WO2021065744A1 - Ceramic article assessment method and ceramic article production method - Google Patents

Ceramic article assessment method and ceramic article production method Download PDF

Info

Publication number
WO2021065744A1
WO2021065744A1 PCT/JP2020/036426 JP2020036426W WO2021065744A1 WO 2021065744 A1 WO2021065744 A1 WO 2021065744A1 JP 2020036426 W JP2020036426 W JP 2020036426W WO 2021065744 A1 WO2021065744 A1 WO 2021065744A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
specimen
raw material
ceramic article
test
Prior art date
Application number
PCT/JP2020/036426
Other languages
French (fr)
Japanese (ja)
Inventor
裕史 前野
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021551202A priority Critical patent/JP7392729B2/en
Publication of WO2021065744A1 publication Critical patent/WO2021065744A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Definitions

  • the present invention relates to an evaluation method and a manufacturing method for ceramic articles.
  • various moldings such as pressure molding, cold hydrostatic molding (CIP), hot hydrostatic molding (HIP), injection molding, casting molding, extrusion molding, etc. are performed using ceramic powder as a raw material to be used.
  • the method can be used to produce ceramic products of various shapes. And, in order to make the obtained ceramic parts have better characteristics, various measures have been taken here as well.
  • a ceramic molded product containing a curable resin and a solvent is made into a cured product by heat treatment or the like, and ceramics with few cracks, high shape retention, excellent dimensional accuracy, and excellent physical properties when made into a sintered body.
  • a method for producing a molded product is known.
  • ceramic balls used for rolling bearings are required to have high strength and extremely high sphericity.
  • a molding process of compacting the ceramic raw material powder, a primary firing process of firing at a high temperature, and high temperature / high pressure such as HIP (hot hydrostatic press) or gas pressure firing are performed.
  • a ceramic element sphere is produced through a secondary firing process in which the ceramic element is fired below, and the obtained ceramic element ball is further polished and finished to have a high sphericity by mechanical polishing or the like.
  • the strength of such spherical ceramic balls can be confirmed by a so-called crushing test in which two product balls are arranged and crushed by applying a compressive load. It is done (see, for example, Patent Document 1 and Non-Patent Document 1).
  • the test apparatus 50 for a crushing test is composed of a lower member 51, an upper member 52, and an auxiliary member 53 that can hold two ceramic balls 100A and 100B in an overlapping manner.
  • the lower member 51 and the upper member 52 each have a conical recess so that the ceramic balls 100A and 100B can be stably held.
  • the test apparatus 50 is shown in cross section.
  • one aspect of the present invention is to provide a novel method for evaluating a ceramic article that can be replaced with a crushing test using a spherical sample in order to evaluate the strength of the ceramic article. ..
  • Another object of the present invention is to provide a method for manufacturing a ceramic article, which efficiently manufactures a ceramic article having desired characteristics by using such an evaluation method.
  • a cylindrical ceramic specimen is produced by using a ceramic raw material for forming the ceramic article, and the two sides of the ceramic specimen are brought into contact with each other.
  • the ceramic article is subjected to a crushing test, and the strength of the ceramic article is evaluated based on the result of the crushing test.
  • a raw material slurry in which a ceramic powder, a resin, a curing agent and a solvent are mixed is prepared as a ceramic raw material, and the raw material slurry is injected into a molding die to form the molding die.
  • the resin in the raw material slurry injected into is cured to prepare a molded body having a desired shape, the molded body is demolded from the molding die, and then the molded body is dried, degreased, and degreased.
  • Each process of firing was performed in this order to prepare a ceramic article, and the raw material slurry was injected into a specimen molding die for forming a cylindrical ceramic specimen, and then injected into the specimen molding die.
  • the resin in the raw material slurry is cured to prepare a cylindrical molded body, the cylindrical molded body is demolded from the sample molding die, and then dried with respect to the cylindrical molded body. , Degreasing and firing are performed in this order to prepare a ceramic specimen, and the ceramic article of the present invention is evaluated on the ceramic specimen to determine whether or not the production of the ceramic article can be continued. , Characterized by that.
  • the evaluation method for ceramic articles since the maximum stress is generated inside, the original strength of the material can be evaluated regardless of the processing quality of the surface as in the evaluation sample for bending test. It is possible, and it is possible to evaluate the proper manufacturing process and product characteristics. Further, in one aspect of the present invention, since the sample shape to be used is a cylindrical shape, the shape accuracy required is not strict as compared with the conventional spherical sample for crushing test, and labor for preparing the same number of samples, Costs and the like can be greatly reduced as compared with spherical samples. Therefore, the time and cost required for evaluation can be significantly reduced from the conventional crushing test.
  • the method for producing a ceramic article it is possible to confirm whether or not the characteristics of the ceramic article to be produced are sufficient to produce the ceramic article. Therefore, when the characteristics are not sufficient, the manufacturing conditions can be reviewed, and the production and shipment of the product having the desired characteristics can be efficiently performed.
  • FIG. 1 is a perspective view showing an arrangement example of ceramic specimens in the evaluation method for ceramic articles of the present invention.
  • FIG. 2 is a diagram showing an example of support for the ceramic specimen of FIG.
  • FIG. 3 is a diagram showing another example of supporting the ceramic specimen of FIG.
  • FIG. 4 is a diagram showing still another example of the support of the ceramic specimen of FIG.
  • FIG. 5 is a diagram showing still another example of the support of the ceramic specimen of FIG.
  • FIG. 6 is a flowchart showing an example of a method for manufacturing a ceramic article of the present invention.
  • FIG. 7 is a diagram showing an example of supporting a specimen (product) for a crushing test using a conventional ceramic ball.
  • the ceramic specimen in this embodiment is a cylindrical ceramic specimen.
  • This ceramic specimen is a cylindrical ceramic body (sintered body) obtained by processing the same ceramic raw material as the ceramic article to be evaluated under the same conditions.
  • the ceramic raw material used here includes ceramic powder and an auxiliary material suitable for ceramic molding used for shape imparting.
  • those containing ceramic powder, additives such as organic substances, and solvents such as water are exemplified.
  • any ceramic raw material suitable for a known ceramic molding method may be used, and the present invention is not particularly limited.
  • the ceramic powder to which an organic binder is added may be powdered as it is, or may be granulated into granules.
  • the ceramic powder may be formed into a slurry together with a resin and a dispersant or a curable resin and a curing agent.
  • it may be in the form of a kneaded product obtained by kneading ceramic powder with a fluidity-imparting material such as resin.
  • the molding method is not particularly limited, and the above-mentioned molding method may be appropriately adopted.
  • the cylindrical specimen molding die for example, a molding die having a cylindrical cavity or a cylindrical syringe is used.
  • a ceramic raw material may be injected into a cylindrical specimen molding die to obtain a cylindrical molded body.
  • a part of the slurry transport pipe may be opened and closed and used as it is as a production mold for a cylindrical shape.
  • a part of the pipe may be made of a disposable material such as resin, and the pipe in that part may be removed and used as a sample as it is.
  • a part of the pipe may be branched and a jig or the like for preparing a sample may be attached to the branch. That is, any mold such as a syringe, a pipe, and a jig that can give a shape other than a general mold can be used as a mold for a specimen of the present embodiment. Further, it is also possible to obtain a cylindrical ceramic body (sintered body) by cutting out from a molded body or a sintered body once produced in a block shape and performing processing such as grinding.
  • the size of the ceramic specimen used at this time is not particularly limited, but if it is large, the amount of raw materials used for producing the ceramic specimen is large, and it takes time during processing such as molding and firing.
  • the diameter of the ceramic specimen is preferably 2 mm to 50 mm, more preferably 5 mm to 20 mm, and even more preferably 8 mm to 15 mm.
  • the axial length of the ceramic specimen is preferably 5 mm to 100 mm, more preferably 10 mm to 50 mm, still more preferably 15 mm to 30 mm.
  • the same can be applied to the evaluation of processing conditions after the preparation of raw materials.
  • the treatment conditions include curing conditions, demolding conditions, drying conditions, degreasing conditions, firing conditions, and the like.
  • the manufacturing conditions of the ceramic article of the final product and the conditions of sufficiently treating the inside of the cylindrical ceramic specimen are equal to each other (with the deepest part of the ceramic article).
  • the processing conditions can also be evaluated by adjusting the size of the ceramic specimen (so that the firing near the axis of the ceramic specimen can be evaluated equally).
  • crushed test Next, a crushing test is performed on the cylindrical ceramic specimen prepared as described above.
  • the crushing test can be carried out by using two ceramic specimens, bringing their side surfaces into contact with each other, and applying a compressive load until the ceramic specimens are crushed. In this respect, the same operation may be performed except for the shape of the ceramic specimen used, which is different from that of the spherical ceramic specimen.
  • FIG. 1 shows a schematic view when the axes of the ceramic specimens 1A and 1B are orthogonal to each other and stacked vertically.
  • FIG. 2 shows a schematic configuration of a test apparatus for a crushing test capable of holding a ceramic specimen as shown in FIG. 1 above.
  • the test apparatus 10 shown in FIG. 2 compresses the lower member 11 that supports the lower ceramic specimen 1A from the lower part and the upper ceramic specimen 1B from the upper part, and applies a compressive load to the ceramic specimens 1A and 1B. It is composed of an upper member 12 and an auxiliary member 13 that assists the ceramic specimens 1A and 1B in a predetermined arrangement.
  • FIG. 2 shows a front view of the test device 10 as (a) and a side view of the test device 10 as (b). In these figures, only the auxiliary member 13 is shown in a cross-sectional view in order to show the holding states of the ceramic specimens 1A and 1B inside the test apparatus 10.
  • FIG. 2 shows an example in which the pedestal forming the contact portion is a ball pedestal. Further, the sphere pedestal has a curvature larger than the curvature of the circles (cross sections) of the ceramic specimens 1A and 1B so that the maximum stress is generated near the contact surface between the ceramic specimens in this test.
  • the auxiliary member 13 has a support portion extending in the horizontal direction inside the ceramic specimens 1A and 1B so as to support the ceramic specimens 1A and 1B from the side surface so that their axes are orthogonal to each other.
  • the material of the test apparatus 10 is not particularly limited as long as it can perform a crushing test well.
  • the Young's modulus of the constituent material is formed of a material having a Young's modulus smaller than that of the ceramic specimen. This makes it possible to properly carry out a crushing test of the ceramic specimen and evaluate the strength of the ceramic article itself.
  • This crushing test can be performed in the same operation as the test using a conventional ceramic ball, except that the specimen is different. That is, when the test apparatus 10 is used, the ceramic specimens 1A and 1B are held so as to have the arrangement shown in FIG. 1, and the upper member 12 applies a compressive load from above to below to make the ceramic specimens. The load is gradually increased until 1A and 1B are crushed, and the compressive load at the time of crushing can be evaluated as the crushing strength.
  • the maximum tensile stress is generated inside the contact points of the ceramic specimens 1A and 1B, causing median cracks, which trigger macroscopic fracture. Conceivable. In fact, from the ceramic specimens 1A and 1B that were fractured after the test, it was confirmed that the maximum tensile stress (starting point of fracture) was generated inside rather than on the surface.
  • test device instead of the test device 10 in which the pedestal is a ball pedestal, the test device 20 shown in FIG. 3 in which the pedestal is an inclined cylindrical pedestal, and FIG. 4 in which the pedestal is a two-point ball pedestal.
  • the test device 30 shown and the test device 40 shown in FIG. 5 in which the pedestal is a cylindrical pedestal without inclination can also be used.
  • test devices 20, 30, 40 are basically composed of lower members 21, 31, 41, upper members 22, 32, 42, and auxiliary members 23, 33, 43, similarly to the test device 10.
  • the axes of the ceramic specimens 1A and 1B are orthogonal to each other and can be brought into contact with each other and held.
  • the lower members 21, 31, 41 and the upper members 22, 32, 42 differ only in the shape (the shape of the pedestal) for holding the ceramic specimen.
  • the two cylindrical support portions are inclined and extended.
  • two spherical supports are projected.
  • one cylindrical support portion extends without inclination.
  • Each of the test devices 20, 30 and 40 has a structure of being supported from below and above the ceramic specimen. In these test devices 20 and 30, two contact portions between the support portion and the ceramic specimen are arranged in a direction orthogonal to the axis of the ceramic specimen.
  • This crushing test is carried out with a plurality of sets of ceramic specimens, and the crushing strength of the ceramic article obtained by using the above ceramic raw materials is measured.
  • the load value when the ceramic specimen is crushed is used as it is as the crushing strength.
  • Weibull distribution is also considered in addition to the calculation of crushing strength.
  • the Weibull distribution is understood as a fracture model of ceramic articles (weakest link model). Here, as an example, it is calculated by the Weibull statistical analysis method of the strength data of JIS R 1625: 2010 fine ceramics.
  • the ceramic article is evaluated based on the result obtained by the above crushing test.
  • the evaluation of the ceramic article can be evaluated based on whether or not the strength required for the ceramic article is satisfied. That is, when a ceramic article is produced using the ceramic raw material of the ceramic specimen used in the test, it can be confirmed whether or not the ceramic article has the required strength.
  • the criteria for this evaluation can be set arbitrarily from the viewpoint of application and quality assurance.
  • the crushing strength of a cylinder having a diameter of 10 mm may be set to 20 kN or more.
  • the crushing strength may be set to 25 kN or more.
  • the Weibull coefficient is preferably 10 or more, and more preferably 15 or more.
  • the ceramic specimen satisfying this evaluation standard is a ceramic article in which the raw material slurry used is good and the ceramic body obtained by the same treatment also satisfies the required quality. Further, in addition to the good raw material slurry, it can be evaluated that the treatment was good in each of the subsequent steps of molding, demolding, drying, degreasing, and firing.
  • the method for manufacturing a ceramic article according to an embodiment of the present invention includes a ceramic article manufacturing step, a ceramic specimen manufacturing step, and a determination step. Then, in both the ceramic article manufacturing step and the ceramic specimen manufacturing step, a ceramic raw material is prepared, the ceramic raw material is molded into a desired shape by a molding die, and the obtained molded body is dried, degreased, and subjected to drying and degreasing. Each process of firing is performed in this order (FIG. 6). Hereinafter, each of these operations will be described in detail.
  • the ceramic raw material used here is not particularly limited as long as it can produce a ceramic article. Specific examples thereof include ceramic raw materials exemplified in the above-mentioned evaluation method for ceramic articles.
  • a slurry-like ceramic raw material obtained by mixing a ceramic powder with a resin, a curing agent and a solvent is preferable.
  • the ceramic raw material obtained by containing the resin in this way the curing action at the time of molding is obtained by the function of the resin, so that the size and shape of the molded body have little influence on the density of the molded body, and thus the molding is performed. This is because there is little fluctuation in body density and the like, and the characteristics between the article as a product and the specimen can be equated as they are.
  • the size of the ceramic specimen for testing is reduced for a large-sized ceramic article (final product)
  • the fluctuation of the result is small. Since the size of the ceramic specimen can be reduced, the consumption of the raw material slurry for the crushing test can be suppressed to a very low level. In this case, the influence on the cost on the amount of raw materials used can be reduced.
  • the ceramic powder used here is not particularly limited as long as it becomes ceramics by sintering, and known ceramic powders can be mentioned.
  • the ceramic powder include oxide ceramics such as aluminum oxide (alumina), zirconium oxide (zirconia), silicon oxide (silica) and cordierite, and nitrides such as silicon nitride, aluminum nitride and sialon (also referred to as SiAlON).
  • oxide ceramics such as aluminum oxide (alumina), zirconium oxide (zirconia), silicon oxide (silica) and cordierite
  • nitrides such as silicon nitride, aluminum nitride and sialon (also referred to as SiAlON).
  • examples thereof include ceramics and carbide ceramics such as silicon carbide. One of these may be used alone, or two or more thereof may be mixed and used.
  • the ceramic powder preferably has a 50% particle size D 50 of less than 1.0 ⁇ m so that a stable sintered body can be obtained in the sintering step described later. If the 50% particle size D 50 is 1.0 ⁇ m or more, molding defects may occur due to particle sedimentation in the slurry, which may lead to a decrease in sintering density.
  • the 50% particle size D 50 is more preferably 0.8 ⁇ m or less, still more preferably 0.6 ⁇ m or less. Further, when the particle size D 50 of the ceramic powder is 0.1 ⁇ m or more, it is preferable because it is easy to prevent scattering, clogging and procurement during handling. In the present specification, 50% particle size D 50 refers to a value measured by a laser diffraction type particle size distribution device.
  • the structure obtained by sintering is such that the main phase crystal particles containing silicon nitride as a main component are bonded to glassy and / or crystalline materials. It will be in a phase-bonded form.
  • the silicon nitride powder a powder having a silicon nitride pregelatinization rate of 70% or more is preferable, and the pregelatinization rate is more preferably 80% or more, further preferably 90% or more. If the powder has an pregelatinization rate of less than 70%, the effect of incorporating the needle-like structure during the phase transition from ⁇ to ⁇ during sintering cannot be sufficiently obtained, and the strength is lowered. If the powder has a pregelatinization rate of 90% or more, a sufficient incorporation effect can be obtained and a sintered body having high strength, particularly toughness, can be obtained.
  • the silicon nitride powder preferably contains 85% by mass or more of silicon nitride having a pregelatinization rate of 70% or more, and more preferably 92% by mass or more.
  • a sintering aid Group 2 (alkaline earth metal), Group 3 (rare earth (carbon group)), Group 4 (titanium), Group 5 (metal acid metal (vanadium)), 1% by mass to 15% by mass of a sintering aid containing at least one selected from the group 13 (boron group (earth metal)) and 14th group (carbon group) element groups based on the oxide. It is preferably contained, and more preferably 2% by mass to 8% by mass. In order to obtain a uniform and high-strength sintered body, it is preferable that the content of the sintering aid is small, but if it is less than 1% by mass, it may be difficult to obtain a sintered body.
  • the resin is a component for molding a ceramic raw material into a desired shape in a curing step described later, and examples thereof include known curable resins.
  • a resin that is required to have good shape retention by a curing step and forms a three-dimensional network structure by a polymerization reaction is used.
  • the mixture is liquid in that the fluidity of the mixture is increased and the filling property into the molding die is good.
  • the resin can be easily removed from the ceramic molded product in the degreasing operation after curing and before sintering.
  • resins include epoxy resins, phenol resins, melamine resins, acrylic acid resins, urethane resins and the like.
  • epoxy resin is preferably used because it has good shape retention.
  • the epoxy resin include glycidyl ether type epoxy resin of bisphenols such as bisphenol A type and bisphenol F type, phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidylamine type epoxy resin, and glycidyl such as aliphatic epoxy resin.
  • examples thereof include ether type epoxy resin, glycidyl ester type epoxy resin, methyl glycidyl ether type epoxy resin, cyclohexene oxide type epoxy resin, and rubber-modified epoxy resin.
  • the number average molecular weight of the epoxy resin is preferably 20,000 to 30,000.
  • the number average molecular weight of the epoxy resin is more preferably 50 to 3000, still more preferably 50 to 2500, because it is easy to mix with the powder and a constant mechanical strength can be obtained.
  • the curing agent cures the resin and is selected according to the resin to be used.
  • this curing agent include amine-based curing agents, acid anhydride-based curing agents, and polyamide-based curing agents.
  • the amine-based curing agent is preferable in that the reaction is quick, and the acid anhydride-based curing agent is preferable in that a cured product having excellent thermal shock resistance can be obtained.
  • Examples of the amine-based curing agent include aliphatic amines, alicyclic amines, and aromatic amines, and any of monoamine, diamine, triamine, and polyamine can be used.
  • Examples of the acid anhydride-based curing agent include methyltetrahydrophthalic anhydride and dibasic acid polyanhydride.
  • the solvent adjusts the viscosity of the mixture of raw materials to be used to form a slurry, which facilitates filling of the raw material slurry into the molding die.
  • the solvent used here for example, water, alcohols, and other organic solvents can be used. Among them, water or a water system containing water as a main component is preferable from the viewpoint of manufacturing cost and environmental load.
  • the combination of the resin and the solvent has a good affinity. If the affinity is poor, it may separate and segregate inside the molded product, which may cause defects such as pores during sintering.
  • the above-mentioned ceramic powder, resin, curing agent and solvent are mixed to prepare a raw material slurry.
  • mixing may be performed by a known method, for example, a dissolver, a homomixer, a kneader, a roll mill, a sand mill, a ball mill, a bead mill, a vibrator mill, a high-speed impeller mill, an ultrasonic homogenizer, a shaker, a planetary mill, and a self-revolution.
  • examples include mixers and in-line mixers.
  • the slurry containing the resin and the slurry containing the curing agent are separately prepared and used. Sometimes these may be mixed.
  • the ceramic powder may be mixed with either slurry, may be mixed with both slurries, and a slurry containing the ceramic powder may be prepared separately. Above all, it is preferable to mix the ceramic powder with both slurries containing each of the resin and the curing agent and prepare them at the same concentration because the concentration fluctuation and the like are small when mixed and stable operation is possible. ..
  • the viscosity of the raw material slurry obtained here may be any viscosity as long as it can be easily filled in the slurry injection described later.
  • the viscosity at a shear rate of 10 [1 / s] is preferably 50 Pa ⁇ s or less, and 20 Pa ⁇ s. The following is more preferable.
  • the viscosity of the raw material slurry is more preferably in the range of 0.1 Pa ⁇ s to 10 Pa ⁇ s. This viscosity can be easily adjusted by adjusting the amount of solvent used and the amount of resin added in the raw materials used.
  • air or the like may be entrained by the mixing in the raw material mixing, and gas may be contained in the obtained raw material slurry. Therefore, it is preferable to perform a defoaming treatment in order to remove the gas contained in the raw material slurry before the next slurry injection. If gas is contained in the raw material slurry, pores due to air bubbles may be generated inside in the curing process and may remain in the ceramic article obtained by firing.
  • the raw material slurry may be defoamed in a reduced pressure state, and a defoaming pump (vacuum pump), a defoaming mixer, or the like can be used. Defoaming may be performed, for example, for 1 minute to 5 minutes under a reduced pressure of 0.6 kPa to 10 kPa.
  • a defoaming mixer When a defoaming mixer is used, the raw material mixing treatment and the defoaming treatment can be performed at the same time. Examples of the defoaming mixer used here include a rotation / revolution mixer equipped with a vacuum pump, a planetary mixer, and the like.
  • the ceramic article and the ceramic specimen are prepared respectively. These fabrication operations will be described in detail below.
  • Slurry injection is a step of injecting the raw material slurry obtained through the above-mentioned raw material mixing and defoaming into a molding die (S2).
  • the molding die used here has a predetermined shape for producing a product shape, and a conventionally known molding die or an arbitrary molding die can be used.
  • As the molding mold various molds such as a mold, a resin mold, a styrofoam mold, a rubber mold, and an elastic container can be used.
  • a device capable of sending the raw material slurry and supplying it into the mold may be used.
  • pumps such as a diaphragm pump, a tube pump, and a syringe pump are generally mentioned.
  • a rotary positive displacement diaphragm pump equipped with a precision constant velocity cam having a structure that does not generate pulsation is preferable.
  • an in-line mixer or the like that can send a liquid while mixing raw materials to prepare a raw material slurry can also be used. When an in-line mixer is used, the raw material mixing step and the slurry injection step can be carried out at the same time.
  • both slurries are mixed and immediately sent to a molding mold for filling. It is possible and preferable.
  • the resin component in the raw material slurry is cured to form the ceramic raw material into a desired shape (S3).
  • desired curing conditions are appropriately selected and cured according to the characteristics of the raw material slurry.
  • the reaction starts from the time when the slurry containing the resin component and the slurry containing the curing agent component are mixed and cured, so that the slurry may be left for a predetermined time.
  • the curing time is about 1 hour to 3 days, preferably 1 hour to 24 hours, and more preferably 1 hour to 12 hours from the viewpoint of production efficiency.
  • a heat-curing type raw material slurry it is sufficient to heat it to a desired temperature and secure a sufficient curing time.
  • it may be heat-cured at 80 ° C. to 150 ° C. for 5 minutes to 120 minutes.
  • 80 ° C. to 100 ° C. for 5 minutes to 90 minutes is preferable, and 80 ° C. to 100 ° C. for 5 minutes to 60 minutes is more preferable.
  • the demolding treatment is a treatment for taking out the molded product of the ceramic raw material cured by the curing treatment from the molding mold (S4).
  • This demolding process may be performed by a conventionally known method, for example, disassembling the split mold, extruding the molded product from the mold to the outside, or destroying the mold in some cases. , The inner molded body may be taken out and removed from the mold.
  • the drying treatment is a treatment of removing water, a volatile solvent, and the like from the molded product obtained by the demolding treatment and drying the molded product (S5).
  • the molded product is gently dried so as not to cause cracks or the like. That is, the molded product is dried while preventing the occurrence of cracks and the like due to shrinkage stress due to the difference in drying speed between the surface and the inside of the molded product.
  • the conditions of this drying treatment include, for example, 25 ° C. to 30 ° C., relative humidity of 60% to 95%, relatively mild conditions such as 48 hours to 7 days, and moisture contained in the molded product over a long period of time. There are conditions for removing.
  • the drying is preferably performed so that the water content of the molded product is 20% or less with respect to the mass at the time of absolute drying.
  • the degreasing treatment is a treatment for removing the resin, the non-volatile solvent, etc. from the molded product obtained by the drying treatment (S6). In this treatment, it is preferable to almost completely remove the components that inhibit sintering in the next sintering treatment. If a large amount of such a component remains, pores may be generated in the sintered body during sintering, or carbides may be generated as by-products, and the characteristics required for the final product may not be obtained. There is.
  • Examples of the conditions for this degreasing treatment include conditions for removing the resin component and the like contained in the molded product at 400 ° C. to 800 ° C. over a relatively long time such as 2 days to 14 days.
  • the amount of residual carbon in the molded product is preferably 200 ppm or less. This does not apply to carbides such as silicon carbide.
  • the firing treatment is a treatment of sintering a ceramic raw material into a ceramic article by firing the molded product that has undergone the degreasing treatment (S7).
  • the mixed powder is sintered to obtain ceramics, which may be produced by a known firing method.
  • the firing conditions in the firing process are not particularly limited as long as the ceramic body can be obtained by firing.
  • an atmosphere having an oxygen concentration of 50 ppm or less is preferable under a nitrogen atmosphere.
  • the maximum firing temperature in this treatment is 1800 ° C. or lower at which silicon nitride begins to thermally decompose, and the maximum temperature is preferably in the range of 1650 ° C. to 1750 ° C.
  • the firing time is preferably in the range of 4 hours to 12 hours.
  • a secondary firing treatment may be performed in order to further obtain a sintered body having desired characteristics from the fired body obtained by the firing treatment.
  • the fired body obtained by the firing treatment (primary firing) is further subjected to a high-pressure firing treatment to densify the structure of the fired body.
  • a hot isotropic press As the high-pressure firing process in this secondary firing process, a hot isotropic press (HIP), a gas pressure firing, a hot press, or the like can be used.
  • HIP hot isotropic press
  • the slurry injection into the molding mold, the demolding, the drying, the degreasing, and the firing may be performed in order in the same manner as in the production of the ceramic article. It should be noted that this step is the same as the above description except that the molding die used for producing the cylindrical specimen is of a predetermined shape.
  • the slurry injection is a step of injecting the raw material slurry obtained through the above-mentioned raw material mixing and defoaming into a molding die (S8).
  • the molding die used here has a predetermined shape such as a cylindrical cavity in order to produce a cylindrical ceramic specimen, and this ceramic specimen is used in the evaluation method of the ceramic article. It is a ceramic specimen. Therefore, the ceramic specimen may be a molding mold for obtaining the specimen described in the above evaluation method.
  • the molding die used here does not have to be the shape of the ceramic specimen itself, unlike the molding die when the obtained molded body is processed into a ceramic specimen.
  • the obtained molded product for the ceramic specimen is subjected to each of curing (S9), demolding (S10), drying (S11), degreasing (S12), and firing (S13) as described above. Do. Since each of these processes has the same contents as each process in the ceramic article manufacturing step described above, the description thereof will be omitted.
  • the ceramic specimen is manufactured under the same conditions at the same time as the production of the ceramic article. That is, it is preferable that the processing conditions are the same in the ceramic article manufacturing step and the ceramic specimen manufacturing step. Further, the ceramic article manufacturing step and the ceramic specimen manufacturing step may be performed as separate processes, but it is more preferable to perform the same process in parallel, and the ceramic article and the ceramic specimen are processed in the same processing device. Is the most preferable.
  • the volume of the ceramic specimen is preferably 1/4 or less, more preferably 1/15 or less, and further preferably 1/100 or less with respect to the volume of the ceramic article.
  • the manufacturing process of the ceramic article is continued (S16). Then, the produced ceramic article is shipped as a final product.
  • the process returns to the raw material preparation (S1), and the method for manufacturing the ceramic article is repeated again.
  • the cause is any of the processes from raw material preparation (S1) to firing (S7), and at least one of the conditions is changed so that the evaluation result becomes good.
  • the standard may be set according to the strength required for the product.
  • the standard described in the above-mentioned evaluation method for ceramic articles may be used.
  • Example 1 (Preparation of slurry SN) Silicon nitride powder (manufactured by Denka Co., Ltd., trade name SN-9FWS) 73.11 parts by mass, spinel powder 2.09 parts by mass as sintering aid, 23.19 parts by mass of water as solvent, fourth grade as dispersant 1.61 parts by mass of ammonium salt (manufactured by Seichem) was mixed by a ball mill to prepare a silicon nitride slurry (slurry SN) as a base of the raw material slurry. In the above ball mill, a silicon nitride ball (manufactured by Nikkato Corporation, diameter 5 mm) was used as the pulverizing medium.
  • a silicon nitride ball manufactured by Nikkato Corporation, diameter 5 mm
  • slurry SN2 (Preparation and defoaming of slurry SN2) Vacuum 98.4 parts by mass of the above slurry SN and 1.6 parts by mass of a resin curing agent (a mixture of triethylenetetramine and 2,4,6-tris (dimethylaminomethyl) phenol in a mass ratio of 2: 1).
  • a silicon nitride slurry (slurry SN2) containing a resin curing agent was prepared by mixing with a pump-mounted rotating and revolving mixer. By reducing the pressure (0.6 kPa), the slurry SN2 did not contain bubbles of 10 ⁇ m or more.
  • the slurry SN1 was filled in the slurry tank 1 and the slurry SN2 was filled in the slurry tank 2 so as to have the same volume.
  • slurry SN1 was filled in the slurry tank 1 and the slurry SN2 so as to have the same volume.
  • two rotary positive displacement diaphragm pumps manufactured by Takumina Co., Ltd. equipped with a precision constant velocity cam that does not generate pulsation and does not generate air entrainment
  • slurry SN1 from slurry tank 1 and slurry tank 2, respectively.
  • the slurry SN2 was sucked and discharged.
  • the liquid was sent to an in-line mixer (trade name: static mixer) manufactured by Noritake Company via a pipe for merging the slurry SN1 and the slurry SN2.
  • a raw material slurry 1 containing an epoxy resin and a resin curing agent was mixed with an in-line mixer to obtain a raw material slurry 1 containing an epoxy resin and a resin curing agent.
  • the raw material slurry 1 was supplied to a product molding mold connected to the outlet side of the in-line mixer.
  • the raw material slurry 1 was supplied to a Saint-Gobain Tygon tube 2375 (outer diameter 19.0 mm, inner diameter 12.7 mm), which is a tube for a specimen. This was carried out by reconnecting a tube for a specimen to the outlet side of the in-line mixer after supplying the molded product for the above product. (Curing) The tube filled with the raw material slurry 1 was allowed to stand at room temperature of 25 ° C. overnight to react the epoxy resin with the resin curing agent and cure it.
  • HIP hot isostatic pressing
  • Example 2 (Comparative example)
  • a cylindrical ceramic molded product having a diameter of 12 mm was obtained.
  • the cylindrical ceramic molded body was subjected to spherical raw processing, degreasing, and firing to obtain a spherical silicon nitride specimen having a diameter of about 10 mm.
  • the fracture surface of the spherical silicon nitride specimen after the completion of the crushing test was observed using an Olympus stereomicroscope (trade name: SZX16) with an eyepiece lens magnification of 10 times and an objective lens magnification of 1 to 2.5 times. As a result of observation, it was confirmed that the fracture progressed from a depth of 1 mm to 2 mm from the contact surface, that is, the maximum stress was generated inside the spherical silicon nitride specimen.
  • Example 2 Comparing Example 1 and Example 2, it was found that the Weibull coefficient indicating the degree of strength variation was as large as 17 (Example 1) and 16 (Example 2), and the intensity variation was small in both methods. Therefore, it was confirmed that the crushing test using the cylindrical silicon nitride specimen in the present embodiment can be evaluated in the same manner as the crushing test using the conventional spherical silicon nitride specimen. Therefore, in the evaluation of the ceramic article, it was confirmed that the crushing test using the columnar specimen according to the present invention can be replaced with the crushing test using the conventional spherical specimen.
  • Example 3 Same as Example 1 except that the slurry SN of Example 1 contains 69.19 parts by mass of silicon nitride powder, 3.76 parts by mass of itria powder and 2.25 parts by mass of alumina powder instead of spinel powder as a sintering aid.
  • the raw material slurry 2 was prepared.
  • a columnar silicon nitride specimen 2 was prepared under the same conditions as in Example 1 except that the obtained raw material slurry 2 was used, and a crushing test was performed. As a result, the crushing strength (average value) was 25 kN, and it was confirmed that the strength was different due to the difference in the slurry raw materials.
  • Example 4 A columnar silicon nitride specimen 3 was prepared under the same conditions as in Example 1 except for the firing conditions, and a crushing test was carried out. Here, the firing was carried out at normal pressure at 1700 ° C. for 12 hours, and then at 10 MPa and 1700 ° C. at high pressure. As a result of the crushing test, the crushing strength (average value) was 20 kN, and the difference in strength due to the difference in firing conditions could be confirmed.
  • Example 5 (Example)
  • those having a straightness of 2 mm or more and a roundness of less than 0.5 mm were selected and used as the cylindrical silicon nitride specimen 4.
  • a crushing test was carried out in the same manner as in Example 1 using the cylindrical silicon nitride specimen 4. As a result, a result not significantly different from that of Example 1 was obtained.
  • Example 6 (Example)
  • those having a straightness of less than 2 mm and a roundness of 0.5 mm or more were selected and used as the cylindrical silicon nitride specimen 5.
  • a crushing test was carried out in the same manner as in Example 1 using the cylindrical silicon nitride specimen 5. As a result, a result not significantly different from that of Example 1 was obtained.
  • Example 7 (Comparative example)] Using the same raw material slurry 1 as in Example 1, a ceramic article was prepared, and a test piece for a 3-point bending sample was cut out from this and processed so that the surface roughness Ra on the four surfaces was 0.5 ⁇ m to prepare the test piece. Obtained. As a result of performing a three-point bending test using these test pieces, the average strength was 720 MPa. At this time, when observing the fracture surface after the test, it was found that there were many test pieces in which fracture progressed starting from the defective part of the surface and corners that were on the lower side at the time of the test, and the maximum stress was tested. It was found to be the lower surface, not the inside of one piece.
  • the original strength of the material of the ceramic article can be measured and evaluated in place of the conventional crushing test, and further, the final product, the ceramic article. Can be manufactured efficiently.
  • the evaluation method of the ceramic article of the present invention the shape and surface roughness of the ceramic specimen can be evaluated without being affected so much, and the evaluation is carried out without being bound by the processing conditions of the specimen. I found that I could do it.
  • the method for evaluating a ceramic article and the method for producing a ceramic article of the present invention can evaluate a ceramic article having a desired shape, and can efficiently produce a ceramic article while performing this evaluation.
  • the ceramic article to be targeted here is not particularly limited as long as the raw material is a ceramic raw material, and can be widely used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The present invention pertains to a ceramic article production method that comprises: a step for obtaining a molded body by injecting raw material slurry prepared in the form of ceramic raw material into a forming mold and letting said raw material slurry harden, demolding said molded body from the forming mold, and creating a ceramic article by subjecting the molded body to a drying treatment, a degreasing treatment, and a firing treatment in this sequence; a step for obtaining a columnar molded body by injecting raw material slurry into a specimen-forming mold and letting said raw material slurry harden, demolding said columnar molded body from the specimen-forming mold, and creating a ceramic specimen by subjecting the columnar molded body to a drying treatment, a degreasing treatment, and a firing treatment in this sequence; and a step for performing a prescribed ceramic article assessment method to the ceramic specimen so as to determine whether the production of the ceramic article is to be continued or not.

