筒部55aに枠体63が配置されている。枠体63はリヤ側蓋体に相当する。枠体63は、第1スプール55の駆動軸心O方向の位置に応じ、駆動軸3の案内面32a、32bに案内されるようになっている。 An engaging hole 55f is formed in the thick cylinder portion 55a of the first spool 55. The engagement hole 55f is located behind the first communication window 55e in the drive axis O direction. The engaging piece 63a of the rear side frame body 63 is engaged with the engaging hole 55f, whereby the frame body 63 is arranged in the thick cylinder portion 55a of the first spool 55. The frame body 63 corresponds to the rear side lid body. The frame body 63 is guided to the guide surfaces 32a and 32b of the drive shaft 3 according to the position of the first spool 55 in the drive shaft center O direction.
 また、第2スプール57の筒部57aにも係合孔57fが形成されている。係合孔57fは第2連通窓57eの駆動軸心O方向の前方に位置している。係合孔57fにはフロント側シャッタ65の係合片65aが係合され、これによって第2スプール57の筒部57aにシャッタ65が配置されている。シャッタ65はフロント側蓋体に相当する。シャッタ65は、第2スプール57の駆動軸心O方向の位置に応じ、駆動軸3の案内面34a、34bに案内されるようになっている。第1、2スプール55、57、枠体63及びシャッタ65が本発明の移動体に相当する。 Further, an engaging hole 57f is also formed in the tubular portion 57a of the second spool 57. The engagement hole 57f is located in front of the second communication window 57e in the drive axis O direction. An engaging piece 65a of the front shutter 65 is engaged with the engaging hole 57f, whereby the shutter 65 is arranged in the tubular portion 57a of the second spool 57. The shutter 65 corresponds to the front side lid. The shutter 65 is guided to the guide surfaces 34a and 34b of the drive shaft 3 according to the position of the second spool 57 in the drive shaft center O direction. The first and second spools 55 and 57, the frame body 63 and the shutter 65 correspond to the moving body of the present invention.
 枠体63は、図6及び図7に示すように、半円筒状をなす遮蔽部63bと、遮蔽部63bの一端から駆動軸心O方向に延びる第1リム部63cと、遮蔽部63bの他端から駆動軸心O方向に延びる第2リム部63dと、第1リム部63cと第2リム部63dとを半円筒状に接続する第3リム部63eとを有してる。係合片63aは第3リム部63eから駆動軸心O方向に屈曲して形成されている。遮蔽部63bの前端面は駆動軸心Oに対して直角に形成された当接面63hとされ、第3リム部63eの後端面は駆動軸心Oに対して直角に形成された当接面63iとされている。第1リム部63cには、駆動軸心Oに近づくように屈曲された凹部63fが形成されている。 As shown in FIGS. 6 and 7, the frame 63 includes a semi-cylindrical shielding portion 63b, a first rim portion 63c extending from one end of the shielding portion 63b in the drive axis O direction, and a shielding portion 63b. It has a second rim portion 63d extending from the end in the drive axis O direction, and a third rim portion 63e connecting the first rim portion 63c and the second rim portion 63d in a semi-cylindrical shape. The engaging piece 63a is formed by bending from the third rim portion 63e in the drive axis O direction. The front end surface of the shielding portion 63b is a contact surface 63h formed at right angles to the drive axis O, and the rear end surface of the third rim portion 63e is a contact surface formed at right angles to the drive axis O. It is said to be 63i. The first rim portion 63c is formed with a recess 63f bent so as to approach the drive shaft center O.
 枠体63は、図8及び図9に示すように、第1スプール55に係合されることにより駆動軸3のリヤ側径路3cに移動可能に設けられ、駆動軸3とともにリヤ側軸孔33a内を回転する。ここで、枠体63は、遮蔽部63bの後端面は所定形状のプロフィール63gとされている。プロフィール63gは第1~3リム部63c、63d、63eとともに、リヤ側第2連通路64を形成している。リヤ側第2連通路64は、図10及び図11に示すように、リヤ側径路3cとリヤ側第1連通路37a~37eとの連通面積を構成する。枠体63の内部がリヤ側径路3cとリヤ側第1連通路37a~37eとの連通面積を構成するリヤ側第2連通路64を形成している。リヤ側径路3cは、駆動軸3の回転に伴い間欠的にリヤ側第1連通路37a~37eと連通する。 As shown in FIGS. 8 and 9, the frame body 63 is movably provided in the rear side radial path 3c of the drive shaft 3 by being engaged with the first spool 55, and is provided together with the drive shaft 3 on the rear side shaft hole 33a. Rotate inside. Here, in the frame body 63, the rear end surface of the shielding portion 63b has a profile 63g having a predetermined shape. The profile 63g forms the rear side second continuous passage 64 together with the first to third rim portions 63c, 63d, 63e. As shown in FIGS. 10 and 11, the rear side second communication passage 64 constitutes a communication area between the rear side path 3c and the rear side first communication passages 37a to 37e. The inside of the frame body 63 forms the rear side second communication passage 64 which constitutes the communication area between the rear side path 3c and the rear side first communication passages 37a to 37e. The rear side path 3c intermittently communicates with the rear side first communication passages 37a to 37e as the drive shaft 3 rotates.
 プロフィール63gは、第2リム部63dから駆動軸3の回転方向の前方側に延びる第1直線部631と、駆動軸心O方向に対して傾斜した第1傾斜部632及び第2傾斜部633と、第1リム部63cから駆動軸3の回転方向の後方側に延びる第2直線部634とから構成されている。プロフィール63gは、第2リム部63dから駆動軸3の回転方向の後方側の第1リム部63cまで、第1直線部631、第1傾斜部632、第2傾斜部633、第2直線部634の順に連続して形成されている。第1傾斜部632は、プロフィール63gのうち、駆動軸3の回転方向の後方側に位置する。第2傾斜部633は、プロフィール63gのうち、駆動軸3の回転方向の前方側に位置する。第2傾斜部633の駆動軸心O方向に対する傾斜角度β1は、第1傾斜部632の駆動軸心O方向に対する傾斜角度α1より小さく設定されている。なお、実施例1では、プロフィール63gを第1直線部631、第1傾斜部632、第2傾斜部633及び第2直線部634から構成したが、傾斜部や直線部の数は適宜設計してもよい。 The profile 63g includes a first straight line portion 631 extending from the second rim portion 63d to the front side in the rotation direction of the drive shaft 3, a first inclined portion 632 inclined with respect to the drive axis O direction, and a second inclined portion 633. , A second straight line portion 634 extending rearward from the first rim portion 63c in the rotational direction of the drive shaft 3. The profile 63g includes a first straight portion 631, a first inclined portion 632, a second inclined portion 633, and a second straight portion 634 from the second rim portion 63d to the first rim portion 63c on the rear side in the rotation direction of the drive shaft 3. It is formed continuously in the order of. The first inclined portion 632 is located on the rear side of the profile 63 g in the rotational direction of the drive shaft 3. The second inclined portion 633 is located on the front side of the profile 63g in the rotational direction of the drive shaft 3. The inclination angle β1 of the second inclined portion 633 with respect to the drive axis O direction is set to be smaller than the inclination angle α1 of the first inclined portion 632 with respect to the drive axis O direction. In the first embodiment, the profile 63g is composed of the first straight portion 631, the first inclined portion 632, the second inclined portion 633, and the second straight portion 634, but the number of the inclined portions and the straight portions is appropriately designed. May be good.
 シャッタ65は、図13及び図14に示すように、半円筒状をなす遮蔽部65bと、係合片65aとからなる。つまり、シャッタ65は、枠体63のような第1~3リム部63c~63eを有していない。遮蔽部65bの外周縁のうち、前端面は駆動軸心Oに対して直角に形成された当接面65dとされ、後端面は駆動軸心Oに対して直角に形成された当接面65eとされている。当接面65eは駆動軸3の回転方向の後方側に位置している。当接面65eは係合片65aの後方側の端面である。また、遮蔽部65bの外周縁のうち、後端面の他の部分が所定形状のプロフィール65cとされている。 As shown in FIGS. 13 and 14, the shutter 65 includes a semi-cylindrical shielding portion 65b and an engaging piece 65a. That is, the shutter 65 does not have the first to third rim portions 63c to 63e like the frame body 63. Of the outer peripheral edge of the shielding portion 65b, the front end surface is a contact surface 65d formed at a right angle to the drive axis O, and the rear end surface is a contact surface 65e formed at a right angle to the drive axis O. It is said that. The contact surface 65e is located on the rear side of the drive shaft 3 in the rotational direction. The contact surface 65e is an end surface on the rear side of the engaging piece 65a. Further, in the outer peripheral edge of the shielding portion 65b, the other portion of the rear end surface is a profile 65c having a predetermined shape.
