WO2021065111A1 - Heat source unit and refrigeration device - Google Patents

Heat source unit and refrigeration device Download PDF

Info

Publication number
WO2021065111A1
WO2021065111A1 PCT/JP2020/025133 JP2020025133W WO2021065111A1 WO 2021065111 A1 WO2021065111 A1 WO 2021065111A1 JP 2020025133 W JP2020025133 W JP 2020025133W WO 2021065111 A1 WO2021065111 A1 WO 2021065111A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
refrigerant
pressure
outdoor
heat source
Prior art date
Application number
PCT/JP2020/025133
Other languages
French (fr)
Japanese (ja)
Inventor
秀一 田口
竹上 雅章
明敏 上野
拓未 大薗
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2021065111A1 publication Critical patent/WO2021065111A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Definitions

  • This disclosure relates to a heat source unit and a refrigerating device.
  • a refrigerating device having a compression element for compressing a refrigerant and performing a refrigerating cycle has been known.
  • This refrigerating device is widely used as an air conditioner for heating and cooling a room and a cooler for a refrigerator or the like for storing food or the like.
  • the outdoor unit installed outdoors includes a plurality of utilization units having different evaporation temperatures (for example, a refrigerating unit such as a showcase for refrigeration / freezing, and an air conditioning unit such as an indoor unit for air conditioning). ), Are connected in parallel.
  • This refrigerating device is installed in, for example, a convenience store or the like, and it is possible to air-condition the inside of the store and cool the showcase or the like by installing only one refrigerating device (see Patent Document 1).
  • the refrigerating apparatus having a plurality of utilization units having different evaporation temperatures is provided with an injection circuit for introducing a refrigerant into a portion that becomes an intermediate pressure between the discharge pressure and the suction pressure of the compression element, and the refrigeration cycle is performed.
  • a part of the refrigerant decompressed by the outdoor expansion valve may be used by flowing into the injection circuit.
  • the efficiency of the refrigerating apparatus is improved by introducing a refrigerant having a pressure intermediate between the discharge pressure and the suction pressure.
  • An object of the present disclosure is to secure the capacity of the utilization unit having the higher evaporation temperature in the refrigeration apparatus including a plurality of utilization units having different evaporation temperatures.
  • the first aspect is a utilization circuit of a utilization unit (50, 60) having a first utilization unit (60) and a second utilization unit (50) having a higher refrigerant evaporation temperature than the first utilization unit (60). It is a heat source unit including a heat source circuit (11) connected to (51, 61) to form a refrigerant circuit (6) that performs a refrigeration cycle, and a control unit (100) that controls the heat source circuit (11).
  • the heat source circuit (11) is the compression element having a first compression unit (22, 23) and a second compression unit (21) that further compresses the refrigerant compressed by the first compression unit (22, 23).
  • (C) a radiator (13), a first decompression mechanism (14), and a main flow path (M) connected to the downstream side of the radiator (13) and provided with the first decompression mechanism (14).
  • the first branch flow path (o8) connected to the end of the main flow path (M) and communicating with the first utilization unit (60), and the end of the main flow path (M).
  • the second branch flow path (o6) communicating with the second utilization unit (50), one end is connected to the main flow path (M), and the other end is the first compression section (22, 23) and the second compression.
  • An intermediate injection circuit (49) connected between the parts (21) and into which the refrigerant decompressed by the first decompression mechanism (14) flows in, and a second decompression mechanism provided in the first branch flow path (o8). (18) and
  • the refrigerant of the heat source unit easily flows to the second utilization unit (50), and the cooling capacity of the second utilization unit (50) can be secured.
  • the heat source circuit (11) includes a gas-liquid separator (15), and the intermediate injection circuit (49) is connected to the gas-liquid separator (15).
  • the first refrigerant pipe (37) is provided, and in the first refrigerant pipe (37), the gas refrigerant in the gas-liquid separator (15) is transferred from the gas-liquid separator (15) to the first compression unit ( It is configured to flow into the flow path between 22 and 23) and the second compression unit (21).
  • the gas refrigerant stored in the gas-liquid separator (15) is placed between the first compression unit (22, 23) and the second compression unit (21) via the intermediate injection circuit (49). Can be introduced in.
  • the heat source circuit (11) has a pressure acquisition unit (48) that detects or estimates the pressure of the refrigerant after decompression by the second decompression mechanism (18).
  • the second decompression mechanism (18) is a valve whose opening degree can be adjusted, and the control unit (100) uses the pressure detected or estimated by the pressure acquisition unit (48) as the target pressure. In addition, the opening degree of the second decompression mechanism (18) is controlled.
  • the pressure of the refrigerant supplied to the first utilization unit (60) can be adjusted to the target pressure.
  • a fourth aspect is that in any one of the first to third aspects, the heat source circuit (11) is placed between the first decompression mechanism (14) and the second decompression mechanism (18).
  • a cooling heat exchanger (16) to be connected is provided, and the cooling heat exchanger (16) includes a first flow path (16a) connected to a liquid pipe through which the liquid refrigerant of the heat source circuit (11) flows, and the above. It has a second flow path (16b) through which the refrigerant is diverted from the liquid pipe and the reduced pressure flows, and the refrigerant in the first flow path (16a) is cooled by the refrigerant in the second flow path (16b).
  • the second flow path (16b) constitutes the intermediate injection circuit (49).
  • the refrigerant in the second flow path (16b) of the cooling heat exchanger (16) absorbs heat from the refrigerant in the first flow path (16a) and evaporates, and flows through the intermediate injection circuit (49). ..
  • the refrigerant in the second flow path (16b) can be introduced into the flow path between the first compression section (22, 23) and the second compression section (21).
  • control unit (100) has a cooling capacity of the cooling heat exchanger (16) so that the refrigerant flowing out of the second decompression mechanism (18) is in a liquid state. To control.
  • the enthalpy difference of the refrigerant between the inlet and the outlet of the first utilization unit (60) can be increased.
  • the first utilization unit (60) is a cooling unit for cooling the inside of the refrigerating equipment
  • the second utilization unit (60). 50) is an air conditioning unit that air-conditions the room.
  • a seventh aspect is, in any one of the first to sixth aspects, the control unit (100) compresses the refrigerant with the compression element (C) to a pressure equal to or higher than the critical pressure, and the first decompression mechanism.
  • the refrigerant circuit (6) is controlled so as to perform a refrigeration cycle in which the pressure is reduced to the subcritical pressure in (14).
  • the refrigerant compressed to the critical pressure or higher can be depressurized to the subcritical pressure by the first depressurizing mechanism.
  • the gas phase component of the refrigerant in the subcritical region can be introduced into the flow path between the first compression section (22, 23) and the second compression section (21).
  • the refrigerant is carbon dioxide.
  • the downstream portion of the second decompression mechanism (18) in the first branch flow path (o8) is used with the utilization unit (50, It is provided with a connection pipe (83) connected to a low-pressure gas pipe (20) through which a refrigerant flows from the compression element (C) to the compression element (C), and an auxiliary valve (19) provided in the connection pipe (83).
  • the auxiliary valve (19) is provided in the connecting pipe (83) connecting the liquid pipe (o8) and the low pressure gas pipe (20).
  • the auxiliary valve (19) When the auxiliary valve (19) is open, the liquid-side communication pipe that connects the heat source unit (10) to the utilization unit (60) communicates with the low-pressure gas pipe (20) via the connection pipe (83). Therefore, when the second outdoor expansion valve (18) of the intermediate unit (80) is closed, an excessive increase in the internal pressure of the liquid side connecting pipe is suppressed, and as a result, the liquid side connecting pipe is damaged and used. It is possible to avoid damage to the unit (60).
  • a tenth aspect is, in any one of the first to ninth aspects, the heat source unit (10) is a main heat source unit (10a) and an auxiliary unit (10b) separated from the main heat source unit (10a). , 80), and the auxiliary unit (10b, 80) includes the second decompression mechanism (18).
  • the auxiliary unit (10b, 80) provided with the second decompression mechanism (18) can be separated from the main heat source unit (10a).
  • the auxiliary unit (10b, 80) can be connected to the existing main heat source unit (10a), and the effects of the first to eighth aspects can be realized.
  • the evaporation temperature of the refrigerant is higher than that of the heat source unit (10) of any one of the first to tenth aspects, the first utilization unit (60), and the first utilization unit (60).
  • the heat source circuit (11) and the utilization unit (50) of the heat source unit (10) are provided with the utilization unit (50, 60) having the utilization circuit (51, 61) including the high second utilization unit (50).
  • , 60) is connected to the utilization circuits (51, 61) to form a refrigerant circuit (6) that performs a refrigeration cycle.
  • FIG. 1 is a piping system diagram of the refrigerating apparatus according to the first embodiment.
  • FIG. 2 is a flowchart showing the relationship between the controller, various sensors, and various devices.
  • FIG. 3 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the cold operation.
  • FIG. 4 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the cooling operation.
  • FIG. 5 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the cooling / cooling operation.
  • FIG. 6 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the heating operation.
  • FIG. 7 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the heating / cooling operation.
  • FIG. 3 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the cold operation.
  • FIG. 4 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the
  • FIG. 8 is a Ph diagram of a conventional refrigeration system.
  • FIG. 9 is a diagram corresponding to FIG. 8 in which a part of the pressure is changed in the Ph diagram of the conventional refrigerating apparatus.
  • FIG. 10 is a flowchart showing the control of the second decompression mechanism according to the first embodiment.
  • FIG. 11 is a flowchart showing the activation control of the first compressor.
  • FIG. 12 is a Ph diagram of the refrigerating apparatus according to the first embodiment.
  • FIG. 13 is a piping system diagram of the refrigerating apparatus according to the modified example of the first embodiment.
  • FIG. 14 is a flowchart showing the control of the second decompression mechanism according to the second embodiment.
  • FIG. 15 is a piping system diagram of the refrigerating apparatus according to the third embodiment.
  • FIG. 16 is a flow chart showing the control of the second outdoor expansion valve performed by the controller of the third embodiment.
  • FIG. 17 is a graph showing the relationship between the opening degree of the auxiliary valve controlled by the controller of the third embodiment and the measured value of the outlet pressure sensor.
  • FIG. 18 is a graph showing the relationship between the opening degree of the auxiliary valve controlled by the controller of the modified example of the third embodiment and the measured value of the outlet pressure sensor.
  • FIG. 19 is a piping system diagram of the refrigerating apparatus according to the fourth embodiment.
  • FIG. 20 is a block diagram showing the relationship between the constituent devices of the intermediate unit and the hydraulic pressure controller according to the fourth embodiment.
  • FIG. 21 is a block diagram showing the relationship between the constituent devices of the intermediate unit and the hydraulic pressure controller in the first modification of the fourth embodiment.
  • Embodiment 1 >> ⁇ overall structure>
  • the refrigerating apparatus (1) according to the first embodiment simultaneously cools the object to be cooled and air-conditions the room.
  • the cooling target here includes air in equipment such as refrigerators, freezers, and showcases.
  • such equipment will be referred to as cold equipment.
  • the refrigerating device (1) includes a heat source unit (10) installed outdoors, a first utilization unit (60) (cooling unit) for cooling the air inside the refrigerator, and an indoor air conditioner.
  • a second utilization unit (50) (air conditioning unit) and a controller (100) are provided.
  • FIG. 1 illustrates one air conditioning unit (50).
  • the refrigeration system (1) may have two or more air conditioning units (50) connected in parallel.
  • FIG. 1 illustrates one cooling unit (60).
  • the refrigeration system (1) may have two or more cooling units (60) connected in parallel.
  • the refrigerant circuit (6) is configured by connecting these units (10,50,60) with four connecting pipes (2,3,4,5).
  • the four connecting pipes (2,3,4,5) are the first liquid connecting pipe (2), the first gas connecting pipe (3), the second liquid connecting pipe (4), and the second gas connecting pipe (2). It consists of 5).
  • the first liquid connecting pipe (2) and the first gas connecting pipe (3) correspond to the air conditioning unit (50).
  • the second liquid connecting pipe (4) and the second gas connecting pipe (5) correspond to the cooling unit (60).
  • the refrigeration cycle is performed by circulating the refrigerant.
  • the refrigerant of the refrigerant circuit (6) of this embodiment is carbon dioxide.
  • the refrigerant circuit (6) is configured to perform a refrigeration cycle in which the refrigerant exceeds the critical pressure.
  • the heat source unit (10) has an outdoor fan (12) and an outdoor circuit (11).
  • the compression element (C), the flow path switching mechanism (30), the outdoor heat exchanger (13), the first outdoor expansion valve (14), and the gas-liquid separator (15) are connected in this order. It also has a cooling heat exchanger (16) and an intercooler (17).
  • the compression element (C) compresses the refrigerant.
  • the compression element (C) has a first compressor (21), a second compressor (22), and a third compressor (23).
  • the compression element (C) is configured as a two-stage compression type in which the refrigerant compressed by the first compression unit (22, 23) is further compressed by the second compression unit (21).
  • the first compression unit (22, 23) is a second compressor (22) and a third compressor (23) that constitute a low-stage compressor.
  • the second compression unit (21) is a first compressor (21) that constitutes a high-stage compressor.
  • the second compressor (22) and the third compressor (23) are connected in parallel with each other.
  • the first compressor (21) and the second compressor (22) are connected in series.
  • the first compressor (21) and the third compressor (23) are connected in series.
  • the first compressor (21) constitutes the first compression unit, and the second compressor (22) and the third compressor (23) form the second compression unit.
  • the first compressor (21), the second compressor (22), and the third compressor (23) are rotary compressors in which a compression mechanism is driven by a motor.
  • the first compressor (21), the second compressor (22), and the third compressor (23) are configured in a variable capacitance type in which the operating frequency or the rotation speed can be adjusted.
  • the first suction pipe (21a) and the first discharge pipe (21b) are connected to the first compressor (21).
  • a second suction pipe (22a) and a second discharge pipe (22b) are connected to the second compressor (22).
  • a third suction pipe (23a) and a third discharge pipe (23b) are connected to the third compressor (23).
  • the first suction pipe (21a) constitutes an intermediate pressure portion between the first compression portion (22, 23) and the second compression portion (21).
  • the second suction pipe (22a) communicates with the cooling unit (60).
  • the second compressor (22) is a cold side compressor corresponding to the cold unit (60).
  • the third suction pipe (23a) communicates with the air conditioning unit (50).
  • the third compressor (23) is an indoor compressor corresponding to the air conditioning unit (50).
  • the flow path switching mechanism (30) switches the flow path of the refrigerant.
  • the flow path switching mechanism (30) includes the first pipe (31), the second pipe (32), the third pipe (33), the fourth pipe (34), the first three-way valve (TV1), and the second three-way valve.
  • the inflow end of the first pipe (31) and the inflow end of the second pipe (32) are connected to the first discharge pipe (21b).
  • the first pipe (31) and the second pipe (32) are pipes on which the discharge pressure of the compression element (C) acts.
  • the outflow end of the third pipe (33) and the outflow end of the fourth pipe (34) are connected to the third suction pipe (23a) of the third compressor (23).
  • the third pipe (33) and the fourth pipe (34) are pipes on which the suction pressure of the compression element (C) acts.
  • the first three-way valve (TV1) has a first port (P1), a second port (P2), and a third port (P3).
  • the first port (P1) of the first three-way valve (TV1) is connected to the outflow end of the first pipe (31) which is a high-pressure flow path.
  • the second port (P2) of the first three-way valve (TV1) is connected to the inflow end of the third pipe (33), which is a low-pressure flow path.
  • the third port (P3) of the first three-way valve (TV1) is connected to the indoor gas side flow path (35).
  • the second three-way valve (TV2) has a first port (P1), a second port (P2), and a third port (P3).
  • the first port (P1) of the second three-way valve (TV2) is connected to the outflow end of the second pipe (32), which is a high-pressure flow path.
  • the second port (P2) of the second three-way valve (TV2) is connected to the inflow end of the fourth pipe (34), which is a low-pressure flow path.
  • the third port (P3) of the second three-way valve (TV2) is connected to the outdoor gas side flow path (36).
  • the first three-way valve (TV1) and the second three-way valve (TV2) are electric three-way valves.
  • Each of the three-way valves (TV1 and TV2) switches between a first state (the state shown by the solid line in FIG. 1) and a second state (the state shown by the broken line in FIG. 1).
  • the first port (P1) and the third port (P3) communicate with each other, and the second port (P2) is closed.
  • the second port (P2) and the third port (P3) communicate with each other, and the first port (P1) is closed.
  • the outdoor heat exchanger (13) constitutes a heat source heat exchanger.
  • the outdoor heat exchanger (13) is a fin-and-tube type air heat exchanger.
  • the outdoor fan (12) is located near the outdoor heat exchanger (13).
  • the outdoor fan (12) carries outdoor air.
  • the outdoor heat exchanger exchanges heat between the refrigerant flowing inside the outdoor heat exchanger and the outdoor air carried by the outdoor fan (12).
  • the outdoor gas side flow path (36) is connected to the gas end of the outdoor heat exchanger (13).
  • An outdoor flow path (O) is connected to the liquid end of the outdoor heat exchanger (13).
  • the outdoor flow path (O) is the outdoor first pipe (o1), the outdoor second pipe (o2), the outdoor third pipe (o3), the outdoor fourth pipe (o4), the outdoor fifth pipe (o5), and the outdoor pipe. Includes 6 pipes (o6), outdoor 7th pipe (o7), and outdoor 8th pipe (o8).
  • One end of the outdoor first pipe (o1) is connected to the liquid end of the outdoor heat exchanger (13).
  • One end of the outdoor second pipe (o2) and one end of the outdoor third pipe (o3) are connected to the other end of the outdoor first pipe (o1), respectively.
  • the other end of the outdoor second pipe (o2) is connected to the top of the gas-liquid separator (15).
  • One end of the outdoor fourth pipe (o4) is connected to the bottom of the gas-liquid separator (15).
  • One end of the outdoor fifth pipe (o5) and the other end of the outdoor third pipe (o3) are connected to the other end of the outdoor fourth pipe (o4).
  • One end of the outdoor sixth pipe (o6) and one end of the outdoor eighth pipe (o8) are connected to the other end of the outdoor fifth pipe (o5).
  • the other end of the outdoor eighth pipe (o8) is connected to the second liquid connecting pipe (4).
  • the other end of the outdoor sixth pipe (o6) is connected to the first liquid connecting pipe (2).
  • One end of the outdoor seventh pipe (o7) is connected in the middle of the outdoor sixth pipe (o6).
  • the other end of the outdoor seventh pipe (o7) is connected in the middle of the outdoor second pipe (o2).
  • the heat source circuit (11) has a first decompression mechanism (14) and a second decompression mechanism (18).
  • the first and second decompression mechanisms (14, 18) decompress the refrigerant flowing out to the utilization unit (50, 60).
  • the first decompression mechanism (14) is the first outdoor expansion valve (14).
  • the first outdoor expansion valve (14) is an electronic expansion valve whose opening degree is adjusted by driving a pulse motor by a pulse signal from the controller (100).
  • the first outdoor expansion valve (14) is connected to the outdoor first pipe (o1).
  • the second decompression mechanism (18) is the second outdoor expansion valve (18).
  • the second outdoor expansion valve (18) is an electronic expansion valve whose opening degree is adjusted by driving a pulse motor by a pulse signal from the controller (100).
  • the second outdoor expansion valve (18) is connected to the outdoor eighth pipe (o8).
  • the gas-liquid separator (15) constitutes a container for storing the refrigerant.
  • the gas-liquid separator (15) is provided downstream of the first outdoor expansion valve (14).
  • the refrigerant is separated into a gas refrigerant and a liquid refrigerant.
  • the other end of the outdoor second pipe (o2) and one end of the gas vent pipe (37), which will be described later, are connected to the top of the gas-liquid separator (15).
  • the outdoor circuit (11) has a main flow path (M), a first branch flow path (o8), and a second branch flow path (o6).
  • the main flow path (M) is composed of an outdoor first pipe (o1), an outdoor second pipe (o2), a gas-liquid separator (15), an outdoor fourth pipe (o4), and an outdoor fifth pipe (o5). ..
  • the first outdoor expansion valve (14) is connected to the outdoor first pipe (o1) in the main flow path (M).
  • first branch flow path (o8) One end of the first branch flow path (o8) is connected to the end of the main flow path (M).
  • the other end of the first branch flow path (o8) is connected to a closing valve to which the second liquid connecting pipe (4) is connected so as to communicate with the cooling unit (60).
  • the first branch flow path (o8) is the outdoor eighth pipe (o8).
  • the second outdoor expansion valve (18) is connected to the outdoor eighth pipe (o8).
  • One end of the second branch flow path (o6) is connected to the end of the main flow path (M).
  • the other end of the second branch flow path (o6) is connected to a closing valve to which the first liquid connecting pipe (2) is connected so as to communicate with the air conditioning unit (50).
  • the second branch flow path (o6) is the outdoor sixth pipe (o6).
  • the outdoor circuit (11) includes an intermediate injection circuit (49).
  • the intermediate injection circuit (49) is configured so that the refrigerant flowing through the intermediate injection circuit (49) is supplied to the intermediate pressure section between the first compression section (22, 23) and the second compression section (21). Will be done.
  • the intermediate injection circuit (49) includes a first refrigerant pipe (37) and an injection pipe (38).
  • the injection pipe (38) is connected in the middle of the outdoor fifth pipe (o5).
  • the other end of the injection pipe (38) is connected to the first suction pipe (21a) of the first compressor (21).
  • the injection pipe (38) is provided with a pressure reducing valve (40).
  • the pressure reducing valve (40) is an expansion valve having a variable opening degree.
  • the first refrigerant pipe (37) is a gas vent pipe (37) connected to the gas-liquid separator (15).
  • the gas refrigerant of the gas-liquid separator (15) flows from the gas-liquid separator (15) between the first compression section (22, 23) and the second compression section (21). It is configured to flow into the road.
  • one end of the degassing pipe (37) is connected to the top of the gas-liquid separator (15).
  • the other end of the degassing pipe (37) is connected in the middle of the injection pipe (38).
  • a degassing valve (39) is connected to the degassing pipe (37).
  • the degassing valve (39) is an electronic expansion valve having a variable opening.
  • the outdoor circuit (11) comprises a cooling heat exchanger (16).
  • the cooling heat exchanger (16) is a supercooling heat exchanger (16) that cools the refrigerant (mainly the liquid refrigerant) separated by the gas-liquid separator (15).
  • the supercooled heat exchanger (16) is connected between the gas-liquid separator (15) and the second outdoor expansion valve (18).
  • the supercooling heat exchanger (16) has a first flow path (16a) which is a high pressure side flow path and a second flow path (16b) which is a low pressure side flow path. In the supercooling heat exchanger (16), the high-pressure refrigerant flowing through the first flow path (16a) and the decompressed refrigerant flowing through the second flow path (16b) exchange heat.
  • the refrigerant flowing through the first flow path (16a) is cooled.
  • the first flow path (16a) is connected in the middle of the outdoor fourth pipe (o4), which is a liquid pipe through which the liquid refrigerant of the heat source circuit (11) flows.
  • the second flow path (16b) is a flow path through which the refrigerant that cools the refrigerant flowing through the first flow path (16a) flows.
  • the second flow path (16b) is included in the intermediate injection circuit (49). Specifically, the second flow path (16b) is connected to the downstream side of the pressure reducing valve (40) in the injection pipe (38). A refrigerant that has been diverted from the first flow path (16a) and depressurized by the pressure reducing valve (40) flows through the second flow path (16b).
  • the intercooler (17) is connected to the intermediate flow path (41).
  • One end of the intermediate flow path (41) is connected to the second discharge pipe (22b) of the second compressor (22) and the third discharge pipe (23b) of the third compressor (23).
  • the other end of the intermediate flow path (41) is connected to the first suction pipe (21a) of the first compressor (21).
  • the other end of the intermediate flow path (41) is connected to the intermediate pressure portion of the compression element (C).
  • the intercooler (17) is a fin-and-tube type air heat exchanger.
  • a cooling fan (17a) is arranged in the vicinity of the intercooler (17).
  • the intercooler (17) exchanges heat between the refrigerant flowing inside the intercooler (17) and the outdoor air carried by the cooling fan (17a).
  • the outdoor circuit (11) includes an oil separation circuit (42).
  • the oil separation circuit (42) includes an oil separator (43), a first oil return pipe (44), a second oil return pipe (45), and a third oil return pipe (46).
  • the oil separator (43) is connected to the first discharge pipe (21b) of the first compressor (21).
  • the oil separator (43) separates the oil from the refrigerant discharged from the compression element (C).
  • the inflow end of the first oil return pipe (44) communicates with the oil separator (43).
  • the outflow end of the first oil return pipe (44) is connected to the second suction pipe (22a) of the second compressor (22).
  • the inflow end of the second oil return pipe (45) communicates with the oil separator (43).
  • the outflow end of the second oil return pipe (45) is connected to the inflow end of the intermediate flow path (41).
  • the third oil return pipe (46) has a main return pipe (46a), a cold side branch pipe (46b), and an indoor side branch pipe (46c).
  • the inflow end of the main return pipe (46a) communicates with the oil separator (43).
  • the inflow end of the cold side branch pipe (46b) and the inflow end of the indoor side branch pipe (46c) are connected to the outflow end of the main return pipe (46a).
  • the outflow end of the cold side branch pipe (46b) communicates with the oil pool in the casing of the second compressor (22).
  • the outflow end of the indoor branch pipe (46c) communicates with the oil sump in the casing of the third compressor (23).
  • the first oil amount control valve (47a) is connected to the first oil return pipe (44).
  • a second oil amount control valve (47b) is connected to the second oil return pipe (45).
  • a third oil amount control valve (47c) is connected to the cold side branch pipe (46b).
  • a fourth oil amount control valve (47d) is connected to the indoor branch pipe (46c).
  • the oil separated by the oil separator (43) is returned to the second compressor (22) via the first oil return pipe (44).
  • the oil separated by the oil separator (43) is returned to the third compressor (23) via the second oil return pipe (45).
  • the oil separated by the oil separator (43) is returned to the oil sump in each casing of the second compressor (22) and the third compressor (23) via the third oil return pipe (46). ..
  • the outdoor circuit (11) includes a first check valve (CV1), a second check valve (CV2), a third check valve (CV3), a fourth check valve (CV4), and a fifth check valve (CV5). ), A sixth check valve (CV6), and a seventh check valve (CV7).
  • the first check valve (CV1) is connected to the first discharge pipe (21b).
  • the second check valve (CV2) is connected to the second discharge pipe (22b).
  • the third check valve (CV3) is connected to the third discharge pipe (23b).
  • the fourth check valve (CV4) is connected to the outdoor second pipe (o2).
  • the fifth check valve (CV5) is connected to the outdoor third pipe (o3).
  • the sixth check valve (CV6) is connected to the outdoor sixth pipe (o6).
  • the 7th check valve (CV7) is connected to the outdoor 7th pipe (o7). These check valves (CV1 to CV7) allow the flow of the refrigerant in the direction of the arrow shown in FIG. 1 and prohibit the flow of the refrigerant in the direction opposite to the arrow.
  • the cooling unit (60) is a first-use unit (60) that cools the inside of the refrigerator.
  • the cooling unit (60) has a cooling fan (62) and a cooling circuit (61).
  • the second liquid connecting pipe (4) is connected to the liquid end of the cooling circuit (61).
  • a second gas connecting pipe (5) is connected to the gas end of the cooling circuit (61).
  • the cold circuit (61) has a cold expansion valve (63) and a cold heat exchanger (64) in order from the liquid end to the gas end.
  • the cold expansion valve (63) is a second-use expansion valve.
  • the cold expansion valve (63) is composed of an electronic expansion valve having a variable opening.
  • the cold heat exchanger (64) is a fin-and-tube type air heat exchanger.
  • the cold fan (62) is located in the vicinity of the cold heat exchanger (64).
  • the cold fan (62) conveys the air inside the refrigerator.
  • the cold heat exchanger (64) exchanges heat between the refrigerant flowing inside the cold heat exchanger (64) and the air inside the refrigerator carried by the cold fan (62).
  • the air conditioning unit (50) is a second utilization unit (50) installed indoors.
  • the air conditioning unit (50) has a higher evaporation temperature of the refrigerant than the cooling unit (60).
  • the air conditioning unit (50) has an indoor fan (52) and an indoor circuit (51).
  • the first liquid connecting pipe (2) is connected to the liquid end of the indoor circuit (51).
  • the first gas connecting pipe (3) is connected to the gas end of the indoor circuit (51).
  • the indoor circuit (51) has an indoor expansion valve (53) and an indoor heat exchanger (54) in order from the liquid end to the gas end.
  • the indoor expansion valve (53) is a first-use expansion valve.
  • the indoor expansion valve (53) is an electronic expansion valve having a variable opening.
  • the indoor heat exchanger (54) is a fin-and-tube type air heat exchanger.
  • the indoor fan (52) is located in the vicinity of the indoor heat exchanger (54).
  • the indoor fan (52) carries indoor air.
  • the indoor heat exchanger (54) exchanges heat between the refrigerant flowing inside the indoor heat exchanger (54) and the indoor air carried by the indoor fan (52).
  • the refrigerating device (1) has various sensors.
  • Various sensors include a high pressure pressure sensor (71), an intermediate pressure pressure sensor (72), a first low pressure pressure sensor (73), a second low pressure pressure sensor (74), a two-phase refrigerant pressure sensor (75), and pressure acquisition. Includes part (48).
  • the high pressure pressure sensor (71) detects the pressure (high pressure pressure (HP)) of the discharged refrigerant of the first compressor (21).
  • the intermediate pressure pressure sensor (72) is the pressure of the refrigerant in the intermediate flow path (41), in other words, between the first compressor (21) and the second compressor (22) and the third compressor (23). Detects the pressure of the refrigerant (intermediate pressure (MP)).
  • the first low pressure pressure sensor (73) detects the pressure of the intake refrigerant sucked into the second compressor (22) (first low pressure pressure (LP1)).
  • the second low pressure pressure sensor (74) detects the pressure of the intake refrigerant sucked into the third compressor (23) (second low pressure pressure (LP2)).
  • the two-phase refrigerant pressure sensor (75) detects the pressure of the liquid refrigerant (two-phase refrigerant pressure (RP)) of the gas-liquid separator (15).
  • the pressure acquisition unit of this embodiment is an outlet pressure sensor (48).
  • the outlet pressure sensor (48) detects the pressure (outlet pressure (SP)) after decompression by the second outdoor expansion valve (18) in the outdoor eighth pipe (o8).
  • the physical quantities detected by other sensors include the temperature of the high-pressure refrigerant, the temperature of the low-pressure refrigerant, the temperature of the intermediate-pressure refrigerant, the temperature of the refrigerant in the outdoor heat exchanger (13), the temperature of the refrigerant in the cold heat exchanger (64), and so on. Examples include the temperature of the outdoor air and the temperature of the internal air.
  • the controller (100) includes a microcomputer mounted on a control board and a memory device (specifically, a semiconductor memory) for storing software for operating the microcomputer.
  • the controller (100) controls various devices of the refrigerating device (1) based on the detection signals of various sensors.
  • the controller (100) which is a control unit includes an outdoor controller (101) provided in the heat source unit (10), an indoor controller (102) provided in the air conditioner unit (50), and a cold controller (102). It has a cooling controller (103) provided in the installation unit (60).
  • the outdoor controller (101) can communicate with the indoor controller (102) and the cold controller (103).
  • the controller (100) is connected to various pressure sensors such as an outlet pressure sensor (48) and a high pressure pressure sensor (71), various temperature sensors, and the like by a communication line.
  • the controller (100) is connected to the components of the refrigerant circuit (6) including the first outdoor expansion valve (14), the second outdoor expansion valve (18), and the like by a communication line.
  • the outdoor controller (101) controls the second outdoor expansion valve (18) so that the pressure acquired by the outlet pressure sensor (48) becomes the target pressure.
  • the target pressure is a pressure lower than the design pressure of the cooling unit (60).
  • the outdoor controller (101) controls the refrigerant to be compressed to a critical pressure or higher by the compression element (C).
  • the outdoor controller (101) controls the first outdoor expansion valve (14) so that the two-phase refrigerant pressure (RP) is reduced to the subcritical pressure.
  • the outdoor controller (101) controls the cooling capacity of the supercooling heat exchanger (16). Specifically, the outdoor controller (101) controls the pressure reducing valve (40) so that the refrigerant flowing out of the second outdoor expansion valve (18) maintains a liquid state.
  • the operating operation of the refrigerating apparatus (1) includes a cooling operation, a cooling operation, a cooling / cooling operation, a heating operation, a heating / cooling operation, and a defrost operation.
  • the cold unit (60) In the cold operation, the cold unit (60) is operated and the air conditioning unit (50) is stopped. In the cooling operation, the cooling unit (60) is stopped and the air conditioning unit (50) cools. In the cooling / cooling operation, the cooling unit (60) is operated and the air conditioning unit (50) cools. In the heating operation, the cooling unit (60) stops and the air conditioning unit (50) heats. In the heating / cooling operation, the cooling unit (60) is operated and the air conditioning unit (50) heats. In the defrost operation, the cooling unit (60) is operated to melt the frost on the surface of the outdoor heat exchanger (13). The heating / cooling operation is performed under conditions where the required heating capacity of the air conditioning unit (50) is relatively large.
  • ⁇ Cold operation> In the cold operation shown in FIG. 3, the first three-way valve (TV1) is in the second state and the second three-way valve (TV2) is in the first state.
  • the first outdoor expansion valve (14) and the second outdoor expansion valve (18) are opened at a predetermined opening degree, and the opening degree of the cold expansion valve (63) is adjusted by superheat degree control.
  • the indoor expansion valve (53) is fully closed, and the opening degree of the pressure reducing valve (40) is adjusted as appropriate.
  • the outdoor fan (12), the cooling fan (17a), and the cooling fan (62) are operated, and the indoor fan (52) is stopped.
  • the first compressor (21) and the second compressor (22) are operated, and the third compressor (23) is stopped.
  • a refrigeration cycle is performed in which the outdoor heat exchanger (13) serves as a radiator and the cold heat exchanger (64) serves as an evaporator.
  • the refrigerant compressed by the second compressor (22) is cooled by the intercooler (17) and then sucked into the first compressor (21).
  • the refrigerant compressed by the first compressor (21) is dissipated by the outdoor heat exchanger (13) and then decompressed by the first outdoor expansion valve (14) to become a refrigerant lower than the second pressure (critical pressure).
  • This refrigerant flows through the gas-liquid separator (15) and is cooled by the supercooling heat exchanger (16).
  • the refrigerant cooled by the supercooling heat exchanger (16) is depressurized by the second outdoor expansion valve (18).
  • the decompressed refrigerant is decompressed by the cold expansion valve (63) and then evaporated by the cold heat exchanger (64).
  • the refrigerant evaporated in the cooling heat exchanger (16) is sucked into the second compressor (22) and compressed again.
  • the first three-way valve (TV1) is in the second state and the second three-way valve (TV2) is in the first state.
  • the first outdoor expansion valve (14) is opened at a predetermined opening degree, and the second outdoor expansion valve (18) and the cold expansion valve (63) are fully closed.
  • the opening degrees of the indoor expansion valve (53) and the pressure reducing valve (40) are adjusted as appropriate.
  • the outdoor fan (12), the cooling fan (17a), and the indoor fan (52) are operated, and the cooling fan (62) is stopped.
  • the first compressor (21) and the third compressor (23) are operated, and the second compressor (22) is stopped.
  • a refrigeration cycle is performed in which the outdoor heat exchanger (13) serves as a radiator and the indoor heat exchanger (54) serves as an evaporator.
  • the refrigerant compressed by the third compressor (23) is cooled by the intercooler (17) and then sucked into the first compressor (21).
  • the refrigerant compressed by the first compressor (21) dissipates heat in the outdoor heat exchanger (13), flows through the gas-liquid separator (15), and is cooled by the supercooling heat exchanger (16).
  • the refrigerant cooled by the cooling heat exchanger (16) is decompressed by the indoor expansion valve (53) and then evaporated by the indoor heat exchanger (54). As a result, the indoor air is cooled.
  • the refrigerant evaporated in the indoor heat exchanger (54) is sucked into the third compressor (23) and compressed again.
  • the first three-way valve (TV1) is in the second state and the second three-way valve (TV2) is in the first state.
  • the first outdoor expansion valve (14) and the second outdoor expansion valve (18) are opened at a predetermined opening degree.
  • the opening degrees of the cold expansion valve (63), the indoor expansion valve (53), and the pressure reducing valve (40) are adjusted as appropriate.
  • the outdoor fan (12), cooling fan (17a), cooling fan (62), and indoor fan (52) are operated.
  • the first compressor (21), the second compressor (22), and the third compressor (23) are operated.
  • a refrigeration cycle is performed in which the outdoor heat exchanger (13) serves as a radiator and the cold heat exchanger (64) and the indoor heat exchanger (54) serve as evaporators.
  • the refrigerants compressed by the second compressor (22) and the third compressor (23) are cooled by the intercooler (17) and then transferred to the first compressor (21). Inhaled.
  • the refrigerant compressed by the first compressor (21) is dissipated by the outdoor heat exchanger (13) and then decompressed by the first outdoor expansion valve (14) to become a refrigerant lower than the second pressure (critical pressure). Become.
  • This refrigerant flows through the gas-liquid separator (15) and is cooled by the supercooling heat exchanger (16).
  • the refrigerant cooled by the supercooling heat exchanger (16) is divided into the outdoor sixth pipe (o8) and the outdoor sixth pipe (o6).
  • the refrigerant diverted to the outdoor sixth pipe (o6) flows into the air conditioning unit (50).
  • the refrigerant decompressed by the indoor expansion valve (53) evaporates by the indoor heat exchanger (54).
  • the refrigerant evaporated in the indoor heat exchanger (54) is sucked into the third compressor (23) and compressed again.
  • the refrigerant flowing into the outdoor eighth pipe (o8) is depressurized by the second outdoor expansion valve (18).
  • This refrigerant is depressurized by the cold expansion valve (63) and then evaporated by the cold heat exchanger (64).
  • the refrigerant evaporated in the cold heat exchanger (64) is sucked into the second compressor (22) and compressed again.
  • the first three-way valve (TV1) is in the first state and the second three-way valve (TV2) is in the second state.
  • the indoor expansion valve (53) is opened at a predetermined opening degree, and the second outdoor expansion valve (18) and the cold expansion valve (63) are fully closed.
  • the opening degrees of the first outdoor expansion valve (14) and the pressure reducing valve (40) are appropriately adjusted.
  • the outdoor fan (12) and the indoor fan (52) are operated, and the cooling fan (17a) and the cooling fan (62) are stopped.
  • the first compressor (21) and the third compressor (23) are operated, and the second compressor (22) is stopped.
  • a refrigeration cycle is performed in which the indoor heat exchanger (54) serves as a radiator and the outdoor heat exchanger (13) serves as an evaporator.
  • the refrigerant compressed by the third compressor (23) is sucked into the first compressor (21) after passing through the intercooler (17).
  • the refrigerant compressed by the first compressor (21) dissipates heat by the indoor heat exchanger (54).
  • the refrigerant dissipated by the indoor heat exchanger (54) flows through the gas-liquid separator (15) and is cooled by the cooling heat exchanger (16).
  • the refrigerant cooled by the cooling heat exchanger (16) is decompressed by the first outdoor expansion valve (14) and then evaporated by the outdoor heat exchanger (13).
  • the refrigerant evaporated in the outdoor heat exchanger (13) is sucked into the third compressor (23) and compressed again.
  • ⁇ Heating / cooling operation> In the heating / cooling operation shown in FIG. 7, the first three-way valve (TV1) is in the first state and the second three-way valve (TV2) is in the second state.
  • the indoor expansion valve (53) is opened at a predetermined opening. The opening degrees of the cold expansion valve (63), the first outdoor expansion valve (14), the second outdoor expansion valve (18), and the pressure reducing valve (40) are appropriately adjusted.
  • the outdoor fan (12), the cooling fan (62), and the indoor fan (52) are operated.
  • the cooling fan (17a) is stopped.
  • the first compressor (21), the second compressor (22), and the third compressor (23) are operated.
  • a refrigeration cycle is performed in which the indoor heat exchanger (54) serves as a radiator and the cold heat exchanger (64) and the outdoor heat exchanger (13) serve as evaporators.
  • the refrigerants compressed by the second compressor (22) and the third compressor (23) are sucked into the first compressor (21) after passing through the intercooler (17). Will be done.
  • the refrigerant compressed by the first compressor (21) dissipates heat by the indoor heat exchanger (54). As a result, the indoor air is heated.
  • the refrigerant dissipated by the indoor heat exchanger (54) flows through the gas-liquid separator (15) and is cooled by the cooling heat exchanger (16). A part of the refrigerant cooled by the cooling heat exchanger (16) is decompressed by the first outdoor expansion valve (14) and then evaporated by the outdoor heat exchanger (13).
  • the refrigerant evaporated in the outdoor heat exchanger (13) is sucked into the third compressor (23) and compressed again.
  • ⁇ Defrost operation> In the defrost operation, the same operation as the cooling operation shown in FIG. 4 is performed. In the defrost operation, the refrigerant compressed by the second compressor (22) and the first compressor (21) dissipates heat by the outdoor heat exchanger (13). As a result, the frost on the surface of the outdoor heat exchanger (13) is heated from the inside. The refrigerant used for defrosting the outdoor heat exchanger (13) evaporates in the indoor heat exchanger (54), is sucked into the second compressor (22), and is compressed again.
  • the refrigerant compressed by the compression element (C) has a high pressure (HP).
  • This high-pressure refrigerant dissipates heat when passing through the outdoor heat exchanger (13), and then is depressurized by the first outdoor expansion valve (14).
  • the pressure of the refrigerant after this decompression becomes the two-phase refrigerant pressure (RP).