Description

セラミックス物品の評価方法及び製造方法Evaluation method and manufacturing method of ceramic articles
 本発明は、セラミックス物品の評価方法及び製造方法に関する。 The present invention relates to an evaluation method and a manufacturing method for ceramic articles.
 セラミックス部品の成形は、使用する原料としてセラミックス粉末を用いて、加圧成形、冷間静水圧成形(CIP)、熱間静水圧成形(HIP)、射出成形、鋳込み成形、押出成形等の各種成形方法を使用でき、様々な形状のセラミックス製品が作製されるようになっている。そして、得られるセラミックス部品をより良い特性を有するものとするため、こちらも様々な工夫がなされている。例えば、硬化性樹脂と溶媒を含有するセラミックス成形体を熱処理等で硬化体とし、割れ等が少なく、形状保持性が高く寸法精度にも優れ、焼結体としたときの物性にも優れたセラミックス成形体を製造する方法が知られている。 For the molding of ceramic parts, various moldings such as pressure molding, cold hydrostatic molding (CIP), hot hydrostatic molding (HIP), injection molding, casting molding, extrusion molding, etc. are performed using ceramic powder as a raw material to be used. The method can be used to produce ceramic products of various shapes. And, in order to make the obtained ceramic parts have better characteristics, various measures have been taken here as well. For example, a ceramic molded product containing a curable resin and a solvent is made into a cured product by heat treatment or the like, and ceramics with few cracks, high shape retention, excellent dimensional accuracy, and excellent physical properties when made into a sintered body. A method for producing a molded product is known.
 また、転がり軸受(ボールベアリング)に使用されるセラミックスボールには、高い強度と非常に高い真球度が求められる。このようなセラミックスボールを製造するには、一般に、セラミックス原料粉末を押し固める成形プロセスと、高温下で焼成する一次焼成プロセス、及びHIP(熱間静水圧プレス)やガス圧焼成等の高温・高圧下で焼成する2次焼成プロセスを経てセラミックス素球を作製し、さらに、得られたセラミックス素球を機械研磨等によって高い真球度となるように研磨仕上げをして製造される。 In addition, ceramic balls used for rolling bearings (ball bearings) are required to have high strength and extremely high sphericity. In general, in order to manufacture such ceramic balls, a molding process of compacting the ceramic raw material powder, a primary firing process of firing at a high temperature, and high temperature / high pressure such as HIP (hot hydrostatic press) or gas pressure firing are performed. A ceramic element sphere is produced through a secondary firing process in which the ceramic element is fired below, and the obtained ceramic element ball is further polished and finished to have a high sphericity by mechanical polishing or the like.
 このような球状のセラミックスボールは、その品質管理のために、例えば図7に示したように、製品であるボールを二個並べ圧縮荷重をかけて破砕する、いわゆる圧砕試験で、強度の確認が行われている(例えば、特許文献1、非特許文献1参照)。ここで、従来、圧砕試験用の試験装置50は、セラミックスボール100A,100Bを2個重ねて保持できる、下部材51、上部材52、補助部材53とから構成される。下部材51及び上部材52は、それぞれセラミックスボール100A,100Bが安定して保持できるように、円錐状の窪みを有している。ここで、試験装置50は断面で示した。 For quality control of such spherical ceramic balls, for example, as shown in FIG. 7, the strength of such spherical ceramic balls can be confirmed by a so-called crushing test in which two product balls are arranged and crushed by applying a compressive load. It is done (see, for example, Patent Document 1 and Non-Patent Document 1). Here, conventionally, the test apparatus 50 for a crushing test is composed of a lower member 51, an upper member 52, and an auxiliary member 53 that can hold two ceramic balls 100A and 100B in an overlapping manner. The lower member 51 and the upper member 52 each have a conical recess so that the ceramic balls 100A and 100B can be stably held. Here, the test apparatus 50 is shown in cross section.
日本国特開平5-294728号公報Japanese Patent Application Laid-Open No. 5-294728
 このような圧砕試験では、通常2個の試験用サンプル(以下、セラミックス供試体ともいう)で一つの試験データ(n=1)が得られる。一般に強度データは最低でもn=5程度は必要であり、この場合最低10個の試験用サンプルが必要となる。また、ばらつきを評価するには通常ワイブル分布で表す。ワイブル分布の評価には最低でもn=20が必要で、好ましくはn=30である。この場合、使用する試験用サンプル数は60個にもなる。 In such a crushing test, one test data (n = 1) is usually obtained from two test samples (hereinafter, also referred to as ceramic specimens). Generally, the intensity data needs to be at least n = 5, and in this case, at least 10 test samples are required. In addition, the Weibull distribution is usually used to evaluate the variability. The evaluation of the Weibull distribution requires at least n = 20, preferably n = 30. In this case, the number of test samples used is as high as 60.
 これだけの数の試験用球状サンプルの作製には労力がかかる。球状サンプルの場合、形状精度が良くないと圧砕試験を適正に実施することが困難となるおそれがあるため、球状サンプルを作製するのにある程度の形状精度が求められるからである。球状サンプルに比べて要求される形状精度レベルが低く、簡便に作製できる形状を有する試験用サンプルを使用し、より簡易に評価でき、これに代替できる試験方法があれば、製品製造のコスト低減等にもなり好ましい。 It takes a lot of effort to prepare this number of spherical samples for testing. In the case of a spherical sample, if the shape accuracy is not good, it may be difficult to properly carry out the crushing test, so that a certain degree of shape accuracy is required to prepare the spherical sample. If there is a test method that can be evaluated more easily and can be replaced by using a test sample that has a lower shape accuracy level required than a spherical sample and has a shape that can be easily manufactured, cost reduction of product manufacturing, etc. It is also preferable.
 また、強度評価の目的で焼成後の製品から、3点曲げ試験片や4点曲げ試験片を複数切り出して曲げ試験を行う方法もある。ところが、これらの曲げ試験は最大応力の発生する部分が、試験片の内部である圧砕試験とは異なり、試験片の下側表面となる。そのため、圧砕試験では、試験サンプルの材料自体を評価できると考えられるが、曲げ試験ではサンプル表面の加工状態に影響を受けてしまうため、本質的に圧砕試験に代替できるものではない。 There is also a method of performing a bending test by cutting out a plurality of 3-point bending test pieces or 4-point bending test pieces from the fired product for the purpose of strength evaluation. However, in these bending tests, the portion where the maximum stress is generated is the lower surface of the test piece, unlike the crushing test inside the test piece. Therefore, in the crushing test, it is considered that the material itself of the test sample can be evaluated, but in the bending test, it is affected by the processing state of the sample surface, so that it cannot be essentially replaced with the crushing test.
 また、曲げ試験用の試験サンプルを製作するためには、製品から試験サンプルを加工して作らなければならず、多大な手間とコストがかかるという問題もある。 In addition, in order to produce a test sample for a bending test, it is necessary to process the test sample from the product, which causes a problem that a great deal of labor and cost are required.
 上記の点に鑑み、本発明の一態様は、セラミックス物品の製造にあたって、その強度を評価するために、球状サンプルを使用する圧砕試験に代替できる新規なセラミックス物品の評価方法の提供を目的とする。また、このような評価方法を用いて、求める特性を有するセラミックス物品を効率的に製造するセラミックス物品の製造方法の提供を目的とする。 In view of the above points, one aspect of the present invention is to provide a novel method for evaluating a ceramic article that can be replaced with a crushing test using a spherical sample in order to evaluate the strength of the ceramic article. .. Another object of the present invention is to provide a method for manufacturing a ceramic article, which efficiently manufactures a ceramic article having desired characteristics by using such an evaluation method.
 上記課題を解決するために、本発明者らが鋭意検討した結果、試験用サンプルとして円柱形状のセラミックス供試体を用いることで、セラミックス物品の強度を球状のサンプルに代替して評価できることを見出した。 As a result of diligent studies by the present inventors in order to solve the above problems, it has been found that the strength of a ceramic article can be evaluated by substituting for a spherical sample by using a cylindrical ceramic specimen as a test sample. ..
 すなわち、本発明の一態様のセラミックス物品の評価方法は、セラミックス物品を形成するためのセラミックス原料を用い、円柱形状のセラミックス供試体を作製し、前記セラミックス供試体の2本の側面同士を接触させて圧砕試験を実施し、前記圧砕試験の結果に基づいて、前記セラミックス物品の強度を評価する、ことを特徴とする。 That is, in the method for evaluating a ceramic article according to one aspect of the present invention, a cylindrical ceramic specimen is produced by using a ceramic raw material for forming the ceramic article, and the two sides of the ceramic specimen are brought into contact with each other. The ceramic article is subjected to a crushing test, and the strength of the ceramic article is evaluated based on the result of the crushing test.
 また、本発明の一態様のセラミックス物品の製造方法は、セラミックス粉末、樹脂、硬化剤及び溶媒を混合した原料スラリーをセラミックス原料として用意し、前記原料スラリーを成形型に注入して、前記成形型に注入された前記原料スラリー中の前記樹脂を硬化させて所望の形状を有する成形体を作製し、前記成形型から前記成形体を脱型させた後、前記成形体に対して乾燥、脱脂及び焼成の各処理をこの順番に行いセラミックス物品を作製し、前記原料スラリーを円柱形状のセラミックス供試体を形成するための供試体用成形型に注入して、前記供試体用成形型に注入された前記原料スラリー中の前記樹脂を硬化させて円柱形状の成形体を作製し、前記供試体用成形型から前記円柱形状の成形体を脱型させた後、前記円柱形状の成形体に対して乾燥、脱脂及び焼成の各処理をこの順番に行いセラミックス供試体を作製し、前記セラミックス供試体に対して、本発明のセラミックス物品の評価方法を行い、前記セラミックス物品の作製の継続の可否を判定する、ことを特徴とする。 Further, in the method for producing a ceramic article according to one aspect of the present invention, a raw material slurry in which a ceramic powder, a resin, a curing agent and a solvent are mixed is prepared as a ceramic raw material, and the raw material slurry is injected into a molding die to form the molding die. The resin in the raw material slurry injected into is cured to prepare a molded body having a desired shape, the molded body is demolded from the molding die, and then the molded body is dried, degreased, and degreased. Each process of firing was performed in this order to prepare a ceramic article, and the raw material slurry was injected into a specimen molding die for forming a cylindrical ceramic specimen, and then injected into the specimen molding die. The resin in the raw material slurry is cured to prepare a cylindrical molded body, the cylindrical molded body is demolded from the sample molding die, and then dried with respect to the cylindrical molded body. , Degreasing and firing are performed in this order to prepare a ceramic specimen, and the ceramic article of the present invention is evaluated on the ceramic specimen to determine whether or not the production of the ceramic article can be continued. , Characterized by that.
 本発明の一態様のセラミックス物品の評価方法によれば、最大応力が内部に発生するため、曲げ試験用の評価サンプルのように、表面の加工品質等に左右されず、材料本来の強度評価が可能で、適正な製造工程の評価や製品特性の評価ができる。
 また、本発明の一態様では、使用するサンプル形状が円柱形状であるため、従来の圧砕試験用の球状サンプルに比べて要求される形状精度が厳しくなく、同じサンプル数を用意する場合の労力、費用等が球状サンプルに比べて大きく低減できる。よって、評価にかかる時間、費用等を従来の圧砕試験から大きく削減できる。
 さらに、本発明の一態様における円柱形状サンプルの作製が容易であることから、例えば、スラリーを使うようなセラミックス製造プロセスでは、プロセスの途中でプロセスの状態を反映したサンプルが作製しやすく、プロセスの状態の良否判別等にも適用できる。
According to the evaluation method for ceramic articles according to one aspect of the present invention, since the maximum stress is generated inside, the original strength of the material can be evaluated regardless of the processing quality of the surface as in the evaluation sample for bending test. It is possible, and it is possible to evaluate the proper manufacturing process and product characteristics.
Further, in one aspect of the present invention, since the sample shape to be used is a cylindrical shape, the shape accuracy required is not strict as compared with the conventional spherical sample for crushing test, and labor for preparing the same number of samples, Costs and the like can be greatly reduced as compared with spherical samples. Therefore, the time and cost required for evaluation can be significantly reduced from the conventional crushing test.
Further, since it is easy to prepare a cylindrical sample according to one aspect of the present invention, for example, in a ceramics manufacturing process using a slurry, it is easy to prepare a sample reflecting the state of the process in the middle of the process, and the process It can also be applied to determine the quality of the condition.
 本発明の一態様のセラミックス物品の製造方法によれば、製造するセラミックス物品の特性が十分であるか否かを確認してセラミックス物品を作製できる。したがって、特性が十分でない場合は、製造条件を見直すことができ、求める特性を有する製品の製造及び出荷を効率的にできる。 According to the method for producing a ceramic article according to one aspect of the present invention, it is possible to confirm whether or not the characteristics of the ceramic article to be produced are sufficient to produce the ceramic article. Therefore, when the characteristics are not sufficient, the manufacturing conditions can be reviewed, and the production and shipment of the product having the desired characteristics can be efficiently performed.
図1は、本発明のセラミックス物品の評価方法における、セラミックス供試体の配置例を示した斜視図である。FIG. 1 is a perspective view showing an arrangement example of ceramic specimens in the evaluation method for ceramic articles of the present invention. 図2は、図1のセラミックス供試体の支持の一例を示した図である。FIG. 2 is a diagram showing an example of support for the ceramic specimen of FIG. 図3は、図1のセラミックス供試体の支持の他の例を示した図である。FIG. 3 is a diagram showing another example of supporting the ceramic specimen of FIG. 図4は、図1のセラミックス供試体の支持のさらに他の例を示した図である。FIG. 4 is a diagram showing still another example of the support of the ceramic specimen of FIG. 図5は、図1のセラミックス供試体の支持のさらに別の例を示した図である。FIG. 5 is a diagram showing still another example of the support of the ceramic specimen of FIG. 図6は、本発明のセラミックス物品の製造方法の一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of a method for manufacturing a ceramic article of the present invention. 図7は、従来のセラミックスボールを用いた圧砕試験の供試体(製品)の支持の例を示した図である。FIG. 7 is a diagram showing an example of supporting a specimen (product) for a crushing test using a conventional ceramic ball.
 以下、本発明の一実施形態であるセラミックス物品の評価方法及びセラミックス物品の製造方法について詳細に説明する。 Hereinafter, a method for evaluating a ceramic article and a method for manufacturing a ceramic article, which is an embodiment of the present invention, will be described in detail.
[セラミックス物品の評価方法]
 本発明の一実施形態であるセラミックス物品の評価方法は、セラミックス物品を形成するためのセラミックス原料を用い、円柱形状のセラミックス供試体を作製し、セラミックス供試体の2本の側面同士を接触させて圧砕試験を実施し、圧砕試験の結果に基づいて、セラミックス物品の強度を評価する、ものである。
[Evaluation method for ceramic articles]
In the method for evaluating a ceramic article according to an embodiment of the present invention, a cylindrical ceramic specimen is produced using a ceramic raw material for forming the ceramic article, and the two sides of the ceramic specimen are brought into contact with each other. A crushing test is carried out, and the strength of the ceramic article is evaluated based on the result of the crushing test.
 以下、これらの各工程についてそれぞれ説明する。 Hereinafter, each of these processes will be described.
(セラミックス供試体の作製)
 本実施形態におけるセラミックス供試体は、円柱形状のセラミックス供試体である。このセラミックス供試体は、評価したいセラミックス物品と同一のセラミックス原料を用い、同様の条件で処理して得られる円柱形状のセラミックス体(焼結体)である。
(Preparation of ceramic specimen)
The ceramic specimen in this embodiment is a cylindrical ceramic specimen. This ceramic specimen is a cylindrical ceramic body (sintered body) obtained by processing the same ceramic raw material as the ceramic article to be evaluated under the same conditions.
 ここで用いられるセラミックス原料は、セラミックス粉末と、形状付与のために採用するセラミックス成形に適した補助的な材料等とを含んだものである。例えば、セラミックス粉末と有機物等の添加剤、水などの溶媒を含んだものが例示される。本発明において、公知のセラミックス成形法に適したセラミックス原料であればよく、特に限定されるものではない。例えば、プレス成形用では、有機バインダーを添加したセラミックス粉末をそのまま粉末状で、または造粒して顆粒状としてもよい。また、スリップキャスト成形用やゲルキャスト成形法用では、セラミックス粉末を、樹脂と分散剤等または硬化性樹脂と硬化剤等などと共にスラリー状としてもよい。射出成形用、押出成形用では、セラミックス粉末と樹脂等の流動性付与物と混練した混練物状としてもよい。 The ceramic raw material used here includes ceramic powder and an auxiliary material suitable for ceramic molding used for shape imparting. For example, those containing ceramic powder, additives such as organic substances, and solvents such as water are exemplified. In the present invention, any ceramic raw material suitable for a known ceramic molding method may be used, and the present invention is not particularly limited. For example, for press molding, the ceramic powder to which an organic binder is added may be powdered as it is, or may be granulated into granules. Further, in the case of slip casting molding or gel casting molding method, the ceramic powder may be formed into a slurry together with a resin and a dispersant or a curable resin and a curing agent. For injection molding and extrusion molding, it may be in the form of a kneaded product obtained by kneading ceramic powder with a fluidity-imparting material such as resin.
 また、このようなセラミックス原料を円柱形状とするには、特に限定されるものではなく、上記のような成形法を適宜採用すればよい。円柱形状の供試体成形型として、例えば、キャビティが円柱形状である成形型を用いたり、円柱形状のシリンジを用いる。円柱形状の供試体成形型の内部にセラミックス原料を注入して円柱形状の成形体を得ればよい。ゲルキャスト法などのスラリーを使用する成形法では、スラリー搬送用配管の一部を開閉可能な構造とし、そのまま円柱形状用作製型として使用してもよい。または、配管の一部を樹脂製などの使い捨て材料で構成し、その部分の配管を除去してそのままサンプルとして使用してもよい。または、配管の一部を分岐させて、そこにサンプル作製用の治具等を付けておいてもよい。すなわち、一般的な型以外にシリンジ、配管、治具など形状付与できるものであれば本実施形態の供試体用成形型として使用できる。