 プロフィール65cは、係合片65aの後方側の端面により形成される第1直線部651と、駆動軸心O方向に対して傾斜した第1傾斜部652及び第2傾斜部653と、第2傾斜部653から駆動軸3の回転方向の前方側に延びる第2直線部654とから構成されている。プロフィール65cは、第1直線部651、第1傾斜部652、第2傾斜部653、第2直線部654の順に連続して形成されている。第1傾斜部652は、プロフィール65cのうち、駆動軸3の回転方向の後方側に位置する。第2傾斜部653は、プロフィール65cのうち、駆動軸3の回転方向の前方側に位置する。第2傾斜部653の駆動軸心O方向に対する傾斜角度β2は、第1傾斜部652の駆動軸心O方向に対する傾斜角度α2より小さく設定されている。なお、実施例1では、プロフィール65cを第1直線部651、第1傾斜部652、第2傾斜部653及び第2直線部654から構成したが、傾斜部や直線部の数は適宜設計してよい。例えば、第2直線部654を削除し、第2傾斜部653が回転方向の前方側である案内面34aにつながるようにしてもよい。 The profile 65c includes a first straight portion 651 formed by the rear end surface of the engaging piece 65a, a first inclined portion 652 and a second inclined portion 653 inclined with respect to the drive axis O direction, and a second inclined portion. It is composed of a second straight line portion 654 extending from the portion 653 to the front side in the rotation direction of the drive shaft 3. The profile 65c is continuously formed in the order of the first straight line portion 651, the first inclined portion 652, the second inclined portion 653, and the second straight line portion 654. The first inclined portion 652 is located on the rear side of the profile 65c in the rotational direction of the drive shaft 3. The second inclined portion 653 is located on the front side of the profile 65c in the rotational direction of the drive shaft 3. The inclination angle β2 of the second inclined portion 653 with respect to the drive axis O direction is set to be smaller than the inclination angle α2 of the first inclined portion 652 with respect to the drive axis O direction. In the first embodiment, the profile 65c is composed of the first straight portion 651, the first inclined portion 652, the second inclined portion 653, and the second straight portion 654, but the number of the inclined portions and the straight portions is appropriately designed. Good. For example, the second straight line portion 654 may be deleted so that the second inclined portion 653 is connected to the guide surface 34a on the front side in the rotation direction.
 係合片65aは、遮蔽部65bの当接面65eから駆動軸心O方向に屈曲して形成されている。係合片65aは、駆動軸3の回転方向の後方側に設けられている。係合片65aは、遮蔽部65bのうち、回転方向の後方側に設けられているともいえる。また、係合片65aは、シャッタ65の内周面の中央位置に対して、回転方向の後方側に設けられているともいえる。 The engaging piece 65a is formed by bending in the drive axis O direction from the contact surface 65e of the shielding portion 65b. The engaging piece 65a is provided on the rear side of the drive shaft 3 in the rotational direction. It can be said that the engaging piece 65a is provided on the rear side of the shielding portion 65b in the rotation direction. Further, it can be said that the engaging piece 65a is provided on the rear side in the rotational direction with respect to the central position of the inner peripheral surface of the shutter 65.
 遮蔽部65bの左右の端面は駆動軸心Oと平行に延びている。シャッタ65は、案内面34bに載置される後方端面65fと、案内面34aに載置される前方端面65gとを備える。後方端面65fは、シャッタ65の回転方向の後方端部にて、駆動軸心O方向に延びている。前方端面65gは、シャッタ65の回転方向の前方端部にて、駆動軸心O方向に延びている。前方端面65gより後方端面65fの方が駆動軸心O方向の長さが長く形成されている。このため、駆動軸3の回転方向の後方側である案内面34bと後方端面65fとが当接する面積は、駆動軸3の回転方向の前方側である案内面34aと前方端面65gとが当接する面積より広くなっている。 The left and right end faces of the shielding portion 65b extend parallel to the drive axis O. The shutter 65 includes a rear end surface 65f mounted on the guide surface 34b and a front end surface 65g mounted on the guide surface 34a. The rear end surface 65f extends in the drive axis O direction at the rear end portion in the rotation direction of the shutter 65. The front end surface 65g extends in the drive axis O direction at the front end portion in the rotation direction of the shutter 65. The rear end surface 65f is formed to have a longer length in the drive axis O direction than the front end surface 65g. Therefore, the area where the guide surface 34b, which is the rear side of the drive shaft 3 in the rotation direction, and the rear end surface 65f come into contact with each other is such that the guide surface 34a, which is the front side of the drive shaft 3 in the rotation direction, and the front end surface 65g come into contact with each other. It is wider than the area.
 シャッタ65は、図15及び図16に示すように、第2スプール57に係合されることにより駆動軸3のフロント側径路3eに移動可能に設けられ、駆動軸3とともにフロント側軸孔33b内を回転する。シャッタ65の外周縁の一部であるプロフィール65cはフロント側第2連通路66を形成している。フロント側第2連通路66は、図17~19に示すように、フロント側径路3eとフロント側第1連通路41a~41eとの連通面積を構成する。フロント側径路3eは、駆動軸3の回転に伴い間欠的にフロント側第1連通路41a~41eと連通する。 As shown in FIGS. 15 and 16, the shutter 65 is movably provided in the front side path 3e of the drive shaft 3 by being engaged with the second spool 57, and is provided in the front side shaft hole 33b together with the drive shaft 3. To rotate. The profile 65c, which is a part of the outer peripheral edge of the shutter 65, forms the front side second passage 66. As shown in FIGS. 17 to 19, the front side second communication passage 66 constitutes a communication area between the front side path 3e and the front side first communication passages 41a to 41e. The front side path 3e intermittently communicates with the front side first communication passages 41a to 41e as the drive shaft 3 rotates.
 以上のように構成された圧縮機では、図1~3に示すように、駆動軸3が電磁クラッチやプーリを介してエンジンやモータによって回転駆動されると、固定斜板5が回転し、ピストン7が往復動する。このため、リヤ側ヘッド7aは、傾斜面5a、5bの傾斜角度に応じたストロークでリヤ側シリンダボア35a~35e内を上死点と下死点との間で往復動する。また、フロント側ヘッド7bは、傾斜面5a、5bの傾斜角度に応じたストロークでフロント側シリンダボア39a~39e内を上死点と下死点との間で往復動する。リヤ側ヘッド7aとフロント側ヘッド7bとは駆動軸3の回転角度で180°位相がずれている。 In the compressor configured as described above, as shown in FIGS. 1 to 3, when the drive shaft 3 is rotationally driven by the engine or motor via the electromagnetic clutch or pulley, the fixed swash plate 5 rotates and the piston 7 reciprocates. Therefore, the rear-side head 7a reciprocates between the top dead center and the bottom dead center in the rear cylinder bores 35a to 35e with a stroke corresponding to the inclination angle of the inclined surfaces 5a and 5b. Further, the front side head 7b reciprocates between the top dead center and the bottom dead center in the front cylinder bores 39a to 39e with a stroke corresponding to the inclination angle of the inclined surfaces 5a and 5b. The rear side head 7a and the front side head 7b are 180 ° out of phase with each other by the rotation angle of the drive shaft 3.
 ここで、リヤ側ヘッド7aが上死点から下死点に向かって移動することで、リヤ側圧縮室51は吸入行程となる。斜板室29内には吸入口29aによって蒸発器を経由した低圧の冷媒が存在している。斜板室29内の冷媒は、固定斜板5の内部吸入口5c、駆動軸3の内部吸入口3d、内部吸入絞り機構SVを経て、図5に示すように、第2スプール57の第2内部流路61、第1スプール55の第1内部流路59及び第1連通窓55e内に存在している。そして、図1~3に示すように、この際にリヤ側第1連通路37a~37eとリヤ側第2連通路64とが連通することで、リヤ側圧縮室51に冷媒が吸入される。一方、リヤ側第1連通路37a~37eとリヤ側第2連通路64とが非連通となり、リヤ側ヘッド7aが下死点から上死点に向かって移動することにより、リヤ側圧縮室51は吸入した冷媒を圧縮する圧縮行程となり、さらには、圧縮した冷媒をリヤ側吐出室17bに吐出する吐出行程となる。 Here, as the rear side head 7a moves from the top dead center to the bottom dead center, the rear side compression chamber 51 becomes a suction stroke. A low-pressure refrigerant that has passed through an evaporator through a suction port 29a exists in the swash plate chamber 29. The refrigerant in the swash plate chamber 29 passes through the internal suction port 5c of the fixed swash plate 5, the internal suction port 3d of the drive shaft 3, and the internal suction throttle mechanism SV, and as shown in FIG. 5, the second inside of the second spool 57. It exists in the flow path 61, the first internal flow path 59 of the first spool 55, and the first communication window 55e. Then, as shown in FIGS. 1 to 3, at this time, the rear side first communication passages 37a to 37e and the rear side second communication passage 64 communicate with each other, so that the refrigerant is sucked into the rear side compression chamber 51. On the other hand, the rear side first communication passages 37a to 37e and the rear side second communication passage 64 are not communicated with each other, and the rear side head 7a moves from the bottom dead center to the top dead center, so that the rear side compression chamber 51 Is a compression stroke for compressing the sucked refrigerant, and further is a discharge stroke for discharging the compressed refrigerant to the rear side discharge chamber 17b.
