WO2021064957A1 - Terminal and wireless communication method - Google Patents

Terminal and wireless communication method Download PDF

Info

Publication number
WO2021064957A1
WO2021064957A1 PCT/JP2019/039181 JP2019039181W WO2021064957A1 WO 2021064957 A1 WO2021064957 A1 WO 2021064957A1 JP 2019039181 W JP2019039181 W JP 2019039181W WO 2021064957 A1 WO2021064957 A1 WO 2021064957A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
control information
transmission
scheduling
downlink control
Prior art date
Application number
PCT/JP2019/039181
Other languages
French (fr)
Japanese (ja)
Inventor
優元 ▲高▼橋
聡 永田
リフェ ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/039181 priority Critical patent/WO2021064957A1/en
Publication of WO2021064957A1 publication Critical patent/WO2021064957A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • Uplink signal is mapped to an appropriate radio resource and transmitted from the UE to the base station.
  • Uplink user data (for example, UL-SCH) is transmitted using an uplink shared channel (Physical Uplink Shared Channel (PUSCH)).
  • uplink control information (UPLINK Control Information (UCI)) uses PUSCH when transmitted together with uplink user data, and uplink control channel (Physical Uplink Control Channel (PUCCH)) when transmitted independently. Is transmitted using.
  • cross-carrier scheduling (or cross-CC scheduling) that schedules data of other cells by using the downlink control information of a predetermined cell is used. It is also possible to support. However, how to control cross-carrier scheduling when different traffic types are supported has not yet been fully explored.
  • one of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately controlling cross-carrier scheduling in a future wireless communication system in which a plurality of traffic types and the like are supported.
  • the terminal includes a receiving unit that receives the first downlink control information that schedules the first physical shared channel, the second downlink control information that schedules the second physical shared channel, and the above. It has a first downlink control information and a control unit that controls cross-carrier scheduling based on the second downlink control information, and the first physical shared channel and the second physical shared channel are in the same cell. When transmitted, the first downlink control information and the cell to which the second downlink control information is transmitted are set in common or separately.
  • cross-carrier scheduling can be appropriately controlled in a future wireless communication system in which a plurality of traffic types and the like are supported.
  • FIG. 1 is a diagram showing an example of cross-carrier scheduling in an existing system.
  • FIG. 2 is a diagram showing an example of cross-carrier scheduling setting information in an existing system.
  • FIG. 3 is a diagram showing an example of cross-carrier scheduling according to the first aspect.
  • FIG. 4 is a diagram showing another example of cross-carrier scheduling according to the first aspect.
  • FIG. 5 is a diagram showing an example of cross-carrier scheduling setting information according to the first aspect.
  • FIG. 6 is a diagram showing another example of the cross-carrier scheduling setting information according to the first aspect.
  • FIG. 7 is a diagram showing an example of cross-carrier scheduling according to the second aspect.
  • FIG. 8 is a diagram showing another example of cross-carrier scheduling according to the second aspect.
  • FIG. 1 is a diagram showing an example of cross-carrier scheduling in an existing system.
  • FIG. 2 is a diagram showing an example of cross-carrier scheduling setting information in an existing system.
  • FIG. 3 is a diagram showing an
  • FIG. 9 is a diagram showing an example of cross-carrier scheduling setting information according to the second aspect.
  • FIG. 10 is a diagram showing another example of the cross-carrier scheduling setting information according to the second aspect.
  • FIG. 11 is a diagram showing another example of the cross-carrier scheduling setting information according to the second aspect.
  • FIG. 12 is a diagram showing another example of the cross-carrier scheduling setting information according to the second aspect.
  • FIG. 13 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 14 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 15 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 16 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • ⁇ Traffic type> In future wireless communication systems (eg, NR), further sophistication of mobile broadband (eg enhanced Mobile Broadband (eMBB)), machine type communication that realizes multiple simultaneous connections (eg massive Machine Type Communications (mMTC), Internet) Of Things (IoT)), high-reliability and low-latency communication (eg, Ultra-Reliable and Low-Latency Communications (URLLC)) and other traffic types (also called services, service types, communication types, use cases, etc.) are assumed. Will be done. For example, URLLC requires less delay and higher reliability than eMBB.
  • eMBB enhanced Mobile Broadband
  • mMTC massive Machine Type Communications
  • IoT Internet) Of Things
  • URLLC Ultra-Reliable and Low-Latency Communications
  • URLLC Ultra-Reliable and Low-Latency Communications
  • URLLC also called services, service types, communication types, use cases, etc.
  • the traffic type may be identified at the physical layer based on at least one of the following: -Logical channels with different priorities-Modulation and Coding Scheme (MCS) table (MCS index table) -Channel Quality Indication (CQI) table-DCI format-Used for scramble (mask) of Cyclic Redundancy Check (CRC) bits included (added) in the DCI (DCI format).
  • MCS Modulation and Coding Scheme
  • CQI Channel Quality Indication
  • CRC Cyclic Redundancy Check
  • the traffic type of HARQ-ACK for PDSCH may be determined based on at least one of the following: An MCS index table (for example, MCS index table 3) used to determine at least one of the PDSCH modulation order, target code rate, and transport block size (TBS).
  • An MCS index table for example, MCS index table 3
  • TBS transport block size
  • -RNTI used for CRC scrambling of DCI used for scheduling the PDSCH (for example, whether CRC scrambled by C-RNTI or MCS-C-RNTI).
  • the SR traffic type may be determined based on the upper layer parameter used as the SR identifier (SR-ID).
  • the upper layer parameter may indicate whether the SR traffic type is eMBB or URLLC.
  • the CSI traffic type may be determined based on the configuration information (CSIreportSetting) related to the CSI report, the DCI type used for the trigger, the DCI transmission parameter, and the like.