  • the two-phase refrigerant pressure (RP) refrigerant is separated into a liquid refrigerant and a gas refrigerant by the gas-liquid separator (15), and the liquid refrigerant is supercooled by the supercooling heat exchanger (16).
  • the supercooled liquid refrigerant is divided into a cooling unit (60) and an air conditioning unit (50).
  • the liquid refrigerant directed to the cold heat exchanger (64) is depressurized by the cold expansion valve (63) to become the first low pressure (LP1).
  • the liquid refrigerant directed to the indoor heat exchanger (54) is depressurized by the indoor expansion valve (53) to become the second low pressure pressure (LP2).
  • the refrigerant that has reached the first low pressure (LP1) is sucked into the second compressor (22).
  • the refrigerant that has reached the second low pressure (LP2) is sucked into the third compressor (23).
  • the refrigerant compressed by the second compressor (22) and the third compressor (23) merges with the refrigerant flowing through the injection pipe (38) to reach an intermediate pressure (MP).
  • This intermediate pressure (MP) is adjusted by the pressure reducing valve (40) of the intermediate injection circuit (49).
  • the high pressure pressure (HP) is 9.0 MPa
  • the two-phase refrigerant pressure (RP) is 6.5 MPa
  • the intermediate pressure (MP) is 5.0 MPa
  • the first low pressure pressure (LP1). ) Is 2.5 MPa
  • the second low pressure pressure (LP2) is 3.8 MPa.
  • the design pressure of the cooling unit (60) is 6.0 MPa
  • the refrigerant flowing into the indoor expansion valve (53) and the cold expansion valve (63) is in a liquid state. This is because if a part of the refrigerant is vaporized, the refrigerant flowing from each expansion valve (53, 63) to each heat exchanger (54, 64) may flow unevenly. Therefore, in the present embodiment, the refrigerant flowing out of the gas-liquid separator (15) is supercooled in the supercooling heat exchanger (16) in order to maintain the liquid state.
  • the pressure reducing valve (40) is set so that the refrigerant flowing through the first flow path (16a) drops by, for example, 10 ° C. on the upstream side and the downstream side of the first flow path (16a).
  • the refrigerant flowing into the second flow path (16b) is depressurized by 1.5 MPa (equivalent to 10 ° C.).
  • the differential pressure between the two-phase refrigerant pressure (RP) and the intermediate pressure (MP) is set to 1.5 MPa.
  • the intermediate pressure (MP) becomes 4.0 MPa. ..
  • the second low pressure pressure (LP2) of the air conditioning unit (50) is 3.8 MPa, so the difference between the intermediate pressure (MP) and the second low pressure pressure (LP2). The pressure decreases. For this reason, the amount of circulation of the refrigerant sucked into the third compressor (23) is reduced, which causes a problem that the air conditioning capacity of the air conditioning unit (50) cannot be secured.
  • the intermediate pressure (MP) is set high in order to sufficiently secure the differential pressure between the intermediate pressure (MP) and the second low pressure pressure (LP2)
  • the two-phase refrigerant pressure (RP) also increases accordingly.
  • the two-phase refrigerant pressure (RP) exceeds the design pressure (6.0 MPa) of the cooling unit.
  • the refrigerating apparatus (1) of the present embodiment performs cooling / cooling operation while ensuring the capacity of the air conditioning unit (50) without lowering the two-phase refrigerant pressure (RP). ..
  • a second outdoor expansion valve (18) and an outlet pressure sensor (48) are provided in the outdoor eighth pipe (o8) communicating with the second liquid communication pipe (4) of the cooling unit (60).
  • the controller (100) has a second outdoor expansion valve (18) (second decompression mechanism) so that the pressure detected by the outlet pressure sensor (48) becomes a target pressure lower than the design pressure of the cooling unit (60). ) Is controlled.
  • the amount of refrigerant circulating in the air conditioning unit (50) is secured without lowering the intermediate pressure (MP), and the outlet pressure (SP) is lowered to correspond to the design pressure of the cooling unit (60).
  • the design pressure of the cooling unit (60) is 6.0 MPa.
  • the target pressure is 5.0 MPa or more and less than 6.0 MPa. The description will be made based on the state in which the cooling / cooling operation is performed (the state shown in FIG. 5).
  • step ST1 the outdoor controller (101) determines whether the cooling unit (60) starts operation. Specifically, when the outdoor controller (101) receives the operation request of the cooling unit (60) from the cooling controller (103), the process proceeds to step ST2. When the outdoor controller (101) does not receive the operation request of the cold unit (60) from the cold controller (103), it shifts to the start control (A) of the first compressor (21) of FIG.
  • step ST2 the outdoor controller (101) determines whether the two-phase refrigerant pressure (RP) of the gas-liquid separator is higher than the predetermined pressure.
  • This predetermined pressure is a pressure (7.0 MPa) at which the refrigerant can be separated into a gas and a liquid when the refrigerant is carbon dioxide. If the two-phase refrigerant pressure (RP) is higher than the predetermined pressure (7.0 MPa), the process proceeds to step ST3. When the two-phase refrigerant pressure (RP) is equal to or lower than the predetermined pressure (7.0 MPa), the process proceeds to step ST4.
  • step ST3 the outdoor controller (101) opens the degassing valve (39). This lowers the two-phase refrigerant pressure (RP) of the gas-liquid separator (15).
  • the gas refrigerant in the gas-liquid separator (15) flows through the degassing pipe (37) and is introduced into the intermediate pressure section (21a).
  • step ST4 the outdoor controller (101) adjusts the second outdoor expansion valve (18) to a predetermined opening degree.
  • This predetermined opening degree is, for example, 240 pls (pulses).
  • the opening degree of the second outdoor expansion valve (18) is fully open, it is 480 pls.
  • 240pls is half the opening.
  • step ST5 the outlet pressure sensor (48) detects the outlet pressure (SP) of the refrigerant flowing out to the cooling unit. Specifically, the outlet pressure sensor (48) detects the pressure of the refrigerant decompressed by the second outdoor expansion valve (18). If the outlet pressure (SP) is the target pressure (5.0 MPa or more and less than 6.0 MPa), the outdoor controller (101) ends this control and returns to the main control flow (not shown) as it is. If the outlet pressure (SP) is not the target pressure (5.0 MPa or more and less than 6.0 MPa), the process proceeds to step ST6.
  • step ST6 the outdoor controller (101) determines whether the outlet pressure (SP) is less than 5.0 MPa. If the outlet pressure (SP) is less than 5.0 MPa, the process proceeds to step ST7. If the outlet pressure (SP) is not less than 5.0 MPa, the process proceeds to step ST9.
  • step ST7 the outdoor controller (101) determines whether the second outdoor expansion valve (18) has a predetermined opening or more.
  • the predetermined opening degree is, for example, 480 pls (fully open). If the second outdoor expansion valve (18) is fully open, the process proceeds to step ST5.
  • step ST5 the outdoor controller (101) again determines whether the outlet pressure (SP) is at the target pressure (5.0 MPa or more and less than 6.0 MPa). Actually, in step ST4, the opening degree of the second outdoor expansion valve (18) is set to 240 pls. Therefore, since the opening degree of the second outdoor expansion valve (18) is smaller than 480 pls, the process proceeds to step ST8.
  • step ST8 the outdoor controller (101) increases the opening degree of the second outdoor expansion valve (18) from the current opening degree. Specifically, the outdoor controller (101) increases the opening degree of the second outdoor expansion valve (18) by 2 pls from the current opening degree. After that, the process proceeds to step ST5. In step ST5, the outdoor controller (101) again determines whether the outlet pressure (SP) is at the target pressure (5.0 MPa or more and less than 6.0 MPa).
  • step ST9 the outlet pressure (SP) is 6.0 MPa or more.
  • the outdoor controller (101) determines whether the opening degree of the second outdoor expansion valve (18) is smaller than the predetermined opening degree.
  • the predetermined opening degree is, for example, 100 pls. If the opening degree of the second outdoor expansion valve (18) is less than 100 pls, the process proceeds to step ST10. If the opening degree of the second outdoor expansion valve (18) is 100 pls or more, the process proceeds to step ST11.
  • step ST11 the outdoor controller (101) reduces the opening degree of the second outdoor expansion valve (18) from the current opening degree. Specifically, the outdoor controller (101) reduces the opening degree of the second outdoor expansion valve (18) by 2 pls from the current opening degree. After that, the process proceeds to step ST5. In step ST5, the outdoor controller (101) again determines whether the outlet pressure (SP) is at the target pressure (5.0 MPa or more and less than 6.0 MPa).
  • SP outlet pressure
  • step ST11 the outdoor controller (101) stops the operation of the second compressor (22).
  • the outdoor controller (101) transmits a signal to the cold controller (103) that the operation of the second compressor (22) is OFF.
  • the cooling controller (103) stops the operation of the cooling unit (60). After that, the process shifts to the start control (A) of the first compressor (21).
  • the start control (A) of the first compressor (21) will be described with reference to FIG.
  • the outdoor controller (101) starts start control of the first compressor (21).
  • the outdoor controller (101) sets the opening degree of the second outdoor expansion valve (18) to a predetermined opening degree.
  • This predetermined opening degree is, for example, 100 pls.
  • step ST22 the outdoor controller (101) determines whether the two-phase refrigerant pressure (RP) is greater than the design pressure (6.0 MPa) of the cooling unit (60). If the two-phase refrigerant pressure (RP) is greater than the design pressure (6.0 MPa), the process proceeds to step ST23. If the two-phase refrigerant pressure (RP) is less than or equal to the design pressure (6.0 MPa), the two-phase refrigerant pressure (RP) is sufficiently low, so that the outdoor controller (101) is the first compressor (21). Exit the start control (A) and return to the main control flow (not shown) as it is.
  • step ST23 the pressure inside the gas-liquid separator (15) is high, so the outdoor controller (101) operates the first compressor (21).
  • the outdoor controller (101) operates the first compressor (21).
  • the gas refrigerant of the gas-liquid separator (15) is sucked into the first compressor (21). This reduces the pressure in the gas-liquid separator (15).
  • the outdoor controller (101) ends this control and returns to the main control flow (not shown).
  • the heat source unit (10) is a utilization unit (50) having a first utilization unit (60) and a second utilization unit (50) having a higher refrigerant evaporation temperature than the first utilization unit (60).
  • the heat source circuit (11) that is connected to the utilization circuit (51, 61) and constitutes the refrigerant circuit (6) that performs the refrigeration cycle, and the control unit (100) that controls the heat source circuit (11). Be prepared.
  • the heat source circuit (11) is the compression element having a first compression unit (22, 23) and a second compression unit (21) that further compresses the refrigerant compressed by the first compression unit (22, 23).
  • the first branch flow path (o8) connected to the end of the main flow path (M) and communicating with the first utilization unit (60), and the end of the main flow path (M).
  • An intermediate injection circuit (49) connected between the parts (21) and into which the refrigerant decompressed by the first decompression mechanism (14) flows in, and a second decompression mechanism provided in the first branch flow path (o8). (18) and.
  • the pressure of the refrigerant flowing into the air conditioning unit (50) is adjusted by the first outdoor expansion valve (14).
  • the pressure of the refrigerant flowing into the cooling unit (60) is adjusted by the first outdoor expansion valve (14) and the second outdoor expansion valve (18).
  • the design pressure of the cooling unit (60) is 6.0 MPa
  • it is supplied to the cooling unit (60) by the second outdoor expansion valve (18).
  • the refrigerant can be adjusted to the target pressure (outlet pressure (SP)) of 5.5 MPa. Therefore, it is not necessary to reduce the two-phase refrigerant pressure (RP) to the target pressure by the first outdoor expansion valve (14).
  • the intermediate pressure (MP) does not decrease, so that the differential pressure between the second low pressure pressure (LP2) and the intermediate pressure (MP) can be sufficiently secured.
  • the refrigerant easily flows from the heat source unit (10) to the air conditioning unit (50), and the cooling capacity of the air conditioning unit (50) can be secured.
  • the refrigerant decompressed by the pressure reducing valve (40) can be introduced between the first compression unit (22, 23) and the second compression unit (21) via the intermediate injection circuit (49).
  • the intermediate injection circuit (49) it is possible to prevent the balance of the compression ratios of the first compression section (22, 23) and the second compression section (21) from being lost.
  • the heat source circuit detects or estimates the pressure of the refrigerant after decompression by the second decompression mechanism (second outdoor expansion valve (18)).
  • the second decompression mechanism (18) is a valve whose opening degree can be adjusted, and the control unit (controller (100)) uses the pressure detected or estimated by the pressure acquisition unit (48) as the target pressure. As described above, the opening degree of the second decompression mechanism (18) is controlled.
  • the pressure of the refrigerant supplied to the cooling unit (60) can be adjusted to the target pressure. Therefore, the target pressure can be freely set according to the cooling unit (60). This makes it possible to make the heat source unit (10) compatible with various types of cooling units (60).
  • the heat source circuit (outdoor circuit (11)) includes a gas-liquid separator (15).
  • the intermediate injection circuit (49) includes a first refrigerant pipe (37) connected to the gas-liquid separator (15).
  • the gas refrigerant in the gas-liquid separator (15) is transferred from the gas-liquid separator (15) to the first compression section (22, 23) and the second compression section (the second compression section (15). It is configured to flow into the flow path between 21).
  • the gas-liquid separator (15) and the intermediate pressure section (21a) communicate with each other by the degassing pipe (37).
  • the degassing pipe (37) As a result, when the pressure in the gas-liquid separator (15) becomes high, the gas refrigerant in the gas-liquid separator (15) can flow into the intermediate pressure portion (21a). This makes it possible to reduce the pressure inside the gas-liquid separator (15). Further, by lowering the pressure in the gas-liquid separator (15), the refrigerant easily flows into the gas-liquid separator (15).
  • the heat source circuit (11) includes a cooling heat exchanger (16) connected between the first decompression mechanism (14) and the second decompression mechanism (18).
  • the cooling heat exchanger (16) has a first flow path (16a) connected to a liquid pipe through which the liquid refrigerant of the heat source circuit (11) flows, and a first flow path (16a) in which the decompressed refrigerant flows from the liquid pipe. It has two flow paths (16b), and is configured to cool the refrigerant of the first flow path (16a) by the refrigerant of the second flow path (16b).
  • the second flow path (16b) constitutes the intermediate injection circuit (49).
  • the refrigerant flowing through the first flow path (16a) is depressurized by the pressure reducing valve (40) and flows into the second flow path (16b).
  • the refrigerant in the first flow path (16a) can be cooled by the refrigerant in the second flow path (16b).
  • control unit controls the cooling capacity of the cooling heat exchanger (16) so that the refrigerant flowing out of the second decompression mechanism (18) is in a liquid state.
  • the outdoor controller (101) controls the pressure reducing valve (40) so that the refrigerant flowing out of the second outdoor expansion valve (18) is in a liquid state. This makes it possible to increase the enthalpy difference of the refrigerant between the inlet and outlet of the cold heat exchanger (64). As a result, the cooling capacity of the cooling unit (60) can be increased.
  • gasification of the refrigerant supplied to the cooling unit (60) can be suppressed.
  • control unit (100) performs a refrigeration cycle in which the refrigerant is compressed to a critical pressure or higher by the compression element (C) and depressurized to a subcritical pressure by the first decompression mechanism (14).
  • the refrigerant circuit (6) is controlled.
  • the refrigerant expanded by the first outdoor expansion valve (14) and whose temperature has dropped flows into the gas-liquid separator.
  • the pressure rise in the gas-liquid separator is suppressed, and the refrigerant easily flows into the gas-liquid separator.
  • the heat source unit (10) of the first embodiment includes a main heat source unit (10a) and an auxiliary unit (10b) separated from the main heat source unit (10a), and includes an auxiliary unit (10b).
  • auxiliary unit (10b) May include a second outdoor expansion valve (18).
  • the auxiliary unit (10b) provided with the second outdoor expansion valve (18) can be separated from the main heat source unit (10a).
  • the auxiliary unit (10b) may further include an outlet pressure sensor (48).
  • Embodiment 2 The second embodiment will be described.
  • the refrigerating apparatus (1) of the second embodiment is a modification of the refrigerating apparatus (1) of the first embodiment in which the control of the second outdoor expansion valve (18) performed by the controller (100) is changed.
  • the refrigerating apparatus (1) of the present embodiment will be described as being different from the refrigerating apparatus (1) of the first embodiment.
  • the pressure acquisition unit (48) estimates the refrigerant pressure on the outlet side of the second outdoor expansion valve (18) calculated by various equations.
  • the second outdoor expansion valve (18) is controlled based on the value of the refrigerant pressure on the outlet side of the second outdoor expansion valve (18) estimated by the pressure acquisition unit (48).
  • the first pressure (design pressure) of the cooling unit (60) is 6.0 MPa.
  • the pressure lower than the first pressure (target pressure) shall be 5.0 MPa or more and less than 6.0 MPa. The description will be made based on the state in which the cooling / cooling operation is performed (the state shown in FIG. 5).
  • step ST31 the outdoor controller (101) determines whether the cooling unit (60) starts operation. Specifically, when the outdoor controller (101) receives the operation request of the cooling unit (60) from the cooling controller (103), the process proceeds to step ST32.
  • step ST32 the outdoor controller (101) determines whether the two-phase refrigerant pressure (RP) is higher than the predetermined pressure.
  • This predetermined pressure is, for example, a pressure (7.0 MPa) at which the refrigerant can be separated into a gas and a liquid when the refrigerant is carbon dioxide.
  • the process proceeds to step ST33.
  • the two-phase refrigerant pressure (RP) is equal to or lower than the predetermined pressure (7.0 MPa)
  • the process proceeds to step ST34.
  • step ST33 the second pressure is higher than the predetermined pressure (7.0 MPa), so the outdoor controller (101) opens the degassing valve (39). This lowers the two-phase refrigerant pressure (RP) of the gas-liquid separator (15).
  • the gas refrigerant in the gas-liquid separator (15) flows through the degassing pipe (37) and is introduced into the intermediate pressure section (21a).
  • step ST34 the outdoor controller (101) adjusts the second outdoor expansion valve (18) to a predetermined opening degree.
  • This predetermined opening degree is, for example, 240 pls.
  • step ST35 the outdoor controller (101) is in the state of the refrigerant sucked into the second compressor (22) (refrigerant flow rate, first low pressure pressure (LP1), refrigerant temperature on the suction side of the second compressor (22)).
  • the refrigerant density ( ⁇ ) is calculated from.
  • is an arbitrary number.
  • the outdoor controller (101) calculates the required Cv value of the second outdoor expansion valve (18).
  • the Cv value is, in short, an index indicating the ease of flow of the refrigerant in the second outdoor expansion valve (18).
  • step ST39 the outdoor controller (101) calculates the Cv value from pls indicating the current opening degree of the second outdoor expansion valve (18).
  • the Cv value at this time is Cv1.
  • step ST40 the outdoor controller (101) determines whether or not the value obtained by subtracting Cv1 from the Cv value is ⁇ 0.2 or more and 0.2 or less. When the value obtained by subtracting Cv1 from the Cv value is ⁇ 0.2 or more and 0.2 or less, the outdoor controller (101) estimates that the outlet pressure (SP) is the target pressure. The outdoor controller (101) ends this control and returns to the main control flow (not shown) as it is. If the value obtained by subtracting Cv1 from the Cv value is ⁇ 0.2 or more and not 0.2 or less, the process proceeds to step ST41.
  • the outdoor controller (101) calculates the Cv value and Cv1. In the following steps, the outdoor controller (101) sets the opening degree of the second outdoor expansion valve (18).
  • step ST41 the outdoor controller (101) determines whether or not the value obtained by subtracting Cv1 from the Cv value is less than ⁇ 0.2. If the Cv value minus Cv1 is less than -0.2, the outdoor controller (101) does not presume that the outlet pressure (SP) is the target pressure. In this case, the process proceeds to step ST42.
  • step ST42 the outdoor controller (101) reduces the opening degree of the second outdoor expansion valve (18) from the current opening degree. Specifically, the outdoor controller (101) further reduces the opening degree of the second outdoor expansion valve (18) by 2 pls from the current opening degree. After that, the process proceeds to step ST35. In step ST35, the outdoor controller (101) recalculates the outlet pressure (SP).
  • step ST41 if the value obtained by subtracting Cv1 from the Cv value is not less than ⁇ 0.2, the outdoor controller (101) determines that the value obtained by subtracting Cv1 from the Cv value is greater than 0.2.
  • step ST43 the outdoor controller (101) increases the opening degree of the second outdoor expansion valve (18) from the current opening degree. Specifically, the outdoor controller (101) further increases the opening degree of the second outdoor expansion valve (18) by 2 pls from the current opening degree. After that, the process proceeds to step ST35. In step ST35, the outdoor controller (101) recalculates the outlet pressure (SP).
  • the first outdoor expansion valve (14) it is not necessary to control the first outdoor expansion valve (14) to reduce the two-phase refrigerant pressure (RP) to the target pressure. Therefore, since the intermediate pressure (MP) does not decrease, a sufficient differential pressure between the intermediate pressure (MP) and the second low pressure pressure (LP2) can be secured. Further, it is possible to suppress the imbalance of the compression ratio of the refrigerant between the first compression unit (22, 23) and the second compression unit (21).
  • Embodiment 3 The refrigerating apparatus (1) of the third embodiment is a modification of the refrigerating apparatus (1) of the first embodiment in which the heat source unit (10) and the controller (100) are changed.
  • the refrigerating apparatus (1) of the present embodiment will be described as being different from the refrigerating apparatus (1) of the first embodiment.
  • the compression element (C) of the present embodiment includes a second bypass pipe (24b) and a third bypass pipe (24c).
  • the second bypass pipe (24b) is a pipe for allowing the refrigerant to flow by bypassing the second compressor (22).
  • One end of the second bypass pipe (24b) is connected to the second suction pipe (22a), and the other end is connected to the second discharge pipe (22b).
  • the third bypass pipe (24c) is a pipe for allowing the refrigerant to flow by bypassing the third compressor (23).
  • One end of the third bypass pipe (24c) is connected to the third suction pipe (23a), and the other end is connected to the third discharge pipe (23b).
  • the second bypass pipe (24b) is provided with an eighth check valve (CV8).
  • the third bypass pipe (24c) is provided with a ninth check valve (CV9).
  • These check valves (CV8, CV9) allow the flow of the refrigerant in the direction of the arrow shown in FIG. 15 and prohibit the flow of the refrigerant in the direction opposite to the arrow.
  • a connection pipe (83) and an auxiliary valve (19) are provided in the outdoor circuit (11) of the heat source unit (10).
  • connection pipe (83) is connected to the part on the second liquid communication pipe (4) side of the second outdoor expansion valve (18) in the outdoor eighth pipe (o8).
  • One end of the connection pipe (83) of the present embodiment is connected to the portion of the outdoor eighth pipe (o8) on the second liquid communication pipe (4) side of the outlet pressure sensor (48).
  • One end of the connection pipe (83) may be connected between the second outdoor expansion valve (18) and the outlet pressure sensor (48) in the outdoor eighth pipe (o8).
  • connection pipe (83) The other end of the connection pipe (83) is connected to the low pressure gas pipe (20) of the outdoor circuit (11).
  • the low-pressure gas pipe (20) is a pipe that connects the second suction pipe (22a) to the second gas connecting pipe (5) in the outdoor circuit (11).
  • the auxiliary valve (19) is provided in the connecting pipe (83).
  • the auxiliary valve (19) is a control valve with a variable opening.
  • the auxiliary valve (19) of the present embodiment is an electronic expansion valve including a pulse motor that drives the valve body.
  • the outdoor controller (101) controls the auxiliary valve (19). Further, the control of the second outdoor expansion valve (18) performed by the outdoor controller (101) of the present embodiment is different from the control performed by the outdoor controller (101) of the first embodiment.
  • the outdoor controller (101) uses the second outdoor expansion valve (18) to keep the refrigerant pressure in the cooling circuit (61) of the cooling unit (60) below the refrigerant pressure that the cooling circuit (61) can tolerate. And control the auxiliary valve (19).
  • the refrigerant pressure that the cooling circuit (61) can tolerate is the design pressure Pu of the cooling unit (60).
  • the pressure value shown in the description of the control operation of the outdoor controller (101) is merely an example.
  • the measured value of the outlet pressure sensor (48) is slightly higher than the pressure of the refrigerant at the inlet of the cooling circuit (61). This is because the pressure of the refrigerant gradually decreases while flowing through the second liquid connecting pipe (4).
  • the outlet pressure SP which is the measured value of the outlet pressure sensor (48)
  • the design pressure Pu is lower than the design pressure Pu of the cooling unit (60).
  • the opening degrees of the second outdoor expansion valve (18) and the auxiliary valve (19) are controlled. Therefore, when the hydraulic pressure controller (85) controls the second outdoor expansion valve (18) and the auxiliary valve (19), the pressure of the refrigerant flowing into the cooling circuit (61) of the cooling unit (60) is increased.
  • the cooling unit (60) is kept below the design pressure Pu.
  • the outdoor controller (101) reads the outlet pressure SP, which is the measured value of the outlet pressure sensor (48), and compares this outlet pressure SP with the first reference pressure PL1.
  • the first reference pressure PL1 is lower than the design pressure Pu of the cooling unit (60) (PL1 ⁇ Pu).
  • the first reference pressure PL1 of this embodiment is 4.5 MPa.
  • step ST51 when the outlet pressure SP is equal to or less than the first reference pressure PL1 (SP ⁇ PL1), the outdoor controller (101) performs the process of step ST52. On the other hand, when the outlet pressure SP exceeds the first reference pressure PL1 (SP> PL1), the outdoor controller (101) performs the process of step ST53.
  • step ST52 the outdoor controller (101) opens the second outdoor expansion valve (18) fully. That is, in the process of step ST52, the outdoor controller (101) sets the opening degree of the second outdoor expansion valve (18) to the maximum value.
  • the outdoor controller (101) compares the outlet pressure SP with the second reference pressure PL2.
  • the second reference pressure PL2 is lower than the design pressure Pu of the cooling unit (60) and higher than the first reference pressure PL1 (PL1 ⁇ PL2 ⁇ Pu).
  • the second reference pressure PL2 of this embodiment is 5.2 MPa.
  • step ST53 when the outlet pressure SP is equal to or higher than the second reference pressure PL2 (PL2 ⁇ SP), the outdoor controller (101) performs the process of step ST54.
  • the outdoor controller (101) when the outlet pressure SP is lower than the second reference pressure PL2 (SP ⁇ PL2), the outdoor controller (101) performs the process of step ST55.
  • step ST54 the outdoor controller (101) closes the second outdoor expansion valve (18) fully. That is, in the process of step ST54, the outdoor controller (101) sets the opening degree of the second outdoor expansion valve (18) to substantially zero.
  • the outdoor controller (101) adjusts the opening degree of the second outdoor expansion valve (18) according to the outlet pressure SP. Specifically, the outdoor controller (101) performs PID control for adjusting the opening degree of the second outdoor expansion valve (18) so that the outlet pressure SP becomes the third reference pressure PL3.
  • the third reference pressure PL3 is higher than the first reference pressure PL1 and lower than the second reference pressure PL2 (PL1 ⁇ PL3 ⁇ PL2).
  • the third reference pressure PL3 of this embodiment is 4.8 MPa.
  • the outdoor controller (101) may adjust the opening degree of the second outdoor expansion valve (18) by using a control method other than PID control.
  • the outdoor controller (101) adjusts the opening degree of the second outdoor expansion valve (18) so that the outlet pressure SP becomes the second reference pressure PL2 or less.
  • the pressure of the refrigerant supplied from the heat source unit (10) to the operating cooling unit (60) through the second liquid connecting pipe (4) is lower than the design pressure Pu of the cooling unit (60). Is kept in.
  • the outdoor controller (101) reads the outlet pressure SP, which is the measured value of the outlet pressure sensor (48), at predetermined time (for example, 1 second). Then, the outdoor controller (101) sets the opening degree of the auxiliary valve (19) to the opening degree corresponding to the outlet pressure SP.
  • the outdoor controller (101) closes the auxiliary valve (19) fully. In other words, in this case, the outdoor controller (101) sets the opening degree of the auxiliary valve (19) to substantially zero.
  • the fourth reference pressure PL4 is higher than the second reference pressure PL2 and lower than the design pressure Pu (PL2 ⁇ PL4 ⁇ Pu).
  • the fourth reference pressure PL4 of this embodiment is 5.4 MPa.
  • the outdoor controller (101) opens the auxiliary valve (19) fully. In other words, in this case, the outdoor controller (101) sets the opening degree of the auxiliary valve (19) to the maximum value.
  • the fifth reference pressure PL5 is higher than the fourth reference pressure PL4 and lower than the design pressure Pu (PL4 ⁇ PL5 ⁇ Pu).
  • the fifth reference pressure PL5 of this embodiment is 5.8 MPa.
  • the outdoor controller (101) makes the opening degree of the auxiliary valve (19) proportional to the outlet pressure SP. Set to the specified value.
  • the outdoor controller (101) closes the second outdoor expansion valve (18) fully.
  • the fourth reference pressure PL4 is higher than the second reference pressure PL2 (PL2 ⁇ PL4). Therefore, the outdoor controller (101) opens the auxiliary valve (19) when the outlet pressure SP is higher than the second reference pressure PL2 even when the second outdoor expansion valve (18) is closed.
  • the outdoor controller (101) expands the second outdoor so that the outlet pressure SP, which is the measured value of the outlet pressure sensor (48), becomes the second reference pressure PL2 or less. Adjust the opening of the valve (18). Therefore, when the cooling unit (60) is in the operating state, the refrigerant pressure acting on the cooling expansion valve (63) is maintained at a pressure lower than the design pressure Pu of the cooling unit (60).
  • the cooling controller (103) closes the cooling expansion valve (63) and switches the cooling unit (60) from the operating state to the cooling pause state.
  • the cold expansion valve (63) is closed, the refrigerant pressure of the second liquid connecting pipe (4) rises, and as a result, the outlet pressure SP, which is the measured value of the outlet pressure sensor (48), rises.
  • the outdoor controller (101) closes the second outdoor expansion valve (18).
  • the cooling expansion valve (63) of the cooling unit (60) and the second outdoor expansion valve (18) of the heat source unit (10) are closed. become.
  • the refrigerant is confined in the portion of the refrigerant circuit (6) between the cold expansion valve (63) and the second outdoor expansion valve (18).
  • the temperature around the second liquid connecting pipe (4) is relatively high, it is confined in the portion of the refrigerant circuit (6) between the cold expansion valve (63) and the second outdoor expansion valve (18).
  • the pressure of the generated refrigerant rises. Therefore, if no measures are taken, the refrigerant pressure acting on the cooling expansion valve (63) may exceed the design pressure Pu of the cooling unit (60).
  • the outdoor controller (101) controls the opening degree of the auxiliary valve (19). Specifically, the outdoor controller (101) opens the auxiliary valve (19) when the outlet pressure SP exceeds the fourth reference pressure PL4. When the auxiliary valve (19) is opened, a part of the refrigerant existing in the second liquid connecting pipe (4) flows out to the low pressure gas pipe (20) through the connecting pipe (83), and as a result, the second liquid is connected. The refrigerant pressure in the liquid communication pipe (4) drops.
  • the pressure is kept lower than the design pressure Pu of the cooling unit (60).
  • the auxiliary valve (19) opens, in principle, when the cooling unit (60) is in the cooling pause state and the second compressor (22) is stopped. Then, when the auxiliary valve (19) is opened while the first compressor (21) and the third compressor (23) are operating, the refrigerant existing in the second liquid communication pipe (4) is replaced with the first compressor (21). ) Is sucked. Specifically, the refrigerant existing in the second liquid connecting pipe (4) passes through the low pressure gas pipe (20) and the second bypass pipe (24b) in order, and then is discharged from the third compressor (23). It merges with the refrigerant, then passes through the intercooler (17) and is sucked into the first compressor (21).
  • the outdoor controller (101) may open the auxiliary valve (19) when all the compressors (21,22,23) are stopped. In that case, the first compressor (21) may be started and the refrigerant existing in the second liquid connecting pipe (4) may be sucked into the first compressor (21). In that case, the refrigerant existing in the second liquid connecting pipe (4) is sucked into the first compressor (21) after being substantially in a gas single-phase state while passing through the intercooler (17).
  • the heat source unit (10) of the present embodiment includes a connecting pipe (83) and an auxiliary valve (19).
  • the connection pipe (83) compresses the downstream portion of the second outdoor expansion valve (18) in the outdoor eighth pipe (o8) provided with the second outdoor expansion valve (18) from the cooling unit (60).
  • the auxiliary valve (19) is provided in the connecting pipe (83).
  • the heat source unit (10) is changed to the cold unit (60).
  • the refrigerant is contained in the second liquid connecting pipe (4) to be connected. If this condition occurs when the temperature around the second liquid connecting pipe (4) is high, the internal pressure of the second liquid connecting pipe (4) rises, and the second liquid connecting pipe (4) and the cooling unit (60) ) May be damaged.
  • an auxiliary valve (19) is provided in the connecting pipe (83) connecting the outdoor eighth pipe (o8) and the low pressure gas pipe (20).
  • the second liquid communication pipe (4) that connects the heat source unit (10) to the cooling unit (60) is connected to the low-pressure gas pipe (20) via the connection pipe (83).
  • the internal pressure of the second liquid communication pipe (4) is in a state where both the cold expansion valve (63) of the cold unit (60) and the second outdoor expansion valve (18) of the heat source unit (10) are closed.
  • the auxiliary valve (19) may be an on-off valve that selectively switches between a fully closed state and a fully open state.
  • the auxiliary valve (19) of this modification is a solenoid valve provided with a solenoid that drives the valve body.
  • the outlet pressure SP which is the measured value of the outlet pressure sensor (48)
  • the auxiliary valve (19) is switched from the fully closed state to the fully open state.
  • the values of the fourth reference pressure PL4 and the fifth reference pressure PL5 are the same as when the auxiliary valve (19) is a control valve having a variable opening degree.
  • the fourth reference pressure PL4 may be set to a value slightly lower than the second reference pressure PL2. (PL4 ⁇ PL2). Even in that case, the fourth reference pressure PL4 is set to a value higher than the first reference pressure PL1 (PL1 ⁇ PL4).
  • the auxiliary valve (19) may start to open before the second outdoor expansion valve (18) is fully closed.
  • Embodiment 4 The refrigerating apparatus (1) of the present embodiment is a modification of the configuration of the heat source unit (10) of the third embodiment. Here, the difference between the heat source unit (10) of the present embodiment and the heat source unit (10) of the third embodiment will be described.
  • the heat source unit (10) of the present embodiment includes a main heat source unit (10a) and an intermediate unit (80).
  • the main heat source unit (10a) is the second outdoor expansion valve (18), the outlet pressure sensor (48), the connection pipe (83), and the auxiliary valve (19) from the heat source unit (10) of the third embodiment shown in FIG. ) Is omitted.
  • the main heat source unit (10a) is installed outdoors and is connected to the cooling unit (60) by the second liquid connecting pipe (4) and the second gas connecting pipe (5).
  • the outdoor controller (101) of the present embodiment does not control the second outdoor expansion valve (18) and the auxiliary valve (19).
  • the second outdoor expansion valve (18), the outlet pressure sensor (48), the connection pipe (83), and the auxiliary valve (19) are provided in the intermediate unit (80).
  • the intermediate unit (80) is a unit formed separately from the main heat source unit (10a). This intermediate unit (80) constitutes an auxiliary unit.
  • the intermediate unit (80) includes a casing that houses its components.
  • the intermediate unit (80) is connected to the second liquid connecting pipe (4) and the second gas connecting pipe (5). Therefore, in the refrigerant circuit (6) of the present embodiment, the intermediate unit (80) is provided between the main heat source unit (10a) and the cooling unit (60). The intermediate unit (80) is installed indoors.
  • the intermediate unit (80) further includes a liquid side pipe (81) and a gas side pipe (82).
  • the liquid side pipe (81) is provided in the middle of the second liquid connecting pipe (4).
  • the liquid side pipe (81) is connected to the cooling circuit (61) of the cooling unit (60) and the outdoor eighth pipe (o8) of the outdoor circuit (11) via the second liquid connecting pipe (4). Connecting.
  • This liquid side pipe (81) constitutes the first branch flow path together with the outdoor eighth pipe (o8).
  • the gas side pipe (82) is provided in the middle of the second gas connecting pipe (5).
  • the gas side pipe (82) is connected to the cooling circuit (61) of the cooling unit (60) and the low pressure gas pipe (20) of the outdoor circuit (11) via the second gas connecting pipe (5). To do.
  • the second outdoor expansion valve (18) and the outlet pressure sensor (48) are provided in the liquid side pipe (81). Similar to the outdoor circuit (11) of the third embodiment, the outlet pressure sensor (48) is arranged closer to the cooling unit (60) than the second outdoor expansion valve (18).
  • connection pipe (83) is connected to the liquid side pipe (81) and the other end is connected to the gas side pipe (82).
  • One end of the connection pipe (83) is connected to the portion of the liquid side pipe (81) on the cooling unit (60) side of the second outdoor expansion valve (18).
  • One end of the connection pipe (83) of the present embodiment is connected to the portion of the liquid side pipe (81) on the cooling unit (60) side of the outlet pressure sensor (48).
  • One end of the connection pipe (83) may be connected to the portion of the liquid side pipe (81) between the second outdoor expansion valve (18) and the outlet pressure sensor (48).
  • the auxiliary valve (19) is provided in the connection pipe (83) in the same manner as the heat source unit (10) of the third embodiment.
  • the intermediate unit (80) of this embodiment includes a hydraulic controller (85).
  • the hydraulic controller (85) includes a microcomputer mounted on a control board and a memory device (specifically, a semiconductor memory) for storing software for operating the microcomputer. including.
  • the hydraulic pressure controller (85) is electrically connected to the second outdoor expansion valve (18), the auxiliary valve (19), and the outlet pressure sensor (48) via a communication line.
  • the hydraulic pressure controller (85) controls the second outdoor expansion valve (18) and the auxiliary valve (19) based on the outlet pressure SP, which is the measured value of the outlet pressure sensor (48).
  • the control of the second outdoor expansion valve (18) and the auxiliary valve (19) performed by the hydraulic controller (85) is performed by the outdoor controller (101) of the third embodiment of the second outdoor expansion valve (18) and the auxiliary valve (19). ) Is the same as the control.
  • the intermediate unit (80) of this embodiment is arranged indoors. Therefore, in the summer when the outside air temperature is high, the ambient temperature of the part between the intermediate unit (80) and the cooling unit (60) of the liquid communication pipe (4) is lower than that of the outdoors. Therefore, in a state where both the cold expansion valve (63) of the cold unit (60) and the second outdoor expansion valve (18) of the intermediate unit (80) are closed, the intermediate unit (of the liquid communication pipe (4)) ( The rise in internal pressure in the part between 80) and the cooling unit (60) is suppressed.
  • the intermediate unit (80) may be placed in the same indoor space as the cooling unit (60).
  • the cooling unit (60) is installed in an indoor space where air conditioning is performed by the air conditioning unit (50).
  • the air temperature in the indoor space where the intermediate unit (80) and the cooling unit (60) are installed is lower than the outdoor air temperature. Therefore, if the intermediate unit (80) is installed indoors, both the cold expansion valve (63) of the cold unit (60) and the second outdoor expansion valve (18) of the intermediate unit (80) are closed. , The increase in internal pressure in the part of the liquid communication pipe (4) between the intermediate unit (80) and the cooling unit (60) is suppressed.
  • the intermediate unit (80) of the above embodiment may include a pressure input unit (86).
  • the pressure input unit (86) is a member operated by the operator to input information regarding the design pressure Pu of the cooling unit (60).
  • Examples of the pressure input unit (86) include a DIP switch and a numeric keypad for inputting numbers.
  • the pressure input unit (86) is electrically connected to the hydraulic controller (85) via a communication line or the like.
  • the information input to the pressure input unit (86) is transmitted to the hydraulic pressure controller (85) and recorded in the memory device of the hydraulic pressure controller (85).
  • the information input to the pressure input unit (86) may be the value of the design pressure Pu of the cooling unit (60), or may be a symbol such as a number corresponding to the design pressure Pu.
  • the hydraulic controller (85) of this modification sets the reference pressures PL1 to PL5 based on the information input to the pressure input unit (86), and uses the set reference pressures PL1 to PL5 to set the second outdoor expansion valve. Control the opening degree of (18) and auxiliary valve (19).
  • the hydraulic pressure controller (85) may be omitted.
  • the outdoor controller (101) of the heat source unit (10) controls the opening degrees of the second outdoor expansion valve (18) and the auxiliary valve (19) based on the measured values of the outlet pressure sensor (48). ..
  • the control operation performed by the heat source unit (10) is the same as the control operation performed by the hydraulic controller (85) of the above embodiment.
  • the configuration may be as follows.
  • the second decompression mechanism (18) may be a mechanism that does not adjust the opening degree.
  • the second decompression mechanism (18) may be a capillary tube.
  • the number of cooling units (60) is not limited to one. It may be a refrigerating device (1) in which a plurality of cooling units (60, 60, ...) Are connected in parallel.
  • the number of air conditioning units (50) is not limited to one in the heat source units (10) of the first to fourth embodiments. It may be a refrigerating device (1) in which a plurality of cooling units (50, 50, ...) Are connected in parallel.
  • the cold heat exchanger (64) does not have to be an air heat exchanger that exchanges heat between air and the refrigerant.
  • the cold heat exchanger (64) may be, for example, a cooling heat exchanger that cools water or brine with a refrigerant.
  • the indoor heat exchanger (54) does not have to be an air heat exchanger that exchanges heat between air and the refrigerant.
  • the indoor heat exchanger (54) may be, for example, a heat heat exchanger that heats water or brine with a refrigerant.
  • the present disclosure is useful for heat source units and refrigeration equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This heat source unit constitutes a refrigerant circuit (6) which is connected to use circuits (51, 61) respectively having a first use unit (60) and a second user unit (50) which have different vaporization temperatures and performs a refrigeration cycle, wherein a heat source circuit (11) of the heat source unit comprises: a main flow path (M) provided with a first depressurization mechanism (14); a first branch flow path (o8) that is connected to an end section of the main flow path (M) and communicates with the first use unit (60); a second branch flow path (o6) that is connected to the end section of the main flow path (M) and communicates with the second use unit (50); and a second depressurization mechanism (18) provided to the first flow path (o8).