 また、フロント側ヘッド7bが上死点から下死点に向かって移動することで、フロント側圧縮室53は吸入行程となる。斜板室29内の冷媒は、第2スプール57の第2内部流路61及び第2連通窓57e内にも存在している。そして、この際にフロント側第1連通路41a~41eとフロント側第2連通路66とが連通することで、フロント側圧縮室53に冷媒が吸入される。一方、フロント側第1連通路41a~41eとフロント側第2連通路66とが非連通となり、フロント側ヘッド7bが下死点から上死点に向かって移動することにより、フロント側圧縮室53は吸入した冷媒を圧縮する圧縮行程となり、さらには、圧縮した冷媒をフロント側吐出室19aに吐出する吐出行程となる。リヤ側吐出室17bに吐出された冷媒とフロント側吐出室19aに吐出された冷媒とは吐出通路31を経て吐出口31aから凝縮器に吐出される。 Further, as the front head 7b moves from the top dead center to the bottom dead center, the front compression chamber 53 becomes a suction stroke. The refrigerant in the swash plate chamber 29 is also present in the second internal flow path 61 of the second spool 57 and the second communication window 57e. At this time, the front side first communication passages 41a to 41e and the front side second communication passage 66 communicate with each other, so that the refrigerant is sucked into the front side compression chamber 53. On the other hand, the front side first communication passages 41a to 41e and the front side second communication passage 66 are not communicated with each other, and the front side head 7b moves from the bottom dead center to the top dead center, so that the front side compression chamber 53 Is a compression stroke for compressing the sucked refrigerant, and further is a discharge stroke for discharging the compressed refrigerant to the front side discharge chamber 19a. The refrigerant discharged to the rear side discharge chamber 17b and the refrigerant discharged to the front side discharge chamber 19a are discharged from the discharge port 31a to the condenser via the discharge passage 31.
 これらの際、制御弁15が制御圧室17aを高圧にしていれば、図3に示すように、第1スプール55は第1ばね2の付勢力に抗して前方に移動し、第2スプール57も第2ばね2の付勢力に抗して前方に移動する。この際、第1スプール55の当接面55gが第2スプール57に当接するまでは、第1スプール55が単独で前方に移動する。第1スプール55の当接面55gが第2スプール57に当接した後は、第1スプール55と第2スプール57とは、一体となって前方に移動する。このため、枠体63は、図10に示すように、当接面63hが前端規制面3gに当接し、リヤ側径路3cの前端に位置する。このため、リヤ側第1連通路37a~37eがリヤ側第2連通路64と大きな連通面積の下で連通するため、リヤ側圧縮室51には大量の冷媒が吸入される。 At this time, if the control valve 15 increases the pressure of the control pressure chamber 17a, the first spool 55 moves forward against the urging force of the first spring 2 and the second spool 55, as shown in FIG. 57 also moves forward against the urging force of the second spring 2. At this time, the first spool 55 moves forward independently until the contact surface 55g of the first spool 55 comes into contact with the second spool 57. After the contact surface 55g of the first spool 55 comes into contact with the second spool 57, the first spool 55 and the second spool 57 move forward as one. Therefore, as shown in FIG. 10, the frame body 63 has the contact surface 63h in contact with the front end regulation surface 3g and is located at the front end of the rear side path 3c. Therefore, since the rear side first communication passages 37a to 37e communicate with the rear side second communication passage 64 under a large communication area, a large amount of refrigerant is sucked into the rear side compression chamber 51.
 また、シャッタ65は、図17に示すように、当接面65dが前端規制面3iに当接し、フロント側径路3eの前端に位置する。このため、フロント側第1連通路41a~41eがフロント側第2連通路66と大きな連通面積の下で連通するため、フロント側圧縮室53には大量の冷媒が吸入される。 Further, as shown in FIG. 17, the shutter 65 is located at the front end of the front side path 3e with the contact surface 65d in contact with the front end regulation surface 3i. Therefore, since the front side first communication passages 41a to 41e communicate with the front side second communication passage 66 under a large communication area, a large amount of refrigerant is sucked into the front side compression chamber 53.
 このため、この圧縮機は、リヤ側圧縮室51からリヤ側吐出室17bに吐出される吐出流量が最大となるとともに、フロント側圧縮室53からフロント側吐出室19aに吐出される吐出流量も最大となっている。このため、凝縮器には最大の吐出流量の冷媒が吐出される。つまり、枠体63は、吐出流量が最大であるとき、リヤ側第1連通路37a~37eとリヤ側第2連通路64との連通面積を最大にする。また、シャッタ65は、吐出流量が最大であるとき、フロント側第1連通路41a~41eとフロント側第2連通路66との連通面積を最大にする。 Therefore, in this compressor, the discharge flow rate discharged from the rear side compression chamber 51 to the rear side discharge chamber 17b is maximized, and the discharge flow rate discharged from the front side compression chamber 53 to the front side discharge chamber 19a is also maximum. It has become. Therefore, the refrigerant having the maximum discharge flow rate is discharged to the condenser. That is, when the discharge flow rate is maximum, the frame body 63 maximizes the communication area between the rear side first communication passages 37a to 37e and the rear side second communication passage 64. Further, the shutter 65 maximizes the communication area between the front side first communication passages 41a to 41e and the front side second communication passage 66 when the discharge flow rate is maximum.
 制御弁15が制御圧室17aを高圧にした図3の状態から、制御弁15が制御圧室17aの圧力をやや下げれば、図2に示すように、第1スプール55及び第2スプール57は後方に移動する。制御圧室17aの圧力低下に伴い、第2スプール57は、当接面65eが後端規制面3hに当接するまで、第2スプール57は後方に移動する。一方、第1スプール55は、制御圧室17aの圧力低下に伴い、第2スプール57とともに後方に移動し、当接面65eが後端規制面3hに当接した後は、第1スプール55は単独で後方に移動する。このため、枠体63は、図10に示す状態から、図11に示すように、当接面63hが前端規制面3gから離間して、枠体63は後方に移動する。このため、リヤ側第1連通路37a~37eがプロフィール63gに重なることにより、リヤ側第1連通路37a~37eとリヤ側第2連通路64との連通面積が減少していく。よって、リヤ側圧縮室51に吸入される冷媒の量が減少する。 If the control valve 15 slightly lowers the pressure in the control pressure chamber 17a from the state of FIG. 3 in which the control valve 15 increases the pressure in the control pressure chamber 17a, the first spool 55 and the second spool 57 become as shown in FIG. Move backwards. As the pressure in the control pressure chamber 17a decreases, the second spool 57 moves rearward until the contact surface 65e abuts on the rear end regulation surface 3h. On the other hand, the first spool 55 moves rearward together with the second spool 57 as the pressure in the control pressure chamber 17a decreases, and after the contact surface 65e abuts on the rear end regulation surface 3h, the first spool 55 moves. Move backwards alone. Therefore, as shown in FIG. 11, the frame body 63 moves rearward from the state shown in FIG. 10 with the contact surface 63h separated from the front end regulation surface 3g. Therefore, as the rear side first communication passages 37a to 37e overlap the profile 63g, the communication area between the rear side first communication passages 37a to 37e and the rear side second communication passage 64 decreases. Therefore, the amount of the refrigerant sucked into the rear compression chamber 51 is reduced.
 一方、シャッタ65は、制御弁15が制御圧室17aを高圧にした図3の状態から、制御弁15が制御圧室17aの圧力をやや下げれば、図17に示す状態から図18に示すように、当接面65dが前端規制面3iから離間して、シャッタ65が後方に移動する。このため、フロント側第1連通路41a~41eがプロフィール65cに重なることにより、フロント側第1連通路41a~41eとフロント側第2連通路66との連通面積が減少していく。よって、フロント側圧縮室53に吸入される冷媒の量が減少する。 On the other hand, the shutter 65 is as shown in FIG. 18 from the state shown in FIG. 17 when the control valve 15 slightly lowers the pressure in the control pressure chamber 17a from the state shown in FIG. 3 in which the control valve 15 increases the pressure in the control pressure chamber 17a. In addition, the contact surface 65d is separated from the front end regulation surface 3i, and the shutter 65 moves rearward. Therefore, as the front side first communication passages 41a to 41e overlap the profile 65c, the communication area between the front side first communication passages 41a to 41e and the front side second communication passage 66 decreases. Therefore, the amount of the refrigerant sucked into the front compression chamber 53 is reduced.
 シャッタ65は、さらに制御圧室17aの圧力が下がると、図19に示すように、当接面65eが後端規制面3hに当接するまで後方に移動し、フロント側径路3eの後端に位置する。このため、フロント側第1連通路41a~41eとフロント側第2連通路66との連通終了タイミングは、第2傾斜部653によって規定される。この場合、フロント側圧縮室53には冷媒が少量吸入される。 When the pressure in the control pressure chamber 17a further decreases, the shutter 65 moves rearward until the contact surface 65e abuts on the rear end regulation surface 3h, and is located at the rear end of the front side path 3e, as shown in FIG. To do. Therefore, the end timing of communication between the front side first communication passages 41a to 41e and the front side second communication passage 66 is defined by the second inclined portion 653. In this case, a small amount of refrigerant is sucked into the front compression chamber 53.
 このため、フロント側圧縮室53からフロント側吐出室19aに吐出される吐出流量はほぼゼロとなっている。リヤ側圧縮室51からリヤ側吐出室17bに吐出される吐出流量は、リヤ側第1連通路37a~37eに対するプロフィール63gの位置に依存し、リヤ側圧縮室51からリヤ側吐出室17bに吐出される吐出流量の最大と最少との間の流量となる。このため、凝縮器には所定の吐出流量の冷媒が吐出される。 Therefore, the discharge flow rate discharged from the front side compression chamber 53 to the front side discharge chamber 19a is almost zero. The discharge flow rate discharged from the rear side compression chamber 51 to the rear side discharge chamber 17b depends on the position of the profile 63g with respect to the rear side first communication passages 37a to 37e, and is discharged from the rear side compression chamber 51 to the rear side discharge chamber 17b. It is the flow rate between the maximum and minimum of the discharged flow rate. Therefore, the refrigerant having a predetermined discharge flow rate is discharged to the condenser.
