WO2021065835A1 - Turning swing stopping device for crane and crane equipped therewith - Google Patents

Turning swing stopping device for crane and crane equipped therewith Download PDF

Info

Publication number
WO2021065835A1
WO2021065835A1 PCT/JP2020/036736 JP2020036736W WO2021065835A1 WO 2021065835 A1 WO2021065835 A1 WO 2021065835A1 JP 2020036736 W JP2020036736 W JP 2020036736W WO 2021065835 A1 WO2021065835 A1 WO 2021065835A1
Authority
WO
WIPO (PCT)
Prior art keywords
undulating
turning
suspended load
unit
boom
Prior art date
Application number
PCT/JP2020/036736
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 沢村
前川 智史
菅野 直紀
薫広 安和
裕也 福川
Original Assignee
株式会社神戸製鋼所
コベルコ建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所, コベルコ建機株式会社 filed Critical 株式会社神戸製鋼所
Publication of WO2021065835A1 publication Critical patent/WO2021065835A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes

Definitions

  • the present invention relates to a crane swivel steady rest device and a crane provided with the device.
  • a lower traveling body As a mobile crane, a lower traveling body, an upper rotating body supported by the lower traveling body so as to be able to turn around a turning center axis extending in the vertical direction, and an undulating body such as a boom or a jib are provided. Things are known.
  • the undulating body is attached to the front portion of the upper rotating body so as to be rotatable in the undulating direction around a horizontal rotation center axis.
  • a hook is attached to the suspended load rope hanging from the tip of the undulating body, and the suspended load is lifted by connecting the suspended load to the hook.
  • Patent Document 1 in a crane having a telescopic boom, when a swing of the suspended load (swing swing) occurs when the upper swing body stops swinging, the tip of the boom is positioned vertically above the suspended load.
  • a technique for controlling the turning motion of the upper swing body so as to move it is disclosed. As the tip of the boom moves to follow the suspended load, the runout of the suspended load eventually converges.
  • the undulating body When the crane turns, the undulating body may bend (elastic deformation) depending on the moment of inertia applied to the undulating body and the weight of the suspended load. Since the technique described in Patent Document 1 does not consider such elastic deformation of the undulating body, it is between the tip of the undulating body that is moved so as to follow the suspended load in a plan view and the suspended load. Misalignment is likely to occur. As a result, there is a problem that the runout of the suspended load is likely to be promoted due to the misalignment, and the runout of the suspended load is difficult to settle.
  • An object of the present invention is to provide a crane swing steady rest device and a crane capable of stably converging the swing runout of a suspended load caused by the swinging motion of the crane.
  • a swing steady rest device for a crane
  • the swing steady rest device is a lower main body and an upper main body rotatably supported around a turning central axis extending in the vertical direction by the lower main body. And, it is supported so as to be rotatable in the undulating direction around the center axis of rotation horizontal to the upper body, and includes the undulating body base end portion and the undulating body tip portion opposite to the undulating body base end portion.
  • a turning drive unit capable of turning and driving, and a turning operation unit that receives an operation for turning and driving the upper main body, and the upper main body is moved in the first turning direction and the second turning direction.
  • the turning operation unit and the undulating body which can be switched between the turning position for turning and the neutral position for stopping the turning of the upper body, and the undulating body are rotated in the undulating direction around the rotation center axis.
  • An undulating body driving unit capable of undulating, and an undulating operation unit that accepts an operation for undulating the undulating body, and stops the undulating position for undulating the undulating body and the undulation of the undulating body.
  • An undulating operation unit that can be switched between the neutral position and the suspended load that can be raised and lowered relative to the ground by winding and feeding the suspended load rope.
  • Between the drive unit and the elevating operation unit that accepts the operation for raising and lowering the suspended load between the elevating position for raising and lowering the suspended load and the neutral position for stopping the ascending and descending of the suspended load.
  • the suspended load connected to the suspended load rope after the turning operation of the upper main body is stopped, which is mounted on a crane having an elevating and lowering operation unit which can be switched by, of the upper main body with the tip of the undulating body as a fulcrum.
  • This is a crane swing steady rest device that can suppress the swing swing of a suspended load, which is a phenomenon of swinging along the swing direction.
  • the swivel steady rest device acquires and outputs undulating body length information which is information corresponding to the length of the undulating body in the longitudinal direction of the undulating body, which is the direction connecting the base end portion of the undulating body and the tip end portion of the undulating body.
  • the angle detection unit the undulating body displacement detection unit that detects and outputs the displacement of the undulating body tip portion, which is the displacement of the undulating body tip portion in the turning direction
  • the undulating body which is the speed of the undulating body tip portion in the turning direction.
  • the undulating body speed detecting unit that detects and outputs the tip speed
  • the suspended load displacement detecting unit that detects and outputs the suspended load displacement that is the displacement of the suspended load with respect to the undulating body tip, and the above-mentioned with respect to the undulating tip.
  • a rope length information acquisition unit that acquires and outputs rope length information, which is information
  • a suspension load amount information acquisition unit that acquires and outputs suspension load amount information, which is information on the weight of the suspended load, and the turning operation.
  • the control start condition determination unit that determines whether or not the turning steady rest control start condition, which is established by setting all the operation units of the above to the neutral position, and the control start condition determination unit determine the turning.
  • the suspension load displacement which is the displacement of the suspended load in the turning direction
  • the hanging load speed which is the speed of the suspended load in the turning direction
  • Target state amount setting for setting a target state amount for stopping the suspended load at least in the turning direction at a predetermined target position for a plurality of state amounts including the displacement, the tip speed of the undulating body, and the turning angle.
  • the suspension speed detection The suspension speed output from the unit, the rope length information output from the rope length information acquisition unit, the suspension load information output from the suspension load information acquisition unit, and the target state.
  • a state quantity calculation unit that calculates the current values of the plurality of state quantities based on the target state quantities of the plurality of state quantities set by the quantity setting unit, and at least a term corresponding to the elastic deformation of the undulating body.
  • a plurality of control gains corresponding to each of the plurality of state quantities are set based on the state equation relating to the behavior of the suspended load, which is preset to include the state equation and the turning speed of the upper body is used as a variable.
  • the turning target speed calculation unit that calculates the turning target speed, and the turning target speed with respect to the turning drive unit so that the turning speed of the upper body becomes the turning target speed calculated by the turning target speed calculation unit. It is provided with a command information output unit that outputs command information corresponding to.
  • FIG. 1 is a side view of the crane 10 according to the present embodiment. Note that FIG. 1 shows the directions of “up”, “down”, “front” and “rear”, and the directions will explain the structure and assembly method of the crane 10 according to the present embodiment. Therefore, it is shown for convenience, and does not limit the moving direction and usage mode of the crane according to the present invention.
  • the crane 10 includes a traveling body 14 (lower body), a rotating body 12 (upper body) rotatably supported by the traveling body 14 around a turning center axis extending in the vertical direction, a boom 16 (undulating body), and a mast. 20 and. Further, a counterweight 13 for adjusting the balance of the crane 10 is loaded on the rear portion of the swivel body 12.
  • a cab 15 is provided at the front end of the swivel body 12. The cab 15 corresponds to the driver's seat of the crane 10.
  • the boom 16 shown in FIG. 1 is a so-called lattice type, and has a lower boom 16A (base end of the undulating body), one or more intermediate booms 16B, 16C, 16D, and an upper boom 16E. (The tip of the undulating body opposite to the base end of the undulating body).
  • the lower boom 16A is supported so as to be rotatable in the undulating direction around a rotation center axis (first rotation center axis) horizontal to the front portion of the swivel body 12.
  • the intermediate booms 16B, 16C, and 16D are detachably added to the tip side of the lower boom 16A in that order.
  • the upper boom 16E is detachably added to the tip side of the intermediate boom 16D.
  • the lower boom 16A is rotatably supported by the swivel body 12 by a boom foot pin 16S provided at the lower end thereof.
  • the boom 16 has idler sheaves 34S and 36S.
  • the idler sheaves 34S and 36S are rotatably supported on the rear side surface of the base end portion of the lower boom 16A, respectively.
  • the specific structure of the boom is not limited in the present invention.
  • the boom may have no intermediate member, or may have a different number of intermediate members from the above.
  • the boom may be composed of a single member.
  • the mast 20 has a base end and a rotating end, and the base end is rotatably connected to the swivel body 12.
  • the rotation shaft of the mast 20 is parallel to the rotation shaft of the boom 16 and is located immediately behind the rotation shaft of the boom 16. That is, the mast 20 can rotate in the same direction as the undulating direction of the boom 16.
  • the crane 10 includes a pair of left and right boom backstops 23 and a pair of left and right boom guy lines 24.
  • a pair of left and right boom backstops 23 are provided on both left and right sides of the lower boom 16A of the boom 16. These boom backstops 23 come into contact with the central portion of the swivel body 12 in the front-rear direction when the boom 16 reaches the standing posture shown in FIG. This contact regulates the boom 16 from being fanned backwards by strong winds or the like.
  • the pair of left and right boom guy lines 24 connect the rotating end of the mast 20 to the tip of the boom 16. This connection links the rotation of the mast 20 with the rotation of the boom 16.
  • the crane 10 is further equipped with various winches.
  • the crane 10 includes a boom undulating winch 30 for raising and lowering the boom 16, a main winding winch 34 and a auxiliary winding winch 36 for hoisting and lowering the suspended load.
  • the crane 10 includes a boom undulating rope 38, a main winding rope 50 (suspended load rope) hanging from the upper boom 16E and connected to the suspended load, and a supplementary winding rope 60.
  • the main winding winch 34 and the auxiliary winding winch 36 are installed near the base end of the boom 16.
  • the boom undulating winch 30 is installed on the swivel body 12. The positions of these winches 30, 32, 34, 36 are not limited to the above.
  • the boom undulating winch 30 winds up and unwinds the boom undulating rope 38. Then, the boom undulating rope 38 is arranged so that the mast 20 rotates by this winding and unwinding.
  • sheave blocks 40 and 42 in which a plurality of sheaves are arranged in the width direction are provided at the rotating end of the mast 20 and the rear end of the rotating body 12, respectively, and are pulled out from the boom undulating winch 30.
  • the boom undulating rope 38 is hung between the sheave blocks 40 and 42. Therefore, when the boom undulating winch 30 winds up and extends the boom undulating rope 38, the distance between the two sheave blocks 40 and 42 changes, whereby the mast 20 and the boom 16 interlocking with the mast 20 undulate. Rotate in the direction.
  • the main winding winch 34 winds up and lowers the suspended load with the main winding rope 50.
  • the main winding rope 50 hangs from the upper boom 16E of the boom 16 and is connected to the suspended load.
  • a main winding guide sheave 54 is arranged on the upper boom 16E, and a main winding sheave block in which a plurality of main winding point sheaves 56 are arranged in the width direction at a position adjacent to the main winding guide sheave 54 is provided. It is provided.
  • the main winding rope 50 drawn out from the main winding winch 34 is hung on the idler sheave 34S and the main winding guide sheave 54 in this order, and the main winding point sheave 56 of the sheave block and the main hook 57 for suspension are used. It is hung between the sheave 58 and the sheave 58 of the sheave block provided in. Therefore, when the main winding winch 34 winds up or unwinds the main winding rope 50, the distance between the sheaves 56 and 58 changes, and the main winding rope 50 is connected to the main winding rope 50 hanging from the tip of the boom 16. The hook 57 is wound and unwound. As a result, the suspended load can be hoisted and unwound.
  • the auxiliary winding winch 36 winds up and lowers the suspended load by the auxiliary winding rope 60.
  • the auxiliary winding guide sheave 64 is rotatably provided coaxially with the main winding guide sheave 54, and the auxiliary winding point sheave (not shown) can rotate at a position adjacent to the auxiliary winding guide sheave 64. It is provided in.
  • the auxiliary winding rope 60 pulled out from the auxiliary winding winch 36 is hung on the idler sheave 36S and the auxiliary winding guide sheave 64 in this order, and is hung from the auxiliary winding point sheave. Therefore, when the auxiliary winding winch 36 winds up or unwinds the auxiliary winding rope 60, the auxiliary hook for hanging load connected to the end of the auxiliary winding rope 60 is wound up or unwound.
  • the crane 10 further includes a drive control unit 700, a drive unit 700A, an operation unit 700B, and a swivel steady rest device 70.
  • FIG. 2 is a block diagram of the swing steady rest device 70 of the crane 10 according to the present embodiment.
  • the drive unit 700A drives each member of the crane 10.
  • the drive unit 700A includes a swivel drive unit 701, an undulating drive unit 702 (undulating body drive unit, boom drive unit), and a winch drive unit 703 (suspended load drive unit).
  • the swivel drive unit 701 generates a driving force capable of swiveling the swivel body 12 around the swivel center axis in the first swivel direction and in the second swivel direction opposite to the first swivel direction.
  • the swivel drive unit 701 includes a hydraulic motor that swivels the swivel body 12 by receiving the supply of hydraulic oil.
  • the undulation drive unit 702 generates a driving force for rotating the boom undulation winch 30, and it is possible to rotate the boom 16 around the rotation center axis.
  • the undulation drive unit 702 includes a hydraulic motor that rotates the boom undulation winch 30 by receiving the supply of hydraulic oil.
  • the winch drive unit 703 generates a driving force for rotating the main winding winch 34, and the main winding winch 34 winds and unwinds the main winding rope 50 so that the suspended load is relative to the ground. It is possible to raise and lower the rope.
  • the winch drive unit 703 includes a hydraulic motor that rotates the winch 34 for main winding by receiving the supply of hydraulic oil.
  • the operation unit 700B is arranged in the cab 15 and receives an operation for driving each member of the crane 10 by an operator.
  • the operation unit 700B includes a swivel operation unit 704 (swivel operation unit), an undulation operation unit 705 (undulation operation unit, boom undulation operation unit), and a winch operation unit 706 (elevation operation unit).
  • the swivel operation unit 704 receives an operation for swiveling and driving the swivel body 12 by the swivel drive unit 701.
  • the turning operation unit 704 can switch between a turning position for turning the turning body 12 in the first turning direction and the second turning direction, and a neutral position for stopping the turning of the turning body 12. Has been done.
  • the undulation operation unit 705 receives an operation for undulating the boom 16 by the undulation drive unit 702.
  • the undulation operation unit 705 is switchable between an undulating position for undulating the boom 16 and a neutral position for stopping the undulation of the boom 16.
  • the winch operation unit 706 receives an operation for raising and lowering the suspended load by the winch drive unit 703.
  • the winch operation unit 706 is switchable between an elevating position for raising and lowering the suspended load and a neutral position for stopping the ascending and descending of the suspended load.
  • the drive control unit 700 sends a command signal according to the operation direction and operation amount of the operation received by the swivel operation unit 704, the undulation operation unit 705, and the winch operation unit 706 to the swivel drive unit 701, the undulation drive unit 702, and the winch drive unit 703. Input each to drive each drive unit.
  • the suspended load connected to the main winding rope 50 after the swivel operation of the swivel body 12 is stopped is the swivel direction (rotation direction) of the swivel body 12 with the main winding point sheave 56 of the upper boom 16E as a fulcrum. It is possible to suppress the swirling runout of the suspended load, which is a phenomenon of swinging along the line.
  • the swivel steady rest device 70 has an information acquisition unit 700C, a detection unit 700D, and a vibration damping control unit 700E.
  • the information acquisition unit 700C has a boom length information acquisition unit 708 (undulating body length information acquisition unit).
  • the boom length information acquisition unit 708 acquires information (length information) regarding the length of the boom 16 used in the swivel steady rest control of the suspended load executed by the vibration damping control unit 700E. That is, the boom length information acquisition unit 708 is a boom in the boom longitudinal direction (undulating body longitudinal direction), which is a direction connecting the base end portion (undulating body base end portion) and the tip portion (undulating body tip portion) of the boom 16. Information corresponding to the length of 16 (undulating body length information) is acquired and output.
  • the boom length information acquisition unit 708 has a storage unit (not shown), and acquires the length information of the boom 16 from the storage unit.
  • the operation unit 700B has an input unit (not shown), the operator inputs the length information of the boom 16 through the input unit, and the boom length information acquisition unit 708 inputs the information. It may be the mode to acquire.
  • the detection unit 700D includes a swivel angle detection unit 710, a boom undulation angle detection unit 711 (undulation angle detection unit), a boom top swivel direction displacement detection unit 713 (undulation body displacement detection unit), and a boom top swivel direction speed detection unit. 714 (undulating body velocity detection unit), rope swivel direction runout angle detection unit 715 (suspended load displacement detection unit, rope runout angle detection unit), and rope swivel direction runout angular velocity detection unit 716 (hanging load speed detection unit, rope runout). It has an angular velocity detection unit), a rope length detection unit 717 (rope length information acquisition unit), and a suspension load amount detection unit 718 (suspension load amount information acquisition unit).
  • the turning angle detection unit 710 detects and outputs the turning angle around the turning center axis of the boom 16 (swivel body 12).
  • the turning angle detection unit 710 includes a gyro sensor (not shown) and a calculation unit.
  • the turning angle detection unit 710 measures the angular velocity around the turning center axis of the turning body 12 with the gyro sensor, and the calculation unit converts the measured angular velocity into an angle by integrating the measured angular velocity once with respect to time. , The angle is output as a turning angle.
  • the boom undulation angle detection unit 711 detects and outputs the undulation angle around the rotation center axis of the boom 16.
  • the boom undulation angle detection unit 711 includes an inclination sensor and detects the relative angle (ground angle) of the boom 16 with respect to the ground.
  • the boom undulation angle detection unit 711 may detect the relative angle with respect to other objects.
  • the boom top turning direction displacement detection unit 713 detects and outputs the displacement amount (displacement of the undulating body tip portion) of the tip portion (upper boom 16E) of the boom 16 in the turning direction.
  • the boom top turning direction displacement detection unit 713 includes an acceleration sensor (not shown) attached to the upper boom 16E and a calculation unit.
  • the acceleration sensor measures the acceleration of the upper boom 16E in the turning direction, and the calculation unit converts the measured acceleration into a displacement (displacement amount) by integrating the measured acceleration twice with respect to time, and outputs the displacement. To do.
  • the boom top turning direction speed detection unit 714 detects and outputs the speed of the upper boom 16E in the turning direction (velocity at the tip of the undulating body).
  • the boom top turning direction speed detecting unit 714 includes the acceleration sensor and the calculation unit shared with the boom top turning direction displacement detecting unit 713. The acceleration measured by the acceleration sensor attached to the upper boom 16E is converted into a speed by the calculation unit once integrating with time, and the speed is output.
  • the rope turning direction runout angle detection unit 715 detects and outputs the runout angle of the main winding rope 50 with respect to the vertical direction when viewed along the radial direction in the turning operation of the turning body 12.
  • the rope turning direction swing angle detecting unit 715 includes a jig (not shown) capable of swinging only in the turning direction on the upper boom 16E, and a tilt sensor mounted on the jig.
  • the jig is locked to the main winding rope 50, and the inclination sensor detects and outputs the swing angle of the main winding rope 50 in the turning direction with respect to the boom 16 (vertical direction) as a swing angle.
  • the rope turning direction runout angle detection unit 715 constitutes the suspended load displacement detection unit of the present invention.
  • the rope turning direction runout angle detecting unit 715 detects and outputs the runout angle as a suspended load displacement which is a displacement of the suspended load with respect to the tip end portion (upper boom 16E) of the boom 16.
  • the rope turning direction runout angular velocity detection unit 716 detects and outputs the runout angular velocity, which is the amount of change in the runout angle of the main winding rope 50 per unit time.
  • the rope turning direction runout angular velocity detection unit 716 includes a gyro sensor attached to the above jig, and the gyro sensor detects and outputs the runout angular velocity.
  • the rope turning direction swing angular velocity detection unit 716 includes a camera attached to the upper boom 16E, acquires an image of the main hook 57 taken by the camera, and obtains an image of the main hook 57 (suspended load).
  • the swing angle in the turning direction of the above may be detected and output as the swing angle, and the angular velocity may be output by differentiating the swing angle once.
  • the rope turning direction swing angular velocity detection unit 716 constitutes the suspended load speed detection unit of the present invention.
  • the rope turning direction runout angular velocity detection unit 716 detects and outputs the runout angular velocity as the suspension angular velocity, which is the amount of change in the suspension load displacement with respect to the tip end portion (upper boom 16E) of the boom 16.
  • the rope length detection unit 717 acquires and outputs rope length information which is information corresponding to the length of the suspended load rope between the boom tip and the suspended load. In the present embodiment, the distance between the main winding point sheave 56 of the upper boom 16E and the main hook 57 (sheave 58) is detected as the rope length.
  • the rope length detection unit 717 has a rotation amount detection unit capable of detecting the rotation amount of the main winding winch 34 and a winding layer detection unit for detecting the number of winding layers of the main winding rope 50 on the outer peripheral surface of the main winding winch 34. Including part.
  • the rope length detection unit 717 is estimated from the winch diameter of the main winding winch 34, the winch rotation amount detected by the rotation amount detection unit, and the winding layer of the main winding rope 50 detected by the winding layer detection unit.
  • the distance is calculated from the amount of the main winding rope 50 unwound from the main winding winch 34 and the number of times the main winding rope 50 is applied between the sheave blocks of the main winding point sheave 56 and the sheave 58. Output.
  • the suspension load amount detection unit 718 acquires and outputs information (suspension load amount information) regarding the weight of the suspended load connected to the main hook 57.
  • the suspension load amount detection unit 718 includes a load detector (load cell) (not shown) connected to the main winding rope 50, and is based on a change in tension strain of the main winding rope 50. Detect weight.
  • the pressure in the hydraulic circuit that raises and lowers the boom 16 may be detected by a pressure gauge (not shown), and the load of the suspended load may be estimated based on the pressure.
  • the vibration damping control unit 700E is composed of a CPU (Central Processing Unit), a ROM for storing a control program (Read Only Memory), a RAM (Random Access Memory) used as a work area of the CPU, and the like.
  • the vibration suppression control unit 700E controls the control determination unit 719 (control start condition determination unit), the control target amount setting unit 720 (target state amount setting unit), and the control by executing the control program stored in the ROM by the CPU. It functions to include a quantity calculation unit 700F, a control gain setting unit 726, a turning target speed calculation unit 727, and a turning operation target calculation unit 728.
  • the vibration damping control unit 700E controls the rotation and vibration suppression of the suspended load when the crane 10 stops the rotation operation, based on the operation received by the operation unit 700B, the information acquired by the information acquisition unit 700C, and the information detected by the detection unit 700D. Execute automatically.
  • Rotational steady rest control corresponds to the satisfaction of the turning steady rest control start condition that is established when all the operating units of the 705 and winch operation unit 706 are set to the neutral positions. Is determined to start, and when it is determined that the turning steady rest control start condition is satisfied, a predetermined control start signal is output.
  • each operation unit is set to the neutral position when the operation amount received by each operation unit is smaller than the preset threshold value. .. That is, in such a state, the operation of the crane 10 is stopped after the turning operation of the turning body 12, and the suspended load connected to the main hook 57 is vertically below the upper boom 16E (main winding point sheave 56). It is desirable to be located in. As described above, the operation of the crane 10 is stopped after the turning operation, and the switch (input unit) for starting the turning steady rest control, which is arranged in the cab 15 in advance as described later, is pressed by the operator. When it is (ON), the steady rest control described later may be started.
  • the control target amount setting unit 720 sets each control target amount (state target amount) at the time when the control determination unit 719 determines the execution of the turning steady rest control and outputs the control start signal.
  • the control target amount setting unit 720 includes at least five (plurality) including the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5. ) Is set as a target amount for stopping the suspended load at least in the turning direction at a predetermined target position.
  • the suspended load turning direction displacement X1 is the displacement of the suspended load (main hook 57) in the turning direction
  • the suspended load turning direction speed X2 is the speed of the suspended load in the turning direction.
  • the boom tip turning direction displacement X3 is the displacement of the upper boom 16E (main winding point sheave 56) in the turning direction
  • the boom tip turning direction speed X4 is the speed of the upper boom 16E in the turning direction
  • the turning angle X5 is the turning angle of the boom 16 (swivel body 12).
  • FIG. 3 is a schematic plan view for explaining the swing steady rest control of the crane 10 according to the present embodiment.
  • the rotation center axis of the rotation body 12 is set to the zero point.
  • the xy coordinate system is shown with the direction in which the virtual center line of the boom 16 extends is the y direction and the direction orthogonal to the center line is the x direction.
  • the xy coordinate system is set based on the virtual center line of the boom 16 assuming that the boom 16 is not elastically deformed. The boom 16 is bent to the upstream side in the turning direction in the turning operation of the turning body 12 stopped before the state shown in FIG.
  • main winding rope 50 connected to the tip end portion of the boom 16 extends further toward the upstream side in the turning direction than the tip end portion of the boom 16.
  • the control target amount setting unit 720 sets the zero point position in the xy coordinate system, that is, the tip portion of the virtual boom 16 as the target boom tip position, and sets the position vertically below the target boom tip position as the target suspension. Set as the load position. Therefore, through the swivel steady rest control, the swivel speed and the swivel direction of the swivel body 12 are automatically controlled so that the displacement of the suspended load at least in the swivel direction becomes zero at the target suspended load position.
  • the target turning angle in the XY coordinate system for arranging the tip of the boom 16 and the suspended load at the target boom tip position and the target suspended load position, respectively, is defined as ⁇ ref.
  • control target amount setting unit 720 can calculate the target boom tip position and the target suspended load position from the target turning angle ⁇ ref, the undulation angle of the boom 16, and the length of the boom 16. Further, the control target amount setting unit 720 sets the target amount to zero for the speed control amount among the above-mentioned control amounts because the purpose is to keep the suspended load stationary.
  • the turning speed is defined as a positive (positive) value in the left turning direction and a negative (negative) value in the right turning direction.
  • the control amount calculation unit 700F detects each of the control amounts of the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5. The deviation between the detected value detected by the unit and the target amount set by the control target amount setting unit 720 is calculated. More specifically, the control amount calculation unit 700F outputs the boom length information output from the boom length information acquisition unit 708, the turning angle output from the turning angle detecting unit 710, and the boom undulation angle detecting unit 711.
  • the current values of the five state quantities are calculated based on the target state quantities of the five state quantities set by the setting unit 720.
  • the suspended load turning direction displacement X1 is the displacement in the turning direction of the suspended load relative to the tip position of the boom 16 plus the boom tip turning direction displacement X3. Therefore, the suspended load turning direction displacement X1 can be calculated by the following equation 1.
  • the suspended load turning direction speed X2 is the value obtained by adding the boom tip turning direction speed X4 to the relative speed of the suspended load with respect to the tip position of the boom 16. Therefore, the suspended load turning direction speed X2 can be calculated by the following equation 2.
  • Equation 2 ⁇ l'is the runout angular velocity of the main winding rope 50 in the turn direction, and is detected by the rope turn direction runout angular velocity detection unit 716.
  • boom tip turning direction displacement X3 and the boom tip turning direction speed X4 are detected by the boom top turning direction displacement detecting unit 713 and the boom top turning direction speed detecting unit 714, respectively.
  • the turning angle X5 corresponds to the deviation between the turning angle of the turning body 12 (boom 16) that changes every moment and the above-mentioned target turning angle ⁇ ref, and is calculated by the following equation 3.
  • integral ( ⁇ ') is a value obtained by integrating the turning angle detected by the turning angle detecting unit 710 with respect to time. Further, the target turning angle ⁇ ref is set by the control target amount setting unit 720 as described above.
  • the control gain setting unit 726 minimizes the time integration of the weighted sum of each control amount and input amount (turning speed) based on a control model that considers the influence of elastic deformation (deflection) of the boom 16.
  • Set the control gain of each control amount Specifically, the control gain setting unit 726 sets the control gains G1, G2, G3, G4 and G5 for each of the above-mentioned control quantities X1, X2, X3, X4 and X5 calculated by the control amount calculation unit 700F, respectively.
  • each control gain is set so that the above-mentioned control quantities X1, X2, X3, X4 and X5 calculated by the control amount calculation unit 700F and the turning speed corresponding to the input amount quickly converge to zero.
  • the control gain setting unit 726 sets the control gains based on a predetermined control model so as to minimize the time integration of the weighted sum of each of the above control quantities and input amounts (turning speeds). ..
  • the influence of elastic deformation generated on the boom 16 is taken into consideration by the inertial force generated by the moment of inertia of the boom 16 and the external force in the turning direction generated by the swing of the suspended load.
  • the control model is a differential equation that expresses the behavior of an object, such as an equation of motion, transformed into a standard form that makes it easy to evaluate the stability of the control system. It is possible to design a stable control system.
  • a state space expression in consideration of the elasticity of the boom 16 can be obtained by combining the equations expressing the elasticity of the boom 16.
  • the control model according to this embodiment will be described in detail later.
  • the turning target speed calculation unit 727 turns from the following equation 4 based on the control amounts X1 to X5 calculated by the control gain setting unit 726 and the control gains G1 to G5 set by the control gain setting unit 726.
  • the turning target speed Vref of the body 12 is calculated.
  • the turning operation target calculation unit 728 is input to the drive control unit 700 so that the turning speed of the turning body 12 becomes the turning target speed Vref calculated by the turning target speed calculation unit 727. Is calculated. Specifically, the turning operation target calculation unit 728 calculates the turning operation target amount based on the turning target speed Vref calculated by the turning target speed calculation unit 727 and the hydraulic characteristics in the turning drive unit 701. Then, the calculated turning operation target amount is input to the drive control unit 700, and the turning drive unit 701 sets the turning speed and turning direction of the turning body 12.
  • FIG. 4 is a flowchart of the swing steady rest control of the crane 10 according to the present embodiment.
  • known parameters are set and stored in advance in a storage unit (not shown) in the vibration damping control unit 700E (step S01).
  • the known parameters include the length of the boom 16, the elastic modulus of the boom 16, the moment of inertia of the boom 16, and the like.
  • the length of the boom 16 is acquired and referred to by the boom length information acquisition unit 708 of the information acquisition unit 700C.
  • the elastic modulus of the boom 16 and the moment of inertia of the boom 16 are included as I and k ⁇ , respectively, by replacing the jib with a boom in the formula 17 described later.
  • the control determination unit 719 determines whether or not the switch (input unit) for starting the swivel steady rest control arranged in the cab 15 is pressed (ON) (step S02).
  • the switch is turned on (YES in step S02)
  • the control determination unit 719 is in the flow immediately before the case where the flowchart shown in FIG. 4 is repeated (repetition from steps S10 to S02 in FIG. 4).
  • the detection unit 700D updates the detection parameters (step S04).
  • the boom undulation angle detection unit 711, the rope length detection unit 717, and the suspension load amount detection unit 718 detect the undulation angle of the boom 16, the extension amount of the main winding rope 50, and the suspension load amount (load), respectively. ,Update.
  • control target amount setting unit 720 sets the parameters of the control model (step S05). Specifically, the control target amount setting unit 720 sets the target amount of each control amount as described above.
  • control gain setting unit 726 determines the control gain (feedback gain) (step S06). Specifically, the control gain setting unit 726 determines the above-mentioned G1, G2, G3, G4 and G5, respectively, and proceeds to step S08.
  • step S03 when the switch is ON in the previous flow (YES in step S03), the values acquired in the previous flow are maintained for each parameter and gain in steps S04 to S06 (step S07). The process proceeds to step S08.
  • step S08 the control amount calculation unit 700F updates the state parameter. Specifically, the control amount calculation unit 700F calculates the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5, respectively.
  • the turning target speed calculation unit 727 calculates the turning target speed Vref (step S09).
  • the turning operation target calculation unit 728 calculates the command current value for inputting the command signal to the turning drive unit 701 (step S10). Specifically, as described above, the turning operation target calculation unit 728 inputs to the drive control unit 700 so that the turning speed of the turning body 12 becomes the turning target speed Vref calculated by the turning target speed calculation unit 727. The turning operation target command value for is calculated.
  • step S02 when the switch (input unit) for starting the turning steady rest control is not pressed (NO in step S02), the vibration damping control unit 700E automatically moves the crane 10 for the purpose of turning steady rest control. Prohibit control.
  • FIG. 5 is a side view of the crane 10 according to the second embodiment of the present invention.
  • FIG. 6 is a block diagram of the swing steady rest device 70 of the crane 10 according to the present embodiment.
  • the differences from the first embodiment will be mainly described, and the common points will be omitted.
  • the crane 10 further includes a jib 18 (undulating body) as compared with the crane 10 of FIG.
  • the jib 18 is rotatably supported by the tip of the boom 16 (boom tip, upper boom 16E) around a rotation center axis (second rotation center axis) parallel to the rotation center axis of the boom 16. It has a jib base end and a jib tip opposite to the jib base end.
  • the main winding rope 50 is hung from the tip of the jib and connected to the suspended load.
  • the specific structure of the jib 18 is not limited as in the boom 16.
  • the crane 10 includes a rear strut 21, a front strut 22, a pair of left and right strut backstops 25, a pair of left and right guy lines 26, and a pair of left and right jib guy lines 28.
  • the rear strut 21 is rotatably supported by the tip of the boom 16.
  • the rear strut 21 is held in a posture of projecting from the tip of the upper boom 16E to the boom standing side (left side in FIG. 1).
  • a pair of left and right strut backstops 25 and a pair of left and right guy lines 26 are interposed between the rear struts 21 and the boom 16.
  • the strut backstop 25 is interposed between the intermediate boom 16D and the intermediate portion of the rear strut 21, and supports the rear strut 21 from below.
  • the guy line 26 is stretched so as to connect the tip end portion of the rear strut 21 and the lower boom 16A of the boom 16, and the position of the rear strut 21 is regulated by the tension thereof.
  • the rear strut 21 has a sheave block 47 and rear strut idler sheaves 52 and 62.