 また、一旦ブロック状に作製した成形体や焼結体から切り出して、研削等の加工により、円柱形状のセラミックス体(焼結体)を得ることもできる。
Further, in order to form such a ceramic raw material into a cylindrical shape, the molding method is not particularly limited, and the above-mentioned molding method may be appropriately adopted. As the cylindrical specimen molding die, for example, a molding die having a cylindrical cavity or a cylindrical syringe is used. A ceramic raw material may be injected into a cylindrical specimen molding die to obtain a cylindrical molded body. In a molding method using a slurry such as a gel cast method, a part of the slurry transport pipe may be opened and closed and used as it is as a production mold for a cylindrical shape. Alternatively, a part of the pipe may be made of a disposable material such as resin, and the pipe in that part may be removed and used as a sample as it is. Alternatively, a part of the pipe may be branched and a jig or the like for preparing a sample may be attached to the branch. That is, any mold such as a syringe, a pipe, and a jig that can give a shape other than a general mold can be used as a mold for a specimen of the present embodiment.
Further, it is also possible to obtain a cylindrical ceramic body (sintered body) by cutting out from a molded body or a sintered body once produced in a block shape and performing processing such as grinding.
 このとき用いられるセラミックス供試体は、その大きさも特に限定されるものではないが、大きいとセラミックス供試体の作製に用いる原料の量が多く、成形や焼成等の処理時にも時間がかかってしまう。例えば、セラミックス供試体の直径は、2mm~50mmが好ましく、5mm~20mmがより好ましく、8mm~15mmがさらに好ましい。セラミックス供試体の軸方向の長さは、5mm~100mmが好ましく、10mm~50mmがより好ましく、15mm~30mmがさらに好ましい。 The size of the ceramic specimen used at this time is not particularly limited, but if it is large, the amount of raw materials used for producing the ceramic specimen is large, and it takes time during processing such as molding and firing. For example, the diameter of the ceramic specimen is preferably 2 mm to 50 mm, more preferably 5 mm to 20 mm, and even more preferably 8 mm to 15 mm. The axial length of the ceramic specimen is preferably 5 mm to 100 mm, more preferably 10 mm to 50 mm, still more preferably 15 mm to 30 mm.
 このようにすることで、特に、原料の配合や調製に関しての評価が簡便にできる。例えば、窒化ケイ素などの窒化物セラミックスと窒化ケイ素セラミックスの焼結剤である酸化物セラミックスとを混合したセラミックス粉末などの場合において、窒化物セラミックスと酸化物セラミックスとの混合の均質性評価や、セラミックス粉末と、樹脂などの添加剤を含むセラミックス原料内でのセラミックス粉末の混合の均質性評価や、セラミックス粉末、硬化性樹脂、硬化剤、水などをスラリー状として型にゲルキャストする場合のスラリーの性状評価、などが例示されるが、これらに限定されるものではない。 By doing so, it is possible to easily evaluate the composition and preparation of raw materials. For example, in the case of ceramic powder obtained by mixing nitride ceramics such as silicon nitride and oxide ceramics which is a sintering agent for silicon nitride ceramics, evaluation of the homogeneity of the mixture of nitride ceramics and oxide ceramics and ceramics Evaluation of the homogeneity of the mixture of the powder and the ceramic powder in the ceramic raw material containing additives such as resin, and the slurry when the ceramic powder, curable resin, hardener, water, etc. are gel-cast into a mold as a slurry. Property evaluation, etc. are exemplified, but the present invention is not limited to these.
 なお、原料調製より後段の処理条件の評価にも同様に適用できる。処理条件としては、硬化条件、脱型条件、乾燥条件、脱脂条件、焼成条件などが挙げられる。また、前記処理条件について評価する場合には、最終製品のセラミックス物品の製造条件と円柱形状のセラミックス供試体の内部が十分に処理される条件とが同等となるように(セラミックス物品の最深部とセラミックス供試体の軸芯近傍の焼成が同等に評価できるように)、セラミックス供試体の大きさを調整して処理条件の評価もできる。 The same can be applied to the evaluation of processing conditions after the preparation of raw materials. Examples of the treatment conditions include curing conditions, demolding conditions, drying conditions, degreasing conditions, firing conditions, and the like. Further, when evaluating the processing conditions, the manufacturing conditions of the ceramic article of the final product and the conditions of sufficiently treating the inside of the cylindrical ceramic specimen are equal to each other (with the deepest part of the ceramic article). The processing conditions can also be evaluated by adjusting the size of the ceramic specimen (so that the firing near the axis of the ceramic specimen can be evaluated equally).
 ここで、本評価方法においても、上記従来の圧砕試験と同様に1回の試験に対して供試体が2個必要であるため、このセラミックス供試体を[試験数(n)×2]個用意する。 Here, also in this evaluation method, since two specimens are required for one test as in the conventional crushing test, [number of tests (n) × 2] are prepared. To do.
(圧砕試験)
 次いで、上記のように作製された円柱形状のセラミックス供試体について、圧砕試験を行う。圧砕試験は、2本のセラミックス供試体を用い、それらの側面同士を接触させて、セラミックス供試体が圧砕されるまで圧縮荷重をかけることで実施できる。この点では、球状のセラミックス供試体とは、使用するセラミックス供試体の形状が異なるだけで、それ以外は同様の操作を行えばよい。
(Crushing test)
Next, a crushing test is performed on the cylindrical ceramic specimen prepared as described above. The crushing test can be carried out by using two ceramic specimens, bringing their side surfaces into contact with each other, and applying a compressive load until the ceramic specimens are crushed. In this respect, the same operation may be performed except for the shape of the ceramic specimen used, which is different from that of the spherical ceramic specimen.
 また、この圧砕試験は、セラミックス供試体の側面同士を接触させるが、その際に、セラミックス供試体同士の接触箇所が一点となるように接触させるのが好ましい。すなわち、セラミックス供試体の軸が平行とならないようにずらして配置することで、一点で接触させることができる。セラミックス供試体は、セラミックス供試体の軸同士を直交するように配置することが好ましい。このようにすることで、試験時の荷重が接触点に集中するため、適切な強度評価ができる。図1には、セラミックス供試体1A、1Bの軸を直交させて上下に積層配置した場合の模式図を示した。 Further, in this crushing test, the side surfaces of the ceramic specimens are brought into contact with each other, and at that time, it is preferable to bring the ceramic specimens into contact with each other so that the contact points are one point. That is, by arranging the ceramic specimens so as not to be parallel to each other, the ceramic specimens can be brought into contact with each other at one point. The ceramic specimens are preferably arranged so that the axes of the ceramic specimens are orthogonal to each other. By doing so, the load at the time of the test is concentrated on the contact point, so that an appropriate strength evaluation can be performed. FIG. 1 shows a schematic view when the axes of the ceramic specimens 1A and 1B are orthogonal to each other and stacked vertically.
 以下、圧砕試験について、図面を参照しながら説明する。
 図2には、上記した図1に示したようにセラミックス供試体を保持できる圧砕試験用の試験装置の概略構成を示した。この図2に示した試験装置10は、下側のセラミックス供試体1Aを下部から支える下部材11と、上側のセラミックス供試体1Bを上部から圧縮してセラミックス供試体1A及び1Bに圧縮荷重を付加する上部材12と、セラミックス供試体1A,1Bを所定の配置となるように補助する補助部材13と、から構成されている。図2には、(a)として試験装置10の正面図を、(b)として試験装置10の側面図を、それぞれ示した。なお、これらの図では、試験装置10の内部におけるセラミックス供試体1A,1Bの保持状態を示すため、補助部材13のみ断面図で示した。
Hereinafter, the crushing test will be described with reference to the drawings.
FIG. 2 shows a schematic configuration of a test apparatus for a crushing test capable of holding a ceramic specimen as shown in FIG. 1 above. The test apparatus 10 shown in FIG. 2 compresses the lower member 11 that supports the lower ceramic specimen 1A from the lower part and the upper ceramic specimen 1B from the upper part, and applies a compressive load to the ceramic specimens 1A and 1B. It is composed of an upper member 12 and an auxiliary member 13 that assists the ceramic specimens 1A and 1B in a predetermined arrangement. FIG. 2 shows a front view of the test device 10 as (a) and a side view of the test device 10 as (b). In these figures, only the auxiliary member 13 is shown in a cross-sectional view in order to show the holding states of the ceramic specimens 1A and 1B inside the test apparatus 10.
 ここで、下部材11と上部材12は、上記のように適切な強度評価を行うために、セラミックス供試体1A,1Bとの接触部分がそれぞれ点接触により支持(接触)するようになっている。図2では、この接触部分を形成する台座が球台座となっている例を示している。また、この試験において最大応力がセラミックス供試体同士の接触表面付近で生じるように、この球台座は、セラミックス供試体1A、1Bの円(断面)の曲率よりも大きい曲率を有するようにする。 Here, in order to perform an appropriate strength evaluation of the lower member 11 and the upper member 12, the contact portions with the ceramic specimens 1A and 1B are supported (contacted) by point contact, respectively. .. FIG. 2 shows an example in which the pedestal forming the contact portion is a ball pedestal. Further, the sphere pedestal has a curvature larger than the curvature of the circles (cross sections) of the ceramic specimens 1A and 1B so that the maximum stress is generated near the contact surface between the ceramic specimens in this test.
 また、補助部材13は、セラミックス供試体1A、1Bをそれらの軸が直交するように、それぞれを側面から支えるように、その内部において水平方向に伸びた支持部を有している。 Further, the auxiliary member 13 has a support portion extending in the horizontal direction inside the ceramic specimens 1A and 1B so as to support the ceramic specimens 1A and 1B from the side surface so that their axes are orthogonal to each other.
 また、この試験装置10の材質は、圧砕試験が良好にできるものであれば特に限定されない。下部材11、上部材12、特にセラミックス供試体と接触する支持部としては、構成する材料のヤング率を、セラミックス供試体のヤング率よりも小さい材料で形成することが好ましい。これにより、セラミックス供試体の圧砕試験を適正に実施し、セラミックス物品自体の強度を評価できる。 Further, the material of the test apparatus 10 is not particularly limited as long as it can perform a crushing test well. As the support portion that comes into contact with the lower member 11, the upper member 12, and particularly the ceramic specimen, it is preferable that the Young's modulus of the constituent material is formed of a material having a Young's modulus smaller than that of the ceramic specimen. This makes it possible to properly carry out a crushing test of the ceramic specimen and evaluate the strength of the ceramic article itself.
 この圧砕試験は、従来のセラミックスボールを用いた試験と、供試体が異なるだけで同様の操作でできる。すなわち、試験装置10を用いる場合には、図1に示した配置となるようにセラミックス供試体1A,1Bを保持し、上部材12により上方から下方に対して圧縮荷重を負荷させ、セラミックス供試体1A,1Bが破砕するまで荷重を次第に大きくしていき、圧砕した時点での圧縮荷重を圧砕強度として評価できる。 This crushing test can be performed in the same operation as the test using a conventional ceramic ball, except that the specimen is different. That is, when the test apparatus 10 is used, the ceramic specimens 1A and 1B are held so as to have the arrangement shown in FIG. 1, and the upper member 12 applies a compressive load from above to below to make the ceramic specimens. The load is gradually increased until 1A and 1B are crushed, and the compressive load at the time of crushing can be evaluated as the crushing strength.
 この試験では、従来のセラミックスボールと同様に、セラミックス供試体1A,1Bの接触点の内部に最大の引張応力が生じてメジアンクラックが発生し、これが起点となって巨視的な破壊が生じるものと考えられる。実際に、試験後に破壊されたセラミックス供試体1A,1Bから、最大引張応力(破壊の起点)は表面ではなく内部で生じていることを確認した。 In this test, as with conventional ceramic balls, the maximum tensile stress is generated inside the contact points of the ceramic specimens 1A and 1B, causing median cracks, which trigger macroscopic fracture. Conceivable. In fact, from the ceramic specimens 1A and 1B that were fractured after the test, it was confirmed that the maximum tensile stress (starting point of fracture) was generated inside rather than on the surface.
 なお、試験装置としては、上記した台座が球台座である試験装置10の代わりに、台座が傾斜した円柱台座である図3で示した試験装置20、台座が2点球台座である図4で示した試験装置30、台座が傾斜なしの円柱台座である図5で示した試験装置40とすることもできる。 As the test device, instead of the test device 10 in which the pedestal is a ball pedestal, the test device 20 shown in FIG. 3 in which the pedestal is an inclined cylindrical pedestal, and FIG. 4 in which the pedestal is a two-point ball pedestal. The test device 30 shown and the test device 40 shown in FIG. 5 in which the pedestal is a cylindrical pedestal without inclination can also be used.
 これらの試験装置20,30,40は、基本的には、試験装置10と同様に、下部材21,31,41、上部材22,32,42、補助部材23,33,43で構成されており、セラミックス供試体1A,1Bの軸を直交させて接触させ、保持できる。ここでは、下部材21,31,41、上部材22,32,42においてセラミックス供試体を保持する形状(台座の形状)が異なっているのみである。試験装置20では、2つの円柱形状の支持部が傾斜して伸びている。試験装置30では、2つの球状の支持部が突出している。試験装置40では、1つの円柱形状の支持部が傾斜なしで伸びている。それぞれの試験装置20,30,40は、セラミックス供試体の下方及び上方からで支える構造となっている。これらの試験装置20,30では、支持部とセラミックス供試体との接触部分は、セラミックス供試体の軸に対して直交する方向に2か所並ぶようになっている。 These test devices 20, 30, 40 are basically composed of lower members 21, 31, 41, upper members 22, 32, 42, and auxiliary members 23, 33, 43, similarly to the test device 10. The axes of the ceramic specimens 1A and 1B are orthogonal to each other and can be brought into contact with each other and held. Here, the lower members 21, 31, 41 and the upper members 22, 32, 42 differ only in the shape (the shape of the pedestal) for holding the ceramic specimen. In the test apparatus 20, the two cylindrical support portions are inclined and extended. In the test device 30, two spherical supports are projected. In the test apparatus 40, one cylindrical support portion extends without inclination. Each of the test devices 20, 30 and 40 has a structure of being supported from below and above the ceramic specimen. In these test devices 20 and 30, two contact portions between the support portion and the ceramic specimen are arranged in a direction orthogonal to the axis of the ceramic specimen.
 この圧砕試験を複数組のセラミックス供試体により実施し、上記セラミックス原料を用いて得られるセラミックス物品の圧砕強度を測定する。この圧砕強度は、セラミックス供試体が圧砕したときの荷重値をそのまま圧砕強度として用いる。また、圧砕強度の算出と併せて、ワイブル分布を考慮する。ワイブル分布は、セラミックス物品の破壊モデル(最弱リンクモデル)として理解される。ここでは、一例としてJIS R 1625:2010 ファインセラミックスの強さデータのワイブル統計解析法により算出される。 This crushing test is carried out with a plurality of sets of ceramic specimens, and the crushing strength of the ceramic article obtained by using the above ceramic raw materials is measured. For this crushing strength, the load value when the ceramic specimen is crushed is used as it is as the crushing strength. Weibull distribution is also considered in addition to the calculation of crushing strength. The Weibull distribution is understood as a fracture model of ceramic articles (weakest link model). Here, as an example, it is calculated by the Weibull statistical analysis method of the strength data of JIS R 1625: 2010 fine ceramics.
(強度の評価)
 次いで、上記の圧砕試験により得られた結果に基づいて、セラミックス物品を評価する。セラミックス物品の評価は、セラミックス物品に求める強度を満たしているか否かにより評価できる。すなわち、試験に用いたセラミックス供試体のセラミックス原料を使用して、セラミックス物品を作製したときに、そのセラミックス物品が求める強度を有しているか否かを確認できる。
(Evaluation of strength)
Next, the ceramic article is evaluated based on the result obtained by the above crushing test. The evaluation of the ceramic article can be evaluated based on whether or not the strength required for the ceramic article is satisfied. That is, when a ceramic article is produced using the ceramic raw material of the ceramic specimen used in the test, it can be confirmed whether or not the ceramic article has the required strength.
 この評価の基準は、用途や品質保証等の観点から任意に設定できる。例えば、セラミックス軸受に用いられる一般産業用窒化ケイ素球である場合、直径10mmの円柱の圧砕強度が20kN以上となるように設定すればよい。高強度高耐久性を要求される特殊用途の窒化ケイ素球である場合は、圧砕強度が25kN以上となるように設定すればよい。また、ワイブル係数は10以上が好ましく、15以上がより好ましい。 The criteria for this evaluation can be set arbitrarily from the viewpoint of application and quality assurance. For example, in the case of a general industrial silicon nitride ball used for a ceramic bearing, the crushing strength of a cylinder having a diameter of 10 mm may be set to 20 kN or more. In the case of a silicon nitride sphere for a special purpose that requires high strength and high durability, the crushing strength may be set to 25 kN or more. The Weibull coefficient is preferably 10 or more, and more preferably 15 or more.
 そして、この評価基準を満たすセラミックス供試体については、使用した原料スラリーが良好であること、同様の処理で得られたセラミックス体についても求める品質を満足するセラミックス物品であると評価できる。また、原料スラリーが良好であることに加え、その後の成形、脱型、乾燥、脱脂、焼成の各工程について、その処理が良好であった、と評価できる。 Then, it can be evaluated that the ceramic specimen satisfying this evaluation standard is a ceramic article in which the raw material slurry used is good and the ceramic body obtained by the same treatment also satisfies the required quality. Further, in addition to the good raw material slurry, it can be evaluated that the treatment was good in each of the subsequent steps of molding, demolding, drying, degreasing, and firing.
[セラミックス物品の製造方法]
 本発明の一実施形態であるセラミックス物品の製造方法は、セラミックス物品作製工程と、セラミックス供試体作製工程と、判定工程と、を有する。そして、セラミックス物品作製工程とセラミックス供試体作製工程は、いずれも、セラミックス原料を調製し、このセラミックス原料を成形型により所望の形状に成形し、得られた成形体に対して、乾燥、脱脂及び焼成の各処理をこの順番で行うものである(図6)。以下、これらの各操作についてそれぞれ詳細に説明する。