  • the setting information, DCI type, etc. may indicate whether the traffic type of the CSI is eMBB or URLLC. Further, the setting information may be an upper layer parameter.
  • the traffic type of PUSCH may be determined based on at least one of the following.
  • -The MCS index table used to determine at least one of the modulation order, target coding rate, and TBS of the PUSCH (for example, whether or not to use the MCS index table 3).
  • -RNTI used for CRC scrambling of DCI used for scheduling the PUSCH (for example, whether CRC scrambled by C-RNTI or MCS-C-RNTI).
  • the traffic type may be associated with communication requirements (requirements such as delay and error rate, requirements), data type (voice, data, etc.) and the like.
  • the difference between the URLLC requirement and the eMBB requirement may be that the URLLC latency is smaller than the eMBB delay, or that the URLLC requirement includes a reliability requirement.
  • the eMBB user (U) plane delay requirement may include that the downlink U-plane delay is 4 ms and the uplink U-plane delay is 4 ms.
  • the URLLC U-plane delay requirement may include that the downlink U-plane delay is 0.5 ms and the uplink U-plane delay is 0.5 ms.
  • the reliability requirement of URLLC may also include a 32-byte error rate of 10-5 at a U-plane delay of 1 ms.
  • CCS cross-carrier scheduling
  • a UE in which a plurality of cells (CC) are set is notified of the allocation of PDSCH in another cell by using the PDCCH of a predetermined cell.
  • the base station can specify a cell for detecting PDSCH by using a 3-bit CIF (Carrier Indicator Field).
  • the downlink shared channel (PDSCH) and / or uplink shared channel (PUSCH) of one CC is assigned by using the downlink control channel (or DCI) of another CC. (See Fig. 1).
  • the downlink control information (DCI # 1) instructing the allocation of PDSCH and / or PUSCH transmitted by CC # 1 is set to another CC # 0 (for example, P-Cell). Multiplexed to PDCCH of.
  • the carrier A DCI configuration with an identifier (CI: Carrier Indicator) is applied.
  • a field (CIF: Carrier Indicator Field) for a 3-bit carrier identifier is set in the downlink control information, and the CC corresponding to the downlink control information is notified to the user terminal.
  • the user terminal performs PDSCH reception processing and / or PUSCH transmission processing in a predetermined CC based on the CIF included in the downlink control information.
  • the UE when cross-carrier scheduling is applied to a certain cell (CC), the UE is notified of information that cross-carrier scheduling is applied to the cell and information about which cell (CC) the schedule is scheduled from. Will be done.
  • Such information regarding whether or not cross-carrier scheduling is applied and information regarding the scheduling cell (which transmits the CIF) are used as upper layer control information (for example, RRC control information) of the scheduled cell from the base station to the UE. You can notify.
  • a cell that controls the allocation of PDSCH and / or PUSCH of another cell (CC) (transmits DCI including CIF) can be called a scheduling cell (Scheduling Cell).
  • a cell in which cross-carrier scheduling is set (a cell scheduled based on CIF) can be called a scheduled cell (Scheduled Cell).
  • the scheduling cell may also instruct the UE to allocate the PDSCH and / or PUSCH of the scheduling cell (self-schedule) using the CIF.
  • the UE determines the scheduled cell based on the index (for example, ServeCellIndex) corresponding to the 3-bit CIF value included in the PDCCH (or DCI) transmitted in the scheduling cell, and receives the PDSCH assigned in the scheduled cell. To do.
  • the index for example, ServeCellIndex
  • the correspondence between the CIF value and the ServeCellIndex value may be set by higher layer signaling or the like.
  • the CIF is set for the PDCCH (or DCI) of the scheduling cell (CC), and the upper layer signaling is set so that the value of each CIF corresponds to the value of the ServeCellIndex of the corresponding scheduled cell (CC).
  • FIG. 2 is a diagram showing an example of cross-carrier scheduling setting information.
  • the name of IE shown in FIG. 2 is merely an example, and is not limited to the one shown in the figure.
  • the cross-carrier scheduling setting information may include either information regarding scheduling of the own cell (own) or information regarding scheduling by another cell (cross-carrier scheduling) (other). Good.
  • the information (own) regarding the scheduling of the own cell may include information (cif-Presence) indicating the presence or absence of CIF.
  • cif-Presence When cif-Presence is true, the CIF value of the cell (scheduling cell) may be set to 0. If the CIF value of DCI transmitted in the scheduling cell is 0, the UE may determine that it is self-scheduled.
  • the information (other) related to scheduling by other cells may include a cell identifier (cell index, scheduling cell ID, schedulingCellId) that signals DCI.
  • schedulingCellId tells the UE which cell signals DL allocation and UL grant.
  • the CIF value (cif-InSchedulingCell) of the cell (scheduled cell) used in the scheduling cell may be included in other.
  • the UE may perform the decoding on the assumption that there is no CIF. That is, when the CIF is set, the UE decodes the control channel in which the CIF is set in the UE specific search space (USS: UE specific Search Space), and decodes the control channel in which the CIF is not set in the common search space.
  • USS UE specific Search Space
  • cross-carrier scheduling will be supported in future wireless communication systems as well. For example, it is assumed that different traffic types are supported within the same carrier or with different carriers. However, how to control cross-carrier scheduling when different traffic types are supported has not yet been fully explored.
  • a scheduling cell also called a scheduling carrier or a scheduling CC
  • a scheduling carrier also called a scheduling carrier or a scheduling CC
  • different traffic types for example, eMBB and URLLC
  • a scheduled cell also called a scheduled carrier or a scheduled CC
  • the problem is whether the scheduling cells that schedule different transmission directions (for example, UL and DL) are set in common or separately for the scheduled cells. For example, when the scheduled cell is an unlicensed carrier, or when the traffic type of the scheduled cell is URLLC, how to control cross-carrier scheduling becomes a problem.