  • the sheave block 47 includes a plurality of sheaves arranged at the rotating end of the rear strut 21 and arranged in the width direction.
  • the rear strut idler sheaves 52 and 62 are arranged in a portion of the rear strut 21 located closer to the base end portion than the central portion in the longitudinal direction, and include a plurality of sheaves arranged in the width direction, respectively.
  • the front strut 22 is arranged behind the jib 18 and is rotatably supported at the tip of the boom 16 (upper boom 16E) so as to rotate in conjunction with the jib 18. Specifically, a pair of left and right jib guy lines 28 are stretched so as to connect the tip of the front strut 22 and the tip of the jib 18. Therefore, by the rotational drive of the front strut 22, the jib 18 is also rotationally driven integrally with the front strut 22.
  • the rear strut 21 described above is arranged on the rear side of the front strut 22 as shown in FIG. 1, and forms a substantially isosceles triangular shape with the front strut 22.
  • the front strut 22 has a sheave block 48 and front strut idler sheaves 53 and 63.
  • the sheave block 48 includes a plurality of sheaves arranged at the rotating end of the front strut 22 and arranged in the width direction.
  • the front strut idler sheaves 53 and 63 are arranged in a portion of the front strut 22 located closer to the proximal end side than the central portion in the longitudinal direction, and include a plurality of sheaves arranged in the width direction, respectively.
  • the crane 10 further includes a jib undulating winch 32 for rotating the jib 18 in the undulating direction, and a jib undulating rope 44.
  • the jib undulating winch 32 winds and unwinds the jib undulating rope 44 that is hung between the rear strut 21 and the front strut 22. Then, the jib undulating rope 44 is arranged so that the front strut 22 rotates by this winding and unwinding. Specifically, the jib undulating rope 44 pulled out from the jib undulating winch 32 is hung on the idler sheave 32S and the intermediate boom sheave 46, and is further hung between the sheave blocks 47 and 48 a plurality of times.
  • the operation unit 700B further has a jib undulation operation unit 705A (undulation operation unit, jib undulation operation unit) as compared with FIG.
  • the drive unit 700A further includes a jib undulating drive unit 702A (undulation body drive unit, jib drive unit).
  • the information acquisition unit 700C of the swivel steady rest device 70 further has a jib length information acquisition unit 709 (undulation body length information acquisition unit), and the detection unit 700D is a jib undulation angle detection unit 712 (undulation angle detection unit). Further has.
  • the detection unit 700D replaces the boom top turning direction displacement detecting unit 713 and the boom top turning direction speed detecting unit 714 in FIG. 2 with the jib top turning direction displacement detecting unit 713A (undulating body displacement detecting unit) and the jib top turning direction speed. It has a detection unit 714A (undulating body velocity detection unit).
  • the jib undulation operation unit 705A is capable of switching between a jib undulation position for undulating the jib 18 and a neutral position for stopping the undulation of the jib 18.
  • the jib undulation drive unit 702A is capable of rotating the jib 18 around the second rotation center axis in the undulation direction.
  • the jib length information acquisition unit 709 acquires and outputs jib length information which is information corresponding to the length of the jib 18 in the jib longitudinal direction which is the direction connecting the jib base end portion and the jib tip end portion.
  • the jib undulation angle detection unit 712 detects and outputs the undulation angle of the jib 18 around the second rotation center axis.
  • the jib top turning direction displacement detection unit 713A detects and outputs the displacement of the jib tip in the turning direction (jib tip displacement) as the undulating body tip displacement.
  • the jib top turning direction speed detection unit 714A detects and outputs the speed of the jib tip in the turning direction (jib tip speed) as the undulating body tip speed.
  • control amount calculation unit 700F calculates the jib tip turning direction displacement X3A and the jib tip turning direction speed X4A instead of the boom tip turning direction displacement X3 and the boom tip turning direction speed X4.
  • the jib tip turning direction displacement X3A is the displacement of the tip of the jib 18 in the turning direction as described above
  • the jib tip turning direction speed X4A is the speed of the tip of the jib 18 in the turning direction.
  • step S01 the length information of the jib 18, the elastic modulus of the jib 18, and the moment of inertia of the jib are stored in storage units (not shown). Further, in step S04, the undulation angle of the jib 18 is further detected by the jib undulation angle detection unit 712. Further, in step S05, when the control determination unit 719 determines that the turning steady rest control start condition is satisfied and the control start signal is output, the control target amount setting unit 720 receives the suspended load turning direction displacement X1.
  • the target state quantities are set for at least five (plurality) control amounts (state amounts) of the suspended load turning direction speed X2, the jib tip turning direction displacement X3A, the jib tip turning direction speed X4A, and the turning angle X5, respectively.
  • the control gain setting unit 726 sets the control gains G1 to G5, and in step S08, the control amount calculation unit 700F from the boom length information acquisition unit 708 and the jib length information acquisition unit 709.
  • the boom length information and the jib length information output, respectively, the turning angle output from the turning angle detection unit 710, the boom undulation angle output from the boom undulation angle detection unit 711, and the jib undulation angle.
  • the jib tip turning direction displacement X3A and the jib tip turning direction are calculated.
  • the boom 16 as the undulating body is replaced with the jib 18, so that the boom 16 is connected to the main winding rope 50 hanging from the tip of the jib 18.
  • the swivel steady rest control of the suspended load (main hook 57) is realized.
  • FIG. 7 is a block diagram of the swivel steady rest device 70 of the crane 10 according to the third embodiment of the present invention.
  • FIG. 8 is an enlarged side view of the tip of the boom 16 of the crane 10 according to the third embodiment of the present invention.
  • FIG. 9 is a block diagram of a suspended load displacement detecting unit 715A and a suspended load speed detecting unit 716A of the crane 10 according to the third embodiment of the present invention.
  • the differences from the first embodiment will be mainly described, and the common points will be omitted.
  • the structure of the crane 10 according to the present embodiment is the same as that of the crane 10 shown in FIG.
  • the structure for acquiring the suspended load displacement and the suspended load speed is different from that in the first embodiment.
  • the swivel steady rest device 70 (FIG. 7) according to the present embodiment has a suspended load displacement detection unit 715A instead of the rope swivel direction swing angle detection unit 715 of FIG. 2, and the rope swivel direction of FIG. It has a suspended load speed detecting unit 716A instead of the swing angular velocity detecting unit 716.
  • the swivel steady rest device 70 has a camera 80 (photographing device), a camera jig 80S, and a recognition marker 57S (target object).
  • the camera 80 is supported by a camera jig 80S attached to the tip end portion (upper boom 16E) of the boom 16.
  • the camera jig 80S is fastened to the lattice (frame) of the boom 16 with bolts or the like, and the posture of the camera 80 is adjusted so that the shooting direction of the camera 80 faces downward even if the undulation angle of the boom 16 changes. It has a function to adjust.
  • the adjustment function may be possessed by the camera 80 itself.
  • the recognition marker 57S is attached to a part of the hook 57. As a result, the recognition marker 57S moves integrally with the suspended load.
  • the camera 80 captures the recognition marker 57S (target object) associated with the suspended load and outputs the captured image information.
  • the suspended load displacement detecting unit 715A and the suspended load speed detecting unit 716A include an image processing unit 81 and a detection amount calculation unit 82 (both are calculation units) in addition to the above camera 80.
  • the image processing unit 81 and the detection amount calculation unit 82 acquire the image information input from the camera 80 as position information by image processing, and input the image information to the control amount calculation unit 700F via a wired cable (not shown) or wireless communication. To do. More specifically, the image processing unit 81 performs image processing such as known template matching, edge detection, and corner detection on the image information captured and output by the camera 80, and detects the information after the image processing. Input to the quantity calculation unit 82. The detection amount calculation unit 82 acquires the coordinates of the marker 57S based on the size of the recognition marker 57S included in the received information in pixel units and the distance information from the camera 80 to the marker 57S acquired in advance.
  • the detection amount calculation unit 82 calculates the speed of the suspended load, particularly the swing angle velocity of the suspended load in the turning direction, by numerically differentiating the displacement (swing angle) of the suspended load.
  • the control amount calculation unit 700F has each of the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5, as in the first embodiment.
  • the control amount the deviation between the detection value detected by each detection unit of the detection unit 700D and the target amount set by the control target amount setting unit 720 is calculated. More specifically, the control amount calculation unit 700F outputs the boom length information output from the boom length information acquisition unit 708, the rotation angle output from the rotation angle detection unit 710, and the boom undulation angle detection unit 711.
  • the current values of the five control amounts (state amounts) are calculated.
  • the suspended load turning direction displacement X1 is obtained by adding the boom tip turning direction displacement X3 to the suspended load turning direction displacement X1'when viewed from the tip end portion (upper boom 16E) of the boom 16. It is calculated by the following equation 5.
  • X1' is the suspended load displacement seen from the tip of the boom 16 acquired by the suspended load displacement detection unit 715A.
  • the suspended load turning direction speed X2 is obtained by adding the boom tip turning direction speed X4 to the speed X2'in the suspended load turning direction when viewed from the tip of the boom 16, and is calculated by the following equation 6. Will be done.
  • the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5 are detected or calculated in the same manner as in the first embodiment. Further, the calculation process by the control gain setting unit 726, the turning target speed calculation unit 727, and the turning operation target calculation unit 728 is the same.
  • the suspended load turning direction displacement X1 and the suspended load turning direction speed X2 can be acquired based on the image information of the camera 80 attached to the tip end portion of the boom 16. Therefore, as compared with the first embodiment, the position of the recognition marker 57S associated with the suspended load is directly detected even when the main winding rope 50 (suspended load rope) is bent. Therefore, it is possible to accurately acquire the suspended load turning direction displacement X1 and the suspended load turning direction speed X2.
  • x is called a state quantity, and corresponds to each of the above-mentioned control quantities (suspended load turning direction displacement X1, suspended load turning direction speed X2, turning angle X5, etc.).
  • u corresponds to the control input (turning speed).
  • a and B of Equation 5 are system matrices, and in the matrix, turning runout control is performed, such as the rope length of the main winding rope 50 and the working radius of the crane 10 (the radius of the boom 16 in a plan view). It does not change, but contains parameters that affect the behavior of the suspended load.
  • a dot is added above the characters in the following formulas, such as x included in formula 7, which means time derivative. For example, if one dot is attached above x, x is first-order time-differentiated, and if two dots are attached above x, x is second-order time-differentiated. Furthermore, in texts other than mathematical formulas, apostrophes are added instead of the above dots due to the restrictions of the description. The same applies to other mathematical formulas and descriptions in the text thereafter.
  • an optimum control method in which the target (crane 10) is controlled so as to minimize the evaluation function.
  • the evaluation function is first defined as shown in Equation 8 below.
  • Equation 8 x and u correspond to a vector or scalar, and the superscript T attached to x and u means transpose. Also, Q and R correspond to matrices or scalars.
  • the matrix X can be obtained by solving a known Riccati algebra equation shown in Equation 9 below. Note that ⁇ 'm and Gx are equivalent to the above-mentioned turning target speed Vref. Further, Gx corresponds to the right side of Equation 4.
  • the feedback gain G can be expressed by the following equation 10.
  • control gain setting unit 726 can calculate the gains G1 to G5 based on the above calculation.
  • FIGS. 10 and 11 are model diagrams for explaining the swing steady rest control of the crane 10 according to the present embodiment.
  • the jib 18 is supported by the boom 16 assuming the crane 10 according to the second embodiment, but in the crane 10 according to the first embodiment, FIGS. 10 and 11
  • the equation of state can be derived in the same manner.
  • the control model of the crane 10 is derived using the equation of motion. As shown in FIGS. 10 and 11, it is assumed that the crane 10 turns around the Z axis. Further, the position of the suspended load is represented using the suspended load position coordinates xt, yt, and zt.
  • the suspended load position coordinates xt, yt, and zt are the suspended load positions when the vibration of the jib 18 and the swing of the suspended load are stopped with reference to the initial turning angle at the moment (initial state) when the control start signal is output.
  • the yy axis is set to extend in the radial direction so as to share the XYZ coordinates and the XY plane of the global coordinate system with the origin directly below, the xt axis is set to extend in the turning direction, and the zt axis is the Z axis. Is set in the same direction as.
  • the turning angle which is the angle at which the turning body 12 turns from the initial state, is defined as ⁇ .
  • the angle at which the swivel body 12 turns from the position where the swivel body 12 starts turning until the control start signal is output is defined as ⁇ t.
  • the kinetic energy T and the potential energy U of the suspended load are represented by the following equation 11.
  • g is the gravitational acceleration.
  • the suspended load can be regarded as being restricted on a spherical surface of radius L M (rope length) as viewed from being restrained their behavior by the main hoisting rope 50, the tip of the jib 18. Therefore, the following equation 12 holds. Note that h means the height of the tip of the jib 18.
  • is defined as in Equation 13.
  • Equation 14 ⁇ is an undetermined multiplier. Using this equation 14, assuming the following equation 15, the following equation 16 can be obtained for xt.
  • FIG. 12 is a model diagram for further explaining the swivel steady rest control of the crane 10 according to the present embodiment.
  • the inertia of the jib 18 acts as a mass (difficult to move, difficulty to rotate) in linear motion with respect to the rotational motion, and the force contributing to the deformation of the jib 18 is the forced displacement by the hydraulic motor and the jib 18. Since it is the tension of the main winding rope 50, the twist deformation of the jib 18 is dominant. Therefore, when considering the elasticity of the jib 18, the equation of motion can be obtained by the analogy of the spring-mass system as shown in FIG.
  • the motion is driven by the following equation 17 derived from the equation of motion of Lagrange in equation 14.
  • the equation 17 includes a term considering the elastic deformation of the undulating body. Based on the above, in order to show the equation of state, the state x is defined as the following equation 18.
  • control gain setting unit 726 can calculate the control gains G1 to G5 (feedback gain) based on the equations of state represented by the equations 19 and 20.
  • FIG. 13 is a graph showing the transition of the displacement of the suspended load in the turning direction in other turning steady rest control compared with the turning steady rest control of the crane 10 according to the present embodiment.
  • the broken line in FIG. 13 shows the displacement of the suspended load in the turning direction when the turning steady rest control is not performed immediately after the turning operation of the crane 10 is stopped, and it can be seen that the periodic swing continues. ..
  • the solid line in FIG. 13 is the result when the control gains G1 to G5 are calculated by the control model which does not consider the elastic deformation of the undulating body (boom 16) unlike each embodiment of the present invention. As shown in FIG. 13, in such an operation, the feedback control is diverged, and the result is that the suspended load swings more than the result of the broken line where the control is not performed.
  • FIG. 14 is a graph showing the transition of the displacement in the turning direction of the suspended load in the turning steady rest control of the crane 10 according to each embodiment of the present invention.
  • the broken line is the same as in FIG.
  • the control gains G1 to G5 are calculated by the control model considering the elastic deformation of the undulating body (boom 16) as in each embodiment of the present invention, the runout of the suspended load converges at an early stage. It is confirmed that
  • the control gain setting unit 726 swivels the swivel body 12 and suspends the load.
  • each control amount (state amount) (suspended load swivel direction displacement X1, suspended load swivel direction velocity X2, boom tip swivel direction displacement X3, boom tip
  • the control gains G1 to G5 are determined so as to minimize the time integration of the weighted sum of the turning direction speed X4 and the turning angle X5) and the input amount (turning speed).
  • the turning target speed calculation unit 727 calculates the turning target speed based on the control amount and the control gain, and the turning operation target calculation unit 728 drives the turning drive unit 701 so as to reach the above target speed. Therefore, it is possible to perform stable steady rest of the suspended load.
  • the suspension is preset so that the control gain setting unit 726 includes at least a term corresponding to elastic deformation of the undulating body (boom 16, jib 18).
  • Five control gains G1 to G5 corresponding to the five state quantities are set based on the equation of state relating to the behavior of the load and the turning speed of the swivel body 12 (undulating body) as a variable.
  • the turning target speed calculation unit 727 includes the five control gains set by the control gain setting unit 726 and the current values of the five state quantities calculated by the control quantity calculation unit 700F (state quantity calculation unit). Therefore, the turning target speed, which is the target value of the turning speed of the turning body 12, is calculated.
  • the turning operation target calculation unit 728 and the drive control unit 700 both are command information output units
  • the turning target speed the magnitude of the speed, which is calculated by the turning target speed calculation unit 727) for which the turning speed of the turning body 12 is calculated.
  • the command information corresponding to the turning target speed is output to the turning drive unit 701 so as to be (including the direction).
  • the control gain setting unit 726 sets the control gains G1 to G5 of each state quantity based on the equation of state considering the elastic deformation of the undulating body. Further, the turning target speed calculation unit 727 sets the turning target speed Vref of the turning body 12 based on each state quantity calculated by the control amount calculation unit 700F and each control gain set by the control gain setting unit 726. Set. Since the above state quantity includes the displacement and velocity of the tip of the undulating body in addition to the displacement and velocity of the suspended load, the suspension and undulating body can be combined with the rope length information of the suspended load rope. It is possible to control the swirling runout of the suspended load while taking into account the relative position with the tip portion.
  • the undulating body is elastically deformed such as bending due to the moment of inertia applied to the undulating body by the turning motion or the load of the suspended load, the swing in the turning direction of the suspended load can be stably converged. It will be possible.
  • the control target amount setting unit 720 determines that the turning steady rest control start condition is satisfied by the control determination unit 719, and outputs the control start signal. Then, assuming that the undulating body is not elastically deformed in the plan view of the crane 10, the turning angle, the displacement of the undulating body tip, and the suspension are set with the position vertically below the tip of the undulating body as the target position. The target state amount of the load displacement is set, and the target state amount of the suspended load speed and the tip speed of the undulating body is set to zero, respectively.
  • a target position for converging the swirling runout of the suspended load is set with reference to the position of the tip of the undulating body at the time when the control start signal is output. Therefore, like other swivel steady rest devices that control the swivel operation of the upper body so as to always move the tip of the undulating body to a position above the suspended load without considering the elastic deformation of the undulating body, the undulating body.
  • the tip portion follows the movement of the suspended load and the turning direction is not frequently switched, and the swing of the suspended load can be quickly converged by controlling the turning operation according to the final target position.
  • control gain setting unit 726 sets the five control gains G1 to G5 so that the integrated value with respect to the time of the weighted sum including the five state quantities and the turning speed of the turning body 12 is the smallest. Therefore, the control gain for quickly converging the swirling runout of the suspended load can be set in a short time.
  • a method for setting the control gain a method based on the so-called pole arrangement method or a method based on the H-infinity control may be adopted.
  • the method of setting the control gain according to each embodiment of the present invention follows the so-called LQ optimum control (Linear Quadratic Optimal Control) (linear quadratic optimum control).
  • the LQ optimum control has a feature that it is easy to design the control system to be robust against disturbance as compared with the above-mentioned pole arrangement method. Further, the LQ optimum control is characterized in that the design of the control system is easier than that of the H infinity control, and the effect is easily exhibited even under the influence of disturbance.
  • the inertia imparted to the jib 18 by the turning motion Even when the jib 18 is elastically deformed such as bending due to the moment or the load of the suspended load, it is possible to stably converge the runout of the suspended load in the turning direction.
  • the moment of inertia of the body and the weight of the suspended load (suspended load) are detection parameters for determining the feedback gain.
  • the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5 correspond to the control amount (state amount).
  • the swivel steady rest device 70 and the crane 10 provided with the swivel steady rest device 70 according to each embodiment of the present invention have been described above.
  • the present invention is not limited to these forms.
  • the present invention can take, for example, the following modified embodiments.
  • FIG. 15 is a model diagram for explaining the swing steady rest control of the crane according to the modified embodiment of the present invention.
  • the state quantities the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5 have been described.
  • the state quantity of is calculated from the detection result of another detection unit.
  • the suspended load turning direction displacement X1 the suspended load turning direction speed X2, the suspended load turning direction relative displacement X3, and the suspended load turning direction relative speed X4. May be measured respectively.
  • the structure of the crane to which the swivel steady rest device 70 according to each of the above-described embodiments is applied is not limited to the crane 10 shown in FIGS. 1 and 5. It may be a crane having another structure. Further, the number of the control amount (state amount) and the corresponding control gain is not limited to 5, and at least 5 control amounts and control gains may be detected or calculated.
  • the suspended load turning direction displacement X1 and the suspended load turning direction speed X2 are acquired based on the image information of the camera 80 mounted on the tip of the boom 16.
  • the suspended load position in the global coordinate system may be detected by the hook 57 or GPS attached to the suspended load, and the suspended load turning direction displacement X1 and the suspended load turning direction speed X2 may be acquired, respectively.
  • the swivel steady rest device 70 may have a gyro sensor (IMU: Inertial Measurement Unit) connected to the tip of the main winding rope 50 (suspended rope) hanging from the tip of the boom 16.
  • IMU Inertial Measurement Unit
  • the suspended load displacement detecting unit 715A and the suspended load speed detecting unit 716A detect and output the suspended load displacement and the suspended load speed, respectively, based on the output of the gyro sensor. Further, the suspended load displacement detecting unit 715A and the suspended load speed detecting unit 716A according to the third embodiment may be applied to the second embodiment.
  • a swing steady rest device for a crane
  • the swing steady rest device is a lower main body and an upper main body rotatably supported around a turning central axis extending in the vertical direction by the lower main body. And, it is supported so as to be rotatable in the undulating direction around the center axis of rotation horizontal to the upper body, and includes the undulating body base end portion and the undulating body tip portion opposite to the undulating body base end portion.
  • a turning drive unit capable of turning and driving, and a turning operation unit that receives an operation for turning and driving the upper main body, and the upper main body is moved in the first turning direction and the second turning direction.
  • the turning operation unit and the undulating body which can be switched between the turning position for turning and the neutral position for stopping the turning of the upper body, and the undulating body are rotated in the undulating direction around the rotation center axis.
  • An undulating body driving unit capable of undulating, and an undulating operation unit that accepts an operation for undulating the undulating body, and stops the undulating position for undulating the undulating body and the undulation of the undulating body.
  • An undulating operation unit that can be switched between the neutral position and the suspended load that can be raised and lowered relative to the ground by winding and feeding the suspended load rope.
  • Between the drive unit and the elevating operation unit that accepts the operation for raising and lowering the suspended load between the elevating position for raising and lowering the suspended load and the neutral position for stopping the ascending and descending of the suspended load.
  • the suspended load connected to the suspended load rope after the turning operation of the upper main body is stopped, which is mounted on a crane having an elevating and lowering operation unit which can be switched by, of the upper main body with the tip of the undulating body as a fulcrum.
  • This is a crane swing steady rest device that can suppress the swing swing of a suspended load, which is a phenomenon of swinging along the swing direction.
  • the swivel steady rest device acquires and outputs undulating body length information which is information corresponding to the length of the undulating body in the longitudinal direction of the undulating body, which is the direction connecting the base end portion of the undulating body and the tip end portion of the undulating body.
  • the angle detection unit the undulating body displacement detection unit that detects and outputs the displacement of the undulating body tip portion, which is the displacement of the undulating body tip portion in the turning direction
  • the undulating body which is the speed of the undulating body tip portion in the turning direction.
  • the undulating body speed detecting unit that detects and outputs the tip speed
  • the suspended load displacement detecting unit that detects and outputs the suspended load displacement that is the displacement of the suspended load with respect to the undulating body tip, and the above-mentioned with respect to the undulating tip.
  • a rope length information acquisition unit that acquires and outputs rope length information, which is information
  • a suspension load amount information acquisition unit that acquires and outputs suspension load amount information, which is information on the weight of the suspended load, and the turning operation.
  • the control start condition determination unit that determines whether or not the turning steady rest control start condition, which is established by setting all the operation units of the above to the neutral position, and the control start condition determination unit determine the turning.
  • the suspension load displacement which is the displacement of the suspended load in the turning direction
  • the hanging load speed which is the speed of the suspended load in the turning direction
  • Target state amount setting for setting a target state amount for stopping the suspended load at least in the turning direction at a predetermined target position for a plurality of state amounts including the displacement, the tip speed of the undulating body, and the turning angle.
  • the suspension speed detection The suspension speed output from the unit, the rope length information output from the rope length information acquisition unit, the suspension load information output from the suspension load information acquisition unit, and the target state.
  • a state quantity calculation unit that calculates the current values of the plurality of state quantities based on the target state quantities of the plurality of state quantities set by the quantity setting unit, and at least a term corresponding to the elastic deformation of the undulating body.
  • a plurality of control gains corresponding to each of the plurality of state quantities are set based on the state equation relating to the behavior of the suspended load, which is preset to include the state equation and the turning speed of the upper body is used as a variable.
  • the turning target speed calculation unit that calculates the turning target speed, and the turning target speed with respect to the turning drive unit so that the turning speed of the upper body becomes the turning target speed calculated by the turning target speed calculation unit. It is provided with a command information output unit that outputs command information corresponding to.
  • the control gain setting unit sets the control gain of each state quantity based on the equation of state considering the elastic deformation of the undulating body.
  • the turning target speed calculation unit sets the turning target speed of the turning body based on each state quantity calculated by the state quantity calculation unit and each control gain set by the control gain setting unit. Since the above state quantity includes the displacement and velocity of the tip of the undulating body in addition to the displacement and velocity of the suspended load, the suspension and undulating body can be combined with the rope length information of the suspended load rope. It is possible to control the swirling runout of the suspended load while taking into account the relative position with the tip portion.
  • the undulating body is elastically deformed such as bending due to the moment of inertia applied to the undulating body by the turning motion or the load of the suspended load, the swing in the turning direction of the suspended load can be stably converged. It will be possible.
  • the suspended load displacement detecting unit detects and outputs the deflection angle of the suspended load rope with respect to the vertical direction when viewed along the radial direction in the turning operation of the upper body as the suspended load displacement.
  • the suspension angular velocity detection unit includes a detection unit, and the suspension angular velocity detection unit includes a rope deflection angular velocity detection unit that detects and outputs a deflection angular velocity, which is a change amount of the deflection angle of the suspension rope per unit time, as the suspension velocity. But it may be.
  • the suspension is attached to the tip of the undulating body, the target object associated with the suspended load is photographed, and the photographed image information is output, and the suspension is based on the image information output from the imaging device.
  • the imaging device and the calculation unit further include a calculation unit for calculating the load displacement and the suspension load speed, respectively, and the photographing device and the calculation unit detect and output the suspension load displacement as the suspension load displacement detection unit, and detect the suspension load speed. As a unit, the suspension speed may be detected and output.
  • a gyro sensor connected to the tip of the suspension rope hanging from the tip of the undulating body is further provided, and the suspension displacement detection unit and the suspension speed detection unit are based on the output of the gyro sensor.
  • the suspended load displacement and the suspended load speed may be detected and output, respectively.
  • the target state amount setting unit elastically deforms the undulating body in the plan view of the crane.
  • the turning angle, the displacement of the tip of the undulating body, and the target state amount of the suspended load are set with the position vertically below the tip of the undulating body as the target position when it is assumed that the undulating body does not exist. It is desirable to set the target state quantities of the suspended load speed and the undulating body tip speed to zero, respectively.
  • a target position for converging the swirling runout of the suspended load is set with reference to the position of the tip of the undulating body at the time when the control start signal is output. Therefore, like other swivel steady rest devices that control the swivel operation of the upper body so as to always move the tip of the undulating body to a position above the suspended load without considering the elastic deformation of the undulating body, the undulating body.
  • the tip portion follows the movement of the suspended load and the turning direction is not frequently switched, and the swing of the suspended load can be quickly converged by controlling the turning operation according to the final target position.
  • control gain setting unit sets the plurality of control gains so that the integrated value with respect to the time of the weighted sum including the plurality of state quantities and the turning speed is the smallest.
  • control gain for quickly converging the swirling runout of the suspended load can be set in a short time.
  • the crane has a boom base end portion supported as the undulating body so as to be rotatable in the undulating direction around the first rotation center axis horizontal to the upper body, and the boom base end portion.
  • the boom and the jib base end supported by the boom tip so as to be rotatable in the undulating direction around the second rotation center axis parallel to the first rotation center axis, including the boom tip opposite to the above.
  • the jib comprises a portion and a jib tip that is opposite to the jib base and allows the suspended rope to hang from the jib tip.
  • the boom driving unit capable of rotating the boom around the first rotation center axis in the undulating direction and the jib rotating in the undulating direction around the second rotation center axis. It has a jib drive unit capable of undulating, and as the undulating operation unit, it is a boom undulating operation unit that accepts an operation for undulating the boom, and has a boom undulating position for undulating the boom.
  • a boom undulation operation unit that can be switched between a neutral position for stopping the undulation of the boom and a jib undulation operation unit that accepts an operation for undulating the jib, and undulates the jib.
  • the undulating body length information acquisition unit acquires and outputs boom length information which is information corresponding to the length of the boom in the boom longitudinal direction which is the direction connecting the boom base end and the boom tip.
  • a jib that acquires and outputs jib length information that is information corresponding to the length of the jib in the jib longitudinal direction, which is the direction connecting the boom length information acquisition unit and the jib base end portion and the jib tip portion.
  • the undulating body displacement detecting unit has a length information acquisition unit, and the undulating body displacement detecting unit detects and outputs the displacement of the jib tip portion in the turning direction as the undulating body tip portion displacement.
  • the speed of the tip of the jib in the turning direction is detected and output as the speed of the tip of the undulation body, and the undulation angle detection unit detects and outputs the undulation angle of the boom around the first rotation center axis. It has an angle detection unit and a jib undulation angle detection unit that detects and outputs the undulation angle of the jib around the second rotation center axis, and the target state amount setting unit is said by the control start condition determination unit.
  • the suspended load displacement, the suspended load speed, the displacement of the jib tip in the turning direction, the displacement of the undulating body tip, and the jib tip are set for each of the undulating body tip speed and the plurality of state amounts of the turning angle, which are the speeds in the turning direction, and the state amount calculation unit is the boom length information acquisition unit and the boom length information acquisition unit.
  • the jib in a configuration in which a suspended load rope is hung from the tip of a jib that is undulatingly supported at the tip of the boom, the jib is subjected to the moment of inertia applied to the jib by the turning motion and the load of the suspended load. Even when elastic deformation such as bending occurs, it is possible to stably converge the runout of the suspended load in the turning direction.
  • a crane which is provided on a lower main body, an upper main body rotatably supported around a turning central axis extending in the vertical direction on the lower main body, and the upper main body.
  • An undulating body including a undulating body base end portion supported so as to be rotatable in the undulating direction around a horizontal center axis of rotation, and a undulating body tip portion opposite to the undulating body base end portion, and the undulating body.
  • the crane that hangs down from the tip and is connected to the suspended load and the upper body are swiveled around the center axis of the swivel in the first swivel direction and in the second swivel direction opposite to the first swivel direction.
  • It is a turning drive unit capable of turning and a turning operation unit that accepts an operation for turning and driving the upper main body, and is a turning for turning the upper main body in the first turning direction and the second turning direction, respectively.
  • An undulating operation unit that can be switched between a working position and a neutral position for stopping the turning of the upper body, and an undulation that can rotate the undulating body around the center axis of rotation in the undulating direction.
  • a body driving unit and an undulating operation unit that accepts an operation for undulating the undulating body, and a undulating position for undulating the undulating body and a neutral position for stopping the undulation of the undulating body.
  • An undulating operation unit that can be switched between, a crane drive unit that can raise and lower the crane relative to the ground by winding and feeding the crane rope, and the crane.
  • An elevating operation unit that accepts operations for raising and lowering a load, and can be switched between an elevating position for raising and lowering the suspended load and a neutral position for stopping the ascending and descending of the suspended load.
  • a crane turning steady rest device and a crane capable of stably converging the turning runout of a suspended load caused by the turning operation of the crane.