Description

熱源ユニット及び冷凍装置Heat source unit and refrigeration equipment
 本開示は、熱源ユニット及び冷凍装置に関する。 This disclosure relates to a heat source unit and a refrigerating device.
 従来より、冷媒を圧縮する圧縮要素を備えて冷凍サイクルを行う冷凍装置が知られている。この冷凍装置は、室内を冷暖房する空調機や、食品等を貯蔵する冷蔵庫等の冷却機として広く利用されている。この種の冷凍装置では、室外に設置される室外ユニットに、蒸発温度が異なる複数の利用ユニット(例えば、冷蔵・冷凍用のショーケースなどの冷設ユニット及び、空調用の室内機などの空調ユニット)、が並列に接続される。この冷凍装置は、例えばコンビニエンスストア等に設置され、1つの冷凍装置を設置するだけで、店内の空調とショーケース等の冷却を行うことができる(特許文献1参照)。 Conventionally, a refrigerating device having a compression element for compressing a refrigerant and performing a refrigerating cycle has been known. This refrigerating device is widely used as an air conditioner for heating and cooling a room and a cooler for a refrigerator or the like for storing food or the like. In this type of refrigerating device, the outdoor unit installed outdoors includes a plurality of utilization units having different evaporation temperatures (for example, a refrigerating unit such as a showcase for refrigeration / freezing, and an air conditioning unit such as an indoor unit for air conditioning). ), Are connected in parallel. This refrigerating device is installed in, for example, a convenience store or the like, and it is possible to air-condition the inside of the store and cool the showcase or the like by installing only one refrigerating device (see Patent Document 1).
特開2019-66158号公報Japanese Unexamined Patent Publication No. 2019-66158
 上記のように蒸発温度が異なる複数の利用ユニットを備える冷凍装置には、圧縮要素の吐出圧力と吸入圧力との間の中間圧となる部分に冷媒を導入するインジェクション回路を備えて、冷凍サイクルを行う冷凍装置がある。このような冷凍装置では、室外ユニット内の冷媒回路において、室外膨張弁で減圧された冷媒の一部をインジェクション回路に流入させて用いる場合がある。この場合、吐出圧力と吸入圧力との中間の圧力の冷媒を導入することによって、冷凍装置の効率が向上する。しかし、室外ユニット内で冷媒の圧力を中間の圧力まで低下させると、蒸発温度が高い方の利用ユニットの蒸発圧力と中間の圧力との差圧が小さくなる。このことにより、室外ユニットの冷媒は、蒸発温度の高い方の利用ユニットへ流れづらくなり、利用ユニットの冷却能力を確保できなくなるという問題が生じる。 As described above, the refrigerating apparatus having a plurality of utilization units having different evaporation temperatures is provided with an injection circuit for introducing a refrigerant into a portion that becomes an intermediate pressure between the discharge pressure and the suction pressure of the compression element, and the refrigeration cycle is performed. There is a refrigeration system to do. In such a refrigerating apparatus, in the refrigerant circuit in the outdoor unit, a part of the refrigerant decompressed by the outdoor expansion valve may be used by flowing into the injection circuit. In this case, the efficiency of the refrigerating apparatus is improved by introducing a refrigerant having a pressure intermediate between the discharge pressure and the suction pressure. However, when the pressure of the refrigerant is lowered to the intermediate pressure in the outdoor unit, the difference pressure between the evaporation pressure and the intermediate pressure of the utilization unit having the higher evaporation temperature becomes smaller. As a result, the refrigerant of the outdoor unit becomes difficult to flow to the utilization unit having a higher evaporation temperature, and there arises a problem that the cooling capacity of the utilization unit cannot be secured.
 本開示の目的は、蒸発温度が異なる複数の利用ユニットを備える冷凍装置において、蒸発温度の高い方の利用ユニットの能力を確保することである。 An object of the present disclosure is to secure the capacity of the utilization unit having the higher evaporation temperature in the refrigeration apparatus including a plurality of utilization units having different evaporation temperatures.
 第1の態様は、第1利用ユニット(60)と該第1利用ユニット(60)よりも冷媒の蒸発温度が高い第2利用ユニット(50)とを有する利用ユニット(50,60)の利用回路(51,61)に接続されて冷凍サイクルを行う冷媒回路(6)を構成する熱源回路(11)と、前記熱源回路(11)を制御する制御部(100)とを備える熱源ユニットである。 The first aspect is a utilization circuit of a utilization unit (50, 60) having a first utilization unit (60) and a second utilization unit (50) having a higher refrigerant evaporation temperature than the first utilization unit (60). It is a heat source unit including a heat source circuit (11) connected to (51, 61) to form a refrigerant circuit (6) that performs a refrigeration cycle, and a control unit (100) that controls the heat source circuit (11).
 前記熱源回路(11)は、第1圧縮部(22,23)と、前記第1圧縮部(22,23)で圧縮した冷媒を更に圧縮する第2圧縮部(21)とを有する前記圧縮要素(C)と、放熱器(13)と、第1減圧機構(14)と、前記放熱器(13)の下流側に接続され、前記第1減圧機構(14)を備える主流路(M)と、前記主流路(M)の端部に接続され、前記第1利用ユニット(60)に連通する第1分岐流路(o8)と、前記主流路(M)の前記端部に接続され、前記第2利用ユニット(50)に連通する第2分岐流路(o6)と、一端が前記主流路(M)に接続され、他端が前記第1圧縮部(22,23)及び前記第2圧縮部(21)の間に接続され、前記第1減圧機構(14)で減圧された冷媒が流入する中間インジェクション回路(49)と、前記第1分岐流路(o8)に設けられる第2減圧機構(18)とを備える。 The heat source circuit (11) is the compression element having a first compression unit (22, 23) and a second compression unit (21) that further compresses the refrigerant compressed by the first compression unit (22, 23). (C), a radiator (13), a first decompression mechanism (14), and a main flow path (M) connected to the downstream side of the radiator (13) and provided with the first decompression mechanism (14). , The first branch flow path (o8) connected to the end of the main flow path (M) and communicating with the first utilization unit (60), and the end of the main flow path (M). The second branch flow path (o6) communicating with the second utilization unit (50), one end is connected to the main flow path (M), and the other end is the first compression section (22, 23) and the second compression. An intermediate injection circuit (49) connected between the parts (21) and into which the refrigerant decompressed by the first decompression mechanism (14) flows in, and a second decompression mechanism provided in the first branch flow path (o8). (18) and.
 第1の態様では、熱源ユニットの冷媒は、第2利用ユニット(50)へ流れ易くなり、第2利用ユニット(50)の冷却能力を確保できる。 In the first aspect, the refrigerant of the heat source unit easily flows to the second utilization unit (50), and the cooling capacity of the second utilization unit (50) can be secured.
 第2の態様は、第1の態様において、前記熱源回路(11)は、気液分離器(15)を備え、前記中間インジェクション回路(49)は、前記気液分離器(15)に接続される第1冷媒配管(37)を備え、前記第1冷媒配管(37)は、前記気液分離器(15)内のガス冷媒が前記気液分離器(15)から、前記第1圧縮部(22,23)と前記第2圧縮部(21)との間の流路に流入するように構成される。 In the second aspect, in the first aspect, the heat source circuit (11) includes a gas-liquid separator (15), and the intermediate injection circuit (49) is connected to the gas-liquid separator (15). The first refrigerant pipe (37) is provided, and in the first refrigerant pipe (37), the gas refrigerant in the gas-liquid separator (15) is transferred from the gas-liquid separator (15) to the first compression unit ( It is configured to flow into the flow path between 22 and 23) and the second compression unit (21).
 第2の態様では、気液分離器(15)に貯留するガス冷媒を、中間インジェクション回路(49)を介して第1圧縮部(22,23)と前記第2圧縮部(21)との間に導入できる。 In the second aspect, the gas refrigerant stored in the gas-liquid separator (15) is placed between the first compression unit (22, 23) and the second compression unit (21) via the intermediate injection circuit (49). Can be introduced in.
 第3の態様は、第1または第2の態様において、前記熱源回路(11)は、前記第2減圧機構(18)による減圧後の冷媒の圧力を検知または推定する圧力取得部(48)を備え、前記第2減圧機構(18)は、開度が調節可能な弁であり、前記制御部(100)は、前記圧力取得部(48)が検知し又は推定した圧力が目標圧力となるように、前記第2減圧機構(18)の開度を制御する。 In the third aspect, in the first or second aspect, the heat source circuit (11) has a pressure acquisition unit (48) that detects or estimates the pressure of the refrigerant after decompression by the second decompression mechanism (18). The second decompression mechanism (18) is a valve whose opening degree can be adjusted, and the control unit (100) uses the pressure detected or estimated by the pressure acquisition unit (48) as the target pressure. In addition, the opening degree of the second decompression mechanism (18) is controlled.
 第3の態様では、第1利用ユニット(60)に供給する冷媒の圧力を目標圧力に調節することができる。 In the third aspect, the pressure of the refrigerant supplied to the first utilization unit (60) can be adjusted to the target pressure.
 第4の態様は、第1から第3の態様の何れか1つの態様において、前記熱源回路(11)は、前記第1減圧機構(14)と前記第2減圧機構(18)との間に接続される冷却熱交換器(16)を備え、前記冷却熱交換器(16)は、前記熱源回路(11)の液冷媒が流れる液管に接続される第1流路(16a)と、前記液管から分流し、減圧された冷媒が流れる第2流路(16b)とを有し、前記第2流路(16b)の冷媒によって、前記第1流路(16a)の冷媒を冷却するように構成され、前記第2流路(16b)は、前記中間インジェクション回路(49)を構成する。 A fourth aspect is that in any one of the first to third aspects, the heat source circuit (11) is placed between the first decompression mechanism (14) and the second decompression mechanism (18). A cooling heat exchanger (16) to be connected is provided, and the cooling heat exchanger (16) includes a first flow path (16a) connected to a liquid pipe through which the liquid refrigerant of the heat source circuit (11) flows, and the above. It has a second flow path (16b) through which the refrigerant is diverted from the liquid pipe and the reduced pressure flows, and the refrigerant in the first flow path (16a) is cooled by the refrigerant in the second flow path (16b). The second flow path (16b) constitutes the intermediate injection circuit (49).
 第4の態様では、冷却熱交換器(16)の第2流路(16b)の冷媒は、第1流路(16a)の冷媒から吸熱して蒸発し、中間インジェクション回路(49)を流通する。このことにより、第2流路(16b)の冷媒を、第1圧縮部(22,23)と第2圧縮部(21)との間の流路に導入できる。 In the fourth aspect, the refrigerant in the second flow path (16b) of the cooling heat exchanger (16) absorbs heat from the refrigerant in the first flow path (16a) and evaporates, and flows through the intermediate injection circuit (49). .. As a result, the refrigerant in the second flow path (16b) can be introduced into the flow path between the first compression section (22, 23) and the second compression section (21).
 第5の態様は、第4の態様において、前記制御部(100)は、前記第2減圧機構(18)を流出した冷媒が液状態となるように前記冷却熱交換器(16)の冷却能力を制御する。 In a fifth aspect, in the fourth aspect, the control unit (100) has a cooling capacity of the cooling heat exchanger (16) so that the refrigerant flowing out of the second decompression mechanism (18) is in a liquid state. To control.
 第5の態様では、第1利用ユニット(60)の入口と出口との間の冷媒のエンタルピー差を大きくすることができる。 In the fifth aspect, the enthalpy difference of the refrigerant between the inlet and the outlet of the first utilization unit (60) can be increased.
 第6の態様は、第1から第5の態様の何れか1つの態様において、前記第1利用ユニット(60)は冷凍設備の庫内を冷却する冷設ユニットであり、前記第2利用ユニット(50)は室内を空調する空調ユニットである。 In the sixth aspect, in any one of the first to fifth aspects, the first utilization unit (60) is a cooling unit for cooling the inside of the refrigerating equipment, and the second utilization unit (60). 50) is an air conditioning unit that air-conditions the room.
 第7の態様は、第1から第6の態様の何れか1つの態様において、前記制御部(100)は、冷媒を前記圧縮要素(C)で臨界圧力以上まで圧縮し、前記第1減圧機構(14)で亜臨界圧力まで減圧する冷凍サイクルを行うように前記冷媒回路(6)を制御する。 A seventh aspect is, in any one of the first to sixth aspects, the control unit (100) compresses the refrigerant with the compression element (C) to a pressure equal to or higher than the critical pressure, and the first decompression mechanism. The refrigerant circuit (6) is controlled so as to perform a refrigeration cycle in which the pressure is reduced to the subcritical pressure in (14).
 第7の態様では、臨界圧力以上まで圧縮した冷媒を第1減圧機構で亜臨界圧力まで減圧できる。このことにより、亜臨界域の冷媒の気相成分を第1圧縮部(22,23)と第2圧縮部(21)との間の流路に導入できる。 In the seventh aspect, the refrigerant compressed to the critical pressure or higher can be depressurized to the subcritical pressure by the first depressurizing mechanism. As a result, the gas phase component of the refrigerant in the subcritical region can be introduced into the flow path between the first compression section (22, 23) and the second compression section (21).
 第8の態様は、第1から第7の何れか1つの態様において、前記冷媒は二酸化炭素である。 In the eighth aspect, in any one of the first to seventh aspects, the refrigerant is carbon dioxide.
 第9の態様は、第1から第8の何れか1つの態様において、前記第1分岐流路(o8)における前記第2減圧機構(18)の下流側の部分を、前記利用ユニット(50,60)から前記圧縮要素(C)へ向けて冷媒が流れる低圧ガス管(20)に接続する接続配管(83)と、前記接続配管(83)に設けられた補助弁(19)とを備える。 In the ninth aspect, in any one of the first to eighth aspects, the downstream portion of the second decompression mechanism (18) in the first branch flow path (o8) is used with the utilization unit (50, It is provided with a connection pipe (83) connected to a low-pressure gas pipe (20) through which a refrigerant flows from the compression element (C) to the compression element (C), and an auxiliary valve (19) provided in the connection pipe (83).
 第9の態様では、液管(o8)と低圧ガス管(20)を繋ぐ接続配管(83)に補助弁(19)が設けられる。補助弁(19)が開いた状態では、熱源ユニット(10)を利用ユニット(60)に接続する液側の連絡配管が、接続配管(83)を介して低圧ガス管(20)と連通する。そのため、中間ユニット(80)の第2室外膨張弁(18)が閉じた状態において、液側の連絡配管の内圧の過度な上昇が抑えられ、その結果、液側の連絡配管の破損と、利用ユニット(60)の破損とを回避できる。 In the ninth aspect, the auxiliary valve (19) is provided in the connecting pipe (83) connecting the liquid pipe (o8) and the low pressure gas pipe (20). When the auxiliary valve (19) is open, the liquid-side communication pipe that connects the heat source unit (10) to the utilization unit (60) communicates with the low-pressure gas pipe (20) via the connection pipe (83). Therefore, when the second outdoor expansion valve (18) of the intermediate unit (80) is closed, an excessive increase in the internal pressure of the liquid side connecting pipe is suppressed, and as a result, the liquid side connecting pipe is damaged and used. It is possible to avoid damage to the unit (60).
 第10の態様は、第1から第9の何れか1つの態様において、前記熱源ユニット(10)は、主熱源ユニット(10a)と、該主熱源ユニット(10a)と分離された補助ユニット(10b,80)とを含み、補助ユニット(10b,80)は前記第2減圧機構(18)を備える。 A tenth aspect is, in any one of the first to ninth aspects, the heat source unit (10) is a main heat source unit (10a) and an auxiliary unit (10b) separated from the main heat source unit (10a). , 80), and the auxiliary unit (10b, 80) includes the second decompression mechanism (18).
 第10の態様では、第2減圧機構(18)を備える補助ユニット(10b,80)を、主熱源ユニット(10a)と別体とすることができる。このことにより、既設の主熱源ユニット(10a)に補助ユニット(10b,80)を接続し、第1~第8の態様の効果を実現できる。 In the tenth aspect, the auxiliary unit (10b, 80) provided with the second decompression mechanism (18) can be separated from the main heat source unit (10a). As a result, the auxiliary unit (10b, 80) can be connected to the existing main heat source unit (10a), and the effects of the first to eighth aspects can be realized.
 第11の態様は、第1から第10の態様の何れか1つの態様の熱源ユニット(10)と、第1利用ユニット(60)と該第1利用ユニット(60)よりも冷媒の蒸発温度が高い第2利用ユニット(50)とを備える利用回路(51,61)を有する利用ユニット(50,60)とを備え、前記熱源ユニット(10)の前記熱源回路(11)と前記利用ユニット(50,60)の前記利用回路(51,61)とが接続されて冷凍サイクルを行う冷媒回路(6)が構成される。 In the eleventh aspect, the evaporation temperature of the refrigerant is higher than that of the heat source unit (10) of any one of the first to tenth aspects, the first utilization unit (60), and the first utilization unit (60). The heat source circuit (11) and the utilization unit (50) of the heat source unit (10) are provided with the utilization unit (50, 60) having the utilization circuit (51, 61) including the high second utilization unit (50). , 60) is connected to the utilization circuits (51, 61) to form a refrigerant circuit (6) that performs a refrigeration cycle.
図1は、実施形態1に係る冷凍装置の配管系統図である。FIG. 1 is a piping system diagram of the refrigerating apparatus according to the first embodiment. 図2は、コントローラと各種のセンサと各種の機器との関係を示すフローチャートである。FIG. 2 is a flowchart showing the relationship between the controller, various sensors, and various devices. 図3は、冷設運転の冷媒の流れを示した図1相当図である。FIG. 3 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the cold operation. 図4は、冷房運転の冷媒の流れを示した図1相当図である。FIG. 4 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the cooling operation. 図5は、冷房/冷設運転の冷媒の流れを示した図1相当図である。FIG. 5 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the cooling / cooling operation. 図6は、暖房運転の冷媒の流れを示した図1相当図である。FIG. 6 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the heating operation. 図7は、暖房/冷設運転の冷媒の流れを示した図1相当図である。FIG. 7 is a view corresponding to FIG. 1 showing the flow of the refrigerant in the heating / cooling operation. 図8は、従来の冷凍装置のP-h線図である。FIG. 8 is a Ph diagram of a conventional refrigeration system. 図9は、従来の冷凍装置のP-h線図において、一部の圧力を変化させた図8に相当する図である。FIG. 9 is a diagram corresponding to FIG. 8 in which a part of the pressure is changed in the Ph diagram of the conventional refrigerating apparatus. 図10は、実施形態1における第2減圧機構の制御を示したフローチャートである。FIG. 10 is a flowchart showing the control of the second decompression mechanism according to the first embodiment. 図11は、第1圧縮機の起動制御を示したフローチャートである。FIG. 11 is a flowchart showing the activation control of the first compressor. 図12は、実施形態1に係る冷凍装置のP-h線図である。FIG. 12 is a Ph diagram of the refrigerating apparatus according to the first embodiment. 図13は、実施形態1の変形例に係る冷凍装置の配管系統図である。FIG. 13 is a piping system diagram of the refrigerating apparatus according to the modified example of the first embodiment. 図14は、実施形態2における第2減圧機構の制御を示したフローチャートである。FIG. 14 is a flowchart showing the control of the second decompression mechanism according to the second embodiment. 図15は、実施形態3に係る冷凍装置の配管系統図である。FIG. 15 is a piping system diagram of the refrigerating apparatus according to the third embodiment. 図16は、実施形態3のコントローラが行う第2室外膨張弁の制御を示したフロー図である。FIG. 16 is a flow chart showing the control of the second outdoor expansion valve performed by the controller of the third embodiment. 図17は、実施形態3のコントローラによって制御される補助弁の開度と出口圧力センサの計測値との関係を示すグラフである。FIG. 17 is a graph showing the relationship between the opening degree of the auxiliary valve controlled by the controller of the third embodiment and the measured value of the outlet pressure sensor. 図18は、実施形態3の変形例のコントローラによって制御される補助弁の開度と出口圧力センサの計測値との関係を示すグラフである。FIG. 18 is a graph showing the relationship between the opening degree of the auxiliary valve controlled by the controller of the modified example of the third embodiment and the measured value of the outlet pressure sensor. 図19は、実施形態4に係る冷凍装置の配管系統図である。FIG. 19 is a piping system diagram of the refrigerating apparatus according to the fourth embodiment. 図20は、実施形態4における中間ユニットの構成機器と液圧コントローラの関係を示すブロック図である。FIG. 20 is a block diagram showing the relationship between the constituent devices of the intermediate unit and the hydraulic pressure controller according to the fourth embodiment. 図21は、実施形態4の変形例1における中間ユニットの構成機器と液圧コントローラの関係を示すブロック図である。FIG. 21 is a block diagram showing the relationship between the constituent devices of the intermediate unit and the hydraulic pressure controller in the first modification of the fourth embodiment.
 以下、実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, the embodiment will be described with reference to the drawings. It should be noted that the following embodiments are essentially preferred examples and are not intended to limit the scope of the present invention, its applications, or its uses.
 《実施形態1》
 〈全体構成〉
 実施形態1に係る冷凍装置(1)は、冷却対象の冷却と、室内の空調とを同時に行う。ここでいう冷却対象は、冷蔵庫、冷凍庫、ショーケースなどの設備内の空気を含む。以下では、このような設備を冷設と称する。
<< Embodiment 1 >>
<overall structure>
The refrigerating apparatus (1) according to the first embodiment simultaneously cools the object to be cooled and air-conditions the room. The cooling target here includes air in equipment such as refrigerators, freezers, and showcases. Hereinafter, such equipment will be referred to as cold equipment.
 図1に示すように、冷凍装置(1)は、室外に設置される熱源ユニット(10)と、庫内の空気を冷却する第1利用ユニット(60)(冷設ユニット)と、室内の空調を行う第2利用ユニット(50)(空調ユニット)と、コントローラ(100)とを備える。図1では、1つの空調ユニット(50)を図示している。冷凍装置(1)は、並列に接続される2つ以上の空調ユニット(50)を有してもよい。図1では、1つの冷設ユニット(60)を図示している。冷凍装置(1)は、並列に接続される2つ以上の冷設ユニット(60)を有してもよい。これらのユニット(10,50,60)が4本の連絡配管(2,3,4,5)によって接続されることで、冷媒回路(6)が構成される。 As shown in FIG. 1, the refrigerating device (1) includes a heat source unit (10) installed outdoors, a first utilization unit (60) (cooling unit) for cooling the air inside the refrigerator, and an indoor air conditioner. A second utilization unit (50) (air conditioning unit) and a controller (100) are provided. FIG. 1 illustrates one air conditioning unit (50). The refrigeration system (1) may have two or more air conditioning units (50) connected in parallel. FIG. 1 illustrates one cooling unit (60). The refrigeration system (1) may have two or more cooling units (60) connected in parallel. The refrigerant circuit (6) is configured by connecting these units (10,50,60) with four connecting pipes (2,3,4,5).
 4本の連絡配管(2,3,4,5)は、第1液連絡配管(2)、第1ガス連絡配管(3)、第2液連絡配管(4)、及び第2ガス連絡配管(5)で構成される。第1液連絡配管(2)及び第1ガス連絡配管(3)は、空調ユニット(50)に対応する。第2液連絡配管(4)及び第2ガス連絡配管(5)は、冷設ユニット(60)に対応する。 The four connecting pipes (2,3,4,5) are the first liquid connecting pipe (2), the first gas connecting pipe (3), the second liquid connecting pipe (4), and the second gas connecting pipe (2). It consists of 5). The first liquid connecting pipe (2) and the first gas connecting pipe (3) correspond to the air conditioning unit (50). The second liquid connecting pipe (4) and the second gas connecting pipe (5) correspond to the cooling unit (60).
 冷媒回路(6)では、冷媒が循環することで冷凍サイクルが行われる。本実施形態の冷媒回路(6)の冷媒は、二酸化炭素である。冷媒回路(6)は、冷媒が臨界圧力以上となる冷凍サイクルを行うように構成される。 In the refrigerant circuit (6), the refrigeration cycle is performed by circulating the refrigerant. The refrigerant of the refrigerant circuit (6) of this embodiment is carbon dioxide. The refrigerant circuit (6) is configured to perform a refrigeration cycle in which the refrigerant exceeds the critical pressure.
 〈熱源ユニット〉
 熱源ユニット(10)は、室外ファン(12)と、室外回路(11)とを有する。室外回路(11)では、圧縮要素(C)、流路切換機構(30)、室外熱交換器(13)、第1室外膨張弁(14)、気液分離器(15)が順に接続され、さらに冷却熱交換器(16)、及び中間冷却器(17)を有する。
<Heat source unit>
The heat source unit (10) has an outdoor fan (12) and an outdoor circuit (11). In the outdoor circuit (11), the compression element (C), the flow path switching mechanism (30), the outdoor heat exchanger (13), the first outdoor expansion valve (14), and the gas-liquid separator (15) are connected in this order. It also has a cooling heat exchanger (16) and an intercooler (17).
 〈圧縮要素〉
 圧縮要素(C)は、冷媒を圧縮する。圧縮要素(C)は、第1圧縮機(21)、第2圧縮機(22)、及び第3圧縮機(23)を有する。圧縮要素(C)は、第1圧縮部(22,23)で圧縮した冷媒を、第2圧縮部(21)でさらに圧縮する二段圧縮式に構成される。第1圧縮部(22,23)は、低段側圧縮機を構成する第2圧縮機(22)及び第3圧縮機(23)である。第2圧縮部(21)は、高段側圧縮機を構成する第1圧縮機(21)である。第2圧縮機(22)及び第3圧縮機(23)は、互いに並列に接続される。第1圧縮機(21)及び第2圧縮機(22)は、直列に接続される。第1圧縮機(21)及び第3圧縮機(23)は、直列に接続される。第1圧縮機(21)は第1圧縮部を構成し、第2圧縮機(22)及び第3圧縮機(23)は第2圧縮部を構成する。第1圧縮機(21)、第2圧縮機(22)、及び第3圧縮機(23)は、モータによって圧縮機構が駆動される回転式圧縮機である。第1圧縮機(21)、第2圧縮機(22)、及び第3圧縮機(23)は、運転周波数、ないし回転数が調節可能な可変容量式に構成される。
<Compression element>
The compression element (C) compresses the refrigerant. The compression element (C) has a first compressor (21), a second compressor (22), and a third compressor (23). The compression element (C) is configured as a two-stage compression type in which the refrigerant compressed by the first compression unit (22, 23) is further compressed by the second compression unit (21). The first compression unit (22, 23) is a second compressor (22) and a third compressor (23) that constitute a low-stage compressor. The second compression unit (21) is a first compressor (21) that constitutes a high-stage compressor. The second compressor (22) and the third compressor (23) are connected in parallel with each other. The first compressor (21) and the second compressor (22) are connected in series. The first compressor (21) and the third compressor (23) are connected in series. The first compressor (21) constitutes the first compression unit, and the second compressor (22) and the third compressor (23) form the second compression unit. The first compressor (21), the second compressor (22), and the third compressor (23) are rotary compressors in which a compression mechanism is driven by a motor. The first compressor (21), the second compressor (22), and the third compressor (23) are configured in a variable capacitance type in which the operating frequency or the rotation speed can be adjusted.
 第1圧縮機(21)には、第1吸入管(21a)及び第1吐出管(21b)が接続される。第2圧縮機(22)には、第2吸入管(22a)及び第2吐出管(22b)が接続される。第3圧縮機(23)には、第3吸入管(23a)及び第3吐出管(23b)が接続される。第1吸入管(21a)は、第1圧縮部(22,23)と第2圧縮部(21)との間の中間圧力部を構成する。 The first suction pipe (21a) and the first discharge pipe (21b) are connected to the first compressor (21). A second suction pipe (22a) and a second discharge pipe (22b) are connected to the second compressor (22). A third suction pipe (23a) and a third discharge pipe (23b) are connected to the third compressor (23). The first suction pipe (21a) constitutes an intermediate pressure portion between the first compression portion (22, 23) and the second compression portion (21).
 第2吸入管(22a)は、冷設ユニット(60)に連通する。第2圧縮機(22)は、冷設ユニット(60)に対応する冷設側圧縮機である。第3吸入管(23a)は、空調ユニット(50)に連通する。第3圧縮機(23)は、空調ユニット(50)に対応する室内側圧縮機である。 The second suction pipe (22a) communicates with the cooling unit (60). The second compressor (22) is a cold side compressor corresponding to the cold unit (60). The third suction pipe (23a) communicates with the air conditioning unit (50). The third compressor (23) is an indoor compressor corresponding to the air conditioning unit (50).
 〈流路切換機構〉
 流路切換機構(30)は、冷媒の流路を切り換える。流路切換機構(30)は、第1配管(31)、第2配管(32)、第3配管(33)、第4配管(34)、第1三方弁(TV1)、及び第2三方弁(TV2)を有する。第1配管(31)の流入端と、第2配管(32)の流入端とは、第1吐出管(21b)に接続する。第1配管(31)及び第2配管(32)は、圧縮要素(C)の吐出圧が作用する配管である。第3配管(33)の流出端と、第4配管(34)の流出端とは、第3圧縮機(23)の第3吸入管(23a)に接続する。第3配管(33)及び第4配管(34)は、圧縮要素(C)の吸入圧が作用する配管である。
<Flow path switching mechanism>
The flow path switching mechanism (30) switches the flow path of the refrigerant. The flow path switching mechanism (30) includes the first pipe (31), the second pipe (32), the third pipe (33), the fourth pipe (34), the first three-way valve (TV1), and the second three-way valve. Has (TV2). The inflow end of the first pipe (31) and the inflow end of the second pipe (32) are connected to the first discharge pipe (21b). The first pipe (31) and the second pipe (32) are pipes on which the discharge pressure of the compression element (C) acts. The outflow end of the third pipe (33) and the outflow end of the fourth pipe (34) are connected to the third suction pipe (23a) of the third compressor (23). The third pipe (33) and the fourth pipe (34) are pipes on which the suction pressure of the compression element (C) acts.
 第1三方弁(TV1)は、第1ポート(P1)、第2ポート(P2)、及び第3ポート(P3)を有する。第1三方弁(TV1)の第1ポート(P1)は、高圧流路である第1配管(31)の流出端に接続する。第1三方弁(TV1)の第2ポート(P2)は、低圧流路である第3配管(33)の流入端に接続する。第1三方弁(TV1)の第3ポート(P3)は、室内ガス側流路(35)に接続する。 The first three-way valve (TV1) has a first port (P1), a second port (P2), and a third port (P3). The first port (P1) of the first three-way valve (TV1) is connected to the outflow end of the first pipe (31) which is a high-pressure flow path. The second port (P2) of the first three-way valve (TV1) is connected to the inflow end of the third pipe (33), which is a low-pressure flow path. The third port (P3) of the first three-way valve (TV1) is connected to the indoor gas side flow path (35).
 第2三方弁(TV2)は、第1ポート(P1)、第2ポート(P2)、及び第3ポート(P3)を有する。第2三方弁(TV2)の第1ポート(P1)は、高圧流路である第2配管(32)の流出端に接続する。第2三方弁(TV2)の第2ポート(P2)は、低圧流路である第4配管(34)の流入端に接続する。第2三方弁(TV2)の第3ポート(P3)は、室外ガス側流路(36)に接続する。 The second three-way valve (TV2) has a first port (P1), a second port (P2), and a third port (P3). The first port (P1) of the second three-way valve (TV2) is connected to the outflow end of the second pipe (32), which is a high-pressure flow path. The second port (P2) of the second three-way valve (TV2) is connected to the inflow end of the fourth pipe (34), which is a low-pressure flow path. The third port (P3) of the second three-way valve (TV2) is connected to the outdoor gas side flow path (36).
 第1三方弁(TV1)及び第2三方弁(TV2)は、電動式の三方弁である。各三方弁(TV1,TV2)は、第1状態(図1の実線で示す状態)と第2状態(図1の破線で示す状態)とにそれぞれ切り換わる。第1状態の各三方弁(TV1,TV2)では、第1ポート(P1)と第3ポート(P3)とが連通し、且つ第2ポート(P2)が閉鎖される。第2状態の各三方弁(TV1,TV2)では、第2ポート(P2)と第3ポート(P3)とが連通し、第1ポート(P1)が閉鎖される。 The first three-way valve (TV1) and the second three-way valve (TV2) are electric three-way valves. Each of the three-way valves (TV1 and TV2) switches between a first state (the state shown by the solid line in FIG. 1) and a second state (the state shown by the broken line in FIG. 1). In each of the three-way valves (TV1 and TV2) in the first state, the first port (P1) and the third port (P3) communicate with each other, and the second port (P2) is closed. In each of the three-way valves (TV1, TV2) in the second state, the second port (P2) and the third port (P3) communicate with each other, and the first port (P1) is closed.
 〈室外熱交換器〉
 室外熱交換器(13)は、熱源熱交換器を構成している。室外熱交換器(13)は、フィン・アンド・チューブ型の空気熱交換器である。室外ファン(12)は、室外熱交換器(13)の近傍に配置される。室外ファン(12)は、室外空気を搬送する。室外熱交換器は、その内部を流れる冷媒と、室外ファン(12)が搬送する室外空気とを熱交換させる。
<Outdoor heat exchanger>
The outdoor heat exchanger (13) constitutes a heat source heat exchanger. The outdoor heat exchanger (13) is a fin-and-tube type air heat exchanger. The outdoor fan (12) is located near the outdoor heat exchanger (13). The outdoor fan (12) carries outdoor air. The outdoor heat exchanger exchanges heat between the refrigerant flowing inside the outdoor heat exchanger and the outdoor air carried by the outdoor fan (12).
 室外熱交換器(13)のガス端には、室外ガス側流路(36)が接続される。室外熱交換器(13)の液端には、室外流路(O)が接続される。 The outdoor gas side flow path (36) is connected to the gas end of the outdoor heat exchanger (13). An outdoor flow path (O) is connected to the liquid end of the outdoor heat exchanger (13).
 〈室外流路〉
 室外流路(O)は、室外第1管(o1)、室外第2管(o2)、室外第3管(o3)、室外第4管(o4)、室外第5管(o5)、室外第6管(o6)、室外第7管(o7)、及び室外第8管(o8)を含む。室外第1管(o1)の一端は、室外熱交換器(13)の液端に接続される。室外第1管(o1)の他端には、室外第2管(o2)の一端、及び室外第3管(o3)の一端がそれぞれ接続される。室外第2管(o2)の他端は、気液分離器(15)の頂部に接続される。室外第4管(o4)の一端は、気液分離器(15)の底部に接続される。室外第4管(o4)の他端には、室外第5管(o5)の一端、及び室外第3管(o3)の他端がそれぞれ接続される。室外第5管(o5)の他端には、室外第6管(o6)の一端、及び室外第8管(o8)の一端がそれぞれ接続される。室外第8管(o8)の他端は、第2液連絡配管(4)に接続する。室外第6管(o6)の他端は、第1液連絡配管(2)に接続する。室外第7管(o7)の一端は、室外第6管(o6)の途中に接続する。室外第7管(o7)の他端は、室外第2管(o2)の途中に接続する。
<Outdoor flow path>
The outdoor flow path (O) is the outdoor first pipe (o1), the outdoor second pipe (o2), the outdoor third pipe (o3), the outdoor fourth pipe (o4), the outdoor fifth pipe (o5), and the outdoor pipe. Includes 6 pipes (o6), outdoor 7th pipe (o7), and outdoor 8th pipe (o8). One end of the outdoor first pipe (o1) is connected to the liquid end of the outdoor heat exchanger (13). One end of the outdoor second pipe (o2) and one end of the outdoor third pipe (o3) are connected to the other end of the outdoor first pipe (o1), respectively. The other end of the outdoor second pipe (o2) is connected to the top of the gas-liquid separator (15). One end of the outdoor fourth pipe (o4) is connected to the bottom of the gas-liquid separator (15). One end of the outdoor fifth pipe (o5) and the other end of the outdoor third pipe (o3) are connected to the other end of the outdoor fourth pipe (o4). One end of the outdoor sixth pipe (o6) and one end of the outdoor eighth pipe (o8) are connected to the other end of the outdoor fifth pipe (o5). The other end of the outdoor eighth pipe (o8) is connected to the second liquid connecting pipe (4). The other end of the outdoor sixth pipe (o6) is connected to the first liquid connecting pipe (2). One end of the outdoor seventh pipe (o7) is connected in the middle of the outdoor sixth pipe (o6). The other end of the outdoor seventh pipe (o7) is connected in the middle of the outdoor second pipe (o2).