  • the present inventors examined a cross-carrier schedule control method in consideration of at least one of a traffic type, a transmission direction, and a cell type (for example, unlicensed or licensed), and conceived the present invention.
  • a first aspect describes a scheduling cell that schedules data corresponding to each traffic type when physical shared channels (or data) corresponding to different traffic types are scheduled in a scheduled cell.
  • the cells that schedule data of different traffic types transmitted in a certain scheduled cell may be set to be common (for example, the same cell) (option 1-1).
  • the cells that schedule the data of different traffic types transmitted in a scheduled cell may be set separately (for example, different cells) (option 1-2).
  • a cell for example, a scheduled cell in which a first DCI and a second DCI that schedule a first physical shared channel and a second physical shared channel transmitted in the same cell (for example, a scheduled cell) are transmitted, respectively.
  • the scheduling unit, time interval, allocation, etc. shown in FIG. 3 are examples and are not limited thereto.
  • CC # 1 corresponds to the scheduling cell
  • CC # 2 corresponds to the scheduled cell. That is, the scheduling cell for scheduling the first traffic type and the second traffic type is the same for the scheduled cell (CC # 2).
  • the first physical shared channel may be at least one of PUSCH and PDSCH corresponding to the first traffic type (eg, URLLC).
  • the second physical shared channel may be at least one of the PUSCH and PDSCH corresponding to the second traffic type (eg, eMBB).
  • the traffic type and number are not limited to this.
  • the first DCI and the second DCI may differ from each other in at least one of the DCI format, the RNTI type, the control resource set to be used, the search space, the field type included in the DCI, and the field size of the DCI.
  • the first DCI and the second DCI may have different information (for example, MCS) to be notified to the UE in the same field.
  • the size of the field for notifying the scheduled cell included in the first DCI (for example, the first CIF) and the field for notifying the scheduled cell included in the second DCI (for example, the second CIF) are the same. It may be.
  • the size of the field notifying the scheduled cell contained in the first DCI (for example, the first CIF) and the field notifying the scheduled cell contained in the second DCI (for example, the second CIF) are different. It may be set to (for example, set differently). For example, the size of the first CIF may be changed and the size of the second CIF may be fixed. Alternatively, the size changeable range of the first CIF may be larger (or smaller) than the changeable range of the size of the second CIF.
  • the size of the first CIF and the second CIF By configuring the size of the first CIF and the second CIF to be set separately, the number of CCs that support (or set) the first traffic type and the second traffic type are supported (or set). , The CIF of each DCI can be flexibly set when the number of CCs to be set is different. As a result, an increase in DCI overhead can be suppressed.
  • a cell for example, a scheduled cell in which a first DCI and a second DCI that schedule a first physical shared channel and a second physical shared channel transmitted in the same cell (for example, a scheduled cell) are transmitted, respectively.
  • the scheduling unit, time interval, allocation, etc. shown in FIG. 3 are examples and are not limited thereto.
  • FIG. 4 shows a case where the first DCI that schedules the first physical shared channel transmitted by CC # 2 and the second DCI that schedules the second physical shared channel are transmitted by different CCs. ing.
  • the case where the first DCI is transmitted in CC # 1 and the second DCI is transmitted in a cell other than CC # 1 (for example, CC # 2 or CC # 3) is shown.
  • CC # 1 and CC # 3 correspond to scheduling cells
  • CC # 2 corresponds to scheduled cells. That is, the scheduling cell that schedules the first traffic type and the scheduling cell that schedules the second traffic type are different from the scheduled cell (CC # 2).
  • the second DCI is transmitted by CC # 2, it has a self-scheduling configuration.
  • the first physical shared channel may be at least one of PUSCH and PDSCH corresponding to the first traffic type (eg, URLLC).
  • the second physical shared channel may be at least one of the PUSCH and PDSCH corresponding to the second traffic type (eg, eMBB).
  • the traffic type and number are not limited to this.
  • cross-carrier scheduling can be flexibly set by making it possible to separately set the scheduling cell that schedules the first traffic type transmitted by CC # 2 and the scheduling cell that schedules the second traffic type. it can.
  • the configuration described in option 1-1 may be applied to the configuration of the first DCI and the second DCI, the size of the CIF included in the first DCI and the second DCI, and the like.
  • the cross-carrier scheduling setting information applied to the data corresponding to the predetermined (for example, the first) traffic type may be set from the base station to the UE by using the upper layer signaling.
  • FIG. 5 is a diagram showing an example of cross-carrier scheduling setting information.
  • FIG. 5 shows a case where the cross-carrier scheduling setting (for example, CrossCarrierSchedulingConfig-r16) corresponding to the first traffic type (for example, URLLC) is provided separately from the existing cross-carrier scheduling setting (for example, CrossCarrierSchedulingConfig). There is.
  • the cross-carrier scheduling setting for example, CrossCarrierSchedulingConfig-r16
  • the first traffic type for example, URLLC
  • CrossCarrierSchedulingConfig for example, URLLC
  • the network can set the application of cross-carrier scheduling separately for each traffic type.
  • the names of IE shown in FIG. 5 are merely examples, and are not limited to those shown in the drawings.
  • the size of the information (cif-InSchedulingCell) regarding the CIF value may be set separately.
  • FIG. 5 shows a case where the cross-carrier scheduling settings are set separately, but the present invention is not limited to this.
  • cross-carrier scheduling information eg, schedulingCellInfo-r16
  • schedulingCellInfo-r16 may be included in the existing cross-carrier scheduling settings (for example, CrossCarrierSchedulingConfig).
  • the cells that schedule data in different transmission directions transmitted in a certain scheduled cell may be set to be common (for example, the same cell) (option 2-1).
  • the cells that schedule the data in different transmission directions transmitted in a certain scheduled cell may be set separately (for example, different cells) (option 2-2).