Abstract

Provided are a turning swing stopping device for a crane, and a crane, the device being capable of stably converging the turning swing of a suspended load caused by the turning motion of the crane. This turning swing stopping device (70) has a state quantity calculation unit (700F), a control gain setting unit (726), and a turning target velocity calculation unit (727). When the turning operation is stopped, the control amount calculation unit (700F) calculates five state quantities of a suspended load displacement, a suspended load velocity, a turning displacement of the tip of the undulation body (16), a turning velocity of the tip of the undulation body (16), and a turning angle of an upper body 12. The control gain setting unit (726) sets five control gains corresponding to the respective state quantities from a state equation including a term corresponding to the elastic deformation of the undulation body (16). The turning target velocity calculation unit (727) calculates the turning velocity for suppressing the swing of the suspended load, on the basis of the five state quantities and the five control gains.

Description

クレーンの旋回振れ止め装置およびこれを備えたクレーンCrane swivel steady rest device and crane equipped with this
 本発明は、クレーンの旋回振れ止め装置およびこれを備えたクレーンに関する。 The present invention relates to a crane swivel steady rest device and a crane provided with the device.
 従来、移動式クレーンとして、下部走行体と、上下方向に延びる旋回中心軸回りに旋回可能なように下部走行体に支持された上部旋回体と、ブームやジブなどの起伏体と、を備えたものが知られている。起伏体は、水平な回転中心軸回りに起伏方向に回動可能なように上部旋回体の前部に取り付けられている。また、起伏体の先端部から垂下された吊荷ロープにはフックが装着されており、当該フックに吊荷が接続されることで、吊荷が吊り上げられる。このように吊荷が吊り上げられた状態で、上部旋回体が旋回すると、吊荷を旋回方向に移動させることができる。 Conventionally, as a mobile crane, a lower traveling body, an upper rotating body supported by the lower traveling body so as to be able to turn around a turning center axis extending in the vertical direction, and an undulating body such as a boom or a jib are provided. Things are known. The undulating body is attached to the front portion of the upper rotating body so as to be rotatable in the undulating direction around a horizontal rotation center axis. Further, a hook is attached to the suspended load rope hanging from the tip of the undulating body, and the suspended load is lifted by connecting the suspended load to the hook. When the upper swing body turns while the suspended load is lifted in this way, the suspended load can be moved in the turning direction.
 特許文献1には、伸縮ブームを有するクレーンにおいて、上部旋回体の旋回停止時に吊荷の振れ(旋回振れ)が発生している場合には、ブームの先端部を吊荷の鉛直上方の位置に移動させるように、上部旋回体の旋回動作を制御する技術が開示されている。ブームの先端部が吊荷に追従するように移動することで、やがて吊荷の振れが収束する。 According to Patent Document 1, in a crane having a telescopic boom, when a swing of the suspended load (swing swing) occurs when the upper swing body stops swinging, the tip of the boom is positioned vertically above the suspended load. A technique for controlling the turning motion of the upper swing body so as to move it is disclosed. As the tip of the boom moves to follow the suspended load, the runout of the suspended load eventually converges.
特許第5087251号公報Japanese Patent No. 5087251
 クレーンが旋回すると、起伏体に付与される慣性モーメントや吊荷の重さに応じて起伏体に撓み(弾性変形)が生じることがある。特許文献1に記載された技術では、このような起伏体の弾性変形が考慮されていないため、平面視で吊荷に追従するように移動される起伏体の先端部と吊荷との間に位置ずれが生じやすい。この結果、当該位置ずれによって吊荷の振れが助長されやすく、吊荷の振れが収まりにくいという問題があった。 When the crane turns, the undulating body may bend (elastic deformation) depending on the moment of inertia applied to the undulating body and the weight of the suspended load. Since the technique described in Patent Document 1 does not consider such elastic deformation of the undulating body, it is between the tip of the undulating body that is moved so as to follow the suspended load in a plan view and the suspended load. Misalignment is likely to occur. As a result, there is a problem that the runout of the suspended load is likely to be promoted due to the misalignment, and the runout of the suspended load is difficult to settle.
 本発明の目的は、クレーンの旋回動作によって生じる吊荷の旋回振れを安定して収束させることが可能なクレーンの旋回振れ止め装置およびクレーンを提供することにある。 An object of the present invention is to provide a crane swing steady rest device and a crane capable of stably converging the swing runout of a suspended load caused by the swinging motion of the crane.
 本発明によって提供されるのはクレーンの旋回振れ止め装置であって、当該旋回振れ止め装置は、下部本体と、前記下部本体に上下方向に延びる旋回中心軸回りに旋回可能に支持された上部本体と、前記上部本体に水平な回転中心軸回りに起伏方向に回動可能なように支持され、起伏体基端部と、前記起伏体基端部とは反対の起伏体先端部とを含む起伏体と、前記起伏体先端部から垂下され吊荷に接続される吊荷ロープと、前記上部本体を前記旋回中心軸回りに第1旋回方向および前記第1旋回方向とは反対の第2旋回方向にそれぞれ旋回駆動することが可能な旋回駆動部と、前記上部本体を旋回駆動するための操作を受け付ける旋回用操作部であって、前記上部本体を前記第1旋回方向および前記第2旋回方向にそれぞれ旋回させるための旋回用位置と前記上部本体の旋回を停止させるための中立位置との間で切換可能な、旋回用操作部と、前記起伏体を前記回転中心軸回りに起伏方向に回動することが可能な起伏体駆動部と、前記起伏体を起伏するための操作を受け付ける起伏用操作部であって、前記起伏体を起伏させるための起伏用位置と前記起伏体の起伏を停止させるための中立位置との間で切換可能な、起伏用操作部と、前記吊荷ロープの巻き取りおよび繰り出しを行うことで前記吊荷を地面に対して相対的に昇降させることが可能な吊荷駆動部と、前記吊荷を昇降させるための操作を受け付ける昇降用操作部であって、前記吊荷を昇降させるための昇降用位置と前記吊荷の昇降を停止させるための中立位置との間で切換可能な、昇降用操作部と、を有するクレーンに搭載され、前記上部本体の旋回動作停止後に前記吊荷ロープに接続された前記吊荷が前記起伏体先端部を支点として前記上部本体の旋回方向に沿って振れる現象である吊荷の旋回振れを抑えることが可能なクレーンの旋回振れ止め装置である。当該旋回振れ止め装置は、前記起伏体基端部と前記起伏体先端部とを結ぶ方向である起伏体長手方向における当該起伏体の長さに対応する情報である起伏体長さ情報を取得し出力する起伏体長さ情報取得部と、前記上部本体の前記旋回中心軸回りの旋回角を検出および出力する旋回角検出部と、前記回転中心軸回りの前記起伏体の起伏角を検出および出力する起伏角検出部と、前記起伏体先端部の前記旋回方向における変位である起伏体先端部変位を検出および出力する起伏体変位検出部と、前記起伏体先端部の前記旋回方向における速度である起伏体先端部速度を検出および出力する起伏体速度検出部と、前記起伏体先端部に対する前記吊荷の変位である吊荷変位を検出および出力する吊荷変位検出部と、前記起伏体先端部に対する前記吊荷変位の単位時間あたりの変化量である吊荷速度を検出および出力する吊荷速度検出部と、前記起伏体先端部と前記吊荷との間の前記吊荷ロープの長さに対応する情報であるロープ長さ情報を取得し出力するロープ長さ情報取得部と、前記吊荷の重量に関する情報である吊荷重量情報を取得し出力する吊荷重量情報取得部と、前記旋回用操作部が前記旋回用位置に設定されることに応じて前記旋回駆動部が前記上部本体を所定の旋回方向に旋回させたのち、前記旋回用操作部、前記起伏用操作部および前記昇降用操作部のすべての操作部が前記中立位置にそれぞれ設定されることで成立する旋回振れ止め制御開始条件が満たされているか否かを判断する制御開始条件判断部と、前記制御開始条件判断部によって前記旋回振れ止め制御開始条件が満たされていると判断されると、前記吊荷の前記旋回方向における変位である吊荷変位、前記吊荷の前記旋回方向における速度である吊荷速度、前記起伏体先端部変位、前記起伏体先端部速度、前記旋回角を含む複数の状態量について、所定の目標位置において前記吊荷を少なくとも前記旋回方向において静止させるための目標状態量をそれぞれ設定する目標状態量設定部と、前記起伏体長さ情報取得部から出力された前記起伏体長さ情報と、前記旋回角検出部から出力された前記旋回角と、前記起伏角検出部から出力された前記起伏角と、前記起伏体変位検出部から出力された前記起伏体先端部変位と、前記起伏体速度検出部から出力された前記起伏体先端部速度と、前記吊荷変位検出部から出力された前記吊荷変位と、前記吊荷速度検出部から出力された前記吊荷速度と、前記ロープ長さ情報取得部から出力された前記ロープ長さ情報と、前記吊荷重量情報取得部から出力された前記吊荷重量情報と、前記目標状態量設定部によって設定された前記複数の状態量の目標状態量とに基づいて、前記複数の状態量の現在値を演算する状態量演算部と、少なくとも前記起伏体の弾性変形に対応する項を含むように予め設定された前記吊荷の挙動に関する状態方程式であって前記上部本体の旋回速度を変数とする状態方程式に基づいて、前記複数の状態量にそれぞれ対応する複数の制御ゲインを設定する制御ゲイン設定部と、前記制御ゲイン設定部によって設定された前記複数の制御ゲインと、前記状態量演算部によって演算された前記複数の状態量の現在値とから、前記旋回速度の目標値である旋回目標速度を演算する旋回目標速度演算部と、前記上部本体の旋回速度が前記旋回目標速度演算部によって演算された前記旋回目標速度となるように、前記旋回駆動部に対して前記旋回目標速度に対応する指令情報を出力する指令情報出力部と、を備える。 Provided by the present invention is a swing steady rest device for a crane, and the swing steady rest device is a lower main body and an upper main body rotatably supported around a turning central axis extending in the vertical direction by the lower main body. And, it is supported so as to be rotatable in the undulating direction around the center axis of rotation horizontal to the upper body, and includes the undulating body base end portion and the undulating body tip portion opposite to the undulating body base end portion. The body, the suspended load rope hanging from the tip of the undulating body and connected to the suspended load, and the upper main body in the first turning direction around the turning center axis and in the second turning direction opposite to the first turning direction. A turning drive unit capable of turning and driving, and a turning operation unit that receives an operation for turning and driving the upper main body, and the upper main body is moved in the first turning direction and the second turning direction. The turning operation unit and the undulating body, which can be switched between the turning position for turning and the neutral position for stopping the turning of the upper body, and the undulating body are rotated in the undulating direction around the rotation center axis. An undulating body driving unit capable of undulating, and an undulating operation unit that accepts an operation for undulating the undulating body, and stops the undulating position for undulating the undulating body and the undulation of the undulating body. An undulating operation unit that can be switched between the neutral position and the suspended load that can be raised and lowered relative to the ground by winding and feeding the suspended load rope. Between the drive unit and the elevating operation unit that accepts the operation for raising and lowering the suspended load, between the elevating position for raising and lowering the suspended load and the neutral position for stopping the ascending and descending of the suspended load. The suspended load connected to the suspended load rope after the turning operation of the upper main body is stopped, which is mounted on a crane having an elevating and lowering operation unit which can be switched by, of the upper main body with the tip of the undulating body as a fulcrum. This is a crane swing steady rest device that can suppress the swing swing of a suspended load, which is a phenomenon of swinging along the swing direction. The swivel steady rest device acquires and outputs undulating body length information which is information corresponding to the length of the undulating body in the longitudinal direction of the undulating body, which is the direction connecting the base end portion of the undulating body and the tip end portion of the undulating body. The undulation body length information acquisition unit, the rotation angle detection unit that detects and outputs the rotation angle around the rotation center axis of the upper body, and the undulations that detect and output the undulation angle of the undulation body around the rotation center axis. The angle detection unit, the undulating body displacement detection unit that detects and outputs the displacement of the undulating body tip portion, which is the displacement of the undulating body tip portion in the turning direction, and the undulating body, which is the speed of the undulating body tip portion in the turning direction. The undulating body speed detecting unit that detects and outputs the tip speed, the suspended load displacement detecting unit that detects and outputs the suspended load displacement that is the displacement of the suspended load with respect to the undulating body tip, and the above-mentioned with respect to the undulating tip. Corresponds to the length of the suspended load rope between the suspended load speed detection unit that detects and outputs the suspended load speed, which is the amount of change in the suspended load displacement per unit time, and the tip of the undulating body and the suspended load. A rope length information acquisition unit that acquires and outputs rope length information, which is information, a suspension load amount information acquisition unit that acquires and outputs suspension load amount information, which is information on the weight of the suspended load, and the turning operation. After the swivel drive unit swivels the upper main body in a predetermined swivel direction in response to the portion being set to the swivel position, the swivel operation unit, the undulation operation unit, and the elevating operation unit The control start condition determination unit that determines whether or not the turning steady rest control start condition, which is established by setting all the operation units of the above to the neutral position, and the control start condition determination unit determine the turning. When it is determined that the steady rest control start condition is satisfied, the suspension load displacement, which is the displacement of the suspended load in the turning direction, the hanging load speed, which is the speed of the suspended load in the turning direction, and the tip of the undulating body. Target state amount setting for setting a target state amount for stopping the suspended load at least in the turning direction at a predetermined target position for a plurality of state amounts including the displacement, the tip speed of the undulating body, and the turning angle. The unit, the undulating body length information output from the undulating body length information acquisition unit, the turning angle output from the turning angle detecting unit, the undulating angle output from the undulating angle detecting unit, and the above. The undulating body tip displacement output from the undulating body displacement detection unit, the undulating body tip speed output from the undulating body speed detection unit, and the suspended load displacement output from the suspended load displacement detecting unit. , The suspension speed detection The suspension speed output from the unit, the rope length information output from the rope length information acquisition unit, the suspension load information output from the suspension load information acquisition unit, and the target state. A state quantity calculation unit that calculates the current values of the plurality of state quantities based on the target state quantities of the plurality of state quantities set by the quantity setting unit, and at least a term corresponding to the elastic deformation of the undulating body. A plurality of control gains corresponding to each of the plurality of state quantities are set based on the state equation relating to the behavior of the suspended load, which is preset to include the state equation and the turning speed of the upper body is used as a variable. It is the target value of the turning speed from the control gain setting unit, the plurality of control gains set by the control gain setting unit, and the current values of the plurality of state quantities calculated by the state quantity calculation unit. The turning target speed calculation unit that calculates the turning target speed, and the turning target speed with respect to the turning drive unit so that the turning speed of the upper body becomes the turning target speed calculated by the turning target speed calculation unit. It is provided with a command information output unit that outputs command information corresponding to.
本発明の第1実施形態に係るクレーンの側面図である。It is a side view of the crane which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るクレーンの旋回振れ止め装置のブロック図である。It is a block diagram of the swing steady rest device of the crane which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るクレーンの旋回振れ止め制御を説明するための模式的な平面図である。It is a schematic plan view for demonstrating the swing steady rest control of the crane which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るクレーンの旋回振れ止め制御のフローチャートである。It is a flowchart of the swing steady rest control of the crane which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るクレーンの側面図である。It is a side view of the crane which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係るクレーンの旋回振れ止め装置のブロック図である。It is a block diagram of the swing steady rest device of the crane which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るクレーンの旋回振れ止め装置のブロック図である。It is a block diagram of the swing steady rest device of the crane which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係るクレーンのブームの先端部の拡大側面図である。It is an enlarged side view of the tip part of the boom of the crane which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係るクレーンの吊荷変位検出部および吊荷速度検出部のブロック図である。It is a block diagram of the suspension load displacement detection unit and the suspension load speed detection unit of the crane according to the third embodiment of the present invention. 本発明の各実施形態に係るクレーンの旋回振れ止め制御を説明するためのモデル図である。It is a model diagram for demonstrating the swing steady rest control of the crane which concerns on each embodiment of this invention. 本発明の各実施形態に係るクレーンの旋回振れ止め制御を説明するためのモデル図である。It is a model diagram for demonstrating the swing steady rest control of the crane which concerns on each embodiment of this invention. 本発明の各実施形態に係るクレーンの旋回振れ止め制御を説明するためのモデル図である。It is a model diagram for demonstrating the swing steady rest control of the crane which concerns on each embodiment of this invention. 本発明の一実施形態に係るクレーンの旋回振れ止め制御と比較される他の旋回振れ止め制御における吊荷の旋回方向変位の推移を示すグラフである。It is a graph which shows the transition of the swing direction displacement of a suspended load in another swing steady rest control which is compared with the swing steady rest control of the crane which concerns on one Embodiment of this invention. 本発明の一実施形態に係るクレーンの旋回振れ止め制御における吊荷の旋回方向変位の推移を示すグラフである。It is a graph which shows the transition of the swing direction displacement of a suspended load in the swing steady rest control of the crane which concerns on one Embodiment of this invention. 本発明の変形実施形態に係るクレーンの旋回振れ止め制御を説明するためのモデル図である。It is a model diagram for demonstrating the swing steady rest control of the crane which concerns on the modified embodiment of this invention.
 <第1実施形態>
 以下、図面を参照しつつ、本発明の第1実施形態について説明する。図1は、本実施形態に係るクレーン10の側面図である。なお、図1には、「上」、「下」、「前」および「後」の方向が示されているが、当該方向は、本実施形態に係るクレーン10の構造および組立方法を説明するために便宜上示すものであり、本発明に係るクレーンの移動方向や使用態様などを限定するものではない。
<First Embodiment>
Hereinafter, the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side view of the crane 10 according to the present embodiment. Note that FIG. 1 shows the directions of "up", "down", "front" and "rear", and the directions will explain the structure and assembly method of the crane 10 according to the present embodiment. Therefore, it is shown for convenience, and does not limit the moving direction and usage mode of the crane according to the present invention.
 クレーン10は、走行体14(下部本体)と、走行体14に上下方向に延びる旋回中心軸回りに旋回可能に支持された旋回体12(上部本体)と、ブーム16(起伏体)と、マスト20と、を備える。また、旋回体12の後部には、クレーン10のバランスを調整するためのカウンタウエイト13が積載されている。また、旋回体12の前端部には、キャブ15が備えられている。キャブ15は、クレーン10の運転席に相当する。 The crane 10 includes a traveling body 14 (lower body), a rotating body 12 (upper body) rotatably supported by the traveling body 14 around a turning center axis extending in the vertical direction, a boom 16 (undulating body), and a mast. 20 and. Further, a counterweight 13 for adjusting the balance of the crane 10 is loaded on the rear portion of the swivel body 12. A cab 15 is provided at the front end of the swivel body 12. The cab 15 corresponds to the driver's seat of the crane 10.
 図1に示されるブーム16は、いわゆるラチス型であり、下部ブーム16A(起伏体基端部)と、一または複数(図例では3個)の中間ブーム16B,16C、16Dと、上部ブーム16E(前記起伏体基端部とは反対の起伏体先端部)とから構成される。具体的に、下部ブーム16Aは、旋回体12の前部に水平な回転中心軸(第1回転中心軸)回りに起伏方向に回動可能となるように支持される。中間ブーム16B,16C,16Dは、その順に下部ブーム16Aの先端側に着脱可能に継ぎ足される。上部ブーム16Eは中間ブーム16Dの先端側に着脱可能に継ぎ足される。下部ブーム16Aは、その下端部に備えられたブームフットピン16Sにおいて旋回体12に回動可能に軸支される。 The boom 16 shown in FIG. 1 is a so-called lattice type, and has a lower boom 16A (base end of the undulating body), one or more intermediate booms 16B, 16C, 16D, and an upper boom 16E. (The tip of the undulating body opposite to the base end of the undulating body). Specifically, the lower boom 16A is supported so as to be rotatable in the undulating direction around a rotation center axis (first rotation center axis) horizontal to the front portion of the swivel body 12. The intermediate booms 16B, 16C, and 16D are detachably added to the tip side of the lower boom 16A in that order. The upper boom 16E is detachably added to the tip side of the intermediate boom 16D. The lower boom 16A is rotatably supported by the swivel body 12 by a boom foot pin 16S provided at the lower end thereof.
 また、ブーム16は、アイドラシーブ34S、36Sを有する。アイドラシーブ34S、36Sは、下部ブーム16Aの基端部の後側面にそれぞれ回転可能に支持されている。 Further, the boom 16 has idler sheaves 34S and 36S. The idler sheaves 34S and 36S are rotatably supported on the rear side surface of the base end portion of the lower boom 16A, respectively.
 ただし、本発明ではブームの具体的な構造は限定されない。例えば、当該ブームは、中間部材がないものでもよく、また、上記とは中間部材の数が異なるものでもよい。更に、ブームは、単一の部材で構成されたものでもよい。 However, the specific structure of the boom is not limited in the present invention. For example, the boom may have no intermediate member, or may have a different number of intermediate members from the above. Further, the boom may be composed of a single member.
 マスト20は、基端及び回動端を有し、その基端が旋回体12に回動可能に連結される。マスト20の回動軸は、ブーム16の回動軸と平行でかつ当該ブーム16の回動軸のすぐ後方に位置している。すなわち、このマスト20はブーム16の起伏方向と同方向に回動可能である。 The mast 20 has a base end and a rotating end, and the base end is rotatably connected to the swivel body 12. The rotation shaft of the mast 20 is parallel to the rotation shaft of the boom 16 and is located immediately behind the rotation shaft of the boom 16. That is, the mast 20 can rotate in the same direction as the undulating direction of the boom 16.
 更に、クレーン10は、左右一対のブームバックストップ23と、左右一対のブーム用ガイライン24と、を備える。 Further, the crane 10 includes a pair of left and right boom backstops 23 and a pair of left and right boom guy lines 24.
 左右一対のブームバックストップ23はブーム16の下部ブーム16Aの左右両側部に設けられる。これらのブームバックストップ23は、ブーム16が図1に示される起立姿勢まで到達した時点で、旋回体12の前後方向の中央部に当接する。この当接によって、ブーム16が強風等で後方に煽られることが規制される。 A pair of left and right boom backstops 23 are provided on both left and right sides of the lower boom 16A of the boom 16. These boom backstops 23 come into contact with the central portion of the swivel body 12 in the front-rear direction when the boom 16 reaches the standing posture shown in FIG. This contact regulates the boom 16 from being fanned backwards by strong winds or the like.
 左右一対のブーム用ガイライン24は、マスト20の回動端をブーム16の先端部に連結する。この連結は、マスト20の回動とブーム16の回動とを連携させる。 The pair of left and right boom guy lines 24 connect the rotating end of the mast 20 to the tip of the boom 16. This connection links the rotation of the mast 20 with the rotation of the boom 16.
 また、クレーン10は、各種ウインチを更に備える。具体的には、クレーン10は、ブーム16を起伏させるためのブーム起伏用ウインチ30と、吊荷の巻上げ及び巻下げを行うための主巻用ウインチ34及び補巻用ウインチ36とを備える。また、クレーン10は、ブーム起伏用ロープ38と、上部ブーム16Eから垂下され吊荷に接続される主巻ロープ50(吊荷ロープ)と、補巻ロープ60と、を備える。本実施形態に係るクレーン10では、主巻用ウインチ34および補巻用ウインチ36がブーム16の基端近傍部位に据え付けられる。また、ブーム起伏用ウインチ30が旋回体12に据え付けられる。これらのウインチ30,32,34,36の位置は、上記に限定されるものではない。 In addition, the crane 10 is further equipped with various winches. Specifically, the crane 10 includes a boom undulating winch 30 for raising and lowering the boom 16, a main winding winch 34 and a auxiliary winding winch 36 for hoisting and lowering the suspended load. Further, the crane 10 includes a boom undulating rope 38, a main winding rope 50 (suspended load rope) hanging from the upper boom 16E and connected to the suspended load, and a supplementary winding rope 60. In the crane 10 according to the present embodiment, the main winding winch 34 and the auxiliary winding winch 36 are installed near the base end of the boom 16. Further, the boom undulating winch 30 is installed on the swivel body 12. The positions of these winches 30, 32, 34, 36 are not limited to the above.
 ブーム起伏用ウインチ30は、ブーム起伏用ロープ38の巻き取り及び繰り出しを行う。そして、この巻き取り及び繰り出しによりマスト20が回動するようにブーム起伏用ロープ38が配索される。具体的には、マスト20の回動端部及び旋回体12の後端部にはそれぞれ複数のシーブが幅方向に配列されたシーブブロック40,42が設けられ、ブーム起伏用ウインチ30から引き出されたブーム起伏用ロープ38がシーブブロック40,42間に掛け渡される。従って、ブーム起伏用ウインチ30がブーム起伏用ロープ38の巻き取りや繰り出しを行うことにより、両シーブブロック40,42間の距離が変化し、これによってマスト20さらにはこれと連動するブーム16が起伏方向に回動する。 The boom undulating winch 30 winds up and unwinds the boom undulating rope 38. Then, the boom undulating rope 38 is arranged so that the mast 20 rotates by this winding and unwinding. Specifically, sheave blocks 40 and 42 in which a plurality of sheaves are arranged in the width direction are provided at the rotating end of the mast 20 and the rear end of the rotating body 12, respectively, and are pulled out from the boom undulating winch 30. The boom undulating rope 38 is hung between the sheave blocks 40 and 42. Therefore, when the boom undulating winch 30 winds up and extends the boom undulating rope 38, the distance between the two sheave blocks 40 and 42 changes, whereby the mast 20 and the boom 16 interlocking with the mast 20 undulate. Rotate in the direction.
 主巻用ウインチ34は、主巻ロープ50による吊荷の巻き上げ及び巻き下げを行う。主巻ロープ50は、ブーム16の上部ブーム16Eから垂下され、吊荷に接続される。また、上部ブーム16Eには主巻用ガイドシーブ54が配置され、当該主巻用ガイドシーブ54に隣接する位置に複数の主巻用ポイントシーブ56が幅方向に配列された主巻用シーブブロックが設けられている。主巻用ウインチ34から引き出された主巻ロープ50が、アイドラシーブ34S、主巻用ガイドシーブ54に順に掛けられ、かつ、シーブブロックの主巻用ポイントシーブ56と、吊荷用の主フック57に設けられたシーブブロックのシーブ58との間に掛け渡される。従って、主巻用ウインチ34が主巻ロープ50の巻き取りや繰り出しを行うと、両シーブ56,58間の距離が変わって、ブーム16の先端から垂下された主巻ロープ50に連結された主フック57の巻き上げ及び巻き下げが行われる。この結果、吊荷の巻き上げ、巻き下げが可能となる。 The main winding winch 34 winds up and lowers the suspended load with the main winding rope 50. The main winding rope 50 hangs from the upper boom 16E of the boom 16 and is connected to the suspended load. Further, a main winding guide sheave 54 is arranged on the upper boom 16E, and a main winding sheave block in which a plurality of main winding point sheaves 56 are arranged in the width direction at a position adjacent to the main winding guide sheave 54 is provided. It is provided. The main winding rope 50 drawn out from the main winding winch 34 is hung on the idler sheave 34S and the main winding guide sheave 54 in this order, and the main winding point sheave 56 of the sheave block and the main hook 57 for suspension are used. It is hung between the sheave 58 and the sheave 58 of the sheave block provided in. Therefore, when the main winding winch 34 winds up or unwinds the main winding rope 50, the distance between the sheaves 56 and 58 changes, and the main winding rope 50 is connected to the main winding rope 50 hanging from the tip of the boom 16. The hook 57 is wound and unwound. As a result, the suspended load can be hoisted and unwound.
 同様にして、補巻用ウインチ36は、補巻ロープ60による吊荷の巻き上げ及び巻き下げを行う。この補巻については、主巻用ガイドシーブ54と同軸に補巻用ガイドシーブ64が回転可能に設けられ、補巻用ガイドシーブ64に隣接する位置に不図示の補巻用ポイントシーブが回転可能に設けられている。補巻用ウインチ36から引き出された補巻ロープ60は、アイドラシーブ36S、補巻用ガイドシーブ64に順に掛けられ、かつ、補巻用ポイントシーブから垂下される。従って、補巻用ウインチ36が補巻ロープ60の巻き取りや繰り出しを行うと、補巻ロープ60の末端に連結された図略の吊荷用の補フックが巻き上げられ、または巻き下げられる。 Similarly, the auxiliary winding winch 36 winds up and lowers the suspended load by the auxiliary winding rope 60. For this auxiliary winding, the auxiliary winding guide sheave 64 is rotatably provided coaxially with the main winding guide sheave 54, and the auxiliary winding point sheave (not shown) can rotate at a position adjacent to the auxiliary winding guide sheave 64. It is provided in. The auxiliary winding rope 60 pulled out from the auxiliary winding winch 36 is hung on the idler sheave 36S and the auxiliary winding guide sheave 64 in this order, and is hung from the auxiliary winding point sheave. Therefore, when the auxiliary winding winch 36 winds up or unwinds the auxiliary winding rope 60, the auxiliary hook for hanging load connected to the end of the auxiliary winding rope 60 is wound up or unwound.
 クレーン10は、更に、駆動制御部700と、駆動部700Aと、操作部700Bと、旋回振れ止め装置70と、を備える。図2は、本実施形態に係るクレーン10の旋回振れ止め装置70のブロック図である。 The crane 10 further includes a drive control unit 700, a drive unit 700A, an operation unit 700B, and a swivel steady rest device 70. FIG. 2 is a block diagram of the swing steady rest device 70 of the crane 10 according to the present embodiment.
 駆動部700Aは、クレーン10の各部材を駆動させる。駆動部700Aは、旋回駆動部701と、起伏駆動部702(起伏体駆動部、ブーム駆動部)と、ウインチ駆動部703(吊荷駆動部)と、を有する。 The drive unit 700A drives each member of the crane 10. The drive unit 700A includes a swivel drive unit 701, an undulating drive unit 702 (undulating body drive unit, boom drive unit), and a winch drive unit 703 (suspended load drive unit).
 旋回駆動部701は、旋回体12を前記旋回中心軸回りに第1旋回方向および前記第1旋回方向とは反対の第2旋回方向にそれぞれ旋回させることが可能な駆動力を発生する。旋回駆動部701は、作動油の供給を受けることで旋回体12を旋回させる油圧式モータを含む。 The swivel drive unit 701 generates a driving force capable of swiveling the swivel body 12 around the swivel center axis in the first swivel direction and in the second swivel direction opposite to the first swivel direction. The swivel drive unit 701 includes a hydraulic motor that swivels the swivel body 12 by receiving the supply of hydraulic oil.
 起伏駆動部702は、ブーム起伏用ウインチ30を回転させるための駆動力を発生し、ブーム16を前記回転中心軸回りに回動することが可能とされている。起伏駆動部702は、作動油の供給を受けることでブーム起伏用ウインチ30を回転させる油圧式モータを含む。 The undulation drive unit 702 generates a driving force for rotating the boom undulation winch 30, and it is possible to rotate the boom 16 around the rotation center axis. The undulation drive unit 702 includes a hydraulic motor that rotates the boom undulation winch 30 by receiving the supply of hydraulic oil.
 ウインチ駆動部703は、主巻用ウインチ34を回転させるための駆動力を発生し、主巻用ウインチ34によって主巻ロープ50の巻き取りおよび繰り出しを行うことで前記吊荷を地面に対して相対的に昇降させることが可能とされている。ウインチ駆動部703は、作動油の供給を受けることで主巻用ウインチ34を回転させる油圧式モータを含む。 The winch drive unit 703 generates a driving force for rotating the main winding winch 34, and the main winding winch 34 winds and unwinds the main winding rope 50 so that the suspended load is relative to the ground. It is possible to raise and lower the rope. The winch drive unit 703 includes a hydraulic motor that rotates the winch 34 for main winding by receiving the supply of hydraulic oil.
 操作部700Bは、キャブ15内に配置されており、オペレータによるクレーン10の各部材を駆動するための操作を受け付ける。操作部700Bは、旋回操作部704(旋回用操作部)と、起伏操作部705(起伏用操作部、ブーム起伏用操作部)と、ウインチ操作部706(昇降用操作部)と、を有する。 The operation unit 700B is arranged in the cab 15 and receives an operation for driving each member of the crane 10 by an operator. The operation unit 700B includes a swivel operation unit 704 (swivel operation unit), an undulation operation unit 705 (undulation operation unit, boom undulation operation unit), and a winch operation unit 706 (elevation operation unit).
 旋回操作部704は、旋回駆動部701によって旋回体12を旋回駆動するための操作を受け付ける。旋回操作部704は、旋回体12を前記第1旋回方向および前記第2旋回方向にそれぞれ旋回させるための旋回用位置と旋回体12の旋回を停止させるための中立位置との間で切換可能とされている。 The swivel operation unit 704 receives an operation for swiveling and driving the swivel body 12 by the swivel drive unit 701. The turning operation unit 704 can switch between a turning position for turning the turning body 12 in the first turning direction and the second turning direction, and a neutral position for stopping the turning of the turning body 12. Has been done.
 起伏操作部705は、起伏駆動部702によってブーム16を起伏するための操作を受け付ける。起伏操作部705は、ブーム16を起伏させるための起伏用位置とブーム16の起伏を停止させるための中立位置との間で切換可能とされている。 The undulation operation unit 705 receives an operation for undulating the boom 16 by the undulation drive unit 702. The undulation operation unit 705 is switchable between an undulating position for undulating the boom 16 and a neutral position for stopping the undulation of the boom 16.
 ウインチ操作部706は、ウインチ駆動部703によって前記吊荷を昇降させるための操作を受け付ける。ウインチ操作部706は、前記吊荷を昇降させるための昇降用位置と前記吊荷の昇降を停止させるための中立位置との間で切換可能とされている。 The winch operation unit 706 receives an operation for raising and lowering the suspended load by the winch drive unit 703. The winch operation unit 706 is switchable between an elevating position for raising and lowering the suspended load and a neutral position for stopping the ascending and descending of the suspended load.
 駆動制御部700は、旋回操作部704、起伏操作部705およびウインチ操作部706が受け付ける操作の操作方向および操作量に応じた指令信号を旋回駆動部701、起伏駆動部702およびウインチ駆動部703にそれぞれ入力し、各駆動部を駆動する。 The drive control unit 700 sends a command signal according to the operation direction and operation amount of the operation received by the swivel operation unit 704, the undulation operation unit 705, and the winch operation unit 706 to the swivel drive unit 701, the undulation drive unit 702, and the winch drive unit 703. Input each to drive each drive unit.
 旋回振れ止め装置70は、旋回体12の旋回動作停止後に主巻ロープ50に接続された前記吊荷が上部ブーム16Eの主巻用ポイントシーブ56を支点として旋回体12の旋回方向(回転方向)に沿って振れる現象である吊荷の旋回振れを抑えることが可能とされている。 In the swivel steady rest device 70, the suspended load connected to the main winding rope 50 after the swivel operation of the swivel body 12 is stopped is the swivel direction (rotation direction) of the swivel body 12 with the main winding point sheave 56 of the upper boom 16E as a fulcrum. It is possible to suppress the swirling runout of the suspended load, which is a phenomenon of swinging along the line.
 旋回振れ止め装置70は、情報取得部700Cと、検出部700Dと、制振制御部700Eと、を有する。 The swivel steady rest device 70 has an information acquisition unit 700C, a detection unit 700D, and a vibration damping control unit 700E.
 情報取得部700Cは、ブーム長さ情報取得部708(起伏体長さ情報取得部)を有する。ブーム長さ情報取得部708は、制振制御部700Eが実行する吊荷の旋回振れ止め制御において使用されるブーム16の長さに関する情報(長さ情報)を取得する。すなわち、ブーム長さ情報取得部708は、ブーム16の基端部(起伏体基端部)と先端部(起伏体先端部)とを結ぶ方向であるブーム長手方向(起伏体長手方向)におけるブーム16の長さに対応する情報(起伏体長さ情報)を取得および出力する。当該ブーム長さ情報取得部708は、不図示の記憶部を有しており、当該記憶部からブーム16の長さ情報を取得する。なお、他の実施形態において、操作部700Bが不図示の入力部を有しており、オペレータが当該入力部を通じてブーム16の長さ情報を入力し、その情報をブーム長さ情報取得部708が取得する態様でもよい。 The information acquisition unit 700C has a boom length information acquisition unit 708 (undulating body length information acquisition unit). The boom length information acquisition unit 708 acquires information (length information) regarding the length of the boom 16 used in the swivel steady rest control of the suspended load executed by the vibration damping control unit 700E. That is, the boom length information acquisition unit 708 is a boom in the boom longitudinal direction (undulating body longitudinal direction), which is a direction connecting the base end portion (undulating body base end portion) and the tip portion (undulating body tip portion) of the boom 16. Information corresponding to the length of 16 (undulating body length information) is acquired and output. The boom length information acquisition unit 708 has a storage unit (not shown), and acquires the length information of the boom 16 from the storage unit. In another embodiment, the operation unit 700B has an input unit (not shown), the operator inputs the length information of the boom 16 through the input unit, and the boom length information acquisition unit 708 inputs the information. It may be the mode to acquire.
 検出部700Dは、旋回角検出部710と、ブーム起伏角検出部711(起伏角検出部)と、ブームトップ旋回方向変位検出部713(起伏体変位検出部)と、ブームトップ旋回方向速度検出部714(起伏体速度検出部)と、ロープ旋回方向振れ角検出部715(吊荷変位検出部、ロープ振れ角度検出部)と、ロープ旋回方向振れ角速度検出部716(吊荷速度検出部、ロープ振れ角速度検出部)と、ロープ長さ検出部717(ロープ長さ情報取得部)と、吊荷重量検出部718(吊荷重量情報取得部)と、を有する。 The detection unit 700D includes a swivel angle detection unit 710, a boom undulation angle detection unit 711 (undulation angle detection unit), a boom top swivel direction displacement detection unit 713 (undulation body displacement detection unit), and a boom top swivel direction speed detection unit. 714 (undulating body velocity detection unit), rope swivel direction runout angle detection unit 715 (suspended load displacement detection unit, rope runout angle detection unit), and rope swivel direction runout angular velocity detection unit 716 (hanging load speed detection unit, rope runout). It has an angular velocity detection unit), a rope length detection unit 717 (rope length information acquisition unit), and a suspension load amount detection unit 718 (suspension load amount information acquisition unit).
 旋回角検出部710は、ブーム16(旋回体12)の旋回中心軸回りの旋回角を検出および出力する。旋回角検出部710は、不図示のジャイロセンサと演算部とを含む。旋回角検出部710は、旋回体12の旋回中心軸まわりの角速度を前記ジャイロセンサで計測し、前記演算部が前記計測された角速度を時間に対して1回積分処理することで角度に換算し、当該角度を旋回角として出力する。 The turning angle detection unit 710 detects and outputs the turning angle around the turning center axis of the boom 16 (swivel body 12). The turning angle detection unit 710 includes a gyro sensor (not shown) and a calculation unit. The turning angle detection unit 710 measures the angular velocity around the turning center axis of the turning body 12 with the gyro sensor, and the calculation unit converts the measured angular velocity into an angle by integrating the measured angular velocity once with respect to time. , The angle is output as a turning angle.
 ブーム起伏角検出部711は、ブーム16の前記回転中心軸回りの起伏角を検出および出力する。ブーム起伏角検出部711は、傾斜センサからなり、ブーム16の地面に対する相対角度(対地角)を検出する。なお、ブーム起伏角検出部711は、その他の対象物に対する相対角度を検出するものでもよい。 The boom undulation angle detection unit 711 detects and outputs the undulation angle around the rotation center axis of the boom 16. The boom undulation angle detection unit 711 includes an inclination sensor and detects the relative angle (ground angle) of the boom 16 with respect to the ground. The boom undulation angle detection unit 711 may detect the relative angle with respect to other objects.