 〈減圧機構〉
 熱源回路(11)は、第1減圧機構(14)及び第2減圧機構(18)を有する。第1~第2減圧機構(14,18)は、利用ユニット(50,60)へ流出する冷媒を減圧する。
<Decompression mechanism>
The heat source circuit (11) has a first decompression mechanism (14) and a second decompression mechanism (18). The first and second decompression mechanisms (14, 18) decompress the refrigerant flowing out to the utilization unit (50, 60).
 第1減圧機構(14)は、第1室外膨張弁(14)である。第1室外膨張弁(14)は、コントローラ(100)からのパルス信号によりパルスモータが駆動されて開度が調整される電子膨張弁である。第1室外膨張弁(14)は、室外第1管(o1)に接続される。 The first decompression mechanism (14) is the first outdoor expansion valve (14). The first outdoor expansion valve (14) is an electronic expansion valve whose opening degree is adjusted by driving a pulse motor by a pulse signal from the controller (100). The first outdoor expansion valve (14) is connected to the outdoor first pipe (o1).
 第2減圧機構(18)は、第2室外膨張弁(18)である。第2室外膨張弁(18)は、コントローラ(100)からのパルス信号によりパルスモータが駆動されて開度が調整される電子膨張弁である。第2室外膨張弁(18)は、室外第8管(o8)に接続される。 The second decompression mechanism (18) is the second outdoor expansion valve (18). The second outdoor expansion valve (18) is an electronic expansion valve whose opening degree is adjusted by driving a pulse motor by a pulse signal from the controller (100). The second outdoor expansion valve (18) is connected to the outdoor eighth pipe (o8).
 〈気液分離器〉
 気液分離器(15)は、冷媒を貯留する容器を構成している。気液分離器(15)は、第1室外膨張弁(14)の下流に備える。気液分離器(15)では、冷媒がガス冷媒と液冷媒とに分離される。気液分離器(15)の頂部には、室外第2管(o2)の他端と、後述するガス抜き管(37)の一端が接続される。
<Gas-liquid separator>
The gas-liquid separator (15) constitutes a container for storing the refrigerant. The gas-liquid separator (15) is provided downstream of the first outdoor expansion valve (14). In the gas-liquid separator (15), the refrigerant is separated into a gas refrigerant and a liquid refrigerant. The other end of the outdoor second pipe (o2) and one end of the gas vent pipe (37), which will be described later, are connected to the top of the gas-liquid separator (15).
 〈主流路、第1分岐流路、第2分岐流路〉
 室外回路(11)は、主流路(M)、第1分岐流路(o8)及び第2分岐流路(o6)を有する。主流路(M)は、室外第1管(o1)、室外第2管(o2)、気液分離器(15)、室外第4管(o4)及び室外第5管(o5)により構成される。主流路(M)のうち室外第1管(o1)には、第1室外膨張弁(14)が接続される。
<Main flow path, first branch flow path, second branch flow path>
The outdoor circuit (11) has a main flow path (M), a first branch flow path (o8), and a second branch flow path (o6). The main flow path (M) is composed of an outdoor first pipe (o1), an outdoor second pipe (o2), a gas-liquid separator (15), an outdoor fourth pipe (o4), and an outdoor fifth pipe (o5). .. The first outdoor expansion valve (14) is connected to the outdoor first pipe (o1) in the main flow path (M).
 第1分岐流路(o8)の一端は、主流路(M)の端部に接続される。第1分岐流路(o8)の他端は冷設ユニット(60)に連通するように第2液連絡配管(4)が接続される閉鎖弁に接続される。具体的に、第1分岐流路(o8)は室外第8管(o8)である。室外第8管(o8)には、第2室外膨張弁(18)が接続される。 One end of the first branch flow path (o8) is connected to the end of the main flow path (M). The other end of the first branch flow path (o8) is connected to a closing valve to which the second liquid connecting pipe (4) is connected so as to communicate with the cooling unit (60). Specifically, the first branch flow path (o8) is the outdoor eighth pipe (o8). The second outdoor expansion valve (18) is connected to the outdoor eighth pipe (o8).
 第2分岐流路(o6)の一端は、主流路(M)の端部に接続される。第2分岐流路(o6)の他端は、空調ユニット(50)に連通するように第1液連絡配管(2)が接続される閉鎖弁に接続される。具体的に、第2分岐流路(o6)は室外第6管(o6)である。 One end of the second branch flow path (o6) is connected to the end of the main flow path (M). The other end of the second branch flow path (o6) is connected to a closing valve to which the first liquid connecting pipe (2) is connected so as to communicate with the air conditioning unit (50). Specifically, the second branch flow path (o6) is the outdoor sixth pipe (o6).
 〈中間インジェクション回路〉
 室外回路(11)は中間インジェクション回路(49)を備える。中間インジェクション回路(49)は、中間インジェクション回路(49)を流通する冷媒が第1圧縮部(22,23)と第2圧縮部(21)との間の中間圧力部に供給されるように構成される。中間インジェクション回路(49)は、第1冷媒配管(37)及びインジェクション管(38)を備える。
<Intermediate injection circuit>
The outdoor circuit (11) includes an intermediate injection circuit (49). The intermediate injection circuit (49) is configured so that the refrigerant flowing through the intermediate injection circuit (49) is supplied to the intermediate pressure section between the first compression section (22, 23) and the second compression section (21). Will be done. The intermediate injection circuit (49) includes a first refrigerant pipe (37) and an injection pipe (38).
 インジェクション管(38)の一端は、室外第5管(o5)の途中に接続される。インジェクション管(38)の他端は、第1圧縮機(21)の第1吸入管(21a)に接続される。インジェクション管(38)には、減圧弁(40)が設けられる。減圧弁(40)は、開度が可変な膨張弁である。 One end of the injection pipe (38) is connected in the middle of the outdoor fifth pipe (o5). The other end of the injection pipe (38) is connected to the first suction pipe (21a) of the first compressor (21). The injection pipe (38) is provided with a pressure reducing valve (40). The pressure reducing valve (40) is an expansion valve having a variable opening degree.
 第1冷媒配管(37)は、気液分離器(15)に接続されるガス抜き管(37)である。ガス抜き管(37)は、気液分離器(15)のガス冷媒が気液分離器(15)から、第1圧縮部(22,23)と第2圧縮部(21)との間の流路に流入するように構成される。具体的に、ガス抜き管(37)の一端は、気液分離器(15)の頂部に接続される。ガス抜き管(37)の他端は、インジェクション管(38)の途中に接続される。ガス抜き管(37)には、ガス抜き弁(39)が接続される。ガス抜き弁(39)は、開度が可変な電子膨張弁である。 The first refrigerant pipe (37) is a gas vent pipe (37) connected to the gas-liquid separator (15). In the gas vent pipe (37), the gas refrigerant of the gas-liquid separator (15) flows from the gas-liquid separator (15) between the first compression section (22, 23) and the second compression section (21). It is configured to flow into the road. Specifically, one end of the degassing pipe (37) is connected to the top of the gas-liquid separator (15). The other end of the degassing pipe (37) is connected in the middle of the injection pipe (38). A degassing valve (39) is connected to the degassing pipe (37). The degassing valve (39) is an electronic expansion valve having a variable opening.
 〈冷却熱交換器〉
 室外回路(11)は、冷却熱交換器(16)を備える。冷却熱交換器(16)は、気液分離器(15)で分離された冷媒(主として液冷媒)を冷却する過冷却熱交換器(16)である。過冷却熱交換器(16)は、気液分離器(15)と第2室外膨張弁(18)との間に接続される。過冷却熱交換器(16)は、高圧側流路である第1流路(16a)と、低圧側流路である第2流路(16b)とを有する。過冷却熱交換器(16)では、第1流路(16a)を流れる高圧冷媒と、第2流路(16b)を流れる減圧された冷媒とが熱交換する。
<Cooling heat exchanger>
The outdoor circuit (11) comprises a cooling heat exchanger (16). The cooling heat exchanger (16) is a supercooling heat exchanger (16) that cools the refrigerant (mainly the liquid refrigerant) separated by the gas-liquid separator (15). The supercooled heat exchanger (16) is connected between the gas-liquid separator (15) and the second outdoor expansion valve (18). The supercooling heat exchanger (16) has a first flow path (16a) which is a high pressure side flow path and a second flow path (16b) which is a low pressure side flow path. In the supercooling heat exchanger (16), the high-pressure refrigerant flowing through the first flow path (16a) and the decompressed refrigerant flowing through the second flow path (16b) exchange heat.
 過冷却熱交換器(16)では、第1流路(16a)を流れる冷媒が冷却される。第1流路(16a)は、熱源回路(11)の液冷媒が流れる液管である室外第4管(o4)の途中に接続される。 In the supercooling heat exchanger (16), the refrigerant flowing through the first flow path (16a) is cooled. The first flow path (16a) is connected in the middle of the outdoor fourth pipe (o4), which is a liquid pipe through which the liquid refrigerant of the heat source circuit (11) flows.
 第2流路(16b)は、第1流路(16a)を流れる冷媒を冷却する冷媒が流れる流路である。第2流路(16b)は、中間インジェクション回路(49)に含まれる。具体的に、第2流路(16b)は、インジェクション管(38)における、減圧弁(40)の下流側に接続される。第2流路(16b)には、第1流路(16a)から分流し、減圧弁(40)で減圧された冷媒が流れる。 The second flow path (16b) is a flow path through which the refrigerant that cools the refrigerant flowing through the first flow path (16a) flows. The second flow path (16b) is included in the intermediate injection circuit (49). Specifically, the second flow path (16b) is connected to the downstream side of the pressure reducing valve (40) in the injection pipe (38). A refrigerant that has been diverted from the first flow path (16a) and depressurized by the pressure reducing valve (40) flows through the second flow path (16b).
 〈中間冷却器〉
 中間冷却器(17)は、中間流路(41)に接続される。中間流路(41)の一端は、第2圧縮機(22)の第2吐出管(22b)、及び第3圧縮機(23)の第3吐出管(23b)に接続される。中間流路(41)の他端は、第1圧縮機(21)の第1吸入管(21a)に接続される。換言すると、中間流路(41)の他端は、圧縮要素(C)の中間圧力部に接続される。
<Intercooler>
The intercooler (17) is connected to the intermediate flow path (41). One end of the intermediate flow path (41) is connected to the second discharge pipe (22b) of the second compressor (22) and the third discharge pipe (23b) of the third compressor (23). The other end of the intermediate flow path (41) is connected to the first suction pipe (21a) of the first compressor (21). In other words, the other end of the intermediate flow path (41) is connected to the intermediate pressure portion of the compression element (C).
 中間冷却器(17)は、フィン・アンド・チューブ型の空気熱交換器である。中間冷却器(17)の近傍には、冷却ファン(17a)が配置される。中間冷却器(17)は、その内部を流れる冷媒と、冷却ファン(17a)が搬送する室外空気とを熱交換させる。 The intercooler (17) is a fin-and-tube type air heat exchanger. A cooling fan (17a) is arranged in the vicinity of the intercooler (17). The intercooler (17) exchanges heat between the refrigerant flowing inside the intercooler (17) and the outdoor air carried by the cooling fan (17a).
 〈油分離回路〉
 室外回路(11)は、油分離回路(42)を含む。油分離回路(42)は、油分離器(43)と、第1油戻し管(44)と、第2油戻し管(45)と、第3油戻し管(46)とを有する。油分離器(43)は、第1圧縮機(21)の第1吐出管(21b)に接続される。油分離器(43)は、圧縮要素(C)から吐出された冷媒中から油を分離する。第1油戻し管(44)の流入端は、油分離器(43)に連通する。第1油戻し管(44)の流出端は、第2圧縮機(22)の第2吸入管(22a)に接続される。第2油戻し管(45)の流入端は、油分離器(43)に連通する。第2油戻し管(45)の流出端は、中間流路(41)の流入端に接続する。第3油戻し管(46)は、主戻し管(46a)、冷設側分岐管(46b)、及び室内側分岐管(46c)を有する。主戻し管(46a)の流入端は、油分離器(43)に連通する。主戻し管(46a)の流出端には、冷設側分岐管(46b)の流入端と、室内側分岐管(46c)の流入端とが接続される。冷設側分岐管(46b)の流出端は、第2圧縮機(22)のケーシング内の油溜まりに連通する。室内側分岐管(46c)の流出端は、第3圧縮機(23)のケーシング内の油溜まりに連通する。
<Oil separation circuit>
The outdoor circuit (11) includes an oil separation circuit (42). The oil separation circuit (42) includes an oil separator (43), a first oil return pipe (44), a second oil return pipe (45), and a third oil return pipe (46). The oil separator (43) is connected to the first discharge pipe (21b) of the first compressor (21). The oil separator (43) separates the oil from the refrigerant discharged from the compression element (C). The inflow end of the first oil return pipe (44) communicates with the oil separator (43). The outflow end of the first oil return pipe (44) is connected to the second suction pipe (22a) of the second compressor (22). The inflow end of the second oil return pipe (45) communicates with the oil separator (43). The outflow end of the second oil return pipe (45) is connected to the inflow end of the intermediate flow path (41). The third oil return pipe (46) has a main return pipe (46a), a cold side branch pipe (46b), and an indoor side branch pipe (46c). The inflow end of the main return pipe (46a) communicates with the oil separator (43). The inflow end of the cold side branch pipe (46b) and the inflow end of the indoor side branch pipe (46c) are connected to the outflow end of the main return pipe (46a). The outflow end of the cold side branch pipe (46b) communicates with the oil pool in the casing of the second compressor (22). The outflow end of the indoor branch pipe (46c) communicates with the oil sump in the casing of the third compressor (23).
 第1油戻し管(44)には、第1油量調節弁(47a)が接続される。第2油戻し管(45)には、第2油量調節弁(47b)が接続される。冷設側分岐管(46b)には、第3油量調節弁(47c)が接続される。室内側分岐管(46c)には、第4油量調節弁(47d)が接続される。 The first oil amount control valve (47a) is connected to the first oil return pipe (44). A second oil amount control valve (47b) is connected to the second oil return pipe (45). A third oil amount control valve (47c) is connected to the cold side branch pipe (46b). A fourth oil amount control valve (47d) is connected to the indoor branch pipe (46c).
 油分離器(43)で分離された油は、第1油戻し管(44)を介して第2圧縮機(22)に戻される。油分離器(43)で分離された油は、第2油戻し管(45)を介して第3圧縮機(23)に戻される。油分離器(43)で分離された油は、第3油戻し管(46)を介して、第2圧縮機(22)及び第3圧縮機(23)の各ケーシング内の油溜まりに戻される。 The oil separated by the oil separator (43) is returned to the second compressor (22) via the first oil return pipe (44). The oil separated by the oil separator (43) is returned to the third compressor (23) via the second oil return pipe (45). The oil separated by the oil separator (43) is returned to the oil sump in each casing of the second compressor (22) and the third compressor (23) via the third oil return pipe (46). ..
 〈逆止弁〉
 室外回路(11)は、第1逆止弁(CV1)、第2逆止弁(CV2)、第3逆止弁(CV3)、第4逆止弁(CV4)、第5逆止弁(CV5)、第6逆止弁(CV6)、及び第7逆止弁(CV7)を有する。第1逆止弁(CV1)は、第1吐出管(21b)に接続される。第2逆止弁(CV2)は、第2吐出管(22b)に接続される。第3逆止弁(CV3)は、第3吐出管(23b)に接続される。第4逆止弁(CV4)は、室外第2管(o2)に接続される。第5逆止弁(CV5)は、室外第3管(o3)に接続される。第6逆止弁(CV6)は、室外第6管(o6)に接続される。第7逆止弁(CV7)は、室外第7管(o7)に接続される。これらの逆止弁(CV1~CV7)は、図1に示す矢印方向の冷媒の流れを許容し、この矢印と反対方向の冷媒の流れを禁止する。
<Check valve>
The outdoor circuit (11) includes a first check valve (CV1), a second check valve (CV2), a third check valve (CV3), a fourth check valve (CV4), and a fifth check valve (CV5). ), A sixth check valve (CV6), and a seventh check valve (CV7). The first check valve (CV1) is connected to the first discharge pipe (21b). The second check valve (CV2) is connected to the second discharge pipe (22b). The third check valve (CV3) is connected to the third discharge pipe (23b). The fourth check valve (CV4) is connected to the outdoor second pipe (o2). The fifth check valve (CV5) is connected to the outdoor third pipe (o3). The sixth check valve (CV6) is connected to the outdoor sixth pipe (o6). The 7th check valve (CV7) is connected to the outdoor 7th pipe (o7). These check valves (CV1 to CV7) allow the flow of the refrigerant in the direction of the arrow shown in FIG. 1 and prohibit the flow of the refrigerant in the direction opposite to the arrow.
 〈冷設ユニット〉
 冷設ユニット(60)は、庫内を冷却する第1利用ユニット(60)である。冷設ユニット(60)は、冷設ファン(62)と冷設回路(61)とを有する。冷設回路(61)の液端には、第2液連絡配管(4)が接続される。冷設回路(61)のガス端には、第2ガス連絡配管(5)が接続される。
<Colding unit>
The cooling unit (60) is a first-use unit (60) that cools the inside of the refrigerator. The cooling unit (60) has a cooling fan (62) and a cooling circuit (61). The second liquid connecting pipe (4) is connected to the liquid end of the cooling circuit (61). A second gas connecting pipe (5) is connected to the gas end of the cooling circuit (61).
 冷設回路(61)は、液端からガス端に向かって順に、冷設膨張弁(63)及び冷設熱交換器(64)を有する。冷設膨張弁(63)は、第2利用膨張弁である。冷設膨張弁(63)は、開度が可変な電子膨張弁で構成される。 The cold circuit (61) has a cold expansion valve (63) and a cold heat exchanger (64) in order from the liquid end to the gas end. The cold expansion valve (63) is a second-use expansion valve. The cold expansion valve (63) is composed of an electronic expansion valve having a variable opening.
 冷設熱交換器(64)は、フィン・アンド・チューブ型の空気熱交換器である。冷設ファン(62)は、冷設熱交換器(64)の近傍に配置される。冷設ファン(62)は、庫内空気を搬送する。冷設熱交換器(64)は、その内部を流れる冷媒と、冷設ファン(62)が搬送する庫内空気とを熱交換させる。 The cold heat exchanger (64) is a fin-and-tube type air heat exchanger. The cold fan (62) is located in the vicinity of the cold heat exchanger (64). The cold fan (62) conveys the air inside the refrigerator. The cold heat exchanger (64) exchanges heat between the refrigerant flowing inside the cold heat exchanger (64) and the air inside the refrigerator carried by the cold fan (62).
 〈空調ユニット〉
 空調ユニット(50)は、屋内に設置される第2利用ユニット(50)である。空調ユニット(50)は、冷設ユニット(60)よりも冷媒の蒸発温度が高い。空調ユニット(50)は、室内ファン(52)と、室内回路(51)とを有する。室内回路(51)の液端には、第1液連絡配管(2)が接続される。室内回路(51)のガス端には、第1ガス連絡配管(3)が接続される。
<Air conditioning unit>
The air conditioning unit (50) is a second utilization unit (50) installed indoors. The air conditioning unit (50) has a higher evaporation temperature of the refrigerant than the cooling unit (60). The air conditioning unit (50) has an indoor fan (52) and an indoor circuit (51). The first liquid connecting pipe (2) is connected to the liquid end of the indoor circuit (51). The first gas connecting pipe (3) is connected to the gas end of the indoor circuit (51).
 室内回路(51)は、液端からガス端に向かって順に、室内膨張弁(53)及び室内熱交換器(54)を有する。室内膨張弁(53)は、第1利用膨張弁である。室内膨張弁(53)は、開度が可変な電子膨張弁である。 The indoor circuit (51) has an indoor expansion valve (53) and an indoor heat exchanger (54) in order from the liquid end to the gas end. The indoor expansion valve (53) is a first-use expansion valve. The indoor expansion valve (53) is an electronic expansion valve having a variable opening.
 室内熱交換器(54)は、フィン・アンド・チューブ型の空気熱交換器である。室内ファン(52)は、室内熱交換器(54)の近傍に配置される。室内ファン(52)は、室内空気を搬送する。室内熱交換器(54)は、その内部を流れる冷媒と、室内ファン(52)が搬送する室内空気とを熱交換させる。 The indoor heat exchanger (54) is a fin-and-tube type air heat exchanger. The indoor fan (52) is located in the vicinity of the indoor heat exchanger (54). The indoor fan (52) carries indoor air. The indoor heat exchanger (54) exchanges heat between the refrigerant flowing inside the indoor heat exchanger (54) and the indoor air carried by the indoor fan (52).
 〈センサ〉
 冷凍装置(1)は、各種のセンサを有する。各種のセンサは、高圧圧力センサ(71)、中間圧圧力センサ(72)、第1低圧圧力センサ(73)、第2低圧圧力センサ(74)、二相冷媒圧力センサ(75)、及び圧力取得部(48)を含む。
<Sensor>
The refrigerating device (1) has various sensors. Various sensors include a high pressure pressure sensor (71), an intermediate pressure pressure sensor (72), a first low pressure pressure sensor (73), a second low pressure pressure sensor (74), a two-phase refrigerant pressure sensor (75), and pressure acquisition. Includes part (48).
 高圧圧力センサ(71)は、第1圧縮機(21)の吐出冷媒の圧力(高圧圧力(HP))を検出する。中間圧圧力センサ(72)は、中間流路(41)の冷媒の圧力、換言すると、第1圧縮機(21)と、第2圧縮機(22)及び第3圧縮機(23)との間の冷媒の圧力(中間圧力(MP))を検出する。第1低圧圧力センサ(73)は、第2圧縮機(22)に吸入される吸入冷媒の圧力(第1低圧圧力(LP1))を検出する。第2低圧圧力センサ(74)は、第3圧縮機(23)に吸入される吸入冷媒の圧力(第2低圧圧力(LP2))を検出する。二相冷媒圧力センサ(75)は、気液分離器(15)の液冷媒の圧力(二相冷媒圧力(RP))を検出する。 The high pressure pressure sensor (71) detects the pressure (high pressure pressure (HP)) of the discharged refrigerant of the first compressor (21). The intermediate pressure pressure sensor (72) is the pressure of the refrigerant in the intermediate flow path (41), in other words, between the first compressor (21) and the second compressor (22) and the third compressor (23). Detects the pressure of the refrigerant (intermediate pressure (MP)). The first low pressure pressure sensor (73) detects the pressure of the intake refrigerant sucked into the second compressor (22) (first low pressure pressure (LP1)). The second low pressure pressure sensor (74) detects the pressure of the intake refrigerant sucked into the third compressor (23) (second low pressure pressure (LP2)). The two-phase refrigerant pressure sensor (75) detects the pressure of the liquid refrigerant (two-phase refrigerant pressure (RP)) of the gas-liquid separator (15).
 本実施形態の圧力取得部は、出口圧力センサ(48)である。出口圧力センサ(48)は、室外第8管(o8)において、第2室外膨張弁(18)による減圧後の圧力(出口圧力(SP))を検知する。 The pressure acquisition unit of this embodiment is an outlet pressure sensor (48). The outlet pressure sensor (48) detects the pressure (outlet pressure (SP)) after decompression by the second outdoor expansion valve (18) in the outdoor eighth pipe (o8).
 他のセンサが検出する物理量として、高圧冷媒の温度、低圧冷媒の温度、中間圧冷媒の温度、室外熱交換器(13)の冷媒の温度、冷設熱交換器(64)の冷媒の温度、室外空気の温度、及び庫内空気の温度など挙げられる。 The physical quantities detected by other sensors include the temperature of the high-pressure refrigerant, the temperature of the low-pressure refrigerant, the temperature of the intermediate-pressure refrigerant, the temperature of the refrigerant in the outdoor heat exchanger (13), the temperature of the refrigerant in the cold heat exchanger (64), and so on. Examples include the temperature of the outdoor air and the temperature of the internal air.
 〈コントローラ〉
 コントローラ(100)は、制御基板上に搭載されたマイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリディバイス(具体的には半導体メモリ)とを含む。コントローラ(100)は、各種のセンサの検出信号に基づいて、冷凍装置(1)の各種の機器を制御する。
<controller>
The controller (100) includes a microcomputer mounted on a control board and a memory device (specifically, a semiconductor memory) for storing software for operating the microcomputer. The controller (100) controls various devices of the refrigerating device (1) based on the detection signals of various sensors.
 図2に示すように、制御部であるコントローラ(100)は、熱源ユニット(10)に設けられた室外コントローラ(101)と、空調ユニット(50)に設けられた室内コントローラ(102)と、冷設ユニット(60)に設けられた冷設コントローラ(103)とを有する。室外コントローラ(101)は、室内コントローラ(102)及び冷設コントローラ(103)と通信可能である。コントローラ(100)は、出口圧力センサ(48)、高圧圧力センサ(71)などの各種の圧力センサ、及び各種の温度センサ等と通信線で接続されている。コントローラ(100)は、第1室外膨張弁(14)、第2室外膨張弁(18)などを含む冷媒回路(6)の構成部品と通信線で接続されている。 As shown in FIG. 2, the controller (100) which is a control unit includes an outdoor controller (101) provided in the heat source unit (10), an indoor controller (102) provided in the air conditioner unit (50), and a cold controller (102). It has a cooling controller (103) provided in the installation unit (60). The outdoor controller (101) can communicate with the indoor controller (102) and the cold controller (103). The controller (100) is connected to various pressure sensors such as an outlet pressure sensor (48) and a high pressure pressure sensor (71), various temperature sensors, and the like by a communication line. The controller (100) is connected to the components of the refrigerant circuit (6) including the first outdoor expansion valve (14), the second outdoor expansion valve (18), and the like by a communication line.
 室外コントローラ(101)は、出口圧力センサ(48)で取得する圧力が目標圧力となるように、第2室外膨張弁(18)を制御する。目標圧力とは、冷設ユニット(60)の設計圧力より低い圧力である。 The outdoor controller (101) controls the second outdoor expansion valve (18) so that the pressure acquired by the outlet pressure sensor (48) becomes the target pressure. The target pressure is a pressure lower than the design pressure of the cooling unit (60).
 室外コントローラ(101)は、冷媒を圧縮要素(C)で臨界圧力以上まで圧縮するように制御する。室外コントローラ(101)は、二相冷媒圧力(RP)が亜臨界圧力まで減圧するように第1室外膨張弁(14)を制御する。 The outdoor controller (101) controls the refrigerant to be compressed to a critical pressure or higher by the compression element (C). The outdoor controller (101) controls the first outdoor expansion valve (14) so that the two-phase refrigerant pressure (RP) is reduced to the subcritical pressure.
 室外コントローラ(101)は、過冷却熱交換器(16)の冷却能力を制御する。具体的に、室外コントローラ(101)は、第2室外膨張弁(18)を流出した冷媒が液状態を維持するように、減圧弁(40)を制御する。 The outdoor controller (101) controls the cooling capacity of the supercooling heat exchanger (16). Specifically, the outdoor controller (101) controls the pressure reducing valve (40) so that the refrigerant flowing out of the second outdoor expansion valve (18) maintains a liquid state.
 -運転動作-
 冷凍装置(1)の運転動作について詳細に説明する。冷凍装置(1)の運転は、冷設運転、冷房運転、冷房/冷設運転、暖房運転、暖房/冷設運転、及びデフロスト運転を含む。
-Driving operation-
The operating operation of the refrigerating apparatus (1) will be described in detail. The operation of the refrigerating apparatus (1) includes a cooling operation, a cooling operation, a cooling / cooling operation, a heating operation, a heating / cooling operation, and a defrost operation.
 冷設運転では、冷設ユニット(60)が運転され、空調ユニット(50)は停止する。冷房運転では、冷設ユニット(60)が停止し、空調ユニット(50)が冷房を行う。冷房/冷設運転では、冷設ユニット(60)が運転され、空調ユニット(50)が冷房を行う。暖房運転では、冷設ユニット(60)が停止し、空調ユニット(50)が暖房を行う。暖房/冷設運転では、冷設ユニット(60)が運転され、空調ユニット(50)が暖房を行う。デフロスト運転では、冷設ユニット(60)が運転され、室外熱交換器(13)の表面の霜を融かす動作が行われる。暖房/冷設運転は、空調ユニット(50)の必要な暖房能力が比較的大きい条件下で実行される。 In the cold operation, the cold unit (60) is operated and the air conditioning unit (50) is stopped. In the cooling operation, the cooling unit (60) is stopped and the air conditioning unit (50) cools. In the cooling / cooling operation, the cooling unit (60) is operated and the air conditioning unit (50) cools. In the heating operation, the cooling unit (60) stops and the air conditioning unit (50) heats. In the heating / cooling operation, the cooling unit (60) is operated and the air conditioning unit (50) heats. In the defrost operation, the cooling unit (60) is operated to melt the frost on the surface of the outdoor heat exchanger (13). The heating / cooling operation is performed under conditions where the required heating capacity of the air conditioning unit (50) is relatively large.
 〈冷設運転〉
 図3に示す冷設運転では、第1三方弁(TV1)が第2状態、第2三方弁(TV2)が第1状態となる。第1室外膨張弁(14)及び第2室外膨張弁(18)が所定開度で開放され、冷設膨張弁(63)の開度が過熱度制御により調節される。室内膨張弁(53)が全閉状態となり、減圧弁(40)の開度が適宜調節される。室外ファン(12)、冷却ファン(17a)、及び冷設ファン(62)が運転され、室内ファン(52)は停止する。第1圧縮機(21)及び第2圧縮機(22)が運転され、第3圧縮機(23)は停止する。冷設運転では、室外熱交換器(13)が放熱器となり、冷設熱交換器(64)が蒸発器となる冷凍サイクルが行われる。
<Cold operation>
In the cold operation shown in FIG. 3, the first three-way valve (TV1) is in the second state and the second three-way valve (TV2) is in the first state. The first outdoor expansion valve (14) and the second outdoor expansion valve (18) are opened at a predetermined opening degree, and the opening degree of the cold expansion valve (63) is adjusted by superheat degree control. The indoor expansion valve (53) is fully closed, and the opening degree of the pressure reducing valve (40) is adjusted as appropriate. The outdoor fan (12), the cooling fan (17a), and the cooling fan (62) are operated, and the indoor fan (52) is stopped. The first compressor (21) and the second compressor (22) are operated, and the third compressor (23) is stopped. In the cold operation, a refrigeration cycle is performed in which the outdoor heat exchanger (13) serves as a radiator and the cold heat exchanger (64) serves as an evaporator.
 図3に示すように、第2圧縮機(22)で圧縮された冷媒は、中間冷却器(17)で冷却された後、第1圧縮機(21)に吸入される。第1圧縮機(21)で圧縮された冷媒は、室外熱交換器(13)で放熱された後、第1室外膨張弁(14)により減圧され、第2圧力(臨界圧力)より低い冷媒となる。この冷媒は、気液分離器(15)を流れ、過冷却熱交換器(16)で冷却される。過冷却熱交換器(16)で冷却された冷媒は、第2室外膨張弁(18)により減圧される。減圧された冷媒は、冷設膨張弁(63)で減圧された後、冷設熱交換器(64)で蒸発する。この結果、庫内空気が冷却される。冷却熱交換器(16)で蒸発した冷媒は、第2圧縮機(22)に吸入され、再び圧縮される。 As shown in FIG. 3, the refrigerant compressed by the second compressor (22) is cooled by the intercooler (17) and then sucked into the first compressor (21). The refrigerant compressed by the first compressor (21) is dissipated by the outdoor heat exchanger (13) and then decompressed by the first outdoor expansion valve (14) to become a refrigerant lower than the second pressure (critical pressure). Become. This refrigerant flows through the gas-liquid separator (15) and is cooled by the supercooling heat exchanger (16). The refrigerant cooled by the supercooling heat exchanger (16) is depressurized by the second outdoor expansion valve (18). The decompressed refrigerant is decompressed by the cold expansion valve (63) and then evaporated by the cold heat exchanger (64). As a result, the air inside the refrigerator is cooled. The refrigerant evaporated in the cooling heat exchanger (16) is sucked into the second compressor (22) and compressed again.
 〈冷房運転〉
 図4に示す冷房運転では、第1三方弁(TV1)が第2状態、第2三方弁(TV2)が第1状態となる。第1室外膨張弁(14)が所定開度で開放され、第2室外膨張弁(18)及び冷設膨張弁(63)が全閉状態となる。室内膨張弁(53)、及び減圧弁(40)の開度が適宜調節される。室外ファン(12)、冷却ファン(17a)、及び室内ファン(52)が運転され、冷設ファン(62)は停止する。第1圧縮機(21)及び第3圧縮機(23)が運転され、第2圧縮機(22)は停止する。冷房運転では、室外熱交換器(13)が放熱器となり、室内熱交換器(54)が蒸発器となる冷凍サイクルが行われる。
<Cooling operation>
In the cooling operation shown in FIG. 4, the first three-way valve (TV1) is in the second state and the second three-way valve (TV2) is in the first state. The first outdoor expansion valve (14) is opened at a predetermined opening degree, and the second outdoor expansion valve (18) and the cold expansion valve (63) are fully closed. The opening degrees of the indoor expansion valve (53) and the pressure reducing valve (40) are adjusted as appropriate. The outdoor fan (12), the cooling fan (17a), and the indoor fan (52) are operated, and the cooling fan (62) is stopped. The first compressor (21) and the third compressor (23) are operated, and the second compressor (22) is stopped. In the cooling operation, a refrigeration cycle is performed in which the outdoor heat exchanger (13) serves as a radiator and the indoor heat exchanger (54) serves as an evaporator.
 図4に示すように、第3圧縮機(23)で圧縮された冷媒は、中間冷却器(17)で冷却された後、第1圧縮機(21)に吸入される。第1圧縮機(21)で圧縮された冷媒は、室外熱交換器(13)で放熱し、気液分離器(15)を流れ、過冷却熱交換器(16)で冷却される。冷却熱交換器(16)で冷却された冷媒は、室内膨張弁(53)で減圧された後、室内熱交換器(54)で蒸発する。この結果、室内空気が冷却される。室内熱交換器(54)で蒸発した冷媒は、第3圧縮機(23)に吸入され、再び圧縮される。 As shown in FIG. 4, the refrigerant compressed by the third compressor (23) is cooled by the intercooler (17) and then sucked into the first compressor (21). The refrigerant compressed by the first compressor (21) dissipates heat in the outdoor heat exchanger (13), flows through the gas-liquid separator (15), and is cooled by the supercooling heat exchanger (16). The refrigerant cooled by the cooling heat exchanger (16) is decompressed by the indoor expansion valve (53) and then evaporated by the indoor heat exchanger (54). As a result, the indoor air is cooled. The refrigerant evaporated in the indoor heat exchanger (54) is sucked into the third compressor (23) and compressed again.
 〈冷房/冷設運転〉
 図5に示す冷房/冷設運転では、第1三方弁(TV1)が第2状態、第2三方弁(TV2)が第1状態となる。第1室外膨張弁(14)及び第2室外膨張弁(18)が所定開度で開放される。冷設膨張弁(63)、室内膨張弁(53)、及び減圧弁(40)の開度が適宜調節される。室外ファン(12)、冷却ファン(17a)、冷設ファン(62)、及び室内ファン(52)が運転される。第1圧縮機(21)、第2圧縮機(22)、及び第3圧縮機(23)が運転される。冷房/冷設運転では、室外熱交換器(13)で放熱器となり、冷設熱交換器(64)及び室内熱交換器(54)が蒸発器となる冷凍サイクルが行われる。
<Cooling / cooling operation>
In the cooling / cooling operation shown in FIG. 5, the first three-way valve (TV1) is in the second state and the second three-way valve (TV2) is in the first state. The first outdoor expansion valve (14) and the second outdoor expansion valve (18) are opened at a predetermined opening degree. The opening degrees of the cold expansion valve (63), the indoor expansion valve (53), and the pressure reducing valve (40) are adjusted as appropriate. The outdoor fan (12), cooling fan (17a), cooling fan (62), and indoor fan (52) are operated. The first compressor (21), the second compressor (22), and the third compressor (23) are operated. In the cooling / cooling operation, a refrigeration cycle is performed in which the outdoor heat exchanger (13) serves as a radiator and the cold heat exchanger (64) and the indoor heat exchanger (54) serve as evaporators.