 制御弁15が制御圧室17aの圧力をさらに下げれば、図1に示すように、第1スプール55は第1ばね2の付勢力に屈してさらに後方に移動する。第2スプール57は、第2ばね2の付勢力に屈して当接面65eが後端規制面3hに当接しているので、さらに後方に移動しない。このため、枠体63は、図11の状態から図12に示すように、当接面63iが後端規制面3fに当接し、リヤ側径路3cの後端に位置している。このため、リヤ側第1連通路37a~37eとリヤ側第2連通路64との連通終了タイミングは、第2傾斜部633によって規定される。この場合、リヤ側圧縮室51には冷媒が少量吸入される。 When the control valve 15 further reduces the pressure in the control pressure chamber 17a, the first spool 55 succumbs to the urging force of the first spring 2 and moves further rearward, as shown in FIG. The second spool 57 does not move further rearward because the contact surface 65e is in contact with the rear end regulation surface 3h due to the urging force of the second spring 2. Therefore, as shown in FIG. 12 from the state of FIG. 11, the frame body 63 has the contact surface 63i in contact with the rear end regulation surface 3f and is located at the rear end of the rear side path 3c. Therefore, the end timing of communication between the rear side first communication passages 37a to 37e and the rear side second communication passage 64 is defined by the second inclined portion 633. In this case, a small amount of refrigerant is sucked into the rear compression chamber 51.
 また、シャッタ65は、図19に示すように、当接面65eが後端規制面3hに当接し、フロント側径路3eの後端に位置してる。このため、フロント側第1連通路41a~41eとフロント側第2連通路66との連通終了タイミングは、第2傾斜部653によって規定される。この場合、フロント側圧縮室53には冷媒が少量吸入される。 Further, as shown in FIG. 19, the shutter 65 is located at the rear end of the front side path 3e with the contact surface 65e in contact with the rear end regulation surface 3h. Therefore, the end timing of communication between the front side first communication passages 41a to 41e and the front side second communication passage 66 is defined by the second inclined portion 653. In this case, a small amount of refrigerant is sucked into the front compression chamber 53.
 このため、この圧縮機は、リヤ側圧縮室51からリヤ側吐出室17bに吐出される吐出流量及びフロント側圧縮室53からフロント側吐出室19aに吐出される吐出流量は少量となり、凝縮器には最少の吐出流量の冷媒だけが吐出される。つまり、枠体63は、吐出流量が最少であるとき、リヤ側第1連通路37a~37eとリヤ側第2連通路64との連通面積を最小にする。また、シャッタ65は、吐出流量が最少であるとき、フロント側第1連通路41a~41eとフロント側第2連通路66との連通面積を最小にする。 Therefore, in this compressor, the discharge flow rate discharged from the rear side compression chamber 51 to the rear side discharge chamber 17b and the discharge flow rate discharged from the front side compression chamber 53 to the front side discharge chamber 19a are small, and the condenser has a small discharge flow rate. Discharges only the refrigerant with the minimum discharge flow rate. That is, the frame body 63 minimizes the communication area between the rear side first communication passages 37a to 37e and the rear side second communication passage 64 when the discharge flow rate is the minimum. Further, the shutter 65 minimizes the communication area between the front side first communication passages 41a to 41e and the front side second communication passage 66 when the discharge flow rate is the minimum.
 このように、最少の吐出流量をゼロではなく、少量とすることにより、圧縮機内部で冷媒が内部循環されることにより、圧縮機内の潤滑性が向上する。また、最少の吐出流量の状態から吐出流量を上げる場合に、制御弁15が制御圧室17aの圧力を高めやすくなり、制御性が向上する。また、最少の吐出流量時に、冷媒がリヤ側圧縮室51及びフロント側圧縮室53に流入することにより、冷媒が各圧縮室51、53に流入しない場合に比べて、各圧縮室51、53の吸入行程における圧力の低下量を低減できる。これにより、吸入行程におけるピストン7及びシュー49a、49bにかかる荷重を低減できる。よって、圧縮機の動力を低減できる。また、最少の吐出流量時における各圧縮室51、53と斜板室29との差圧により、斜板室29から各圧縮室51、53への冷媒に含まれるオイルが流入することを低減できる。よって、斜板室29内にオイルを保持しやすくなり、斜板室29内の潤滑性を向上できる。 In this way, by setting the minimum discharge flow rate to a small amount instead of zero, the refrigerant is internally circulated inside the compressor, and the lubricity inside the compressor is improved. Further, when the discharge flow rate is increased from the state of the minimum discharge flow rate, the control valve 15 can easily increase the pressure in the control pressure chamber 17a, and the controllability is improved. Further, at the minimum discharge flow rate, the refrigerant flows into the rear side compression chamber 51 and the front side compression chamber 53, so that the refrigerant does not flow into the respective compression chambers 51 and 53. The amount of pressure drop in the inhalation stroke can be reduced. As a result, the load applied to the piston 7 and the shoes 49a and 49b in the suction stroke can be reduced. Therefore, the power of the compressor can be reduced. Further, the differential pressure between the compression chambers 51 and 53 and the swash plate chamber 29 at the minimum discharge flow rate can reduce the inflow of oil contained in the refrigerant from the swash plate chamber 29 into the compression chambers 51 and 53. Therefore, the oil can be easily retained in the swash plate chamber 29, and the lubricity in the swash plate chamber 29 can be improved.
 以上、吐出流量が最大の状態から最小の状態に移行するまでの圧縮機の動きを説明した。以下、吐出流量が最小の状態から最大の状態に移行するまでの圧縮機の動きを簡単に説明する。 The operation of the compressor from the maximum discharge flow rate to the minimum discharge flow rate has been explained above. Hereinafter, the operation of the compressor from the state where the discharge flow rate changes from the minimum state to the maximum state will be briefly described.
 図1の吐出流量が最小の状態から制御弁15が制御圧室17aの圧力を上げると、第1ばね2の付勢力に抗して、第1スプール55が前方側に移動し、リヤ側第1連通路37a~37eとリヤ側第2連通路64との連通面積が増加し始める。この間、第2スプール57は移動せず、フロント側第1連通路41a~41eとフロント側第2連通路66との連通面積は、最小の状態を維持する。さらに制御圧室17aの圧力が上がると、第1スプール55の当接面55gが第2スプール57と当接して図2の状態となり、第1スプール55及び第2スプール57とが一体となって前方側に移動し始める。よって、リヤ側第1連通路37a~37eとリヤ側第2連通路64との連通面積がプロフィール63gに応じた連通面積となり、フロント側第1連通路41a~41eとフロント側第2連通路66との連通面積が増加し始める。そして、制御圧室17aの圧力がさらに大きくなると、第1スプール55及び第2スプール57のいずれも最前方に移動した状態となる。よって、リヤ側第1連通路37a~37eとリヤ側第2連通路64との連通面積及びフロント側第1連通路41a~41eとフロント側第2連通路66との連通面積が最大となり、図3の吐出流量が最大の状態となる。 When the control valve 15 raises the pressure in the control pressure chamber 17a from the state where the discharge flow rate in FIG. 1 is the minimum, the first spool 55 moves to the front side against the urging force of the first spring 2, and the rear side second. The communication area between the single passages 37a to 37e and the rear side second passage 64 begins to increase. During this time, the second spool 57 does not move, and the communication area between the front side first communication passages 41a to 41e and the front side second communication passage 66 is maintained in the minimum state. When the pressure in the control pressure chamber 17a further increases, the contact surface 55g of the first spool 55 comes into contact with the second spool 57 to be in the state shown in FIG. 2, and the first spool 55 and the second spool 57 are integrated. Start moving forward. Therefore, the communication area between the rear side first communication passages 37a to 37e and the rear side second communication passage 64 becomes the communication area according to the profile 63g, and the front side first communication passages 41a to 41e and the front side second communication passage 66. The area of communication with is beginning to increase. Then, when the pressure in the control pressure chamber 17a is further increased, both the first spool 55 and the second spool 57 are in a state of being moved to the frontmost position. Therefore, the communication area between the rear side first communication passages 37a to 37e and the rear side second communication passage 64 and the communication area between the front side first communication passages 41a to 41e and the front side second communication passage 66 are maximized. The discharge flow rate of 3 is in the maximum state.
 こうして、この圧縮機では、第1スプール55が駆動軸3の第1軸路3a内を駆動軸心O方向に移動するとともに、第2スプール57が駆動軸3の第2軸路3b内を駆動軸心O方向に移動する。このため、第1、2スプール55、57には圧縮荷重が直接作用しない。 In this way, in this compressor, the first spool 55 moves in the first axis 3a of the drive shaft 3 in the drive axis O direction, and the second spool 57 drives in the second axis 3b of the drive shaft 3. It moves in the O direction of the axis. Therefore, the compressive load does not directly act on the first and second spools 55 and 57.
