WO2021065348A1 - Spectrometer - Google Patents

Spectrometer Download PDF

Info

Publication number
WO2021065348A1
WO2021065348A1 PCT/JP2020/033628 JP2020033628W WO2021065348A1 WO 2021065348 A1 WO2021065348 A1 WO 2021065348A1 JP 2020033628 W JP2020033628 W JP 2020033628W WO 2021065348 A1 WO2021065348 A1 WO 2021065348A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
incident
integration
light receiving
wavelength dispersion
Prior art date
Application number
PCT/JP2020/033628
Other languages
French (fr)
Japanese (ja)
Inventor
克敏 ▲鶴▼谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2021550500A priority Critical patent/JPWO2021065348A1/ja
Publication of WO2021065348A1 publication Critical patent/WO2021065348A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/04Slit arrangements slit adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors

Definitions

  • the present invention relates to a spectroscopic measuring instrument used for measuring the brightness and chromaticity of a light source, the spectral reflectance of an object, the color value, and the like.
  • the resolution of display devices such as liquid crystal monitors has increased in recent years, and there is a demand to reduce the half width of the spectral response of the spectroscopic measuring instrument to obtain more detailed measurement data.
  • the size of the incident slit that allows the light to be measured from the object to be measured to enter the spectroscopic portion.
  • the size of the incident slit is changed by changing the size of the wavelength dispersion direction in the direction orthogonal to the wavelength dispersion direction.
  • the method of reducing the half width by changing the size of the incident slit has the following problems. 1) Since the half-value width of the spectral response is different for each changed size, the measurement data must be acquired for each changed size, and the measurement data with different half-value widths cannot be acquired at the same time. 2) A drive mechanism is required to change to an incident slit of a different size, which requires extra installation space and is costly. 3) Since the position of the incident slit has high error sensitivity, it is difficult to ensure position reproducibility and reliability. 4) When an incident slit smaller than the optical path of the measurement light is arranged, a part of the measurement light does not enter the spectroscopic part, so that accurate measurement cannot be performed.
  • Patent Document 1 includes a two-dimensional sensor, two sets of diffraction gratings, and a toroidal mirror, and is characterized by receiving light under two types of spectral conditions (conditions having different wavelength ranges and conditions having different half-value widths).
  • the spectroscope is disclosed. Specifically, the light emitted from one incident slit (rectangular) is divided into two optical paths to receive light, and the diffraction gratings are arranged at different angles to receive light in different wavelength ranges (half-value width is The same), the diffraction gratings with different numbers of grooves receive light with different wavelength resolution and half-value width (the wavelength range is also different).
  • Patent Document 1 has a problem that different half widths cannot be obtained in the same wavelength range. Moreover, two sets of an expensive diffraction grating and a toroidal mirror are required, which causes a problem that the configuration is complicated and the cost is high.
  • the present invention has been made in view of such a technical background, and it is possible to simultaneously obtain measurement data in the same wavelength range and different full widths at half maximum without changing the size of the incident slit, and the diffraction grating. It is an object of the present invention to provide a spectroscopic measuring instrument that does not require a plurality of sets of toroidal mirrors.
  • An incident portion having a shape in which the width in the wavelength dispersion direction differs depending on a position in a direction orthogonal to the wavelength dispersion direction, a diffraction means for diffracting the light to be measured incident from the incident portion, and the diffraction.
  • the integrated pixel range is described in any one of 1 to 4 above, which is set according to the optical characteristics of at least one optical system component arranged in the optical path from the incident portion to the two-dimensional light receiving sensor. Spectral measuring instrument. (6) The spectrophotometer according to any one of items 1 to 5 above, wherein the incident portion is an incident slit, and the incident slit is arranged in the vicinity of the outlet of the single-line optical fiber.
  • the incident portion has a shape in which the width in the wavelength dispersion direction differs depending on the position in the direction orthogonal to the wavelength dispersion direction, and the subject incident from the incident portion.
  • the measurement light is diffracted by the diffracting means, and the diffracted light to be measured is received by the two-dimensional light receiving sensor.
  • two or more different types of spectral data are acquired by performing an integrated calculation of the amount of received light to be measured in two or more types of integrated pixel ranges of the two-dimensional light receiving sensor.
  • spectral data with two or more types of spectral responsiveness having different half-value widths can be obtained. It is not necessary to change the size of the incident slit each time the measurement is performed, and two or more different spectral data can be simultaneously acquired in one measurement in the same wavelength range. Moreover, since it is not necessary to provide a plurality of sets of diffraction gratings and toroidal mirrors, it is possible to suppress the complexity of the configuration and the high cost.
  • the integrated pixel range is set according to the optical characteristics of at least one optical system component arranged in the optical path from the incident portion to the two-dimensional light receiving sensor, and thus is intended. It is possible to realize a spectral response degree having a half-value width.
  • an incident slit having a shape in which the width in the wavelength dispersion direction differs depending on the position in the direction orthogonal to the wavelength dispersion direction is arranged near the outlet of the single-wire optical fiber. Also, the effect of the preceding paragraph (1) can be obtained.
  • FIG. 1 It is a figure which shows an example of the basic structure of the spectroscopic measuring instrument which concerns on one Embodiment of this invention. It is a perspective view of a bundle fiber. It is a front view of the output end of a bundle fiber. It is explanatory drawing of the two-dimensional light receiving sensor.
  • (A) and (B) are diagrams showing an example of an integration region set for the two-dimensional light receiving sensor when the bundle fiber having the shape of the output end of FIG. 3 is used. It is a graph which shows the spectroscopic response degree obtained in each integration region of FIG. It is a graph which added the spectral response degree in another integration region to the spectral response degree of FIG. It is a figure which shows another example of the shape of the output end of a bundle fiber.
  • FIG. 8 are diagrams showing an example of an integration region set for the two-dimensional light receiving sensor when the bundle fiber having the shape of the output end of FIG. 8 is used. It is a graph which shows the spectroscopic response degree obtained in each integration region of FIG. It is a figure which shows still another example of the shape of the output end of a bundle fiber. It is a figure which shows still another example of the shape of the output end of a bundle fiber.
  • (A) and (B) are diagrams showing an example of an integration region set for the two-dimensional light receiving sensor when the bundle fiber having the shape of the output end of FIG. 12 is used. It is a graph which shows the spectroscopic response degree obtained in each integration region of FIG.
  • FIG. (A) to (C) are diagrams showing other examples of the integration region set for the two-dimensional light receiving sensor when the bundle fiber having the shape of the output end of FIG. 12 is used. It is a graph which shows the spectroscopic response degree obtained in each integration region of FIG. (A) and (B) are diagrams showing still another example of the integration region set for the two-dimensional light receiving sensor when the bundle fiber having the shape of the output end of FIG. 12 is used.
  • (A) to (D) are diagrams showing still another example of the shape of the output end of the bundle fiber. It is a figure which shows the basic structure of the spectroluminometer which combined the single wire fiber and the incident slit.
  • FIG. 20 It is a figure which shows an example of the shape of the incident slit with respect to the outlet end of a single wire fiber.
  • FIG. 20 is a diagram which shows an example of an integration region set for the two-dimensional light receiving sensor when the incident slit having the shape of FIG. 20 is used. It is a graph which shows the spectroscopic response degree obtained in each integration region of FIG. It is a figure which shows another example of the shape of the incident slit with respect to the outlet end of a single wire fiber.
  • FIG. 23 is used. It is a graph which shows the spectroscopic response degree obtained in each integration region of FIG.
  • FIG. 1 is a diagram showing a basic configuration of a spectroluminometer, which is a spectrophotometer according to an embodiment of the present invention.
  • the spectroscopic measuring instrument 1 includes a light receiving optical system 100, an observation optical system 200, a measurement optical system 300, a signal processing circuit 600, and an arithmetic processing unit 700, and includes a measurement optical system 300. Further includes a light guide unit 400 and a spectroscopic unit 500.
  • the light receiving optical system 100 receives the light beam 3 from the object 2 to be measured, which is a light source, and guides the light beam 3 to the light guide unit 400 and the observation optical system 200 of the measurement optical system 300, and the light beam from the object 2 to be measured.
  • An objective lens 101 that collects light 3 an aperture diaphragm 102 for regulating the amount of measured light arranged behind the objective lens 101 (front in the traveling direction of the light beam 3), and an aperture mirror further arranged behind the aperture diaphragm 102. It is equipped with 103.
  • the aperture mirror 103 is a mirror that is arranged in the incident optical path of the light flux 3 to the light guide unit 400 and has an opening through which the light flux 3 focused by the objective lens 101 passes.
  • the light beam from the objective lens 101 the light beam from the light measurement area of the object 2 to be measured passes through the aperture of the aperture mirror 103 and goes straight to the light guide portion 400 in the subsequent stage, but the light beam outside the light measurement area is the aperture. It is reflected by the mirror 103 and guided to the pupil of the user through a lens group including the reflection mirror 201 and the observation relay lens 202 in the observation optical system 200.
  • the user visually recognizes the object 2 to be measured and the index circle (the area that is not reflected by the aperture mirror and appears to be black to the user) from the observation optical system 200, and performs measurement positioning and focusing. Focusing focuses on the aperture mirror position by moving all or part of the lens group of the objective lens 101.
  • the aperture angle (F number) of the measurement light does not change even if the aperture diaphragm 102 is focused.
  • the hole size of the aperture mirror 103 may be changed manually or automatically.
  • the measurement angle (measurement size) can be changed by changing the hole size.
  • the light guide unit 400 in the measurement optical system 300 is a condensing lens 401 that collects the light beam that has passed through the aperture of the aperture mirror 103, and an optical bundle that guides the light beam that has passed through the condensing lens 401 to the spectroscopic unit 500.
  • a fiber (also simply referred to as a bundle fiber) 402 is provided, and in this embodiment, an output end (which is an outlet end face and corresponds to an input portion) of the bundle fiber 402 constitutes an incident slit 501.
  • An incident slit 501 different from the bundle fiber 402 may be arranged on the outlet side of the bundle fiber 402.
  • the spectroscopic unit 500 in the measurement optical system 300 includes a collimator lens 502 that makes the light beam incident from the output end of the bundle fiber 402 substantially parallel light, and an infrared light cut filter 510 that is sequentially arranged behind the collimator lens 502.
  • An optical member 520 an aperture having a rectangular opening (not shown), a diffraction grid 504 that diffracts parallel light that has passed through the opening of the aperture, an imaging lens 505, and an image of the diffracted light by the diffraction grid 504. It includes a two-dimensional light receiving sensor 506 that receives light through the lens 505, a secondary light cut filter 507 that is partially arranged in front of the two-dimensional light receiving sensor 506, and the like.
  • the dimming member 520 is for adjusting the amount of received light, and is driven by the drive unit 521 so that it can be inserted and exited with respect to the optical path.
  • the aperture regulates the amount of parallel light from the collimator lens 502 according to the size of the diffraction grating 504, and the imaging lens 505 connects the light rays dispersed in wavelength by the diffraction grating 504 to the two-dimensional light receiving sensor 506. It is an image.
  • the bundle fiber 402 has a structure in which about 350 fiber strands having a wire diameter of, for example, 0.05 mm are bundled (bundle). Since the circular strands are bundled, light rays do not pass through the entire surface within the bundle diameter. In addition, since the strands are bundled randomly, light loss occurs due to twisting of the strands. Due to the area ratio of the wire core and the light loss, the efficiency of passing light rays is about 50%. [Embodiment 1] In this embodiment, as shown in FIG. 2, the shape of the input end 402a of the bundle fiber 402 is circular ( ⁇ 1.1 mm), and the shape of the output end 402b is dodecagonal.
  • the long side is the direction orthogonal to the wavelength dispersion direction (horizontal direction in FIG. 3), and the wavelength dispersion direction (vertical direction in FIG. 3) is short.
  • a rectangular central portion 402b1 as a side and rectangular end region portions 402b2 and 402b2 protruding in the wavelength dispersion direction at the central portion of both short sides of the central portion 402b1 are formed in a dodecagonal shape.
  • the areas of the input end 402a and the output end 402b are the same.
  • the incident slit (indicated by a broken line) 503 having the same area as the output end 402b is used as the conventional incident slit
  • the size of the conventional incident slit 503 is 0.315 ⁇ 3.0 mm
  • the bundle fiber 402 is used.
  • the width in the wavelength dispersion direction (longitudinal direction) in the direction orthogonal to the wavelength dispersion direction (horizontal direction) is larger in the central portion 402b1 than in the conventional case (0.315 mm).
  • the wavelength dispersion direction is also simply referred to as a vertical direction
  • the direction orthogonal to the wavelength dispersion direction is also simply referred to as a horizontal direction.
  • the area of the conventional incident slit 503 and the output end 402b of the bundle fiber 402 are the same, and therefore the total amount of light passing through the bundle fiber 402 is set to be the same.
  • the two-dimensional light receiving sensor 506 has a large number of pixels 506a arranged two-dimensionally in the vertical and horizontal directions, and is, for example, by a CCD (Charge Coupled Device) sensor, a CMOS (Complementary MOS) sensor, or the like. It is configured.
  • the light receiving data for each pixel 506a of the two-dimensional light receiving sensor 506 is transmitted to the signal processing circuit 600 for signal processing, and further transferred to the arithmetic processing unit (corresponding to the spectral data acquisition means) 700 to disperse the object 2 to be measured. Data is obtained.
  • the actual calculation range is set to 500 pixels in the vertical direction x 100 pixels in the horizontal direction. The same applies to the two-dimensional light receiving sensor 506 shown in FIGS. 5 and later.
  • FIG. 4 shows a distribution image diagram of the light receiving data of the emission line (light of a specific wavelength) on the surface of the two-dimensional light receiving sensor 506.
  • the light receiving distribution 507 corresponds to the shape of the output end 402b of the bundle fiber 402.
  • the integration area of the pixels arranged in the horizontal direction that is, the integration pixel range
  • two or more types of integration areas are set.
  • 5 (A) and 5 (B) show an example of the integration region with a dash-dotted line
  • FIG. 6 shows the spectral responsiveness obtained in each integration region.
  • the integration area is simply described as an area.
  • the integration area A and the integration area B shown in FIGS. 5 and 6 are both integration areas when the dodecagonal output end 402b of the bundle fiber 402 shown in FIG. 4 is used, and the integration area A is FIG. 5 ( As shown in A), it is an area for all pixels (100 pixels) in the horizontal direction, and the integration area B is an area on both left and right sides of the output end 402b of the bundle fiber 402 as shown in FIG. 5B.
  • This is an integration area for the pixels corresponding to 402b2 and 402b2 (15 pixels each, for a total of 30 pixels).
  • the arithmetic processing unit 700 integrates and calculates the amount of light received by each pixel in each region.
  • the spectral responsiveness in FIG. 6 is a measurement result for the central pixel having a light receiving wavelength of 580 nm
  • the solid line indicates the spectral responsiveness in the integrated region A
  • the alternate long and short dash line indicates the spectral responsiveness in the integrated region B.
  • the broken line indicates the spectral response degree when the conventional rectangular incident slit 503 described with reference to FIG. 3 is used.
  • the half-value width of the conventional rectangular incident slit 503 is about 4 nm