 図5に示すように、第2圧縮機(22)及び第3圧縮機(23)でそれぞれ圧縮された冷媒は、中間冷却器(17)で冷却された後、第1圧縮機(21)に吸入される。第1圧縮機(21)で圧縮された冷媒は、室外熱交換器(13)で放熱された後、第1室外膨張弁(14)により減圧され、第2圧力(臨界圧力)より低い冷媒となる。この冷媒は、気液分離器(15)を流れ、過冷却熱交換器(16)で冷却される。過冷却熱交換器(16)で冷却された冷媒は、室外第8管(o8)と室外第6管(o6)とに分流する。室外第6管(o6)に分流した冷媒は、空調ユニット(50)に流入する。室内膨張弁(53)で減圧された冷媒は、室内熱交換器(54)で蒸発する。室内熱交換器(54)で蒸発した冷媒は、第3圧縮機(23)に吸入され、再び圧縮される。室外第8管(o8)に流入した冷媒は、第2室外膨張弁(18)により減圧される。この冷媒は、冷設膨張弁(63)で減圧された後、冷設熱交換器(64)で蒸発する。冷設熱交換器(64)で蒸発した冷媒は、第2圧縮機(22)に吸入され、再び圧縮される。 As shown in FIG. 5, the refrigerants compressed by the second compressor (22) and the third compressor (23) are cooled by the intercooler (17) and then transferred to the first compressor (21). Inhaled. The refrigerant compressed by the first compressor (21) is dissipated by the outdoor heat exchanger (13) and then decompressed by the first outdoor expansion valve (14) to become a refrigerant lower than the second pressure (critical pressure). Become. This refrigerant flows through the gas-liquid separator (15) and is cooled by the supercooling heat exchanger (16). The refrigerant cooled by the supercooling heat exchanger (16) is divided into the outdoor sixth pipe (o8) and the outdoor sixth pipe (o6). The refrigerant diverted to the outdoor sixth pipe (o6) flows into the air conditioning unit (50). The refrigerant decompressed by the indoor expansion valve (53) evaporates by the indoor heat exchanger (54). The refrigerant evaporated in the indoor heat exchanger (54) is sucked into the third compressor (23) and compressed again. The refrigerant flowing into the outdoor eighth pipe (o8) is depressurized by the second outdoor expansion valve (18). This refrigerant is depressurized by the cold expansion valve (63) and then evaporated by the cold heat exchanger (64). The refrigerant evaporated in the cold heat exchanger (64) is sucked into the second compressor (22) and compressed again.
 〈暖房運転〉
 図6に示す暖房運転では、第1三方弁(TV1)が第1状態、第2三方弁(TV2)が第2状態となる。室内膨張弁(53)が所定開度で開放され、第2室外膨張弁(18)及び冷設膨張弁(63)が全閉状態となる。第1室外膨張弁(14)、及び減圧弁(40)の開度が適宜調節される。室外ファン(12)、及び室内ファン(52)が運転され、冷却ファン(17a)、及び冷設ファン(62)が停止する。第1圧縮機(21)及び第3圧縮機(23)が運転され、第2圧縮機(22)は停止する。暖房運転では、室内熱交換器(54)が放熱器となり、室外熱交換器(13)が蒸発器となる冷凍サイクルが行われる。
<Heating operation>
In the heating operation shown in FIG. 6, the first three-way valve (TV1) is in the first state and the second three-way valve (TV2) is in the second state. The indoor expansion valve (53) is opened at a predetermined opening degree, and the second outdoor expansion valve (18) and the cold expansion valve (63) are fully closed. The opening degrees of the first outdoor expansion valve (14) and the pressure reducing valve (40) are appropriately adjusted. The outdoor fan (12) and the indoor fan (52) are operated, and the cooling fan (17a) and the cooling fan (62) are stopped. The first compressor (21) and the third compressor (23) are operated, and the second compressor (22) is stopped. In the heating operation, a refrigeration cycle is performed in which the indoor heat exchanger (54) serves as a radiator and the outdoor heat exchanger (13) serves as an evaporator.
 図6に示すように、第3圧縮機(23)で圧縮された冷媒は、中間冷却器(17)を通過した後、第1圧縮機(21)に吸入される。第1圧縮機(21)で圧縮された冷媒は、室内熱交換器(54)で放熱する。この結果、室内空気が加熱される。室内熱交換器(54)で放熱した冷媒は、気液分離器(15)を流れ、冷却熱交換器(16)で冷却される。冷却熱交換器(16)で冷却された冷媒は、第1室外膨張弁(14)で減圧された後、室外熱交換器(13)で蒸発する。室外熱交換器(13)で蒸発した冷媒は、第3圧縮機(23)に吸入され、再び圧縮される。 As shown in FIG. 6, the refrigerant compressed by the third compressor (23) is sucked into the first compressor (21) after passing through the intercooler (17). The refrigerant compressed by the first compressor (21) dissipates heat by the indoor heat exchanger (54). As a result, the indoor air is heated. The refrigerant dissipated by the indoor heat exchanger (54) flows through the gas-liquid separator (15) and is cooled by the cooling heat exchanger (16). The refrigerant cooled by the cooling heat exchanger (16) is decompressed by the first outdoor expansion valve (14) and then evaporated by the outdoor heat exchanger (13). The refrigerant evaporated in the outdoor heat exchanger (13) is sucked into the third compressor (23) and compressed again.
 〈暖房/冷設運転〉
 図7に示す暖房/冷設運転では、第1三方弁(TV1)が第1状態、第2三方弁(TV2)が第2状態となる。室内膨張弁(53)が所定開度で開放される。冷設膨張弁(63)、第1室外膨張弁(14)、第2室外膨張弁(18)、及び減圧弁(40)の開度が適宜調節される。室外ファン(12)、冷設ファン(62)、及び室内ファン(52)が運転される。冷却ファン(17a)は停止する。第1圧縮機(21)、第2圧縮機(22)、及び第3圧縮機(23)が運転される。暖房/冷設運転では、室内熱交換器(54)が放熱器となり、冷設熱交換器(64)及び室外熱交換器(13)が蒸発器となる冷凍サイクルが行われる。
<Heating / cooling operation>
In the heating / cooling operation shown in FIG. 7, the first three-way valve (TV1) is in the first state and the second three-way valve (TV2) is in the second state. The indoor expansion valve (53) is opened at a predetermined opening. The opening degrees of the cold expansion valve (63), the first outdoor expansion valve (14), the second outdoor expansion valve (18), and the pressure reducing valve (40) are appropriately adjusted. The outdoor fan (12), the cooling fan (62), and the indoor fan (52) are operated. The cooling fan (17a) is stopped. The first compressor (21), the second compressor (22), and the third compressor (23) are operated. In the heating / cooling operation, a refrigeration cycle is performed in which the indoor heat exchanger (54) serves as a radiator and the cold heat exchanger (64) and the outdoor heat exchanger (13) serve as evaporators.
 図7に示すように、第2圧縮機(22)及び第3圧縮機(23)でそれぞれ圧縮された冷媒は、中間冷却器(17)を通過した後、第1圧縮機(21)に吸入される。第1圧縮機(21)で圧縮された冷媒は、室内熱交換器(54)で放熱する。この結果、室内空気が加熱される。室内熱交換器(54)で放熱した冷媒は、気液分離器(15)を流れ、冷却熱交換器(16)で冷却される。冷却熱交換器(16)で冷却された冷媒の一部は、第1室外膨張弁(14)で減圧された後、室外熱交換器(13)で蒸発する。室外熱交換器(13)で蒸発した冷媒は、第3圧縮機(23)に吸入され、再び圧縮される。 As shown in FIG. 7, the refrigerants compressed by the second compressor (22) and the third compressor (23) are sucked into the first compressor (21) after passing through the intercooler (17). Will be done. The refrigerant compressed by the first compressor (21) dissipates heat by the indoor heat exchanger (54). As a result, the indoor air is heated. The refrigerant dissipated by the indoor heat exchanger (54) flows through the gas-liquid separator (15) and is cooled by the cooling heat exchanger (16). A part of the refrigerant cooled by the cooling heat exchanger (16) is decompressed by the first outdoor expansion valve (14) and then evaporated by the outdoor heat exchanger (13). The refrigerant evaporated in the outdoor heat exchanger (13) is sucked into the third compressor (23) and compressed again.
 冷却熱交換器(16)で冷却された冷媒の残りは、第2室外膨張弁(18)により減圧される。この冷媒は、冷設熱交換器(64)で蒸発する。この結果、庫内空気が冷却される。冷設熱交換器(64)で蒸発した冷媒は、第2圧縮機(22)に吸入され、再び圧縮される。 The rest of the refrigerant cooled by the cooling heat exchanger (16) is decompressed by the second outdoor expansion valve (18). This refrigerant evaporates in the cold heat exchanger (64). As a result, the air inside the refrigerator is cooled. The refrigerant evaporated in the cold heat exchanger (64) is sucked into the second compressor (22) and compressed again.
 〈デフロスト運転〉
 デフロスト運転では、図4に示す冷房運転と同じ動作が行われる。デフロスト運転では、第2圧縮機(22)及び第1圧縮機(21)で圧縮された冷媒が、室外熱交換器(13)で放熱する。この結果、室外熱交換器(13)の表面の霜が内部から加熱される。室外熱交換器(13)の除霜に利用された冷媒は、室内熱交換器(54)で蒸発した後、第2圧縮機(22)に吸入され、再び圧縮される。
<Defrost operation>
In the defrost operation, the same operation as the cooling operation shown in FIG. 4 is performed. In the defrost operation, the refrigerant compressed by the second compressor (22) and the first compressor (21) dissipates heat by the outdoor heat exchanger (13). As a result, the frost on the surface of the outdoor heat exchanger (13) is heated from the inside. The refrigerant used for defrosting the outdoor heat exchanger (13) evaporates in the indoor heat exchanger (54), is sucked into the second compressor (22), and is compressed again.
 -空調ユニットと冷設ユニットとを備える冷凍装置の課題-
 空調ユニットと冷設ユニットとを備え、冷媒を二酸化炭素とする二段圧縮式の冷媒回路を備える冷凍装置の冷房/冷設の冷凍サイクルの概略について図8及び図9を参照して説明する。
-Issues of refrigeration equipment equipped with air conditioning unit and cooling unit-
The outline of the cooling / cooling refrigeration cycle of a refrigerating apparatus including an air conditioning unit and a cooling unit and a two-stage compression type refrigerant circuit in which carbon dioxide is used as a refrigerant will be described with reference to FIGS. 8 and 9.
 圧縮要素(C)により圧縮された冷媒は高圧圧力(HP)となる。この高圧冷媒は室外熱交換器(13)を通過する際に放熱した後、第1室外膨張弁(14)により減圧される。この減圧後の冷媒の圧力は二相冷媒圧力(RP)となる。二相冷媒圧力(RP)の冷媒は、気液分離器(15)で液冷媒とガス冷媒とに分離し、液冷媒が過冷却熱交換器(16)により過冷却される。過冷却状態の液冷媒は、冷設ユニット(60)と空調ユニット(50)とに分流する。冷設熱交換器(64)へ向かう液冷媒は、冷設膨張弁(63)により減圧され、第1低圧圧力(LP1)となる。室内熱交換器(54)へ向かう液冷媒は、室内膨張弁(53)により減圧され、第2低圧圧力(LP2)となる。第1低圧圧力(LP1)となった冷媒は、第2圧縮機(22)に吸入される。第2低圧圧力(LP2)となった冷媒は、第3圧縮機(23)に吸入される。第2圧縮機(22)及び第3圧縮機(23)により圧縮された冷媒は、インジェクション管(38)を流通する冷媒と合流して、中間圧力(MP)となる。この中間圧力(MP)は、中間インジェクション回路(49)の減圧弁(40)により調節される。 The refrigerant compressed by the compression element (C) has a high pressure (HP). This high-pressure refrigerant dissipates heat when passing through the outdoor heat exchanger (13), and then is depressurized by the first outdoor expansion valve (14). The pressure of the refrigerant after this decompression becomes the two-phase refrigerant pressure (RP). The two-phase refrigerant pressure (RP) refrigerant is separated into a liquid refrigerant and a gas refrigerant by the gas-liquid separator (15), and the liquid refrigerant is supercooled by the supercooling heat exchanger (16). The supercooled liquid refrigerant is divided into a cooling unit (60) and an air conditioning unit (50). The liquid refrigerant directed to the cold heat exchanger (64) is depressurized by the cold expansion valve (63) to become the first low pressure (LP1). The liquid refrigerant directed to the indoor heat exchanger (54) is depressurized by the indoor expansion valve (53) to become the second low pressure pressure (LP2). The refrigerant that has reached the first low pressure (LP1) is sucked into the second compressor (22). The refrigerant that has reached the second low pressure (LP2) is sucked into the third compressor (23). The refrigerant compressed by the second compressor (22) and the third compressor (23) merges with the refrigerant flowing through the injection pipe (38) to reach an intermediate pressure (MP). This intermediate pressure (MP) is adjusted by the pressure reducing valve (40) of the intermediate injection circuit (49).
 ここで、図8に示すように、例えば、高圧圧力(HP)を9.0MPa、二相冷媒圧力(RP)を6.5MPa、中間圧力(MP)を5.0MPa、第1低圧圧力(LP1)を2.5MPa、及び第2低圧圧力(LP2)を3.8MPaとする。冷設ユニット(60)の設計圧力を6.0MPaとしたとき、冷設膨張弁(63)に流入する冷媒の二相冷媒圧力(RP)を6.0MPa(設計圧力)より下げる必要がある。しかし、二相冷媒圧力(RP)及び中間圧力(MP)の両方を設計圧力より下げると、図9に示すように、高段側の第2圧縮部(21)の圧縮比が低段側の第1圧縮部(22,23)の圧縮比に比べ大きくなり、第2圧縮部(21)への負担が大きくなるという問題が生じる。言い換えると、後述するように、第1圧縮部(22,23)と第2圧縮部(21)のバランスが崩れる。 Here, as shown in FIG. 8, for example, the high pressure pressure (HP) is 9.0 MPa, the two-phase refrigerant pressure (RP) is 6.5 MPa, the intermediate pressure (MP) is 5.0 MPa, and the first low pressure pressure (LP1). ) Is 2.5 MPa, and the second low pressure pressure (LP2) is 3.8 MPa. When the design pressure of the cooling unit (60) is 6.0 MPa, it is necessary to lower the two-phase refrigerant pressure (RP) of the refrigerant flowing into the cooling expansion valve (63) from 6.0 MPa (design pressure). However, when both the two-phase refrigerant pressure (RP) and the intermediate pressure (MP) are lowered below the design pressure, the compression ratio of the second compression section (21) on the higher stage side becomes lower than the design pressure, as shown in FIG. It becomes larger than the compression ratio of the first compression part (22, 23), and there arises a problem that the load on the second compression part (21) becomes large. In other words, as will be described later, the balance between the first compression unit (22, 23) and the second compression unit (21) is lost.
 さらに、室内膨張弁(53)及び冷設膨張弁(63)に流入する冷媒は、液状態であることが望ましい。冷媒は、一部が気化してしまうと、各膨張弁(53,63)から各熱交換器(54,64)へ流れる冷媒が偏流する場合があるからである。そのため、本実施形態では、気液分離器(15)から流出した冷媒は、液状態を維持するために、過冷却熱交換器(16)において過冷却状態にされる。過冷却熱交換器(16)では、第1流路(16a)を流れる冷媒が、第1流路(16a)の上流側と下流側で例えば10℃低下するように、減圧弁(40)を制御することにより第2流路(16b)に流入する冷媒を1.5MPa(10℃相当)減圧する。このように、過冷却熱交換器(16)の冷却能力を確保するために、二相冷媒圧力(RP)と中間圧力(MP)との差圧を、1.5MPaに設定する。その結果、例えば、図9に示すように二相冷媒圧力(RP)を冷設ユニットの設計圧力(6.0MPa)より低い5.5MPaに設定すると、中間圧力(MP)は4.0MPaになる。中間圧力(MP)が4.0MPaまで低下すると、空調ユニット(50)の第2低圧圧力(LP2)が3.8MPaであるため、中間圧力(MP)と第2低圧圧力(LP2)との差圧が小さくなる。このため、第3圧縮機(23)に吸入される冷媒の循環量が少なくなるため、空調ユニット(50)の空調能力を確保できないという問題が生じる。 Furthermore, it is desirable that the refrigerant flowing into the indoor expansion valve (53) and the cold expansion valve (63) is in a liquid state. This is because if a part of the refrigerant is vaporized, the refrigerant flowing from each expansion valve (53, 63) to each heat exchanger (54, 64) may flow unevenly. Therefore, in the present embodiment, the refrigerant flowing out of the gas-liquid separator (15) is supercooled in the supercooling heat exchanger (16) in order to maintain the liquid state. In the supercooling heat exchanger (16), the pressure reducing valve (40) is set so that the refrigerant flowing through the first flow path (16a) drops by, for example, 10 ° C. on the upstream side and the downstream side of the first flow path (16a). By controlling, the refrigerant flowing into the second flow path (16b) is depressurized by 1.5 MPa (equivalent to 10 ° C.). In this way, in order to secure the cooling capacity of the supercooling heat exchanger (16), the differential pressure between the two-phase refrigerant pressure (RP) and the intermediate pressure (MP) is set to 1.5 MPa. As a result, for example, when the two-phase refrigerant pressure (RP) is set to 5.5 MPa, which is lower than the design pressure (6.0 MPa) of the cooling unit, as shown in FIG. 9, the intermediate pressure (MP) becomes 4.0 MPa. .. When the intermediate pressure (MP) drops to 4.0 MPa, the second low pressure pressure (LP2) of the air conditioning unit (50) is 3.8 MPa, so the difference between the intermediate pressure (MP) and the second low pressure pressure (LP2). The pressure decreases. For this reason, the amount of circulation of the refrigerant sucked into the third compressor (23) is reduced, which causes a problem that the air conditioning capacity of the air conditioning unit (50) cannot be secured.
 一方、中間圧力(MP)と第2低圧圧力(LP2)との差圧を十分確保するために、中間圧力(MP)を高く設定すると、それに伴い二相冷媒圧力(RP)も高くなる。その結果、二相冷媒圧力(RP)は冷設ユニットの設計圧力(6.0MPa)を超えてしまう。 On the other hand, if the intermediate pressure (MP) is set high in order to sufficiently secure the differential pressure between the intermediate pressure (MP) and the second low pressure pressure (LP2), the two-phase refrigerant pressure (RP) also increases accordingly. As a result, the two-phase refrigerant pressure (RP) exceeds the design pressure (6.0 MPa) of the cooling unit.
 本実施形態の冷凍装置(1)は、このような課題を考慮し、二相冷媒圧力(RP)を低下させることなく、空調ユニット(50)の能力を確保しながら冷房/冷設運転を行う。具体的に、冷設ユニット(60)の第2液連絡配管(4)に連通する室外第8管(o8)に第2室外膨張弁(18)及び出口圧力センサ(48)を設ける。コントローラ(100)は、出口圧力センサ(48)に検知される圧力が、冷設ユニット(60)の設計圧力より低い目標圧力となるように、第2室外膨張弁(18)(第2減圧機構)を制御する。このことで、中間圧力(MP)を下げずに空調ユニット(50)の冷媒の循環量を確保し、出口圧力(SP)を下げることで冷設ユニット(60)の設計圧力に対応させる。 In consideration of such a problem, the refrigerating apparatus (1) of the present embodiment performs cooling / cooling operation while ensuring the capacity of the air conditioning unit (50) without lowering the two-phase refrigerant pressure (RP). .. Specifically, a second outdoor expansion valve (18) and an outlet pressure sensor (48) are provided in the outdoor eighth pipe (o8) communicating with the second liquid communication pipe (4) of the cooling unit (60). The controller (100) has a second outdoor expansion valve (18) (second decompression mechanism) so that the pressure detected by the outlet pressure sensor (48) becomes a target pressure lower than the design pressure of the cooling unit (60). ) Is controlled. As a result, the amount of refrigerant circulating in the air conditioning unit (50) is secured without lowering the intermediate pressure (MP), and the outlet pressure (SP) is lowered to correspond to the design pressure of the cooling unit (60).
 第2室外膨張弁(18)の制御の一例について、図10を参照しながら具体的に説明する。ここでは、冷設ユニット(60)の設計圧力を6.0MPaとする。目標圧力は、5.0MPa以上6.0MPa未満とする。冷房/冷設運転を行っている状態(図5の状態)を基準に説明する。 An example of control of the second outdoor expansion valve (18) will be specifically described with reference to FIG. Here, the design pressure of the cooling unit (60) is 6.0 MPa. The target pressure is 5.0 MPa or more and less than 6.0 MPa. The description will be made based on the state in which the cooling / cooling operation is performed (the state shown in FIG. 5).
 ステップST1では、室外コントローラ(101)は、冷設ユニット(60)が運転を開始するかを判定する。具体的に、室外コントローラ(101)が、冷設コントローラ(103)から冷設ユニット(60)の運転要求を受信すると、ステップST2に移行する。室外コントローラ(101)が、冷設コントローラ(103)から冷設ユニット(60)の運転要求を受信しない場合、図11の第1圧縮機(21)の起動制御(A)に移行する。 In step ST1, the outdoor controller (101) determines whether the cooling unit (60) starts operation. Specifically, when the outdoor controller (101) receives the operation request of the cooling unit (60) from the cooling controller (103), the process proceeds to step ST2. When the outdoor controller (101) does not receive the operation request of the cold unit (60) from the cold controller (103), it shifts to the start control (A) of the first compressor (21) of FIG.
 ステップST2では、室外コントローラ(101)は、気液分離器の二相冷媒圧力(RP)が所定の圧力より高いかを判定する。この所定の圧力は、冷媒が二酸化炭素である場合、冷媒が気体と液体とに分離可能な圧力(7.0MPa)である。二相冷媒圧力(RP)が所定の圧力(7.0MPa)より高い場合、ステップST3に移行する。二相冷媒圧力(RP)が所定の圧力(7.0MPa)以下である場合、ステップST4に移行する。 In step ST2, the outdoor controller (101) determines whether the two-phase refrigerant pressure (RP) of the gas-liquid separator is higher than the predetermined pressure. This predetermined pressure is a pressure (7.0 MPa) at which the refrigerant can be separated into a gas and a liquid when the refrigerant is carbon dioxide. If the two-phase refrigerant pressure (RP) is higher than the predetermined pressure (7.0 MPa), the process proceeds to step ST3. When the two-phase refrigerant pressure (RP) is equal to or lower than the predetermined pressure (7.0 MPa), the process proceeds to step ST4.
 ステップST3では、室外コントローラ(101)は、ガス抜き弁(39)を開放する。このことにより、気液分離器(15)の二相冷媒圧力(RP)は低下する。気液分離器(15)内のガス冷媒は、ガス抜き管(37)を流通して、中間圧力部(21a)に導入される。 In step ST3, the outdoor controller (101) opens the degassing valve (39). This lowers the two-phase refrigerant pressure (RP) of the gas-liquid separator (15). The gas refrigerant in the gas-liquid separator (15) flows through the degassing pipe (37) and is introduced into the intermediate pressure section (21a).
 ステップST4では、室外コントローラ(101)は、第2室外膨張弁(18)を所定の開度に調節する。この所定の開度は、例えば、240pls(パルス)である。なお、第2室外膨張弁(18)の開度が全開のとき、480plsである。240plsは半分の開度である。 In step ST4, the outdoor controller (101) adjusts the second outdoor expansion valve (18) to a predetermined opening degree. This predetermined opening degree is, for example, 240 pls (pulses). When the opening degree of the second outdoor expansion valve (18) is fully open, it is 480 pls. 240pls is half the opening.
 ステップST5では、出口圧力センサ(48)は、冷設ユニットに流出する冷媒の出口圧力(SP)を検知する。具体的に、出口圧力センサ(48)は、第2室外膨張弁(18)により減圧された冷媒の圧力を検知する。出口圧力(SP)が、目標圧力(5.0MPa以上6.0MPa未満)であれば、室外コントローラ(101)は本制御を終了し、そのままメインの制御フロー(図示せず)に戻す。出口圧力(SP)が目標圧力(5.0MPa以上6.0MPa未満)でない場合、ステップST6へ移行する。 In step ST5, the outlet pressure sensor (48) detects the outlet pressure (SP) of the refrigerant flowing out to the cooling unit. Specifically, the outlet pressure sensor (48) detects the pressure of the refrigerant decompressed by the second outdoor expansion valve (18). If the outlet pressure (SP) is the target pressure (5.0 MPa or more and less than 6.0 MPa), the outdoor controller (101) ends this control and returns to the main control flow (not shown) as it is. If the outlet pressure (SP) is not the target pressure (5.0 MPa or more and less than 6.0 MPa), the process proceeds to step ST6.
 ステップST6では、室外コントローラ(101)は、出口圧力(SP)が5.0MPa未満であるかを判定する。出口圧力(SP)が5.0MPa未満である場合、ステップST7へ移行する。出口圧力(SP)が5.0MPa未満でない場合、ステップST9へ移行する。 In step ST6, the outdoor controller (101) determines whether the outlet pressure (SP) is less than 5.0 MPa. If the outlet pressure (SP) is less than 5.0 MPa, the process proceeds to step ST7. If the outlet pressure (SP) is not less than 5.0 MPa, the process proceeds to step ST9.
 ステップST7では、室外コントローラ(101)は、第2室外膨張弁(18)が所定の開度以上であるかを判定する。この所定の開度とは、例えば480pls(全開)である。第2室外膨張弁(18)が全開である場合、ステップST5に移行する。ステップST5では、室外コントローラ(101)は、出口圧力(SP)が目標圧力(5.0MPa以上6.0MPa未満)にあるかを再び判定する。実際には、ステップST4にて第2室外膨張弁(18)の開度は240plsに設定されている。そのため、第2室外膨張弁(18)の開度は480plsより小さいので、ステップST8に移行する。 In step ST7, the outdoor controller (101) determines whether the second outdoor expansion valve (18) has a predetermined opening or more. The predetermined opening degree is, for example, 480 pls (fully open). If the second outdoor expansion valve (18) is fully open, the process proceeds to step ST5. In step ST5, the outdoor controller (101) again determines whether the outlet pressure (SP) is at the target pressure (5.0 MPa or more and less than 6.0 MPa). Actually, in step ST4, the opening degree of the second outdoor expansion valve (18) is set to 240 pls. Therefore, since the opening degree of the second outdoor expansion valve (18) is smaller than 480 pls, the process proceeds to step ST8.
 ステップST8では、室外コントローラ(101)は、第2室外膨張弁(18)の開度を現在の開度から大きくする。具体的に、室外コントローラ(101)は、第2室外膨張弁(18)の開度を現在の開度から2pls相当分大きくする。その後、ステップST5に移行する。ステップST5では、室外コントローラ(101)は、出口圧力(SP)が目標圧力(5.0MPa以上6.0MPa未満)にあるかを再び判定する。 In step ST8, the outdoor controller (101) increases the opening degree of the second outdoor expansion valve (18) from the current opening degree. Specifically, the outdoor controller (101) increases the opening degree of the second outdoor expansion valve (18) by 2 pls from the current opening degree. After that, the process proceeds to step ST5. In step ST5, the outdoor controller (101) again determines whether the outlet pressure (SP) is at the target pressure (5.0 MPa or more and less than 6.0 MPa).
 ステップST9では、出口圧力(SP)が、6.0MPa以上の状態である。室外コントローラ(101)は、第2室外膨張弁(18)の開度が所定の開度より小さいかを判定する。この所定の開度とは、例えば100plsである。第2室外膨張弁(18)の開度が、100pls未満であれば、ステップST10に移行する。第2室外膨張弁(18)の開度が100pls以上であれば、ステップST11に移行する。 In step ST9, the outlet pressure (SP) is 6.0 MPa or more. The outdoor controller (101) determines whether the opening degree of the second outdoor expansion valve (18) is smaller than the predetermined opening degree. The predetermined opening degree is, for example, 100 pls. If the opening degree of the second outdoor expansion valve (18) is less than 100 pls, the process proceeds to step ST10. If the opening degree of the second outdoor expansion valve (18) is 100 pls or more, the process proceeds to step ST11.
 ステップST11では、室外コントローラ(101)は、第2室外膨張弁(18)の開度を現在の開度から小さくする。具体的に、室外コントローラ(101)は、第2室外膨張弁(18)の開度を現在の開度から2pls相当分小さくする。その後、ステップST5に移行する。ステップST5では、室外コントローラ(101)は、出口圧力(SP)が目標圧力(5.0MPa以上6.0MPa未満)にあるかを再び判定する。 In step ST11, the outdoor controller (101) reduces the opening degree of the second outdoor expansion valve (18) from the current opening degree. Specifically, the outdoor controller (101) reduces the opening degree of the second outdoor expansion valve (18) by 2 pls from the current opening degree. After that, the process proceeds to step ST5. In step ST5, the outdoor controller (101) again determines whether the outlet pressure (SP) is at the target pressure (5.0 MPa or more and less than 6.0 MPa).
 ステップST11では、室外コントローラ(101)は、第2圧縮機(22)の運転を停止する。室外コントローラ(101)は、に第2圧縮機(22)の運転がOFFである旨の信号を冷設コントローラ(103)に送信する。この信号を受信した冷設コントローラ(103)は、冷設ユニット(60)の運転を停止させる。その後、第1圧縮機(21)の起動制御(A)に移行する。 In step ST11, the outdoor controller (101) stops the operation of the second compressor (22). The outdoor controller (101) transmits a signal to the cold controller (103) that the operation of the second compressor (22) is OFF. Upon receiving this signal, the cooling controller (103) stops the operation of the cooling unit (60). After that, the process shifts to the start control (A) of the first compressor (21).
 第1圧縮機(21)の起動制御(A)について図11を用いて説明する。室外コントローラ(101)は、第1圧縮機(21)の起動制御を開始する。ステップST21において、室外コントローラ(101)は、第2室外膨張弁(18)の開度を所定の開度に設定する。この所定の開度は、例えば100plsである。 The start control (A) of the first compressor (21) will be described with reference to FIG. The outdoor controller (101) starts start control of the first compressor (21). In step ST21, the outdoor controller (101) sets the opening degree of the second outdoor expansion valve (18) to a predetermined opening degree. This predetermined opening degree is, for example, 100 pls.
 ステップST22では、室外コントローラ(101)は、二相冷媒圧力(RP)が冷設ユニット(60)の設計圧力(6.0MPa)より大きいかを判定する。二相冷媒圧力(RP)が設計圧力(6.0MPa)より大きい場合、ステップST23に移行する。二相冷媒圧力(RP)が設計圧力(6.0MPa)以下であれば、二相冷媒圧力(RP)は十分低下しているので、室外コントローラ(101)は、第1圧縮機(21)の起動制御(A)を終了し、そのままメインの制御フロー(図示せず)に戻す。 In step ST22, the outdoor controller (101) determines whether the two-phase refrigerant pressure (RP) is greater than the design pressure (6.0 MPa) of the cooling unit (60). If the two-phase refrigerant pressure (RP) is greater than the design pressure (6.0 MPa), the process proceeds to step ST23. If the two-phase refrigerant pressure (RP) is less than or equal to the design pressure (6.0 MPa), the two-phase refrigerant pressure (RP) is sufficiently low, so that the outdoor controller (101) is the first compressor (21). Exit the start control (A) and return to the main control flow (not shown) as it is.
 ステップST23では、気液分離器(15)内の圧力が高いため、室外コントローラ(101)は、第1圧縮機(21)を運転する。第1圧縮機(21)が運転されると、気液分離器(15)のガス冷媒は第1圧縮機(21)に吸入される。このことにより、気液分離器(15)の圧力が低下する。室外コントローラ(101)は、本制御を終了して、メインの制御フロー(図示せず)に戻す。 In step ST23, the pressure inside the gas-liquid separator (15) is high, so the outdoor controller (101) operates the first compressor (21). When the first compressor (21) is operated, the gas refrigerant of the gas-liquid separator (15) is sucked into the first compressor (21). This reduces the pressure in the gas-liquid separator (15). The outdoor controller (101) ends this control and returns to the main control flow (not shown).
 -実施形態1の効果-
 本実施形態では、熱源ユニット(10)は、第1利用ユニット(60)と該第1利用ユニット(60)よりも冷媒の蒸発温度が高い第2利用ユニット(50)とを有する利用ユニット(50,60)の利用回路(51,61)に接続されて冷凍サイクルを行う冷媒回路(6)を構成する熱源回路(11)と、前記熱源回路(11)を制御する制御部(100)とを備える。前記熱源回路(11)は、第1圧縮部(22,23)と、前記第1圧縮部(22,23)で圧縮した冷媒を更に圧縮する第2圧縮部(21)とを有する前記圧縮要素(C)と、放熱器(13)と、第1減圧機構(14)と、前記放熱器(13)の下流側に接続され、前記第1減圧機構(14)を備える主流路(M)と、前記主流路(M)の端部に接続され、前記第1利用ユニット(60)に連通する第1分岐流路(o8)と、前記主流路(M)の前記端部に接続され、前記第2利用ユニット(50)に連通する第2分岐流路(o6)と、一端が前記主流路(M)に接続され、他端が前記第1圧縮部(22,23)及び前記第2圧縮部(21)の間に接続され、前記第1減圧機構(14)で減圧された冷媒が流入する中間インジェクション回路(49)と、前記第1分岐流路(o8)に設けられる第2減圧機構(18)とを備える。
-Effect of Embodiment 1-
In the present embodiment, the heat source unit (10) is a utilization unit (50) having a first utilization unit (60) and a second utilization unit (50) having a higher refrigerant evaporation temperature than the first utilization unit (60). , 60) The heat source circuit (11) that is connected to the utilization circuit (51, 61) and constitutes the refrigerant circuit (6) that performs the refrigeration cycle, and the control unit (100) that controls the heat source circuit (11). Be prepared. The heat source circuit (11) is the compression element having a first compression unit (22, 23) and a second compression unit (21) that further compresses the refrigerant compressed by the first compression unit (22, 23). (C), a radiator (13), a first decompression mechanism (14), and a main flow path (M) connected to the downstream side of the radiator (13) and provided with the first decompression mechanism (14). , The first branch flow path (o8) connected to the end of the main flow path (M) and communicating with the first utilization unit (60), and the end of the main flow path (M). The second branch flow path (o6) communicating with the second utilization unit (50), one end is connected to the main flow path (M), and the other end is the first compression section (22, 23) and the second compression. An intermediate injection circuit (49) connected between the parts (21) and into which the refrigerant decompressed by the first decompression mechanism (14) flows in, and a second decompression mechanism provided in the first branch flow path (o8). (18) and.
 この構成では、空調ユニット(50)に流入する冷媒の圧力は、第1室外膨張弁(14)により調節される。一方、冷設ユニット(60)に流入する冷媒の圧力は、第1室外膨張弁(14)及び第2室外膨張弁(18)により調節される。このことにより、例えば、図12に示すように、冷設ユニット(60)の設計圧力を6.0MPaとした場合、第2室外膨張弁(18)によって、冷設ユニット(60)に供給される冷媒を目標圧力(出口圧力(SP))である5.5MPaに調整できる。そのため、第1室外膨張弁(14)により二相冷媒圧力(RP)を目標圧力にまで下げる必要がない。このことにより、中間圧力(MP)も低下しないため、第2低圧圧力(LP2)と中間圧力(MP)との差圧を十分確保できる。その結果、熱源ユニット(10)から空調ユニット(50)へ冷媒が流れやすくなり、空調ユニット(50)の冷房能力を確保できる。 In this configuration, the pressure of the refrigerant flowing into the air conditioning unit (50) is adjusted by the first outdoor expansion valve (14). On the other hand, the pressure of the refrigerant flowing into the cooling unit (60) is adjusted by the first outdoor expansion valve (14) and the second outdoor expansion valve (18). As a result, for example, as shown in FIG. 12, when the design pressure of the cooling unit (60) is 6.0 MPa, it is supplied to the cooling unit (60) by the second outdoor expansion valve (18). The refrigerant can be adjusted to the target pressure (outlet pressure (SP)) of 5.5 MPa. Therefore, it is not necessary to reduce the two-phase refrigerant pressure (RP) to the target pressure by the first outdoor expansion valve (14). As a result, the intermediate pressure (MP) does not decrease, so that the differential pressure between the second low pressure pressure (LP2) and the intermediate pressure (MP) can be sufficiently secured. As a result, the refrigerant easily flows from the heat source unit (10) to the air conditioning unit (50), and the cooling capacity of the air conditioning unit (50) can be secured.
 加えて、中間圧力(MP)を低下させる必要がないため、第2圧縮部(21)の冷媒の圧縮比が第1圧縮部(22,23)の冷媒の圧縮比より大きくなることが抑制される。このことにより、第2圧縮部(第1圧縮機(21))への負担を軽減できる。 In addition, since it is not necessary to reduce the intermediate pressure (MP), it is suppressed that the compression ratio of the refrigerant in the second compression section (21) becomes larger than the compression ratio of the refrigerant in the first compression section (22, 23). To. As a result, the burden on the second compression unit (first compressor (21)) can be reduced.