 また、枠体63は、リヤ側圧縮室51が吸入行程の際にリヤ側径路3cをリヤ側第1連通路37a~37eと連通させ、リヤ側圧縮室51が圧縮行程又は吐出行程の際にはリヤ側径路3cをリヤ側第1連通路37a~37eと非連通とする。これにより、駆動軸3には、リヤ側第1連通路37a~37eを通じて圧縮荷重が作用する一方、第1スプール55及び枠体63には、圧縮荷重が作用し難くなっている。 Further, in the frame body 63, when the rear side compression chamber 51 communicates with the rear side first communication passages 37a to 37e during the suction stroke, and when the rear side compression chamber 51 communicates with the rear side first communication passages 37a to 37e Makes the rear side route 3c non-communication with the rear side first communication passages 37a to 37e. As a result, the compressive load acts on the drive shaft 3 through the rear-side first continuous passages 37a to 37e, while the compressive load does not easily act on the first spool 55 and the frame body 63.
 シャッタ65は、フロント側圧縮室53が吸入行程の際にフロント側径路3eをフロント側第1連通路41a~41eと連通させ、フロント側圧縮室53が圧縮行程又は吐出行程の際にはフロント側径路3eをフロント側第1連通路41a~41eと非連通とする。これにより、駆動軸3には、フロント側第1連通路41a~41eを通じて圧縮荷重が作用する一方、第2スプール57及びシャッタ65には、圧縮荷重が作用し難くなっている。 The shutter 65 communicates the front side path 3e with the front side first communication passages 41a to 41e when the front side compression chamber 53 is in the suction stroke, and the front side when the front side compression chamber 53 is in the compression stroke or the discharge stroke. The route 3e is not communicated with the front side first communication passages 41a to 41e. As a result, a compressive load acts on the drive shaft 3 through the front-side first passages 41a to 41e, while the compressive load does not easily act on the second spool 57 and the shutter 65.
 このため、この圧縮機では、第1スプール55、第2スプール57、枠体63及びシャッタ65が駆動軸心O方向に移動し易い。また、この圧縮機では、大きな推力を得るために移動体を必要以上に大型化させなくても足りる。 Therefore, in this compressor, the first spool 55, the second spool 57, the frame body 63, and the shutter 65 can easily move in the drive axis O direction. Further, in this compressor, it is not necessary to make the moving body larger than necessary in order to obtain a large thrust.
 したがって、この圧縮機は、高い制御性を発揮するとともに小型化を実現できる。 Therefore, this compressor can exhibit high controllability and can be miniaturized.
 また、この圧縮機では、図10に示すように、枠体63が第1リム部63cを有するため、リヤ側第1連通路37a~37eとリヤ側径路3cとの連通開始タイミングは、第1リム部63cによって規定されている。このため、リヤ側圧縮室51内に残留する高圧の冷媒がリヤ側径路3cに還流し難くなっている。なお、吐出流量が減り、枠体63がやや後方に移動することによって凹部63fがリヤ側第1連通路37a~37eと連通するようになれば、凹部63fによって早期の連通開始タイミングを実現することができる。 Further, in this compressor, as shown in FIG. 10, since the frame body 63 has the first rim portion 63c, the communication start timing between the rear side first communication passages 37a to 37e and the rear side path 3c is the first. It is defined by the rim portion 63c. Therefore, it is difficult for the high-pressure refrigerant remaining in the rear side compression chamber 51 to return to the rear side path 3c. If the discharge flow rate is reduced and the frame body 63 moves slightly rearward so that the recess 63f communicates with the rear side first communication passages 37a to 37e, the recess 63f realizes an early communication start timing. Can be done.
 一方、シャッタ65は、図17に示すように、枠体63のような第1リム部63cを有さないため、フロント側第1連通路41a~41eとフロント側径路3eとの連通開始タイミングは案内面34aによって規定されている。このため、簡易な形状のシャッタ65を採用できるとともに、駆動軸3への加工も簡易になっている。また、シャッタ65によって最小容量を実現できることから、他の制御を省略できる。このため、圧縮機の製造コストの低廉化を実現できる。また、シャッタ65の駆動軸心O方向の長さを短くできるため、圧縮機の短軸化により、車両等への搭載性を上げることができる。さらに、シャッタ65は、枠体63の第1リム部63cのような強度の弱い部分がなくなるため、耐久性が上がり、かつ高い制御性を発揮することができる。また、第1リム部63cでは、連通開始タイミング近傍となり、圧縮室内に残留する高圧の冷媒による荷重の影響を受けやすくなる。この点、シャッタ65では、第1リム部63cのように圧縮室内に残留する高圧の冷媒による荷重の影響を受け難くなり、さらに耐久性が向上する。 On the other hand, as shown in FIG. 17, since the shutter 65 does not have the first rim portion 63c like the frame body 63, the communication start timing between the front side first communication passages 41a to 41e and the front side path 3e is set. It is defined by the guide surface 34a. Therefore, the shutter 65 having a simple shape can be adopted, and the processing to the drive shaft 3 is also easy. Further, since the minimum capacity can be realized by the shutter 65, other control can be omitted. Therefore, it is possible to reduce the manufacturing cost of the compressor. Further, since the length of the shutter 65 in the drive axis O direction can be shortened, the mountability on a vehicle or the like can be improved by shortening the axis of the compressor. Further, since the shutter 65 does not have a weak portion such as the first rim portion 63c of the frame body 63, the durability is improved and high controllability can be exhibited. Further, the first rim portion 63c is near the communication start timing and is easily affected by the load due to the high-pressure refrigerant remaining in the compression chamber. In this respect, the shutter 65 is less likely to be affected by the load of the high-pressure refrigerant remaining in the compression chamber like the first rim portion 63c, and the durability is further improved.
 さらに、この圧縮機では、図17に示すように、フロント側第1連通路41a~41eとフロント側径路3eとの連通終了タイミングは、吐出流量が最大であるときには案内面34bによって規定され、図19に示すように、吐出流量が最少であるときにはシャッタ65によって規定されている。このため、シャッタ65の形状が最も簡易になっている。また、駆動軸3の外周面から浅い位置で案内面34a、34bがフロント側径路3eを形成することができるため、駆動軸3のねじりに対する強度が向上し、高い耐久性を発揮することができる。 Further, in this compressor, as shown in FIG. 17, the communication end timing between the front side first communication passages 41a to 41e and the front side path 3e is defined by the guide surface 34b when the discharge flow rate is maximum. As shown in 19, when the discharge flow rate is the minimum, it is defined by the shutter 65. Therefore, the shape of the shutter 65 is the simplest. Further, since the guide surfaces 34a and 34b can form the front side axle 3e at a position shallow from the outer peripheral surface of the drive shaft 3, the strength against twisting of the drive shaft 3 is improved and high durability can be exhibited. ..
 また、この圧縮機は、フロント側蓋体がシャッタ65であり、リヤ側蓋体が枠体63であるため、枠体63は、シャッタ65と比較してやや複雑な形状とはなるが、リヤ側圧縮室51の容量制御を緻密に行うことができる。また、この圧縮機は、第1スプール55と第2スプール57とを採用しているため、リヤ側圧縮室51とフロント側圧縮室53とをそれぞれ緻密に容量制御することができる。 Further, in this compressor, since the front side lid is the shutter 65 and the rear side lid is the frame 63, the frame 63 has a slightly more complicated shape than the shutter 65, but the rear side. The capacity of the compression chamber 51 can be precisely controlled. Further, since this compressor employs the first spool 55 and the second spool 57, the capacity of the rear side compression chamber 51 and the front side compression chamber 53 can be precisely controlled.
 さらに、この圧縮機は、シャッタ65の係合片65aが駆動軸3の回転方向の後方側に設けられているため、駆動軸3が係合片65aを回転方向に押し、第2スプール57とシャッタ65との係合が強固になっている。 Further, in this compressor, since the engaging piece 65a of the shutter 65 is provided on the rear side of the drive shaft 3 in the rotational direction, the drive shaft 3 pushes the engaging piece 65a in the rotational direction to the second spool 57. The engagement with the shutter 65 is strong.
 駆動軸3の回転方向の後方側である案内面34bと後方端面65fとが当接する面積が、駆動軸3の回転方向の前方側である案内面34aと前方端面65gとが当接する面積より広くなっているため、駆動軸3がシャッタ65を回転方向に押す際の当接面積を広く確保することができ、シャッタ65の姿勢が安定する。 The area where the guide surface 34b on the rear side in the rotation direction of the drive shaft 3 and the rear end surface 65f abut is wider than the area where the guide surface 34a on the front side in the rotation direction of the drive shaft 3 and the front end surface 65g abut. Therefore, it is possible to secure a wide contact area when the drive shaft 3 pushes the shutter 65 in the rotational direction, and the posture of the shutter 65 is stable.
 実施例2の圧縮機は、図20に示すように、単一のスプール58を採用し、スプール58にシャッタ65及び枠体63を係合している。スプール58は、筒部58aと、筒部58aの後端を塞ぐ端部58bと、筒部58aの前端で円筒状に形成されたばね座部58cとからなる。筒部58a内には、内部流路60と、内部流路60を外側に開く内部取入口58d、第1連通窓58e、第2連通窓58fとが形成されている。端部58bの外周面にはシール58gが設けられている。他の構成は実施例1の圧縮機と同様である。 As shown in FIG. 20, the compressor of the second embodiment employs a single spool 58, and the shutter 65 and the frame body 63 are engaged with the spool 58. The spool 58 includes a tubular portion 58a, an end portion 58b that closes the rear end of the tubular portion 58a, and a spring seat portion 58c formed in a cylindrical shape at the front end of the tubular portion 58a. An internal flow path 60, an internal intake 58d that opens the internal flow path 60 to the outside, a first communication window 58e, and a second communication window 58f are formed in the tubular portion 58a. A seal 58g is provided on the outer peripheral surface of the end portion 58b. Other configurations are the same as those of the compressor of the first embodiment.