[Manufacturing method of ceramic articles]
The method for manufacturing a ceramic article according to an embodiment of the present invention includes a ceramic article manufacturing step, a ceramic specimen manufacturing step, and a determination step. Then, in both the ceramic article manufacturing step and the ceramic specimen manufacturing step, a ceramic raw material is prepared, the ceramic raw material is molded into a desired shape by a molding die, and the obtained molded body is dried, degreased, and subjected to drying and degreasing. Each process of firing is performed in this order (FIG. 6). Hereinafter, each of these operations will be described in detail.
(原料調製工程)
 上記操作にあたっては、まず、セラミックス物品及びセラミックス供試体の原料となるセラミックス原料を調製する(S1)。
(Raw material preparation process)
In the above operation, first, a ceramic raw material as a raw material for the ceramic article and the ceramic specimen is prepared (S1).
 ここで用いるセラミックス原料は、セラミックス物品を作製できるものであれば、特に限定されずに使用できる。具体的には、上記したセラミックス物品の評価方法で例示したセラミックス原料が挙げられる。 The ceramic raw material used here is not particularly limited as long as it can produce a ceramic article. Specific examples thereof include ceramic raw materials exemplified in the above-mentioned evaluation method for ceramic articles.
 なお、セラミックス原料の中でも、セラミックス粉末と、樹脂、硬化剤及び溶媒とを混合して得られる、スラリー状のセラミックス原料(以下、原料スラリーと称する)が好ましい。このように樹脂を含有して得られるセラミックス原料は、成形時における硬化の作用が樹脂の機能によって得られるものなので、成形体の大きさや形状による成形体の密度などに与える影響が少ないため、成形体の密度などの変動が少なく、製品としての物品と供試体との間の特性をそのまま同視できるためである。すなわち、大きなサイズのセラミックス物品(最終製品)に対して、試験用のセラミックス供試体の大きさを小さくしても結果の変動が小さい。セラミックス供試体のサイズを小さくできるため、圧砕試験用の原料スラリーの消費量が非常に少なく抑えられる。この場合、原料使用量に対するコストへの影響を低くできる。 Among the ceramic raw materials, a slurry-like ceramic raw material (hereinafter referred to as a raw material slurry) obtained by mixing a ceramic powder with a resin, a curing agent and a solvent is preferable. In the ceramic raw material obtained by containing the resin in this way, the curing action at the time of molding is obtained by the function of the resin, so that the size and shape of the molded body have little influence on the density of the molded body, and thus the molding is performed. This is because there is little fluctuation in body density and the like, and the characteristics between the article as a product and the specimen can be equated as they are. That is, even if the size of the ceramic specimen for testing is reduced for a large-sized ceramic article (final product), the fluctuation of the result is small. Since the size of the ceramic specimen can be reduced, the consumption of the raw material slurry for the crushing test can be suppressed to a very low level. In this case, the influence on the cost on the amount of raw materials used can be reduced.
 以下、この原料スラリーを用いた場合を例に、セラミックス物品の製造方法について説明する。 Hereinafter, a method for manufacturing a ceramic article will be described by taking the case of using this raw material slurry as an example.
 まず、ここで用いられるセラミックス粉末は、焼結によりセラミックスとなるものであれば特に限定されるものではなく、公知のセラミックス粉末が挙げられる。このセラミックス粉末としては、例えば、酸化アルミニウム(アルミナ)、酸化ジルコニウム(ジルコニア)、酸化ケイ素(シリカ)、コージェライト等の酸化物セラミックス、窒化ケイ素、窒化アルミニウム、サイアロン(SiAlONとも記載)等の窒化物セラミックス、炭化ケイ素等の炭化物セラミックス等が挙げられる。これらは1種を単独で用いてもよいし、2種以上を混合して用いてもよい。 First, the ceramic powder used here is not particularly limited as long as it becomes ceramics by sintering, and known ceramic powders can be mentioned. Examples of the ceramic powder include oxide ceramics such as aluminum oxide (alumina), zirconium oxide (zirconia), silicon oxide (silica) and cordierite, and nitrides such as silicon nitride, aluminum nitride and sialon (also referred to as SiAlON). Examples thereof include ceramics and carbide ceramics such as silicon carbide. One of these may be used alone, or two or more thereof may be mixed and used.
 また、セラミックス粉末は、後述する焼結工程において安定した焼結体が得られるように、その50%粒径D50は1.0μm未満が好ましい。50%粒径D50が1.0μm以上では、スラリー中の粒子沈降による成形不良を引き起こし、焼結密度の低下を招くおそれがある。50%粒径D50は、より好ましくは0.8μm以下、さらに好ましくは0.6μm以下である。また、セラミックス粉末の粒径D50が0.1μm以上であると、取扱い時の飛散、詰まり防止や調達が容易になるため好ましい。本明細書において、50%粒径D50はレーザー回折式粒度分布装置による測定値をいうものとする。 Further, the ceramic powder preferably has a 50% particle size D 50 of less than 1.0 μm so that a stable sintered body can be obtained in the sintering step described later. If the 50% particle size D 50 is 1.0 μm or more, molding defects may occur due to particle sedimentation in the slurry, which may lead to a decrease in sintering density. The 50% particle size D 50 is more preferably 0.8 μm or less, still more preferably 0.6 μm or less. Further, when the particle size D 50 of the ceramic powder is 0.1 μm or more, it is preferable because it is easy to prevent scattering, clogging and procurement during handling. In the present specification, 50% particle size D 50 refers to a value measured by a laser diffraction type particle size distribution device.
 また、セラミックス粉末として窒化ケイ素(成分;Si)を用いる場合、焼結して得られる組織は、窒化ケイ素を主成分とする主相結晶粒子が、ガラス質及び/又は結晶質の結合相にて結合した形態のものとなる。 When silicon nitride (component; Si 3 N 4 ) is used as the ceramic powder, the structure obtained by sintering is such that the main phase crystal particles containing silicon nitride as a main component are bonded to glassy and / or crystalline materials. It will be in a phase-bonded form.
 このとき窒化ケイ素粉末としては、窒化ケイ素のα化率が70%以上の粉末が好ましく、該α化率は、80%以上がより好ましく、90%以上がさらに好ましい。α化率が70%未満の粉末であると焼結時のαからβへの相転移の際の針状組織の組み込み効果が十分得られず強度が低下する。α化率が90%以上の粉末であれば、充分な組み込み効果が得られ強度、特に靱性の高い焼結体が得られる。窒化ケイ素粉末中に、α化率が70%以上の窒化ケイ素を85質量%以上含有していることが好ましく、92質量%以上含有していることがより好ましい。 At this time, as the silicon nitride powder, a powder having a silicon nitride pregelatinization rate of 70% or more is preferable, and the pregelatinization rate is more preferably 80% or more, further preferably 90% or more. If the powder has an pregelatinization rate of less than 70%, the effect of incorporating the needle-like structure during the phase transition from α to β during sintering cannot be sufficiently obtained, and the strength is lowered. If the powder has a pregelatinization rate of 90% or more, a sufficient incorporation effect can be obtained and a sintered body having high strength, particularly toughness, can be obtained. The silicon nitride powder preferably contains 85% by mass or more of silicon nitride having a pregelatinization rate of 70% or more, and more preferably 92% by mass or more.
 また、焼結助剤として、第2族(アルカリ土類金属)、第3族(希土類(スカンジウム族))、第4族(チタン族)、第5族(土酸金属(バナジウム族))、第13族(ホウ素族(土類金属))、第14族(炭素族)の元素群から選ばれる少なくとも1種を含む焼結助剤を酸化物基準の質量%で1質量%~15質量%含有することが好ましく、2質量%~8質量%含有していることがさらに好ましい。均一で高強度な焼結体を得るためには焼結助剤の含有量は、少ない方が好ましいが、1質量%未満になると焼結体を得ることが困難になるおそれがある。 In addition, as a sintering aid, Group 2 (alkaline earth metal), Group 3 (rare earth (carbon group)), Group 4 (titanium), Group 5 (metal acid metal (vanadium)), 1% by mass to 15% by mass of a sintering aid containing at least one selected from the group 13 (boron group (earth metal)) and 14th group (carbon group) element groups based on the oxide. It is preferably contained, and more preferably 2% by mass to 8% by mass. In order to obtain a uniform and high-strength sintered body, it is preferable that the content of the sintering aid is small, but if it is less than 1% by mass, it may be difficult to obtain a sintered body.
 樹脂は、後述する硬化工程において、セラミックス原料を所望の形状に成形するための成分であり、公知の硬化性樹脂が挙げられる。本実施形態に用いられる樹脂としては、硬化工程により保形性が良好であることが求められ、重合反応により3次元網目構造を形成するものが使用される。このとき、混合物の流動性を高め、成形型への充填性が良好な点で液状であることが好ましい。 The resin is a component for molding a ceramic raw material into a desired shape in a curing step described later, and examples thereof include known curable resins. As the resin used in this embodiment, a resin that is required to have good shape retention by a curing step and forms a three-dimensional network structure by a polymerization reaction is used. At this time, it is preferable that the mixture is liquid in that the fluidity of the mixture is increased and the filling property into the molding die is good.
 また、樹脂は、硬化後、焼結する前の脱脂操作においてセラミックス成形体から除去しやすいことも求められる。このような樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、アクリル酸樹脂、ウレタン樹脂等が挙げられる。なかでも、エポキシ樹脂は、保形性が良好であるため好適に用いられる。エポキシ樹脂としては、例えば、ビスフェノールA型、ビスフェノールF型等のビスフェノール類のグリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂肪族エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、メチルグリシジルエーテル型エポキシ樹脂、シクロヘキセンオキサイド型エポキシ樹脂、ゴム変性エポキシ樹脂、等が挙げられる。 It is also required that the resin can be easily removed from the ceramic molded product in the degreasing operation after curing and before sintering. Examples of such resins include epoxy resins, phenol resins, melamine resins, acrylic acid resins, urethane resins and the like. Among them, epoxy resin is preferably used because it has good shape retention. Examples of the epoxy resin include glycidyl ether type epoxy resin of bisphenols such as bisphenol A type and bisphenol F type, phenol novolac type epoxy resin, cresol novolac type epoxy resin, glycidylamine type epoxy resin, and glycidyl such as aliphatic epoxy resin. Examples thereof include ether type epoxy resin, glycidyl ester type epoxy resin, methyl glycidyl ether type epoxy resin, cyclohexene oxide type epoxy resin, and rubber-modified epoxy resin.
 エポキシ樹脂の数平均分子量は20~30000が好ましい。エポキシ樹脂の数平均分子量は、粉体との混合が容易であり、かつ一定の機械的強度が得られることから、50~3000がより好ましく、50~2500がさらに好ましい。 The number average molecular weight of the epoxy resin is preferably 20,000 to 30,000. The number average molecular weight of the epoxy resin is more preferably 50 to 3000, still more preferably 50 to 2500, because it is easy to mix with the powder and a constant mechanical strength can be obtained.
 硬化剤は、樹脂を硬化させるものであり、使用する樹脂に応じて選択する。この硬化剤としては、アミン系硬化剤、酸無水物系硬化剤、ポリアミド系硬化剤等が挙げられる。アミン系硬化剤は反応が迅速であるという点で好ましく、酸無水物系硬化剤は耐熱衝撃性に優れた硬化物が得られるという点で好ましい。 The curing agent cures the resin and is selected according to the resin to be used. Examples of this curing agent include amine-based curing agents, acid anhydride-based curing agents, and polyamide-based curing agents. The amine-based curing agent is preferable in that the reaction is quick, and the acid anhydride-based curing agent is preferable in that a cured product having excellent thermal shock resistance can be obtained.
 アミン系硬化剤としては、脂肪族アミン、脂環族アミン、芳香族アミン等が挙げられ、モノアミン、ジアミン、トリアミン、ポリアミンのいずれも使用できる。酸無水物系硬化剤としてはメチルテトラヒドロ無水フタル酸、2塩基酸ポリ無水物等が挙げられる。 Examples of the amine-based curing agent include aliphatic amines, alicyclic amines, and aromatic amines, and any of monoamine, diamine, triamine, and polyamine can be used. Examples of the acid anhydride-based curing agent include methyltetrahydrophthalic anhydride and dibasic acid polyanhydride.
 溶媒は、使用する原料の混合物の粘度を調整してスラリー状にし、成形型内への原料スラリーの充填を容易にするものである。ここで用いる溶媒としては、例えば、水、アルコール類、その他有機溶媒が使用できる。その中でも、製造コストや環境負荷の観点から水または水を主成分とする水系であることが好ましい。 The solvent adjusts the viscosity of the mixture of raw materials to be used to form a slurry, which facilitates filling of the raw material slurry into the molding die. As the solvent used here, for example, water, alcohols, and other organic solvents can be used. Among them, water or a water system containing water as a main component is preferable from the viewpoint of manufacturing cost and environmental load.
 なお、このとき、後述する脱脂操作において、樹脂の除去を容易にするため、樹脂と溶媒との親和性が良好な組み合わせとする。親和性が悪いと分離して成形体内部で偏析し、焼結時にポアなどの欠陥が発生する原因となるおそれがある。 At this time, in order to facilitate the removal of the resin in the degreasing operation described later, the combination of the resin and the solvent has a good affinity. If the affinity is poor, it may separate and segregate inside the molded product, which may cause defects such as pores during sintering.
 上記した、セラミックス粉末、樹脂、硬化剤及び溶媒を混合して、原料スラリーとする。このとき、混合は公知の方法により行えばよく、例えば、ディゾルバー、ホモミキサー、ニーダー、ロールミル、サンドミル、ボールミル、ビーズミル、バイブレーターミル、高速インペラーミル、超音波ホモジナイザー、振とう機、遊星ミル、自公転ミキサー、インラインミキサー等が挙げられる。 The above-mentioned ceramic powder, resin, curing agent and solvent are mixed to prepare a raw material slurry. At this time, mixing may be performed by a known method, for example, a dissolver, a homomixer, a kneader, a roll mill, a sand mill, a ball mill, a bead mill, a vibrator mill, a high-speed impeller mill, an ultrasonic homogenizer, a shaker, a planetary mill, and a self-revolution. Examples include mixers and in-line mixers.
 また、反応硬化型の場合、樹脂と硬化剤とを混合した時点から反応が開始してしまうため、樹脂を含有するスラリーと、硬化剤を含有するスラリーと、を別々に調製しておき、使用時にこれらを混合するようにしてもよい。なお、このときセラミックス粉末は、いずれかのスラリーに混合しておけばよく、両方のスラリーに混合しておいてもよく、さらに、セラミックス粉末を含有するスラリーを別に用意しておいてもよい。なかでも、混合したとき濃度変動等が少なく、安定した操作ができるため、セラミックス粉末は樹脂と硬化剤のそれぞれを含有する両方のスラリーに混合し、同程度の濃度に調製しておくことが好ましい。 Further, in the case of the reaction curing type, since the reaction starts when the resin and the curing agent are mixed, the slurry containing the resin and the slurry containing the curing agent are separately prepared and used. Sometimes these may be mixed. At this time, the ceramic powder may be mixed with either slurry, may be mixed with both slurries, and a slurry containing the ceramic powder may be prepared separately. Above all, it is preferable to mix the ceramic powder with both slurries containing each of the resin and the curing agent and prepare them at the same concentration because the concentration fluctuation and the like are small when mixed and stable operation is possible. ..
 まず、上記した原料を混合、撹拌して、原料スラリーを調製する。
 ここで得られる原料スラリーの粘度は、後述するスラリー注入における充填が容易に行える粘度であればよく、例えば、せん断速度が10[1/s]における粘度が50Pa・s以下が好ましく、20Pa・s以下がより好ましい。充填後のハンドリング性を考慮すると原料スラリーの粘度は0.1Pa・s~10Pa・sの範囲であることがさらに好ましい。この粘度は、使用する原料において溶媒の使用量や樹脂の添加量によって容易に調整できる。
First, the above-mentioned raw materials are mixed and stirred to prepare a raw material slurry.
The viscosity of the raw material slurry obtained here may be any viscosity as long as it can be easily filled in the slurry injection described later. For example, the viscosity at a shear rate of 10 [1 / s] is preferably 50 Pa · s or less, and 20 Pa · s. The following is more preferable. Considering the handleability after filling, the viscosity of the raw material slurry is more preferably in the range of 0.1 Pa · s to 10 Pa · s. This viscosity can be easily adjusted by adjusting the amount of solvent used and the amount of resin added in the raw materials used.
 なお、原料混合における混合によって空気等が巻き込まれ、得られた原料スラリー中に気体が含まれる場合がある。そのため、次に行うスラリー注入の前に、原料スラリーに含有される気体を除去するために脱泡処理することが好ましい。原料スラリー中に気体が含まれていると、硬化処理において内部に気泡によるポアが生じ、焼成して得られるセラミックス物品中にも残ってしまうおそれがある。 In addition, air or the like may be entrained by the mixing in the raw material mixing, and gas may be contained in the obtained raw material slurry. Therefore, it is preferable to perform a defoaming treatment in order to remove the gas contained in the raw material slurry before the next slurry injection. If gas is contained in the raw material slurry, pores due to air bubbles may be generated inside in the curing process and may remain in the ceramic article obtained by firing.
 この脱泡処理は、原料スラリーを減圧状態において脱泡させればよく、脱泡ポンプ(真空ポンプ)や脱泡ミキサー等が使用できる。脱泡は、例えば、1分~5分、0.6kPa~10kPaの減圧下において処理すればよい。脱泡ミキサーを用いる場合、原料混合処理と脱泡処理を同時に行うこともできる。ここで用いる脱泡ミキサーとしては、例えば、真空ポンプ搭載の自転・公転ミキサー、プラネタリーミキサー等が挙げられる。 For this defoaming treatment, the raw material slurry may be defoamed in a reduced pressure state, and a defoaming pump (vacuum pump), a defoaming mixer, or the like can be used. Defoaming may be performed, for example, for 1 minute to 5 minutes under a reduced pressure of 0.6 kPa to 10 kPa. When a defoaming mixer is used, the raw material mixing treatment and the defoaming treatment can be performed at the same time. Examples of the defoaming mixer used here include a rotation / revolution mixer equipped with a vacuum pump, a planetary mixer, and the like.
 セラミックス原料が調製できたら、次いで、セラミックス物品とセラミックス供試体をそれぞれ作製する。これらの作製操作に関しては、以下に詳細に記載する。 After preparing the ceramic raw material, the ceramic article and the ceramic specimen are prepared respectively. These fabrication operations will be described in detail below.