  • ⁇ Option 2-1> A first that schedules a physical shared channel for DL transmission (eg, DL data or PDSCH) transmitted in the same cell (eg, scheduled cell) and a physical shared channel for UL transmission (eg, UL data or PUSCH), respectively.
  • the cell to which the DCI and the second DCI are transmitted (eg, the scheduled cell) may be set to be the same (see FIG. 7).
  • the scheduling unit, time interval, allocation, etc. shown in FIG. 7 are examples and are not limited thereto.
  • FIG. 7 shows a case where the first DCI that schedules DL data transmitted by CC # 2 and the second DCI that schedules UL data are transmitted by the same CC # 1.
  • CC # 1 corresponds to the scheduling cell
  • CC # 2 corresponds to the scheduled cell. That is, the scheduling cell for scheduling DL transmission and UL transmission is the same for the scheduled cell (CC # 2).
  • the physical shared channel for DL transmission may be a PDSCH corresponding to a first traffic type (eg, URLLC) or a second traffic type (eg, eMBB).
  • the physical shared channel of UL transmission may be a PUSCH corresponding to a first traffic type (eg, URLLC) or a second traffic type (eg, eMBB).
  • the traffic type and number are not limited to this.
  • the first DCI and the second DCI may differ from each other in at least one of the DCI format, the RNTI type, the control resource set to be used, the search space, the field type included in the DCI, and the field size of the DCI.
  • the size of the field for notifying the scheduled cell included in the first DCI (for example, the first CIF) and the field for notifying the scheduled cell included in the second DCI (for example, the second CIF) are the same. It may be.
  • the size of the field notifying the scheduled cell contained in the first DCI (for example, the first CIF) and the field notifying the scheduled cell contained in the second DCI (for example, the second CIF) are different. It may be set to (for example, set differently).
  • the number of CCs that support (or set) DL transmission and the number of CCs that support (or set) UL transmission by configuring the size of the first CIF and the second CIF to be set separately. Can be flexibly set for each DCI when As a result, an increase in DCI overhead can be suppressed.
  • ⁇ Option 2-2> A first that schedules a physical shared channel for DL transmission (eg, DL data or PDSCH) transmitted in the same cell (eg, scheduled cell) and a physical shared channel for UL transmission (eg, UL data or PUSCH), respectively.
  • the cell to which the DCI and the second DCI are transmitted (eg, the scheduled cell) may be set separately (see FIG. 8).
  • the scheduling unit, time interval, allocation, etc. shown in FIG. 8 are examples and are not limited thereto.
  • FIG. 8 shows a case where the first DCI that schedules DL data transmitted by CC # 2 and the second DCI that schedules UL data are transmitted by different CCs.
  • the case where the first DCI is transmitted in CC # 1 and the second DCI is transmitted in a cell other than CC # 1 (for example, CC # 2 or CC # 3) is shown.
  • CC # 1 and CC # 3 correspond to scheduling cells
  • CC # 2 corresponds to scheduled cells. That is, the scheduling cell for scheduling DL data and the scheduling cell for scheduling UL data are different from the scheduled cell (CC # 2).
  • the second DCI is transmitted by CC # 2, it has a self-scheduling configuration.
  • the physical shared channel for DL transmission may be a PDSCH corresponding to a first traffic type (eg, URLLC) or a second traffic type (eg, eMBB).
  • the physical shared channel of UL transmission may be a PUSCH corresponding to a first traffic type (eg, URLLC) or a second traffic type (eg, eMBB).
  • the traffic type and number are not limited to this.
  • the cross-carrier scheduling can be flexibly set by making it possible to separately set the scheduling cell for scheduling the DL data transmitted by CC # 2 and the scheduling cell for scheduling the UL data.
  • option 2-1 may be applied to the configuration of the first DCI and the second DCI, the size of the CIF included in the first DCI and the second DCI, and the like.
  • the cross-carrier scheduling setting information applied to the data corresponding to at least one of the first transmission direction (for example, DL) and the second transmission direction (for example, UL) is obtained from the base station to the UE by using the upper layer signaling. May be set to.
  • FIG. 9 is a diagram showing an example of cross-carrier scheduling setting information.
  • the cross-carrier scheduling setting corresponding to the first transmission direction (for example, DL) for example, CrossCarrierSchedulingConfig-DL-r16
  • the cross-carrier scheduling corresponding to the second transmission direction for example, UL
  • the case where the setting (for example, CrossCarrierSchedulingConfig-UL-r16) is provided separately from the existing cross-carrier scheduling setting (for example, CrossCarrierSchedulingConfig) is shown.
  • the network can separately set the application of cross-carrier scheduling (for example, the cell to be applied) for each transmission direction.
  • the name of IE shown in FIG. 9 is merely an example, and is not limited to the one shown in the figure.
  • the size of the information (cif-InSchedulingCell) regarding the CIF value may be set separately.
  • FIG. 9 shows a case where the cross-carrier scheduling setting is set separately for each transmission direction, but the present invention is not limited to this.
  • cross-carrier scheduling information eg, schedulingCellInfo-UL-r16 and schedulingCellInfo-DL-r16
  • an existing cross-carrier scheduling setting for example, CrossCarrierSchedulingConfig. At least one of
  • the information about the scheduled cell may include the information about the scheduled cell corresponding to each transmission direction. (See FIG. 11). Thereby, the transmission direction to which the cross-carrier scheduling is applied can be set for each cell (for example, a scheduled cell).
  • the information about the scheduling cell may include information about the scheduling cell that performs cross-carrier scheduling for each transmission direction (eg, at least one of cif-Presence-UL and cif-Presence-DL). It may be good (see FIG. 12).