 ブームトップ旋回方向変位検出部713は、ブーム16の先端部(上部ブーム16E)の前記旋回方向における変位量(起伏体先端部変位)を検出および出力する。本実施形態では、ブームトップ旋回方向変位検出部713は、上部ブーム16Eに取り付けられた不図示の加速度センサと演算部とを含む。当該加速度センサが上部ブーム16Eの前記旋回方向における加速度を計測し、演算部が前記計測された加速度を時間に対して2回積分処理することで変位(変位量)に換算し、当該変位を出力する。 The boom top turning direction displacement detection unit 713 detects and outputs the displacement amount (displacement of the undulating body tip portion) of the tip portion (upper boom 16E) of the boom 16 in the turning direction. In the present embodiment, the boom top turning direction displacement detection unit 713 includes an acceleration sensor (not shown) attached to the upper boom 16E and a calculation unit. The acceleration sensor measures the acceleration of the upper boom 16E in the turning direction, and the calculation unit converts the measured acceleration into a displacement (displacement amount) by integrating the measured acceleration twice with respect to time, and outputs the displacement. To do.
 ブームトップ旋回方向速度検出部714は、上部ブーム16Eの前記旋回方向における速度(起伏体先端部速度)を検出および出力する。本実施形態では、ブームトップ旋回方向速度検出部714は、ブームトップ旋回方向変位検出部713と共有する前記加速度センサと演算部とを含む。上部ブーム16Eに取り付けられた前記加速度センサによって計測された前記加速度を前記演算部が時間に対して1回積分処理することで速度に換算し、当該速度を出力する。 The boom top turning direction speed detection unit 714 detects and outputs the speed of the upper boom 16E in the turning direction (velocity at the tip of the undulating body). In the present embodiment, the boom top turning direction speed detecting unit 714 includes the acceleration sensor and the calculation unit shared with the boom top turning direction displacement detecting unit 713. The acceleration measured by the acceleration sensor attached to the upper boom 16E is converted into a speed by the calculation unit once integrating with time, and the speed is output.
 ロープ旋回方向振れ角検出部715は、旋回体12の旋回動作における径方向に沿って見た場合の主巻ロープ50の鉛直方向に対する振れ角度を検出および出力する。ロープ旋回方向振れ角検出部715は、上部ブーム16Eに旋回方向にのみ揺動可能な不図示の治具と、当該治具に装着された傾斜センサとを含む。前記治具は主巻ロープ50に係止されており、傾斜センサはブーム16(鉛直方向)に対する主巻ロープ50の旋回方向の揺動角を振れ角度として検出および出力する。なお、ロープ旋回方向振れ角検出部715は、本発明の吊荷変位検出部を構成する。ロープ旋回方向振れ角検出部715は、ブーム16の先端部(上部ブーム16E)に対する吊荷の変位である吊荷変位として前記振れ角度を検出および出力する。 The rope turning direction runout angle detection unit 715 detects and outputs the runout angle of the main winding rope 50 with respect to the vertical direction when viewed along the radial direction in the turning operation of the turning body 12. The rope turning direction swing angle detecting unit 715 includes a jig (not shown) capable of swinging only in the turning direction on the upper boom 16E, and a tilt sensor mounted on the jig. The jig is locked to the main winding rope 50, and the inclination sensor detects and outputs the swing angle of the main winding rope 50 in the turning direction with respect to the boom 16 (vertical direction) as a swing angle. The rope turning direction runout angle detection unit 715 constitutes the suspended load displacement detection unit of the present invention. The rope turning direction runout angle detecting unit 715 detects and outputs the runout angle as a suspended load displacement which is a displacement of the suspended load with respect to the tip end portion (upper boom 16E) of the boom 16.
 ロープ旋回方向振れ角速度検出部716は、主巻ロープ50の前記振れ角度の単位時間あたりの変化量である振れ角速度を検出および出力する。ロープ旋回方向振れ角速度検出部716は、上記の治具に取り付けられたジャイロセンサを含み、当該ジャイロセンサが前記振れ角速度を検出および出力する。なお、他の実施形態において、ロープ旋回方向振れ角速度検出部716は上部ブーム16Eに取り付けられたカメラを含み、当該カメラによって撮影された主フック57の画像を取得し、主フック57(吊荷)の旋回方向における揺動角を前記振れ角度として検出および出力するとともに、前記揺動角を1回微分することで角速度を出力するものでもよい。なお、ロープ旋回方向振れ角速度検出部716は、本発明の吊荷速度検出部を構成する。ロープ旋回方向振れ角速度検出部716は、ブーム16の先端部(上部ブーム16E)に対する前記吊荷変位の単位時間あたりの変化量である吊荷速度として前記振れ角速度を検出および出力する。 The rope turning direction runout angular velocity detection unit 716 detects and outputs the runout angular velocity, which is the amount of change in the runout angle of the main winding rope 50 per unit time. The rope turning direction runout angular velocity detection unit 716 includes a gyro sensor attached to the above jig, and the gyro sensor detects and outputs the runout angular velocity. In another embodiment, the rope turning direction swing angular velocity detection unit 716 includes a camera attached to the upper boom 16E, acquires an image of the main hook 57 taken by the camera, and obtains an image of the main hook 57 (suspended load). The swing angle in the turning direction of the above may be detected and output as the swing angle, and the angular velocity may be output by differentiating the swing angle once. The rope turning direction swing angular velocity detection unit 716 constitutes the suspended load speed detection unit of the present invention. The rope turning direction runout angular velocity detection unit 716 detects and outputs the runout angular velocity as the suspension angular velocity, which is the amount of change in the suspension load displacement with respect to the tip end portion (upper boom 16E) of the boom 16.
 ロープ長さ検出部717は、ブーム先端部と前記吊荷との間の前記吊荷ロープの長さに対応する情報であるロープ長さ情報を取得し出力する。本実施形態では、上部ブーム16Eの主巻用ポイントシーブ56と主フック57(シーブ58)との間の距離をロープ長さとして検出する。ロープ長さ検出部717は、主巻用ウインチ34の回転量を検出可能な回転量検出部と、主巻用ウインチ34の外周面上における主巻ロープ50の巻き層数を検出する巻き層検出部とを含む。ロープ長さ検出部717は、主巻用ウインチ34のウインチ径、前記回転量検出部が検出するウインチ回転量に加え、前記巻き層検出部が検出する主巻ロープ50の巻き層から推定される主巻用ウインチ34から繰りだされる主巻ロープ50の繰り出し量と、主巻用ポイントシーブ56とシーブ58のシーブブロック間と間における主巻ロープ50の掛け数とから、前記距離を算出し出力する。 The rope length detection unit 717 acquires and outputs rope length information which is information corresponding to the length of the suspended load rope between the boom tip and the suspended load. In the present embodiment, the distance between the main winding point sheave 56 of the upper boom 16E and the main hook 57 (sheave 58) is detected as the rope length. The rope length detection unit 717 has a rotation amount detection unit capable of detecting the rotation amount of the main winding winch 34 and a winding layer detection unit for detecting the number of winding layers of the main winding rope 50 on the outer peripheral surface of the main winding winch 34. Including part. The rope length detection unit 717 is estimated from the winch diameter of the main winding winch 34, the winch rotation amount detected by the rotation amount detection unit, and the winding layer of the main winding rope 50 detected by the winding layer detection unit. The distance is calculated from the amount of the main winding rope 50 unwound from the main winding winch 34 and the number of times the main winding rope 50 is applied between the sheave blocks of the main winding point sheave 56 and the sheave 58. Output.
 吊荷重量検出部718は、主フック57に接続された前記吊荷の重量に関する情報(吊荷重量情報)を取得し出力する。本実施形態では、吊荷重量検出部718は、主巻ロープ50に接続された不図示の荷重検知器(ロードセル)を含み、主巻ロープ50の張力の歪の変化に基づいて前記吊荷の重量を検出する。なお、他の実施形態において、ブーム16を起伏する油圧回路内の圧力が不図示の圧力計によって検出され、当該圧力に基づいて前記吊荷の荷重が推定されても良い。 The suspension load amount detection unit 718 acquires and outputs information (suspension load amount information) regarding the weight of the suspended load connected to the main hook 57. In the present embodiment, the suspension load amount detection unit 718 includes a load detector (load cell) (not shown) connected to the main winding rope 50, and is based on a change in tension strain of the main winding rope 50. Detect weight. In another embodiment, the pressure in the hydraulic circuit that raises and lowers the boom 16 may be detected by a pressure gauge (not shown), and the load of the suspended load may be estimated based on the pressure.
 制振制御部700Eは、CPU(Central Processing Unit)、制御プログラムを記憶するROM(Read Only Memory)、CPUの作業領域として使用されるRAM(Random Access Memory)等から構成されている。制振制御部700Eは、前記CPUがROMに記憶された制御プログラムを実行することにより、制御判断部719(制御開始条件判断部)、制御目標量設定部720(目標状態量設定部)、制御量演算部700F、制御ゲイン設定部726、旋回目標速度演算部727および旋回操作目標演算部728を備えるように機能する。制振制御部700Eは、操作部700Bが受ける操作、情報取得部700Cが取得する情報および検出部700Dが検出する情報に基づいて、クレーン10の旋回動作停止時における吊荷の旋回振れ止め制御を自動で実行する。 The vibration damping control unit 700E is composed of a CPU (Central Processing Unit), a ROM for storing a control program (Read Only Memory), a RAM (Random Access Memory) used as a work area of the CPU, and the like. The vibration suppression control unit 700E controls the control determination unit 719 (control start condition determination unit), the control target amount setting unit 720 (target state amount setting unit), and the control by executing the control program stored in the ROM by the CPU. It functions to include a quantity calculation unit 700F, a control gain setting unit 726, a turning target speed calculation unit 727, and a turning operation target calculation unit 728. The vibration damping control unit 700E controls the rotation and vibration suppression of the suspended load when the crane 10 stops the rotation operation, based on the operation received by the operation unit 700B, the information acquired by the information acquisition unit 700C, and the information detected by the detection unit 700D. Execute automatically.
 制御判断部719は、旋回操作部704が前記旋回用位置に設定されることに応じて旋回駆動部701が旋回体12を所定の旋回方向に旋回させたのち、旋回操作部704、起伏操作部705およびウインチ操作部706のすべての操作部が前記中立位置にそれぞれ設定されることで成立する旋回振れ止め制御開始条件が満たされることに対応して、旋回振れ止め制御(制振制御ともいう)を開始することを判断し、前記旋回振れ止め制御開始条件が満たされていると判断すると所定の制御開始信号を出力する。なお、各操作部が前記中立位置に設定されているか否かの判断は、各操作部が受ける操作量が予め設定された閾値よりも小さい場合に前記中立位置に設定されていると判断される。すなわち、このような状態は、旋回体12の旋回動作後にクレーン10の動作が停止した状態であり、主フック57に接続された吊荷が上部ブーム16E(主巻用ポイントシーブ56)の鉛直下方に位置することが望ましい状態である。なお、上記のように旋回動作後にクレーン10の動作が停止しているとともに、後記のように予めキャブ15内に配置された旋回振れ止め制御開始用のスイッチ(入力部)がオペレータによって押圧されている(ONされている)場合に、後述の振れ止め制御が開始されてもよい。 In the control determination unit 719, after the swivel drive unit 701 swivels the swivel body 12 in a predetermined swivel direction in response to the swivel operation unit 704 being set to the swivel position, the swivel operation unit 704 and the undulation operation unit Rotational steady rest control (also referred to as vibration damping control) corresponds to the satisfaction of the turning steady rest control start condition that is established when all the operating units of the 705 and winch operation unit 706 are set to the neutral positions. Is determined to start, and when it is determined that the turning steady rest control start condition is satisfied, a predetermined control start signal is output. It should be noted that the determination as to whether or not each operation unit is set to the neutral position is determined to be set to the neutral position when the operation amount received by each operation unit is smaller than the preset threshold value. .. That is, in such a state, the operation of the crane 10 is stopped after the turning operation of the turning body 12, and the suspended load connected to the main hook 57 is vertically below the upper boom 16E (main winding point sheave 56). It is desirable to be located in. As described above, the operation of the crane 10 is stopped after the turning operation, and the switch (input unit) for starting the turning steady rest control, which is arranged in the cab 15 in advance as described later, is pressed by the operator. When it is (ON), the steady rest control described later may be started.
 制御目標量設定部720は、制御判断部719が旋回振れ止め制御の実行を判断し制御開始信号を出力した時点での各制御目標量(状態目標量)を設定する。具体的に、制御目標量設定部720は、吊荷旋回方向変位X1、吊荷旋回方向速度X2、ブーム先端旋回方向変位X3、ブーム先端旋回方向速度X4および旋回角X5を含む少なくとも5つ(複数)の制御量(状態量)について、所定の目標位置において前記吊荷を少なくとも前記旋回方向において静止させるための目標量を設定する。なお、吊荷旋回方向変位X1は、吊荷(主フック57)の前記旋回方向における変位であり、吊荷旋回方向速度X2は、吊荷の前記旋回方向における速度である。また、ブーム先端旋回方向変位X3は、上部ブーム16E(主巻用ポイントシーブ56)の前記旋回方向における変位であり、ブーム先端旋回方向速度X4は、上部ブーム16Eの前記旋回方向における速度である。更に、旋回角X5は、ブーム16(旋回体12)の旋回角である。 The control target amount setting unit 720 sets each control target amount (state target amount) at the time when the control determination unit 719 determines the execution of the turning steady rest control and outputs the control start signal. Specifically, the control target amount setting unit 720 includes at least five (plurality) including the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5. ) Is set as a target amount for stopping the suspended load at least in the turning direction at a predetermined target position. The suspended load turning direction displacement X1 is the displacement of the suspended load (main hook 57) in the turning direction, and the suspended load turning direction speed X2 is the speed of the suspended load in the turning direction. The boom tip turning direction displacement X3 is the displacement of the upper boom 16E (main winding point sheave 56) in the turning direction, and the boom tip turning direction speed X4 is the speed of the upper boom 16E in the turning direction. Further, the turning angle X5 is the turning angle of the boom 16 (swivel body 12).
 図3は、本実施形態に係るクレーン10の旋回振れ止め制御を説明するための模式的な平面図である。 FIG. 3 is a schematic plan view for explaining the swing steady rest control of the crane 10 according to the present embodiment.
 図3を参照して、制御判断部719が旋回振れ止め制御の実行開始を判断し制御開始信号を出力した時点でのクレーン10の平面視において、旋回体12の旋回中心軸をゼロ点とするXY座標系に対して、ブーム16の仮想的な中心線が延びる方向をy方向、当該中心線と直交する方向をx方向としてxy座標系が示されている。当該xy座標系は、ブーム16が弾性変形していないと仮定した場合のブーム16の仮想的な中心線を基に設定されている。ブーム16は、図3の状態よりも前に停止された旋回体12の旋回動作における旋回方向の上流側に撓んでいる。また、ブーム16の先端部に接続された主巻ロープ50は、ブーム16の先端部よりも更に前記旋回方向上流側に向かって延びている。本実施形態に係る振れ止め制御が実行されない場合、図3の状態からブーム16の撓みが解消されるとともに、主巻ロープ50(主フック57)に接続された吊荷の振れ(旋回振れ)が発生する。 With reference to FIG. 3, in the plan view of the crane 10 when the control determination unit 719 determines the start of execution of the rotation steady rest control and outputs the control start signal, the rotation center axis of the rotation body 12 is set to the zero point. With respect to the XY coordinate system, the xy coordinate system is shown with the direction in which the virtual center line of the boom 16 extends is the y direction and the direction orthogonal to the center line is the x direction. The xy coordinate system is set based on the virtual center line of the boom 16 assuming that the boom 16 is not elastically deformed. The boom 16 is bent to the upstream side in the turning direction in the turning operation of the turning body 12 stopped before the state shown in FIG. Further, the main winding rope 50 connected to the tip end portion of the boom 16 extends further toward the upstream side in the turning direction than the tip end portion of the boom 16. When the steady rest control according to the present embodiment is not executed, the deflection of the boom 16 is eliminated from the state of FIG. 3, and the runout (swivel runout) of the suspended load connected to the main winding rope 50 (main hook 57) is caused. appear.
 制御目標量設定部720は、図3に示す状態において、xy座標系におけるゼロ点位置、すなわち、仮想的なブーム16の先端部を目標ブーム先端位置として設定し、その鉛直下方の位置を目標吊荷位置として設定する。したがって、旋回振れ止め制御を通じて、当該目標吊荷位置において少なくとも旋回方向における吊荷の変位がゼロになるように、旋回体12の旋回速度、旋回方向が自動的に制御される。なお、ブーム16の先端部および吊荷がそれぞれ上記の目標ブーム先端位置、目標吊荷位置に配置されるための、XY座標系における目標旋回角がθrefと定義される。換言すれば、制御目標量設定部720は、上記の目標旋回角θref、ブーム16の起伏角およびブーム16の長さから、上記の目標ブーム先端位置、目標吊荷位置を演算することができる。また、制御目標量設定部720は、上記の各制御量のうち速度の制御量については、吊荷を静止させることが目的であるため、その目標量をそれぞれゼロに設定する。なお、旋回速度については、左旋回方向の場合をプラス(正)の値と定義し、右旋回方向の場合をマイナス(負)の値と定義する。 In the state shown in FIG. 3, the control target amount setting unit 720 sets the zero point position in the xy coordinate system, that is, the tip portion of the virtual boom 16 as the target boom tip position, and sets the position vertically below the target boom tip position as the target suspension. Set as the load position. Therefore, through the swivel steady rest control, the swivel speed and the swivel direction of the swivel body 12 are automatically controlled so that the displacement of the suspended load at least in the swivel direction becomes zero at the target suspended load position. The target turning angle in the XY coordinate system for arranging the tip of the boom 16 and the suspended load at the target boom tip position and the target suspended load position, respectively, is defined as θref. In other words, the control target amount setting unit 720 can calculate the target boom tip position and the target suspended load position from the target turning angle θref, the undulation angle of the boom 16, and the length of the boom 16. Further, the control target amount setting unit 720 sets the target amount to zero for the speed control amount among the above-mentioned control amounts because the purpose is to keep the suspended load stationary. The turning speed is defined as a positive (positive) value in the left turning direction and a negative (negative) value in the right turning direction.
 制御量演算部700Fは、吊荷旋回方向変位X1、吊荷旋回方向速度X2、ブーム先端旋回方向変位X3、ブーム先端旋回方向速度X4および旋回角X5の各制御量について、検出部700Dの各検出部が検出した検出値と、制御目標量設定部720が設定した目標量との間の偏差を演算する。より詳しくは、制御量演算部700Fは、ブーム長さ情報取得部708から出力されたブーム長さ情報と、旋回角検出部710から出力された前記旋回角と、ブーム起伏角検出部711から出力された前記起伏角と、ブームトップ旋回方向変位検出部713から出力されたブーム先端部変位と、ブームトップ旋回方向速度検出部714から出力されたブーム先端部速度と、ロープ旋回方向振れ角検出部715から出力された主巻ロープ50の振れ角度(吊荷変位検出部から出力された吊荷変位)と、ロープ旋回方向振れ角速度検出部716から出力された主巻ロープ50の振れ角速度(吊荷速度検出部から出力された吊荷速度)と、ロープ長さ検出部717から出力された前記ロープ長さ情報と、吊荷重量検出部718から出力された前記吊荷重量情報と、制御目標量設定部720によって設定された前記5つの状態量の目標状態量とに基づいて、前記5つの状態量の現在値を演算する。 The control amount calculation unit 700F detects each of the control amounts of the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5. The deviation between the detected value detected by the unit and the target amount set by the control target amount setting unit 720 is calculated. More specifically, the control amount calculation unit 700F outputs the boom length information output from the boom length information acquisition unit 708, the turning angle output from the turning angle detecting unit 710, and the boom undulation angle detecting unit 711. The undulation angle, the displacement of the boom tip portion output from the boom top swivel direction displacement detection unit 713, the boom tip portion speed output from the boom top swivel direction speed detection unit 714, and the rope swivel direction runout angle detection unit. The runout angle of the main winding rope 50 output from 715 (suspended load displacement output from the suspended load displacement detection unit) and the runout angle speed of the main winding rope 50 output from the rope turning direction runout angle speed detection unit 716 (suspended load). The suspension load speed output from the speed detection unit), the rope length information output from the rope length detection unit 717, the suspension load amount information output from the suspension load amount detection unit 718, and the control target amount. The current values of the five state quantities are calculated based on the target state quantities of the five state quantities set by the setting unit 720.
 図3を参照して、吊荷旋回方向変位X1は,ブーム16の先端位置に対する吊荷の相対的な旋回方向における変位に、ブーム先端旋回方向変位X3を加えたものである。このため、吊荷旋回方向変位X1は、以下の式1によって演算することができる。 With reference to FIG. 3, the suspended load turning direction displacement X1 is the displacement in the turning direction of the suspended load relative to the tip position of the boom 16 plus the boom tip turning direction displacement X3. Therefore, the suspended load turning direction displacement X1 can be calculated by the following equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、式1において、Lはブーム16の先端部と吊荷との間における主巻ロープ50の長さであり、ロープ長さ検出部717によって検出される。また、γlは主巻ロープ50の旋回方向における振れ角であり,ロープ旋回方向振れ角検出部715によって検出される。なお、式1に示すように、γl<<1の場合、sin(γl)=γlと近似することができる。 In Equation 1, L is the length of the main winding rope 50 between the tip of the boom 16 and the suspended load, and is detected by the rope length detecting unit 717. Further, γl is a runout angle of the main winding rope 50 in the turning direction, and is detected by the rope turning direction runout angle detecting unit 715. As shown in Equation 1, when γl << 1, it can be approximated as sin (γl) = γl.
 同様に、吊荷旋回方向速度X2は、ブーム16の先端位置に対する吊荷の相対的な速度に、ブーム先端旋回方向速度X4を加えたものである。このため、吊荷旋回方向速度X2は、以下の式2によって演算することができる。 Similarly, the suspended load turning direction speed X2 is the value obtained by adding the boom tip turning direction speed X4 to the relative speed of the suspended load with respect to the tip position of the boom 16. Therefore, the suspended load turning direction speed X2 can be calculated by the following equation 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、式2において、γl’は、主巻ロープ50の旋回方向における振れ角速度であり、ロープ旋回方向振れ角速度検出部716によって検出される。 In Equation 2, γl'is the runout angular velocity of the main winding rope 50 in the turn direction, and is detected by the rope turn direction runout angular velocity detection unit 716.
 更に、ブーム先端旋回方向変位X3およびブーム先端旋回方向速度X4は、前述のブームトップ旋回方向変位検出部713およびブームトップ旋回方向速度検出部714によってそれぞれ検出される。 Further, the boom tip turning direction displacement X3 and the boom tip turning direction speed X4 are detected by the boom top turning direction displacement detecting unit 713 and the boom top turning direction speed detecting unit 714, respectively.
 また、旋回角X5は、刻々と変化する旋回体12(ブーム16)の旋回角と、前述の目標旋回角θrefとの偏差に相当し、以下の式3によって演算される。 Further, the turning angle X5 corresponds to the deviation between the turning angle of the turning body 12 (boom 16) that changes every moment and the above-mentioned target turning angle θref, and is calculated by the following equation 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、式3において、integral(θ’)は、旋回角検出部710によって検出される旋回角を時間に対して積分処理した値である。また、目標旋回角θrefは前述のように制御目標量設定部720によって設定される。 In Equation 3, integral (θ') is a value obtained by integrating the turning angle detected by the turning angle detecting unit 710 with respect to time. Further, the target turning angle θref is set by the control target amount setting unit 720 as described above.
 制御ゲイン設定部726は、ブーム16の弾性変形(撓み)の影響を考慮した制御モデルに基づいて、各制御量および入力量(旋回速度)の重み付き和の時間積分が最小化するように、各制御量の制御ゲインをそれぞれ設定する。具体的に、制御ゲイン設定部726は、制御量演算部700Fが演算した上記の各制御量X1、X2、X3、X4およびX5に対して、それぞれ制御ゲインG1、G2、G3、G4およびG5を設定する。この際、各制御ゲインは、制御量演算部700Fが演算した上記の各制御量X1、X2、X3、X4およびX5と、入力量に相当する旋回速度とが速やかにゼロに収束するように設定される。より詳しくは、制御ゲイン設定部726は、所定の制御モデルに基づいて、上記の各制御量及び入力量(旋回速度)の重み付き和の時間積分が最小化するように制御ゲインをそれぞれ設定する。本実施形態における当該制御モデルは、ブーム16の慣性モーメントにより発生する慣性力や吊荷振れによって発生する旋回方向の外力によって、ブーム16に生じる弾性変形の影響が考慮されている。なお、制御モデルとは、運動方程式などのように対象物の挙動を表す微分方程式が、制御系の安定性を評価しやすい標準の形に変形されたものであり、当該制御モデルを用いることで安定した制御系設計を行うことが可能となる。当該制御モデルは、ブーム16の弾性を表す式が組み合わされることで、ブーム16の弾性を考慮した状態空間表現を得ることができる。なお、本実施形態に係る制御モデルについては、後記で詳述する。 The control gain setting unit 726 minimizes the time integration of the weighted sum of each control amount and input amount (turning speed) based on a control model that considers the influence of elastic deformation (deflection) of the boom 16. Set the control gain of each control amount. Specifically, the control gain setting unit 726 sets the control gains G1, G2, G3, G4 and G5 for each of the above-mentioned control quantities X1, X2, X3, X4 and X5 calculated by the control amount calculation unit 700F, respectively. Set. At this time, each control gain is set so that the above-mentioned control quantities X1, X2, X3, X4 and X5 calculated by the control amount calculation unit 700F and the turning speed corresponding to the input amount quickly converge to zero. Will be done. More specifically, the control gain setting unit 726 sets the control gains based on a predetermined control model so as to minimize the time integration of the weighted sum of each of the above control quantities and input amounts (turning speeds). .. In the control model of the present embodiment, the influence of elastic deformation generated on the boom 16 is taken into consideration by the inertial force generated by the moment of inertia of the boom 16 and the external force in the turning direction generated by the swing of the suspended load. The control model is a differential equation that expresses the behavior of an object, such as an equation of motion, transformed into a standard form that makes it easy to evaluate the stability of the control system. It is possible to design a stable control system. In the control model, a state space expression in consideration of the elasticity of the boom 16 can be obtained by combining the equations expressing the elasticity of the boom 16. The control model according to this embodiment will be described in detail later.
 旋回目標速度演算部727は、制御ゲイン設定部726によって演算された各制御量X1~X5と制御ゲイン設定部726によって設定された各制御ゲインG1~G5とに基づいて、以下の式4から旋回体12の旋回目標速度Vrefを演算する。 The turning target speed calculation unit 727 turns from the following equation 4 based on the control amounts X1 to X5 calculated by the control gain setting unit 726 and the control gains G1 to G5 set by the control gain setting unit 726. The turning target speed Vref of the body 12 is calculated.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 更に、旋回操作目標演算部728は、旋回体12の旋回速度が旋回目標速度演算部727によって演算された旋回目標速度Vrefになるように、駆動制御部700に入力するための旋回操作目標指令値を演算する。具体的に、旋回操作目標演算部728は、旋回目標速度演算部727によって演算された旋回目標速度Vrefと旋回駆動部701における油圧特性に基づいて旋回操作目標量を演算する。そして、当該演算された旋回操作目標量が駆動制御部700に入力され、旋回駆動部701によって旋回体12の旋回速度および旋回方向が設定される。 Further, the turning operation target calculation unit 728 is input to the drive control unit 700 so that the turning speed of the turning body 12 becomes the turning target speed Vref calculated by the turning target speed calculation unit 727. Is calculated. Specifically, the turning operation target calculation unit 728 calculates the turning operation target amount based on the turning target speed Vref calculated by the turning target speed calculation unit 727 and the hydraulic characteristics in the turning drive unit 701. Then, the calculated turning operation target amount is input to the drive control unit 700, and the turning drive unit 701 sets the turning speed and turning direction of the turning body 12.
 図4は、本実施形態に係るクレーン10の旋回振れ止め制御のフローチャートである。本実施形態では、旋回振れ止め制御が開始されるにあたって、予め制振制御部700E内の不図示の記憶部に、既知パラメータが設定、記憶されている(ステップS01)。当該既知パラメータには、ブーム16の長さ、ブーム16の弾性係数、ブーム16の慣性モーメントなどが含まれる。なお、前述のように、ブーム16の長さは情報取得部700Cのブーム長さ情報取得部708によって取得、参照される。なお、ブーム16の弾性係数およびブーム16の慣性モーメントは、後記の式17においてジブをブームに置き換えることで、Iおよびkθとしてそれぞれ含まれている。 FIG. 4 is a flowchart of the swing steady rest control of the crane 10 according to the present embodiment. In the present embodiment, when the turning steady rest control is started, known parameters are set and stored in advance in a storage unit (not shown) in the vibration damping control unit 700E (step S01). The known parameters include the length of the boom 16, the elastic modulus of the boom 16, the moment of inertia of the boom 16, and the like. As described above, the length of the boom 16 is acquired and referred to by the boom length information acquisition unit 708 of the information acquisition unit 700C. The elastic modulus of the boom 16 and the moment of inertia of the boom 16 are included as I and k θ, respectively, by replacing the jib with a boom in the formula 17 described later.
 そして、制御判断部719は、キャブ15内に配置された旋回振れ止め制御開始用のスイッチ(入力部)が押圧されている(ONされている)か否かを判定する(ステップS02)。前記スイッチがONされている場合(ステップS02でYES)、制御判断部719は、図4に示されるフローチャートが繰り返される場合(図4のステップS10からS02への繰り返し)の一つ前のフローにおいて、前記スイッチがONされていたか否かを判定する(ステップS03)。前のフローにおいて前記スイッチがOFFされている場合(ステップS03でNO)、検出部700Dが、検出パラメータの更新を行う(ステップS04)。詳しくは、ブーム起伏角検出部711、ロープ長さ検出部717および吊荷重量検出部718が、それぞれ、ブーム16の起伏角、主巻ロープ50の繰り出し量および吊荷重量(負荷)を検出し、更新する。 Then, the control determination unit 719 determines whether or not the switch (input unit) for starting the swivel steady rest control arranged in the cab 15 is pressed (ON) (step S02). When the switch is turned on (YES in step S02), the control determination unit 719 is in the flow immediately before the case where the flowchart shown in FIG. 4 is repeated (repetition from steps S10 to S02 in FIG. 4). , It is determined whether or not the switch has been turned on (step S03). When the switch is turned off in the previous flow (NO in step S03), the detection unit 700D updates the detection parameters (step S04). Specifically, the boom undulation angle detection unit 711, the rope length detection unit 717, and the suspension load amount detection unit 718 detect the undulation angle of the boom 16, the extension amount of the main winding rope 50, and the suspension load amount (load), respectively. ,Update.
 次に、制御目標量設定部720が、制御モデルのパラメータを設定する(ステップS05)。詳しくは、制御目標量設定部720が、前述のように各制御量の目標量を設定する。 Next, the control target amount setting unit 720 sets the parameters of the control model (step S05). Specifically, the control target amount setting unit 720 sets the target amount of each control amount as described above.
 次に、制御ゲイン設定部726が、制御ゲイン(フィードバックゲイン)を決定する(ステップS06)。詳しくは、制御ゲイン設定部726は、前述のG1、G2、G3、G4およびG5をそれぞれ決定し、ステップS08に進む。 Next, the control gain setting unit 726 determines the control gain (feedback gain) (step S06). Specifically, the control gain setting unit 726 determines the above-mentioned G1, G2, G3, G4 and G5, respectively, and proceeds to step S08.
 なお、ステップS03において、前のフローにおいて前記スイッチがONである場合(ステップS03でYES)、ステップS04からステップS06の各パラメータ、ゲインについては前フローで取得した値を維持し(ステップS07)、ステップS08に進む。 In step S03, when the switch is ON in the previous flow (YES in step S03), the values acquired in the previous flow are maintained for each parameter and gain in steps S04 to S06 (step S07). The process proceeds to step S08.
 ステップS08では、制御量演算部700Fが状態パラメータの更新を行う。具体的に、制御量演算部700Fは、吊荷旋回方向変位X1、吊荷旋回方向速度X2、ブーム先端旋回方向変位X3、ブーム先端旋回方向速度X4および旋回角X5をそれぞれ演算する。 In step S08, the control amount calculation unit 700F updates the state parameter. Specifically, the control amount calculation unit 700F calculates the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5, respectively.
 次に、旋回目標速度演算部727が、旋回目標速度Vrefを演算する(ステップS09)。 Next, the turning target speed calculation unit 727 calculates the turning target speed Vref (step S09).
 次に、旋回操作目標演算部728が、旋回駆動部701に指令信号を入力するための指令電流値の演算を行う(ステップS10)。具体的に、旋回操作目標演算部728は、前述のように、旋回体12の旋回速度が旋回目標速度演算部727によって演算された旋回目標速度Vrefになるように、駆動制御部700に入力するための旋回操作目標指令値を演算する。 Next, the turning operation target calculation unit 728 calculates the command current value for inputting the command signal to the turning drive unit 701 (step S10). Specifically, as described above, the turning operation target calculation unit 728 inputs to the drive control unit 700 so that the turning speed of the turning body 12 becomes the turning target speed Vref calculated by the turning target speed calculation unit 727. The turning operation target command value for is calculated.
 なお、ステップS02において、旋回振れ止め制御開始用のスイッチ(入力部)が押圧されていない場合(ステップS02でNO)、制振制御部700Eは、旋回振れ止め制御を目的とするクレーン10の自動制御を禁止する。 In step S02, when the switch (input unit) for starting the turning steady rest control is not pressed (NO in step S02), the vibration damping control unit 700E automatically moves the crane 10 for the purpose of turning steady rest control. Prohibit control.
 そして、吊荷が、図3の目標吊荷位置で少なくとも旋回方向において停止する(略停止する)まで、図4に示されるフローが繰り返される。 Then, the flow shown in FIG. 4 is repeated until the suspended load stops (substantially stops) at the target suspended load position in FIG. 3 at least in the turning direction.
 <第2実施形態>
 図5は、本発明の第2実施形態に係るクレーン10の側面図である。図6は、本実施形態に係るクレーン10の旋回振れ止め装置70のブロック図である。なお、本実施形態では、先の第1実施形態との相違点を中心に説明し、共通する点の説明を省略する。
<Second Embodiment>
FIG. 5 is a side view of the crane 10 according to the second embodiment of the present invention. FIG. 6 is a block diagram of the swing steady rest device 70 of the crane 10 according to the present embodiment. In this embodiment, the differences from the first embodiment will be mainly described, and the common points will be omitted.
 図5を参照して、本実施形態に係るクレーン10は、図1のクレーン10と比較して、更に、ジブ18(起伏体)と、を備える。 With reference to FIG. 5, the crane 10 according to the present embodiment further includes a jib 18 (undulating body) as compared with the crane 10 of FIG.
 ジブ18は、ブーム16の先端部(ブーム先端部、上部ブーム16E)にブーム16の回転中心軸と平行な回転中心軸(第2回転中心軸)回りに起伏方向に回動可能に支持されたジブ基端部と、当該ジブ基端部とは反対のジブ先端部とを有する。本実施形態では、当該ジブ先端部から主巻ロープ50が垂下され吊荷に接続される。なお、ジブ18も、ブーム16と同様にその具体的な構造は限定されない。 The jib 18 is rotatably supported by the tip of the boom 16 (boom tip, upper boom 16E) around a rotation center axis (second rotation center axis) parallel to the rotation center axis of the boom 16. It has a jib base end and a jib tip opposite to the jib base end. In the present embodiment, the main winding rope 50 is hung from the tip of the jib and connected to the suspended load. The specific structure of the jib 18 is not limited as in the boom 16.
 更に、クレーン10は、リヤストラット21と、フロントストラット22と、左右一対のストラットバックストップ25および左右一対のガイライン26と、左右一対のジブ用ガイライン28と、を備える。 Further, the crane 10 includes a rear strut 21, a front strut 22, a pair of left and right strut backstops 25, a pair of left and right guy lines 26, and a pair of left and right jib guy lines 28.
 リヤストラット21は、ブーム16の先端部に回動可能に軸支される。リヤストラット21は、上部ブーム16Eの先端からブーム起立側(図1では左側)に張り出す姿勢で保持される。この姿勢を保持する手段として、リヤストラット21とブーム16との間に左右一対のストラットバックストップ25及び左右一対のガイライン26が介在する。ストラットバックストップ25は、中間ブーム16Dとリヤストラット21の中間部位との間に介在し、リヤストラット21を下から支える。ガイライン26は、リヤストラット21の先端部とブーム16の下部ブーム16Aとを接続するように張設され、その張力によってリヤストラット21の位置を規制する。換言すれば、左右一対のストラットバックストップ25及び左右一対のガイライン26は、クレーン10の使用状態において、ブーム16に対するリヤストラット21の相対的な回動を規制する。なお、リヤストラット21は、シーブブロック47、リヤストラットアイドラシーブ52、62を有する。シーブブロック47は、リヤストラット21の回動端部に配置され、幅方向に配列された複数のシーブを含む。リヤストラットアイドラシーブ52、62は、リヤストラット21の長手方向の中央部よりも基端部側に位置する部分に配置され、それぞれ幅方向に配列された複数のシーブを含む。 The rear strut 21 is rotatably supported by the tip of the boom 16. The rear strut 21 is held in a posture of projecting from the tip of the upper boom 16E to the boom standing side (left side in FIG. 1). As a means for maintaining this posture, a pair of left and right strut backstops 25 and a pair of left and right guy lines 26 are interposed between the rear struts 21 and the boom 16. The strut backstop 25 is interposed between the intermediate boom 16D and the intermediate portion of the rear strut 21, and supports the rear strut 21 from below. The guy line 26 is stretched so as to connect the tip end portion of the rear strut 21 and the lower boom 16A of the boom 16, and the position of the rear strut 21 is regulated by the tension thereof. In other words, the pair of left and right strut struts 25 and the pair of left and right guy lines 26 regulate the relative rotation of the rear struts 21 with respect to the boom 16 when the crane 10 is in use. The rear strut 21 has a sheave block 47 and rear strut idler sheaves 52 and 62. The sheave block 47 includes a plurality of sheaves arranged at the rotating end of the rear strut 21 and arranged in the width direction. The rear strut idler sheaves 52 and 62 are arranged in a portion of the rear strut 21 located closer to the base end portion than the central portion in the longitudinal direction, and include a plurality of sheaves arranged in the width direction, respectively.
 フロントストラット22は、ジブ18の後方に配置されており、ジブ18と連動して回動するようにブーム16の先端部(上部ブーム16E)に回動可能に軸支されている。詳しくは、このフロントストラット22の先端部とジブ18の先端部とを連結するように左右一対のジブ用ガイライン28が張設される。従って、このフロントストラット22の回動駆動によって、ジブ18もフロントストラット22と一体的に回動駆動される。なお、前述のリヤストラット21は、図1に示すようにフロントストラット22の後側に配置され、フロントストラット22との間で略二等辺三角形形状を形成する。なお、フロントストラット22は、シーブブロック48と、フロントストラットアイドラシーブ53、63と、を有する。シーブブロック48は、フロントストラット22の回動端部に配置され、幅方向に配列された複数のシーブを含む。フロントストラットアイドラシーブ53、63は、フロントストラット22の長手方向の中央部よりも基端部側に位置する部分に配置され、それぞれ幅方向に配列された複数のシーブを含む。 The front strut 22 is arranged behind the jib 18 and is rotatably supported at the tip of the boom 16 (upper boom 16E) so as to rotate in conjunction with the jib 18. Specifically, a pair of left and right jib guy lines 28 are stretched so as to connect the tip of the front strut 22 and the tip of the jib 18. Therefore, by the rotational drive of the front strut 22, the jib 18 is also rotationally driven integrally with the front strut 22. The rear strut 21 described above is arranged on the rear side of the front strut 22 as shown in FIG. 1, and forms a substantially isosceles triangular shape with the front strut 22. The front strut 22 has a sheave block 48 and front strut idler sheaves 53 and 63. The sheave block 48 includes a plurality of sheaves arranged at the rotating end of the front strut 22 and arranged in the width direction. The front strut idler sheaves 53 and 63 are arranged in a portion of the front strut 22 located closer to the proximal end side than the central portion in the longitudinal direction, and include a plurality of sheaves arranged in the width direction, respectively.