 実施例2の圧縮機では、フロント側圧縮室53及びリヤ側圧縮室51の容量制御を簡易に行うことができる。他の作用効果は実施例1の圧縮機と同様である。 In the compressor of the second embodiment, the capacity control of the front side compression chamber 53 and the rear side compression chamber 51 can be easily performed. Other effects are the same as those of the compressor of Example 1.
 実施例3の圧縮機は、図21に示すように、単一のスプール58を採用し、スプール58にフロント側シャッタ65及びリヤ側シャッタ65を係合している。フロント側シャッタ65及びリヤ側シャッタ65は、実施例1のシャッタ65と同様の構造である。他の構成は実施例1、2の圧縮機と同様である。リヤ側シャッタ65の外周縁の一部であるプロフィールはフロント側シャッタ65と同様にリヤ側第2連通路を形成している。リヤ側第2連通路は、フロント側第2連通路66と同様にリヤ側径路3cとリヤ側第1連通路37a~37eとの連通面積を構成する。 As shown in FIG. 21, the compressor of the third embodiment employs a single spool 58, and the front side shutter 65 and the rear side shutter 65 are engaged with the spool 58. The front side shutter 65 and the rear side shutter 65 have the same structure as the shutter 65 of the first embodiment. Other configurations are the same as those of the compressors of Examples 1 and 2. The profile, which is a part of the outer peripheral edge of the rear shutter 65, forms the rear second passage as well as the front shutter 65. The rear side second communication passage constitutes a communication area between the rear side path 3c and the rear side first communication passages 37a to 37e, similarly to the front side second communication passage 66.
 実施例3の圧縮機では、フロント側圧縮室53及びリヤ側圧縮室51の容量制御をより簡易に行うことができる。他の作用効果は実施例1の圧縮機と同様である。 In the compressor of the third embodiment, the capacity control of the front side compression chamber 53 and the rear side compression chamber 51 can be performed more easily. Other effects are the same as those of the compressor of Example 1.
 以上において、本発明を実施例1~3に即して説明したが、本発明は上記実施例1~3に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。 In the above, the present invention has been described in accordance with Examples 1 to 3, but the present invention is not limited to the above Examples 1 to 3, and can be appropriately modified and applied without departing from the spirit thereof. Needless to say.
 例えば、本発明のピストン式圧縮機は、一方のみにヘッドを有する片頭ピストンを用いた片頭ピストン式圧縮機であってもよい。 For example, the piston type compressor of the present invention may be a single-headed piston type compressor using a single-headed piston having a head on only one side.
 また、実施例1~3の圧縮機において、吐出流量を最小流量の状態とするときに、プロフィール63gの形状を変更することにより、図22に示すように、リヤ側第1連通路37a~37eとリヤ側第2連通路64との連通面積を略ゼロとし、プロフィール65cの形状を変更することにより、図23に示すように、フロント側第1連通路41a~41eとフロント側第2連通路66との連通面積を略ゼロとなるようにしてもよい。つまり、吐出流量を最小流量の状態とするときに、駆動軸3の回転により、リヤ側第1連通路37a~37eは、リヤ側第2連通路64と重ならず、遮蔽部63bとだけ重なるようにし、フロント側第1連通路41a~41eは、フロント側第2連通路66と重ならず、遮蔽部65bとだけ重なるようにしてもよい。 Further, in the compressors of Examples 1 to 3, when the discharge flow rate is set to the minimum flow rate state, by changing the shape of the profile 63 g, as shown in FIG. 22, the rear side first passages 37a to 37e As shown in FIG. 23, the communication area between the front side first communication passage 64 and the rear side second communication passage 64 is set to substantially zero, and the shape of the profile 65c is changed so that the front side first communication passage 41a to 41e and the front side second communication passage 41a to 41e are changed. The communication area with 66 may be set to substantially zero. That is, when the discharge flow rate is set to the minimum flow rate, the rear side first passages 37a to 37e do not overlap with the rear side second passage 64 but overlap only with the shielding portion 63b due to the rotation of the drive shaft 3. As such, the front-side first passages 41a to 41e may not overlap with the front-side second passage 66, but may overlap only with the shielding portion 65b.
 また、実施例1~3の圧縮機において、外部から制御弁15への電流のONとOFFとを切り替えて制御圧力を制御する外部制御を行っても良く、外部からの電流に依らずに制御圧力を制御する内部制御を行っても良い。ここで、外部制御を行う場合であって、制御弁15への電流をOFFにすることによって、制御弁15が弁開度を大きくするように構成すると、圧縮機の停止時において、弁開度が大きくなり、制御圧室17aの制御圧力を低くできる。このため、吐出流量が最少流量の状態で圧縮機を起動できることから、起動ショックを低減することができる。 Further, in the compressors of Examples 1 to 3, external control may be performed to control the control pressure by switching ON and OFF of the current from the outside to the control valve 15, and the control may be performed regardless of the current from the outside. Internal control to control the pressure may be performed. Here, in the case of performing external control, if the control valve 15 is configured to increase the valve opening degree by turning off the current to the control valve 15, the valve opening degree is increased when the compressor is stopped. Can be increased, and the control pressure in the control pressure chamber 17a can be lowered. Therefore, since the compressor can be started with the discharge flow rate being the minimum flow rate, the start-up shock can be reduced.
 さらに、実施例1~3の圧縮機において、給気通路47aを経てリヤ側吐出室17bから制御圧室17aに導入される冷媒ガスの流量を制御弁15によって変化させる入れ側制御を行っても良い。この場合には、制御圧室17aを迅速に高圧にすることができ、吐出流量を速やかに増大させることができる。ここで、外部制御を行う場合であって、制御弁15への電流をOFFにすることによって、制御弁15が弁開度を小さくするように構成すると、圧縮機の停止時において、弁開度が小さくなり、制御圧室17aの制御圧力を低くできる。このため、吐出流量が最少流量の状態で圧縮機を起動できることから、起動ショックを低減することができる。 Further, in the compressors of the first to third embodiments, even if the inlet control is performed by changing the flow rate of the refrigerant gas introduced from the rear side discharge chamber 17b to the control pressure chamber 17a through the air supply passage 47a by the control valve 15. good. In this case, the control pressure chamber 17a can be quickly increased in pressure, and the discharge flow rate can be rapidly increased. Here, in the case of performing external control, if the control valve 15 is configured to reduce the valve opening degree by turning off the current to the control valve 15, the valve opening degree is increased when the compressor is stopped. Can be reduced, and the control pressure in the control pressure chamber 17a can be lowered. Therefore, since the compressor can be started with the discharge flow rate being the minimum flow rate, the start-up shock can be reduced.
 また、実施例1~3の圧縮機において、制御弁15に換えて、給気通路47aと抽気通路47bとの両者で開度を調整可能な三方弁を採用しても良い。 Further, in the compressors of Examples 1 to 3, instead of the control valve 15, a three-way valve whose opening degree can be adjusted in both the air supply passage 47a and the bleed air passage 47b may be adopted.
 本発明は車両の空調装置等に利用可能である。 The present invention can be used for vehicle air conditioners and the like.
 35a~35e、39a~39e…シリンダボア(35a~35e…リヤ側シリンダボア、39a~39e…フロント側シリンダボア)
 21、23…シリンダブロック(21…リヤ側シリンダブロック、23…フロント側シリンダブロック)
 17b、19a…吐出室(17b…リヤ側吐出室、19a…フロント側吐出室)
 29…斜板室
 33a、33b、19c…軸孔(33a…リヤ側軸孔、33b…フロント側軸孔)
 1…ハウジング(17…リヤハウジング、19…フロントハウジング)
 3…駆動軸
 51、53…圧縮室(51…リヤ側圧縮室、53…フロント側圧縮室)
 7…ピストン(7a…リヤ側ヘッド、7b…フロント側ヘッド)
 9e、11e…吐出弁(吐出リード弁)
 O…駆動軸心
 55、57、63、65…移動体(55…第1スプール、57…第2スプール、63…枠体、65…シャッタ)
 15…制御弁
 37a~37e、41a~41e…第1連通路(37a~37e…リヤ側第1連通路、41a~41e…フロント側第1連通路)
 3a、3b…軸路(3a…第1軸路、3b…第2軸路)
 3c、3e…径路(3c…リヤ側径路、3e…フロント側径路)
 32a、32b、34a、34b…案内面
35a-35e, 39a-39e ... Cylinder bores (35a-35e ... Rear cylinder bores, 39a-39e ... Front cylinder bores)
21, 23 ... Cylinder block (21 ... Rear side cylinder block, 23 ... Front side cylinder block)
17b, 19a ... Discharge chamber (17b ... Rear side discharge chamber, 19a ... Front side discharge chamber)
29 ... Slanted plate chambers 33a, 33b, 19c ... Shaft holes (33a ... Rear side shaft holes, 33b ... Front side shaft holes)
1 ... Housing (17 ... Rear housing, 19 ... Front housing)
3 ... Drive shafts 51, 53 ... Compression chamber (51 ... Rear side compression chamber, 53 ... Front side compression chamber)
7 ... Piston (7a ... Rear head, 7b ... Front head)
9e, 11e ... Discharge valve (discharge reed valve)
O ... Drive shaft center 55, 57, 63, 65 ... Moving body (55 ... 1st spool, 57 ... 2nd spool, 63 ... Frame body, 65 ... Shutter)
15 ... Control valves 37a to 37e, 41a to 41e ... 1st passage (37a to 37e ... 1st passage on the rear side, 41a to 41e ... 1st passage on the front side)
3a, 3b ... Axle (3a ... 1st axis, 3b ... 2nd axis)
3c, 3e ... Route (3c ... Rear side route, 3e ... Front side route)
32a, 32b, 34a, 34b ... Guide surface