  • the half-value width of the spectral response in the integration region A is also about 4 nm
  • the spectral response in the integration region B is about 2.5 nm.
  • the light receiving amount in the case of the conventional rectangular incident slit 503 is 1, the light receiving amount in the integration area A is also substantially the same as 1, and the light receiving amount in the integration area B is 16%.
  • each integration region is preset, and the user selects one of the integration areas to perform measurement.
  • FIG. 7 shows the spectral responsiveness when the dodecagonal output end 402b of the bundle fiber 402 is used and only the central 50 pixels in the horizontal direction are used as the integration region, and the spectral response is added to the graph of FIG. 6 by a chain double-dashed line. It was done.
  • the vertical width of the central portion 402b1 at the output end 402b of the bundle fiber 402 is larger than the width of the conventional rectangular incident slit 503, the full width at half maximum is about 5 nm when only the central 50 pixels are integrated.
  • the shape of the output end 402b of the bundle fiber 402 is such that the vertical width of the central portion 402b1 in the horizontal direction is large and the vertical width of the end regions 402b2 on both sides is small. Since two or more different integration areas corresponding to this shape are set for the two-dimensional light receiving sensor 506, two types with different half-value widths are calculated by integrating the received amount of the light to be measured in each integrated image area. Spectral data with the above spectral responsiveness can be acquired. Moreover, since the calculation can be performed by changing the integration area, only one measurement is required.
  • the output end 402b of the bundle fiber 402 has a rectangular shape having a small vertical width at the central portion 402b3 in the horizontal direction, and the vertical end regions 402b4 and 402b4 on both sides in the horizontal direction. It is set to a rectangle with a large width in the direction.
  • the conventional rectangular incident slit 503 shown by the broken line has a size of 0.315 ⁇ 3.0 mm, which is the same as the incident slit 503 shown by the broken line in FIG. 3, the central portion 402b3 has a lateral length of 1.0 mm.
  • the width in the vertical direction is set to 0.15 mm
  • the length of each end region 402b4 is set to 1.0 mm in the horizontal direction
  • the width in the vertical direction is set to 0.4 mm, respectively.
  • the area of the output end 402b of the bundle fiber 402 is the same as the area of the conventional rectangular incident slit 503.
  • FIGS. 9 (A) and 9 (B) Two types of integration regions A and B when the output end 402b of the bundle fiber 402 shown in FIG. 8 is used are shown in FIGS. 9 (A) and 9 (B), and the spectral response is shown in FIG.
  • the integration area A shown in FIG. 9A is an area for all pixels (100 pixels) in the horizontal direction
  • the integration area B shown in FIG. 9B is the central portion 402b3 at the output end 402b of the bundle fiber 402. It is an area about a pixel (30 pixels) corresponding to.
  • the arithmetic processing unit 700 integrates and calculates the amount of light received by each pixel in each region.
  • the spectral response of FIG. 10 is a measurement result for the central pixel having a light receiving wavelength of 580 nm, and the solid line indicates the spectral response in the integrated region A and the alternate long and short dash line indicates the spectral response in the integrated region B. Further, the broken line indicates the spectral response degree when the conventional rectangular incident slit 503 described with reference to FIG. 3 is used.
  • the half-value width of the conventional rectangular incident slit 503 is about 4 nm
  • the half-value width of the spectral response in the integration region A is also about 4 nm
  • the spectral response in the integration region B is about 2.5 nm.
  • the light receiving amount in the case of the conventional rectangular incident slit 503 is 1, the light receiving amount in the integration area A is also substantially the same as 1, and the light receiving amount in the integration area B is 15%.
  • the shape of the output end 402b of the bundle fiber 402 is such that the vertical width of the central portion 402b3 in the horizontal direction is small and the vertical width of the end regions 402b4 and 402b4 on both sides is large. Since two or more different integration regions corresponding to this shape are set for the two-dimensional light receiving sensor 506, the half-value width is different by integrating the received amount of the light to be measured in each integrated image region. It is possible to acquire spectral data with two or more types of spectral responsiveness. Moreover, since the calculation can be performed by changing the integration area, only one measurement is required.
  • the shape of the output end 402b of the bundle fiber 402 may be set to a shape provided with three or more different regions having a width in the vertical direction in the horizontal direction. That is, the output end 402b of the bundle fiber 402 has the smallest width in the vertical direction at the central portion 402b5 in the horizontal direction, and becomes the first region 402b6, the second region 402b7, and the third region 402b8 as it reaches both ends in the horizontal direction.
  • the width in the vertical direction is set stepwisely in three steps.
  • the area of the output end 402b of the bundle fiber 402 is substantially the same as the area of the conventional rectangular incident slit 503.
  • FIG. 12 shows an embodiment in which the shape of the output end 402b of the bundle fiber 402 is formed into an elliptical shape by continuously reducing the width in the vertical direction in the horizontal direction from the central portion to both ends.
  • the major axis of the elliptical shape is 3.0 mm and the minor axis is 0.4 mm, and the area is substantially the same as the area of the conventional rectangular incident slit 503.
  • FIGS. 13 (A) and 13 (B) Two types of integration regions A and B when the output end 402b of the bundle fiber 402 shown in FIG. 12 is used are shown in FIGS. 13 (A) and 13 (B), and the spectral response is shown in FIG.
  • the integration area A shown in FIG. 13 (A) is an area for all pixels (100 pixels) in the horizontal direction, and the integration area B is a pixel (2) corresponding to both ends in the horizontal direction at the output end 402b of the bundle fiber 402. It is an area about 30 pixels in total with 15 pixels each.
  • the arithmetic processing unit 700 integrates and calculates the amount of light received by each pixel in each integration region.
  • the spectral response of FIG. 14 is a measurement result for the central pixel having a light receiving wavelength of 580 nm.
  • the solid line indicates the spectral response in the integrated region A, and the alternate long and short dash line indicates the spectral response in the integrated region B. Further, the broken line indicates the spectral response degree when the conventional rectangular incident slit 503 is used.
  • the half-value width of the conventional rectangular incident slit 503 is about 4 nm
  • the half-value width of the spectral response in the integration region A is also about 4 nm
  • the spectral response in the integration region B is about 2.5 nm.
  • the area ratio of the calculation area is 15% (15 pixels ⁇ 100 pixels)
  • the light receiving amount is 12% including the elliptical shape and the narrow periphery.
  • the shape of the spectral response of the integration region A is closer to the shape of the conventional rectangular spectral response than the spectral response of the integration region A of the first embodiment shown in FIG. ..
  • the chromaticity value (x, y) is a value calculated from the measured spectral data and the color matching function data. If the shape of the spectral response is different from that of the conventional luminance meter (incident slit is rectangular), the chromaticity value will be different. Therefore, by making the shape of the spectral responsiveness the same as the conventional one, compatibility with the chromaticity measurement value can be obtained. That is, there is no difference between the models of the conventional model.
  • the shape of the spectral response is closest to the conventional rectangle in the integration region A2.
  • the integration area A 100 pixels
  • the area A3 center 60 pixels
  • the shape of the output end 402b of the bundle fiber 402 is such that the width in the vertical direction in the horizontal direction continuously changes, the optimum spectral response can be obtained by controlling the integration range.
  • the integration region where the optimum spectral response is obtained depends on the performance of the optical system (lens, stray light of the diffraction grating, etc.), it is desirable to set the integration range for each optical system to be adopted. Further, since the performance of the optical system differs depending on the wavelength, it is desirable to set the integration range for each wavelength in the measurement wavelength range (380 to 780 nm).
  • FIG. 17 (A) shows the integration area C for the pixels excluding the pixels at both ends and the center in the horizontal direction
  • FIG. 17 (B) shows the pixels in the region asymmetric with respect to the vertical center line in the horizontal direction.
  • the shape of the output end 402b of the bundle fiber 402 since the shape of the output end 402b of the bundle fiber 402 has a shape in which the width in the vertical direction is continuously different in the horizontal direction, it is optimal according to the performance of the optical system.
  • the integration range By selecting the integration range, spectral response data of the same shape can be obtained with the same amount of light as the received light data obtained by the conventional rectangular incident slit. Therefore, the chromaticity value is compatible with the conventional rectangular luminance meter, and at the same time, data with different half-value widths can be acquired.
  • the shape of the output end 402b of the bundle fiber 402, which has a continuously different width in the vertical direction in the horizontal direction, is not limited to the elliptical shape.
  • the vertical width in the horizontal central portion is the largest, and the vertical width is continuously small from the horizontal central portion to both ends. It may be a flat hexagon.
  • the output end 402b of the bundle fiber 402 serves as an incident slit and the shape of the output end 402b is set to a shape in which the width in the vertical direction is different in the horizontal direction is shown.
  • the shape of the incident slit may be set in the combination of the single wire fiber and the incident slit.
  • FIG. 19 is a diagram showing a basic configuration of a spectroluminometer in which such a single wire fiber and an incident slit are combined.
  • the light guide portion 400 is provided with a single wire fiber 410, and the output end (outlet end face) of the single wire fiber 410 is in the vicinity of an incident slit (corresponding to an input portion) 530 formed by a slit member 531. Is located in.
  • the spectroscopic unit 500 includes an infrared light cut filter 510 that receives the light beam incident from the incident slit 530, a dimming member 520, an imaging lens 505 that also serves as an irradiation lens, and diffraction arranged behind the imaging lens.
  • a lattice 504, a two-dimensional light receiving sensor 506 that receives light diffracted by the diffraction grating 504 via an imaging lens 505, a secondary light cut filter 507 that is partially arranged in front of the two-dimensional light receiving sensor 506, and the like are provided.
  • the dimming member 520 is for adjusting the amount of received light, and is driven by the drive unit 521 so that it can be inserted and exited with respect to the optical path.
  • the configuration is inexpensive and compact. Since the other configurations of the spectroluminance meter of FIG. 19 are the same as the configurations of the spectroluminometer shown in FIG. 1, the description thereof will be omitted.
  • the single wire fiber 410 has a diameter of ⁇ 1.0 mm in this embodiment.
  • the purpose of using the single wire fiber 410 is to mix the polarization characteristics of the measurement light, the position characteristics (positional unevenness) of the measurement area, and the light distribution characteristics (directional unevenness). By eliminating it, accurate measurement can be performed even if the incident slit 530 smaller than the outlet diameter is arranged, and accurate measurement can be performed regardless of the position in the incident slit surface.
  • a resin fiber having a diameter of ⁇ 1.0 mm and a length of 500 mm is used and arranged in a wound state.
  • the shape of the incident slit 530 is set to a predetermined shape by arranging a mechanically operating diaphragm (mechanical diaphragm) near the outlet of the single wire fiber 410. Since it is a mechanical diaphragm, it can be inexpensive even if it has a complicated shape.
  • the shape of the incident slit 530 was set as follows with respect to the outlet end 410a of the single wire fiber 410 by a mechanical diaphragm. That is, the incident slit 530 has a rectangular central portion 530a having a vertical width of 0.4 mm and a lateral length of 0.75 mm, and a vertical width formed at both ends of the central portion 530a in the horizontal direction. Is formed into a dodecagon by the rectangular end regions 530a and 530a having a length of 0.15 mm and a length of 0.125 mm.
  • the area ratio of the incident slit 530 to the single wire fiber outlet end 410a is 43%, that is, the light loss at the outlet of the single wire fiber 410 is 57%.
  • the light receiving distribution 507 of the light receiving data of the emission line (light of a specific wavelength) on the surface of the two-dimensional light receiving sensor 506 and the two-dimensional light receiving sensor 506 An example of the integration area to be set is shown in FIGS. 21 (A) and 21 (B).
  • the integration area A shown in FIG. 21 (A) integrates 36 pixels in the central portion in the horizontal direction
  • the integration area B shown in FIG. 21 (B) integrates ⁇ 13 to 18 pixels from the center in the horizontal direction. It is a thing.
  • FIG. 22 shows the spectral responsiveness obtained in each of the integration regions A and B.
  • the “rectangle” is a conventional incident slit (0.315 ⁇ 3.0 rectangle), and shows a case where the integration is performed in the integration area A.
  • the half width of the conventional rectangular incident slit is about 4 nm
  • the half width of the spectral response in the integration region A is also about 4 nm
  • the half width of the spectral response in the integration region B is about about 4 nm. It is 2.5 nm.
  • the light receiving amount in the case of the conventional rectangular incident slit 503 is 1, the light receiving amount in the integrated area A is 86% and the light receiving amount in the integrated area B is 8% when the efficiency of the fiber portion is taken into consideration. ..
  • FIG. 23 is an example of changing the shape of the incident slit 530. Also in this example, the predetermined shape of the incident slit 503 is realized by arranging the mechanical diaphragm near the outlet of the single wire fiber 410.
  • the shape of the incident slit 530 is formed into an elliptical shape having a major axis of 1.0 mm and a minor axis of 0.4 mm.
  • Area of the outlet end 410a of the single line fiber 410 is 0.78 mm 2
  • the area ratio of the incident slit 530 to the single wire fiber outlet end 410a is 40%, that is, the light loss at the outlet of the single wire fiber 410 is 60%.
  • the light receiving distribution 507 of the light receiving data of the emission line (light of a specific wavelength) on the surface of the two-dimensional light receiving sensor 506 and the two-dimensional light receiving sensor 506 An example of the integration region to be set is shown in FIGS. 24 (A) and 24 (B), and the spectral response degree obtained in each integration region is shown in FIG. 25.
  • the full width at half maximum is also changed by changing the integration area. Therefore, by integrating the amount of received light to be measured in each integrated image region, it is possible to acquire spectral data with two or more types of spectral responsiveness having different half-value widths. Moreover, since the calculation can be performed by changing the integration area, only one measurement is required. Therefore, in order to change the full width at half maximum, it is not necessary to change the size of the incident slit each time the measurement is performed, and it is possible to simultaneously acquire two or more different spectral data in one measurement in the same wavelength range. it can. Moreover, since it is not necessary to provide a plurality of sets of diffraction gratings and toroidal mirrors, it is possible to suppress the complexity of the configuration and the high cost.
  • the single wire fiber 410 and the incident slit 530 having a shape different in the vertical direction in the horizontal direction, the amount of light is reduced and the repeatability (SN) is deteriorated as compared with the bundle fiber 402. There are also advantages.
  • the single wire fiber 410 By using the single wire fiber 410, sufficient mixing can be performed, so that accurate measurement can be performed regardless of the characteristics (polarization, uneven position, directivity) of the object to be measured, and the single wire fiber 410 is more than the bundle fiber 402. Has the advantage of being inexpensive.
  • the present invention is not limited to the above embodiment.
  • the area of the outlet end 402a of the bundle fiber 402 or the like and the incident slit 503 is set to be the same as that of the conventional rectangular incident slit, but the area may be increased.
  • the size of the two-dimensional light receiving sensor 506 is also increased if necessary.
  • the present invention can be used when measuring the brightness and chromaticity of a light source, the spectral reflectance of an object, the color value, and the like.
  • Spectral measuring instrument 1 Spectral measuring instrument 2 Object to be measured 3 Light to be measured 100 Light receiving optical system 200 Observation optical system 300 Measuring optical system 400 Light guide unit 402 Bundle fiber 402a Output end 500 Spectroscopic unit 504 Diffraction grid 506 Two-dimensional light receiving sensor 507 Light receiving distribution 530 Incident Slit 700 Arithmetic processing unit (data acquisition means)