<セラミックス物品作製工程>
 セラミックス物品の作製は、上記の原料スラリーを用いるが、公知のセラミックス物品の作製と同様に、成形型へのスラリー注入、脱型、乾燥、脱脂、焼成の各処理を順番に実施すればよい。
<Ceramic article manufacturing process>
The above-mentioned raw material slurry is used for producing the ceramic article, but the slurry injection into the molding die, the demolding, the drying, the degreasing, and the firing may be carried out in order in the same manner as in the production of the known ceramic article.
(スラリー注入)
 スラリー注入は、上記原料混合及び脱泡を経て得られた原料スラリーを、成形型に注入する工程である(S2)。ここで用いる成形型は、製品形状を作製するための所定形状を有するものであり、従来公知の成形型や任意の成形型を使用できる。成形型としては、金型や樹脂型、発泡スチロール製、ゴム製等の各種の型や伸縮性容器などが使用できる。
(Slurry injection)
Slurry injection is a step of injecting the raw material slurry obtained through the above-mentioned raw material mixing and defoaming into a molding die (S2). The molding die used here has a predetermined shape for producing a product shape, and a conventionally known molding die or an arbitrary molding die can be used. As the molding mold, various molds such as a mold, a resin mold, a styrofoam mold, a rubber mold, and an elastic container can be used.
 このような成形型にスラリーを注入するには、原料スラリーを送液して成形型内に供給できる装置を用いればよく、例えば、ダイヤフラムポンプ、チューブポンプ、シリンジポンプ等のポンプが一般的に挙げられ、特に、脈動を発生させない構造をもつ、精密等速カムを搭載した回転容積式ダイヤフラムポンプが好ましい。また、原料を混合して原料スラリーを調製しながら送液可能なインラインミキサー等も使用できる。インラインミキサーを用いる場合には、上記原料混合工程とスラリー注入工程とを同時に実施できる。また、インラインミキサーは、上記したように原料スラリーとして樹脂を含有するスラリーと、硬化剤を含有するスラリーと、を用意して成形する場合、両スラリーを混合して直ぐに成形型に送液し充填可能であり好ましい。 In order to inject the slurry into such a mold, a device capable of sending the raw material slurry and supplying it into the mold may be used. For example, pumps such as a diaphragm pump, a tube pump, and a syringe pump are generally mentioned. In particular, a rotary positive displacement diaphragm pump equipped with a precision constant velocity cam having a structure that does not generate pulsation is preferable. Further, an in-line mixer or the like that can send a liquid while mixing raw materials to prepare a raw material slurry can also be used. When an in-line mixer is used, the raw material mixing step and the slurry injection step can be carried out at the same time. Further, when the in-line mixer prepares and molds a slurry containing a resin as a raw material slurry and a slurry containing a curing agent as described above, both slurries are mixed and immediately sent to a molding mold for filling. It is possible and preferable.
(硬化)
 硬化処理は、成形型内に原料スラリーを注入した後、原料スラリー内の樹脂成分を硬化させてセラミックス原料を所望の形状とするものである(S3)。この硬化処理においては、原料スラリーの特性に応じて、所望の硬化条件を適宜選択し硬化させるものである。
(Curing)
In the curing treatment, after the raw material slurry is injected into the molding die, the resin component in the raw material slurry is cured to form the ceramic raw material into a desired shape (S3). In this curing treatment, desired curing conditions are appropriately selected and cured according to the characteristics of the raw material slurry.
 例えば、反応硬化型の原料スラリーの場合、樹脂成分を含有するスラリーと硬化剤成分を含有するスラリーとを混合した時点から反応が始まり硬化するため、所定時間放置しておけばよい。このとき、硬化時間としては、1時間~3日程度とし、製造効率の点から1時間~24時間が好ましく、1時間~12時間がより好ましい。 For example, in the case of a reaction-curing type raw material slurry, the reaction starts from the time when the slurry containing the resin component and the slurry containing the curing agent component are mixed and cured, so that the slurry may be left for a predetermined time. At this time, the curing time is about 1 hour to 3 days, preferably 1 hour to 24 hours, and more preferably 1 hour to 12 hours from the viewpoint of production efficiency.
 また、加熱硬化型の原料スラリーの場合、所望の温度に加熱し、十分な硬化時間を確保すればよい。例えば、80℃~150℃で、5分~120分加熱硬化させればよい。製造条件や製造効率等を考慮すれば、80℃~100℃で、5分~90分が好ましく、80℃~100℃で、5分~60分がより好ましい。 Further, in the case of a heat-curing type raw material slurry, it is sufficient to heat it to a desired temperature and secure a sufficient curing time. For example, it may be heat-cured at 80 ° C. to 150 ° C. for 5 minutes to 120 minutes. Considering the production conditions, production efficiency, etc., 80 ° C. to 100 ° C. for 5 minutes to 90 minutes is preferable, and 80 ° C. to 100 ° C. for 5 minutes to 60 minutes is more preferable.
(脱型)
 脱型処理は、硬化処理で硬化させたセラミックス原料の成形体を成形型から取り出す処理である(S4)。この脱型処理は、従来公知の方法で行えばよく、例えば、分割式の成形型を分解したり、成形型から成形体を外部に押し出したり、場合によっては、成形型を破壊したりして、内部の成形体を取り出し、脱型させればよい。
(Demolding)
The demolding treatment is a treatment for taking out the molded product of the ceramic raw material cured by the curing treatment from the molding mold (S4). This demolding process may be performed by a conventionally known method, for example, disassembling the split mold, extruding the molded product from the mold to the outside, or destroying the mold in some cases. , The inner molded body may be taken out and removed from the mold.
(乾燥)
 乾燥処理は、脱型処理で得られた上記成形体から水分、揮発性溶媒等を除去して乾燥させる処理である(S5)。この乾燥処理においては、成形体にクラック等を生じさせないように緩やかに乾燥させる。すなわち、成形体の表面と内部における乾燥速度の差に起因する収縮応力によるクラック等の発生を防止しながら、乾燥させる。
(Dry)
The drying treatment is a treatment of removing water, a volatile solvent, and the like from the molded product obtained by the demolding treatment and drying the molded product (S5). In this drying treatment, the molded product is gently dried so as not to cause cracks or the like. That is, the molded product is dried while preventing the occurrence of cracks and the like due to shrinkage stress due to the difference in drying speed between the surface and the inside of the molded product.
 この乾燥処理の条件としては、例えば、25℃~30℃、相対湿度60%~95%で、48時間~7日等の比較的穏やかな条件で、長い時間かけて成形体に含有する水分等を除去する条件が挙げられる。ここで、乾燥は、成形体の含水率が絶乾時の質量に対して20%以下までの処理が好ましい。 The conditions of this drying treatment include, for example, 25 ° C. to 30 ° C., relative humidity of 60% to 95%, relatively mild conditions such as 48 hours to 7 days, and moisture contained in the molded product over a long period of time. There are conditions for removing. Here, the drying is preferably performed so that the water content of the molded product is 20% or less with respect to the mass at the time of absolute drying.
(脱脂)
 脱脂処理は、乾燥処理で得られた上記成形体から樹脂、不揮発性溶媒等を除去する処理である(S6)。この処理においては、次の焼結処理で焼結を阻害する成分をほぼ完全に取り除くことが好ましい。このような成分が多量に残留していると、焼結時に焼結体内にポアが生じたり、炭化物が副生成物として生じたりして、最終的な製品として求める特性が得られなくなる等のおそれがある。
(Solvent degreasing)
The degreasing treatment is a treatment for removing the resin, the non-volatile solvent, etc. from the molded product obtained by the drying treatment (S6). In this treatment, it is preferable to almost completely remove the components that inhibit sintering in the next sintering treatment. If a large amount of such a component remains, pores may be generated in the sintered body during sintering, or carbides may be generated as by-products, and the characteristics required for the final product may not be obtained. There is.
 この脱脂処理の条件としては、例えば、400℃~800℃で、2日~14日等の比較的長い時間をかけて成形体に含有する樹脂成分等を除去する条件が挙げられる。ここで、特に窒化ケイ素における脱脂処理は、成形体中の残存炭素量を200ppm以下とすることが好ましい。なお、炭化ケイ素等の炭化物に関してはこの限りではない。 Examples of the conditions for this degreasing treatment include conditions for removing the resin component and the like contained in the molded product at 400 ° C. to 800 ° C. over a relatively long time such as 2 days to 14 days. Here, particularly in the degreasing treatment of silicon nitride, the amount of residual carbon in the molded product is preferably 200 ppm or less. This does not apply to carbides such as silicon carbide.
(焼成)
 焼成処理は、脱脂処理を経た成形体を焼成することでセラミックス原料を焼結させ、セラミックス物品とする処理である(S7)。この焼成処理における焼成は、混合粉末を焼結させて、セラミックスを得るものであり、公知の焼成方法により製造すればよい。
(Baking)
The firing treatment is a treatment of sintering a ceramic raw material into a ceramic article by firing the molded product that has undergone the degreasing treatment (S7). In the firing in this firing process, the mixed powder is sintered to obtain ceramics, which may be produced by a known firing method.
 焼成処理における焼成条件は、焼成してセラミックス体を得られれば、特に限定されない。例えば窒化ケイ素を焼成する場合には、窒素雰囲気下で酸素濃度が50ppm以下の雰囲気が好ましい。このとき、本処理における焼成温度の最高温度は、窒化ケイ素が熱分解をし始める1800℃以下とするもので、この最高温度は1650℃~1750℃の範囲が好ましい。また、焼成時間は4時間~12時間の範囲が好ましい。 The firing conditions in the firing process are not particularly limited as long as the ceramic body can be obtained by firing. For example, when firing silicon nitride, an atmosphere having an oxygen concentration of 50 ppm or less is preferable under a nitrogen atmosphere. At this time, the maximum firing temperature in this treatment is 1800 ° C. or lower at which silicon nitride begins to thermally decompose, and the maximum temperature is preferably in the range of 1650 ° C. to 1750 ° C. The firing time is preferably in the range of 4 hours to 12 hours.
(2次焼成処理)
 焼成処理で得られた焼成体を、さらに所望の特性を有する焼結体とするために、2次焼成処理をしてもよい。この2次焼成処理は、焼成処理(1次焼成)で得られた焼成体に対して、さらに高圧焼成処理をして、焼成体の組織を緻密化するものである。
(Secondary firing process)
A secondary firing treatment may be performed in order to further obtain a sintered body having desired characteristics from the fired body obtained by the firing treatment. In this secondary firing treatment, the fired body obtained by the firing treatment (primary firing) is further subjected to a high-pressure firing treatment to densify the structure of the fired body.
 この2次焼成処理における高圧焼成処理としては、熱間等方圧プレス(HIP)、ガス圧焼成、ホットプレス等が使用できる。一般に高強度の焼結体を得るには、HIPにより1500℃~1700℃、50MPa~200MPaの範囲で処理することが好ましい。 As the high-pressure firing process in this secondary firing process, a hot isotropic press (HIP), a gas pressure firing, a hot press, or the like can be used. Generally, in order to obtain a high-strength sintered body, it is preferable to treat it with HIP in the range of 1500 ° C. to 1700 ° C. and 50 MPa to 200 MPa.
<セラミックス供試体作製工程>
 セラミックス供試体の作製は、上記のセラミックス物品の作製と同様に、成形型へのスラリー注入、脱型、乾燥、脱脂、焼成の各処理を順番に実施すればよい。なお、この工程では、円柱形状の供試体を作製するために、用いる成形型が所定形状のものである点のみが異なり、それ以外は上記説明と同一である。
<Ceramics specimen manufacturing process>
In the production of the ceramic specimen, the slurry injection into the molding mold, the demolding, the drying, the degreasing, and the firing may be performed in order in the same manner as in the production of the ceramic article. It should be noted that this step is the same as the above description except that the molding die used for producing the cylindrical specimen is of a predetermined shape.
(スラリー注入)
 上記したように、スラリー注入は、上記原料混合及び脱泡を経て得られた原料スラリーを、成形型に注入する工程である(S8)。ここで用いる成形型は、円柱形状のセラミックス供試体を作製するために、円柱形状のキャビティ等の所定の形状を有するものであり、このセラミックス供試体は、上記セラミックス物品の評価方法で用いるためのセラミックス供試体である。したがって、セラミックス供試体として上記評価方法で説明した供試体を得るための成形型であればよい。なお、ここで用いる成形型は、得られた成形体を、加工してセラミックス供試体とする場合の成形型のように、成形体がセラミックス供試体形状そのものでなくてもよい。
(Slurry injection)
As described above, the slurry injection is a step of injecting the raw material slurry obtained through the above-mentioned raw material mixing and defoaming into a molding die (S8). The molding die used here has a predetermined shape such as a cylindrical cavity in order to produce a cylindrical ceramic specimen, and this ceramic specimen is used in the evaluation method of the ceramic article. It is a ceramic specimen. Therefore, the ceramic specimen may be a molding mold for obtaining the specimen described in the above evaluation method. The molding die used here does not have to be the shape of the ceramic specimen itself, unlike the molding die when the obtained molded body is processed into a ceramic specimen.
 そして、得られたセラミックス供試体用の成形体に対して、上記のように、硬化(S9)、脱型(S10)、乾燥(S11)、脱脂(S12)、焼成(S13)の各処理を行う。これらの各処理は、上記したセラミックス物品作製工程における各処理と同一内容であるため、説明を省略する。 Then, the obtained molded product for the ceramic specimen is subjected to each of curing (S9), demolding (S10), drying (S11), degreasing (S12), and firing (S13) as described above. Do. Since each of these processes has the same contents as each process in the ceramic article manufacturing step described above, the description thereof will be omitted.
 セラミックス供試体は、セラミックス物品の製造と同時に同一条件で作製されることが好ましい。すなわち、セラミックス物品作製工程とセラミックス供試体作製工程において、各処理条件は同一条件とすることが好ましい。さらに、セラミックス物品作製工程とセラミックス供試体作製工程は、それぞれ別処理として行ってもよいが、並行して同一処理することがより好ましく、セラミックス物品とセラミックス供試体を同じ処理装置内で処理することが最も好ましい。 It is preferable that the ceramic specimen is manufactured under the same conditions at the same time as the production of the ceramic article. That is, it is preferable that the processing conditions are the same in the ceramic article manufacturing step and the ceramic specimen manufacturing step. Further, the ceramic article manufacturing step and the ceramic specimen manufacturing step may be performed as separate processes, but it is more preferable to perform the same process in parallel, and the ceramic article and the ceramic specimen are processed in the same processing device. Is the most preferable.
 また、セラミックス物品の体積に対してセラミックス供試体の体積を小さくすると、原料の使用量全量に対する試験体としての使用量が少なく、セラミックス物品の製造効率が向上するため好ましい。これは、特に、製品であるセラミックス物品の体積が大きい場合や生産数が少ない等の場合に効果が大きい。このとき、セラミックス供試体の体積は、セラミックス物品の体積に対して1/4以下が好ましく、1/15以下がより好ましく、1/100以下がさらに好ましい。 Further, it is preferable to make the volume of the ceramic specimen smaller than the volume of the ceramic article because the amount used as a test piece is smaller than the total amount of the raw material used and the production efficiency of the ceramic article is improved. This is particularly effective when the volume of the ceramic article as a product is large or when the number of products produced is small. At this time, the volume of the ceramic specimen is preferably 1/4 or less, more preferably 1/15 or less, and further preferably 1/100 or less with respect to the volume of the ceramic article.
<判定工程>
 次いで、上記のセラミックス供試体の作製方法で得られたセラミックス供試体に対して、最初に説明したセラミックス物品の評価方法を実施し(S14)、得られた評価結果が良好か否かを判定する(S15)。
<Judgment process>
Next, the ceramic article evaluation method described first is carried out on the ceramic specimen obtained by the above-mentioned ceramic specimen manufacturing method (S14), and it is determined whether or not the obtained evaluation result is good. (S15).
 この評価結果が良好である場合は、セラミックス物品の作製工程を継続する(S16)。そして、作製されたセラミックス物品は最終製品として出荷する。 If this evaluation result is good, the manufacturing process of the ceramic article is continued (S16). Then, the produced ceramic article is shipped as a final product.
 一方、この評価結果が良好ではなかった場合、原料調製(S1)に戻り、再度、セラミックス物品の製造方法を繰り返し行う。この場合、原料調製(S1)から焼成(S7)までのいずれの処理に原因があると考えられ、少なくともいずれか1つの条件を変更し、評価結果が良好となるようにする。一例として、原料調整段階の不具合については、使用原料の品質、混合原料の配合、原料の混合、脱泡条件等を確認、検討し、一部条件を変更することが好ましい。 On the other hand, if this evaluation result is not good, the process returns to the raw material preparation (S1), and the method for manufacturing the ceramic article is repeated again. In this case, it is considered that the cause is any of the processes from raw material preparation (S1) to firing (S7), and at least one of the conditions is changed so that the evaluation result becomes good. As an example, it is preferable to confirm and examine the quality of the raw materials used, the blending of the mixed raw materials, the mixing of the raw materials, the defoaming conditions, and the like, and change some conditions for the defects in the raw material adjustment stage.
 なお、良否の判定は、製品に求められる強度に応じてその基準を設定すればよい。この基準は、上記のセラミックス物品の評価方法で記載したような基準を用いればよい。 For the judgment of quality, the standard may be set according to the strength required for the product. As this standard, the standard described in the above-mentioned evaluation method for ceramic articles may be used.
 以下、実施例及び比較例に基づき本発明をさらに詳しく説明するが、本発明はこれら実施例に限定して解釈されるものではない。なお、ここでは、セラミックスとして窒化ケイ素を使用した例で説明するが、窒化ケイ素以外のセラミックスでも同様にできる。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples, but the present invention is not construed as being limited to these Examples. Here, an example in which silicon nitride is used as the ceramics will be described, but ceramics other than silicon nitride can be used in the same manner.