 加えて、減圧弁(40)により減圧された冷媒は中間インジェクション回路(49)を介して第1圧縮部(22,23)と前記第2圧縮部(21)との間に導入できる。その結果、第1圧縮部(22,23)と第2圧縮部(21)の圧縮比のバランスが崩れることを抑制できる。 In addition, the refrigerant decompressed by the pressure reducing valve (40) can be introduced between the first compression unit (22, 23) and the second compression unit (21) via the intermediate injection circuit (49). As a result, it is possible to prevent the balance of the compression ratios of the first compression section (22, 23) and the second compression section (21) from being lost.
 本実施形態では、前記熱源回路(室外回路(11))は、前記第2減圧機構(第2室外膨張弁(18))による減圧後の冷媒の圧力を検知または推定する圧力取得部(48)を備える。前記第2減圧機構(18)は、開度が調節可能な弁であり、前記制御部(コントローラ(100))は、前記圧力取得部(48)が検知し又は推定した圧力が目標圧力となるように、前記第2減圧機構(18)の開度を制御する。 In the present embodiment, the heat source circuit (outdoor circuit (11)) detects or estimates the pressure of the refrigerant after decompression by the second decompression mechanism (second outdoor expansion valve (18)). To be equipped. The second decompression mechanism (18) is a valve whose opening degree can be adjusted, and the control unit (controller (100)) uses the pressure detected or estimated by the pressure acquisition unit (48) as the target pressure. As described above, the opening degree of the second decompression mechanism (18) is controlled.
 この構成では、冷設ユニット(60)に供給する冷媒の圧力を目標圧力に調節できる。そのため、冷設ユニット(60)に合わせて目標圧力を自由に設定できる。このことにより、熱源ユニット(10)を多種類の冷設ユニット(60)に対応させることができる。 With this configuration, the pressure of the refrigerant supplied to the cooling unit (60) can be adjusted to the target pressure. Therefore, the target pressure can be freely set according to the cooling unit (60). This makes it possible to make the heat source unit (10) compatible with various types of cooling units (60).
 本実施形態では、前記熱源回路(室外回路(11))は、気液分離器(15)を備える。前記中間インジェクション回路(49)は、前記気液分離器(15)に接続される第1冷媒配管(37)を備える。前記第1冷媒配管(37)は、前記気液分離器(15)内のガス冷媒が前記気液分離器(15)から、前記第1圧縮部(22,23)と前記第2圧縮部(21)との間の流路に流入するように構成される。 In the present embodiment, the heat source circuit (outdoor circuit (11)) includes a gas-liquid separator (15). The intermediate injection circuit (49) includes a first refrigerant pipe (37) connected to the gas-liquid separator (15). In the first refrigerant pipe (37), the gas refrigerant in the gas-liquid separator (15) is transferred from the gas-liquid separator (15) to the first compression section (22, 23) and the second compression section (the second compression section (15). It is configured to flow into the flow path between 21).
 この構成では、ガス抜き管(37)により気液分離器(15)と中間圧力部(21a)とが連通する。このことにより、気液分離器(15)内の圧力が高くなったとき、気液分離器(15)内のガス冷媒を中間圧力部(21a)に流入させることができる。このことにより、気液分離器(15)内の圧力を下げることができる。また、気液分離器(15)内の圧力を下げることにより、気液分離器(15)内に冷媒が流入しやすくなる。 In this configuration, the gas-liquid separator (15) and the intermediate pressure section (21a) communicate with each other by the degassing pipe (37). As a result, when the pressure in the gas-liquid separator (15) becomes high, the gas refrigerant in the gas-liquid separator (15) can flow into the intermediate pressure portion (21a). This makes it possible to reduce the pressure inside the gas-liquid separator (15). Further, by lowering the pressure in the gas-liquid separator (15), the refrigerant easily flows into the gas-liquid separator (15).
 本実施形態では、前記熱源回路(11)は、前記第1減圧機構(14)と前記第2減圧機構(18)との間に接続される冷却熱交換器(16)を備える。前記冷却熱交換器(16)は、前記熱源回路(11)の液冷媒が流れる液管に接続される第1流路(16a)と、前記液管から分流し、減圧された冷媒が流れる第2流路(16b)とを有し、前記第2流路(16b)の冷媒によって、前記第1流路(16a)の冷媒を冷却するように構成される。前記第2流路(16b)は、前記中間インジェクション回路(49)を構成する。 In the present embodiment, the heat source circuit (11) includes a cooling heat exchanger (16) connected between the first decompression mechanism (14) and the second decompression mechanism (18). The cooling heat exchanger (16) has a first flow path (16a) connected to a liquid pipe through which the liquid refrigerant of the heat source circuit (11) flows, and a first flow path (16a) in which the decompressed refrigerant flows from the liquid pipe. It has two flow paths (16b), and is configured to cool the refrigerant of the first flow path (16a) by the refrigerant of the second flow path (16b). The second flow path (16b) constitutes the intermediate injection circuit (49).
 この構成では、第1流路(16a)を流通した冷媒は減圧弁(40)に減圧されて第2流路(16b)に流入する。このことにより、過冷却熱交換器(16)において、第2流路(16b)の冷媒により、第1流路(16a)の冷媒を冷却できる。 In this configuration, the refrigerant flowing through the first flow path (16a) is depressurized by the pressure reducing valve (40) and flows into the second flow path (16b). As a result, in the supercooling heat exchanger (16), the refrigerant in the first flow path (16a) can be cooled by the refrigerant in the second flow path (16b).
 本実施形態では、前記制御部(コントローラ(100))は、前記第2減圧機構(18)を流出した冷媒が液状態となるように前記冷却熱交換器(16)の冷却能力を制御する。 In the present embodiment, the control unit (controller (100)) controls the cooling capacity of the cooling heat exchanger (16) so that the refrigerant flowing out of the second decompression mechanism (18) is in a liquid state.
 この構成では、室外コントローラ(101)は、第2室外膨張弁(18)を流出する冷媒が液状態となるように減圧弁(40)を制御する。このことにより、冷設熱交換器(64)の入口と出口との間の冷媒のエンタルピー差を大きくできる。その結果、冷設ユニット(60)の冷却能力を大きくできる。 In this configuration, the outdoor controller (101) controls the pressure reducing valve (40) so that the refrigerant flowing out of the second outdoor expansion valve (18) is in a liquid state. This makes it possible to increase the enthalpy difference of the refrigerant between the inlet and outlet of the cold heat exchanger (64). As a result, the cooling capacity of the cooling unit (60) can be increased.
 加えて、冷設ユニット(60)に供給される冷媒のガス化を抑えることができる。その結果、冷設ユニット(60)の冷設膨張弁(63)から冷設熱交換器(64)へ流れる冷媒が偏流することを抑制でき、ひいては冷設熱交換器(64)における冷媒の蒸発能力の低下を抑制できる。 In addition, gasification of the refrigerant supplied to the cooling unit (60) can be suppressed. As a result, it is possible to suppress the uneven flow of the refrigerant flowing from the cold expansion valve (63) of the cold unit (60) to the cold heat exchanger (64), and eventually the refrigerant evaporates in the cold heat exchanger (64). It is possible to suppress the decrease in ability.
 本実施形態では、前記制御部(100)は、冷媒を前記圧縮要素(C)で臨界圧力以上まで圧縮し、前記第1減圧機構(14)で亜臨界圧力まで減圧する冷凍サイクルを行うように前記冷媒回路(6)を制御する。 In the present embodiment, the control unit (100) performs a refrigeration cycle in which the refrigerant is compressed to a critical pressure or higher by the compression element (C) and depressurized to a subcritical pressure by the first decompression mechanism (14). The refrigerant circuit (6) is controlled.
 この構成では、第1室外膨張弁(14)により膨張され温度が低下した冷媒は気液分離器に流入する。このことにより、例えば外気温度が高くても、気液分離器内の圧力上昇が抑えられ、冷媒は気液分離器に流入しやすくなる。 In this configuration, the refrigerant expanded by the first outdoor expansion valve (14) and whose temperature has dropped flows into the gas-liquid separator. As a result, for example, even if the outside air temperature is high, the pressure rise in the gas-liquid separator is suppressed, and the refrigerant easily flows into the gas-liquid separator.
 -実施形態1の変形例-
 図13に示すように、実施形態1の熱源ユニット(10)は、主熱源ユニット(10a)と、該主熱源ユニット(10a)と分離された補助ユニット(10b)とを含み、補助ユニット(10b)は第2室外膨張弁(18)を備えていてもよい。このことにより、第2室外膨張弁(18)を備える補助ユニット(10b)を、主熱源ユニット(10a)と別体とすることができる。補助ユニット(10b)は、さらに出口圧力センサ(48)を含んでいてもよい。
-Modification of Embodiment 1-
As shown in FIG. 13, the heat source unit (10) of the first embodiment includes a main heat source unit (10a) and an auxiliary unit (10b) separated from the main heat source unit (10a), and includes an auxiliary unit (10b). ) May include a second outdoor expansion valve (18). As a result, the auxiliary unit (10b) provided with the second outdoor expansion valve (18) can be separated from the main heat source unit (10a). The auxiliary unit (10b) may further include an outlet pressure sensor (48).
 《実施形態2》
 実施形態2について説明する。実施形態2の冷凍装置(1)は、実施形態1の冷凍装置(1)において、コントローラ(100)が行う第2室外膨張弁(18)の制御を変更したものである。ここでは、本実施形態の冷凍装置(1)について、実施形態1の冷凍装置(1)と異なる点を説明する。
<< Embodiment 2 >>
The second embodiment will be described. The refrigerating apparatus (1) of the second embodiment is a modification of the refrigerating apparatus (1) of the first embodiment in which the control of the second outdoor expansion valve (18) performed by the controller (100) is changed. Here, the refrigerating apparatus (1) of the present embodiment will be described as being different from the refrigerating apparatus (1) of the first embodiment.
 本実施形態の第2室外膨張弁(18)の制御では、圧力取得部(48)は、各種の式により算出された第2室外膨張弁(18)の出側の冷媒圧力を推定する。この圧力取得部(48)が推定した第2室外膨張弁(18)の出側の冷媒圧力の値に基づいて、第2室外膨張弁(18)は制御される。 In the control of the second outdoor expansion valve (18) of the present embodiment, the pressure acquisition unit (48) estimates the refrigerant pressure on the outlet side of the second outdoor expansion valve (18) calculated by various equations. The second outdoor expansion valve (18) is controlled based on the value of the refrigerant pressure on the outlet side of the second outdoor expansion valve (18) estimated by the pressure acquisition unit (48).
 本実施形態の第2室外膨張弁(18)の制御について、図14を参照しながら説明する。上記実施形態と同様に、冷設ユニット(60)の第1圧力(設計圧力)は6.0MPaとする。第1圧力より低い圧力(目標圧力)は、5.0MPa以上6.0MPa未満とする。冷房/冷設運転を行っている状態(図5の状態)を基準に説明する。 The control of the second outdoor expansion valve (18) of the present embodiment will be described with reference to FIG. Similar to the above embodiment, the first pressure (design pressure) of the cooling unit (60) is 6.0 MPa. The pressure lower than the first pressure (target pressure) shall be 5.0 MPa or more and less than 6.0 MPa. The description will be made based on the state in which the cooling / cooling operation is performed (the state shown in FIG. 5).
 ステップST31では、室外コントローラ(101)は、冷設ユニット(60)が運転を開始するかを判定する。具体的に、室外コントローラ(101)が、冷設コントローラ(103)から冷設ユニット(60)の運転要求を受信すると、ステップST32に移行する。 In step ST31, the outdoor controller (101) determines whether the cooling unit (60) starts operation. Specifically, when the outdoor controller (101) receives the operation request of the cooling unit (60) from the cooling controller (103), the process proceeds to step ST32.
 ステップST32では、室外コントローラ(101)は、二相冷媒圧力(RP)が所定の圧力より高いかを判定する。この所定の圧力は、例えば、冷媒が二酸化炭素である場合、冷媒が気体と液体とに分離可能な圧力(7.0MPa)である。二相冷媒圧力(RP)が所定の圧力(7.0MPa)より高い場合、ステップST33に移行する。二相冷媒圧力(RP)が所定の圧力(7.0MPa)以下である場合、ステップST34に移行する。 In step ST32, the outdoor controller (101) determines whether the two-phase refrigerant pressure (RP) is higher than the predetermined pressure. This predetermined pressure is, for example, a pressure (7.0 MPa) at which the refrigerant can be separated into a gas and a liquid when the refrigerant is carbon dioxide. When the two-phase refrigerant pressure (RP) is higher than the predetermined pressure (7.0 MPa), the process proceeds to step ST33. When the two-phase refrigerant pressure (RP) is equal to or lower than the predetermined pressure (7.0 MPa), the process proceeds to step ST34.
 ステップST33では、第2圧力が所定の圧力(7.0MPa)よりも高いので、室外コントローラ(101)は、ガス抜き弁(39)を開放する。このことにより、気液分離器(15)の二相冷媒圧力(RP)は低下する。気液分離器(15)内のガス冷媒は、ガス抜き管(37)を流通し、中間圧力部(21a)に導入される。 In step ST33, the second pressure is higher than the predetermined pressure (7.0 MPa), so the outdoor controller (101) opens the degassing valve (39). This lowers the two-phase refrigerant pressure (RP) of the gas-liquid separator (15). The gas refrigerant in the gas-liquid separator (15) flows through the degassing pipe (37) and is introduced into the intermediate pressure section (21a).
 ステップST34では、室外コントローラ(101)は、第2室外膨張弁(18)を所定の開度に調整する。この所定の開度は、例えば、240plsである。 In step ST34, the outdoor controller (101) adjusts the second outdoor expansion valve (18) to a predetermined opening degree. This predetermined opening degree is, for example, 240 pls.
 ステップST35では、室外コントローラ(101)は、第2圧縮機(22)に吸入される冷媒状態(冷媒流量、第1低圧圧力(LP1)、第2圧縮機(22)の吸入側の冷媒温度)から冷媒密度(ρ)を算出する。 In step ST35, the outdoor controller (101) is in the state of the refrigerant sucked into the second compressor (22) (refrigerant flow rate, first low pressure pressure (LP1), refrigerant temperature on the suction side of the second compressor (22)). The refrigerant density (ρ) is calculated from.
 ステップST36では、室外コントローラ(101)は、第2圧縮機(22)の回転数より、第2圧縮機(22)の冷媒循環量(G1)を算出する。具体的に、冷媒循環量(G1)=圧縮機押しのけ量(V)×冷媒密度(ρ)×圧縮機体積効率(ηv)×回転数(n1)/3600/106により表わされる。 In step ST36, the outdoor controller (101) calculates the refrigerant circulation amount (G1) of the second compressor (22) from the rotation speed of the second compressor (22). Specifically, it is expressed by refrigerant circulation amount (G1) = compressor push-off amount (V) × refrigerant density (ρ) × compressor volumetric efficiency (ηv) × rotation speed (n1) / 3600/106.
 ステップST37では、室外コントローラ(101)は、必要とする減圧量(ΔP)を算出する。具体的に、減圧量(ΔP)=二相冷媒圧力(RP)-(6.0Mpa+α)により表わされる。ここでαは任意の数字である。 In step ST37, the outdoor controller (101) calculates the required decompression amount (ΔP). Specifically, it is represented by the amount of reduced pressure (ΔP) = two-phase refrigerant pressure (RP)-(6.0 Mpa + α). Here, α is an arbitrary number.
 ステップST38では、室外コントローラ(101)は、必要とする第2室外膨張弁(18)のCv値を算出する。Cv値は、第2室外膨張弁(18)を全開にしたとき、単位時間あたりに通過する冷媒流量を示す。具体的に、Cv値=冷媒循環量(G1)×(係数/冷媒密度(ρ)/減圧量(ΔP))0.5×103により表わされる。Cv値は、要するに、第2室外膨張弁(18)における冷媒の流れやすさを示す指標である。 In step ST38, the outdoor controller (101) calculates the required Cv value of the second outdoor expansion valve (18). The Cv value indicates the flow rate of the refrigerant passing per unit time when the second outdoor expansion valve (18) is fully opened. Specifically, it is represented by Cv value = refrigerant circulation amount (G1) × (coefficient / refrigerant density (ρ) / decompression amount (ΔP)) 0.5 × 103. The Cv value is, in short, an index indicating the ease of flow of the refrigerant in the second outdoor expansion valve (18).
 ステップST39では、室外コントローラ(101)は、第2室外膨張弁(18)の現在の開度を示すplsからCv値を算出する。この時のCv値をCv1とする。 In step ST39, the outdoor controller (101) calculates the Cv value from pls indicating the current opening degree of the second outdoor expansion valve (18). The Cv value at this time is Cv1.
 ステップST40では、室外コントローラ(101)は、Cv値からCv1を引いた値が-0.2以上かつ0.2以下であるか否かを判定する。Cv値からCv1を引いた値が-0.2以上かつ0.2以下であるである場合、室外コントローラ(101)は、出口圧力(SP)が目標圧力であると推定する。室外コントローラ(101)は、本制御を終了し、そのままメインの制御フロー(図示せず)に戻す。Cv値からCv1を引いた値が-0.2以上かつ0.2以下でない場合、ステップST41に移行する。 In step ST40, the outdoor controller (101) determines whether or not the value obtained by subtracting Cv1 from the Cv value is −0.2 or more and 0.2 or less. When the value obtained by subtracting Cv1 from the Cv value is −0.2 or more and 0.2 or less, the outdoor controller (101) estimates that the outlet pressure (SP) is the target pressure. The outdoor controller (101) ends this control and returns to the main control flow (not shown) as it is. If the value obtained by subtracting Cv1 from the Cv value is −0.2 or more and not 0.2 or less, the process proceeds to step ST41.
 以上、ステップST35~ST40では、室外コントローラ(101)は、Cv値とCv1を算出する。以下のステップでは、室外コントローラ(101)は、第2室外膨張弁(18)の開度を設定する。 As described above, in steps ST35 to ST40, the outdoor controller (101) calculates the Cv value and Cv1. In the following steps, the outdoor controller (101) sets the opening degree of the second outdoor expansion valve (18).
 ステップST41では、室外コントローラ(101)は、Cv値からCv1を引いた値が-0.2未満であるか否かを判定する。Cv値からCv1を引いた値が-0.2未満である場合、室外コントローラ(101)は、出口圧力(SP)が目標圧力であると推定しない。この場合、ステップST42に移行する。 In step ST41, the outdoor controller (101) determines whether or not the value obtained by subtracting Cv1 from the Cv value is less than −0.2. If the Cv value minus Cv1 is less than -0.2, the outdoor controller (101) does not presume that the outlet pressure (SP) is the target pressure. In this case, the process proceeds to step ST42.
 ステップST42では、室外コントローラ(101)は、第2室外膨張弁(18)の開度を現在の開度から小さくする。具体的に、室外コントローラ(101)は、第2室外膨張弁(18)の開度を現在の開度からさらに2pls相当分小さくする。その後、ステップST35に移行する。ステップST35では、室外コントローラ(101)は、出口圧力(SP)を再び算出する。 In step ST42, the outdoor controller (101) reduces the opening degree of the second outdoor expansion valve (18) from the current opening degree. Specifically, the outdoor controller (101) further reduces the opening degree of the second outdoor expansion valve (18) by 2 pls from the current opening degree. After that, the process proceeds to step ST35. In step ST35, the outdoor controller (101) recalculates the outlet pressure (SP).
 ステップST41において、Cv値からCv1を引いた値が-0.2未満でない場合、室外コントローラ(101)は、Cv値からCv1を引いた値は0.2より大きいと判定する。 In step ST41, if the value obtained by subtracting Cv1 from the Cv value is not less than −0.2, the outdoor controller (101) determines that the value obtained by subtracting Cv1 from the Cv value is greater than 0.2.
 ステップST43では、室外コントローラ(101)は、第2室外膨張弁(18)の開度を現在の開度から大きくする。具体的に、室外コントローラ(101)は、第2室外膨張弁(18)の開度を現在の開度からさらに2pls相当分大きくする。その後、ステップST35に移行する。ステップST35では、室外コントローラ(101)は、出口圧力(SP)を再び算出する。 In step ST43, the outdoor controller (101) increases the opening degree of the second outdoor expansion valve (18) from the current opening degree. Specifically, the outdoor controller (101) further increases the opening degree of the second outdoor expansion valve (18) by 2 pls from the current opening degree. After that, the process proceeds to step ST35. In step ST35, the outdoor controller (101) recalculates the outlet pressure (SP).
 本実施形態においても、第1室外膨張弁(14)を制御して、二相冷媒圧力(RP)を目標圧力にまで低下させる必要がない。このため、中間圧力(MP)も低下しないため、中間圧力(MP)と第2低圧圧力(LP2)との差圧を十分確保できる。さらに、第1圧縮部(22,23)と第2圧縮部(21)との冷媒の圧縮比のバランスが崩れることを抑制できる。 Also in this embodiment, it is not necessary to control the first outdoor expansion valve (14) to reduce the two-phase refrigerant pressure (RP) to the target pressure. Therefore, since the intermediate pressure (MP) does not decrease, a sufficient differential pressure between the intermediate pressure (MP) and the second low pressure pressure (LP2) can be secured. Further, it is possible to suppress the imbalance of the compression ratio of the refrigerant between the first compression unit (22, 23) and the second compression unit (21).
 《実施形態3》
 実施形態3の冷凍装置(1)は、実施形態1の冷凍装置(1)において、熱源ユニット(10)とコントローラ(100)を変更したものである。ここでは、本実施形態の冷凍装置(1)について、実施形態1の冷凍装置(1)と異なる点を説明する。
<< Embodiment 3 >>
The refrigerating apparatus (1) of the third embodiment is a modification of the refrigerating apparatus (1) of the first embodiment in which the heat source unit (10) and the controller (100) are changed. Here, the refrigerating apparatus (1) of the present embodiment will be described as being different from the refrigerating apparatus (1) of the first embodiment.
 〈熱源ユニットの圧縮要素〉
 図15に示すように、本実施形態の圧縮要素(C)は、第2バイパス管(24b)と、第3バイパス管(24c)とを備える。第2バイパス管(24b)は、第2圧縮機(22)をバイパスして冷媒を流すための配管である。第2バイパス管(24b)は、一端が第2吸入管 (22a)に接続し、他端が第2吐出管 (22b)に接続する。第3バイパス管(24c)は、第3圧縮機(23)をバイパスして冷媒を流すための配管である。第3バイパス管(24c)は、一端が第3吸入管(23a)に接続し、他端が第3吐出管(23b)に接続する。
<Compression element of heat source unit>
As shown in FIG. 15, the compression element (C) of the present embodiment includes a second bypass pipe (24b) and a third bypass pipe (24c). The second bypass pipe (24b) is a pipe for allowing the refrigerant to flow by bypassing the second compressor (22). One end of the second bypass pipe (24b) is connected to the second suction pipe (22a), and the other end is connected to the second discharge pipe (22b). The third bypass pipe (24c) is a pipe for allowing the refrigerant to flow by bypassing the third compressor (23). One end of the third bypass pipe (24c) is connected to the third suction pipe (23a), and the other end is connected to the third discharge pipe (23b).
 第2バイパス管(24b)には、第8逆止弁(CV8)が設けられる。第3バイパス管(24c)には、第9逆止弁(CV9)が設けられる。これらの逆止弁(CV8,CV9)は、図15に示す矢印方向の冷媒の流れを許容し、この矢印と反対方向の冷媒の流れを禁止する。 The second bypass pipe (24b) is provided with an eighth check valve (CV8). The third bypass pipe (24c) is provided with a ninth check valve (CV9). These check valves (CV8, CV9) allow the flow of the refrigerant in the direction of the arrow shown in FIG. 15 and prohibit the flow of the refrigerant in the direction opposite to the arrow.
 〈熱源ユニットの室外回路〉
 図15に示すように、本実施形態の冷凍装置(1)では、熱源ユニット(10)の室外回路(11)に接続配管(83)と補助弁(19)とが設けられる。
<Outdoor circuit of heat source unit>
As shown in FIG. 15, in the refrigerating apparatus (1) of the present embodiment, a connection pipe (83) and an auxiliary valve (19) are provided in the outdoor circuit (11) of the heat source unit (10).
 接続配管(83)の一端は、室外第8管(o8)における第2室外膨張弁(18)よりも第2液連絡配管(4)側の部分に接続される。本実施形態の接続配管(83)の一端は、室外第8管(o8)における出口圧力センサ(48)よりも第2液連絡配管(4)側の部分に接続する。なお、接続配管(83)の一端は、室外第8管(o8)における第2室外膨張弁(18)と出口圧力センサ(48)の間に接続してもよい。 One end of the connection pipe (83) is connected to the part on the second liquid communication pipe (4) side of the second outdoor expansion valve (18) in the outdoor eighth pipe (o8). One end of the connection pipe (83) of the present embodiment is connected to the portion of the outdoor eighth pipe (o8) on the second liquid communication pipe (4) side of the outlet pressure sensor (48). One end of the connection pipe (83) may be connected between the second outdoor expansion valve (18) and the outlet pressure sensor (48) in the outdoor eighth pipe (o8).
 接続配管(83)の他端は、室外回路(11)の低圧ガス管(20)に接続される。低圧ガス管(20)は、室外回路(11)において第2吸入管 (22a)を第2ガス連絡配管(5)に接続する配管である。 The other end of the connection pipe (83) is connected to the low pressure gas pipe (20) of the outdoor circuit (11). The low-pressure gas pipe (20) is a pipe that connects the second suction pipe (22a) to the second gas connecting pipe (5) in the outdoor circuit (11).
 補助弁(19)は、接続配管(83)に設けられる。補助弁(19)は、開度可変の調節弁である。本実施形態の補助弁(19)は、弁体を駆動するパルスモータを備えた電子膨張弁である。 The auxiliary valve (19) is provided in the connecting pipe (83). The auxiliary valve (19) is a control valve with a variable opening. The auxiliary valve (19) of the present embodiment is an electronic expansion valve including a pulse motor that drives the valve body.
 〈コントローラ〉
 本実施形態のコントローラ(100)では、室外コントローラ(101)が補助弁(19)の制御を行う。また、本実施形態の室外コントローラ(101)が行う第2室外膨張弁(18)の制御は、実施形態1の室外コントローラ(101)が行う制御と異なる。
<controller>
In the controller (100) of the present embodiment, the outdoor controller (101) controls the auxiliary valve (19). Further, the control of the second outdoor expansion valve (18) performed by the outdoor controller (101) of the present embodiment is different from the control performed by the outdoor controller (101) of the first embodiment.
 -室外コントローラの制御動作-
 室外コントローラ(101)が行う第2室外膨張弁(18)と補助弁(19)の制御について説明する。
-Control operation of outdoor controller-
The control of the second outdoor expansion valve (18) and the auxiliary valve (19) performed by the outdoor controller (101) will be described.
 室外コントローラ(101)は、冷設ユニット(60)の冷設回路(61)の冷媒圧力を、冷設回路(61)が許容できる冷媒圧力以下に保つために、第2室外膨張弁(18)及び補助弁(19)を制御する。冷設回路(61)が許容できる冷媒圧力が、冷設ユニット(60)の設計圧力Puである。本実施形態の冷設ユニット(60)の設計圧力Puは、6MPaである(Pu=6MPa)。なお、室外コントローラ(101)の制御動作の説明に示す圧力の値は、単なる一例である。 The outdoor controller (101) uses the second outdoor expansion valve (18) to keep the refrigerant pressure in the cooling circuit (61) of the cooling unit (60) below the refrigerant pressure that the cooling circuit (61) can tolerate. And control the auxiliary valve (19). The refrigerant pressure that the cooling circuit (61) can tolerate is the design pressure Pu of the cooling unit (60). The design pressure Pu of the cooling unit (60) of the present embodiment is 6 MPa (Pu = 6 MPa). The pressure value shown in the description of the control operation of the outdoor controller (101) is merely an example.
 ここで、冷設ユニット(60)が作動状態である場合、出口圧力センサ(48)の計測値は、冷設回路(61)の入り口における冷媒の圧力よりも若干高くなる。第2液連絡配管(4)を流れる間に、冷媒の圧力が次第に低下するからである。一方、本実施形態の液圧コントローラ(85)は、以下で説明するように、出口圧力センサ(48)の計測値である出口圧力SPが冷設ユニット(60)の設計圧力Puよりも低くなるように、第2室外膨張弁(18)及び補助弁(19)の開度を制御する。従って、液圧コントローラ(85)が第2室外膨張弁(18)及び補助弁(19)を制御することによって、冷設ユニット(60)の冷設回路(61)へ流入する冷媒の圧力は、冷設ユニット(60)の設計圧力Pu未満に保たれる。 Here, when the cooling unit (60) is in the operating state, the measured value of the outlet pressure sensor (48) is slightly higher than the pressure of the refrigerant at the inlet of the cooling circuit (61). This is because the pressure of the refrigerant gradually decreases while flowing through the second liquid connecting pipe (4). On the other hand, in the hydraulic pressure controller (85) of the present embodiment, as described below, the outlet pressure SP, which is the measured value of the outlet pressure sensor (48), is lower than the design pressure Pu of the cooling unit (60). As described above, the opening degrees of the second outdoor expansion valve (18) and the auxiliary valve (19) are controlled. Therefore, when the hydraulic pressure controller (85) controls the second outdoor expansion valve (18) and the auxiliary valve (19), the pressure of the refrigerant flowing into the cooling circuit (61) of the cooling unit (60) is increased. The cooling unit (60) is kept below the design pressure Pu.
 〈第2室外膨張弁の制御〉
 室外コントローラ(101)が第2室外膨張弁(18)の開度を制御する動作について、図16のフロー図を参照しながら説明する。室外コントローラ(101)は、図16のフロー図に示す制御動作を、所定の時間(例えば、30秒)毎に繰り返し行う。
<Control of the second outdoor expansion valve>
The operation of the outdoor controller (101) to control the opening degree of the second outdoor expansion valve (18) will be described with reference to the flow chart of FIG. The outdoor controller (101) repeats the control operation shown in the flow chart of FIG. 16 at predetermined time intervals (for example, 30 seconds).
 ステップST51の処理において、室外コントローラ(101)は、出口圧力センサ(48)の計測値である出口圧力SPを読み込み、この出口圧力SPを第1基準圧力PL1と比較する。第1基準圧力PL1は、冷設ユニット(60)の設計圧力Puよりも低い(PL1<Pu)。本実施形態の第1基準圧力PL1は、4.5MPaである。 In the process of step ST51, the outdoor controller (101) reads the outlet pressure SP, which is the measured value of the outlet pressure sensor (48), and compares this outlet pressure SP with the first reference pressure PL1. The first reference pressure PL1 is lower than the design pressure Pu of the cooling unit (60) (PL1 <Pu). The first reference pressure PL1 of this embodiment is 4.5 MPa.
 ステップST51の処理において、出口圧力SPが第1基準圧力PL1以下である場合(SP≦PL1)、室外コントローラ(101)は、ステップST52の処理を行う。一方、出口圧力SPが第1基準圧力PL1を上回る場合(SP>PL1)、室外コントローラ(101)は、ステップST53の処理を行う。 In the process of step ST51, when the outlet pressure SP is equal to or less than the first reference pressure PL1 (SP ≦ PL1), the outdoor controller (101) performs the process of step ST52. On the other hand, when the outlet pressure SP exceeds the first reference pressure PL1 (SP> PL1), the outdoor controller (101) performs the process of step ST53.
 ステップST52の処理において、室外コントローラ(101)は、第2室外膨張弁(18)を全開状態にする。つまり、ステップST52の処理において、室外コントローラ(101)は、第2室外膨張弁(18)の開度を最大値に設定する。 In the process of step ST52, the outdoor controller (101) opens the second outdoor expansion valve (18) fully. That is, in the process of step ST52, the outdoor controller (101) sets the opening degree of the second outdoor expansion valve (18) to the maximum value.
 ステップST53の処理において、室外コントローラ(101)は、出口圧力SPを第2基準圧力PL2と比較する。第2基準圧力PL2は、冷設ユニット(60)の設計圧力Puよりも低く、第1基準圧力PL1よりも高い(PL1<PL2<Pu)。本実施形態の第2基準圧力PL2は、5.2MPaである。 In the process of step ST53, the outdoor controller (101) compares the outlet pressure SP with the second reference pressure PL2. The second reference pressure PL2 is lower than the design pressure Pu of the cooling unit (60) and higher than the first reference pressure PL1 (PL1 <PL2 <Pu). The second reference pressure PL2 of this embodiment is 5.2 MPa.
 ステップST53の処理において、出口圧力SPが第2基準圧力PL2以上である場合(PL2≦SP)、室外コントローラ(101)は、ステップST54の処理を行う。一方、出口圧力SPが第2基準圧力PL2を下回る場合(SP<PL2)、室外コントローラ(101)は、ステップST55の処理を行う。 In the process of step ST53, when the outlet pressure SP is equal to or higher than the second reference pressure PL2 (PL2 ≤ SP), the outdoor controller (101) performs the process of step ST54. On the other hand, when the outlet pressure SP is lower than the second reference pressure PL2 (SP <PL2), the outdoor controller (101) performs the process of step ST55.
 ステップST54の処理において、室外コントローラ(101)は、第2室外膨張弁(18)を全閉状態にする。つまり、ステップST54の処理において、室外コントローラ(101)は、第2室外膨張弁(18)の開度を実質的にゼロに設定する。 In the process of step ST54, the outdoor controller (101) closes the second outdoor expansion valve (18) fully. That is, in the process of step ST54, the outdoor controller (101) sets the opening degree of the second outdoor expansion valve (18) to substantially zero.
 ステップST55の処理において、室外コントローラ(101)は、第2室外膨張弁(18)の開度を出口圧力SPに応じて調節する。具体的に、室外コントローラ(101)は、出口圧力SPが第3基準圧力PL3となるように第2室外膨張弁(18)の開度を調節するPID制御を行う。第3基準圧力PL3は、第1基準圧力PL1よりも高く、第2基準圧力PL2よりも低い(PL1<PL3<PL2)。本実施形態の第3基準圧力PL3は、4.8MPaである。なお、室外コントローラ(101)は、PID制御以外の制御方式を用いて第2室外膨張弁(18)の開度を調節してもよい。 In the process of step ST55, the outdoor controller (101) adjusts the opening degree of the second outdoor expansion valve (18) according to the outlet pressure SP. Specifically, the outdoor controller (101) performs PID control for adjusting the opening degree of the second outdoor expansion valve (18) so that the outlet pressure SP becomes the third reference pressure PL3. The third reference pressure PL3 is higher than the first reference pressure PL1 and lower than the second reference pressure PL2 (PL1 <PL3 <PL2). The third reference pressure PL3 of this embodiment is 4.8 MPa. The outdoor controller (101) may adjust the opening degree of the second outdoor expansion valve (18) by using a control method other than PID control.
 上記の説明の通り、室外コントローラ(101)は、出口圧力SPが第2基準圧力PL2以下となるように、第2室外膨張弁(18)の開度を調節する。その結果、第2液連絡配管(4)を通じて熱源ユニット(10)から作動状態の冷設ユニット(60)へ供給される冷媒の圧力は、冷設ユニット(60)の設計圧力Puよりも低い圧力に保たれる。 As described above, the outdoor controller (101) adjusts the opening degree of the second outdoor expansion valve (18) so that the outlet pressure SP becomes the second reference pressure PL2 or less. As a result, the pressure of the refrigerant supplied from the heat source unit (10) to the operating cooling unit (60) through the second liquid connecting pipe (4) is lower than the design pressure Pu of the cooling unit (60). Is kept in.
 〈補助弁の制御〉
 室外コントローラ(101)が補助弁(19)の開度を制御する動作について、図17を参照しながら説明する。
<Control of auxiliary valve>
The operation in which the outdoor controller (101) controls the opening degree of the auxiliary valve (19) will be described with reference to FIG.
 室外コントローラ(101)は、出口圧力センサ(48)の計測値である出口圧力SPを、所定の時間(例えば、1秒)毎に読み込む。そして、室外コントローラ(101)は、補助弁(19)の開度を、出口圧力SPに応じた開度に設定する。 The outdoor controller (101) reads the outlet pressure SP, which is the measured value of the outlet pressure sensor (48), at predetermined time (for example, 1 second). Then, the outdoor controller (101) sets the opening degree of the auxiliary valve (19) to the opening degree corresponding to the outlet pressure SP.