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

The present invention comprises: an incident part shaped such that the width thereof varies, in the wavelength dispersion direction, depending on positions in the direction orthogonal to the wavelength dispersion direction; a diffraction means for diffracting light to be measured, which light is incident from the incident part; a two-dimensional light-receiving sensor (506) for receiving the light to be measured, which light has been diffracted by the diffraction means to exhibit received light distribution (507) that corresponds to the shape of the incident part; and a spectral data acquisition means for acquiring two or more different types of spectral data by integrating the received amount of light to be measured in two or more types of integrated pixel ranges of the two-dimensional light-receiving sensor (506).

Description

分光測定器Spectrometer
 この発明は、光源の輝度や色度、物体の分光反射率や色彩値等の測定に用いられる分光測定器に関する。 The present invention relates to a spectroscopic measuring instrument used for measuring the brightness and chromaticity of a light source, the spectral reflectance of an object, the color value, and the like.
 例えば昨今の液晶モニター等のディスプレイ装置は解像度が大きくなっており、これに応じて分光測定器の分光応答度の半値幅を小さくしてより詳細な測定データを得たいという要望がある。 For example, the resolution of display devices such as liquid crystal monitors has increased in recent years, and there is a demand to reduce the half width of the spectral response of the spectroscopic measuring instrument to obtain more detailed measurement data.
 従来、分光応答度の半値幅を小さくするための一般的な方法として、被測定物からの被測定光を分光部へと入射させる入射スリットのサイズを変更することが知られている。具体的には、波長の分散方向と直交する方向において波長の分散方向の大きさを変更することで、入射スリットのサイズを変更する。 Conventionally, as a general method for reducing the half width of the spectral response, it is known to change the size of the incident slit that allows the light to be measured from the object to be measured to enter the spectroscopic portion. Specifically, the size of the incident slit is changed by changing the size of the wavelength dispersion direction in the direction orthogonal to the wavelength dispersion direction.
 しかし、入射スリットのサイズを変更することで半値幅を小さくする方法では、以下のような問題があった。
1)変更したサイズ毎に分光応答度の半値幅が異なるため、変更したサイズ毎に測定データを取得しなければならず、異なる半値幅での測定データを同時に取得することができない。
2)サイズの異なる入射スリットに変更するための駆動機構が必要であり、余分な設置スペースが必要でコストがかかる。
3)入射スリットの位置は誤差感度が高いので、位置再現性や信頼性の確保が難しい。
4)測定光の光路よりも小さな入射スリットを配置した場合、測定光の一部が分光部に入射しないため、正確な測定ができない。
However, the method of reducing the half width by changing the size of the incident slit has the following problems.
1) Since the half-value width of the spectral response is different for each changed size, the measurement data must be acquired for each changed size, and the measurement data with different half-value widths cannot be acquired at the same time.
2) A drive mechanism is required to change to an incident slit of a different size, which requires extra installation space and is costly.
3) Since the position of the incident slit has high error sensitivity, it is difficult to ensure position reproducibility and reliability.
4) When an incident slit smaller than the optical path of the measurement light is arranged, a part of the measurement light does not enter the spectroscopic part, so that accurate measurement cannot be performed.
 なお、アパーチャーミラーの通過光をバンドルファイバーで入射スリットへと導光する構成も知られているが、バンドルファイバーの出口サイズよりも小さい入射スリットを配置すると、測定に使用されないファイバー素線が発生し、入口と出口の各素線の位置関係のランダム性に欠ける場合、各素線のもつ特徴(被測定物の測定アリア内のムラ、指向性など)の影響を受けるという問題もある。 It is also known that the light passing through the aperture mirror is guided to the incident slit by a bundle fiber, but if an incident slit smaller than the outlet size of the bundle fiber is arranged, a fiber wire that is not used for measurement is generated. If the positional relationship between the entrance and exit strands is not random, there is also the problem that the characteristics of each strand (unevenness in the measurement area of the object to be measured, directivity, etc.) are affected.
 そこで、特許文献1には、二次元センサと、2組の回折格子とトロイダル鏡を備え、2種類の分光条件(波長範囲の異なる条件や、半値幅の異なる条件)での受光を特徴とする分光器が開示されている。具体的には、1個の入射スリット(長方形)からの出射光を、2つの光路に分割し受光し、回折格子を異なる角度で配置することで、異なる波長範囲の受光を行い(半値幅は同じである)、溝本数の異なる回折格子で、波長分解能・半値幅の異なる受光を行う(波長範囲も異なる)というものである。 Therefore, Patent Document 1 includes a two-dimensional sensor, two sets of diffraction gratings, and a toroidal mirror, and is characterized by receiving light under two types of spectral conditions (conditions having different wavelength ranges and conditions having different half-value widths). The spectroscope is disclosed. Specifically, the light emitted from one incident slit (rectangular) is divided into two optical paths to receive light, and the diffraction gratings are arranged at different angles to receive light in different wavelength ranges (half-value width is The same), the diffraction gratings with different numbers of grooves receive light with different wavelength resolution and half-value width (the wavelength range is also different).
特開平9-145477号公報Japanese Unexamined Patent Publication No. 9-145477
 しかしながら、特許文献1に記載の分光器では、同一の波長範囲で異なる半値幅を得られないという問題がある。しかも、高価な回折格子とトロイダル鏡が2組必要であり、構成が複雑化しコストも高いという問題がある。 However, the spectroscope described in Patent Document 1 has a problem that different half widths cannot be obtained in the same wavelength range. Moreover, two sets of an expensive diffraction grating and a toroidal mirror are required, which causes a problem that the configuration is complicated and the cost is high.
 この発明はこのような技術的背景に鑑みてなされたものであって、入射スリットのサイズを変更することなく同一の波長範囲で異なる半値幅での測定データを同時に得ることができ、しかも回折格子とトロイダル鏡を複数組設けることが不要な分光測定器を提供することを目的とする。 The present invention has been made in view of such a technical background, and it is possible to simultaneously obtain measurement data in the same wavelength range and different full widths at half maximum without changing the size of the incident slit, and the diffraction grating. It is an object of the present invention to provide a spectroscopic measuring instrument that does not require a plurality of sets of toroidal mirrors.
 上記目的は以下の手段によって達成される。
(1)波長の分散方向と直交する方向の位置によって、波長の分散方向における幅が異なっている形状を有する入射部と、前記入射部から入射した被測定光を回折させる回折手段と、前記回折手段で回折された被測定光を受光する二次元受光センサと、前記二次元受光センサの2種類以上の積算画素範囲で、被測定光の受光量を積算演算することにより、2種類以上の異なる分光データを取得する分光データ取得手段と、を備えた分光測定器。
(2)前記入射部は入射スリットか光バンドルファイバーの出力端の少なくともいずれかによって構成されている前項1に記載の分光測定器。
(3)前記入射部は、波長の分散方向と直交する方向において、波長の分散方向の幅が段階的に異なっている前項1または2に記載の分光測定器。
(4)前記入射部は、波長の分散方向と直交する方向において、波長の分散方向の幅が連続的に異なっている前項1または2に記載の分光測定器。
(5)前記積算画素範囲は、前記入射部から前記二次元受光センサまでの光路に配置された少なくとも一個の光学系部品の光学特性に応じて設定される前項1~4のいずれかに記載の分光測定器。
(6)前記入射部は入射スリットであり、単線光ファイバーの出口近傍に前記入射スリットが配置されている前項1~5のいずれかに記載の分光測定器。
The above object is achieved by the following means.
(1) An incident portion having a shape in which the width in the wavelength dispersion direction differs depending on a position in a direction orthogonal to the wavelength dispersion direction, a diffraction means for diffracting the light to be measured incident from the incident portion, and the diffraction. By integrating and calculating the amount of light received by the two or more integrated pixel ranges of the two-dimensional light receiving sensor that receives the light to be measured diffracted by the means and the two or more types of the two or more integrated pixel ranges, two or more types are different. A spectroscopic measuring instrument including a spectroscopic data acquisition means for acquiring spectral data.
(2) The spectroscopic measuring instrument according to item 1 above, wherein the incident portion is composed of at least one of an incident slit and an output end of an optical bundle fiber.
(3) The spectroscopic measuring instrument according to item 1 or 2 above, wherein the incident portion has a stepwise difference in width in the wavelength dispersion direction in a direction orthogonal to the wavelength dispersion direction.
(4) The spectrophotometer according to item 1 or 2 above, wherein the incident portion has a continuously different width in the wavelength dispersion direction in a direction orthogonal to the wavelength dispersion direction.
(5) The integrated pixel range is described in any one of 1 to 4 above, which is set according to the optical characteristics of at least one optical system component arranged in the optical path from the incident portion to the two-dimensional light receiving sensor. Spectral measuring instrument.
(6) The spectrophotometer according to any one of items 1 to 5 above, wherein the incident portion is an incident slit, and the incident slit is arranged in the vicinity of the outlet of the single-line optical fiber.
 前項(1)に記載の発明によれば、入射部が、波長の分散方向と直交する方向の位置によって、波長の分散方向における幅が異なっている形状を有し、この入射部から入射した被測定光は回折手段により回折され、回折された被測定光が二次元受光センサで受光される。そして、二次元受光センサの2種類以上の積算画素範囲で、被測定光の受光量を積算演算することにより、2種類以上の異なる分光データが取得される。 According to the invention described in the preceding paragraph (1), the incident portion has a shape in which the width in the wavelength dispersion direction differs depending on the position in the direction orthogonal to the wavelength dispersion direction, and the subject incident from the incident portion. The measurement light is diffracted by the diffracting means, and the diffracted light to be measured is received by the two-dimensional light receiving sensor. Then, two or more different types of spectral data are acquired by performing an integrated calculation of the amount of received light to be measured in two or more types of integrated pixel ranges of the two-dimensional light receiving sensor.
 つまり、二次元受光センサの2種類以上の積算画素範囲で、被測定光の受光量を積算演算すれば、半値幅の異なる2種類以上の分光応答度での分光データが得られるから、半値幅を変更するために、測定の都度、入射スリットのサイズを変更する必要はなく、同一の波長範囲で、1回の測定で2種類以上の異なる分光データを同時に取得することができる。しかも、回折格子とトロイダル鏡を複数組設ける必要はないから、構成の複雑化やコスト高を抑制することができる。 That is, if the amount of received light to be measured is integrated and calculated in two or more types of integrated pixel ranges of the two-dimensional light receiving sensor, spectral data with two or more types of spectral responsiveness having different half-value widths can be obtained. It is not necessary to change the size of the incident slit each time the measurement is performed, and two or more different spectral data can be simultaneously acquired in one measurement in the same wavelength range. Moreover, since it is not necessary to provide a plurality of sets of diffraction gratings and toroidal mirrors, it is possible to suppress the complexity of the configuration and the high cost.
 前項(2)に記載の発明によれば、入射スリットか光バンドルファイバーの出力端の少なくともいずれかの形状と、二次元受光センサの2種類以上の積算画素範囲での積算演算とを組み合わせることで、前項(1)の効果を得ることができる。 According to the invention described in the previous section (2), by combining at least one shape of the incident slit or the output end of the optical bundle fiber and the integration calculation in two or more types of integration pixel ranges of the two-dimensional light receiving sensor. , The effect of the preceding paragraph (1) can be obtained.
 前項(3)に記載の発明によれば、入射部の形状の一例として、波長の分散方向と直交する方向において、波長の分散方向の幅が段階的に異なっている形状を挙げることができる。 According to the invention described in the preceding paragraph (3), as an example of the shape of the incident portion, a shape in which the width of the wavelength dispersion direction is stepwise different in the direction orthogonal to the wavelength dispersion direction can be mentioned.
 前項(4)に記載の発明によれば、入射部の形状の一例として、波長の分散方向と直交する方向において、波長の分散方向の幅が連続的に異なっている形状を挙げることができる。 According to the invention described in the preceding paragraph (4), as an example of the shape of the incident portion, a shape in which the width in the wavelength dispersion direction is continuously different in the direction orthogonal to the wavelength dispersion direction can be mentioned.
 前項(5)に記載の発明によれば、前記入射部から前記二次元受光センサまでの光路に配置された少なくとも一個の光学系部品の光学特性に応じて積算画素範囲が設定されるから、意図した半値幅を有する分光応答度を実現できる。 According to the invention described in the preceding paragraph (5), the integrated pixel range is set according to the optical characteristics of at least one optical system component arranged in the optical path from the incident portion to the two-dimensional light receiving sensor, and thus is intended. It is possible to realize a spectral response degree having a half-value width.
 前項(6)に記載の発明によれば、単線光ファイバーの出口近傍に、波長の分散方向と直交する方向の位置によって、波長の分散方向における幅が異なっている形状を有する入射スリットを配置することによっても、前項(1)の効果を得ることができる。 According to the invention described in the previous section (6), an incident slit having a shape in which the width in the wavelength dispersion direction differs depending on the position in the direction orthogonal to the wavelength dispersion direction is arranged near the outlet of the single-wire optical fiber. Also, the effect of the preceding paragraph (1) can be obtained.