[例1(実施例)]
(スラリーSNの調製) 
 窒化ケイ素粉末(デンカ(株)製、商品名SN-9FWS)  73.11質量部、焼結助剤としてスピネル粉末  2.09質量部、溶媒として水  23.19質量部、分散剤として第4級アンモニウム塩(セイケム製)  1.61質量部、をボールミルにより混合し、原料スラリーのベースとなる窒化ケイ素スラリー(スラリーSN)を調製した。 
 なお、上記ボールミルにおいては、粉砕メディアとして窒化ケイ素ボール((株)ニッカトー製、直径5mm)を用いた。 
[Example 1 (Example)]
(Preparation of slurry SN)
Silicon nitride powder (manufactured by Denka Co., Ltd., trade name SN-9FWS) 73.11 parts by mass, spinel powder 2.09 parts by mass as sintering aid, 23.19 parts by mass of water as solvent, fourth grade as dispersant 1.61 parts by mass of ammonium salt (manufactured by Seichem) was mixed by a ball mill to prepare a silicon nitride slurry (slurry SN) as a base of the raw material slurry.
In the above ball mill, a silicon nitride ball (manufactured by Nikkato Corporation, diameter 5 mm) was used as the pulverizing medium.
(スラリーSN1の調製及び脱泡) 
 上記スラリーSN  90.10質量部、水溶性エポキシ樹脂(ナガセケムテックス(株)製)  9.90質量部、を真空ポンプ搭載自転公転式ミキサーにより混合し、エポキシ樹脂含有窒化ケイ素スラリー(スラリーSN1)を調製した。 
なお、減圧(0.6kPa)により、スラリーSN1は10μm以上の気泡を含まないものとした。 
(Preparation and defoaming of slurry SN1)
90.10 parts by mass of the above slurry SN and 9.90 parts by mass of a water-soluble epoxy resin (manufactured by Nagase ChemteX Corporation) are mixed by a rotating and revolving mixer equipped with a vacuum pump, and the epoxy resin-containing silicon nitride slurry (slurry SN1). Was prepared.
By reducing the pressure (0.6 kPa), the slurry SN1 did not contain bubbles of 10 μm or more.
(スラリーSN2の調製及び脱泡) 
 上記スラリーSN  98.4質量部、樹脂硬化剤(トリエチレンテトラミンと2,4,6-トリス(ジメチルアミノメチル)フェノールを2:1の質量比で混合したもの)  1.6質量部、を真空ポンプ搭載自転公転式ミキサーにより混合し、樹脂硬化剤含有窒化ケイ素スラリー(スラリーSN2)を調製した。 
 なお、減圧(0.6kPa)により、スラリーSN2は10μm以上の気泡を含まないものとした。 
(Preparation and defoaming of slurry SN2)
Vacuum 98.4 parts by mass of the above slurry SN and 1.6 parts by mass of a resin curing agent (a mixture of triethylenetetramine and 2,4,6-tris (dimethylaminomethyl) phenol in a mass ratio of 2: 1). A silicon nitride slurry (slurry SN2) containing a resin curing agent was prepared by mixing with a pump-mounted rotating and revolving mixer.
By reducing the pressure (0.6 kPa), the slurry SN2 did not contain bubbles of 10 μm or more.
(スラリー注入) 
 スラリーSN1をスラリータンク1に、スラリーSN2をスラリータンク2に、それぞれ同じ体積となるように充填した。次に、脈動を発生させることがなく、エアーの巻き込みを発生させない、精密等速カムを搭載した株式会社タクミナ製回転容積式ダイヤフラムポンプ2台を用いてスラリータンク1及びスラリータンク2からそれぞれスラリーSN1及びスラリーSN2を吸引、吐出させた。スラリーSN1及びスラリーSN2を合流させる配管を介して、ノリタケカンパニー製インラインミキサー(商品名:スタティックミキサー)に送液した。 
(Slurry injection)
The slurry SN1 was filled in the slurry tank 1 and the slurry SN2 was filled in the slurry tank 2 so as to have the same volume. Next, using two rotary positive displacement diaphragm pumps manufactured by Takumina Co., Ltd. equipped with a precision constant velocity cam that does not generate pulsation and does not generate air entrainment, slurry SN1 from slurry tank 1 and slurry tank 2, respectively. And the slurry SN2 was sucked and discharged. The liquid was sent to an in-line mixer (trade name: static mixer) manufactured by Noritake Company via a pipe for merging the slurry SN1 and the slurry SN2.
 インラインミキサーにて、混合してエポキシ樹脂及び樹脂硬化剤を含有する原料スラリー1とした。原料スラリー1を得ると同時に、原料スラリー1をインラインミキサーの出口側に接続した製品用成形型に供給した。  It was mixed with an in-line mixer to obtain a raw material slurry 1 containing an epoxy resin and a resin curing agent. At the same time as obtaining the raw material slurry 1, the raw material slurry 1 was supplied to a product molding mold connected to the outlet side of the in-line mixer.
 引き続き、原料スラリー1を供試体用のチューブであるサンゴバン製タイゴンチューブ2375(外径19.0mm、内径12.7mm)に供給した。これは、上記製品用成形型に供給後、インラインミキサーの出口側に供試体用のチューブを繋ぎ変えて実施した。
(硬化) 
 原料スラリー1が充填されたチューブを室温25℃で一晩放置することにより、エポキシ樹脂と樹脂硬化剤とを反応させ硬化させた。 
Subsequently, the raw material slurry 1 was supplied to a Saint-Gobain Tygon tube 2375 (outer diameter 19.0 mm, inner diameter 12.7 mm), which is a tube for a specimen. This was carried out by reconnecting a tube for a specimen to the outlet side of the in-line mixer after supplying the molded product for the above product.
(Curing)
The tube filled with the raw material slurry 1 was allowed to stand at room temperature of 25 ° C. overnight to react the epoxy resin with the resin curing agent and cure it.
(脱型) 
 チューブおよびチューブ内で硬化した成形体をカッターで注意深く切断することで、円柱状成形体を得た。長さは25mmに切り揃えた。本数は40本を得た。
(Demolding)
A columnar molded product was obtained by carefully cutting the tube and the molded product cured in the tube with a cutter. The length was trimmed to 25 mm. The number was 40.
(乾燥) 
 円柱状成形体は、温度25℃、相対湿度90%に制御した恒温・恒湿槽内で1週間静置し乾燥させた。 
(Dry)
The columnar molded product was allowed to stand in a constant temperature / humidity bath controlled at a temperature of 25 ° C. and a relative humidity of 90% for 1 week to dry.
(脱脂) 
 乾燥した円柱状成形体を、大気雰囲気下で、室温から700℃まで1週間かけて昇温させ、700℃で1日保持することより、含有する硬化樹脂成分を焼失させて脱脂した。 
(Solvent degreasing)
The dried columnar molded product was heated from room temperature to 700 ° C. for 1 week in an air atmosphere and kept at 700 ° C. for 1 day to burn off the contained cured resin component and degreas it.
(焼成) 
 脱脂した円柱状成形体を、窒素雰囲気下1700℃、保持時間12時間で焼成した。この焼成後に円柱状の窒化ケイ素焼結体を得た。 
(Baking)
The degreased columnar molded product was fired in a nitrogen atmosphere at 1700 ° C. and a holding time of 12 hours. After this firing, a columnar silicon nitride sintered body was obtained.
(HIP) 
 さらに、円柱状窒化ケイ素焼結体に対し、窒素ガスを圧媒として100MPaの圧力下1700℃でHIP(熱間等方圧プレス)を行った。HIP後に密度が3.2g/cmの緻密な直径約10mm、長さ20mmの円柱状窒化ケイ素供試体1を40本得た。
(HIP)
Further, the columnar silicon nitride sintered body was subjected to HIP (hot isostatic pressing) at 1700 ° C. under a pressure of 100 MPa using nitrogen gas as a pressure medium. After HIP, 40 dense columnar silicon nitride specimens 1 having a density of 3.2 g / cm 3 and a diameter of about 10 mm and a length of 20 mm were obtained.
 得られた円柱状窒化ケイ素供試体1を40本用い、図2に示した圧砕試験の試験装置を用いて、それぞれの軸が直交するように積層し、これに上から圧砕するまで荷重をかけ圧砕時の荷重(=圧砕強度)を測定した。この圧砕試験を20回実施して、圧砕強度(平均値)は30kN、ワイブル係数17が得られた。なお、ここで用いた円柱状窒化ケイ素供試体は、その真直度が2mm未満、真円度が0.5mm未満のものである。 Using 40 columnar silicon nitride specimens 1 obtained, they were laminated so that their axes were orthogonal to each other using the test equipment for the crushing test shown in FIG. 2, and a load was applied to them from above until they were crushed. The load at the time of crushing (= crushing strength) was measured. This crushing test was carried out 20 times, and a crushing strength (average value) of 30 kN and a Weibull coefficient of 17 were obtained. The columnar silicon nitride specimen used here has a straightness of less than 2 mm and a roundness of less than 0.5 mm.
 また、圧砕試験終了後の破面をオリンパス製実体顕微鏡(商品名:SZX16)を用い、接眼レンズ倍率10倍、対物レンズ倍率1倍~2.5倍で観察した。観察の結果、接触表面から約1mmの深さを起点に破壊が進展していること、すなわち最大応力が円柱状窒化ケイ素供試体1の内部で発生したことを確認した。 In addition, the fracture surface after the completion of the crushing test was observed using an Olympus stereomicroscope (trade name: SZX16) with an eyepiece lens magnification of 10 times and an objective lens magnification of 1 to 2.5 times. As a result of observation, it was confirmed that the fracture progressed from a depth of about 1 mm from the contact surface, that is, the maximum stress was generated inside the cylindrical silicon nitride specimen 1.
[例2(比較例)]
 例1と同じ原料スラリー1を用い、直径12mmの円柱状のセラミックス成形体を得た。続いて、円柱状のセラミックス成形体を球状に生加工、脱脂、焼成を行い、直径約10mmの球状窒化ケイ素供試体を得た。
[Example 2 (Comparative example)]
Using the same raw material slurry 1 as in Example 1, a cylindrical ceramic molded product having a diameter of 12 mm was obtained. Subsequently, the cylindrical ceramic molded body was subjected to spherical raw processing, degreasing, and firing to obtain a spherical silicon nitride specimen having a diameter of about 10 mm.
 得られた球状窒化ケイ素供試体について、図7で示した従来の圧砕試験の試験装置を用いて、圧砕時の荷重(=圧砕強度)試験を20回実施した。その結果、圧砕強度(平均値)は16kN、ワイブル係数16が得られた。 The obtained spherical silicon nitride specimen was subjected to a load (= crushing strength) test at the time of crushing 20 times using the conventional crushing test test apparatus shown in FIG. As a result, a crushing strength (average value) of 16 kN and a Weibull coefficient of 16 were obtained.
 また、圧砕試験終了後の球状窒化ケイ素供試体の破面をオリンパス製実体顕微鏡(商品名:SZX16)を用い、接眼レンズ倍率10倍、対物レンズ倍率1倍~2.5倍で観察した。観察の結果、接触表面から1mm~2mmの深さを起点に破壊が進展していること、すなわち最大応力が球状窒化ケイ素供試体の内部で発生したことを確認した。 Further, the fracture surface of the spherical silicon nitride specimen after the completion of the crushing test was observed using an Olympus stereomicroscope (trade name: SZX16) with an eyepiece lens magnification of 10 times and an objective lens magnification of 1 to 2.5 times. As a result of observation, it was confirmed that the fracture progressed from a depth of 1 mm to 2 mm from the contact surface, that is, the maximum stress was generated inside the spherical silicon nitride specimen.
 例1と例2との比較により、強度のバラツキの程度を示すワイブル係数が17(例1)、16(例2)と共に大きく、強度のバラツキが両方法とも小さいことがわかった。よって、本実施形態における円柱状窒化ケイ素供試体による圧砕試験は、従来の球状窒化ケイ素供試体による圧砕試験と同等の評価ができることが確認できた。したがって、セラミックス物品の評価において、本発明による円柱状供試体を使用した圧砕試験が、従来の球状供試体を使用した圧砕試験に代替し得ることが確認できた。 Comparing Example 1 and Example 2, it was found that the Weibull coefficient indicating the degree of strength variation was as large as 17 (Example 1) and 16 (Example 2), and the intensity variation was small in both methods. Therefore, it was confirmed that the crushing test using the cylindrical silicon nitride specimen in the present embodiment can be evaluated in the same manner as the crushing test using the conventional spherical silicon nitride specimen. Therefore, in the evaluation of the ceramic article, it was confirmed that the crushing test using the columnar specimen according to the present invention can be replaced with the crushing test using the conventional spherical specimen.
[例3(実施例)]
 例1のスラリーSNにおいて、窒化ケイ素粉末 69.19質量部、焼結助剤としてスピネル粉末の代わりに、イットリア粉末 3.76質量部、アルミナ粉末 2.25質量部とする以外は例1と同様にして原料スラリー2を調製した。
[Example 3 (Example)]
Same as Example 1 except that the slurry SN of Example 1 contains 69.19 parts by mass of silicon nitride powder, 3.76 parts by mass of itria powder and 2.25 parts by mass of alumina powder instead of spinel powder as a sintering aid. The raw material slurry 2 was prepared.
 得られた原料スラリー2を用いた以外は、例1と同一の条件で円柱状窒化ケイ素供試体2を作製し、圧砕試験を行った。その結果、圧砕強度(平均値)は25kNとなり、スラリー原料の違いによる強度の違いを確認できた。 A columnar silicon nitride specimen 2 was prepared under the same conditions as in Example 1 except that the obtained raw material slurry 2 was used, and a crushing test was performed. As a result, the crushing strength (average value) was 25 kN, and it was confirmed that the strength was different due to the difference in the slurry raw materials.
[例4(実施例)]
 焼成条件以外は、例1と同一のものとして円柱状窒化ケイ素供試体3を作製し、圧砕試験を実施した。ここで、焼成は、常圧、1700℃で12時間焼成し、次いで10MPa、1700℃で高圧焼成した。圧砕試験の結果、圧砕強度(平均値)は20kNとなり、焼成条件の違いによる強度の違いを確認できた。
[Example 4 (Example)]
A columnar silicon nitride specimen 3 was prepared under the same conditions as in Example 1 except for the firing conditions, and a crushing test was carried out. Here, the firing was carried out at normal pressure at 1700 ° C. for 12 hours, and then at 10 MPa and 1700 ° C. at high pressure. As a result of the crushing test, the crushing strength (average value) was 20 kN, and the difference in strength due to the difference in firing conditions could be confirmed.
[例5(実施例)]
 例1と同一の操作で円柱状窒化ケイ素供試体を作製したもののうち、真直度が2mm以上、真円度が0.5mm未満のものを選んで円柱状窒化ケイ素供試体4とした。円柱状窒化ケイ素供試体4を用いて例1と同様に圧砕試験を実施した。その結果、例1と有意差のない結果が得られた。
[Example 5 (Example)]
Among the cylindrical silicon nitride specimens prepared by the same operation as in Example 1, those having a straightness of 2 mm or more and a roundness of less than 0.5 mm were selected and used as the cylindrical silicon nitride specimen 4. A crushing test was carried out in the same manner as in Example 1 using the cylindrical silicon nitride specimen 4. As a result, a result not significantly different from that of Example 1 was obtained.
[例6(実施例)]
 例1と同一の操作で円柱状窒化ケイ素供試体を作製したもののうち、真直度が2mm未満、真円度が0.5mm以上のものを選んで円柱状窒化ケイ素供試体5とした。円柱状窒化ケイ素供試体5を用いて例1と同様に圧砕試験を実施した。その結果、例1と有意差のない結果が得られた。
[Example 6 (Example)]
Among the cylindrical silicon nitride specimens prepared by the same operation as in Example 1, those having a straightness of less than 2 mm and a roundness of 0.5 mm or more were selected and used as the cylindrical silicon nitride specimen 5. A crushing test was carried out in the same manner as in Example 1 using the cylindrical silicon nitride specimen 5. As a result, a result not significantly different from that of Example 1 was obtained.
[例7(比較例)]
 例1と同じ原料スラリー1を用い、セラミックス物品を作製し、ここから3点曲げサンプル用の試験片を切り出し、4面の表面粗さRaを0.5μmとなるように加工して試験片を得た。これらの試験片を用いて3点曲げ試験を行った結果、その平均強度は720MPaとなった。このとき、試験後の破面を観察したところ、試験時に下側であった表面や角部の欠陥部分が起点となって破壊が進展している試験片が多いこと、また、最大応力が試験片内部ではなく、下側表面であることがわかった。
[Example 7 (Comparative example)]
Using the same raw material slurry 1 as in Example 1, a ceramic article was prepared, and a test piece for a 3-point bending sample was cut out from this and processed so that the surface roughness Ra on the four surfaces was 0.5 μm to prepare the test piece. Obtained. As a result of performing a three-point bending test using these test pieces, the average strength was 720 MPa. At this time, when observing the fracture surface after the test, it was found that there were many test pieces in which fracture progressed starting from the defective part of the surface and corners that were on the lower side at the time of the test, and the maximum stress was tested. It was found to be the lower surface, not the inside of one piece.
 以上より、本発明のセラミックス物品の評価方法及びセラミックス物品の製造方法によれば、セラミックス物品の材料本来の強度を従来の圧砕試験に代替して測定、評価でき、さらに、最終製品であるセラミックス物品を効率的に製造できる。
 このとき、セラミックス供試体の形状や表面粗さに対して、本発明のセラミックス物品の評価方法によれば、その影響をあまり受けずに評価でき、供試体の加工条件に囚われずに実施、評価できることがわかった。
From the above, according to the method for evaluating a ceramic article and the method for manufacturing a ceramic article of the present invention, the original strength of the material of the ceramic article can be measured and evaluated in place of the conventional crushing test, and further, the final product, the ceramic article. Can be manufactured efficiently.
At this time, according to the evaluation method of the ceramic article of the present invention, the shape and surface roughness of the ceramic specimen can be evaluated without being affected so much, and the evaluation is carried out without being bound by the processing conditions of the specimen. I found that I could do it.
 本発明のセラミックス物品の評価方法及びセラミックス物品の製造方法は、所望の形状のセラミックス物品を評価でき、また、この評価を行いながら、効率的にセラミックス物品を製造できる。ここで対象となるセラミックス物品は、その原料としては、セラミックス原料であれば特に限定されず広く使用できる。 The method for evaluating a ceramic article and the method for producing a ceramic article of the present invention can evaluate a ceramic article having a desired shape, and can efficiently produce a ceramic article while performing this evaluation. The ceramic article to be targeted here is not particularly limited as long as the raw material is a ceramic raw material, and can be widely used.
 以上、本発明の好ましい実施の形態について説明したが、本発明は、上述した実施の形態に制限されるものではなく、本発明の範囲を逸脱しない範囲において、上述した実施の形態に種々の変形及び置換を加えることができる。 
 本出願は、2019年9月30日出願の日本特許出願2019-180093に基づくものであり、その内容はここに参照として取り込まれる。
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications to the above-described embodiments are made without departing from the scope of the present invention. And substitutions can be made.
This application is based on Japanese Patent Application No. 2019-18093 filed on September 30, 2019, the contents of which are incorporated herein by reference.
1A,1B…セラミックス供試体、10,20,30,40…試験装置、11,21,31,41…下部材、12,22,32,42…上部材、13,23,33,43…補助部材 1A, 1B ... Ceramic specimens 10, 20, 30, 40 ... Test equipment 11, 21, 31, 41 ... Lower member, 12, 22, 32, 42 ... Upper member, 13, 23, 33, 43 ... Auxiliary Element