  • Unlicensed band In the unlicensed band (for example, 2.4 GHz band, 5 GHz band, 6 GHz band), it is assumed that a plurality of systems such as a Wi-Fi system and a system supporting LAA (LAA system) coexist. It is considered that collision avoidance and / or interference control of transmission between the plurality of systems is required.
  • LAA system LAA system
  • the data transmission device listens to confirm the presence or absence of transmission of other devices (for example, base station, user terminal, Wi-Fi device, etc.) before transmitting data in the unlicensed band.
  • other devices for example, base station, user terminal, Wi-Fi device, etc.
  • LBT Listen Before Talk
  • CCA Clear Channel Assessment
  • carrier sense carrier sense
  • channel sensing channel access operation, etc.
  • the transmitting device may be, for example, a base station (for example, gNodeB (gNB)) for downlink (DL) and a user terminal (for example, User Equipment (UE)) for uplink (UL).
  • a base station for example, gNodeB (gNB)
  • UE User Equipment
  • the receiving device that receives the data from the transmitting device may be, for example, a UE in DL and a base station in UL.
  • the transmitting device starts data transmission after a predetermined period (for example, immediately after or during the backoff period) after the LBT detects that there is no transmission of another device (idle state). ..
  • An NR system that uses an unlicensed band may be called an NR-Unlicensed (U) system, an NR LAA system, or the like. Dual Connectivity (DC) between the licensed band and the unlicensed band, Stand-Alone (SA) of the unlicensed band, etc. may also be included in the NR-U.
  • DC Dual Connectivity
  • SA Stand-Alone
  • the node for example, base station, UE
  • NR-U starts transmission after confirming that the channel is free (idle) by LBT for coexistence with other systems or other operators.
  • the base station or UE when the LBT result is idle (LBT-idle), the base station or UE acquires a transmission opportunity (Transmission Opportunity (TxOP)) and transmits.
  • TxOP Transmission Opportunity
  • the base station or UE does not transmit when the LBT result is busy (LBT-busy).
  • the time of transmission opportunity is also called Channel Occupancy Time (COT).
  • LBT-idle may be read as LBT success.
  • LBT-busy may be read as LBT failure.
  • cross-carrier scheduling may be controlled by utilizing at least one of the following options 3-1 to 3-4.
  • the scheduling cell (or scheduling carrier) may be limited to the license cell (or license carrier). That is, the unlicensed cell may be configured not to be set as a scheduling cell (for example, only a scheduled cell is set).
  • the communication delay in cross-carrier scheduling can be reduced by configuring the unlicensed band not to schedule other cells. Can be suppressed.
  • the scheduling cell may be set to a licensed cell or an unlicensed cell. That is, the unlicensed cell may be configured to allow the scheduling cell to be set.
  • the network for example, a base station
  • the base station may switch the scheduling cell from the unlicensed cell to the licensed cell according to the communication status. As a result, even when the unlicensed cell is set as the scheduling cell, the communication delay in cross-carrier scheduling can be reduced.
  • the scheduling cells that schedule UL and DL in the unlicensed cell (or unlicensed carrier) may be set to the same cell (or carrier).
  • the scheduling cell may be limited to the license cell (for example, option 3-1).
  • the scheduling cell may be set as a licensed cell or an unlicensed cell (eg, option 3-2).
  • the base station may notify the UE of information about the scheduling cell by using higher layer signaling or the like.
  • the scheduling cells that schedule UL and DL in the unlicensed cell (or unlicensed carrier) may be set separately (for example, different cells).
  • the base station may notify the UE of information on cells that schedule UL and information on cells that schedule DL by using upper layer signaling or the like.
  • Scheduling cells that schedule at least one of UL and DL may be limited to license cells (eg, option 3-1).
  • the scheduling cell that schedules at least one of UL and DL may be set to a licensed cell or an unlicensed cell (for example, option 3-2).
  • the base station may notify the UE of information about the scheduling cell by using higher layer signaling or the like.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 13 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the base station (gNB) of NR is MN
  • the base station (eNB) of LTE (E-UTRA) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • the Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect PDCCH.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 14 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the radio frequency band signal received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 includes first downlink control information that schedules a first physical shared channel (for example, at least one of PUSCH and PDSCH) and a second physical shared channel (for example, at least one of PUSCH and PDSCH).
  • the second downlink control information is transmitted.
  • the control unit 110 transmits (or schedules) a cell to which the first physical shared channel and the second physical shared channel are transmitted, and at least one of the first downlink control information and the second downlink control information is transmitted.
  • the cells may be controlled to be different cells.
  • FIG. 15 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmits the channel using the DFT-s-OFDM waveform.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • the transmission / reception unit 220 includes the first downlink control information that schedules the first physical shared channel (for example, at least one of PUSCH and PDSCH) and at least one of the second physical shared channels (for example, PUSCH and PDSCH). Receives the second downlink control information that schedules one).
  • first physical shared channel for example, at least one of PUSCH and PDSCH
  • second physical shared channels for example, PUSCH and PDSCH
  • the transmission / reception unit 220 may receive the cross-carrier scheduling setting information by higher layer signaling. For example, the transmission / reception unit 220 may receive information regarding the cell to which the first downlink control information is transmitted and the cell to which the second downlink control information is transmitted by higher layer signaling.
  • the control unit 210 controls cross-carrier scheduling based on the first downlink control information and the second downlink control information.
  • the cell in which the first downlink control information and the second downlink control information are transmitted is set to be common (for example, the same cell). May be done.
  • the cells to which the first downlink control information and the second downlink control information are transmitted are separate (for example, different cells). May be set to.
  • the first physical shared channel and the second physical shared channel may have different traffic types or may be scheduled with different types of downlink control information.
  • the first physical shared channel and the second physical shared channel may have different transmission directions.