本発明の一実施形態に係る分光測定器の基本構成の一例を示す図である。It is a figure which shows an example of the basic structure of the spectroscopic measuring instrument which concerns on one Embodiment of this invention. バンドルファイバーの斜視図である。It is a perspective view of a bundle fiber. バンドルファイバーの出力端の正面図である。It is a front view of the output end of a bundle fiber. 二次元受光センサの説明図である。It is explanatory drawing of the two-dimensional light receiving sensor. (A)(B)は、図3の出力端の形状を有するバンドルファイバーを用いた場合の、二次元受光センサに対して設定された積算領域の一例を示す図である。(A) and (B) are diagrams showing an example of an integration region set for the two-dimensional light receiving sensor when the bundle fiber having the shape of the output end of FIG. 3 is used. 図5の各積算領域で得られた分光応答度を示すグラフである。It is a graph which shows the spectroscopic response degree obtained in each integration region of FIG. 図6の分光応答度に別の積算領域での分光応答度を追加したグラフである。It is a graph which added the spectral response degree in another integration region to the spectral response degree of FIG. バンドルファイバーの出力端の形状の他の例を示す図である。It is a figure which shows another example of the shape of the output end of a bundle fiber. (A)(B)は、図8の出力端の形状を有するバンドルファイバーを用いた場合の、二次元受光センサに対して設定された積算領域の一例を示す図である。(A) and (B) are diagrams showing an example of an integration region set for the two-dimensional light receiving sensor when the bundle fiber having the shape of the output end of FIG. 8 is used. 図9の各積算領域で得られた分光応答度を示すグラフである。It is a graph which shows the spectroscopic response degree obtained in each integration region of FIG. バンドルファイバーの出力端の形状のさらに他の例を示す図である。It is a figure which shows still another example of the shape of the output end of a bundle fiber. バンドルファイバーの出力端の形状のさらに他の例を示す図である。It is a figure which shows still another example of the shape of the output end of a bundle fiber. (A)(B)は、図12の出力端の形状を有するバンドルファイバーを用いた場合の、二次元受光センサに対して設定された積算領域の一例を示す図である。(A) and (B) are diagrams showing an example of an integration region set for the two-dimensional light receiving sensor when the bundle fiber having the shape of the output end of FIG. 12 is used. 図13の各積算領域で得られた分光応答度を示すグラフである。It is a graph which shows the spectroscopic response degree obtained in each integration region of FIG. (A)~(C)は、図12の出力端の形状を有するバンドルファイバーを用いた場合の、二次元受光センサに対して設定された積算領域の他の例を示す図である。(A) to (C) are diagrams showing other examples of the integration region set for the two-dimensional light receiving sensor when the bundle fiber having the shape of the output end of FIG. 12 is used. 図15の各積算領域で得られた分光応答度を示すグラフである。It is a graph which shows the spectroscopic response degree obtained in each integration region of FIG. (A)(B)は、図12の出力端の形状を有するバンドルファイバーを用いた場合の、二次元受光センサに対して設定された積算領域のさらに他の例を示す図である。(A) and (B) are diagrams showing still another example of the integration region set for the two-dimensional light receiving sensor when the bundle fiber having the shape of the output end of FIG. 12 is used. (A)~(D)は、バンドルファイバーの出力端の形状のさらに他の例を示す図である。(A) to (D) are diagrams showing still another example of the shape of the output end of the bundle fiber. 単線ファイバーと入射スリットを組み合わせた分光輝度計の基本構成を示す図である。It is a figure which shows the basic structure of the spectroluminometer which combined the single wire fiber and the incident slit. 単線ファイバーの出口端に対する入射スリットの形状の一例を示す図である。It is a figure which shows an example of the shape of the incident slit with respect to the outlet end of a single wire fiber. (A)(B)は、図20の形状の入射スリットを用いた場合の、二次元受光センサに対して設定された積算領域の一例を示す図である。(A) and (B) are diagrams showing an example of an integration region set for the two-dimensional light receiving sensor when the incident slit having the shape of FIG. 20 is used. 図21の各積算領域で得られた分光応答度を示すグラフである。It is a graph which shows the spectroscopic response degree obtained in each integration region of FIG. 単線ファイバーの出口端に対する入射スリットの形状の他の例を示す図である。It is a figure which shows another example of the shape of the incident slit with respect to the outlet end of a single wire fiber. (A)(B)は、図23の形状の入射スリットを用いた場合の、二次元受光センサに対して設定された積算領域の一例を示す図である。(A) and (B) are diagrams showing an example of an integration region set for the two-dimensional light receiving sensor when the incident slit having the shape of FIG. 23 is used. 図24の各積算領域で得られた分光応答度を示すグラフである。It is a graph which shows the spectroscopic response degree obtained in each integration region of FIG.
 以下、この発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態に係る分光測定器である分光輝度計の基本構成を示す図である。図1に示すように、分光測定器1は、受光光学系100と、観察光学系200と、測定光学系300と、信号処理回路600と、演算処理部700を備えており、測定光学系300はさらに導光部400と分光部500を備えている。 FIG. 1 is a diagram showing a basic configuration of a spectroluminometer, which is a spectrophotometer according to an embodiment of the present invention. As shown in FIG. 1, the spectroscopic measuring instrument 1 includes a light receiving optical system 100, an observation optical system 200, a measurement optical system 300, a signal processing circuit 600, and an arithmetic processing unit 700, and includes a measurement optical system 300. Further includes a light guide unit 400 and a spectroscopic unit 500.
 受光光学系100は、光源からなる被測定物2からの光束3を受光して、測定光学系300の導光部400及び観察光学系200へと導くものであり、被測定物2からの光束3を集光する対物レンズ101と、対物レンズ101の後方(光束3の進行方向の前方)に配置された測定光量規制用の開口絞り102と、さらに開口絞り102の後方に配置されたアパーチャーミラー103を備えている。 The light receiving optical system 100 receives the light beam 3 from the object 2 to be measured, which is a light source, and guides the light beam 3 to the light guide unit 400 and the observation optical system 200 of the measurement optical system 300, and the light beam from the object 2 to be measured. An objective lens 101 that collects light 3, an aperture diaphragm 102 for regulating the amount of measured light arranged behind the objective lens 101 (front in the traveling direction of the light beam 3), and an aperture mirror further arranged behind the aperture diaphragm 102. It is equipped with 103.
 アパーチャーミラー103は、光束3の導光部400への入射光路中に配置され、対物レンズ101で集光された光束3を通過させる開口を備えるミラーである。対物レンズ101からの光束のうち、被測定物2の測光エリアからの光束はアパーチャーミラー103の前記開口を通過して後段の導光部400へ直進されるが、測光エリア外の光束についてはアパーチャーミラー103によって反射され、観察光学系200内の反射ミラー201及び観察リレーレンズ202を含むレンズ群を経て、使用者の瞳へ導かれる。使用者は、観察光学系200から、被測定物2と指標円(アパーチャーミラーで反射されない領域であり、使用者は黒色と見える)を視認し、測定位置合わせとピント合わせを行う。ピント合わせは対物レンズ101の全群または一部のレンズ群を移動させることで、アパーチャーミラー位置に焦点を合わせる。開口絞り102はピント合わせを行っても測定光の開口角(Fナンバー)は変化しない。なお、アパーチャーミラー103の穴サイズは手動又は自動で変更可能に構成されても良い。穴サイズを変更することで測定角(測定サイズ)の変更ができる。 The aperture mirror 103 is a mirror that is arranged in the incident optical path of the light flux 3 to the light guide unit 400 and has an opening through which the light flux 3 focused by the objective lens 101 passes. Of the light beam from the objective lens 101, the light beam from the light measurement area of the object 2 to be measured passes through the aperture of the aperture mirror 103 and goes straight to the light guide portion 400 in the subsequent stage, but the light beam outside the light measurement area is the aperture. It is reflected by the mirror 103 and guided to the pupil of the user through a lens group including the reflection mirror 201 and the observation relay lens 202 in the observation optical system 200. The user visually recognizes the object 2 to be measured and the index circle (the area that is not reflected by the aperture mirror and appears to be black to the user) from the observation optical system 200, and performs measurement positioning and focusing. Focusing focuses on the aperture mirror position by moving all or part of the lens group of the objective lens 101. The aperture angle (F number) of the measurement light does not change even if the aperture diaphragm 102 is focused. The hole size of the aperture mirror 103 may be changed manually or automatically. The measurement angle (measurement size) can be changed by changing the hole size.
 測定光学系300における導光部400は、アパーチャーミラー103の開口部を通過した光束を集光する集光レンズ401と、集光レンズ401を通過した光束を分光部500へと導光する光バンドルファイバー(単にバンドルファイバーともいう)402を備えており、この実施形態ではバンドルファイバー402の出力端(出口端面であり、入力部に相当する)が入射スリット501を構成している。なお、バンドルファイバー402の出側にバンドルファイバー402とは別の入射スリット501を配置しても良い。 The light guide unit 400 in the measurement optical system 300 is a condensing lens 401 that collects the light beam that has passed through the aperture of the aperture mirror 103, and an optical bundle that guides the light beam that has passed through the condensing lens 401 to the spectroscopic unit 500. A fiber (also simply referred to as a bundle fiber) 402 is provided, and in this embodiment, an output end (which is an outlet end face and corresponds to an input portion) of the bundle fiber 402 constitutes an incident slit 501. An incident slit 501 different from the bundle fiber 402 may be arranged on the outlet side of the bundle fiber 402.
 測定光学系300における分光部500は、バンドルファイバー402の出力端から入射された光束を概ね平行光にするコリメータレンズ502と、コリメータレンズ502の後方に順に配置された赤外光カットフィルター510、減光部材520、矩形の開口部を有する絞り(図示せず)と、絞りの開口部を通過した平行光を回折させる回折格子504と、結像レンズ505と、回折格子504による回折光を結像レンズ505を介して受光する二次元受光センサ506と、二次元受光センサ506の一部前方に配置された2次光カットフィルター507等を備えている。減光部材520は、受光光量の調節用であり、駆動部521により光路に対して挿入退出可能に駆動されるようになっている。 The spectroscopic unit 500 in the measurement optical system 300 includes a collimator lens 502 that makes the light beam incident from the output end of the bundle fiber 402 substantially parallel light, and an infrared light cut filter 510 that is sequentially arranged behind the collimator lens 502. An optical member 520, an aperture having a rectangular opening (not shown), a diffraction grid 504 that diffracts parallel light that has passed through the opening of the aperture, an imaging lens 505, and an image of the diffracted light by the diffraction grid 504. It includes a two-dimensional light receiving sensor 506 that receives light through the lens 505, a secondary light cut filter 507 that is partially arranged in front of the two-dimensional light receiving sensor 506, and the like. The dimming member 520 is for adjusting the amount of received light, and is driven by the drive unit 521 so that it can be inserted and exited with respect to the optical path.
 絞りは、コリメータレンズ502からの平行光の光量を回折格子504の大きさに合わせて規制するものであり、結像レンズ505は回折格子504で波長分散された光線を二次元受光センサ506に結像させるものである。 The aperture regulates the amount of parallel light from the collimator lens 502 according to the size of the diffraction grating 504, and the imaging lens 505 connects the light rays dispersed in wavelength by the diffraction grating 504 to the two-dimensional light receiving sensor 506. It is an image.
 バンドルファイバー402は素線径が例えば0.05mmのファイバー素線を、約350本束ねた(バンドルした)構造である。円形の素線を束ねるため、バンドル径内の全面に光線は通過しない。また、素線をランダムにバンドルするため、素線のねじれなどによる光量損失が生じる。素線コアの面積比、光量損失により、光線通過する効率は約50%程度となる。
[実施形態1]
 この実施形態では、図2に示すように、バンドルファイバー402の入力端402aの形状は円形(φ1.1mm)であり、出力端402bの形状が12角形である。出力端402bの形状を詳細に説明すると、図3に示すように、波長の分散方向と直交する方向(図3の横方向)を長辺とし波長の分散方向(図3の縦方向)を短辺とする長方形状の中央部402b1と、中央部402b1の両側短辺の中央部において、波長の分散方向に突出する矩形の端部領域部402b2、402b2とで、12角形に形成されている。入力端402aと出力端402bの面積は同じである。
The bundle fiber 402 has a structure in which about 350 fiber strands having a wire diameter of, for example, 0.05 mm are bundled (bundle). Since the circular strands are bundled, light rays do not pass through the entire surface within the bundle diameter. In addition, since the strands are bundled randomly, light loss occurs due to twisting of the strands. Due to the area ratio of the wire core and the light loss, the efficiency of passing light rays is about 50%.
[Embodiment 1]
In this embodiment, as shown in FIG. 2, the shape of the input end 402a of the bundle fiber 402 is circular (φ1.1 mm), and the shape of the output end 402b is dodecagonal. Explaining the shape of the output end 402b in detail, as shown in FIG. 3, the long side is the direction orthogonal to the wavelength dispersion direction (horizontal direction in FIG. 3), and the wavelength dispersion direction (vertical direction in FIG. 3) is short. A rectangular central portion 402b1 as a side and rectangular end region portions 402b2 and 402b2 protruding in the wavelength dispersion direction at the central portion of both short sides of the central portion 402b1 are formed in a dodecagonal shape. The areas of the input end 402a and the output end 402b are the same.
 図3のように、出力端402bの面積と同じ面積の入射スリット(破線で示す)503を従来の入射スリットとし、従来の入射スリット503のサイズを0.315×3.0mmとし、バンドルファイバー402の出力端402bのサイズと比較すると、波長の分散方向と直交する方向(横方向)において、波長の分散方向(縦方向)における幅が、中央部402b1では従来(0.315mm)よりも大きい0.4mmに、両側の端部領域402b2、402b2では従来よりも小さい0.15mmにそれぞれ設定され、波長の分散方向と直交する方向の長さが、中央部402b1では従来(3.0mm)よりも短い2.0mmに、各端部領域402b2では0.5mmにそれぞれ設定されている。なお、以下の説明では、波長の分散方向を単に縦方向ともいい、波長の分散方向と直交する方向を単に横方向ともいう。 As shown in FIG. 3, the incident slit (indicated by a broken line) 503 having the same area as the output end 402b is used as the conventional incident slit, the size of the conventional incident slit 503 is 0.315 × 3.0 mm, and the bundle fiber 402 is used. Compared with the size of the output end 402b of the above, the width in the wavelength dispersion direction (longitudinal direction) in the direction orthogonal to the wavelength dispersion direction (horizontal direction) is larger in the central portion 402b1 than in the conventional case (0.315 mm). It is set to .4 mm and 0.15 mm, which is smaller than the conventional one in the end regions 402b2 and 402b2 on both sides, and the length in the direction orthogonal to the wavelength dispersion direction is set to 0.4 mm in the central portion 402b1 than the conventional one (3.0 mm). The short length is set to 2.0 mm, and each end region 402b2 is set to 0.5 mm. In the following description, the wavelength dispersion direction is also simply referred to as a vertical direction, and the direction orthogonal to the wavelength dispersion direction is also simply referred to as a horizontal direction.