Claims (9)

  1.  複数のシリンダボアが形成されたシリンダブロックを有し、吐出室と、冷媒が吸入される斜板室と、軸孔とが形成されたハウジングと、
     前記軸孔内に回転可能に支承された駆動軸と、
     前記駆動軸の回転によって前記斜板室内で回転可能であり、前記駆動軸に垂直な平面に対する傾斜角度が一定である固定斜板と、
     前記シリンダボア内に圧縮室を形成し、前記固定斜板に連結されるピストンと、
     前記圧縮室内の冷媒を前記吐出室に吐出させる吐出弁と、
     前記駆動軸に設けられ、前記駆動軸と一体回転するとともに、制御圧力に基づいて前記駆動軸の駆動軸心方向に前記駆動軸に対して移動可能である移動体と、
     前記制御圧力を制御する制御弁とを備え、
     前記移動体の前記駆動軸心方向の位置に応じて、前記圧縮室から前記吐出室に吐出される冷媒の流量である吐出流量が変化するピストン式圧縮機であって、
     前記シリンダブロックには、前記シリンダボアに連通する第1連通路が形成され、
     前記駆動軸には、前記駆動軸心方向に延びる軸路と、前記軸路と連通して前記駆動軸の径方向に延び、前記駆動軸の回転に伴い間欠的に前記第1連通路と連通する径路とが形成され、
     前記移動体は、前記軸路内に前記駆動軸心方向に移動可能に配置されたスプールと、前記スプールと係合されて前記径路に配置され、前記径路と前記第1連通路との連通面積を変更可能な蓋体とを有し、
     前記蓋体は、前記吐出流量が最大であるときには前記連通面積を最大にする一方、前記吐出流量が最少であるときには前記連通面積を最小にすることを特徴とするピストン式圧縮機。
    A housing having a cylinder block in which a plurality of cylinder bores are formed, a discharge chamber, a swash plate chamber in which a refrigerant is sucked, and a shaft hole are formed.
    A drive shaft rotatably supported in the shaft hole,
    A fixed swash plate that can be rotated in the swash plate chamber by rotation of the drive shaft and has a constant inclination angle with respect to a plane perpendicular to the drive shaft.
    A piston that forms a compression chamber in the cylinder bore and is connected to the fixed swash plate,
    A discharge valve that discharges the refrigerant in the compression chamber to the discharge chamber,
    A moving body provided on the drive shaft, which rotates integrally with the drive shaft and is movable with respect to the drive shaft in the drive axis direction of the drive shaft based on a control pressure.
    A control valve for controlling the control pressure is provided.
    A piston type compressor in which the discharge flow rate, which is the flow rate of the refrigerant discharged from the compression chamber to the discharge chamber, changes according to the position of the moving body in the drive axis direction.
    The cylinder block is formed with a first communication passage that communicates with the cylinder bore.
    The drive shaft includes an axis extending in the direction of the drive axis, communicating with the axis and extending in the radial direction of the drive shaft, and intermittently communicating with the first passage as the drive shaft rotates. Axle is formed
    The moving body is arranged in the axial path by engaging with a spool that is movably arranged in the drive axis direction and is arranged in the path, and has a communication area between the path and the first communication passage. Has a changeable lid and
    The lid is a piston type compressor, characterized in that the communication area is maximized when the discharge flow rate is maximum, while the communication area is minimized when the discharge flow rate is minimum.
  2.  前記駆動軸は、前記蓋体を前記駆動軸心方向に案内する案内面を有し、
     前記第1連通路と前記径路との連通開始タイミングは、前記案内面によって規定されている請求項1記載のピストン式圧縮機。
    The drive shaft has a guide surface that guides the lid body in the direction of the drive shaft center.
    The piston type compressor according to claim 1, wherein the communication start timing between the first communication passage and the path is defined by the guide surface.
  3.  前記駆動軸は、前記蓋体を前記駆動軸心方向に案内する案内面を有し、
     前記第1連通路と前記径路との連通終了タイミングは、前記吐出流量が最大であるときには前記案内面によって規定され、前記吐出流量が最少であるときには前記蓋体によって規定されている請求項1又は2記載のピストン式圧縮機。
    The drive shaft has a guide surface that guides the lid body in the direction of the drive shaft center.
    The timing of the end of communication between the first communication passage and the path is defined by the guide surface when the discharge flow rate is maximum, and is defined by the lid when the discharge flow rate is minimum. 2. The piston type compressor according to 2.
  4.  前記シリンダボアは、前記駆動軸心方向の一方側に配置された一方側シリンダボアと、前記駆動軸心方向の他方側に配置された他方側シリンダボアとからなり、
     前記ピストンは、前記一方側シリンダボア内に一方側圧縮室を形成する一方側ヘッドと、前記他方側シリンダボア内に他方側圧縮室を形成する他方側ヘッドとを有し、
     前記第1連通路は、前記一方側シリンダボアに連通する一方側第1連通路と、前記他方側シリンダボアに連通する他方側第1連通路とからなり、
     前記径路は、前記一方側第1連通路と連通する一方側径路と、前記他方側第1連通路と連通する他方側径路とからなり、
     前記蓋体は、前記一方側径路に配置され、前記一方側径路と前記一方側第1連通路との連通面積を変更可能な一方側蓋体と、前記他方側径路に配置され、前記他方側径路と前記他方側第1連通路との連通面積を変更可能な他方側蓋体とからなり、
     前記他方側蓋体は、前記他方側径路と前記他方側第1連通路との連通面積を構成する他方側第2連通路を自己の外周縁の一部が形成しているシャッタである請求項1乃至3のいずれか1項記載のピストン式圧縮機。
    The cylinder bore is composed of a one-sided cylinder bore arranged on one side in the drive axis direction and a other-side cylinder bore arranged on the other side in the drive axis direction.
    The piston has a one-sided head that forms a one-sided compression chamber in the one-sided cylinder bore and a other-sided head that forms the other-side compression chamber in the other-sided cylinder bore.
    The first communication passage includes a one-sided first passage that communicates with the one-side cylinder bore and a other-side first passage that communicates with the other cylinder bore.
    The route includes a one-sided route that communicates with the one-sided first communication passage and the other-side route that communicates with the other-side first communication passage.
    The lid is arranged on the one-sided path and has a one-sided lid whose communication area between the one-sided path and the one-sided first communication passage can be changed, and the other side is arranged on the other side. It consists of a lid on the other side whose communication area between the route and the first passage on the other side can be changed.
    The other side lid is a shutter in which a part of its own outer peripheral edge forms a second side passage that constitutes a communication area between the other side path and the other side first communication passage. The piston type compressor according to any one of 1 to 3.
  5.  前記一方側蓋体は、前記一方側径路と前記一方側第1連通路との連通面積を構成する一方側第2連通路を自己の内部が形成している枠体である請求項4記載のピストン式圧縮機。 The fourth aspect of claim 4, wherein the one-sided lid is a frame body in which the inside of the one-sided second connecting passage forms a communication area between the one-sided path and the one-sided first connecting passage. Piston compressor.
  6.  前記一方側蓋体は、前記一方側径路と前記一方側第1連通路との連通面積を構成する一方側第2連通路を自己の外周縁の一部が形成しているシャッタである請求項4記載のピストン式圧縮機。 The one-sided lid is a shutter in which a part of its own outer peripheral edge forms a one-sided second connecting passage forming a communication area between the one-sided path and the one-sided first connecting passage. 4. The piston type compressor according to 4.
  7.  前記シャッタは、前記駆動軸の回転方向の後方側で前記スプールに係合される係合片を有している請求項4又は6記載のピストン式圧縮機。 The piston type compressor according to claim 4 or 6, wherein the shutter has an engaging piece that is engaged with the spool on the rear side in the rotation direction of the drive shaft.
  8.  前記スプールは、前記一方側蓋体が係合される第1スプールと、前記第1スプールに対して前記駆動軸心方向に移動可能であり、前記他方側蓋体が係合される第2スプールとからなる請求項4乃至7のいずれか1項記載のピストン式圧縮機。 The spool is movable in the drive axis direction with respect to the first spool with which the one-side lid is engaged and the second spool with which the other lid is engaged. The piston type compressor according to any one of claims 4 to 7.
  9.  前記スプールは、前記一方側蓋体及び前記他方側蓋体が係合されている単一のものである請求項4乃至7のいずれか1項記載のピストン式圧縮機。 The piston type compressor according to any one of claims 4 to 7, wherein the spool is a single one in which the one-side lid and the other-side lid are engaged.
PCT/JP2020/036897 2019-10-02 2020-09-29 Piston-type compressor WO2021065905A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112022005098A BR112022005098A2 (en) 2019-10-02 2020-09-29 piston type compressor
CN202080069534.3A CN114585813B (en) 2019-10-02 2020-09-29 Piston compressor
KR1020227010194A KR20220051001A (en) 2019-10-02 2020-09-29 piston type compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019182508A JP7230762B2 (en) 2019-10-02 2019-10-02 piston compressor
JP2019-182508 2019-10-02