  • the cell to which the first downlink control information or the second downlink control information is transmitted is limited to the license band, or at least one of the license band and the unlicensed band may be set by higher layer signaling.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 16 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disc, a floppy (registered trademark) disc, an optical magnetic disc (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disc, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier Component Carrier (CC)
  • CC Component Carrier
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may be a time unit based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain.
  • the mini-slot may also be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the terms “system” and “network” used in this disclosure may be used interchangeably.
  • the “network” may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side”).
  • an uplink channel, a downlink channel, and the like may be read as a side channel.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • Ultra-WideBand (UWB), Bluetooth®, other systems utilizing appropriate wireless communication methods, next-generation systems extended based on these, and the like may be applied.
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as “judgment (decision)” such as “accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to one embodiment of the present disclosure comprises: a reception unit that receives first downlink control information for scheduling a first physical shared channel and second downlink control information for scheduling a second physical shared channel; and a control unit that controls cross-carrier scheduling on the basis of the first downlink control information and the second downlink control information. If the first physical shared channel and the second physical shared channel are transmitted via the same cell, the cells to which the first downlink control information and the second downlink control information are transmitted are commonly or individually set.

Description

端末及び無線通信方法Terminal and wireless communication method
 本開示は、次世代移動通信システムにおける端末及び無線通信方法に関する。 The present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
 既存のLTEシステム(例えば、LTE Rel.8-15)においては、UEから基地局に対して、上りリンク信号が適切な無線リソースにマッピングされて送信される。上りユーザデータ(例えば、UL-SCH)は、上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))を用いて送信される。また、上りリンク制御情報(Uplink Control Information(UCI))は、上りユーザデータと共に送信される場合はPUSCHを用いて、単独で送信される場合は上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))を用いて送信される。 In an existing LTE system (for example, LTE Rel.8-15), the uplink signal is mapped to an appropriate radio resource and transmitted from the UE to the base station. Uplink user data (for example, UL-SCH) is transmitted using an uplink shared channel (Physical Uplink Shared Channel (PUSCH)). In addition, uplink control information (UPLINK Control Information (UCI)) uses PUSCH when transmitted together with uplink user data, and uplink control channel (Physical Uplink Control Channel (PUCCH)) when transmitted independently. Is transmitted using.
 将来の無線通信システム(例えば、5G(5th generation mobile communication system)、NR(New Radio))では、モバイルブロードバンドのさらなる高度化(eMBB:enhanced Mobile Broadband)、多数同時接続を実現するマシンタイプ通信(mMTC:massive Machine Type Communications)、高信頼かつ低遅延通信(URLLC:Ultra-Reliable and Low-Latency Communications)などの複数のトラフィックタイプをサポートすることが想定される。例えば、URLLCでは、eMBBよりも高い遅延削減、及び、eMBBよりも高い信頼性が要求される。 In future wireless communication systems (for example, 5G (5th generation mobile communication system), NR (New Radio)), further advancement of mobile broadband (eMBB: enhanced Mobile Broadband) and machine type communication (mMTC) that realizes multiple simultaneous connections. : Massive Machine Type Communications), high reliability and low latency communication (URLLC: Ultra-Reliable and Low-Latency Communications) are expected to support multiple traffic types. For example, URLLC requires higher delay reduction than eMBB and higher reliability than eMBB.
 このように、将来の無線通信システムでは、要求条件(例えば、遅延削減に対する要求)が異なる複数のサービス又はトラフィックタイプが混在することが想定される。例えば、異なるトラフィックタイプが同一キャリア(CC又はセルとも呼ぶ)内又は異なるキャリアでサポートされることが想定される。 As described above, in future wireless communication systems, it is expected that a plurality of services or traffic types having different requirements (for example, requirements for delay reduction) will coexist. For example, it is assumed that different traffic types are supported within the same carrier (also called CC or cell) or with different carriers.
 また、NRでは、既存システム(例えば、Rel.15以前)と同様に、所定セルの下り制御情報を利用して他のセルのデータ等をスケジューリングするクロスキャリアスケジューリング(又は、クロスCCスケジューリングとも呼ぶ)をサポートすることも考えられる。しかし、異なるトラフィックタイプがサポートされる場合に、クロスキャリアスケジューリングをどのように制御するかについては、まだ十分に検討されていない。 Further, in NR, as in the existing system (for example, before Rel.15), cross-carrier scheduling (or cross-CC scheduling) that schedules data of other cells by using the downlink control information of a predetermined cell is used. It is also possible to support. However, how to control cross-carrier scheduling when different traffic types are supported has not yet been fully explored.
 そこで、本開示は、複数のトラフィックタイプ等がサポートされる将来の無線通信システムにおいてクロスキャリアスケジューリングを適切に制御できる端末及び無線通信方法を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately controlling cross-carrier scheduling in a future wireless communication system in which a plurality of traffic types and the like are supported.
 本開示の一態様に係る端末は、第1の物理共有チャネルをスケジュールする第1の下り制御情報と、第2の物理共有チャネルをスケジュールする第2の下り制御情報を受信する受信部と、前記第1の下り制御情報と前記第2の下り制御情報に基づいてクロスキャリアスケジューリングを制御する制御部と、を有し、前記第1の物理共有チャネルと前記第2の物理共有チャネルが同じセルで送信される場合、前記第1の下り制御情報と前記第2の下り制御情報が送信されるセルが共通又は別々に設定されることを特徴とする。 The terminal according to one aspect of the present disclosure includes a receiving unit that receives the first downlink control information that schedules the first physical shared channel, the second downlink control information that schedules the second physical shared channel, and the above. It has a first downlink control information and a control unit that controls cross-carrier scheduling based on the second downlink control information, and the first physical shared channel and the second physical shared channel are in the same cell. When transmitted, the first downlink control information and the cell to which the second downlink control information is transmitted are set in common or separately.