 ただし、従来の入射スリット503とバンドルファイバー402の出力端402bの面積は同じであり、従って、バンドルファイバー402を通過する総光量は同じに設定されている。 However, the area of the conventional incident slit 503 and the output end 402b of the bundle fiber 402 are the same, and therefore the total amount of light passing through the bundle fiber 402 is set to be the same.
 即ち、従来の入射スリット503面積=0.315×3.0=0.95mmであるのに対し、バンドルファイバー402の中央部402b1の面積=0.4×2.0=0.8mmであり、これは従来の入射スリット503の面積の84%に相当する。また、バンドルファイバー402の両側の端部領域402b2の面積=0.15×0.5×2個=0.15mmであり、これは従来の入射スリット503の面積の16%に相当する。 That is, while it's conventional input slit 503 area = 0.315 × 3.0 = 0.95mm 2, an area = 0.4 × 2.0 = 0.8mm 2 of the central portion 402b1 of the fiber bundle 402 Yes, this corresponds to 84% of the area of the conventional incident slit 503. Further, the area of the end regions 402b2 on both sides of the bundle fiber 402 = 0.15 × 0.5 × 2 = 0.15 mm 2 , which corresponds to 16% of the area of the conventional incident slit 503.
 従って、中央部402b1の面積+両側の端部領域402b2の面積=0.8+0.15=0.95mmとなり、従来の入射スリット503の面積と同じになる。 Therefore, the area of the central portion 402b1 + the area of the end regions 402b2 on both sides = 0.8 + 0.15 = 0.95 mm 2 , which is the same as the area of the conventional incident slit 503.
 二次元受光センサ506は図4に示すように、縦方向及び横方向に二次元配列された多数の画素506aを有するもので、例えばCCD(Charge Coupled Device)センサやCMOS(Complementary MOS)センサ等により構成されている。二次元受光センサ506の画素506a毎の受光データは、信号処理回路600に送信されて信号処理され、さらに演算処理部(分光データ取得手段に相当)700へ転送されて、被測定物2の分光データが得られる。この実施形態では、例えば、有効画素=波長の分散方向(縦方向)に512画素×波長の分散方向と直交する方向(横方向)に122画素のセンサ506が用いられている。ただし、実際の演算範囲は縦方向500画素×横方向100画素に設定されている。図5以降に示す二次元受光センサ506についても同様である。 As shown in FIG. 4, the two-dimensional light receiving sensor 506 has a large number of pixels 506a arranged two-dimensionally in the vertical and horizontal directions, and is, for example, by a CCD (Charge Coupled Device) sensor, a CMOS (Complementary MOS) sensor, or the like. It is configured. The light receiving data for each pixel 506a of the two-dimensional light receiving sensor 506 is transmitted to the signal processing circuit 600 for signal processing, and further transferred to the arithmetic processing unit (corresponding to the spectral data acquisition means) 700 to disperse the object 2 to be measured. Data is obtained. In this embodiment, for example, a sensor 506 with 512 pixels in the effective pixel = wavelength dispersion direction (longitudinal direction) and 122 pixels in the direction orthogonal to the wavelength dispersion direction (horizontal direction) is used. However, the actual calculation range is set to 500 pixels in the vertical direction x 100 pixels in the horizontal direction. The same applies to the two-dimensional light receiving sensor 506 shown in FIGS. 5 and later.
 図4に、二次元受光センサ506面上での輝線(特定の波長の光)の受光データの分布イメージ図を示す。バンドルファイバー402の出力端402bの形状に対応した受光分布507となっている。 FIG. 4 shows a distribution image diagram of the light receiving data of the emission line (light of a specific wavelength) on the surface of the two-dimensional light receiving sensor 506. The light receiving distribution 507 corresponds to the shape of the output end 402b of the bundle fiber 402.
 次に、横方向に配列された画素の積算領域、つまり積算画素範囲について説明する。この実施形態では、積算領域を2種類以上設定する。図5(A)(B)は、積算領域の一例を一点鎖線で示し、図6に各積算領域で得られた分光応答度を示す。図6では積算領域を単に領域と記載している。 Next, the integration area of the pixels arranged in the horizontal direction, that is, the integration pixel range will be described. In this embodiment, two or more types of integration areas are set. 5 (A) and 5 (B) show an example of the integration region with a dash-dotted line, and FIG. 6 shows the spectral responsiveness obtained in each integration region. In FIG. 6, the integration area is simply described as an area.
 図5及び図6に示す積算領域A、積算領域Bは、いずれも図4に示したバンドルファイバー402の12角形の出力端402bを用いた場合の積算領域であり、積算領域Aは図5(A)に示すように、横方向の全画素(100画素)についての領域であり、積算領域Bは図5(B)に示すように、バンドルファイバー402の出力端402bにおける左右両側の端部領域402b2、402b2に対応する画素(各15画素で計30画素)についての積算領域である。各領域における各画素での受光量を演算処理部700で積算演算する。 The integration area A and the integration area B shown in FIGS. 5 and 6 are both integration areas when the dodecagonal output end 402b of the bundle fiber 402 shown in FIG. 4 is used, and the integration area A is FIG. 5 ( As shown in A), it is an area for all pixels (100 pixels) in the horizontal direction, and the integration area B is an area on both left and right sides of the output end 402b of the bundle fiber 402 as shown in FIG. 5B. This is an integration area for the pixels corresponding to 402b2 and 402b2 (15 pixels each, for a total of 30 pixels). The arithmetic processing unit 700 integrates and calculates the amount of light received by each pixel in each region.
 図6の分光応答度は、受光波長580nmの中央画素についての測定結果であり、実線が積算領域Aでの分光応答度を、一点鎖線が積算領域Bでの分光応答度をそれぞれ示している。また、破線は、図3で説明した従来の長方形状の入射スリット503を用いた場合の分光応答度を示している。 The spectral responsiveness in FIG. 6 is a measurement result for the central pixel having a light receiving wavelength of 580 nm, and the solid line indicates the spectral responsiveness in the integrated region A and the alternate long and short dash line indicates the spectral responsiveness in the integrated region B. Further, the broken line indicates the spectral response degree when the conventional rectangular incident slit 503 described with reference to FIG. 3 is used.
 図6の分光応答度に示されるように、従来の長方形状の入射スリット503の半値幅は約4nm、積算領域Aでの分光応答度の半値幅も約4nm、積算領域Bでの分光応答度の半値幅は約2.5nmである。また、従来の長方形状の入射スリット503の場合の受光量を1とすると、積算領域Aの受光量も1でほぼ変わらず、積算領域Bの受光量は16%となっている。 As shown in the spectral response of FIG. 6, the half-value width of the conventional rectangular incident slit 503 is about 4 nm, the half-value width of the spectral response in the integration region A is also about 4 nm, and the spectral response in the integration region B. The half width of is about 2.5 nm. Further, assuming that the light receiving amount in the case of the conventional rectangular incident slit 503 is 1, the light receiving amount in the integration area A is also substantially the same as 1, and the light receiving amount in the integration area B is 16%.
 このように、各積算領域を設定して受光データを測定することにより、2種類の半値幅の分光応答度で異なる分光データを取得することができる。各積算領域はあらかじめ設定されており、ユーザーはいずれかの積算領域を選択して測定を行う。 In this way, by setting each integration region and measuring the received light data, it is possible to acquire different spectral data with two types of half-value width spectral responsiveness. Each integration area is preset, and the user selects one of the integration areas to perform measurement.
 図7は、バンドルファイバー402の12角形の出力端402bを用いた場合の、横方向の中央の50画素だけを積算領域とした場合の分光応答度を、図6のグラフに2点鎖線で追加したものである。 FIG. 7 shows the spectral responsiveness when the dodecagonal output end 402b of the bundle fiber 402 is used and only the central 50 pixels in the horizontal direction are used as the integration region, and the spectral response is added to the graph of FIG. 6 by a chain double-dashed line. It was done.
 バンドルファイバー402の出力端402bにおける中央部402b1の縦方向の幅は、従来の長方形状の入射スリット503の幅よりも大きいため、中央の50画素だけを積算すると、半値幅は5nm程度となる。 Since the vertical width of the central portion 402b1 at the output end 402b of the bundle fiber 402 is larger than the width of the conventional rectangular incident slit 503, the full width at half maximum is about 5 nm when only the central 50 pixels are integrated.
 このように、この実施形態では、バンドルファイバー402の出力端402bの形状を、横方向の中央部402b1の縦方向の幅を大きく、両側の端部領域402b2の縦方向の幅を小さい形状とし、この形状に対応した異なる2種類以上の積算領域を二次元受光センサ506に対して設定するから、各積算画領域で、被測定光の受光量を積算演算することにより、半値幅の異なる2種類以上の分光応答度での分光データを取得することができる。しかも、積算領域を変えて演算すれば良いから1回の測定で済む。このため、半値幅を変更するために、測定の都度、入射スリットのサイズを変更する必要はなく、同一の波長範囲で、1回の測定で2種類以上の異なる分光データを同時に取得することができる。しかも、回折格子とトロイダル鏡を複数組設ける必要はないから、構成の複雑化やコスト高を抑制することができる。
[実施形態2]
 この実施形態では、バンドルファイバー402の出力端402bの形状を変更したものである。具体的には、図8に示すように、バンドルファイバー402の出力端402bが、横方向の中央部402b3では縦方向の幅が小さい長方形に、横方向の両側の端部領域402b4、402b4では縦方向の幅が大きい長方形に設定されている。破線で示す従来の長方形状の入射スリット503を、図3に破線で示した入射スリット503と同じ0.315×3.0mmのサイズとすると、中央部402b3は横方向の長さは1.0mm、縦方向の幅が0.15mmに、各端部領域402b4は横方向の長さが1.0mm、縦方向の幅が0.4mmにそれぞれ設定されている。バンドルファイバー402の出力端402bの面積は、従来の長方形状の入射スリット503の面積と同じである。
As described above, in this embodiment, the shape of the output end 402b of the bundle fiber 402 is such that the vertical width of the central portion 402b1 in the horizontal direction is large and the vertical width of the end regions 402b2 on both sides is small. Since two or more different integration areas corresponding to this shape are set for the two-dimensional light receiving sensor 506, two types with different half-value widths are calculated by integrating the received amount of the light to be measured in each integrated image area. Spectral data with the above spectral responsiveness can be acquired. Moreover, since the calculation can be performed by changing the integration area, only one measurement is required. Therefore, in order to change the full width at half maximum, it is not necessary to change the size of the incident slit each time the measurement is performed, and it is possible to simultaneously acquire two or more different spectral data in one measurement in the same wavelength range. it can. Moreover, since it is not necessary to provide a plurality of sets of diffraction gratings and toroidal mirrors, it is possible to suppress the complexity of the configuration and the high cost.
[Embodiment 2]
In this embodiment, the shape of the output end 402b of the bundle fiber 402 is changed. Specifically, as shown in FIG. 8, the output end 402b of the bundle fiber 402 has a rectangular shape having a small vertical width at the central portion 402b3 in the horizontal direction, and the vertical end regions 402b4 and 402b4 on both sides in the horizontal direction. It is set to a rectangle with a large width in the direction. Assuming that the conventional rectangular incident slit 503 shown by the broken line has a size of 0.315 × 3.0 mm, which is the same as the incident slit 503 shown by the broken line in FIG. 3, the central portion 402b3 has a lateral length of 1.0 mm. The width in the vertical direction is set to 0.15 mm, the length of each end region 402b4 is set to 1.0 mm in the horizontal direction, and the width in the vertical direction is set to 0.4 mm, respectively. The area of the output end 402b of the bundle fiber 402 is the same as the area of the conventional rectangular incident slit 503.
 図8に示したバンドルファイバー402の出力端402bを用いた場合の2種類の積算領域A、Bを図9(A)(B)に、分光応答度を図10に示す。 Two types of integration regions A and B when the output end 402b of the bundle fiber 402 shown in FIG. 8 is used are shown in FIGS. 9 (A) and 9 (B), and the spectral response is shown in FIG.
 図9(A)に示す積算領域Aは、横方向の全画素(100画素)についての領域であり、図9(B)に示す積算領域Bは、バンドルファイバー402の出力端402bにおける中央部402b3に相当する画素(30画素)についての領域である。各領域における各画素での受光量を演算処理部700で積算演算する。 The integration area A shown in FIG. 9A is an area for all pixels (100 pixels) in the horizontal direction, and the integration area B shown in FIG. 9B is the central portion 402b3 at the output end 402b of the bundle fiber 402. It is an area about a pixel (30 pixels) corresponding to. The arithmetic processing unit 700 integrates and calculates the amount of light received by each pixel in each region.
 図10の分光応答度は、受光波長580nmの中央画素についての測定結果であり、実線が積算領域Aでの分光応答度を、一点鎖線が積算領域Bでの分光応答度をそれぞれ示している。また、破線は、図3で説明した従来の長方形状の入射スリット503を用いた場合の分光応答度を示している。 The spectral response of FIG. 10 is a measurement result for the central pixel having a light receiving wavelength of 580 nm, and the solid line indicates the spectral response in the integrated region A and the alternate long and short dash line indicates the spectral response in the integrated region B. Further, the broken line indicates the spectral response degree when the conventional rectangular incident slit 503 described with reference to FIG. 3 is used.
 図10の分光応答度に示されるように、従来の長方形状の入射スリット503の半値幅は約4nm、積算領域Aでの分光応答度の半値幅も約4nm、積算領域Bでの分光応答度の半値幅は約2.5nmである。また、従来の長方形状の入射スリット503の場合の受光量を1とすると、積算領域Aの受光量も1でほぼ変わらず、積算領域Bの受光量は15%となっている。 As shown in the spectral response of FIG. 10, the half-value width of the conventional rectangular incident slit 503 is about 4 nm, the half-value width of the spectral response in the integration region A is also about 4 nm, and the spectral response in the integration region B. The half width of is about 2.5 nm. Further, assuming that the light receiving amount in the case of the conventional rectangular incident slit 503 is 1, the light receiving amount in the integration area A is also substantially the same as 1, and the light receiving amount in the integration area B is 15%.