 クレーン10は、ジブ18を起伏方向に回動させるためのジブ起伏用ウインチ32と、ジブ起伏用ロープ44と、を更に備える。 The crane 10 further includes a jib undulating winch 32 for rotating the jib 18 in the undulating direction, and a jib undulating rope 44.
 ジブ起伏用ウインチ32は、リヤストラット21とフロントストラット22との間に掛け回されたジブ起伏用ロープ44の巻き取り及び繰り出しを行う。そして、この巻き取りや繰り出しによってフロントストラット22が回動するようにジブ起伏用ロープ44が配索される。具体的には、ジブ起伏用ウインチ32から引き出されたジブ起伏用ロープ44がアイドラシーブ32S、中間ブームシーブ46に掛けられ、更に、シーブブロック47,48間に複数回掛け渡される。従って、ジブ起伏用ウインチ32は、ジブ起伏用ロープ44の巻き取りおよび繰り出しを行うことで、両シーブブロック47,48間の距離を変え、リヤストラット21に対してフロントストラット22を相対的に回動させる。この結果、ジブ起伏用ウインチ32は、フロントストラット22と連動するジブ18を起伏させる。 The jib undulating winch 32 winds and unwinds the jib undulating rope 44 that is hung between the rear strut 21 and the front strut 22. Then, the jib undulating rope 44 is arranged so that the front strut 22 rotates by this winding and unwinding. Specifically, the jib undulating rope 44 pulled out from the jib undulating winch 32 is hung on the idler sheave 32S and the intermediate boom sheave 46, and is further hung between the sheave blocks 47 and 48 a plurality of times. Therefore, the jib undulating winch 32 changes the distance between the two sheave blocks 47 and 48 by winding and unwinding the jib undulating rope 44, and rotates the front strut 22 relative to the rear strut 21. Move. As a result, the jib undulating winch 32 undulates the jib 18 interlocking with the front strut 22.
 また、図6を参照して、本実施形態に係るクレーン10では、図2と比較して、操作部700Bがジブ起伏操作部705A(起伏用操作部、ジブ起伏用操作部)を更に有し、駆動部700Aがジブ起伏駆動部702A(起伏体駆動部、ジブ駆動部)を更に有する。また、旋回振れ止め装置70の情報取得部700Cは、ジブ長さ情報取得部709(起伏体長さ情報取得部)を更に有し、検出部700Dはジブ起伏角検出部712(起伏角検出部)を更に有する。また、検出部700Dは、図2のブームトップ旋回方向変位検出部713およびブームトップ旋回方向速度検出部714の代わりに、ジブトップ旋回方向変位検出部713A(起伏体変位検出部)およびジブトップ旋回方向速度検出部714A(起伏体速度検出部)を有する。 Further, referring to FIG. 6, in the crane 10 according to the present embodiment, the operation unit 700B further has a jib undulation operation unit 705A (undulation operation unit, jib undulation operation unit) as compared with FIG. , The drive unit 700A further includes a jib undulating drive unit 702A (undulation body drive unit, jib drive unit). Further, the information acquisition unit 700C of the swivel steady rest device 70 further has a jib length information acquisition unit 709 (undulation body length information acquisition unit), and the detection unit 700D is a jib undulation angle detection unit 712 (undulation angle detection unit). Further has. Further, the detection unit 700D replaces the boom top turning direction displacement detecting unit 713 and the boom top turning direction speed detecting unit 714 in FIG. 2 with the jib top turning direction displacement detecting unit 713A (undulating body displacement detecting unit) and the jib top turning direction speed. It has a detection unit 714A (undulating body velocity detection unit).
 ジブ起伏操作部705Aは、ジブ18を起伏させるためのジブ起伏用位置とジブ18の起伏を停止させるための中立位置との間で切換可能とされている。ジブ起伏駆動部702Aは、ジブ18を前記第2回転中心軸回りに起伏方向に回動することが可能とされている。ジブ長さ情報取得部709は、前記ジブ基端部と前記ジブ先端部とを結ぶ方向であるジブ長手方向におけるジブ18の長さに対応する情報であるジブ長さ情報を取得し出力する。ジブ起伏角検出部712は、前記第2回転中心軸回りのジブ18の起伏角を検出および出力する。ジブトップ旋回方向変位検出部713Aは、前記ジブ先端部の前記旋回方向における変位(ジブ先端部変位)を起伏体先端部変位として検出および出力する。ジブトップ旋回方向速度検出部714Aは、前記ジブ先端部の前記旋回方向における速度(ジブ先端部速度)を前記起伏体先端部速度として検出および出力する。 The jib undulation operation unit 705A is capable of switching between a jib undulation position for undulating the jib 18 and a neutral position for stopping the undulation of the jib 18. The jib undulation drive unit 702A is capable of rotating the jib 18 around the second rotation center axis in the undulation direction. The jib length information acquisition unit 709 acquires and outputs jib length information which is information corresponding to the length of the jib 18 in the jib longitudinal direction which is the direction connecting the jib base end portion and the jib tip end portion. The jib undulation angle detection unit 712 detects and outputs the undulation angle of the jib 18 around the second rotation center axis. The jib top turning direction displacement detection unit 713A detects and outputs the displacement of the jib tip in the turning direction (jib tip displacement) as the undulating body tip displacement. The jib top turning direction speed detection unit 714A detects and outputs the speed of the jib tip in the turning direction (jib tip speed) as the undulating body tip speed.
 また、制御量演算部700Fは、ブーム先端旋回方向変位X3およびブーム先端旋回方向速度X4に代えて、ジブ先端旋回方向変位X3Aおよびジブ先端旋回方向速度X4Aを演算する。ジブ先端旋回方向変位X3Aは、上記のようにジブ18の先端部の前記旋回方向における変位であり、ジブ先端旋回方向速度X4Aは、ジブ18の先端部の前記旋回方向における速度である。 Further, the control amount calculation unit 700F calculates the jib tip turning direction displacement X3A and the jib tip turning direction speed X4A instead of the boom tip turning direction displacement X3 and the boom tip turning direction speed X4. The jib tip turning direction displacement X3A is the displacement of the tip of the jib 18 in the turning direction as described above, and the jib tip turning direction speed X4A is the speed of the tip of the jib 18 in the turning direction.
 また、本実施形態では、図4のフローチャートにおいて、ステップS01では、ジブ18の長さ情報およびジブ18の弾性係数、ジブの慣性モーメントがそれぞれ不図示の記憶部に格納されている。また、ステップS04では、ジブ起伏角検出部712によってジブ18の起伏角が更に検出される。また、ステップS05では、制御目標量設定部720は、制御判断部719によって旋回振れ止め制御開始条件が満たされていると判断され前記制御開始信号が出力されると、吊荷旋回方向変位X1、吊荷旋回方向速度X2、ジブ先端旋回方向変位X3A、ジブ先端旋回方向速度X4A、旋回角X5の少なくとも5つ(複数)の制御量(状態量)について、前記目標状態量をそれぞれ設定する。更に、ステップS06では、制御ゲイン設定部726が、各制御ゲインG1~G5を設定し、ステップS08では、制御量演算部700Fが、ブーム長さ情報取得部708およびジブ長さ情報取得部709からそれぞれ出力された前記ブーム長さ情報および前記ジブ長さ情報と、旋回角検出部710から出力された前記旋回角と、ブーム起伏角検出部711から出力された前記ブーム起伏角と、ジブ起伏角検出部712から出力された前記ジブ起伏角と、ジブトップ旋回方向変位検出部713Aから出力されたジブ先端部変位と、ジブトップ旋回方向速度検出部714Aから出力されたジブ先端部速度と、ロープ旋回方向振れ角検出部715から出力された前記振れ角度と、ロープ旋回方向振れ角速度検出部716から出力された前記振れ角速度と、ロープ長さ検出部717から出力された前記ロープ長さ情報と、吊荷重量検出部718から出力された前記吊荷重量情報と、制御目標量設定部720によって設定された前記5つの状態量の目標状態量とに基づいて、ジブ先端旋回方向変位X3Aおよびジブ先端旋回方向速度X4Aを含む前記5つの状態量の現在値を演算する。 Further, in the present embodiment, in the flowchart of FIG. 4, in step S01, the length information of the jib 18, the elastic modulus of the jib 18, and the moment of inertia of the jib are stored in storage units (not shown). Further, in step S04, the undulation angle of the jib 18 is further detected by the jib undulation angle detection unit 712. Further, in step S05, when the control determination unit 719 determines that the turning steady rest control start condition is satisfied and the control start signal is output, the control target amount setting unit 720 receives the suspended load turning direction displacement X1. The target state quantities are set for at least five (plurality) control amounts (state amounts) of the suspended load turning direction speed X2, the jib tip turning direction displacement X3A, the jib tip turning direction speed X4A, and the turning angle X5, respectively. Further, in step S06, the control gain setting unit 726 sets the control gains G1 to G5, and in step S08, the control amount calculation unit 700F from the boom length information acquisition unit 708 and the jib length information acquisition unit 709. The boom length information and the jib length information output, respectively, the turning angle output from the turning angle detection unit 710, the boom undulation angle output from the boom undulation angle detection unit 711, and the jib undulation angle. The jib undulation angle output from the detection unit 712, the jib tip displacement output from the jib top turning direction displacement detection unit 713A, the jib tip speed output from the jib top turning direction speed detection unit 714A, and the rope turning direction. The runout angle output from the runout angle detection unit 715, the runout angle speed output from the rope turning direction runout angle speed detection unit 716, the rope length information output from the rope length detection unit 717, and the suspension load. Based on the suspension load amount information output from the amount detection unit 718 and the target state amounts of the five state amounts set by the control target amount setting unit 720, the jib tip turning direction displacement X3A and the jib tip turning direction The current values of the five state quantities including the speed X4A are calculated.
 すなわち、本実施形態においても、前述の第1実施形態の各式において、起伏体としてのブーム16がジブ18に置換されることで、ジブ18の先端部から垂下された主巻ロープ50に接続された吊荷(主フック57)の旋回振れ止め制御が実現される。 That is, also in the present embodiment, in each of the above-described first embodiments, the boom 16 as the undulating body is replaced with the jib 18, so that the boom 16 is connected to the main winding rope 50 hanging from the tip of the jib 18. The swivel steady rest control of the suspended load (main hook 57) is realized.
 <第3実施形態>
 図7は、本発明の第3実施形態に係るクレーン10の旋回振れ止め装置70のブロック図である。図8は、本発明の第3実施形態に係るクレーン10のブーム16の先端部の拡大側面図である。図9は、本発明の第3実施形態に係るクレーン10の吊荷変位検出部715Aおよび吊荷速度検出部716Aのブロック図である。なお、本実施形態では、先の第1実施形態との相違点を中心に説明し、共通する点の説明を省略する。また、本実施形態に係るクレーン10の構造は、図2に示されるクレーン10と同様である。
<Third Embodiment>
FIG. 7 is a block diagram of the swivel steady rest device 70 of the crane 10 according to the third embodiment of the present invention. FIG. 8 is an enlarged side view of the tip of the boom 16 of the crane 10 according to the third embodiment of the present invention. FIG. 9 is a block diagram of a suspended load displacement detecting unit 715A and a suspended load speed detecting unit 716A of the crane 10 according to the third embodiment of the present invention. In this embodiment, the differences from the first embodiment will be mainly described, and the common points will be omitted. Further, the structure of the crane 10 according to the present embodiment is the same as that of the crane 10 shown in FIG.
 本実施形態では、先の第1実施形態と比較して、吊荷変位および吊荷速度を取得する構造が相違している。具体的に、本実施形態に係る旋回振れ止め装置70(図7)は、図2のロープ旋回方向振れ角検出部715の代わりに吊荷変位検出部715Aを有し、図2のロープ旋回方向振れ角速度検出部716の代わりに吊荷速度検出部716Aを有する。 In this embodiment, the structure for acquiring the suspended load displacement and the suspended load speed is different from that in the first embodiment. Specifically, the swivel steady rest device 70 (FIG. 7) according to the present embodiment has a suspended load displacement detection unit 715A instead of the rope swivel direction swing angle detection unit 715 of FIG. 2, and the rope swivel direction of FIG. It has a suspended load speed detecting unit 716A instead of the swing angular velocity detecting unit 716.
 図8を参照して、旋回振れ止め装置70は、カメラ80(撮影装置)と、カメラ用治具80Sと、認識マーカ57S(目標物)と、を有する。カメラ80は、ブーム16の先端部(上部ブーム16E)に装着されたカメラ用治具80Sに支持されている。カメラ用治具80Sは、ブーム16のラチス(フレーム)にボルト等で締結されており、ブーム16の起伏角度が変化しても、カメラ80の撮影方向が下を向くようにカメラ80の姿勢を調整する機能を有している。なお、この調整機能はカメラ80自体が有するものでもよい。認識マーカ57Sは、フック57の一部に取り付けられている。この結果、認識マーカ57Sは、吊荷と一体で移動する。カメラ80は、このように吊荷に関連付けられた認識マーカ57S(目標物)を撮影するとともに撮影した画像情報を出力する。 With reference to FIG. 8, the swivel steady rest device 70 has a camera 80 (photographing device), a camera jig 80S, and a recognition marker 57S (target object). The camera 80 is supported by a camera jig 80S attached to the tip end portion (upper boom 16E) of the boom 16. The camera jig 80S is fastened to the lattice (frame) of the boom 16 with bolts or the like, and the posture of the camera 80 is adjusted so that the shooting direction of the camera 80 faces downward even if the undulation angle of the boom 16 changes. It has a function to adjust. The adjustment function may be possessed by the camera 80 itself. The recognition marker 57S is attached to a part of the hook 57. As a result, the recognition marker 57S moves integrally with the suspended load. The camera 80 captures the recognition marker 57S (target object) associated with the suspended load and outputs the captured image information.
 図9を参照して、吊荷変位検出部715Aおよび吊荷速度検出部716Aは、上記のカメラ80に加え、画像処理部81および検出量演算部82(いずれも演算部)を含む。 With reference to FIG. 9, the suspended load displacement detecting unit 715A and the suspended load speed detecting unit 716A include an image processing unit 81 and a detection amount calculation unit 82 (both are calculation units) in addition to the above camera 80.
 画像処理部81および検出量演算部82は、カメラ80から入力された画像情報を画像処理することにより位置情報として取得し、不図示の有線ケーブルや無線通信を介して制御量演算部700Fに入力する。より具体的に、画像処理部81は、カメラ80により撮影され出力された画像情報に対して、公知のテンプレートマッチングやエッジ検出、コーナー検出等の画像処理を行い、当該画像処理後の情報を検出量演算部82に入力する。検出量演算部82は、受け付けた情報に含まれる認識マーカ57Sのピクセル単位での大きさと、予め取得されたカメラ80からマーカ57Sまでの距離情報とに基づいて、マーカ57Sの座標を取得する。この結果、マーカ57Sと一体で移動する吊荷の変位、特に、旋回方向における振れ角(揺動角)が取得される。更に、検出量演算部82は、上記の吊荷の変位(振れ角)を数値微分することで、吊荷の速度、特に、旋回方向における吊荷の振れ角速度を算出する。 The image processing unit 81 and the detection amount calculation unit 82 acquire the image information input from the camera 80 as position information by image processing, and input the image information to the control amount calculation unit 700F via a wired cable (not shown) or wireless communication. To do. More specifically, the image processing unit 81 performs image processing such as known template matching, edge detection, and corner detection on the image information captured and output by the camera 80, and detects the information after the image processing. Input to the quantity calculation unit 82. The detection amount calculation unit 82 acquires the coordinates of the marker 57S based on the size of the recognition marker 57S included in the received information in pixel units and the distance information from the camera 80 to the marker 57S acquired in advance. As a result, the displacement of the suspended load that moves integrally with the marker 57S, particularly the swing angle (swing angle) in the turning direction is acquired. Further, the detection amount calculation unit 82 calculates the speed of the suspended load, particularly the swing angle velocity of the suspended load in the turning direction, by numerically differentiating the displacement (swing angle) of the suspended load.
 制御量演算部700Fは、先の第1実施形態と同様に、吊荷旋回方向変位X1、吊荷旋回方向速度X2、ブーム先端旋回方向変位X3、ブーム先端旋回方向速度X4および旋回角X5の各制御量について、検出部700Dの各検出部が検出した検出値と、制御目標量設定部720が設定した目標量との間の偏差を演算する。より詳しくは、制御量演算部700Fは、ブーム長さ情報取得部708から出力されたブーム長さ情報と、旋回角検出部710から出力された前記旋回角と、ブーム起伏角検出部711から出力された前記起伏角と、ブームトップ旋回方向変位検出部713から出力されたブーム先端部変位と、ブームトップ旋回方向速度検出部714から出力されたブーム先端部速度と、吊荷変位検出部715Aから出力された吊荷変位と、吊荷速度検出部716Aから出力された吊荷速度と、ロープ長さ検出部717から出力された前記ロープ長さ情報と、吊荷重量検出部718から出力された前記吊荷重量情報と、制御目標量設定部720によって設定された前記5つの状態量の目標状態量とに基づいて、前記5つの制御量(状態量)の現在値を演算する。 The control amount calculation unit 700F has each of the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5, as in the first embodiment. Regarding the control amount, the deviation between the detection value detected by each detection unit of the detection unit 700D and the target amount set by the control target amount setting unit 720 is calculated. More specifically, the control amount calculation unit 700F outputs the boom length information output from the boom length information acquisition unit 708, the rotation angle output from the rotation angle detection unit 710, and the boom undulation angle detection unit 711. The undulation angle, the displacement of the boom tip output from the boom top turning direction displacement detection unit 713, the boom tip speed output from the boom top turning direction speed detection unit 714, and the suspended load displacement detection unit 715A. The output suspended load displacement, the suspended load speed output from the suspended load speed detection unit 716A, the rope length information output from the rope length detecting unit 717, and the output from the suspended load amount detecting unit 718. Based on the suspension load amount information and the target state amounts of the five state amounts set by the control target amount setting unit 720, the current values of the five control amounts (state amounts) are calculated.
 本実施形態において、吊荷旋回方向変位X1は、ブーム16の先端部(上部ブーム16E)から見た場合の吊荷の旋回方向変位X1’にブーム先端旋回方向変位X3を加えたものであり、以下の式5で演算される。 In the present embodiment, the suspended load turning direction displacement X1 is obtained by adding the boom tip turning direction displacement X3 to the suspended load turning direction displacement X1'when viewed from the tip end portion (upper boom 16E) of the boom 16. It is calculated by the following equation 5.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここでX1’は吊荷変位検出部715Aによって取得された、ブーム16の先端部から見た吊荷変位である。一方、吊荷旋回方向速度X2は、ブーム16の先端部から見た場合における吊荷の旋回方向の速度X2’に、ブーム先端旋回方向速度X4を加えたものであり、以下の式6で演算される。 Here, X1'is the suspended load displacement seen from the tip of the boom 16 acquired by the suspended load displacement detection unit 715A. On the other hand, the suspended load turning direction speed X2 is obtained by adding the boom tip turning direction speed X4 to the speed X2'in the suspended load turning direction when viewed from the tip of the boom 16, and is calculated by the following equation 6. Will be done.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 なお、ブーム先端旋回方向変位X3、ブーム先端旋回方向速度X4および旋回角X5は、先の第1実施形態と同様に検出または演算される。更に、制御ゲイン設定部726、旋回目標速度演算部727および旋回操作目標演算部728による演算過程も同様である。 The boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5 are detected or calculated in the same manner as in the first embodiment. Further, the calculation process by the control gain setting unit 726, the turning target speed calculation unit 727, and the turning operation target calculation unit 728 is the same.
 以上のように、本実施形態では、ブーム16の先端部に取り付けられたカメラ80の画像情報に基づいて、吊荷旋回方向変位X1および吊荷旋回方向速度X2を取得することができる。このため、先の第1実施形態と比較して、主巻ロープ50(吊荷ロープ)に撓みが生じた場合であっても、吊荷に関連付けられた認識マーカ57Sの位置を直接的に検出することができるため、吊荷旋回方向変位X1および吊荷旋回方向速度X2を精度よく取得することが可能となる。 As described above, in the present embodiment, the suspended load turning direction displacement X1 and the suspended load turning direction speed X2 can be acquired based on the image information of the camera 80 attached to the tip end portion of the boom 16. Therefore, as compared with the first embodiment, the position of the recognition marker 57S associated with the suspended load is directly detected even when the main winding rope 50 (suspended load rope) is bent. Therefore, it is possible to accurately acquire the suspended load turning direction displacement X1 and the suspended load turning direction speed X2.
 <制御モデル作成からゲインの導出までの流れについて>
 次に、上記の各実施形態に係る制振制御部700Eの演算において使用される制御モデルについて説明する。制御モデルの作成にあたって、クレーン10の挙動を後記のような運動方程式によって表現し、その運動方程式を下記の式7のような状態方程式に変形する。
<About the flow from control model creation to gain derivation>
Next, the control model used in the calculation of the vibration damping control unit 700E according to each of the above embodiments will be described. In creating the control model, the behavior of the crane 10 is expressed by the equation of motion as described below, and the equation of motion is transformed into the equation of state as shown in Equation 7 below.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここでxは状態量と呼ばれ、前述の各制御量(吊荷旋回方向変位X1、吊荷旋回方向速度X2、旋回角X5など)に相当する。一方、uは制御入力(旋回速度)に相当する。また、式5のA、Bはシステム行列であり、当該行列の中には、主巻ロープ50のロープ長やクレーン10の作業半径(平面視におけるブーム16の半径)のように、旋回振れ制御中に変化しないが、吊荷の挙動に影響を与えるパラメータが含まれている。 Here, x is called a state quantity, and corresponds to each of the above-mentioned control quantities (suspended load turning direction displacement X1, suspended load turning direction speed X2, turning angle X5, etc.). On the other hand, u corresponds to the control input (turning speed). Further, A and B of Equation 5 are system matrices, and in the matrix, turning runout control is performed, such as the rope length of the main winding rope 50 and the working radius of the crane 10 (the radius of the boom 16 in a plan view). It does not change, but contains parameters that affect the behavior of the suspended load.
 なお、式7に含まれるxのように以後の数式中の文字の上にドットが付されているものは、時間微分を意味する。たとえば、xの上に1つのドットが付されていればxを1階時間微分したものであり、xの上に2つのドットが付されていればxを2階時間微分したものである。更に、数式以外の本文においては、記載の制約上、上記のドットの代わりにアポストロフィを付している。以後の他の数式および本文中の記載についても同様である。 Note that a dot is added above the characters in the following formulas, such as x included in formula 7, which means time derivative. For example, if one dot is attached above x, x is first-order time-differentiated, and if two dots are attached above x, x is second-order time-differentiated. Furthermore, in texts other than mathematical formulas, apostrophes are added instead of the above dots due to the restrictions of the description. The same applies to other mathematical formulas and descriptions in the text thereafter.
 なお、このような制御系設計の手法にはさまざまなものが公知であるが、本実施形態では、最適制御方法と呼ばれ、評価関数を最小にするように対象(クレーン10)を制御する方法が用いられている。当該最適制御方法では、まず評価関数が以下の式8に示すように定義される。 Various methods for designing such a control system are known, but in the present embodiment, a method called an optimum control method, in which the target (crane 10) is controlled so as to minimize the evaluation function. Is used. In the optimum control method, the evaluation function is first defined as shown in Equation 8 below.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式8において、xおよびuはベクトルまたはスカラーに相当し、xおよびuに付されている上付きのTは転置を意味する。また、QおよびRは行列またはスカラーに相当する。ここで、最適制御方法を解するには、上記の評価関数を最小にする入力(u=θ’m=Gx)に対応する行列Xを導出する(θ’mはθmの1階時間微分)。当該行列Xは以下の式9に示される公知のリッカチ代数方程式を解くことによって得ることができる。なお、θ’mおよびGxは上記の旋回目標速度Vrefと同等のものである。また、Gxは式4の右辺に相当する。 In Equation 8, x and u correspond to a vector or scalar, and the superscript T attached to x and u means transpose. Also, Q and R correspond to matrices or scalars. Here, in order to solve the optimum control method, a matrix X corresponding to the input (u = θ'm = Gx) that minimizes the above evaluation function is derived (θ'm is the first derivative of θm). .. The matrix X can be obtained by solving a known Riccati algebra equation shown in Equation 9 below. Note that θ'm and Gx are equivalent to the above-mentioned turning target speed Vref. Further, Gx corresponds to the right side of Equation 4.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 また、フィードバックゲインGは、以下の式10によって表すことができる。 Further, the feedback gain G can be expressed by the following equation 10.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 従って、図4のステップS06において制御ゲイン設定部726は、上記の演算に基づいて、ゲインG1~G5を演算することができる。 Therefore, in step S06 of FIG. 4, the control gain setting unit 726 can calculate the gains G1 to G5 based on the above calculation.
 <クレーンにおける状態方程式の導出について>
 次に、上記の式7において示される状態方程式の導出について説明する。図10、図11は、本実施形態に係るクレーン10の旋回振れ止め制御を説明するためのモデル図である。なお、図10、図11では先の第2実施形態に係るクレーン10を想定して、ブーム16にジブ18が支持されているが、第1実施形態に係るクレーン10では、図10、図11のジブ18が存在しない、すなわち、ジブ18の長さがゼロと仮定することで、同様にその状態方程式を導出することができる。
<About the derivation of the equation of state in a crane>
Next, the derivation of the equation of state shown in the above equation 7 will be described. 10 and 11 are model diagrams for explaining the swing steady rest control of the crane 10 according to the present embodiment. In addition, in FIGS. 10 and 11, the jib 18 is supported by the boom 16 assuming the crane 10 according to the second embodiment, but in the crane 10 according to the first embodiment, FIGS. 10 and 11 By assuming that the jib 18 does not exist, that is, the length of the jib 18 is zero, the equation of state can be derived in the same manner.
 状態方程式の導出に際して、まず運動方程式を用いてクレーン10の制御モデルを導出する。図10、図11に示すようにクレーン10はZ軸周りに旋回するとする。また吊荷の位置を、吊荷位置座標xt、yt、ztを用いて表している。この吊荷位置座標xt、yt、ztは前記制御開始信号が出力された瞬間(初期状態)の旋回初期角度を基準にして、ジブ18の振動および吊荷の振れが止まった時の吊荷位置の直下を原点とし、グローバル座標系のXYZ座標とXY平面を共有するようにyt軸が半径方向に延びるように設定され、xt軸は旋回方向に延びるように設定され、またzt軸はZ軸と同じ方向に設定される。ここで、旋回体12が初期状態から旋回した角度である旋回角度がθと定義される。旋回体12が旋回を開始した位置から制御開始信号が出力されるまでに旋回体12が旋回した角度がθtと定義される。またブーム16の長さがLB1、ジブ18の長さがLB2、ブーム16の起伏角がγ1、ジブ18の起伏角がγ2と定義されると、平面視における吊荷の旋回半径r0=LB1cosγ1+LB2cosγ2で表される。また、主巻ロープ50の振れ角をγlと定義する。この時、吊荷の運動エネルギTおよびポテンシャルエネルギUは以下の式11で表される。 When deriving the equation of state, first, the control model of the crane 10 is derived using the equation of motion. As shown in FIGS. 10 and 11, it is assumed that the crane 10 turns around the Z axis. Further, the position of the suspended load is represented using the suspended load position coordinates xt, yt, and zt. The suspended load position coordinates xt, yt, and zt are the suspended load positions when the vibration of the jib 18 and the swing of the suspended load are stopped with reference to the initial turning angle at the moment (initial state) when the control start signal is output. The yy axis is set to extend in the radial direction so as to share the XYZ coordinates and the XY plane of the global coordinate system with the origin directly below, the xt axis is set to extend in the turning direction, and the zt axis is the Z axis. Is set in the same direction as. Here, the turning angle, which is the angle at which the turning body 12 turns from the initial state, is defined as θ. The angle at which the swivel body 12 turns from the position where the swivel body 12 starts turning until the control start signal is output is defined as θt. The length by L B1 boom 16, length L B2 of the jib 18, derricking angle γ1 of the boom 16, the hoisting angle of the jib 18 is defined as .gamma.2, pivoting of the suspended load in plan view a radius r0 = represented by L B1 cosγ1 + L B2 cosγ2. Further, the swing angle of the main winding rope 50 is defined as γl. At this time, the kinetic energy T and the potential energy U of the suspended load are represented by the following equation 11.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここでgは重力加速度である。また吊荷は主巻ロープ50によってその挙動を拘束されており、ジブ18の先端部から見て半径L(ロープ長)の球面上に拘束されているとみなすことができる。このため、以下の式12が成立する。なお、hはジブ18の先端部の高さを意味する。 Where g is the gravitational acceleration. The suspended load can be regarded as being restricted on a spherical surface of radius L M (rope length) as viewed from being restrained their behavior by the main hoisting rope 50, the tip of the jib 18. Therefore, the following equation 12 holds. Note that h means the height of the tip of the jib 18.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 この際、式13のようにφを定義する。 At this time, φ is defined as in Equation 13.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 この結果、式13において、拘束条件はφ=0で表すことができるため、公知のLagrange方程式を導出すると、式13から式14が導かれる。 As a result, in Equation 13, the constraint condition can be expressed by φ = 0. Therefore, when a known Language equation is derived, Equation 14 is derived from Equation 13.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 なお、式14において、μは未定乗数である。この式14を用いて、以下の式15を仮定すると、xtについて以下の式16を得ることができる。 In Equation 14, μ is an undetermined multiplier. Using this equation 14, assuming the following equation 15, the following equation 16 can be obtained for xt.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 ここで、λ=√(g/L)である。
Figure JPOXMLDOC01-appb-M000016
Here is a λ = √ (g / L M ).
 図12は、本実施形態に係るクレーン10の旋回振れ止め制御を更に説明するためのモデル図である。ジブ18(起伏体)の慣性は回転運動に対して直線運動における質量(動かしにくさ、回転しにくさ)として作用し、ジブ18の変形に寄与する力は油圧モータによる強制変位とジブ18にかかる主巻ロープ50の張力とであるため、ジブ18の捻れの変形が支配的である。このため、ジブ18の弾性を考えるときに、図12に示すようにバネ-質量系のアナロジーによってその運動方程式を得ることができる。ジブ18の慣性モーメントをI、ジブ18のねじり剛性をkθ、ジブ先端の角度をθと旋回モータの回転角度をθmとすると、式14のラグランジュの運動方程式から導出される以下の式17によって運動方程式を表すことができる。 FIG. 12 is a model diagram for further explaining the swivel steady rest control of the crane 10 according to the present embodiment. The inertia of the jib 18 (undulating body) acts as a mass (difficult to move, difficulty to rotate) in linear motion with respect to the rotational motion, and the force contributing to the deformation of the jib 18 is the forced displacement by the hydraulic motor and the jib 18. Since it is the tension of the main winding rope 50, the twist deformation of the jib 18 is dominant. Therefore, when considering the elasticity of the jib 18, the equation of motion can be obtained by the analogy of the spring-mass system as shown in FIG. Assuming that the moment of inertia of the jib 18 is I, the torsional rigidity of the jib 18 is kθ, the angle of the tip of the jib is θ, and the rotation angle of the swivel motor is θm, the motion is driven by the following equation 17 derived from the equation of motion of Lagrange in equation 14. Can represent an equation.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 このように、式17には起伏体の弾性変形を考慮した項が含まれている。上記を踏まえて、状態方程式を示すために、状態xを以下の式18のように定義する。 As described above, the equation 17 includes a term considering the elastic deformation of the undulating body. Based on the above, in order to show the equation of state, the state x is defined as the following equation 18.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 そして、式16、式17および式18から、式7の状態方程式は以下の式19、式20で示される。 Then, from the equations 16, 17, and 18, the equations of state of the equation 7 are represented by the following equations 19 and 20.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 すなわち、式19、式20によって示される状態方程式に基づいて、制御ゲイン設定部726は、制御ゲインG1~G5(フィードバックゲイン)を演算することができる。 That is, the control gain setting unit 726 can calculate the control gains G1 to G5 (feedback gain) based on the equations of state represented by the equations 19 and 20.
 図13は、本実施形態に係るクレーン10の旋回振れ止め制御と比較される他の旋回振れ止め制御における吊荷の旋回方向変位の推移を示すグラフである。図13の破線は、クレーン10の旋回動作を停止した直後に旋回振れ止め制御を全く行わなかった場合の吊荷の旋回方向における変位を示しており、周期的な振れが続いていることがわかる。一方、図13の実線は、本発明の各実施形態と異なり起伏体(ブーム16)の弾性変形を考慮しない制御モデルによって制御ゲインG1~G5を演算した場合の結果である。図13に示すように、このような演算ではフィードバック制御が発散し、制御を行っていない破線の結果よりも吊荷が大きく振れる結果となっている。 FIG. 13 is a graph showing the transition of the displacement of the suspended load in the turning direction in other turning steady rest control compared with the turning steady rest control of the crane 10 according to the present embodiment. The broken line in FIG. 13 shows the displacement of the suspended load in the turning direction when the turning steady rest control is not performed immediately after the turning operation of the crane 10 is stopped, and it can be seen that the periodic swing continues. .. On the other hand, the solid line in FIG. 13 is the result when the control gains G1 to G5 are calculated by the control model which does not consider the elastic deformation of the undulating body (boom 16) unlike each embodiment of the present invention. As shown in FIG. 13, in such an operation, the feedback control is diverged, and the result is that the suspended load swings more than the result of the broken line where the control is not performed.
 一方、図14は、本発明の各実施形態に係るクレーン10の旋回振れ止め制御における吊荷の旋回方向変位の推移を示すグラフである。破線は図13と同様である。図14に示すように、本発明の各実施形態のように起伏体(ブーム16)の弾性変形を考慮した制御モデルによって制御ゲインG1~G5を演算した場合、吊荷の振れが早期に収束していることが確認される。 On the other hand, FIG. 14 is a graph showing the transition of the displacement in the turning direction of the suspended load in the turning steady rest control of the crane 10 according to each embodiment of the present invention. The broken line is the same as in FIG. As shown in FIG. 14, when the control gains G1 to G5 are calculated by the control model considering the elastic deformation of the undulating body (boom 16) as in each embodiment of the present invention, the runout of the suspended load converges at an early stage. It is confirmed that
 以上、本発明の各実施形態に係る旋回振れ止め装置70によれば、ブーム16、ジブ18などの起伏体を有するクレーン10において、制御ゲイン設定部726が、旋回体12の旋回動作および吊荷の荷重によるブーム16の弾性変形の影響を考慮した制御モデルに基づいて、各制御量(状態量)(吊荷旋回方向変位X1、吊荷旋回方向速度X2、ブーム先端旋回方向変位X3、ブーム先端旋回方向速度X4および旋回角X5)および入力量(旋回速度)の重み付き和の時間積分が最小化するように制御ゲインG1~G5を決定する。そして、旋回目標速度演算部727が、前記制御量と前記制御ゲインとに基づいて旋回目標速度を演算し、旋回操作目標演算部728が、上記の目標速度になるように旋回駆動部701を駆動するため、安定した吊荷の振れ止めを行うことが可能となる。 As described above, according to the swivel steady rest device 70 according to each embodiment of the present invention, in the crane 10 having the undulating body such as the boom 16 and the jib 18, the control gain setting unit 726 swivels the swivel body 12 and suspends the load. Based on the control model considering the influence of the elastic deformation of the boom 16 due to the load of, each control amount (state amount) (suspended load swivel direction displacement X1, suspended load swivel direction velocity X2, boom tip swivel direction displacement X3, boom tip The control gains G1 to G5 are determined so as to minimize the time integration of the weighted sum of the turning direction speed X4 and the turning angle X5) and the input amount (turning speed). Then, the turning target speed calculation unit 727 calculates the turning target speed based on the control amount and the control gain, and the turning operation target calculation unit 728 drives the turning drive unit 701 so as to reach the above target speed. Therefore, it is possible to perform stable steady rest of the suspended load.
 特に、上記の第1、第2および第3実施形態では、制御ゲイン設定部726が、少なくとも起伏体(ブーム16、ジブ18)の弾性変形に対応する項を含むように予め設定された前記吊荷の挙動に関する状態方程式であって旋回体12(起伏体)の旋回速度を変数とする状態方程式に基づいて、前記5つの状態量にそれぞれ対応する5つの制御ゲインG1~G5を設定する。そして、旋回目標速度演算部727は、制御ゲイン設定部726によって設定された前記5つの制御ゲインと、制御量演算部700F(状態量演算部)によって演算された前記5つの状態量の現在値とから、旋回体12の旋回速度の目標値である旋回目標速度を演算する。そして、旋回操作目標演算部728および駆動制御部700(いずれも指令情報出力部)は、旋回体12の旋回速度が旋回目標速度演算部727によって演算された前記旋回目標速度(速度の大きさ、方向を含む)となるように、旋回駆動部701に対して前記旋回目標速度に対応する指令情報を出力する。 In particular, in the first, second and third embodiments described above, the suspension is preset so that the control gain setting unit 726 includes at least a term corresponding to elastic deformation of the undulating body (boom 16, jib 18). Five control gains G1 to G5 corresponding to the five state quantities are set based on the equation of state relating to the behavior of the load and the turning speed of the swivel body 12 (undulating body) as a variable. Then, the turning target speed calculation unit 727 includes the five control gains set by the control gain setting unit 726 and the current values of the five state quantities calculated by the control quantity calculation unit 700F (state quantity calculation unit). Therefore, the turning target speed, which is the target value of the turning speed of the turning body 12, is calculated. Then, the turning operation target calculation unit 728 and the drive control unit 700 (both are command information output units) have the turning target speed (the magnitude of the speed, which is calculated by the turning target speed calculation unit 727) for which the turning speed of the turning body 12 is calculated. The command information corresponding to the turning target speed is output to the turning drive unit 701 so as to be (including the direction).
 このような構成によれば、制御ゲイン設定部726は、起伏体の弾性変形を考慮した状態方程式に基づいて、各状態量の制御ゲインG1~G5を設定する。また、旋回目標速度演算部727は、制御量演算部700Fによって演算された各状態量と、制御ゲイン設定部726によって設定された各制御ゲインとに基づいて、旋回体12の旋回目標速度Vrefを設定する。上記の状態量には、吊荷の変位および速度に加えて、起伏体先端部の変位および速度が含まれているため、吊荷ロープのロープ長さ情報とあわせることで、吊荷と起伏体先端部との相対位置が加味されながら、吊荷の旋回振れ制御を行うことができる。このため、旋回動作によって起伏体に付与される慣性モーメントや吊荷の荷重によって起伏体に撓みなどの弾性変形が生じている場合でも、吊荷の旋回方向における振れを安定して収束させることが可能となる。 According to such a configuration, the control gain setting unit 726 sets the control gains G1 to G5 of each state quantity based on the equation of state considering the elastic deformation of the undulating body. Further, the turning target speed calculation unit 727 sets the turning target speed Vref of the turning body 12 based on each state quantity calculated by the control amount calculation unit 700F and each control gain set by the control gain setting unit 726. Set. Since the above state quantity includes the displacement and velocity of the tip of the undulating body in addition to the displacement and velocity of the suspended load, the suspension and undulating body can be combined with the rope length information of the suspended load rope. It is possible to control the swirling runout of the suspended load while taking into account the relative position with the tip portion. Therefore, even if the undulating body is elastically deformed such as bending due to the moment of inertia applied to the undulating body by the turning motion or the load of the suspended load, the swing in the turning direction of the suspended load can be stably converged. It will be possible.