Claims (9)

  1.  セラミックス物品を形成するためのセラミックス原料を用い、円柱形状のセラミックス供試体を作製し、
     前記セラミックス供試体の2本の側面同士を接触させて圧砕試験を実施し、
     前記圧砕試験の結果に基づいて、前記セラミックス物品の強度を評価する、
    ことを特徴とするセラミックス物品の評価方法。
    Using the ceramic raw material for forming the ceramic article, a cylindrical ceramic specimen was prepared.
    A crushing test was carried out by bringing the two sides of the ceramic specimen into contact with each other.
    The strength of the ceramic article is evaluated based on the result of the crushing test.
    A method for evaluating ceramic articles.
  2.  前記圧砕試験において、前記2本のセラミックス供試体を、それらの軸が直交するように配置する請求項1に記載のセラミックス物品の評価方法。 The method for evaluating a ceramic article according to claim 1, wherein in the crushing test, the two ceramic specimens are arranged so that their axes are orthogonal to each other.
  3.  前記圧砕試験において、前記セラミックス供試体を球台座又は円柱台座により支持する請求項1又は2に記載のセラミックス物品の評価方法。 The method for evaluating a ceramic article according to claim 1 or 2, wherein in the crushing test, the ceramic specimen is supported by a ball pedestal or a cylindrical pedestal.
  4.  セラミックス粉末、樹脂、硬化剤及び溶媒を混合した原料スラリーをセラミックス原料として用意し、
     前記原料スラリーを成形型に注入して、前記成形型に注入された前記原料スラリー中の前記樹脂を硬化させて所望の形状を有する成形体を作製し、前記成形型から前記成形体を脱型させた後、前記成形体に対して乾燥、脱脂及び焼成の各処理をこの順番に行いセラミックス物品を作製し、
     前記原料スラリーを円柱形状のセラミックス供試体を形成するための供試体用成形型に注入して、前記供試体用成形型に注入された前記原料スラリー中の前記樹脂を硬化させて円柱形状の成形体を作製し、前記供試体用成形型から前記円柱形状の成形体を脱型させた後、前記円柱形状の成形体に対して乾燥、脱脂及び焼成の各処理をこの順番に行いセラミックス供試体を作製し、
     前記セラミックス供試体に対して、請求項1~3のいずれか1項に記載のセラミックス物品の評価方法を行い、前記セラミックス物品の作製の継続の可否を判定する、
     ことを特徴とするセラミックス物品の製造方法。
    Prepare a raw material slurry in which ceramic powder, resin, curing agent and solvent are mixed as a ceramic raw material.
    The raw material slurry is injected into a molding die, the resin in the raw material slurry injected into the molding die is cured to produce a molded body having a desired shape, and the molded body is removed from the molding die. After that, the molded product was subjected to each treatment of drying, degreasing and firing in this order to prepare a ceramic article.
    The raw material slurry is injected into a specimen molding mold for forming a cylindrical ceramic specimen, and the resin in the raw material slurry injected into the specimen molding mold is cured to form a cylindrical shape. A body is produced, the columnar molded body is demolded from the test piece molding die, and then the columnar molded body is subjected to drying, degreasing, and firing in this order to perform ceramic specimens. To make,
    The ceramic article evaluation method according to any one of claims 1 to 3 is performed on the ceramic specimen, and it is determined whether or not the production of the ceramic article can be continued.
    A method for manufacturing a ceramic article.
  5.  前記セラミックス供試体は、前記原料スラリーを注入する成形型以外、前記セラミックス物品の製造と同一の工程で作製される、請求項4に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to claim 4, wherein the ceramic specimen is produced in the same process as the production of the ceramic article except for a molding die for injecting the raw material slurry.
  6.  前記セラミックス供試体は、前記セラミックス物品の製造と同時に同一条件で作製される、請求項5に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to claim 5, wherein the ceramic specimen is produced under the same conditions at the same time as the production of the ceramic article.
  7.  前記セラミックス供試体は、円柱形状の供試体成形型に注入して作製される、請求項4~6のいずれか1項に記載のセラミックス物品の製造方法。 The method for manufacturing a ceramic article according to any one of claims 4 to 6, wherein the ceramic specimen is produced by injecting it into a cylindrical specimen molding mold.
  8.  前記セラミックス供試体の体積は、前記セラミックス物品の体積の1/4以下である、請求項4~7のいずれか1項に記載のセラミックス物品の製造方法。 The method for producing a ceramic article according to any one of claims 4 to 7, wherein the volume of the ceramic specimen is 1/4 or less of the volume of the ceramic article.
  9.  前記セラミックス粉末が、α化率70%以上の窒化ケイ素を85質量%以上、第2族、第3族、第4族、第5族、第13族及び第14族の元素群から選ばれる少なくとも1種を含む焼結助剤を酸化物基準の質量%表示で1質量%~15質量%含有する請求項4~8のいずれか1項に記載のセラミックス物品の製造方法。 The ceramic powder contains silicon nitride having a pregelatinization rate of 70% or more in an amount of 85% by mass or more, and is selected from at least an element group of Group 2, Group 3, Group 4, Group 5, Group 13, and Group 14. The method for producing a ceramic article according to any one of claims 4 to 8, which contains 1% by mass to 15% by mass of a sintering aid containing one kind in terms of mass% based on oxides.
PCT/JP2020/036426 2019-09-30 2020-09-25 Ceramic article assessment method and ceramic article production method WO2021065744A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021551202A JP7392729B2 (en) 2019-09-30 2020-09-25 Evaluation method and manufacturing method for ceramic articles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-180093 2019-09-30
JP2019180093 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065744A1 true WO2021065744A1 (en) 2021-04-08