 このように、この実施形態では、バンドルファイバー402の出力端402bの形状を、横方向の中央部402b3の縦方向の幅を小さく、両側の端部領域402b4、402b4の縦方向の幅を大きい形状とし、この形状に対応した異なる2種類以上の積算領域を二次元受光センサ506に対して設定するから、各積算画領域で、被測定光の受光量を積算演算することにより、半値幅の異なる2種類以上の分光応答度での分光データを取得することができる。しかも、積算領域を変えて演算すれば良いから1回の測定で済む。このため、半値幅を変更するために、測定の都度、入射スリットのサイズを変更する必要はなく、同一の波長範囲で、1回の測定で2種類以上の異なる分光データを同時に取得することができる。
[実施形態3]
 図11に示すように、バンドルファイバー402の出力端402bの形状を、横方向において、縦方向の幅が3種類以上の異なる領域を設けた形状に設定しても良い。すなわち、バンドルファイバー402の出力端402bが、横方向の中央部402b5では縦方向の幅が最も小さく、横方向の両端部に至るに従って、第1領域402b6、第2領域402b7、第3領域402b8と、3段階で縦方向の幅が段階的に大きく設定されている。バンドルファイバー402の出力端402bの面積は、従来の長方形状の入射スリット503の面積とほぼ同じである。
As described above, in this embodiment, the shape of the output end 402b of the bundle fiber 402 is such that the vertical width of the central portion 402b3 in the horizontal direction is small and the vertical width of the end regions 402b4 and 402b4 on both sides is large. Since two or more different integration regions corresponding to this shape are set for the two-dimensional light receiving sensor 506, the half-value width is different by integrating the received amount of the light to be measured in each integrated image region. It is possible to acquire spectral data with two or more types of spectral responsiveness. Moreover, since the calculation can be performed by changing the integration area, only one measurement is required. Therefore, in order to change the full width at half maximum, it is not necessary to change the size of the incident slit each time the measurement is performed, and it is possible to simultaneously acquire two or more different spectral data in one measurement in the same wavelength range. it can.
[Embodiment 3]
As shown in FIG. 11, the shape of the output end 402b of the bundle fiber 402 may be set to a shape provided with three or more different regions having a width in the vertical direction in the horizontal direction. That is, the output end 402b of the bundle fiber 402 has the smallest width in the vertical direction at the central portion 402b5 in the horizontal direction, and becomes the first region 402b6, the second region 402b7, and the third region 402b8 as it reaches both ends in the horizontal direction. The width in the vertical direction is set stepwisely in three steps. The area of the output end 402b of the bundle fiber 402 is substantially the same as the area of the conventional rectangular incident slit 503.
 従って、横方向の全画素についての積算領域、中央部402b5に対応する画素についての積算領域を含む、3種類以上の積算領域を設定することができ、3種類以上の半値幅の分光応答度で3種類以上の異なる分光データを演算により取得することができる。
[実施形態4]
 図12は、バンドルファイバー402の出力端402bの形状を、横方向における縦方向の幅を中央部から両端部に至るに従って連続的に小さくして楕円形状に形成した実施形態を示す。楕円形状の長径は3.0mm、短径は0.4mmであり、面積は従来の長方形状の入射スリット503の面積とほぼ同じである。
Therefore, it is possible to set three or more types of integration areas including an integration area for all pixels in the horizontal direction and an integration area for pixels corresponding to the central portion 402b5, with a spectral response rate of three or more types of half-value widths. Three or more different spectral data can be acquired by calculation.
[Embodiment 4]
FIG. 12 shows an embodiment in which the shape of the output end 402b of the bundle fiber 402 is formed into an elliptical shape by continuously reducing the width in the vertical direction in the horizontal direction from the central portion to both ends. The major axis of the elliptical shape is 3.0 mm and the minor axis is 0.4 mm, and the area is substantially the same as the area of the conventional rectangular incident slit 503.
 図12に示したバンドルファイバー402の出力端402bを用いた場合の2種類の積算領域A、Bを図13(A)(B)に、分光応答度を図14に示す。 Two types of integration regions A and B when the output end 402b of the bundle fiber 402 shown in FIG. 12 is used are shown in FIGS. 13 (A) and 13 (B), and the spectral response is shown in FIG.
 図13(A)に示す積算領域Aは、横方向の全画素(100画素)についての領域であり、積算領域Bは、バンドルファイバー402の出力端402bにおける横方向の両端部に対応する画素(各15画素で合計30画素)についての領域である。各積算領域における各画素での受光量を演算処理部700で積算演算する。 The integration area A shown in FIG. 13 (A) is an area for all pixels (100 pixels) in the horizontal direction, and the integration area B is a pixel (2) corresponding to both ends in the horizontal direction at the output end 402b of the bundle fiber 402. It is an area about 30 pixels in total with 15 pixels each. The arithmetic processing unit 700 integrates and calculates the amount of light received by each pixel in each integration region.
 図14の分光応答度は、受光波長580nmの中央画素についての測定結果であり、実線が積算領域Aでの分光応答度を、一点鎖線が積算領域Bでの分光応答度をそれぞれ示している。また、破線は、従来の長方形状の入射スリット503を用いた場合の分光応答度を示している。 The spectral response of FIG. 14 is a measurement result for the central pixel having a light receiving wavelength of 580 nm. The solid line indicates the spectral response in the integrated region A, and the alternate long and short dash line indicates the spectral response in the integrated region B. Further, the broken line indicates the spectral response degree when the conventional rectangular incident slit 503 is used.
 図14の分光応答度に示されるように、従来の長方形状の入射スリット503の半値幅は約4nm、積算領域Aでの分光応答度の半値幅も約4nm、積算領域Bでの分光応答度の半値幅は約2.5nmである。また、従来の長方形状の入射スリット503の場合の受光量を1とすると、積算領域Aの受光量も1でほぼ変わらない。積算領域Bについては計算領域の面積比が15%(15画素÷100画素)と、楕円形状で周辺が狭くなっていることも含め、受光量は12%となっている。また、積算領域Aの分光応答度の形状については、図6に示した実施形態1の積算領域Aの分光応答度に比べ、従来の長方形での分光応答度の形に近いものとなっている。 As shown in the spectral response of FIG. 14, the half-value width of the conventional rectangular incident slit 503 is about 4 nm, the half-value width of the spectral response in the integration region A is also about 4 nm, and the spectral response in the integration region B. The half width of is about 2.5 nm. Further, assuming that the light receiving amount in the case of the conventional rectangular incident slit 503 is 1, the light receiving amount in the integration region A is also 1, which is almost the same. Regarding the integration area B, the area ratio of the calculation area is 15% (15 pixels ÷ 100 pixels), and the light receiving amount is 12% including the elliptical shape and the narrow periphery. Further, the shape of the spectral response of the integration region A is closer to the shape of the conventional rectangular spectral response than the spectral response of the integration region A of the first embodiment shown in FIG. ..
 次に、分光応答度の最適な形状について説明する。 Next, the optimum shape of the spectral response will be described.
 色度値(x、y)は、測定された分光データと、等色関数データとから演算される値である。従来の輝度計(入射スリットが長方形)との分光応答度の形状が異なると、色度値に差が生じる。このため、分光応答度の形状は、従来と同じにすることで、色度測定値との互換性が得られる。つまり、従来機との機種間差が生じない。 The chromaticity value (x, y) is a value calculated from the measured spectral data and the color matching function data. If the shape of the spectral response is different from that of the conventional luminance meter (incident slit is rectangular), the chromaticity value will be different. Therefore, by making the shape of the spectral responsiveness the same as the conventional one, compatibility with the chromaticity measurement value can be obtained. That is, there is no difference between the models of the conventional model.
 次に、積算範囲の微調整と得られる分光応答度について説明する。 Next, the fine adjustment of the integration range and the obtained spectral response will be described.
 図15(A)~(C)に示すように、
積算領域A:横方向の積算画素=100画素
積算領域A2:横方向の積算画素=80画素(両端の各10画素を範囲に含めない)
積算領域A3:横方向の積算画素=60画素(両端の各20画素を範囲に含めない)
としたときの、各積算領域の分光応答度を図16に示す。
As shown in FIGS. 15A to 15C,
Integration area A: Horizontal integration pixel = 100 pixels Integration area A2: Horizontal integration pixel = 80 pixels (10 pixels at both ends are not included in the range)
Integration area A3: Horizontal integration pixels = 60 pixels (20 pixels at both ends are not included in the range)
The spectral response of each integrated region is shown in FIG.
 図16から理解されるように、分光応答度の形状は積算領域A2が従来の長方形に最も近い。積算領域A(100画素)は細く、領域A3(中央60画素)は太い形状となっている。 As can be understood from FIG. 16, the shape of the spectral response is closest to the conventional rectangle in the integration region A2. The integration area A (100 pixels) is thin, and the area A3 (center 60 pixels) is thick.
 バンドルファイバー402の出力端402bの形状が、横方向における縦方向の幅が連続的に変化する形状となっているため、積算範囲を制御することにより最適な分光応答度を得ることができる。 Since the shape of the output end 402b of the bundle fiber 402 is such that the width in the vertical direction in the horizontal direction continuously changes, the optimum spectral response can be obtained by controlling the integration range.
 最適な分光応答度が得られる積算領域は、光学系(レンズ、回折格子の迷光など)性能にも依存するため、採用する光学系ごとに積算範囲を設定することが望ましい。また、波長によっても光学系の性能が異なるため、測定波長範囲(380~780nm)で、波長ごとに積算範囲を設定することが望ましい。 Since the integration region where the optimum spectral response is obtained depends on the performance of the optical system (lens, stray light of the diffraction grating, etc.), it is desirable to set the integration range for each optical system to be adopted. Further, since the performance of the optical system differs depending on the wavelength, it is desirable to set the integration range for each wavelength in the measurement wavelength range (380 to 780 nm).
 さらに他の積算領域として、図13(A)(B)に示した積算領域A及び積算領域B、及び図15(B)(C)に示した積算領域A1及び積算領域A2の他に、図17(A)(B)に示すような積算領域の設定を行っても良い。図17(A)では、横方向の両端部及び中央部の画素を除く画素についての積算領域Cを示し、図17(B)では、横方向における縦中心線に対して非対称な領域の画素についての積算領域Dを示しており、バンドルファイバー402の出力端402bが楕円形である場合、3個以上の任意の半値幅でのデータを取得することができる。 As still other integration areas, in addition to the integration areas A and B shown in FIGS. 13 (A) and 13 (B), and the integration areas A1 and A2 shown in FIGS. 15 (B) and 15 (C), FIG. The integration area may be set as shown in 17 (A) and 17 (B). FIG. 17 (A) shows the integration area C for the pixels excluding the pixels at both ends and the center in the horizontal direction, and FIG. 17 (B) shows the pixels in the region asymmetric with respect to the vertical center line in the horizontal direction. When the output end 402b of the bundle fiber 402 has an elliptical shape, it is possible to acquire data in three or more arbitrary half-value widths.
 以上説明したように、この実施形態では、バンドルファイバー402の出力端402bの形状が、横方向において縦方向の幅が連続的に異なる形状となっているから、光学系の性能に応じた最適な積算範囲を選択することによって、従来の長方形の入射スリットで得られる受光データと同じ光量で、同じ形状の分光応答度データが得られる。このため、従来の長方形での輝度計と色度値の互換性があるとともに、同時に異なる半値幅でのデータも取得できる。 As described above, in this embodiment, since the shape of the output end 402b of the bundle fiber 402 has a shape in which the width in the vertical direction is continuously different in the horizontal direction, it is optimal according to the performance of the optical system. By selecting the integration range, spectral response data of the same shape can be obtained with the same amount of light as the received light data obtained by the conventional rectangular incident slit. Therefore, the chromaticity value is compatible with the conventional rectangular luminance meter, and at the same time, data with different half-value widths can be acquired.
 横方向において縦方向の幅が連続的に異なる、バンドルファイバー402の出力端402bの形状としては、楕円型形状に限定されることはない。楕円型以外にも、図18(A)に示すように、横方向の中央部における縦方向の幅が最も大きく、横方向の中央部から両端部に向かって縦方向の幅が連続的に小さくなっている、扁平状六角形であっても良い。 The shape of the output end 402b of the bundle fiber 402, which has a continuously different width in the vertical direction in the horizontal direction, is not limited to the elliptical shape. In addition to the elliptical shape, as shown in FIG. 18A, the vertical width in the horizontal central portion is the largest, and the vertical width is continuously small from the horizontal central portion to both ends. It may be a flat hexagon.
 また図18(B)に示すような菱形形状であっても良いし、同図(C)に示すように、横方向の中央部における縦方向の幅が小さく、横方向の中央部から両端部に向かって縦方向の幅が連続的に大きくなっている鼓型であっても良い。あるいは同図(D)に示すように、横方向の一端部における縦方向の幅が大きく、横方向の他端部に向かって縦方向の幅が連続的に小さくなっている横向き三角形であっても良い。
[実施形態5]
 以上の実施形態では、バンドルファイバー402の出力端402bが入射スリットの役目を果たし、出力端402bの形状を、横方向において縦方向の幅が異なっている形状に設定した場合を示した。しかし、バンドルファイバー402に代えて単線ファイバーと入射スリットの組み合わせにおいて、入射スリットの形状を設定しても良い。
Further, it may have a rhombic shape as shown in FIG. 18 (B), or as shown in FIG. It may be a drum shape in which the width in the vertical direction is continuously increased toward. Alternatively, as shown in FIG. 3D, it is a horizontal triangle in which the vertical width at one end in the horizontal direction is large and the vertical width is continuously reduced toward the other end in the horizontal direction. Is also good.
[Embodiment 5]
In the above embodiment, the case where the output end 402b of the bundle fiber 402 serves as an incident slit and the shape of the output end 402b is set to a shape in which the width in the vertical direction is different in the horizontal direction is shown. However, instead of the bundle fiber 402, the shape of the incident slit may be set in the combination of the single wire fiber and the incident slit.