 出口圧力SPが第4基準圧力PL4よりも低い場合(SP<PL4)、室外コントローラ(101)は、補助弁(19)を全閉状態にする。言い換えると、この場合、室外コントローラ(101)は、補助弁(19)の開度を実質的にゼロに設定する。第4基準圧力PL4は、第2基準圧力PL2よりも高く、設計圧力Puよりも低い(PL2<PL4<Pu)。本実施形態の第4基準圧力PL4は、5.4MPaである。 When the outlet pressure SP is lower than the 4th reference pressure PL4 (SP <PL4), the outdoor controller (101) closes the auxiliary valve (19) fully. In other words, in this case, the outdoor controller (101) sets the opening degree of the auxiliary valve (19) to substantially zero. The fourth reference pressure PL4 is higher than the second reference pressure PL2 and lower than the design pressure Pu (PL2 <PL4 <Pu). The fourth reference pressure PL4 of this embodiment is 5.4 MPa.
 出口圧力SPが第5基準圧力PL5以上の場合(PL5<SP)、室外コントローラ(101)は、補助弁(19)を全開状態にする。言い換えると、この場合、室外コントローラ(101)は、補助弁(19)の開度を最大値に設定する。第5基準圧力PL5は、第4基準圧力PL4よりも高く、設計圧力Puよりも低い(PL4<PL5<Pu)。本実施形態の第5基準圧力PL5は、5.8MPaである。 When the outlet pressure SP is the fifth reference pressure PL5 or more (PL5 <SP), the outdoor controller (101) opens the auxiliary valve (19) fully. In other words, in this case, the outdoor controller (101) sets the opening degree of the auxiliary valve (19) to the maximum value. The fifth reference pressure PL5 is higher than the fourth reference pressure PL4 and lower than the design pressure Pu (PL4 <PL5 <Pu). The fifth reference pressure PL5 of this embodiment is 5.8 MPa.
 出口圧力SPが第4基準圧力PL4以上で且つ第5基準圧力PL5以下の場合(PL4≦SP≦PL5)、室外コントローラ(101)は、補助弁(19)の開度を、出口圧力SPに比例した値に設定する。 When the outlet pressure SP is equal to or higher than the fourth reference pressure PL4 and equal to or lower than the fifth reference pressure PL5 (PL4 ≤ SP ≤ PL5), the outdoor controller (101) makes the opening degree of the auxiliary valve (19) proportional to the outlet pressure SP. Set to the specified value.
 具体的に、室外コントローラ(101)は、補助弁(19)の開度を、出口圧力SPと第4基準圧力PL4の差(SP-PL4)に比例した値に設定する。また、室外コントローラ(101)は、補助弁(19)の開度を、出口圧力SPが第4基準圧力PL4と等しい(SP=PL4)ときに実質的にゼロにする一方、出口圧力SPが第5基準圧力PL5と等しい(SP=PL5)ときに最大にする。 Specifically, the outdoor controller (101) sets the opening degree of the auxiliary valve (19) to a value proportional to the difference between the outlet pressure SP and the fourth reference pressure PL4 (SP-PL4). Further, the outdoor controller (101) sets the opening degree of the auxiliary valve (19) to substantially zero when the outlet pressure SP is equal to the fourth reference pressure PL4 (SP = PL4), while the outlet pressure SP is the third. 5 Maximum when equal to the reference pressure PL5 (SP = PL5).
 上述したように、出口圧力SPが第2基準圧力PL2以上である場合(PL2≦SP)、室外コントローラ(101)は、第2室外膨張弁(18)を全閉状態にする。一方、第4基準圧力PL4は、第2基準圧力PL2よりも高い(PL2<PL4)。従って、室外コントローラ(101)は、第2室外膨張弁(18)を閉じても出口圧力SPが第2基準圧力PL2よりも高いときに、補助弁(19)を開く。 As described above, when the outlet pressure SP is equal to or higher than the second reference pressure PL2 (PL2 ≦ SP), the outdoor controller (101) closes the second outdoor expansion valve (18) fully. On the other hand, the fourth reference pressure PL4 is higher than the second reference pressure PL2 (PL2 <PL4). Therefore, the outdoor controller (101) opens the auxiliary valve (19) when the outlet pressure SP is higher than the second reference pressure PL2 even when the second outdoor expansion valve (18) is closed.
 -第2液連絡配管と冷設ユニットの冷設膨張弁に作用する冷媒圧力-
 冷設ユニット(60)が作動状態である場合、室外コントローラ(101)は、出口圧力センサ(48)の計測値である出口圧力SPが第2基準圧力PL2以下となるように、第2室外膨張弁(18)の開度を調節する。従って、冷設ユニット(60)が作動状態である場合、冷設膨張弁(63)に作用する冷媒圧力は、冷設ユニット(60)の設計圧力Puよりも低い圧力に保たれる。
-Refrigerant pressure acting on the second liquid communication pipe and the cooling expansion valve of the cooling unit-
When the cooling unit (60) is in the operating state, the outdoor controller (101) expands the second outdoor so that the outlet pressure SP, which is the measured value of the outlet pressure sensor (48), becomes the second reference pressure PL2 or less. Adjust the opening of the valve (18). Therefore, when the cooling unit (60) is in the operating state, the refrigerant pressure acting on the cooling expansion valve (63) is maintained at a pressure lower than the design pressure Pu of the cooling unit (60).
 一方、庫内空気の温度が設定温度範囲に入ると、冷設コントローラ(103)は、冷設膨張弁(63)を閉じ、冷設ユニット(60)を作動状態から冷却休止状態に切り換える。冷設膨張弁(63)が閉じると、第2液連絡配管(4)の冷媒圧力が上昇し、その結果、出口圧力センサ(48)の計測値である出口圧力SPが上昇する。そして、出口圧力SPが第2基準圧力PL2以上にまで上昇すると、室外コントローラ(101)が第2室外膨張弁(18)を閉じる。なお、冷凍装置(1)に複数台の冷設ユニット(60)が設けられている場合は、全ての冷設ユニット(60)が冷却休止状態になると、出口圧力SPが上昇する。 On the other hand, when the temperature of the air inside the refrigerator falls within the set temperature range, the cooling controller (103) closes the cooling expansion valve (63) and switches the cooling unit (60) from the operating state to the cooling pause state. When the cold expansion valve (63) is closed, the refrigerant pressure of the second liquid connecting pipe (4) rises, and as a result, the outlet pressure SP, which is the measured value of the outlet pressure sensor (48), rises. Then, when the outlet pressure SP rises to the second reference pressure PL2 or higher, the outdoor controller (101) closes the second outdoor expansion valve (18). When a plurality of cooling units (60) are provided in the refrigerating device (1), the outlet pressure SP rises when all the cooling units (60) are in the cooling pause state.
 このように、冷設ユニット(60)が冷却休止状態になると、冷設ユニット(60)の冷設膨張弁(63)と熱源ユニット(10)の第2室外膨張弁(18)とが閉状態になる。この状態では、冷媒回路(6)のうち冷設膨張弁(63)と第2室外膨張弁(18)の間の部分に、冷媒が閉じ込められる。そして、第2液連絡配管(4)の周囲の気温が比較的高い場合は、冷媒回路(6)のうち冷設膨張弁(63)と第2室外膨張弁(18)の間の部分に閉じ込められた冷媒の圧力が上昇する。そのため、何の対策も講じなければ、冷設膨張弁(63)に作用する冷媒圧力が冷設ユニット(60)の設計圧力Puを上回るおそれがある。 In this way, when the cooling unit (60) is in the cooling pause state, the cooling expansion valve (63) of the cooling unit (60) and the second outdoor expansion valve (18) of the heat source unit (10) are closed. become. In this state, the refrigerant is confined in the portion of the refrigerant circuit (6) between the cold expansion valve (63) and the second outdoor expansion valve (18). Then, when the temperature around the second liquid connecting pipe (4) is relatively high, it is confined in the portion of the refrigerant circuit (6) between the cold expansion valve (63) and the second outdoor expansion valve (18). The pressure of the generated refrigerant rises. Therefore, if no measures are taken, the refrigerant pressure acting on the cooling expansion valve (63) may exceed the design pressure Pu of the cooling unit (60).
 これに対し、本実施形態の中間ユニット(80)では、室外コントローラ(101)が補助弁(19)の開度を制御する。具体的に、室外コントローラ(101)は、出口圧力SPが第4基準圧力PL4を上回ると、補助弁(19)を開く。補助弁(19)が開くと、第2液連絡配管(4)に存在する冷媒の一部が、接続配管(83)を通って低圧ガス管(20)へと流出し、その結果、第2液連絡配管(4)の冷媒圧力が低下する。 On the other hand, in the intermediate unit (80) of the present embodiment, the outdoor controller (101) controls the opening degree of the auxiliary valve (19). Specifically, the outdoor controller (101) opens the auxiliary valve (19) when the outlet pressure SP exceeds the fourth reference pressure PL4. When the auxiliary valve (19) is opened, a part of the refrigerant existing in the second liquid connecting pipe (4) flows out to the low pressure gas pipe (20) through the connecting pipe (83), and as a result, the second liquid is connected. The refrigerant pressure in the liquid communication pipe (4) drops.
 このように、本実施形態の冷凍装置(1)では、冷設ユニット(60)が冷却休止状態になった場合でも、冷設ユニット(60)の冷設膨張弁(63)に作用する冷媒圧力が、冷設ユニット(60)の設計圧力Puよりも低い圧力に保たれる。 As described above, in the refrigerating apparatus (1) of the present embodiment, the refrigerant pressure acting on the cooling expansion valve (63) of the cooling unit (60) even when the cooling unit (60) is in the cooling pause state. However, the pressure is kept lower than the design pressure Pu of the cooling unit (60).
 ここで、補助弁(19)が開くのは、原則として、冷設ユニット(60)が冷却休止状態になって第2圧縮機(22)が停止しているときである。そして、第1圧縮機(21)及び第3圧縮機(23)が作動中に補助弁(19)が開くと、第2液連絡配管(4)に存在する冷媒は、第1圧縮機(21)によって吸引される。具体的に、第2液連絡配管(4)に存在する冷媒は、低圧ガス管(20)と第2バイパス管(24b)を順に通過し、その後に第3圧縮機(23)から吐出された冷媒と合流し、続いて中間冷却器(17)を通過した後に第1圧縮機(21)へ吸い込まれる。 Here, the auxiliary valve (19) opens, in principle, when the cooling unit (60) is in the cooling pause state and the second compressor (22) is stopped. Then, when the auxiliary valve (19) is opened while the first compressor (21) and the third compressor (23) are operating, the refrigerant existing in the second liquid communication pipe (4) is replaced with the first compressor (21). ) Is sucked. Specifically, the refrigerant existing in the second liquid connecting pipe (4) passes through the low pressure gas pipe (20) and the second bypass pipe (24b) in order, and then is discharged from the third compressor (23). It merges with the refrigerant, then passes through the intercooler (17) and is sucked into the first compressor (21).
 なお、全ての圧縮機(21,22,23)が停止している状態において、室外コントローラ(101)が補助弁(19)を開く場合もある。その場合は、第1圧縮機(21)を起動させ、第2液連絡配管(4)に存在する冷媒を第1圧縮機(21)に吸引させてもよい。その場合、第2液連絡配管(4)に存在する冷媒は、中間冷却器(17)を通過する間に実質的にガス単相状態となってから第1圧縮機(21)に吸い込まれる。 In addition, the outdoor controller (101) may open the auxiliary valve (19) when all the compressors (21,22,23) are stopped. In that case, the first compressor (21) may be started and the refrigerant existing in the second liquid connecting pipe (4) may be sucked into the first compressor (21). In that case, the refrigerant existing in the second liquid connecting pipe (4) is sucked into the first compressor (21) after being substantially in a gas single-phase state while passing through the intercooler (17).
 -実施形態3の効果-
 本実施形態の熱源ユニット(10)は、接続配管(83)と、補助弁(19)とを備える。接続配管(83)は、第2室外膨張弁(18)が設けられた室外第8管(o8)における第2室外膨張弁(18)の下流側の部分を、冷設ユニット(60)から圧縮要素(C)へ向けて冷媒が流れる低圧ガス管(20)に接続する。補助弁(19)は、接続配管(83)に設けられる。
-Effect of Embodiment 3-
The heat source unit (10) of the present embodiment includes a connecting pipe (83) and an auxiliary valve (19). The connection pipe (83) compresses the downstream portion of the second outdoor expansion valve (18) in the outdoor eighth pipe (o8) provided with the second outdoor expansion valve (18) from the cooling unit (60). Connect to the low pressure gas pipe (20) through which the refrigerant flows toward the element (C). The auxiliary valve (19) is provided in the connecting pipe (83).
 ここで、冷設ユニット(60)に設けられた冷設膨張弁(63)と第2室外膨張弁(18)の両方が閉じた状態では、熱源ユニット(10)を冷設ユニット(60)に接続する第2液連絡配管(4)に冷媒が封じ込められた状態となる。第2液連絡配管(4)の周囲の気温が高いときにこの状態に陥ると、第2液連絡配管(4)の内圧が上昇し、第2液連絡配管(4)と冷設ユニット(60)が破損するおそれがある。 Here, when both the cold expansion valve (63) and the second outdoor expansion valve (18) provided in the cold unit (60) are closed, the heat source unit (10) is changed to the cold unit (60). The refrigerant is contained in the second liquid connecting pipe (4) to be connected. If this condition occurs when the temperature around the second liquid connecting pipe (4) is high, the internal pressure of the second liquid connecting pipe (4) rises, and the second liquid connecting pipe (4) and the cooling unit (60) ) May be damaged.
 一方、本実施形態の熱源ユニット(10)では、室外第8管(o8)と低圧ガス管(20)を繋ぐ接続配管(83)に補助弁(19)が設けられる。補助弁(19)が開いた状態では、熱源ユニット(10)を冷設ユニット(60)に接続する第2液連絡配管(4)が、接続配管(83)を介して低圧ガス管(20)と連通する。そのため、冷設ユニット(60)の冷設膨張弁(63)と熱源ユニット(10)の第2室外膨張弁(18)との両方が閉じた状態において、第2液連絡配管(4)の内圧の過度な上昇が抑えられ、その結果、第2液連絡配管(4)の破損と、冷設ユニット(60)の破損とを回避できる。 On the other hand, in the heat source unit (10) of the present embodiment, an auxiliary valve (19) is provided in the connecting pipe (83) connecting the outdoor eighth pipe (o8) and the low pressure gas pipe (20). When the auxiliary valve (19) is open, the second liquid communication pipe (4) that connects the heat source unit (10) to the cooling unit (60) is connected to the low-pressure gas pipe (20) via the connection pipe (83). Communicate with. Therefore, the internal pressure of the second liquid communication pipe (4) is in a state where both the cold expansion valve (63) of the cold unit (60) and the second outdoor expansion valve (18) of the heat source unit (10) are closed. As a result, damage to the second liquid connecting pipe (4) and damage to the cooling unit (60) can be avoided.
 -実施形態3の変形例1-
 本実施形態の熱源ユニット(10)において、補助弁(19)は、全閉状態と全開状態に選択的に切り換わる開閉弁であってもよい。本変形例の補助弁(19)は、弁体を駆動するソレノイドを備えた電磁弁である。
-Modification Example 1 of Embodiment 3
In the heat source unit (10) of the present embodiment, the auxiliary valve (19) may be an on-off valve that selectively switches between a fully closed state and a fully open state. The auxiliary valve (19) of this modification is a solenoid valve provided with a solenoid that drives the valve body.
 図18に示すように、本変形例の室外コントローラ(101)は、補助弁(19)が全閉状態であるときに出口圧力センサ(48)の計測値である出口圧力SPが第5基準圧力PL5に達すると(SP=PL5になると)、補助弁(19)を全閉状態から全開状態に切り換える。また、本変形例の室外コントローラ(101)は、補助弁(19)が全開状態であるときに出口圧力SPが第4基準圧力PL4に達すると(SP=PL4になると)、補助弁(19)を全開状態から全閉状態に切り換える。なお、第4基準圧力PL4及び第5基準圧力PL5の値は、補助弁(19)が開度可変の調節弁である場合と同じである。 As shown in FIG. 18, in the outdoor controller (101) of this modified example, when the auxiliary valve (19) is in the fully closed state, the outlet pressure SP, which is the measured value of the outlet pressure sensor (48), is the fifth reference pressure. When it reaches PL5 (when SP = PL5), the auxiliary valve (19) is switched from the fully closed state to the fully open state. Further, in the outdoor controller (101) of this modification, when the outlet pressure SP reaches the fourth reference pressure PL4 (when SP = PL4) when the auxiliary valve (19) is in the fully open state, the auxiliary valve (19) To switch from the fully open state to the fully closed state. The values of the fourth reference pressure PL4 and the fifth reference pressure PL5 are the same as when the auxiliary valve (19) is a control valve having a variable opening degree.
 -実施形態3の変形例2-
 本実施形態の液圧コントローラ(85)において、第4基準圧力PL4は、第2基準圧力PL2よりも若干低い値に設定されていてもよい。(PL4<PL2)。その場合でも、第4基準圧力PL4は、第1基準圧力PL1よりも高い値に設定される(PL1<PL4)。本変形例の中間ユニット(80)では、第2室外膨張弁(18)が全閉状態になる前に補助弁(19)が開き始めることがあり得る。
-Modification example of embodiment 3 2-
In the hydraulic pressure controller (85) of the present embodiment, the fourth reference pressure PL4 may be set to a value slightly lower than the second reference pressure PL2. (PL4 <PL2). Even in that case, the fourth reference pressure PL4 is set to a value higher than the first reference pressure PL1 (PL1 <PL4). In the intermediate unit (80) of this modification, the auxiliary valve (19) may start to open before the second outdoor expansion valve (18) is fully closed.
 《実施形態4》
 本実施形態の冷凍装置(1)は、実施形態3の熱源ユニット(10)の構成を変更したものである。ここでは、本実施形態の熱源ユニット(10)について、実施形態3の熱源ユニット(10)と異なる点を説明する。
<< Embodiment 4 >>
The refrigerating apparatus (1) of the present embodiment is a modification of the configuration of the heat source unit (10) of the third embodiment. Here, the difference between the heat source unit (10) of the present embodiment and the heat source unit (10) of the third embodiment will be described.
 図19に示すように、本実施形態の熱源ユニット(10)は、主熱源ユニット(10a)と中間ユニット(80)とを備える。 As shown in FIG. 19, the heat source unit (10) of the present embodiment includes a main heat source unit (10a) and an intermediate unit (80).
 主熱源ユニット(10a)は、図15に示す実施形態3の熱源ユニット(10)から、第2室外膨張弁(18)、出口圧力センサ(48)、接続配管(83)、及び補助弁(19)を省略したものである。主熱源ユニット(10a)は、室外に設置され、第2液連絡配管(4)及び第2ガス連絡配管(5)によって冷設ユニット(60)と接続される。本実施形態の室外コントローラ(101)は、第2室外膨張弁(18)、及び補助弁(19)の制御を行わない。 The main heat source unit (10a) is the second outdoor expansion valve (18), the outlet pressure sensor (48), the connection pipe (83), and the auxiliary valve (19) from the heat source unit (10) of the third embodiment shown in FIG. ) Is omitted. The main heat source unit (10a) is installed outdoors and is connected to the cooling unit (60) by the second liquid connecting pipe (4) and the second gas connecting pipe (5). The outdoor controller (101) of the present embodiment does not control the second outdoor expansion valve (18) and the auxiliary valve (19).
 本実施形態の熱源ユニット(10)において、第2室外膨張弁(18)、出口圧力センサ(48)、接続配管(83)、及び補助弁(19)は、中間ユニット(80)に設けられる。中間ユニット(80)は、主熱源ユニット(10a)とは別体に形成されたユニットである。この中間ユニット(80)は、補助ユニットを構成する。図示しないが、中間ユニット(80)は、その構成部品を収容するケーシングを備える。 In the heat source unit (10) of the present embodiment, the second outdoor expansion valve (18), the outlet pressure sensor (48), the connection pipe (83), and the auxiliary valve (19) are provided in the intermediate unit (80). The intermediate unit (80) is a unit formed separately from the main heat source unit (10a). This intermediate unit (80) constitutes an auxiliary unit. Although not shown, the intermediate unit (80) includes a casing that houses its components.
 中間ユニット(80)は、第2液連絡配管(4)及び第2ガス連絡配管(5)に接続される。従って、本実施形態の冷媒回路(6)では、主熱源ユニット(10a)と冷設ユニット(60)の間に中間ユニット(80)が設けられる。中間ユニット(80)は、屋内に設置される。 The intermediate unit (80) is connected to the second liquid connecting pipe (4) and the second gas connecting pipe (5). Therefore, in the refrigerant circuit (6) of the present embodiment, the intermediate unit (80) is provided between the main heat source unit (10a) and the cooling unit (60). The intermediate unit (80) is installed indoors.
 中間ユニット(80)は、液側配管(81)とガス側配管(82)とを更に備える。液側配管(81)は、第2液連絡配管(4)の途中に設けられる。液側配管(81)は、第2液連絡配管(4)を介して、冷設ユニット(60)の冷設回路(61)と、室外回路(11)の室外第8管(o8)とに接続する。この液側配管(81)は、室外第8管(o8)と共に第1分岐流路を構成する。ガス側配管(82)は、第2ガス連絡配管(5)の途中に設けられる。ガス側配管(82)は、第2ガス連絡配管(5)を介して、冷設ユニット(60)の冷設回路(61)と、室外回路(11)の低圧ガス管(20)とに接続する。 The intermediate unit (80) further includes a liquid side pipe (81) and a gas side pipe (82). The liquid side pipe (81) is provided in the middle of the second liquid connecting pipe (4). The liquid side pipe (81) is connected to the cooling circuit (61) of the cooling unit (60) and the outdoor eighth pipe (o8) of the outdoor circuit (11) via the second liquid connecting pipe (4). Connecting. This liquid side pipe (81) constitutes the first branch flow path together with the outdoor eighth pipe (o8). The gas side pipe (82) is provided in the middle of the second gas connecting pipe (5). The gas side pipe (82) is connected to the cooling circuit (61) of the cooling unit (60) and the low pressure gas pipe (20) of the outdoor circuit (11) via the second gas connecting pipe (5). To do.
 本実施形態の熱源ユニット(10)において、第2室外膨張弁(18)及び出口圧力センサ(48)は、液側配管(81)に設けられる。実施形態3の室外回路(11)と同様に、出口圧力センサ(48)は、第2室外膨張弁(18)よりも冷設ユニット(60)側に配置される。 In the heat source unit (10) of the present embodiment, the second outdoor expansion valve (18) and the outlet pressure sensor (48) are provided in the liquid side pipe (81). Similar to the outdoor circuit (11) of the third embodiment, the outlet pressure sensor (48) is arranged closer to the cooling unit (60) than the second outdoor expansion valve (18).
 本実施形態の熱源ユニット(10)において、接続配管(83)は、一端が液側配管(81)に接続し、他端がガス側配管(82)に接続する。接続配管(83)の一端は、液側配管(81)のうち第2室外膨張弁(18)よりも冷設ユニット(60)側の部分に接続する。本実施形態の接続配管(83)の一端は、液側配管(81)のうち出口圧力センサ(48)よりも冷設ユニット(60)側の部分に接続する。なお、接続配管(83)の一端は、液側配管(81)のうち第2室外膨張弁(18)と出口圧力センサ(48)の間の部分に接続してもよい。 In the heat source unit (10) of the present embodiment, one end of the connection pipe (83) is connected to the liquid side pipe (81) and the other end is connected to the gas side pipe (82). One end of the connection pipe (83) is connected to the portion of the liquid side pipe (81) on the cooling unit (60) side of the second outdoor expansion valve (18). One end of the connection pipe (83) of the present embodiment is connected to the portion of the liquid side pipe (81) on the cooling unit (60) side of the outlet pressure sensor (48). One end of the connection pipe (83) may be connected to the portion of the liquid side pipe (81) between the second outdoor expansion valve (18) and the outlet pressure sensor (48).
 本実施形態の熱源ユニット(10)において、補助弁(19)は、実施形態3の熱源ユニット(10)と同様に、接続配管(83)に設けられる。 In the heat source unit (10) of the present embodiment, the auxiliary valve (19) is provided in the connection pipe (83) in the same manner as the heat source unit (10) of the third embodiment.
 本実施形態の中間ユニット(80)は、液圧コントローラ(85)を備える。液圧コントローラ(85)は、室外コントローラ(101)、室内コントローラ(102)、及び冷設コントローラ(103)と共に、コントローラ(100)を構成する。 The intermediate unit (80) of this embodiment includes a hydraulic controller (85). The hydraulic controller (85), together with the outdoor controller (101), the indoor controller (102), and the cold controller (103), constitutes the controller (100).
 図20に示すように、液圧コントローラ(85)は、制御基板上に搭載されたマイクロコンピュータと、該マイクロコンピュータを動作させるためのソフトウエアを格納するメモリデバイス(具体的には半導体メモリ)とを含む。液圧コントローラ(85)は、第2室外膨張弁(18)、補助弁(19)、及び出口圧力センサ(48)と、通信線を介して電気的に接続される。 As shown in FIG. 20, the hydraulic controller (85) includes a microcomputer mounted on a control board and a memory device (specifically, a semiconductor memory) for storing software for operating the microcomputer. including. The hydraulic pressure controller (85) is electrically connected to the second outdoor expansion valve (18), the auxiliary valve (19), and the outlet pressure sensor (48) via a communication line.
 液圧コントローラ(85)は、出口圧力センサ(48)の計測値である出口圧力SPに基づいて、第2室外膨張弁(18)と補助弁(19)の制御を行う。液圧コントローラ(85)が行う第2室外膨張弁(18)及び補助弁(19)の制御は、実施形態3の室外コントローラ(101)が行う第2室外膨張弁(18)及び補助弁(19)の制御と同じである。 The hydraulic pressure controller (85) controls the second outdoor expansion valve (18) and the auxiliary valve (19) based on the outlet pressure SP, which is the measured value of the outlet pressure sensor (48). The control of the second outdoor expansion valve (18) and the auxiliary valve (19) performed by the hydraulic controller (85) is performed by the outdoor controller (101) of the third embodiment of the second outdoor expansion valve (18) and the auxiliary valve (19). ) Is the same as the control.
 -実施形態4の特徴-
 本実施形態の中間ユニット(80)は、屋内に配置される。このため、外気温が高い夏期において、液連絡配管(4)のうち中間ユニット(80)と冷設ユニット(60)の間の部分の周囲の気温は、屋外よりも低くなる。そのため、冷設ユニット(60)の冷設膨張弁(63)と中間ユニット(80)の第2室外膨張弁(18)の両方が閉じた状態において、液連絡配管(4)のうち中間ユニット(80)と冷設ユニット(60)の間の部分の内圧の上昇が抑えられる。
-Features of Embodiment 4-
The intermediate unit (80) of this embodiment is arranged indoors. Therefore, in the summer when the outside air temperature is high, the ambient temperature of the part between the intermediate unit (80) and the cooling unit (60) of the liquid communication pipe (4) is lower than that of the outdoors. Therefore, in a state where both the cold expansion valve (63) of the cold unit (60) and the second outdoor expansion valve (18) of the intermediate unit (80) are closed, the intermediate unit (of the liquid communication pipe (4)) ( The rise in internal pressure in the part between 80) and the cooling unit (60) is suppressed.
 また、中間ユニット(80)は、冷設ユニット(60)と同じ室内空間に配置される場合がある。通常、冷設ユニット(60)は、空調ユニット(50)によって空気調和が行われる室内空間に設置される。例えば夏期に外気温が比較的高くなったときでも、中間ユニット(80)及び冷設ユニット(60)が設置された室内空間の気温は、屋外の気温よりも低い。そのため、中間ユニット(80)を屋内に設置すれば、冷設ユニット(60)の冷設膨張弁(63)と中間ユニット(80)の第2室外膨張弁(18)の両方が閉じた状態において、液連絡配管(4)のうち中間ユニット(80)と冷設ユニット(60)の間の部分の内圧の上昇が抑えられる。 Also, the intermediate unit (80) may be placed in the same indoor space as the cooling unit (60). Normally, the cooling unit (60) is installed in an indoor space where air conditioning is performed by the air conditioning unit (50). For example, even when the outside air temperature becomes relatively high in summer, the air temperature in the indoor space where the intermediate unit (80) and the cooling unit (60) are installed is lower than the outdoor air temperature. Therefore, if the intermediate unit (80) is installed indoors, both the cold expansion valve (63) of the cold unit (60) and the second outdoor expansion valve (18) of the intermediate unit (80) are closed. , The increase in internal pressure in the part of the liquid communication pipe (4) between the intermediate unit (80) and the cooling unit (60) is suppressed.
 -実施形態4の変形例1-
 上記実施形態の中間ユニット(80)は、圧力入力部(86)を備えていてもよい。圧力入力部(86)は、作業者が冷設ユニット(60)の設計圧力Puに関する情報を入力するために操作する部材である。圧力入力部(86)としては、ディップスイッチや、数字を入力するためのテンキーが例示される。
-Modification Example 1 of Embodiment 4
The intermediate unit (80) of the above embodiment may include a pressure input unit (86). The pressure input unit (86) is a member operated by the operator to input information regarding the design pressure Pu of the cooling unit (60). Examples of the pressure input unit (86) include a DIP switch and a numeric keypad for inputting numbers.
 図21に示すように、本変形例の中間ユニット(80)において、圧力入力部(86)は、液圧コントローラ(85)に通信線等を介して電気的に接続される。圧力入力部(86)に入力された情報は、液圧コントローラ(85)に送信され、液圧コントローラ(85)のメモリデバイスに記録される。圧力入力部(86)に入力される情報は、冷設ユニット(60)の設計圧力Puの値であってもよいし、この設計圧力Puに対応した番号などの記号であってもよい。 As shown in FIG. 21, in the intermediate unit (80) of this modification, the pressure input unit (86) is electrically connected to the hydraulic controller (85) via a communication line or the like. The information input to the pressure input unit (86) is transmitted to the hydraulic pressure controller (85) and recorded in the memory device of the hydraulic pressure controller (85). The information input to the pressure input unit (86) may be the value of the design pressure Pu of the cooling unit (60), or may be a symbol such as a number corresponding to the design pressure Pu.
 本変形例の液圧コントローラ(85)は、圧力入力部(86)に入力された情報に基づいて基準圧力PL1~PL5を設定し、設定した基準圧力PL1~PL5を用いて第2室外膨張弁(18)及び補助弁(19)の開度を制御する。 The hydraulic controller (85) of this modification sets the reference pressures PL1 to PL5 based on the information input to the pressure input unit (86), and uses the set reference pressures PL1 to PL5 to set the second outdoor expansion valve. Control the opening degree of (18) and auxiliary valve (19).
 -実施形態4の変形例2-
 上記実施形態の中間ユニット(80)では、液圧コントローラ(85)が省略されていてもよい。その場合は、熱源ユニット(10)の室外コントローラ(101)が、出口圧力センサ(48)の計測値に基づいて、第2室外膨張弁(18)及び補助弁(19)の開度を制御する。その場合に熱源ユニット(10)が行う制御動作は、上記実施形態の液圧コントローラ(85)が行う制御動作と同じである。
-Modification example of embodiment 4 2-
In the intermediate unit (80) of the above embodiment, the hydraulic pressure controller (85) may be omitted. In that case, the outdoor controller (101) of the heat source unit (10) controls the opening degrees of the second outdoor expansion valve (18) and the auxiliary valve (19) based on the measured values of the outlet pressure sensor (48). .. In that case, the control operation performed by the heat source unit (10) is the same as the control operation performed by the hydraulic controller (85) of the above embodiment.
 《その他の実施形態》
 上記実施形態においては、以下のような構成としてもよい。
<< Other Embodiments >>
In the above embodiment, the configuration may be as follows.
 実施形態1~2の熱源ユニット(10)において、第2減圧機構(18)は、開度調整しない機構であってもよい。この場合、第2減圧機構(18)は、キャピラリチューブでもよい。 In the heat source units (10) of the first and second embodiments, the second decompression mechanism (18) may be a mechanism that does not adjust the opening degree. In this case, the second decompression mechanism (18) may be a capillary tube.
 実施形態1~4の熱源ユニット(10)において、冷設ユニット(60)は1つに限られない。複数の冷設ユニット(60,60,…)が並列に接続された冷凍装置(1)であってもよい。 In the heat source units (10) of the first to fourth embodiments, the number of cooling units (60) is not limited to one. It may be a refrigerating device (1) in which a plurality of cooling units (60, 60, ...) Are connected in parallel.
 実施形態1~4の熱源ユニット(10)において、空調ユニット(50)は1つに限られない。複数の冷設ユニット(50,50,…)が並列に接続された冷凍装置(1)であってもよい。 The number of air conditioning units (50) is not limited to one in the heat source units (10) of the first to fourth embodiments. It may be a refrigerating device (1) in which a plurality of cooling units (50, 50, ...) Are connected in parallel.
 実施形態1~4の熱源ユニット(10)において、冷設熱交換器(64)は、空気と冷媒とを熱交換させる空気熱交換器でなくてもよい。冷設熱交換器(64)は、例えば冷媒によって水やブラインを冷却する冷却熱交換器であってもよい。 In the heat source units (10) of the first to fourth embodiments, the cold heat exchanger (64) does not have to be an air heat exchanger that exchanges heat between air and the refrigerant. The cold heat exchanger (64) may be, for example, a cooling heat exchanger that cools water or brine with a refrigerant.
 実施形態1~4の熱源ユニット(10)において、室内熱交換器(54)は、空気と冷媒とを熱交換させる空気熱交換器でなくてもよい。室内熱交換器(54)は、例えば冷媒によって水やブラインを加熱する加熱熱交換器であってもよい。 In the heat source units (10) of the first to fourth embodiments, the indoor heat exchanger (54) does not have to be an air heat exchanger that exchanges heat between air and the refrigerant. The indoor heat exchanger (54) may be, for example, a heat heat exchanger that heats water or brine with a refrigerant.
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態および変形例は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。 Although the embodiments and modifications have been described above, it will be understood that various modifications of the forms and details are possible without deviating from the purpose and scope of the claims. Further, the above embodiments and modifications may be appropriately combined or replaced as long as the functions of the subject of the present disclosure are not impaired. The descriptions "1st", "2nd", "3rd" ... described above are used to distinguish the words and phrases to which these descriptions are given, and the number and order of the words and phrases are also limited. It's not something to do.
 以上説明したように、本開示は、熱源ユニット及び冷凍装置について有用である。 As described above, the present disclosure is useful for heat source units and refrigeration equipment.
    C   圧縮要素
    M   主流路
   o6   室外第6管(第2分岐流路)
   o8   室外第8管(第1分岐流路)
    1   冷凍装置
    6   冷媒回路
   11   熱源回路
   13   室外熱交換器(放熱器)
   14   第1室外膨張弁(第1減圧機構)
   15   気液分離器
   16   過冷却熱交換器(冷却熱交換器)
   16a  第1流路
   16b  第2流路
   18   第2室外膨張弁(第2減圧機構)
   19   補助弁
   20   低圧ガス管
   21   第1圧縮機(第2圧縮部)
   22   第2圧縮機(第1圧縮部)
   23   第3圧縮機(第1圧縮部)
   37   ガス抜き管(第1配管)
   38   インジェクション管
   48   出口圧力センサ(圧力取得部)
   49   中間インジェクション回路
   50   空調ユニット(第2利用ユニット)
   60   冷設ユニット(第1利用ユニット)
   80   中間ユニット(補助ユニット)
   81   液側配管(第1分岐流路)
   83   接続配管
  101   室外コントローラ(制御部)
C Compression element M Main flow path o6 Outdoor 6th pipe (2nd branch flow path)
o8 Outdoor 8th pipe (1st branch flow path)
1 Refrigerant 6 Refrigerant circuit 11 Heat source circuit 13 Outdoor heat exchanger (heat exchanger)
14 1st outdoor expansion valve (1st decompression mechanism)
15 Gas-liquid separator 16 Supercooling heat exchanger (cooling heat exchanger)
16a 1st flow path 16b 2nd flow path 18 2nd outdoor expansion valve (second pressure reducing mechanism)
19 Auxiliary valve 20 Low pressure gas pipe 21 1st compressor (2nd compression part)
22 Second compressor (first compression unit)
23 Third compressor (first compression unit)
37 Degassing pipe (first pipe)
38 Injection pipe 48 Outlet pressure sensor (pressure acquisition unit)
49 Intermediate injection circuit 50 Air conditioning unit (second use unit)
60 Refrigeration unit (first utilization unit)
80 Intermediate unit (auxiliary unit)
81 Liquid side piping (first branch flow path)
83 Connection piping 101 Outdoor controller (control unit)