Family

ID=75338227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036426 WO2021065744A1 (en) 2019-09-30 2020-09-25 Ceramic article assessment method and ceramic article production method

Country Status (2)

Country Link
JP (1) JP7392729B2 (en)
WO (1) WO2021065744A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128386A1 (en) * 2008-04-18 2009-10-22 株式会社東芝 Anti-wear member, anti-wear instrument and method of producing anti-wear member
WO2011083624A1 (en) * 2010-01-07 2011-07-14 株式会社ニッカトー Sinterd ceramic, ceramic sphere, and device for inspecting ceramic sphere
JP2019011216A (en) * 2017-06-30 2019-01-24 Ntn株式会社 Ceramic composition and its sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128386A1 (en) * 2008-04-18 2009-10-22 株式会社東芝 Anti-wear member, anti-wear instrument and method of producing anti-wear member
WO2011083624A1 (en) * 2010-01-07 2011-07-14 株式会社ニッカトー Sinterd ceramic, ceramic sphere, and device for inspecting ceramic sphere
JP2019011216A (en) * 2017-06-30 2019-01-24 Ntn株式会社 Ceramic composition and its sintered body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABE, YUTAKA, OKABE, NAGATOSHI, ICHIKAWA, MASAHIRO: "Estimation Method for Crushing Strength and Sampling Inspection Method for Si3N4 Rolling Bearing Balls", JOURNAL OF THE SOCIETY OF MATERIALS SCIENCE, JAPAN, vol. 42, no. 480, 15 September 1993 (1993-09-15), pages 1090 - 1095, ISSN: 1880-7488 *

Also Published As

Publication number Publication date
JPWO2021065744A1 (en) 2021-04-08
JP7392729B2 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
JP7092030B2 (en) How to mold ceramic materials and how to manufacture ceramic articles
Feilden et al. 3D printing bioinspired ceramic composites
US8703040B2 (en) Method for manufacturing a piezoelectric ceramic body
Pfaffinger et al. Stabilization of tricalcium phosphate slurries against sedimentation for stereolithographic additive manufacturing and influence on the final mechanical properties
EP1637507B1 (en) Alumina shock-absorbing ceramic products
EP4148031A1 (en) Method for producing ceramic sintered body, and ceramic sintered body
JP2001335371A (en) Method of manufacturing powder moldings
JPS6259564A (en) Molding aid for ceramics, molded body obtained using the same and production of ceramic product
WO2021065744A1 (en) Ceramic article assessment method and ceramic article production method
Agarwala et al. Fused deposition of ceramics (FDC) for structural silicon nitride components
Lombardi et al. Gelcasting of dense and porous ceramics by using a natural gelatine
US20150217479A1 (en) Ceramic component casting
WO2022137933A1 (en) Ceramic article, method for molding ceramic material, method for producing ceramic article, and mold
JP2007261925A (en) Method for producing ceramic molding and method for producing ceramic sintered compact using the molding
Hotta et al. Origin of the strength change of silicon nitride ceramics with the alteration of spray drying conditions
Jing et al. Solvent‐assisted room‐temperature compression molding approach to fabricate porous scaffolds for tissue engineering
Li et al. Effects of temperature on aqueous freeform extrusion fabrication
JP2011157222A (en) Method for producing ceramic molding
JP2021187156A (en) Molding die, method for molding ceramic material and method for producing ceramic article
JP2009234852A (en) Method of manufacturing ceramic molded boy and method of manufacturing ceramic sintered compact
US20170129135A1 (en) Injection molding of aqueous suspensions of high-temperature ceramics
JP2007136912A (en) Manufacturing method of ceramic molding, and manufacturing method of ceramic sintered article using the molding
Özden et al. Effect of infill strategy on the flexural strength of 3Y-TZP bars fabricated by thermoplastic 3D printing (T3DP)
WO2023068189A1 (en) Ceramic article production method
JP3463885B2 (en) Ceramic porous body and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871246

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551202

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871246

Country of ref document: EP

Kind code of ref document: A1