 図19は、このような単線ファイバーと入射スリットを組み合わせた分光輝度計の基本構成を示す図である。 FIG. 19 is a diagram showing a basic configuration of a spectroluminometer in which such a single wire fiber and an incident slit are combined.
 図19に示す分光輝度計は、導光部400に単線ファイバー410を備えるとともに、単線ファイバー410の出力端(出口端面)がスリット部材531により形成された入射スリット(入力部に相当)530の近傍に配置されている。 In the spectroluminometer shown in FIG. 19, the light guide portion 400 is provided with a single wire fiber 410, and the output end (outlet end face) of the single wire fiber 410 is in the vicinity of an incident slit (corresponding to an input portion) 530 formed by a slit member 531. Is located in.
 分光部500は、入射スリット530から入射された光束を受光する赤外光カットフィルター510と、減光部材520と、照射レンズを兼ねる結像レンズ505と、結像レンズの後方に配置された回折格子504と、回折格子504による回折光を結像レンズ505を介して受光する二次元受光センサ506と、二次元受光センサ506の一部前方に配置された2次光カットフィルター507等を備えている。減光部材520は、受光光量の調節用であり、駆動部521により光路に対して挿入退出可能に駆動されるようになっている。この実施形態では、照射レンズと結像レンズ505を1個のレンズで構成しているため、安価でコンパクトな構成となっている。なお、図19の分光輝度計の他の構成は図1に示した分光輝度計の構成と同じであるため説明は省略する。 The spectroscopic unit 500 includes an infrared light cut filter 510 that receives the light beam incident from the incident slit 530, a dimming member 520, an imaging lens 505 that also serves as an irradiation lens, and diffraction arranged behind the imaging lens. A lattice 504, a two-dimensional light receiving sensor 506 that receives light diffracted by the diffraction grating 504 via an imaging lens 505, a secondary light cut filter 507 that is partially arranged in front of the two-dimensional light receiving sensor 506, and the like are provided. There is. The dimming member 520 is for adjusting the amount of received light, and is driven by the drive unit 521 so that it can be inserted and exited with respect to the optical path. In this embodiment, since the irradiation lens and the imaging lens 505 are composed of one lens, the configuration is inexpensive and compact. Since the other configurations of the spectroluminance meter of FIG. 19 are the same as the configurations of the spectroluminometer shown in FIG. 1, the description thereof will be omitted.
 単線ファイバー410は、この実施形態では直径φ1.0mmのものが使用されている。単線ファイバー410を使用する目的は、測定光の偏光特性、測定エリアの位置特性(位置ムラ)、配光特性(指向性ムラ)をミキシングするためであり、単線ファイバー410の出口で特性の偏りをなくすことで、出口径よりも小さな入射スリット530を配置しても正確な測定ができ、また、入射スリット面内の位置によらず正確な測定ができる。 The single wire fiber 410 has a diameter of φ1.0 mm in this embodiment. The purpose of using the single wire fiber 410 is to mix the polarization characteristics of the measurement light, the position characteristics (positional unevenness) of the measurement area, and the light distribution characteristics (directional unevenness). By eliminating it, accurate measurement can be performed even if the incident slit 530 smaller than the outlet diameter is arranged, and accurate measurement can be performed regardless of the position in the incident slit surface.
 単線ファイバー410は長ければ長いほどミキシング効果が高く、出口での特性ムラが少ない。この実施形態では、直径φ1.0mm、長さ500mmの樹脂製ファイバーを使用し、巻いた状態で配置されている。 The longer the single wire fiber 410, the higher the mixing effect, and the less uneven the characteristics at the exit. In this embodiment, a resin fiber having a diameter of φ1.0 mm and a length of 500 mm is used and arranged in a wound state.
 この実施形態では、単線ファイバー410の出口近傍に機械的に動作する絞り(メカ絞り)を配置することにより、入射スリット530の形状を所定の形状とする。メカ絞りであるため複雑な形状であっても安価で済む。 In this embodiment, the shape of the incident slit 530 is set to a predetermined shape by arranging a mechanically operating diaphragm (mechanical diaphragm) near the outlet of the single wire fiber 410. Since it is a mechanical diaphragm, it can be inexpensive even if it has a complicated shape.
 図20に示すように、単線ファイバー410の出口端410aに対して、メカ絞りにより入射スリット530の形状を以下のように設定した。即ち、入射スリット530は、縦方向の幅が0.4mm、横方向の長さが0.75mmの長方形状の中央部530aと、中央部530aの横方向の両端に形成された縦方向の幅が0.15mm、長さが0.125mmの長方形状の端部領域530a、530aとにより、12角形に形成されている。 As shown in FIG. 20, the shape of the incident slit 530 was set as follows with respect to the outlet end 410a of the single wire fiber 410 by a mechanical diaphragm. That is, the incident slit 530 has a rectangular central portion 530a having a vertical width of 0.4 mm and a lateral length of 0.75 mm, and a vertical width formed at both ends of the central portion 530a in the horizontal direction. Is formed into a dodecagon by the rectangular end regions 530a and 530a having a length of 0.15 mm and a length of 0.125 mm.
 単線ファイバー410の出口端410aの面積は0.5×0.5×3.14=0.78mmであり、入射スリット530の面積は、0.4×0.75+0.15×0.125×2=0.38mmであり、入射スリット530の単線ファイバー出口端410aに対する面積比は43%、つまり単線ファイバー410の出口での光量損失が57%である。 The area of the outlet end 410a of the single wire fiber 410 is 0.5 × 0.5 × 3.14 = 0.78 mm 2 , and the area of the incident slit 530 is 0.4 × 0.75 + 0.15 × 0.125 ×. 2 = 0.38 mm 2 , and the area ratio of the incident slit 530 to the single wire fiber outlet end 410a is 43%, that is, the light loss at the outlet of the single wire fiber 410 is 57%.
 ここで、バンドルファイバー402の効率と比較すると、バンドルファイバー402の効率が50%とすると、単線ファイバー出口での効率は43%であり、バンドルファイバー構成に対し得られる光量の比率は43/50=86%となる(全画素についての積算領域A)。この分、バンドルファイバー構成よりも、繰返し性(SN)は悪化する。 Here, when compared with the efficiency of the bundle fiber 402, assuming that the efficiency of the bundle fiber 402 is 50%, the efficiency at the single wire fiber outlet is 43%, and the ratio of the amount of light obtained to the bundle fiber configuration is 43/50 = It becomes 86% (integration area A for all pixels). By this amount, the repeatability (SN) is worse than that of the bundle fiber configuration.
 図20に示した単線ファイバー410と入射スリット530を組み合わせた場合の、二次元受光センサ506面上での輝線(特定の波長の光)の受光データの受光分布507と、二次元受光センサ506に設定する積算領域の一例を図21(A)(B)に示す。 When the single wire fiber 410 and the incident slit 530 shown in FIG. 20 are combined, the light receiving distribution 507 of the light receiving data of the emission line (light of a specific wavelength) on the surface of the two-dimensional light receiving sensor 506 and the two-dimensional light receiving sensor 506 An example of the integration area to be set is shown in FIGS. 21 (A) and 21 (B).
 図21(A)に示す積算領域Aは横方向中央部の36画素を積算するものであり、図21(B)に示す積算領域Bは横方向の中央から±13~18画素領域を積算するものである。 The integration area A shown in FIG. 21 (A) integrates 36 pixels in the central portion in the horizontal direction, and the integration area B shown in FIG. 21 (B) integrates ± 13 to 18 pixels from the center in the horizontal direction. It is a thing.
 各積算領域A、Bで得られた分光応答度を図22に示す。図22において、「長方形」は従来の入射スリット(0.315×3.0長方形)で、積算領域Aで積算した場合を示す。 FIG. 22 shows the spectral responsiveness obtained in each of the integration regions A and B. In FIG. 22, the “rectangle” is a conventional incident slit (0.315 × 3.0 rectangle), and shows a case where the integration is performed in the integration area A.
 図22に示されるように、従来の長方形状の入射スリットの半値幅は約4nm、積算領域Aでの分光応答度の半値幅も約4nm、積算領域Bでの分光応答度の半値幅は約2.5nmである。また、従来の長方形状の入射スリット503の場合の受光量を1とすると、ファイバー部の効率を考慮した場合、積算領域Aの受光量は86%、積算領域Bの受光量は8%となる。 As shown in FIG. 22, the half width of the conventional rectangular incident slit is about 4 nm, the half width of the spectral response in the integration region A is also about 4 nm, and the half width of the spectral response in the integration region B is about about 4 nm. It is 2.5 nm. Further, assuming that the light receiving amount in the case of the conventional rectangular incident slit 503 is 1, the light receiving amount in the integrated area A is 86% and the light receiving amount in the integrated area B is 8% when the efficiency of the fiber portion is taken into consideration. ..
 図23は入射スリット530の形状の変更例である。この例においても、単線ファイバー410の出口近傍に、メカ絞りを配置することで、入射スリット503の所定形状を実現する。 FIG. 23 is an example of changing the shape of the incident slit 530. Also in this example, the predetermined shape of the incident slit 503 is realized by arranging the mechanical diaphragm near the outlet of the single wire fiber 410.
 図23の例では、入射スリット530の形状を、長径1.0mm、短径0.4mmの楕円形に形成している。単線ファイバー410の出口端410aの面積は0.78mmであり、入射スリット530の面積は0.2×0.5×3.14=0.32mmである。入射スリット530の単線ファイバー出口端410aに対する面積比は40%、つまり単線ファイバー410の出口での光量損失が60%である。 In the example of FIG. 23, the shape of the incident slit 530 is formed into an elliptical shape having a major axis of 1.0 mm and a minor axis of 0.4 mm. Area of the outlet end 410a of the single line fiber 410 is 0.78 mm 2, the area of the entrance slit 530 is 0.2 × 0.5 × 3.14 = 0.32mm 2 . The area ratio of the incident slit 530 to the single wire fiber outlet end 410a is 40%, that is, the light loss at the outlet of the single wire fiber 410 is 60%.
 バンドルファイバー402の効率と比較すると、バンドルファイバー402の効率が50%とすると、単線ファイバー出口での効率は40%であり、バンドルファイバー構成に対し得られる光量の比率は40/50=80%となる(全画素についての積算領域A)。この分、バンドルファイバー構成よりも、繰返し性(SN)は悪化する。 Compared with the efficiency of the bundle fiber 402, if the efficiency of the bundle fiber 402 is 50%, the efficiency at the single wire fiber outlet is 40%, and the ratio of the amount of light obtained to the bundle fiber configuration is 40/50 = 80%. (Integration area A for all pixels). By this amount, the repeatability (SN) is worse than that of the bundle fiber configuration.
 図23に示した単線ファイバー410と入射スリット530を組み合わせた場合の、二次元受光センサ506面上での輝線(特定の波長の光)の受光データの受光分布507と、二次元受光センサ506に設定する積算領域の一例を図24(A)(B)に、各積算領域で得られた分光応答度を図25に示す。 When the single wire fiber 410 and the incident slit 530 shown in FIG. 23 are combined, the light receiving distribution 507 of the light receiving data of the emission line (light of a specific wavelength) on the surface of the two-dimensional light receiving sensor 506 and the two-dimensional light receiving sensor 506 An example of the integration region to be set is shown in FIGS. 24 (A) and 24 (B), and the spectral response degree obtained in each integration region is shown in FIG. 25.
 図25に示されるように、積算領域を変更することで、半値幅も変化していることがわかる。このため、各積算画領域で、被測定光の受光量を積算演算することにより、半値幅の異なる2種類以上の分光応答度での分光データを取得することができる。しかも、積算領域を変えて演算すれば良いから1回の測定で済む。このため、半値幅を変更するために、測定の都度、入射スリットのサイズを変更する必要はなく、同一の波長範囲で、1回の測定で2種類以上の異なる分光データを同時に取得することができる。しかも、回折格子とトロイダル鏡を複数組設ける必要はないから、構成の複雑化やコスト高を抑制することができる。 As shown in FIG. 25, it can be seen that the full width at half maximum is also changed by changing the integration area. Therefore, by integrating the amount of received light to be measured in each integrated image region, it is possible to acquire spectral data with two or more types of spectral responsiveness having different half-value widths. Moreover, since the calculation can be performed by changing the integration area, only one measurement is required. Therefore, in order to change the full width at half maximum, it is not necessary to change the size of the incident slit each time the measurement is performed, and it is possible to simultaneously acquire two or more different spectral data in one measurement in the same wavelength range. it can. Moreover, since it is not necessary to provide a plurality of sets of diffraction gratings and toroidal mirrors, it is possible to suppress the complexity of the configuration and the high cost.
 また、単線ファイバー410と、横方向において縦方向の幅が異なる形状の入射スリット530を組み合わせることで、バンドルファイバー402に比べ、光量が減少し繰り返し性能(SN)が悪くなるものの、次のような利点もある。 Further, by combining the single wire fiber 410 and the incident slit 530 having a shape different in the vertical direction in the horizontal direction, the amount of light is reduced and the repeatability (SN) is deteriorated as compared with the bundle fiber 402. There are also advantages.
 即ち、単線ファイバー410を用いることで、十分なミキシングができるので被測定物の特徴(偏光、位置むら、指向性)に関わらず正確な測定ができ、また、単線ファイバー410は、バンドルファイバー402よりも安価であるといった利点がある。 That is, by using the single wire fiber 410, sufficient mixing can be performed, so that accurate measurement can be performed regardless of the characteristics (polarization, uneven position, directivity) of the object to be measured, and the single wire fiber 410 is more than the bundle fiber 402. Has the advantage of being inexpensive.
 以上、本発明の一実施形態を説明したが、本発明は上記実施形態に限定されることはない。例えば、バンドルファイバー402等の出口端402aや入射スリット503の面積が、従来の長方形の入射スリットと同じになるように設定したが、面積が大きくなっても良い。この場合、必要であれば二次元受光センサ506のサイズも大きくする。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, the area of the outlet end 402a of the bundle fiber 402 or the like and the incident slit 503 is set to be the same as that of the conventional rectangular incident slit, but the area may be increased. In this case, the size of the two-dimensional light receiving sensor 506 is also increased if necessary.
 本発明は、光源の輝度や色度、物体の分光反射率や色彩値等を測定する際に利用可能である。 The present invention can be used when measuring the brightness and chromaticity of a light source, the spectral reflectance of an object, the color value, and the like.
 1  分光測定器
 2  測定対象物
 3 被測定光
 100 受光光学系
 200 観察光学系
 300 測定光学系
 400 導光部
 402 バンドルファイバー
 402a 出力端
 500 分光部
 504 回折格子
 506 二次元受光センサ
 507 受光分布
 530 入射スリット
 700 演算処理部(データ取得手段)
 