Claims (11)

  1.  第1利用ユニット(60)と該第1利用ユニット(60)よりも冷媒の蒸発温度が高い第2利用ユニット(50)とを有する利用ユニット(50,60)の利用回路(51,61)に接続されて、冷凍サイクルを行う冷媒回路(6)を構成する熱源回路(11)と、前記熱源回路(11)を制御する制御部(100)とを備える熱源ユニットであって、
     前記熱源回路(11)は、
      第1圧縮部(22,23)と、前記第1圧縮部(22,23)で圧縮した冷媒を更に圧縮する第2圧縮部(21)とを有する圧縮要素(C)と、
      放熱器(13)と、
      第1減圧機構(14)と、
      前記放熱器(13)の下流側に接続され、前記第1減圧機構(14)を備える主流路(M)と、
      前記主流路(M)の端部に接続され、前記第1利用ユニット(60)に連通する第1分岐流路(o8)と、
      前記主流路(M)の前記端部に接続され、前記第2利用ユニット(50)に連通する第2分岐流路(o6)と、
      一端が前記主流路(M)に接続され、他端が前記第1圧縮部(22,23)及び前記第2圧縮部(21)の間に接続され、前記第1減圧機構(14)で減圧された冷媒が流入する中間インジェクション回路(49)と、
      前記第1分岐流路(o8)に設けられる第2減圧機構(18)とを備える
    ことを特徴とする熱源ユニット。
    In the utilization circuit (51, 61) of the utilization unit (50, 60) having the first utilization unit (60) and the second utilization unit (50) having a higher refrigerant evaporation temperature than the first utilization unit (60). A heat source unit including a heat source circuit (11) that is connected to form a refrigerant circuit (6) that performs a refrigeration cycle, and a control unit (100) that controls the heat source circuit (11).
    The heat source circuit (11)
    A compression element (C) having a first compression unit (22, 23) and a second compression unit (21) that further compresses the refrigerant compressed by the first compression unit (22, 23).
    With the radiator (13),
    The first decompression mechanism (14) and
    A main flow path (M) connected to the downstream side of the radiator (13) and provided with the first decompression mechanism (14),
    A first branch flow path (o8) connected to the end of the main flow path (M) and communicating with the first utilization unit (60).
    A second branch flow path (o6) connected to the end of the main flow path (M) and communicating with the second utilization unit (50).
    One end is connected to the main flow path (M), the other end is connected between the first compression section (22, 23) and the second compression section (21), and the pressure is reduced by the first decompression mechanism (14). An intermediate injection circuit (49) into which the compressed refrigerant flows in, and
    A heat source unit including a second decompression mechanism (18) provided in the first branch flow path (o8).
  2.  請求項1において、
     前記熱源回路(11)は、気液分離器(15)を備え、
     前記中間インジェクション回路(49)は、前記気液分離器(15)に接続される第1冷媒配管(37)を備え、
     前記第1冷媒配管(37)は、前記気液分離器(15)内のガス冷媒が前記気液分離器(15)から、前記第1圧縮部(22,23)と前記第2圧縮部(21)との間の流路に流入するように構成される
    ことを特徴とする熱源ユニット。
    In claim 1,
    The heat source circuit (11) includes a gas-liquid separator (15).
    The intermediate injection circuit (49) includes a first refrigerant pipe (37) connected to the gas-liquid separator (15).
    In the first refrigerant pipe (37), the gas refrigerant in the gas-liquid separator (15) is transferred from the gas-liquid separator (15) to the first compression section (22, 23) and the second compression section (the second compression section (15). A heat source unit characterized in that it is configured to flow into a flow path between and 21).
  3.  請求項1または2において、
     前記熱源回路(11)は、前記第2減圧機構(18)による減圧後の冷媒の圧力を検知または推定する圧力取得部(48)を備え、
     前記第2減圧機構(18)は、開度が調節可能な弁であり、
     前記制御部(100)は、前記圧力取得部(48)が検知し又は推定した圧力が目標圧力となるように、前記第2減圧機構(18)の開度を制御する
    ことを特徴とする熱源ユニット。
    In claim 1 or 2,
    The heat source circuit (11) includes a pressure acquisition unit (48) that detects or estimates the pressure of the refrigerant after decompression by the second decompression mechanism (18).
    The second decompression mechanism (18) is a valve whose opening degree can be adjusted.
    The heat source is characterized in that the control unit (100) controls the opening degree of the second decompression mechanism (18) so that the pressure detected or estimated by the pressure acquisition unit (48) becomes the target pressure. unit.
  4.  請求項1から3の何れか1つにおいて、
     前記熱源回路(11)は、前記第1減圧機構(14)と前記第2減圧機構(18)との間に接続される冷却熱交換器(16)を備え、
     前記冷却熱交換器(16)は、
      前記熱源回路(11)の液冷媒が流れる液管に接続される第1流路(16a)と、
      前記液管から分流し、減圧された冷媒が流れる第2流路(16b)とを有し、
      前記第2流路(16b)の冷媒によって、前記第1流路(16a)の冷媒を冷却するように構成され、
     前記第2流路(16b)は、前記中間インジェクション回路(49)を構成する
    ことを特徴とする熱源ユニット。
    In any one of claims 1 to 3,
    The heat source circuit (11) includes a cooling heat exchanger (16) connected between the first decompression mechanism (14) and the second decompression mechanism (18).
    The cooling heat exchanger (16)
    The first flow path (16a) connected to the liquid pipe through which the liquid refrigerant of the heat source circuit (11) flows, and
    It has a second flow path (16b) through which the decompressed refrigerant flows, which is separated from the liquid pipe.
    The refrigerant in the second flow path (16b) is configured to cool the refrigerant in the first flow path (16a).
    The second flow path (16b) is a heat source unit comprising the intermediate injection circuit (49).
  5.  請求項4において、 
     前記制御部(100)は、前記第2減圧機構(18)を流出した冷媒が液状態となるように前記冷却熱交換器(16)の冷却能力を制御する
    ことを特徴とする熱源ユニット。
    In claim 4,
    The control unit (100) is a heat source unit characterized in that the cooling capacity of the cooling heat exchanger (16) is controlled so that the refrigerant flowing out of the second decompression mechanism (18) is in a liquid state.
  6.  請求項1から5の何れか1つにおいて、
     前記第1利用ユニット(60)は、冷凍設備の庫内を冷却する冷設ユニットであり、
     前記第2利用ユニット(50)は、室内を空調する空調ユニットである
    ことを特徴とする熱源ユニット。
    In any one of claims 1 to 5,
    The first utilization unit (60) is a cooling unit that cools the inside of the refrigerating equipment.
    The second utilization unit (50) is a heat source unit characterized by being an air conditioning unit that air-conditions a room.
  7.  請求項1から6の何れか1つにおいて、
     前記制御部(100)は、冷媒を前記圧縮要素(C)で臨界圧力以上まで圧縮し、前記第1減圧機構(14)で亜臨界圧力まで減圧する冷凍サイクルを行うように前記冷媒回路(6)を制御する
    ことを特徴とする熱源ユニット。
    In any one of claims 1 to 6,
    The control unit (100) compresses the refrigerant to a critical pressure or higher by the compression element (C), and performs a refrigeration cycle in which the refrigerant is depressurized to a subcritical pressure by the first decompression mechanism (14). ) Is a heat source unit.
  8.  請求項1から7の何れか1つにおいて、
     前記冷媒は二酸化炭素である
    ことを特徴とする熱源ユニット。
    In any one of claims 1 to 7,
    A heat source unit characterized in that the refrigerant is carbon dioxide.
  9.  請求項1から8の何れか1つにおいて、
     前記第1分岐流路(o8)における前記第2減圧機構(18)の下流側の部分を、前記利用ユニット(50,60)から前記圧縮要素(C)へ向けて冷媒が流れる低圧ガス管(20)に接続する接続配管(83)と、
     前記接続配管(83)に設けられた補助弁(19)とを備える
    ことを特徴とする熱源ユニット。
    In any one of claims 1 to 8,
    A low-pressure gas pipe (a low-pressure gas pipe in which a refrigerant flows from the utilization unit (50, 60) toward the compression element (C) through a portion of the first branch flow path (o8) on the downstream side of the second decompression mechanism (18). Connection pipe (83) to connect to 20) and
    A heat source unit including an auxiliary valve (19) provided in the connection pipe (83).
  10.  請求項1から9の何れか1つにおいて、
     前記熱源ユニット(10)は、主熱源ユニット(10a)と、該主熱源ユニット(10a)と分離された補助ユニット(10b,80)とを含み、補助ユニット(10b,80)は前記第2減圧機構(18)を備える
    ことを特徴とする熱源ユニット。
    In any one of claims 1 to 9,
    The heat source unit (10) includes a main heat source unit (10a) and an auxiliary unit (10b, 80) separated from the main heat source unit (10a), and the auxiliary unit (10b, 80) is the second decompression. A heat source unit characterized by having a mechanism (18).
  11.  請求項1から10の何れか1つの熱源ユニット(10)と、
     第1利用ユニット(60)と該第1利用ユニット(60)よりも冷媒の蒸発温度が高い第2利用ユニット(50)とを備える利用回路(51,61)を有する利用ユニット(50,60)とを備え、
     前記熱源ユニット(10)の前記熱源回路(11)と前記利用ユニット(50,60)の前記利用回路(51,61)とが接続されて冷凍サイクルを行う冷媒回路(6)が構成される
    ことを特徴とする冷凍装置。
     
    With any one of the heat source units (10) of claims 1 to 10,
    A utilization unit (50, 60) having a utilization circuit (51, 61) including a first utilization unit (60) and a second utilization unit (50) having a higher evaporation temperature of the refrigerant than the first utilization unit (60). With and
    The heat source circuit (11) of the heat source unit (10) and the utilization circuit (51, 61) of the utilization unit (50, 60) are connected to form a refrigerant circuit (6) that performs a refrigeration cycle. A freezing device characterized by.
PCT/JP2020/025133 2019-09-30 2020-06-26 Heat source unit and refrigeration device WO2021065111A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019180687 2019-09-30
JP2019-180687 2019-09-30
JP2019-207901 2019-11-18
JP2019207901A JP6777215B1 (en) 2019-09-30 2019-11-18 Heat source unit and refrigeration equipment

Publications (1)

Publication Number Publication Date
WO2021065111A1 true WO2021065111A1 (en) 2021-04-08

Family

ID=72938174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025133 WO2021065111A1 (en) 2019-09-30 2020-06-26 Heat source unit and refrigeration device

Country Status (2)

Country Link
JP (1) JP6777215B1 (en)
WO (1) WO2021065111A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210455A1 (en) * 2022-04-28 2023-11-02 パナソニックIpマネジメント株式会社 Freezing apparatus
WO2023210457A1 (en) * 2022-04-28 2023-11-02 パナソニックIpマネジメント株式会社 Refrigeration device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174874A1 (en) * 2015-04-28 2016-11-03 ダイキン工業株式会社 Refrigeration apparatus
JP2018054214A (en) * 2016-09-28 2018-04-05 ダイキン工業株式会社 Refrigerating device
WO2018074370A1 (en) * 2016-10-19 2018-04-26 パナソニックIpマネジメント株式会社 Refrigeration system and indoor unit
WO2019065856A1 (en) * 2017-09-29 2019-04-04 ダイキン工業株式会社 Refrigeration device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016174874A1 (en) * 2015-04-28 2016-11-03 ダイキン工業株式会社 Refrigeration apparatus
JP2018054214A (en) * 2016-09-28 2018-04-05 ダイキン工業株式会社 Refrigerating device
WO2018074370A1 (en) * 2016-10-19 2018-04-26 パナソニックIpマネジメント株式会社 Refrigeration system and indoor unit
WO2019065856A1 (en) * 2017-09-29 2019-04-04 ダイキン工業株式会社 Refrigeration device

Also Published As

Publication number Publication date
JP6777215B1 (en) 2020-10-28
JP2021055983A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2014068967A1 (en) Refrigeration device
WO2021039087A1 (en) Heat source unit and refrigeration device
JP7116346B2 (en) Heat source unit and refrigerator
JP2003202162A (en) Refrigerating device
JP2020165585A (en) Unit for refrigerating device, heat source unit, and refrigerating device
WO2021065116A1 (en) Heat source unit and refrigeration device
WO2021065111A1 (en) Heat source unit and refrigeration device
WO2007102345A1 (en) Refrigeration device
WO2021010130A1 (en) Refrigeration device
WO2020262624A1 (en) Refrigeration device
WO2021065156A1 (en) Heat source unit and refrigeration device
JP4720641B2 (en) Refrigeration equipment
JP2021055917A (en) Heat source unit and refrigeration unit
JP2021055876A (en) Heat source unit and refrigerating device
WO2021100234A1 (en) Intermediate unit for refrigeration device, and refrigeration device
JP6835185B1 (en) Heat source unit and refrigeration equipment
WO2021065118A1 (en) Refrigeration device
JP2008032337A (en) Refrigerating apparatus
JP2021032441A (en) Refrigeration unit and intermediate unit
JP6835176B1 (en) Refrigeration equipment
JP5062079B2 (en) Refrigeration equipment
JP2022083089A (en) Heat source system and refrigeration device
JP2021055872A (en) Heat source unit and refrigerating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20872212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20872212

Country of ref document: EP

Kind code of ref document: A1