Publications (1)

Publication Number Publication Date
WO2021065905A1 true WO2021065905A1 (en) 2021-04-08

Family

ID=75338357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036897 WO2021065905A1 (en) 2019-10-02 2020-09-29 Piston-type compressor

Country Status (5)

Country Link
JP (1) JP7230762B2 (en)
KR (1) KR20220051001A (en)
CN (1) CN114585813B (en)
BR (1) BR112022005098A2 (en)
WO (1) WO2021065905A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306680A (en) * 1992-03-04 1993-11-19 Nippon Soken Inc Swash plate type variable displacement compressor
JPH07119631A (en) * 1993-08-26 1995-05-09 Nippondenso Co Ltd Swash plate type variable displacement compressor
JP2008240691A (en) * 2007-03-28 2008-10-09 Toyota Industries Corp Coolant suction structure of fixed displacement piston type compressor and operation control method of fixed displacement piston type compressor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3280696B2 (en) * 1992-05-06 2002-05-13 株式会社デンソー Variable capacity compressor
JP3125461B2 (en) * 1992-09-16 2001-01-15 株式会社豊田自動織機製作所 Variable displacement compressor
EP0855505B1 (en) * 1997-01-24 2004-03-31 Kabushiki Kaisha Toyota Jidoshokki Variable displacement compressor
JP2008196459A (en) * 2007-02-15 2008-08-28 Toyota Industries Corp Piston type compressor
KR100917449B1 (en) * 2007-06-01 2009-09-14 한라공조주식회사 Compressor
JP2009062834A (en) * 2007-09-04 2009-03-26 Toyota Industries Corp Coolant intake structure of fixed capacity type piston compressor
JP5306680B2 (en) 2008-03-18 2013-10-02 シチズンホールディングス株式会社 Electronics
US20130343922A1 (en) * 2011-03-31 2013-12-26 Kabushiki Kaisha Toyota Jidoshokki Swash-plate-type compressor
WO2014069618A1 (en) * 2012-11-05 2014-05-08 株式会社 豊田自動織機 Variable displacement swash-plate compressor
JP6083291B2 (en) * 2013-03-27 2017-02-22 株式会社豊田自動織機 Variable capacity swash plate compressor
JP2018204439A (en) * 2017-05-30 2018-12-27 株式会社豊田自動織機 Variable displacement swash plate-type compressor
JP7119631B2 (en) 2018-06-20 2022-08-17 日本電信電話株式会社 DETECTION DEVICE, DETECTION METHOD AND DETECTION PROGRAM

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306680A (en) * 1992-03-04 1993-11-19 Nippon Soken Inc Swash plate type variable displacement compressor
JPH07119631A (en) * 1993-08-26 1995-05-09 Nippondenso Co Ltd Swash plate type variable displacement compressor
JP2008240691A (en) * 2007-03-28 2008-10-09 Toyota Industries Corp Coolant suction structure of fixed displacement piston type compressor and operation control method of fixed displacement piston type compressor

Also Published As

Publication number Publication date
JP7230762B2 (en) 2023-03-01
BR112022005098A2 (en) 2022-06-21
KR20220051001A (en) 2022-04-25
CN114585813B (en) 2023-06-06
JP2021059978A (en) 2021-04-15
CN114585813A (en) 2022-06-03

Similar Documents

Publication Publication Date Title
EP1696123B1 (en) Variable displacement compressor
WO1996002751A1 (en) Swash plate variable displacement compressor
CN101828034A (en) Variable capacity compressor
WO2021065905A1 (en) Piston-type compressor
US20080120991A1 (en) Compressor having a mechanism for separating and recovering lubrication oil
CN110318971B (en) Piston type compressor
US20040194209A1 (en) Piston compressor
US6679077B2 (en) Piston type variable displacement fluid machine
CN110318970B (en) Piston type compressor
JPH0494470A (en) Variable displacement swash plate type compressor
KR101843756B1 (en) Variable displacement swash plate type compressor
KR101599547B1 (en) Swash plate type compressor
JP4046409B2 (en) Pressure control valve seal structure
EP1445489A2 (en) Piston type compressor
KR101763979B1 (en) Variable displacement swash plate type compressor
CN110318973B (en) Piston type compressor
CN110318974B (en) Piston type compressor
JP2020023962A (en) Piston type compressor
JP2000297745A (en) Compressor
KR101166286B1 (en) Swash plate type compressor
JP2020023963A (en) Piston type compressor
JPH05321828A (en) Variable volume type compressor
JP2019178634A (en) Piston-type compressor
JP2018150880A (en) Variable displacement swash plate compressor
JP2018150920A (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20870525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227010194

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022005098

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022005098

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220318

122 Ep: pct application non-entry in european phase

Ref document number: 20870525

Country of ref document: EP

Kind code of ref document: A1