1 Spectral measuring instrument 2 Object to be measured 3 Light to be measured 100 Light receiving optical system 200 Observation optical system 300 Measuring optical system 400 Light guide unit 402 Bundle fiber 402a Output end 500 Spectroscopic unit 504 Diffraction grid 506 Two-dimensional light receiving sensor 507 Light receiving distribution 530 Incident Slit 700 Arithmetic processing unit (data acquisition means)

Claims (6)

  1.  波長の分散方向と直交する方向の位置によって、波長の分散方向における幅が異なっている形状を有する入射部と、
     前記入射部から入射した被測定光を回折させる回折手段と、
     前記回折手段で回折された被測定光を受光する二次元受光センサと、
     前記二次元受光センサの2種類以上の積算画素範囲で、被測定光の受光量を積算演算することにより、2種類以上の異なる分光データを取得する分光データ取得手段と、
     を備えた分光測定器。
    An incident part having a shape in which the width in the wavelength dispersion direction differs depending on the position in the direction orthogonal to the wavelength dispersion direction,
    A diffracting means for diffracting the light to be measured incident from the incident portion, and
    A two-dimensional light receiving sensor that receives the light to be measured diffracted by the diffracting means, and
    A spectroscopic data acquisition means for acquiring two or more different types of spectral data by integrating the amount of received light to be measured in two or more types of integrated pixel ranges of the two-dimensional light receiving sensor.
    A spectroscopic measuring instrument equipped with.
  2.  前記入射部は入射スリットか光バンドルファイバーの出力端の少なくともいずれかによって構成されている請求項1に記載の分光測定器。 The spectroscopic measuring instrument according to claim 1, wherein the incident portion is composed of at least one of an incident slit and an output end of an optical bundle fiber.
  3.  前記入射部は、波長の分散方向と直交する方向において、波長の分散方向の幅が段階的に異なっている請求項1または2に記載の分光測定器。 The spectrophotometer according to claim 1 or 2, wherein the incident portion has a stepwise difference in width in the wavelength dispersion direction in a direction orthogonal to the wavelength dispersion direction.
  4.  前記入射部は、波長の分散方向と直交する方向において、波長の分散方向の幅が連続的に異なっている請求項1または2に記載の分光測定器。 The spectrophotometer according to claim 1 or 2, wherein the incident portion has continuously different widths in the wavelength dispersion direction in a direction orthogonal to the wavelength dispersion direction.
  5.  前記積算画素範囲は、前記入射部から前記二次元受光センサまでの光路に配置された少なくとも一個の光学系部品の光学特性に応じて設定される請求項1~4のいずれかに記載の分光測定器。 The spectroscopic measurement according to any one of claims 1 to 4, wherein the integrated pixel range is set according to the optical characteristics of at least one optical system component arranged in the optical path from the incident portion to the two-dimensional light receiving sensor. vessel.
  6.  前記入射部は入射スリットであり、単線光ファイバーの出口近傍に前記入射スリットが配置されている請求項1~5のいずれかに記載の分光測定器。
     
     
    The spectroscopic measuring instrument according to any one of claims 1 to 5, wherein the incident portion is an incident slit, and the incident slit is arranged in the vicinity of the outlet of the single-line optical fiber.

PCT/JP2020/033628 2019-09-30 2020-09-04 Spectrometer WO2021065348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021550500A JPWO2021065348A1 (en) 2019-09-30 2020-09-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019178821 2019-09-30
JP2019-178821 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021065348A1 true WO2021065348A1 (en) 2021-04-08

Family

ID=75337213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033628 WO2021065348A1 (en) 2019-09-30 2020-09-04 Spectrometer

Country Status (2)

Country Link
JP (1) JPWO2021065348A1 (en)
WO (1) WO2021065348A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321325A (en) * 1988-06-24 1989-12-27 Hitachi Ltd Spectroscope
JP2006189291A (en) * 2005-01-05 2006-07-20 Konica Minolta Sensing Inc Photometric system and photometric method for monochromatic light
JP2015215196A (en) * 2014-05-09 2015-12-03 株式会社島津製作所 Spectroscopic sensor
US20190154505A1 (en) * 2017-11-17 2019-05-23 Endress+Hauser Conducta Gmbh+Co. Kg Spectrometric measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321325A (en) * 1988-06-24 1989-12-27 Hitachi Ltd Spectroscope
JP2006189291A (en) * 2005-01-05 2006-07-20 Konica Minolta Sensing Inc Photometric system and photometric method for monochromatic light
JP2015215196A (en) * 2014-05-09 2015-12-03 株式会社島津製作所 Spectroscopic sensor
US20190154505A1 (en) * 2017-11-17 2019-05-23 Endress+Hauser Conducta Gmbh+Co. Kg Spectrometric measuring device

Also Published As

Publication number Publication date
JPWO2021065348A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
US7436512B2 (en) Spectroscope
US8018597B2 (en) Slab waveguide spatial heterodyne spectrometer assembly
US7812949B2 (en) Spectrometer with cylindrical lens for astigmatism correction and demagnification
JP5806540B2 (en) Wavelength distribution measuring device
US8873048B2 (en) Spectrometer arrangement
US8189191B2 (en) Spectroscopic imaging microscopy
JP3250426B2 (en) Optical spectrum measurement device
EP2405541A1 (en) Laser light source apparatus and image display apparatus
JP2010025558A (en) Optical system for measurement
US6646739B2 (en) Four-stage type monochromator
US5914777A (en) Apparatus for and method of measuring a distribution of luminous intensity of light source
WO2021065348A1 (en) Spectrometer
JP5547969B2 (en) Photometric device
WO2021085272A1 (en) Spectrometer
WO2018207400A1 (en) Mtf measurement device and mtf measurement method
JP4454098B2 (en) Photometric device
JP4952419B2 (en) Spectral luminance meter
CN112540459A (en) Optimization adjustment method of double-prism dispersion device
JP6331986B2 (en) Optical property measuring device
WO2018138609A1 (en) Spectrometer and method for measuring the spectral characteristics thereof
JP2011048282A (en) Spectrum light source device
KR20230048420A (en) metering device
JPH08327450A (en) Spectrophotometer
JP2001264169A (en) Spectroscope
WO2022159352A1 (en) Spectrally shaped light source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021550500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871667

Country of ref document: EP

Kind code of ref document: A1