 また、上記の第1、第2および第3実施形態では、制御目標量設定部720は、制御判断部719によって旋回振れ止め制御開始条件が満たされていると判断され前記制御開始信号が出力されると、クレーン10の平面視において起伏体が弾性変形していないと仮定した場合における前記起伏体先端部の鉛直下方の位置を前記目標位置として前記旋回角、前記起伏体先端部変位および前記吊荷変位の前記目標状態量をそれぞれ設定し、更に、前記吊荷速度および前記起伏体先端部速度の前記目標状態量をそれぞれゼロに設定する。 Further, in the first, second and third embodiments described above, the control target amount setting unit 720 determines that the turning steady rest control start condition is satisfied by the control determination unit 719, and outputs the control start signal. Then, assuming that the undulating body is not elastically deformed in the plan view of the crane 10, the turning angle, the displacement of the undulating body tip, and the suspension are set with the position vertically below the tip of the undulating body as the target position. The target state amount of the load displacement is set, and the target state amount of the suspended load speed and the tip speed of the undulating body is set to zero, respectively.
 このような構成によれば、制御開始信号が出力された時点での起伏体先端部の位置を基準として、吊荷の旋回振れを収束させるための目標位置が設定される。このため、起伏体の弾性変形を考慮することなく常に起伏体先端部を吊荷の上方の位置に移動させるように上部本体の旋回動作を制御する他の旋回振れ止め装置のように、起伏体先端部が吊荷の動きに後追いし旋回方向の切換えが頻繁に行われることがなく、最終的な目標位置に応じた旋回動作の制御によって吊荷の振れを早期に収束させることができる。 According to such a configuration, a target position for converging the swirling runout of the suspended load is set with reference to the position of the tip of the undulating body at the time when the control start signal is output. Therefore, like other swivel steady rest devices that control the swivel operation of the upper body so as to always move the tip of the undulating body to a position above the suspended load without considering the elastic deformation of the undulating body, the undulating body. The tip portion follows the movement of the suspended load and the turning direction is not frequently switched, and the swing of the suspended load can be quickly converged by controlling the turning operation according to the final target position.
 更に、制御ゲイン設定部726は、前記5つの状態量と旋回体12の旋回速度とを含む重み付き和の時間に対する積分値が最も小さくなるように前記5つの制御ゲインG1~G5を設定する。このため、吊荷の旋回振れを早期に収束させるための制御ゲインを短時間で設定することができる。なお、この制御ゲインの設定の方法としては、いわゆる極配置法に基づく方法やH無限大制御に基づく方法を採用しても良い。本発明の各実施形態に係る制御ゲインの設定の方法は、いわゆるLQ最適制御(Linear Quadratic Optimal Control)(線形二次最適制御)に従ったものである。当該LQ最適制御は、上記の極配置法と比較して、制御系が外乱に対してロバストとなるように設計しやすい特徴がある。また、LQ最適制御は、H無限大制御と比較して制御系の設計が容易であるとともに、外乱の影響を受けてもその効果を発揮しやすいという特徴がある。 Further, the control gain setting unit 726 sets the five control gains G1 to G5 so that the integrated value with respect to the time of the weighted sum including the five state quantities and the turning speed of the turning body 12 is the smallest. Therefore, the control gain for quickly converging the swirling runout of the suspended load can be set in a short time. As a method for setting the control gain, a method based on the so-called pole arrangement method or a method based on the H-infinity control may be adopted. The method of setting the control gain according to each embodiment of the present invention follows the so-called LQ optimum control (Linear Quadratic Optimal Control) (linear quadratic optimum control). The LQ optimum control has a feature that it is easy to design the control system to be robust against disturbance as compared with the above-mentioned pole arrangement method. Further, the LQ optimum control is characterized in that the design of the control system is easier than that of the H infinity control, and the effect is easily exhibited even under the influence of disturbance.
 また、上記の第2実施形態では、ブーム16の先端部に起伏可能に支持されたジブ18の先端部から主巻ロープ50が垂下されている構成において、旋回動作によってジブ18に付与される慣性モーメントや吊荷の荷重によってジブ18に撓みなどの弾性変形が生じている場合でも、吊荷の旋回方向における振れを安定して収束させることが可能となる。 Further, in the second embodiment described above, in a configuration in which the main winding rope 50 hangs down from the tip end portion of the jib 18 undulatingly supported by the tip end portion of the boom 16, the inertia imparted to the jib 18 by the turning motion. Even when the jib 18 is elastically deformed such as bending due to the moment or the load of the suspended load, it is possible to stably converge the runout of the suspended load in the turning direction.
 なお、本発明の各実施形態では、上記のように、クレーン10の作業半径を決定する起伏体の長さ、起伏体の起伏角、起伏体の弾性係数、主巻ロープ50の繰り出し量、起伏体の慣性モーメント、吊荷の重量(吊荷重)がフィードバックゲインを決定するための検出パラメータである。一方、吊荷旋回方向変位X1、吊荷旋回方向速度X2、ブーム先端旋回方向変位X3、ブーム先端旋回方向速度X4および旋回角X5が制御量(状態量)に相当する。 In each embodiment of the present invention, as described above, the length of the undulating body that determines the working radius of the crane 10, the undulating angle of the undulating body, the elastic modulus of the undulating body, the amount of extension of the main winding rope 50, and the undulation. The moment of inertia of the body and the weight of the suspended load (suspended load) are detection parameters for determining the feedback gain. On the other hand, the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5 correspond to the control amount (state amount).
 以上、本発明の各実施形態に係る旋回振れ止め装置70およびこれを備えたクレーン10について説明した。なお、本発明はこれらの形態に限定されるものではない。本発明は、例えば以下のような変形実施形態を取ることができる。 The swivel steady rest device 70 and the crane 10 provided with the swivel steady rest device 70 according to each embodiment of the present invention have been described above. The present invention is not limited to these forms. The present invention can take, for example, the following modified embodiments.
 (1)図15は、本発明の変形実施形態に係るクレーンの旋回振れ止め制御を説明するためのモデル図である。上記の各実施形態では、状態量として、吊荷旋回方向変位X1、吊荷旋回方向速度X2、ブーム先端旋回方向変位X3、ブーム先端旋回方向速度X4および旋回角X5を用いて説明したが、これらの状態量を他の検出部の検出結果から演算する態様でもよい。 (1) FIG. 15 is a model diagram for explaining the swing steady rest control of the crane according to the modified embodiment of the present invention. In each of the above embodiments, as the state quantities, the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the boom tip turning direction displacement X3, the boom tip turning direction speed X4, and the turning angle X5 have been described. The state quantity of is calculated from the detection result of another detection unit.
 図15を参照して、ブーム先端旋回方向変位X3およびブーム先端旋回方向速度X4は、ブーム16のたわみ量θe=θ-θmを検出することで、旋回角度θ、旋回角速度dθ/dtから演算してもよい。また、ブーム16の先端部に対する吊荷の相対的な変位xmを検出することが可能であれば、当該検出結果からブーム16の先端部の位置θを演算し、制御量(状態量)として、吊荷旋回方向変位X1、吊荷旋回方向速度X2、吊荷旋回方向相対変位X3、吊荷旋回方向相対速度X4、旋回角X5を選択することも可能である。また、旋回体12に取り付けたカメラ、ブーム16の先端部に取り付けたカメラによって、吊荷旋回方向変位X1、吊荷旋回方向速度X2、吊荷旋回方向相対変位X3、吊荷旋回方向相対速度X4をそれぞれ計測してもよい。 With reference to FIG. 15, the boom tip turning direction displacement X3 and the boom tip turning direction speed X4 are calculated from the turning angle θ and the turning angular velocity dθ / dt by detecting the amount of deflection θe = θ−θm of the boom 16. You may. If it is possible to detect the relative displacement xm of the suspended load with respect to the tip of the boom 16, the position θ of the tip of the boom 16 is calculated from the detection result and used as a control amount (state amount). It is also possible to select the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the suspended load turning direction relative displacement X3, the suspended load turning direction relative speed X4, and the turning angle X5. Further, depending on the camera attached to the swivel body 12 and the camera attached to the tip of the boom 16, the suspended load turning direction displacement X1, the suspended load turning direction speed X2, the suspended load turning direction relative displacement X3, and the suspended load turning direction relative speed X4. May be measured respectively.
 (2)また、上記の実施形態では、上記の各実施形態に係る旋回振れ止め装置70が適用されるクレーンの構造は、図1、図5に示されるクレーン10に限定されるものではなく、他の構造を有するクレーンであってもよい。また、上記の制御量(状態量)および対応する制御ゲインの数は、5つに限定されるものではなく、少なくとも5つの制御量および制御ゲインが検出または演算されればよい。 (2) Further, in the above-described embodiment, the structure of the crane to which the swivel steady rest device 70 according to each of the above-described embodiments is applied is not limited to the crane 10 shown in FIGS. 1 and 5. It may be a crane having another structure. Further, the number of the control amount (state amount) and the corresponding control gain is not limited to 5, and at least 5 control amounts and control gains may be detected or calculated.
 (3)更に、先の第3実施形態では、ブーム16の先端部に装着されたカメラ80の画像情報に基づいて、吊荷旋回方向変位X1および吊荷旋回方向速度X2がそれぞれ取得される態様にて説明したが、本発明はこれに限定されるものではない。フック57または吊荷に取り付けられたGPSによってグローバル座標系での吊荷位置が検出され、吊荷旋回方向変位X1および吊荷旋回方向速度X2がそれぞれ取得されてもよい。また、旋回振れ止め装置70は、ブーム16の先端部から垂下される主巻ロープ50(吊荷ロープ)の先端部に接続されるジャイロセンサ(IMU:Inertial Measurement Unit)を有するものでもよい。この場合、吊荷変位検出部715Aおよび吊荷速度検出部716Aは、当該ジャイロセンサの出力に基づいて前記吊荷変位および前記吊荷速度をそれぞれ検出および出力する。また、第3実施形態に係る吊荷変位検出部715Aおよび吊荷速度検出部716Aが第2実施形態に適用されてもよい。 (3) Further, in the third embodiment, the suspended load turning direction displacement X1 and the suspended load turning direction speed X2 are acquired based on the image information of the camera 80 mounted on the tip of the boom 16. However, the present invention is not limited to this. The suspended load position in the global coordinate system may be detected by the hook 57 or GPS attached to the suspended load, and the suspended load turning direction displacement X1 and the suspended load turning direction speed X2 may be acquired, respectively. Further, the swivel steady rest device 70 may have a gyro sensor (IMU: Inertial Measurement Unit) connected to the tip of the main winding rope 50 (suspended rope) hanging from the tip of the boom 16. In this case, the suspended load displacement detecting unit 715A and the suspended load speed detecting unit 716A detect and output the suspended load displacement and the suspended load speed, respectively, based on the output of the gyro sensor. Further, the suspended load displacement detecting unit 715A and the suspended load speed detecting unit 716A according to the third embodiment may be applied to the second embodiment.
 本発明によって提供されるのはクレーンの旋回振れ止め装置であって、当該旋回振れ止め装置は、下部本体と、前記下部本体に上下方向に延びる旋回中心軸回りに旋回可能に支持された上部本体と、前記上部本体に水平な回転中心軸回りに起伏方向に回動可能なように支持され、起伏体基端部と、前記起伏体基端部とは反対の起伏体先端部とを含む起伏体と、前記起伏体先端部から垂下され吊荷に接続される吊荷ロープと、前記上部本体を前記旋回中心軸回りに第1旋回方向および前記第1旋回方向とは反対の第2旋回方向にそれぞれ旋回駆動することが可能な旋回駆動部と、前記上部本体を旋回駆動するための操作を受け付ける旋回用操作部であって、前記上部本体を前記第1旋回方向および前記第2旋回方向にそれぞれ旋回させるための旋回用位置と前記上部本体の旋回を停止させるための中立位置との間で切換可能な、旋回用操作部と、前記起伏体を前記回転中心軸回りに起伏方向に回動することが可能な起伏体駆動部と、前記起伏体を起伏するための操作を受け付ける起伏用操作部であって、前記起伏体を起伏させるための起伏用位置と前記起伏体の起伏を停止させるための中立位置との間で切換可能な、起伏用操作部と、前記吊荷ロープの巻き取りおよび繰り出しを行うことで前記吊荷を地面に対して相対的に昇降させることが可能な吊荷駆動部と、前記吊荷を昇降させるための操作を受け付ける昇降用操作部であって、前記吊荷を昇降させるための昇降用位置と前記吊荷の昇降を停止させるための中立位置との間で切換可能な、昇降用操作部と、を有するクレーンに搭載され、前記上部本体の旋回動作停止後に前記吊荷ロープに接続された前記吊荷が前記起伏体先端部を支点として前記上部本体の旋回方向に沿って振れる現象である吊荷の旋回振れを抑えることが可能なクレーンの旋回振れ止め装置である。当該旋回振れ止め装置は、前記起伏体基端部と前記起伏体先端部とを結ぶ方向である起伏体長手方向における当該起伏体の長さに対応する情報である起伏体長さ情報を取得し出力する起伏体長さ情報取得部と、前記上部本体の前記旋回中心軸回りの旋回角を検出および出力する旋回角検出部と、前記回転中心軸回りの前記起伏体の起伏角を検出および出力する起伏角検出部と、前記起伏体先端部の前記旋回方向における変位である起伏体先端部変位を検出および出力する起伏体変位検出部と、前記起伏体先端部の前記旋回方向における速度である起伏体先端部速度を検出および出力する起伏体速度検出部と、前記起伏体先端部に対する前記吊荷の変位である吊荷変位を検出および出力する吊荷変位検出部と、前記起伏体先端部に対する前記吊荷変位の単位時間あたりの変化量である吊荷速度を検出および出力する吊荷速度検出部と、前記起伏体先端部と前記吊荷との間の前記吊荷ロープの長さに対応する情報であるロープ長さ情報を取得し出力するロープ長さ情報取得部と、前記吊荷の重量に関する情報である吊荷重量情報を取得し出力する吊荷重量情報取得部と、前記旋回用操作部が前記旋回用位置に設定されることに応じて前記旋回駆動部が前記上部本体を所定の旋回方向に旋回させたのち、前記旋回用操作部、前記起伏用操作部および前記昇降用操作部のすべての操作部が前記中立位置にそれぞれ設定されることで成立する旋回振れ止め制御開始条件が満たされているか否かを判断する制御開始条件判断部と、前記制御開始条件判断部によって前記旋回振れ止め制御開始条件が満たされていると判断されると、前記吊荷の前記旋回方向における変位である吊荷変位、前記吊荷の前記旋回方向における速度である吊荷速度、前記起伏体先端部変位、前記起伏体先端部速度、前記旋回角を含む複数の状態量について、所定の目標位置において前記吊荷を少なくとも前記旋回方向において静止させるための目標状態量をそれぞれ設定する目標状態量設定部と、前記起伏体長さ情報取得部から出力された前記起伏体長さ情報と、前記旋回角検出部から出力された前記旋回角と、前記起伏角検出部から出力された前記起伏角と、前記起伏体変位検出部から出力された前記起伏体先端部変位と、前記起伏体速度検出部から出力された前記起伏体先端部速度と、前記吊荷変位検出部から出力された前記吊荷変位と、前記吊荷速度検出部から出力された前記吊荷速度と、前記ロープ長さ情報取得部から出力された前記ロープ長さ情報と、前記吊荷重量情報取得部から出力された前記吊荷重量情報と、前記目標状態量設定部によって設定された前記複数の状態量の目標状態量とに基づいて、前記複数の状態量の現在値を演算する状態量演算部と、少なくとも前記起伏体の弾性変形に対応する項を含むように予め設定された前記吊荷の挙動に関する状態方程式であって前記上部本体の旋回速度を変数とする状態方程式に基づいて、前記複数の状態量にそれぞれ対応する複数の制御ゲインを設定する制御ゲイン設定部と、前記制御ゲイン設定部によって設定された前記複数の制御ゲインと、前記状態量演算部によって演算された前記複数の状態量の現在値とから、前記旋回速度の目標値である旋回目標速度を演算する旋回目標速度演算部と、前記上部本体の旋回速度が前記旋回目標速度演算部によって演算された前記旋回目標速度となるように、前記旋回駆動部に対して前記旋回目標速度に対応する指令情報を出力する指令情報出力部と、を備える。 Provided by the present invention is a swing steady rest device for a crane, and the swing steady rest device is a lower main body and an upper main body rotatably supported around a turning central axis extending in the vertical direction by the lower main body. And, it is supported so as to be rotatable in the undulating direction around the center axis of rotation horizontal to the upper body, and includes the undulating body base end portion and the undulating body tip portion opposite to the undulating body base end portion. The body, the suspended load rope hanging from the tip of the undulating body and connected to the suspended load, and the upper main body in the first turning direction around the turning center axis and in the second turning direction opposite to the first turning direction. A turning drive unit capable of turning and driving, and a turning operation unit that receives an operation for turning and driving the upper main body, and the upper main body is moved in the first turning direction and the second turning direction. The turning operation unit and the undulating body, which can be switched between the turning position for turning and the neutral position for stopping the turning of the upper body, and the undulating body are rotated in the undulating direction around the rotation center axis. An undulating body driving unit capable of undulating, and an undulating operation unit that accepts an operation for undulating the undulating body, and stops the undulating position for undulating the undulating body and the undulation of the undulating body. An undulating operation unit that can be switched between the neutral position and the suspended load that can be raised and lowered relative to the ground by winding and feeding the suspended load rope. Between the drive unit and the elevating operation unit that accepts the operation for raising and lowering the suspended load, between the elevating position for raising and lowering the suspended load and the neutral position for stopping the ascending and descending of the suspended load. The suspended load connected to the suspended load rope after the turning operation of the upper main body is stopped, which is mounted on a crane having an elevating and lowering operation unit which can be switched by, of the upper main body with the tip of the undulating body as a fulcrum. This is a crane swing steady rest device that can suppress the swing swing of a suspended load, which is a phenomenon of swinging along the swing direction. The swivel steady rest device acquires and outputs undulating body length information which is information corresponding to the length of the undulating body in the longitudinal direction of the undulating body, which is the direction connecting the base end portion of the undulating body and the tip end portion of the undulating body. The undulation body length information acquisition unit, the rotation angle detection unit that detects and outputs the rotation angle around the rotation center axis of the upper body, and the undulations that detect and output the undulation angle of the undulation body around the rotation center axis. The angle detection unit, the undulating body displacement detection unit that detects and outputs the displacement of the undulating body tip portion, which is the displacement of the undulating body tip portion in the turning direction, and the undulating body, which is the speed of the undulating body tip portion in the turning direction. The undulating body speed detecting unit that detects and outputs the tip speed, the suspended load displacement detecting unit that detects and outputs the suspended load displacement that is the displacement of the suspended load with respect to the undulating body tip, and the above-mentioned with respect to the undulating tip. Corresponds to the length of the suspended load rope between the suspended load speed detection unit that detects and outputs the suspended load speed, which is the amount of change in the suspended load displacement per unit time, and the tip of the undulating body and the suspended load. A rope length information acquisition unit that acquires and outputs rope length information, which is information, a suspension load amount information acquisition unit that acquires and outputs suspension load amount information, which is information on the weight of the suspended load, and the turning operation. After the swivel drive unit swivels the upper main body in a predetermined swivel direction in response to the portion being set to the swivel position, the swivel operation unit, the undulation operation unit, and the elevating operation unit The control start condition determination unit that determines whether or not the turning steady rest control start condition, which is established by setting all the operation units of the above to the neutral position, and the control start condition determination unit determine the turning. When it is determined that the steady rest control start condition is satisfied, the suspension load displacement, which is the displacement of the suspended load in the turning direction, the hanging load speed, which is the speed of the suspended load in the turning direction, and the tip of the undulating body. Target state amount setting for setting a target state amount for stopping the suspended load at least in the turning direction at a predetermined target position for a plurality of state amounts including the displacement, the tip speed of the undulating body, and the turning angle. The unit, the undulating body length information output from the undulating body length information acquisition unit, the turning angle output from the turning angle detecting unit, the undulating angle output from the undulating angle detecting unit, and the above. The undulating body tip displacement output from the undulating body displacement detection unit, the undulating body tip speed output from the undulating body speed detection unit, and the suspended load displacement output from the suspended load displacement detecting unit. , The suspension speed detection The suspension speed output from the unit, the rope length information output from the rope length information acquisition unit, the suspension load information output from the suspension load information acquisition unit, and the target state. A state quantity calculation unit that calculates the current values of the plurality of state quantities based on the target state quantities of the plurality of state quantities set by the quantity setting unit, and at least a term corresponding to the elastic deformation of the undulating body. A plurality of control gains corresponding to each of the plurality of state quantities are set based on the state equation relating to the behavior of the suspended load, which is preset to include the state equation and the turning speed of the upper body is used as a variable. It is the target value of the turning speed from the control gain setting unit, the plurality of control gains set by the control gain setting unit, and the current values of the plurality of state quantities calculated by the state quantity calculation unit. The turning target speed calculation unit that calculates the turning target speed, and the turning target speed with respect to the turning drive unit so that the turning speed of the upper body becomes the turning target speed calculated by the turning target speed calculation unit. It is provided with a command information output unit that outputs command information corresponding to.
 本構成によれば、制御ゲイン設定部は、起伏体の弾性変形を考慮した状態方程式に基づいて、各状態量の制御ゲインを設定する。また、旋回目標速度演算部は、状態量演算部によって演算された各状態量と、制御ゲイン設定部によって設定された各制御ゲインとに基づいて、旋回体の旋回目標速度を設定する。上記の状態量には、吊荷の変位および速度に加えて、起伏体先端部の変位および速度が含まれているため、吊荷ロープのロープ長さ情報とあわせることで、吊荷と起伏体先端部との相対位置が加味されながら、吊荷の旋回振れ制御を行うことができる。このため、旋回動作によって起伏体に付与される慣性モーメントや吊荷の荷重によって起伏体に撓みなどの弾性変形が生じている場合でも、吊荷の旋回方向における振れを安定して収束させることが可能となる。 According to this configuration, the control gain setting unit sets the control gain of each state quantity based on the equation of state considering the elastic deformation of the undulating body. Further, the turning target speed calculation unit sets the turning target speed of the turning body based on each state quantity calculated by the state quantity calculation unit and each control gain set by the control gain setting unit. Since the above state quantity includes the displacement and velocity of the tip of the undulating body in addition to the displacement and velocity of the suspended load, the suspension and undulating body can be combined with the rope length information of the suspended load rope. It is possible to control the swirling runout of the suspended load while taking into account the relative position with the tip portion. Therefore, even if the undulating body is elastically deformed such as bending due to the moment of inertia applied to the undulating body by the turning motion or the load of the suspended load, the swing in the turning direction of the suspended load can be stably converged. It will be possible.
 上記において、前記吊荷変位検出部は、前記上部本体の旋回動作における径方向に沿って見た場合の前記吊荷ロープの鉛直方向に対する振れ角度を前記吊荷変位として検出および出力するロープ振れ角度検出部を含み、前記吊荷速度検出部は、前記吊荷ロープの前記振れ角度の単位時間あたりの変化量である振れ角速度を前記吊荷速度として検出および出力するロープ振れ角速度検出部を含むものでもよい。 In the above, the suspended load displacement detecting unit detects and outputs the deflection angle of the suspended load rope with respect to the vertical direction when viewed along the radial direction in the turning operation of the upper body as the suspended load displacement. The suspension angular velocity detection unit includes a detection unit, and the suspension angular velocity detection unit includes a rope deflection angular velocity detection unit that detects and outputs a deflection angular velocity, which is a change amount of the deflection angle of the suspension rope per unit time, as the suspension velocity. But it may be.
 また、前記起伏体先端部に装着され、前記吊荷に関連付けられた目標物を撮影するとともに撮影した画像情報を出力する撮影装置と、前記撮影装置から出力された画像情報に基づいて、前記吊荷変位および前記吊荷速度をそれぞれ演算する演算部と、を更に備え、前記撮影装置および前記演算部は、前記吊荷変位検出部として前記吊荷変位を検出および出力し、前記吊荷速度検出部として前記吊荷速度を検出および出力するものでもよい。 Further, the suspension is attached to the tip of the undulating body, the target object associated with the suspended load is photographed, and the photographed image information is output, and the suspension is based on the image information output from the imaging device. The imaging device and the calculation unit further include a calculation unit for calculating the load displacement and the suspension load speed, respectively, and the photographing device and the calculation unit detect and output the suspension load displacement as the suspension load displacement detection unit, and detect the suspension load speed. As a unit, the suspension speed may be detected and output.
 また、前記起伏体先端部から垂下される前記吊荷ロープの先端部に接続されるジャイロセンサを更に備え、前記吊荷変位検出部および前記吊荷速度検出部は、前記ジャイロセンサの出力に基づいて前記吊荷変位および前記吊荷速度をそれぞれ検出および出力するものでもよい。 Further, a gyro sensor connected to the tip of the suspension rope hanging from the tip of the undulating body is further provided, and the suspension displacement detection unit and the suspension speed detection unit are based on the output of the gyro sensor. The suspended load displacement and the suspended load speed may be detected and output, respectively.
 上記の構成において、前記目標状態量設定部は、前記制御開始条件判断部によって旋回振れ止め制御開始条件が満たされていると判断されると、前記クレーンの平面視において前記起伏体が弾性変形していないと仮定した場合における前記起伏体先端部の鉛直下方の位置を前記目標位置として前記旋回角、前記起伏体先端部変位および前記吊荷変位の前記目標状態量をそれぞれ設定し、更に、前記吊荷速度および前記起伏体先端部速度の前記目標状態量をそれぞれゼロに設定することが望ましい。 In the above configuration, when the control start condition determination unit determines that the turning steady rest control start condition is satisfied, the target state amount setting unit elastically deforms the undulating body in the plan view of the crane. The turning angle, the displacement of the tip of the undulating body, and the target state amount of the suspended load are set with the position vertically below the tip of the undulating body as the target position when it is assumed that the undulating body does not exist. It is desirable to set the target state quantities of the suspended load speed and the undulating body tip speed to zero, respectively.
 本構成によれば、制御開始信号が出力された時点での起伏体先端部の位置を基準として、吊荷の旋回振れを収束させるための目標位置が設定される。このため、起伏体の弾性変形を考慮することなく常に起伏体先端部を吊荷の上方の位置に移動させるように上部本体の旋回動作を制御する他の旋回振れ止め装置のように、起伏体先端部が吊荷の動きに後追いし旋回方向の切換えが頻繁に行われることがなく、最終的な目標位置に応じた旋回動作の制御によって吊荷の振れを早期に収束させることができる。 According to this configuration, a target position for converging the swirling runout of the suspended load is set with reference to the position of the tip of the undulating body at the time when the control start signal is output. Therefore, like other swivel steady rest devices that control the swivel operation of the upper body so as to always move the tip of the undulating body to a position above the suspended load without considering the elastic deformation of the undulating body, the undulating body. The tip portion follows the movement of the suspended load and the turning direction is not frequently switched, and the swing of the suspended load can be quickly converged by controlling the turning operation according to the final target position.
 上記の構成において、前記制御ゲイン設定部は、前記複数の状態量と前記旋回速度とを含む重み付き和の時間に対する積分値が最も小さくなるように前記複数の制御ゲインを設定することが望ましい。 In the above configuration, it is desirable that the control gain setting unit sets the plurality of control gains so that the integrated value with respect to the time of the weighted sum including the plurality of state quantities and the turning speed is the smallest.
 本構成によれば、吊荷の旋回振れを早期に収束させるための制御ゲインを短時間で設定することができる。 According to this configuration, the control gain for quickly converging the swirling runout of the suspended load can be set in a short time.
 上記の構成において、前記クレーンは、前記起伏体として、前記上部本体に水平な第1回転中心軸回りに起伏方向に回動可能なように支持されたブーム基端部と、前記ブーム基端部とは反対のブーム先端部とを含む、ブームと、前記ブーム先端部に前記第1回転中心軸と平行な第2回転中心軸回りに起伏方向に回動可能なように支持されたジブ基端部と、前記ジブ基端部とは反対のジブ先端部であって前記吊荷ロープが当該ジブ先端部から垂下されることを許容するジブ先端部とを含む、ジブと、を有し、前記起伏体駆動部として、前記ブームを前記第1回転中心軸回りに起伏方向に回動することが可能なブーム駆動部と、前記ジブを前記第2回転中心軸回りに起伏方向に回動することが可能なジブ駆動部と、を有し、前記起伏用操作部として、前記ブームを起伏するための操作を受け付けるブーム起伏用操作部であって、前記ブームを起伏させるためのブーム起伏用位置と前記ブームの起伏を停止させるための中立位置との間で切換可能な、ブーム起伏用操作部と、前記ジブを起伏するための操作を受け付けるジブ起伏用操作部であって、前記ジブを起伏させるためのジブ起伏用位置と前記ジブの起伏を停止させるための中立位置との間で切換可能な、ジブ起伏用操作部と、有するものである。また、前記起伏体長さ情報取得部は、前記ブーム基端部と前記ブーム先端部とを結ぶ方向であるブーム長手方向における当該ブームの長さに対応する情報であるブーム長さ情報を取得し出力するブーム長さ情報取得部と、前記ジブ基端部と前記ジブ先端部とを結ぶ方向であるジブ長手方向における当該ジブの長さに対応する情報であるジブ長さ情報を取得し出力するジブ長さ情報取得部と、を有し、前記起伏体変位検出部は、前記ジブ先端部の前記旋回方向における変位を前記起伏体先端部変位として検出および出力し、前記起伏体速度検出部は、前記ジブ先端部の前記旋回方向における速度を前記起伏体先端部速度として検出および出力し、前記起伏角検出部は、前記第1回転中心軸回りの前記ブームの起伏角を検出および出力するブーム起伏角検出部と、前記第2回転中心軸回りの前記ジブの起伏角を検出および出力するジブ起伏角検出部と、を有し、前記目標状態量設定部は、前記制御開始条件判断部によって前記旋回振れ止め制御開始条件が満たされていると判断されると、前記吊荷変位、前記吊荷速度、前記ジブ先端部の前記旋回方向における変位である前記起伏体先端部変位、前記ジブ先端部の前記旋回方向における速度である前記起伏体先端部速度、前記旋回角の複数の状態量について、前記目標状態量をそれぞれ設定し、前記状態量演算部は、前記ブーム長さ情報取得部および前記ジブ長さ情報取得部からそれぞれ出力された前記ブーム長さ情報および前記ジブ長さ情報と、前記旋回角検出部から出力された前記旋回角と、前記ブーム起伏角検出部から出力された前記ブーム起伏角と、前記ジブ起伏角検出部から出力された前記ジブ起伏角と、前記起伏体変位検出部から出力された前記起伏体先端部変位と、前記起伏体速度検出部から出力された前記起伏体先端部速度と、前記吊荷変位検出部から出力された前記吊荷変位と、前記吊荷速度検出部から出力された前記吊荷速度と、前記ロープ長さ情報取得部から出力された前記ロープ長さ情報と、前記吊荷重量情報取得部から出力された前記吊荷重量情報と、前記目標状態量設定部によって設定された前記複数の状態量の目標状態量とに基づいて、前記複数の状態量の現在値を演算するものでもよい。 In the above configuration, the crane has a boom base end portion supported as the undulating body so as to be rotatable in the undulating direction around the first rotation center axis horizontal to the upper body, and the boom base end portion. The boom and the jib base end supported by the boom tip so as to be rotatable in the undulating direction around the second rotation center axis parallel to the first rotation center axis, including the boom tip opposite to the above. The jib comprises a portion and a jib tip that is opposite to the jib base and allows the suspended rope to hang from the jib tip. As the undulating body driving unit, the boom driving unit capable of rotating the boom around the first rotation center axis in the undulating direction and the jib rotating in the undulating direction around the second rotation center axis. It has a jib drive unit capable of undulating, and as the undulating operation unit, it is a boom undulating operation unit that accepts an operation for undulating the boom, and has a boom undulating position for undulating the boom. A boom undulation operation unit that can be switched between a neutral position for stopping the undulation of the boom and a jib undulation operation unit that accepts an operation for undulating the jib, and undulates the jib. It has a jib undulation operation unit that can be switched between a jib undulation position for the purpose and a neutral position for stopping the undulation of the jib. Further, the undulating body length information acquisition unit acquires and outputs boom length information which is information corresponding to the length of the boom in the boom longitudinal direction which is the direction connecting the boom base end and the boom tip. A jib that acquires and outputs jib length information that is information corresponding to the length of the jib in the jib longitudinal direction, which is the direction connecting the boom length information acquisition unit and the jib base end portion and the jib tip portion. The undulating body displacement detecting unit has a length information acquisition unit, and the undulating body displacement detecting unit detects and outputs the displacement of the jib tip portion in the turning direction as the undulating body tip portion displacement. The speed of the tip of the jib in the turning direction is detected and output as the speed of the tip of the undulation body, and the undulation angle detection unit detects and outputs the undulation angle of the boom around the first rotation center axis. It has an angle detection unit and a jib undulation angle detection unit that detects and outputs the undulation angle of the jib around the second rotation center axis, and the target state amount setting unit is said by the control start condition determination unit. When it is determined that the swivel steady rest control start condition is satisfied, the suspended load displacement, the suspended load speed, the displacement of the jib tip in the turning direction, the displacement of the undulating body tip, and the jib tip. The target state amounts are set for each of the undulating body tip speed and the plurality of state amounts of the turning angle, which are the speeds in the turning direction, and the state amount calculation unit is the boom length information acquisition unit and the boom length information acquisition unit. The boom length information and the jib length information output from the jib length information acquisition unit, the swivel angle output from the swivel angle detection unit, and the boom output from the boom undulation angle detection unit, respectively. The undulation angle, the jib undulation angle output from the jib undulation angle detection unit, the displacement of the undulation body tip portion output from the undulation body displacement detection unit, and the undulation output from the undulation body speed detection unit. The body tip speed, the suspended load displacement output from the suspended load displacement detection unit, the suspended load speed output from the suspended load speed detecting unit, and the output from the rope length information acquisition unit. Based on the rope length information, the suspension load amount information output from the suspension load amount information acquisition unit, and the target state amounts of the plurality of state amounts set by the target state amount setting unit, the plurality of states. It may be the one that calculates the current value of the state quantity of.
 本構成によれば、ブームの先端部に起伏可能に支持されたジブの先端部から吊荷ロープが垂下されている構成において、旋回動作によってジブに付与される慣性モーメントや吊荷の荷重によってジブに撓みなどの弾性変形が生じている場合でも、吊荷の旋回方向における振れを安定して収束させることが可能となる。 According to this configuration, in a configuration in which a suspended load rope is hung from the tip of a jib that is undulatingly supported at the tip of the boom, the jib is subjected to the moment of inertia applied to the jib by the turning motion and the load of the suspended load. Even when elastic deformation such as bending occurs, it is possible to stably converge the runout of the suspended load in the turning direction.
 また、本発明によって提供されるのはクレーンであって、当該クレーンは、下部本体と、前記下部本体に上下方向に延びる旋回中心軸回りに旋回可能に支持された上部本体と、前記上部本体に水平な回転中心軸回りに起伏方向に回動可能なように支持された起伏体基端部と、前記起伏体基端部とは反対の起伏体先端部とを含む起伏体と、前記起伏体先端部から垂下され吊荷に接続される吊荷ロープと、前記上部本体を前記旋回中心軸回りに第1旋回方向および前記第1旋回方向とは反対の第2旋回方向にそれぞれ旋回駆動することが可能な旋回駆動部と、前記上部本体を旋回駆動するための操作を受け付ける旋回用操作部であって、前記上部本体を前記第1旋回方向および前記第2旋回方向にそれぞれ旋回させるための旋回用位置と前記上部本体の旋回を停止させるための中立位置との間で切換可能な、旋回用操作部と、前記起伏体を前記回転中心軸回りに起伏方向に回動することが可能な起伏体駆動部と、前記起伏体を起伏するための操作を受け付ける起伏用操作部であって、前記起伏体を起伏させるための起伏用位置と前記起伏体の起伏を停止させるための中立位置との間で切換可能な、起伏用操作部と、前記吊荷ロープの巻き取りおよび繰り出しを行うことで前記吊荷を地面に対して相対的に昇降させることが可能な吊荷駆動部と、前記吊荷を昇降させるための操作を受け付ける昇降用操作部であって、前記吊荷を昇降させるための昇降用位置と前記吊荷の昇降を停止させるための中立位置との間で切換可能な、昇降用操作部と、上記の何れか1に記載のクレーンの旋回振れ止め装置と、を備える。 Further, what is provided by the present invention is a crane, which is provided on a lower main body, an upper main body rotatably supported around a turning central axis extending in the vertical direction on the lower main body, and the upper main body. An undulating body including a undulating body base end portion supported so as to be rotatable in the undulating direction around a horizontal center axis of rotation, and a undulating body tip portion opposite to the undulating body base end portion, and the undulating body. The crane that hangs down from the tip and is connected to the suspended load and the upper body are swiveled around the center axis of the swivel in the first swivel direction and in the second swivel direction opposite to the first swivel direction. It is a turning drive unit capable of turning and a turning operation unit that accepts an operation for turning and driving the upper main body, and is a turning for turning the upper main body in the first turning direction and the second turning direction, respectively. An undulating operation unit that can be switched between a working position and a neutral position for stopping the turning of the upper body, and an undulation that can rotate the undulating body around the center axis of rotation in the undulating direction. A body driving unit and an undulating operation unit that accepts an operation for undulating the undulating body, and a undulating position for undulating the undulating body and a neutral position for stopping the undulation of the undulating body. An undulating operation unit that can be switched between, a crane drive unit that can raise and lower the crane relative to the ground by winding and feeding the crane rope, and the crane. An elevating operation unit that accepts operations for raising and lowering a load, and can be switched between an elevating position for raising and lowering the suspended load and a neutral position for stopping the ascending and descending of the suspended load. The operation unit and the swing steady rest device for the crane according to any one of the above are provided.
 本構成によれば、クレーンの旋回動作によって起伏体に付与される慣性モーメントや吊荷の荷重によって起伏体に撓みなどの弾性変形が生じている場合でも、吊荷の旋回方向における振れを安定して収束させることが可能となる。 According to this configuration, even if the undulating body is elastically deformed such as bending due to the moment of inertia applied to the undulating body by the turning motion of the crane or the load of the suspended load, the swing of the suspended load in the turning direction is stabilized. It becomes possible to converge.
 本発明によれば、クレーンの旋回動作によって生じる吊荷の旋回振れを安定して収束させることが可能なクレーンの旋回振れ止め装置およびクレーンが提供される。 According to the present invention, there is provided a crane turning steady rest device and a crane capable of stably converging the turning runout of a suspended load caused by the turning operation of the crane.