 本開示の一態様によれば、複数のトラフィックタイプ等がサポートされる将来の無線通信システムにおいてクロスキャリアスケジューリングを適切に制御することができる。 According to one aspect of the present disclosure, cross-carrier scheduling can be appropriately controlled in a future wireless communication system in which a plurality of traffic types and the like are supported.
図1は、既存システムにおけるクロスキャリアスケジューリングの一例を示す図である。FIG. 1 is a diagram showing an example of cross-carrier scheduling in an existing system. 図2は、既存システムにおけるクロスキャリアスケジューリング設定情報の一例を示す図である。FIG. 2 is a diagram showing an example of cross-carrier scheduling setting information in an existing system. 図3は、第1の態様に係るクロスキャリアスケジューリングの一例を示す図である。FIG. 3 is a diagram showing an example of cross-carrier scheduling according to the first aspect. 図4は、第1の態様に係るクロスキャリアスケジューリングの他の例を示す図である。FIG. 4 is a diagram showing another example of cross-carrier scheduling according to the first aspect. 図5は、第1の態様に係るクロスキャリアスケジューリング設定情報の一例を示す図である。FIG. 5 is a diagram showing an example of cross-carrier scheduling setting information according to the first aspect. 図6は、第1の態様に係るクロスキャリアスケジューリング設定情報の他の例を示す図である。FIG. 6 is a diagram showing another example of the cross-carrier scheduling setting information according to the first aspect. 図7は、第2の態様に係るクロスキャリアスケジューリングの一例を示す図である。FIG. 7 is a diagram showing an example of cross-carrier scheduling according to the second aspect. 図8は、第2の態様に係るクロスキャリアスケジューリングの他の例を示す図である。FIG. 8 is a diagram showing another example of cross-carrier scheduling according to the second aspect. 図9は、第2の態様に係るクロスキャリアスケジューリング設定情報の一例を示す図である。FIG. 9 is a diagram showing an example of cross-carrier scheduling setting information according to the second aspect. 図10は、第2の態様に係るクロスキャリアスケジューリング設定情報の他の例を示す図である。FIG. 10 is a diagram showing another example of the cross-carrier scheduling setting information according to the second aspect. 図11は、第2の態様に係るクロスキャリアスケジューリング設定情報の他の例を示す図である。FIG. 11 is a diagram showing another example of the cross-carrier scheduling setting information according to the second aspect. 図12は、第2の態様に係るクロスキャリアスケジューリング設定情報の他の例を示す図である。FIG. 12 is a diagram showing another example of the cross-carrier scheduling setting information according to the second aspect. 図13は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 13 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図14は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 14 is a diagram showing an example of the configuration of the base station according to the embodiment. 図15は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 15 is a diagram showing an example of the configuration of the user terminal according to the embodiment. 図16は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の例を示す図である。FIG. 16 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
<トラフィックタイプ>
 将来の無線通信システム(例えば、NR)では、モバイルブロードバンドのさらなる高度化(例えば、enhanced Mobile Broadband(eMBB))、多数同時接続を実現するマシンタイプ通信(例えば、massive Machine Type Communications(mMTC)、Internet of Things(IoT))、高信頼かつ低遅延通信(例えば、Ultra-Reliable and Low-Latency Communications(URLLC))などのトラフィックタイプ(サービス、サービスタイプ、通信タイプ、ユースケース、等ともいう)が想定される。例えば、URLLCでは、eMBBより小さい遅延及びより高い信頼性が要求される。
<Traffic type>
In future wireless communication systems (eg, NR), further sophistication of mobile broadband (eg enhanced Mobile Broadband (eMBB)), machine type communication that realizes multiple simultaneous connections (eg massive Machine Type Communications (mMTC), Internet) Of Things (IoT)), high-reliability and low-latency communication (eg, Ultra-Reliable and Low-Latency Communications (URLLC)) and other traffic types (also called services, service types, communication types, use cases, etc.) are assumed. Will be done. For example, URLLC requires less delay and higher reliability than eMBB.
 トラフィックタイプは、物理レイヤにおいては、以下の少なくとも一つに基づいて識別されてもよい。
・異なる優先度(priority)を有する論理チャネル
・変調及び符号化方式(Modulation and Coding Scheme(MCS))テーブル(MCSインデックステーブル)
・チャネル品質指示(Channel Quality Indication(CQI))テーブル
・DCIフォーマット
・当該DCI(DCIフォーマット)に含まれる(付加される)巡回冗長検査(CRC:Cyclic Redundancy Check)ビットのスクランブル(マスク)に用いられる(無線ネットワーク一時識別子(RNTI:System Information-Radio Network Temporary Identifier))
・RRC(Radio Resource Control)パラメータ
・特定のRNTI(例えば、URLLC用のRNTI、MCS-C-RNTI等)
・サーチスペース
・DCI内の所定フィールド(例えば、新たに追加されるフィールド又は既存のフィールドの再利用)
The traffic type may be identified at the physical layer based on at least one of the following:
-Logical channels with different priorities-Modulation and Coding Scheme (MCS) table (MCS index table)
-Channel Quality Indication (CQI) table-DCI format-Used for scramble (mask) of Cyclic Redundancy Check (CRC) bits included (added) in the DCI (DCI format). (Radio Network Temporary Identifier (RNTI))
-RRC (Radio Resource Control) parameters-Specific RNTI (for example, RNTI for URLLC, MCS-C-RNTI, etc.)