Claims (8)

  1.  下部本体と、
     前記下部本体に上下方向に延びる旋回中心軸回りに旋回可能に支持された上部本体と、
     前記上部本体に水平な回転中心軸回りに起伏方向に回動可能なように支持され、起伏体基端部と、前記起伏体基端部とは反対の起伏体先端部とを含む起伏体と、
     前記起伏体先端部から垂下され吊荷に接続される吊荷ロープと、
     前記上部本体を前記旋回中心軸回りに第1旋回方向および前記第1旋回方向とは反対の第2旋回方向にそれぞれ旋回駆動することが可能な旋回駆動部と、
     前記上部本体を旋回駆動するための操作を受け付ける旋回用操作部であって、前記上部本体を前記第1旋回方向および前記第2旋回方向にそれぞれ旋回させるための旋回用位置と前記上部本体の旋回を停止させるための中立位置との間で切換可能な、旋回用操作部と、
     前記起伏体を前記回転中心軸回りに起伏方向に回動することが可能な起伏体駆動部と、
     前記起伏体を起伏するための操作を受け付ける起伏用操作部であって、前記起伏体を起伏させるための起伏用位置と前記起伏体の起伏を停止させるための中立位置との間で切換可能な、起伏用操作部と、
     前記吊荷ロープの巻き取りおよび繰り出しを行うことで前記吊荷を地面に対して相対的に昇降させることが可能な吊荷駆動部と、
     前記吊荷を昇降させるための操作を受け付ける昇降用操作部であって、前記吊荷を昇降させるための昇降用位置と前記吊荷の昇降を停止させるための中立位置との間で切換可能な、昇降用操作部と、
    を有するクレーンに搭載され、前記上部本体の旋回動作停止後に前記吊荷ロープに接続された前記吊荷が前記起伏体先端部を支点として前記上部本体の旋回方向に沿って振れる現象である吊荷の旋回振れを抑えることが可能なクレーンの旋回振れ止め装置であって、
     前記起伏体基端部と前記起伏体先端部とを結ぶ方向である起伏体長手方向における当該起伏体の長さに対応する情報である起伏体長さ情報を取得し出力する起伏体長さ情報取得部と、
     前記上部本体の前記旋回中心軸回りの旋回角を検出および出力する旋回角検出部と、
     前記回転中心軸回りの前記起伏体の起伏角を検出および出力する起伏角検出部と、
     前記起伏体先端部の前記旋回方向における変位である起伏体先端部変位を検出および出力する起伏体変位検出部と、
     前記起伏体先端部の前記旋回方向における速度である起伏体先端部速度を検出および出力する起伏体速度検出部と、
     前記起伏体先端部に対する前記吊荷の変位である吊荷変位を検出および出力する吊荷変位検出部と、
     前記起伏体先端部に対する前記吊荷変位の単位時間あたりの変化量である吊荷速度を検出および出力する吊荷速度検出部と、
     前記起伏体先端部と前記吊荷との間の前記吊荷ロープの長さに対応する情報であるロープ長さ情報を取得し出力するロープ長さ情報取得部と、
     前記吊荷の重量に関する情報である吊荷重量情報を取得し出力する吊荷重量情報取得部と、
     前記旋回用操作部が前記旋回用位置に設定されることに応じて前記旋回駆動部が前記上部本体を所定の旋回方向に旋回させたのち、前記旋回用操作部、前記起伏用操作部および前記昇降用操作部のすべての操作部が前記中立位置にそれぞれ設定されることで成立する旋回振れ止め制御開始条件が満たされているか否かを判断する制御開始条件判断部と、
     前記制御開始条件判断部によって前記旋回振れ止め制御開始条件が満たされていると判断されると、前記吊荷の前記旋回方向における変位である吊荷変位、前記吊荷の前記旋回方向における速度である吊荷速度、前記起伏体先端部変位、前記起伏体先端部速度、前記旋回角を含む複数の状態量について、所定の目標位置において前記吊荷を少なくとも前記旋回方向において静止させるための目標状態量をそれぞれ設定する目標状態量設定部と、
     前記起伏体長さ情報取得部から出力された前記起伏体長さ情報と、前記旋回角検出部から出力された前記旋回角と、前記起伏角検出部から出力された前記起伏角と、前記起伏体変位検出部から出力された前記起伏体先端部変位と、前記起伏体速度検出部から出力された前記起伏体先端部速度と、前記吊荷変位検出部から出力された前記吊荷変位と、前記吊荷速度検出部から出力された前記吊荷速度と、前記ロープ長さ情報取得部から出力された前記ロープ長さ情報と、前記吊荷重量情報取得部から出力された前記吊荷重量情報と、前記目標状態量設定部によって設定された前記複数の状態量の目標状態量とに基づいて、前記複数の状態量の現在値を演算する状態量演算部と、
     少なくとも前記起伏体の弾性変形に対応する項を含むように予め設定された前記吊荷の挙動に関する状態方程式であって前記上部本体の旋回速度を変数とする状態方程式に基づいて、前記複数の状態量にそれぞれ対応する複数の制御ゲインを設定する制御ゲイン設定部と、
     前記制御ゲイン設定部によって設定された前記複数の制御ゲインと、前記状態量演算部によって演算された前記複数の状態量の現在値とから、前記旋回速度の目標値である旋回目標速度を演算する旋回目標速度演算部と、
     前記上部本体の旋回速度が前記旋回目標速度演算部によって演算された前記旋回目標速度となるように、前記旋回駆動部に対して前記旋回目標速度に対応する指令情報を出力する指令情報出力部と、
     を備える、クレーンの旋回振れ止め装置。
    With the lower body
    An upper body supported by the lower body so as to be able to swivel around a swivel center axis extending in the vertical direction,
    An undulating body that is supported so as to be rotatable in the undulating direction around a rotation center axis horizontal to the upper body, and includes a undulating body base end portion and a undulating body tip portion opposite to the undulating body base end portion. ,
    A hanging rope hanging from the tip of the undulating body and connected to the hanging load,
    A swivel drive unit capable of swiveling and driving the upper body around the swivel center axis in the first swivel direction and in the second swivel direction opposite to the first swivel direction, respectively.
    A turning operation unit that accepts an operation for turning and driving the upper body, and a turning position for turning the upper body in the first turning direction and the second turning direction, and turning of the upper body. A swivel operation unit that can be switched between the neutral position for stopping and
    An undulating body driving unit capable of rotating the undulating body in the undulating direction around the rotation center axis,
    An undulating operation unit that accepts an operation for undulating the undulating body, and can be switched between an undulating position for undulating the undulating body and a neutral position for stopping the undulation of the undulating body. , The undulating operation part,
    A suspended load drive unit capable of raising and lowering the suspended load relative to the ground by winding and feeding the suspended load rope.
    An elevating operation unit that accepts operations for raising and lowering the suspended load, and can be switched between an elevating position for raising and lowering the suspended load and a neutral position for stopping the ascending and descending of the suspended load. , Elevating operation unit and
    This is a phenomenon in which the suspended load connected to the suspended load rope after the turning operation of the upper main body is stopped swings along the turning direction of the upper main body with the tip of the undulating body as a fulcrum. It is a crane turning steady rest device that can suppress the turning runout of the crane.
    A undulating body length information acquisition unit that acquires and outputs undulating body length information, which is information corresponding to the length of the undulating body in the undulating body longitudinal direction, which is the direction connecting the undulating body base end portion and the undulating body tip portion. When,
    A swivel angle detection unit that detects and outputs a swivel angle around the swivel center axis of the upper body,
    An undulation angle detection unit that detects and outputs the undulation angle of the undulating body around the rotation center axis,
    The undulating body displacement detecting unit that detects and outputs the displacement of the undulating body tip portion, which is the displacement of the undulating body tip portion in the turning direction,
    An undulating body speed detection unit that detects and outputs the undulating body tip speed, which is the speed of the undulating body tip in the turning direction.
    A suspended load displacement detecting unit that detects and outputs a suspended load displacement, which is a displacement of the suspended load with respect to the tip of the undulating body.
    A suspension speed detection unit that detects and outputs the suspension speed, which is the amount of change in the suspension displacement with respect to the tip of the undulating body per unit time.
    A rope length information acquisition unit that acquires and outputs rope length information, which is information corresponding to the length of the suspended load rope between the tip of the undulating body and the suspended load.
    A suspension load amount information acquisition unit that acquires and outputs suspension load amount information, which is information on the weight of the suspended load, and
    After the swivel drive unit swivels the upper main body in a predetermined swivel direction in response to the swivel operation unit being set to the swivel position, the swivel operation unit, the undulation operation unit, and the above-mentioned undulation operation unit. A control start condition determination unit that determines whether or not the turning steady rest control start condition that is established by setting all the operation units of the elevating operation unit to the neutral position is satisfied.
    When the control start condition determination unit determines that the swivel steady rest control start condition is satisfied, the suspension load displacement, which is the displacement of the suspended load in the swivel direction, and the speed of the suspended load in the swivel direction are used. For a plurality of state quantities including a certain suspended load speed, the displacement of the tip of the undulating body, the speed of the tip of the undulating body, and the turning angle, a target state for stopping the suspended load at least in the turning direction at a predetermined target position. Target state quantity setting unit that sets the quantity respectively,
    The undulating body length information output from the undulating body length information acquisition unit, the turning angle output from the turning angle detecting unit, the undulating angle output from the undulating angle detecting unit, and the undulating body displacement. The displacement of the tip of the undulating body output from the detection unit, the speed of the tip of the undulating body output from the speed detection unit of the undulating body, the displacement of the suspended load output from the suspended load displacement detecting unit, and the suspension. The suspension load speed output from the load speed detection unit, the rope length information output from the rope length information acquisition unit, and the suspension load amount information output from the suspension load amount information acquisition unit. A state amount calculation unit that calculates the current values of the plurality of state amounts based on the target state amounts of the plurality of state amounts set by the target state amount setting unit.
    The plurality of states based on a state equation relating to the behavior of the suspended load, which is preset to include at least a term corresponding to the elastic deformation of the undulating body, and in which the turning speed of the upper body is a variable. A control gain setting unit that sets multiple control gains corresponding to each quantity,
    The turning target speed, which is the target value of the turning speed, is calculated from the plurality of control gains set by the control gain setting unit and the current values of the plurality of state quantities calculated by the state quantity calculation unit. Turning target speed calculation unit and
    A command information output unit that outputs command information corresponding to the turning target speed to the turning drive unit so that the turning speed of the upper body becomes the turning target speed calculated by the turning target speed calculation unit. ,
    Crane swivel steady rest device.
  2.  請求項1に記載のクレーンの旋回振れ止め装置であって、
    前記吊荷変位検出部は、前記上部本体の旋回動作における径方向に沿って見た場合の前記吊荷ロープの鉛直方向に対する振れ角度を前記吊荷変位として検出および出力するロープ振れ角度検出部を含み、
     前記吊荷速度検出部は、前記吊荷ロープの前記振れ角度の単位時間あたりの変化量である振れ角速度を前記吊荷速度として検出および出力するロープ振れ角速度検出部を含む、クレーンの旋回振れ止め装置。
    The crane swivel steady rest device according to claim 1.
    The suspended load displacement detecting unit detects and outputs the deflection angle of the suspended load rope with respect to the vertical direction when viewed along the radial direction in the turning operation of the upper body as the suspended load displacement. Including
    The suspended load speed detecting unit includes a rope swing angular velocity detecting unit that detects and outputs a runout angular velocity, which is a change amount of the runout angle of the suspended load rope per unit time, as the suspended load speed. apparatus.
  3.  請求項1に記載のクレーンの旋回振れ止め装置であって、
    前記起伏体先端部に装着され、前記吊荷に関連付けられた目標物を撮影するとともに撮影した画像情報を出力する撮影装置と、
     前記撮影装置から出力された画像情報に基づいて、前記吊荷変位および前記吊荷速度をそれぞれ演算する演算部と、
     を更に備え、
     前記撮影装置および前記演算部は、前記吊荷変位検出部として前記吊荷変位を検出および出力し、前記吊荷速度検出部として前記吊荷速度を検出および出力する、クレーンの旋回振れ止め装置。
    The crane swivel steady rest device according to claim 1.
    An imaging device attached to the tip of the undulating body, which photographs a target object associated with the suspended load and outputs the photographed image information.
    A calculation unit that calculates the suspended load displacement and the suspended load speed, respectively, based on the image information output from the photographing device.
    Further prepare
    The photographing device and the calculation unit detect and output the suspended load displacement as the suspended load displacement detecting unit, and detect and output the suspended load speed as the suspended load speed detecting unit.
  4.  請求項1に記載のクレーンの旋回振れ止め装置であって、
    前記起伏体先端部から垂下される前記吊荷ロープの先端部に接続されるジャイロセンサを更に備え、
     前記吊荷変位検出部および前記吊荷速度検出部は、前記ジャイロセンサの出力に基づいて前記吊荷変位および前記吊荷速度をそれぞれ検出および出力する、クレーンの旋回振れ止め装置。
    The crane swivel steady rest device according to claim 1.
    Further provided with a gyro sensor connected to the tip of the suspended load rope hanging from the tip of the undulating body.
    The suspended load displacement detecting unit and the suspended load speed detecting unit detect and output the suspended load displacement and the suspended load speed, respectively, based on the output of the gyro sensor.
  5.  請求項1乃至4の何れか1項に記載のクレーンの旋回振れ止め装置であって、
    前記目標状態量設定部は、前記制御開始条件判断部によって前記旋回振れ止め制御開始条件が満たされていると判断されると、前記クレーンの平面視において前記起伏体が弾性変形していないと仮定した場合における前記起伏体先端部の鉛直下方の位置を前記目標位置として前記旋回角、前記起伏体先端部変位および前記吊荷変位の前記目標状態量をそれぞれ設定し、更に、前記吊荷速度および前記起伏体先端部速度の前記目標状態量をそれぞれゼロに設定する、クレーンの旋回振れ止め装置。
    The crane swivel steady rest device according to any one of claims 1 to 4.
    When the control start condition determination unit determines that the turning steady rest control start condition is satisfied, the target state amount setting unit assumes that the undulating body is not elastically deformed in the plan view of the crane. In this case, the position vertically below the tip of the undulating body is set as the target position, and the turning angle, the displacement of the tip of the undulating body, and the target state quantities of the suspended load displacement are set, respectively, and the suspended load speed and the suspended load speed are set. A crane swivel steady rest device that sets each of the target state quantities of the undulating body tip speed to zero.
  6.  請求項1乃至4の何れか1項に記載のクレーンの旋回振れ止め装置であって、
    前記制御ゲイン設定部は、前記複数の状態量と前記旋回速度とを含む重み付き和の時間に対する積分値が最も小さくなるように前記複数の制御ゲインを設定する、クレーンの旋回振れ止め装置。
    The crane swivel steady rest device according to any one of claims 1 to 4.
    The control gain setting unit is a crane swivel steady rest device that sets the plurality of control gains so that the integral value with respect to the time of the weighted sum including the plurality of state quantities and the swivel speed is the smallest.
  7. 請求項1乃至4の何れか1項に記載のクレーンの旋回振れ止め装置であって、
    前記クレーンは、
     前記起伏体として、
      前記上部本体に水平な第1回転中心軸回りに起伏方向に回動可能なように支持されたブーム基端部と、前記ブーム基端部とは反対のブーム先端部とを含む、ブームと、
     前記ブーム先端部に前記第1回転中心軸と平行な第2回転中心軸回りに起伏方向に回動可能なように支持されたジブ基端部と、前記ジブ基端部とは反対のジブ先端部であって前記吊荷ロープが当該ジブ先端部から垂下されることを許容するジブ先端部とを含む、ジブと、
     を有し、
     前記起伏体駆動部として、
      前記ブームを前記第1回転中心軸回りに起伏方向に回動することが可能なブーム駆動部と、
      前記ジブを前記第2回転中心軸回りに起伏方向に回動することが可能なジブ駆動部と、
     を有し、
     前記起伏用操作部として、
      前記ブームを起伏するための操作を受け付けるブーム起伏用操作部であって、前記ブームを起伏させるためのブーム起伏用位置と前記ブームの起伏を停止させるための中立位置との間で切換可能な、ブーム起伏用操作部と、
      前記ジブを起伏するための操作を受け付けるジブ起伏用操作部であって、前記ジブを起伏させるためのジブ起伏用位置と前記ジブの起伏を停止させるための中立位置との間で切換可能な、ジブ起伏用操作部と、
     有するものであって、
     前記起伏体長さ情報取得部は、
      前記ブーム基端部と前記ブーム先端部とを結ぶ方向であるブーム長手方向における当該ブームの長さに対応する情報であるブーム長さ情報を取得し出力するブーム長さ情報取得部と、
      前記ジブ基端部と前記ジブ先端部とを結ぶ方向であるジブ長手方向における当該ジブの長さに対応する情報であるジブ長さ情報を取得し出力するジブ長さ情報取得部と、
     を有し、
     前記起伏体変位検出部は、前記ジブ先端部の前記旋回方向における変位を前記起伏体先端部変位として検出および出力し、
     前記起伏体速度検出部は、前記ジブ先端部の前記旋回方向における速度を前記起伏体先端部速度として検出および出力し、
     前記起伏角検出部は、
      前記第1回転中心軸回りの前記ブームの起伏角を検出および出力するブーム起伏角検出部と、
      前記第2回転中心軸回りの前記ジブの起伏角を検出および出力するジブ起伏角検出部と、
     を有し、
     前記目標状態量設定部は、前記制御開始条件判断部によって前記旋回振れ止め制御開始条件が満たされていると判断されると、前記吊荷変位、前記吊荷速度、前記ジブ先端部の前記旋回方向における変位である前記起伏体先端部変位、前記ジブ先端部の前記旋回方向における速度である前記起伏体先端部速度、前記旋回角の複数の状態量について、前記目標状態量をそれぞれ設定し、
     前記状態量演算部は、前記ブーム長さ情報取得部および前記ジブ長さ情報取得部からそれぞれ出力された前記ブーム長さ情報および前記ジブ長さ情報と、前記旋回角検出部から出力された前記旋回角と、前記ブーム起伏角検出部から出力された前記ブーム起伏角と、前記ジブ起伏角検出部から出力された前記ジブ起伏角と、前記起伏体変位検出部から出力された前記起伏体先端部変位と、前記起伏体速度検出部から出力された前記起伏体先端部速度と、前記吊荷変位検出部から出力された前記吊荷変位と、前記吊荷速度検出部から出力された前記吊荷速度と、前記ロープ長さ情報取得部から出力された前記ロープ長さ情報と、前記吊荷重量情報取得部から出力された前記吊荷重量情報と、前記目標状態量設定部によって設定された前記複数の状態量の目標状態量とに基づいて、前記複数の状態量の現在値を演算する、クレーンの旋回振れ止め装置。
    The crane swivel steady rest device according to any one of claims 1 to 4.
    The crane
    As the undulating body
    A boom including a boom base end portion supported so as to be rotatable in an undulating direction around a first rotation center axis horizontal to the upper body, and a boom tip portion opposite to the boom base end portion.
    A jib base end portion supported on the boom tip portion so as to be rotatable in an undulating direction around a second rotation center axis parallel to the first rotation center axis, and a jib tip opposite to the jib base end portion. A jib and a portion that includes a jib tip that allows the suspended rope to hang from the jib tip.
    Have,
    As the undulating body drive unit,
    A boom drive unit capable of rotating the boom in the undulating direction around the first rotation center axis,
    A jib drive unit capable of rotating the jib around the second rotation center axis in an undulating direction,
    Have,
    As the undulating operation unit
    A boom undulating operation unit that accepts an operation for undulating the boom, and can be switched between a boom undulating position for undulating the boom and a neutral position for stopping the undulation of the boom. Boom undulating operation unit and
    A jib undulating operation unit that accepts an operation for undulating the jib, and can be switched between a jib undulating position for undulating the jib and a neutral position for stopping the undulation of the jib. Jib undulation operation unit and
    Have
    The undulating body length information acquisition unit
    A boom length information acquisition unit that acquires and outputs boom length information, which is information corresponding to the length of the boom in the boom longitudinal direction, which is the direction connecting the boom base end portion and the boom tip portion, and
    A jib length information acquisition unit that acquires and outputs jib length information that is information corresponding to the length of the jib in the jib longitudinal direction, which is the direction connecting the jib base end portion and the jib tip portion, and
    Have,
    The undulating body displacement detecting unit detects and outputs the displacement of the jib tip portion in the turning direction as the undulating body tip portion displacement, and outputs the displacement.
    The undulating body speed detecting unit detects and outputs the speed of the jib tip portion in the turning direction as the undulating body tip portion speed.
    The undulation angle detection unit
    A boom undulation angle detection unit that detects and outputs the undulation angle of the boom around the first rotation center axis, and
    A jib undulation angle detection unit that detects and outputs the undulation angle of the jib around the second rotation center axis, and
    Have,
    When the control start condition determination unit determines that the turning steady rest control start condition is satisfied, the target state amount setting unit determines the suspension displacement, the suspension speed, and the rotation of the jib tip. The target state quantities are set for the displacement of the tip of the undulating body, which is the displacement in the direction, the velocity of the tip of the undulating body, which is the velocity of the tip of the jib in the turning direction, and the plurality of state quantities of the turning angle.
    The state quantity calculation unit includes the boom length information and the jib length information output from the boom length information acquisition unit and the jib length information acquisition unit, respectively, and the rotation angle detection unit. The turning angle, the boom undulation angle output from the boom undulation angle detection unit, the jib undulation angle output from the jib undulation angle detection unit, and the undulation body tip output from the undulation body displacement detection unit. Part displacement, the undulating body tip speed output from the undulating body speed detection unit, the suspended load displacement output from the suspended load displacement detecting unit, and the suspension output from the suspended load speed detecting unit. It was set by the load speed, the rope length information output from the rope length information acquisition unit, the suspension load information output from the suspension load amount information acquisition unit, and the target state amount setting unit. A swing steady rest device for a crane that calculates the current values of the plurality of state quantities based on the target state quantities of the plurality of state quantities.
  8.  下部本体と、
     前記下部本体に上下方向に延びる旋回中心軸回りに旋回可能に支持された上部本体と、
     前記上部本体に水平な回転中心軸回りに起伏方向に回動可能なように支持された起伏体基端部と、前記起伏体基端部とは反対の起伏体先端部とを含む起伏体と、
     前記起伏体先端部から垂下され吊荷に接続される吊荷ロープと、
     前記上部本体を前記旋回中心軸回りに第1旋回方向および前記第1旋回方向とは反対の第2旋回方向にそれぞれ旋回駆動することが可能な旋回駆動部と、
     前記上部本体を旋回駆動するための操作を受け付ける旋回用操作部であって、前記上部本体を前記第1旋回方向および前記第2旋回方向にそれぞれ旋回させるための旋回用位置と前記上部本体の旋回を停止させるための中立位置との間で切換可能な、旋回用操作部と、
     前記起伏体を前記回転中心軸回りに起伏方向に回動することが可能な起伏体駆動部と、
     前記起伏体を起伏するための操作を受け付ける起伏用操作部であって、前記起伏体を起伏させるための起伏用位置と前記起伏体の起伏を停止させるための中立位置との間で切換可能な、起伏用操作部と、
     前記吊荷ロープの巻き取りおよび繰り出しを行うことで前記吊荷を地面に対して相対的に昇降させることが可能な吊荷駆動部と、
     前記吊荷を昇降させるための操作を受け付ける昇降用操作部であって、前記吊荷を昇降させるための昇降用位置と前記吊荷の昇降を停止させるための中立位置との間で切換可能な、昇降用操作部と、
     請求項1乃至7の何れか1項に記載のクレーンの旋回振れ止め装置と、
     を備える、クレーン。
    With the lower body
    An upper body supported by the lower body so as to be able to swivel around a swivel center axis extending in the vertical direction,
    An undulating body including a undulating body base end portion supported so as to be rotatable in an undulating direction around a rotation center axis horizontal to the upper body, and a undulating body tip portion opposite to the undulating body base end portion. ,
    A hanging rope hanging from the tip of the undulating body and connected to the hanging load,
    A swivel drive unit capable of swiveling and driving the upper body around the swivel center axis in the first swivel direction and in the second swivel direction opposite to the first swivel direction, respectively.
    A turning operation unit that accepts an operation for turning and driving the upper body, and a turning position for turning the upper body in the first turning direction and the second turning direction, and turning of the upper body. A swivel operation unit that can be switched between the neutral position for stopping and
    An undulating body driving unit capable of rotating the undulating body in the undulating direction around the rotation center axis,
    An undulating operation unit that accepts an operation for undulating the undulating body, and can be switched between an undulating position for undulating the undulating body and a neutral position for stopping the undulation of the undulating body. , The undulating operation part,
    A suspended load drive unit capable of raising and lowering the suspended load relative to the ground by winding and feeding the suspended load rope.
    An elevating operation unit that accepts operations for raising and lowering the suspended load, and can be switched between an elevating position for raising and lowering the suspended load and a neutral position for stopping the ascending and descending of the suspended load. , Elevating operation unit and
    The crane swivel steady rest device according to any one of claims 1 to 7.
    Equipped with a crane.
PCT/JP2020/036736 2019-09-30 2020-09-28 Turning swing stopping device for crane and crane equipped therewith WO2021065835A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-179384 2019-09-30
JP2019179384 2019-09-30
JP2020-147475 2020-09-02
JP2020147475A JP2021054655A (en) 2019-09-30 2020-09-02 Slewing swing prevention control device for crane and crane equipped with the device

Publications (1)

Publication Number Publication Date
WO2021065835A1 true WO2021065835A1 (en) 2021-04-08

Family

ID=75269700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036736 WO2021065835A1 (en) 2019-09-30 2020-09-28 Turning swing stopping device for crane and crane equipped therewith

Country Status (2)

Country Link
JP (1) JP2021054655A (en)
WO (1) WO2021065835A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254784A (en) * 1992-03-16 1993-10-05 Kobe Steel Ltd Method and device for controlling turn stop of crane
JPH0769584A (en) * 1993-08-31 1995-03-14 Tadano Ltd Automatic rotation control device for rotary crane
JP2008074579A (en) * 2006-09-22 2008-04-03 Tadano Ltd Load swing stopper of crane
WO2019007541A1 (en) * 2017-07-03 2019-01-10 Liebherr-Components Biberach Gmbh Crane and method for controlling such a crane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05254784A (en) * 1992-03-16 1993-10-05 Kobe Steel Ltd Method and device for controlling turn stop of crane
JPH0769584A (en) * 1993-08-31 1995-03-14 Tadano Ltd Automatic rotation control device for rotary crane
JP2008074579A (en) * 2006-09-22 2008-04-03 Tadano Ltd Load swing stopper of crane
WO2019007541A1 (en) * 2017-07-03 2019-01-10 Liebherr-Components Biberach Gmbh Crane and method for controlling such a crane

Also Published As

Publication number Publication date
JP2021054655A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
US11919749B2 (en) Crane, and method for controlling such a crane
JP7069888B2 (en) Crane and crane control method
JP6834887B2 (en) crane
CN114341046A (en) Crane and method for controlling the same
WO2021065835A1 (en) Turning swing stopping device for crane and crane equipped therewith
JP7299123B2 (en) Auxiliary device for horizontal movement of suspended load, crane equipped with same, method for horizontal movement of suspended load
WO2021060463A1 (en) Control system and work machine
WO2020166721A1 (en) Dynamic lift-off control device, and crane
JP2019001584A (en) crane
JP7414672B2 (en) Crane swivel rest device and crane equipped with the same
JP7031315B2 (en) Height adjustment assist device, crane equipped with this and height adjustment method
JP7172256B2 (en) crane
JP6729842B2 (en) crane
WO2023085388A1 (en) Crane anti-sway device and crane equipped with same
WO2019167893A1 (en) Crane and method for acquiring length of slinging tool
WO2023176675A1 (en) Hook position calculation device
JP2021050083A (en) Hanging load rope oscillating angle detection device and crane equipped with the same
JP7151223B2 (en) Cranes and crane control methods
WO2021246491A1 (en) Dynamic lift-off control device, and crane
JP7396495B2 (en) Ground cutting control device and mobile crane
JP2011219213A (en) Crane
WO2020166690A1 (en) Lifting control device and mobile crane
JP7310479B2 (en) Vibration suppression device and work vehicle provided with vibration suppression device
WO2020166688A1 (en) Dynamic-lift-off determination device, dynamic-lift-off control device, mobile crane, and dynamic-lift-off determination method
WO2020235685A1 (en) Work vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871419

Country of ref document: EP

Kind code of ref document: A1