-Search space-A predetermined field in DCI (for example, reuse of a newly added field or an existing field)
 具体的には、PDSCHに対するHARQ-ACKのトラフィックタイプは、以下の少なくとも一つに基づいて決定されてもよい。
・当該PDSCHの変調次数(modulation order)、ターゲット符号化率(target code rate)、トランスポートブロックサイズ(TBS:Transport Block size)の少なくとも一つの決定に用いられるMCSインデックステーブル(例えば、MCSインデックステーブル3を利用するか否か)
・当該PDSCHのスケジューリングに用いられるDCIのCRCスクランブルに用いられるRNTI(例えば、C-RNTI又はMCS-C-RNTIのどちらでCRCスクランブルされるか)
Specifically, the traffic type of HARQ-ACK for PDSCH may be determined based on at least one of the following:
An MCS index table (for example, MCS index table 3) used to determine at least one of the PDSCH modulation order, target code rate, and transport block size (TBS). Whether or not to use)
-RNTI used for CRC scrambling of DCI used for scheduling the PDSCH (for example, whether CRC scrambled by C-RNTI or MCS-C-RNTI).
 また、SRのトラフィックタイプは、SRの識別子(SR-ID)として用いられる上位レイヤパラメータに基づいて決定されてもよい。当該上位レイヤパラメータは、当該SRのトラフィックタイプがeMBB又はURLLCのいずれであるかを示してもよい。 Further, the SR traffic type may be determined based on the upper layer parameter used as the SR identifier (SR-ID). The upper layer parameter may indicate whether the SR traffic type is eMBB or URLLC.
 また、CSIのトラフィックタイプは、CSI報告に関する設定(configuration)情報(CSIreportSetting)、トリガに利用されるDCIタイプ又はDCI送信パラメータ等に基づいて決定されてもよい。当該設定情報、DCIタイプ等は、当該CSIのトラフィックタイプがeMBB又はURLLCのいずれであるかを示してもよい。また、当該設定情報は、上位レイヤパラメータであってもよい。 Further, the CSI traffic type may be determined based on the configuration information (CSIreportSetting) related to the CSI report, the DCI type used for the trigger, the DCI transmission parameter, and the like. The setting information, DCI type, etc. may indicate whether the traffic type of the CSI is eMBB or URLLC. Further, the setting information may be an upper layer parameter.
 また、PUSCHのトラフィックタイプは、以下の少なくとも一つに基づいて決定されてもよい。
・当該PUSCHの変調次数、ターゲット符号化率、TBSの少なくとも一つの決定に用いられるMCSインデックステーブル(例えば、MCSインデックステーブル3を利用するか否か)
・当該PUSCHのスケジューリングに用いられるDCIのCRCスクランブルに用いられるRNTI(例えば、C-RNTI又はMCS-C-RNTIのどちらでCRCスクランブルされるか)
Further, the traffic type of PUSCH may be determined based on at least one of the following.
-The MCS index table used to determine at least one of the modulation order, target coding rate, and TBS of the PUSCH (for example, whether or not to use the MCS index table 3).
-RNTI used for CRC scrambling of DCI used for scheduling the PUSCH (for example, whether CRC scrambled by C-RNTI or MCS-C-RNTI).
 トラフィックタイプは、通信要件(遅延、誤り率などの要件、要求条件)、データ種別(音声、データなど)などに関連付けられてもよい。 The traffic type may be associated with communication requirements (requirements such as delay and error rate, requirements), data type (voice, data, etc.) and the like.
 URLLCの要件とeMBBの要件の違いは、URLLCの遅延(latency)がeMBBの遅延よりも小さいことであってもよいし、URLLCの要件が信頼性の要件を含むことであってもよい。 The difference between the URLLC requirement and the eMBB requirement may be that the URLLC latency is smaller than the eMBB delay, or that the URLLC requirement includes a reliability requirement.
 例えば、eMBBのuser(U)プレーン遅延の要件は、下りリンクのUプレーン遅延が4msであり、上りリンクのUプレーン遅延が4msであること、を含んでもよい。一方、URLLCのUプレーン遅延の要件は、下りリンクのUプレーン遅延が0.5msであり、上りリンクのUプレーン遅延が0.5msであること、を含んでもよい。また、URLLCの信頼性の要件は、1msのUプレーン遅延において、32バイトの誤り率が10-5であることを含んでもよい。 For example, the eMBB user (U) plane delay requirement may include that the downlink U-plane delay is 4 ms and the uplink U-plane delay is 4 ms. On the other hand, the URLLC U-plane delay requirement may include that the downlink U-plane delay is 0.5 ms and the uplink U-plane delay is 0.5 ms. The reliability requirement of URLLC may also include a 32-byte error rate of 10-5 at a U-plane delay of 1 ms.
 また、enhanced Ultra Reliable and Low Latency Communications(eURLLC)として、主にユニキャストデータ用のトラフィックの信頼性(reliability)の高度化が検討されている。以下において、URLLC及びeURLLCを区別しない場合、単にURLLCと呼ぶ。 In addition, as enhanced Ultra Reliable and Low Latency Communications (eURLLC), improvement of traffic reliability mainly for unicast data is being considered. In the following, when URLLC and eURLLC are not distinguished, they are simply referred to as URLLC.
<クロスキャリアスケジューリング>
 既存のLTEシステムでは、複数のセル(CC)が設定されたUEに対して、所定セルのPDCCHを用いて他のセルのPDSCHの割当てを通知するクロスキャリアスケジューリング(CCS)がサポートされている。この場合、基地局は、3ビットのCIF(Carrier Indicator Field)を用いて、PDSCHの検出を行うセルを指定することができる。
<Cross-carrier scheduling>
In the existing LTE system, cross-carrier scheduling (CCS) is supported in which a UE in which a plurality of cells (CC) are set is notified of the allocation of PDSCH in another cell by using the PDCCH of a predetermined cell. In this case, the base station can specify a cell for detecting PDSCH by using a 3-bit CIF (Carrier Indicator Field).
 DLにおけるクロスキャリアスケジューリングでは、CAを適用する際に、あるCCの下り共有チャネル(PDSCH)及び/又は上り共有チャネル(PUSCH)の割当てを他のCCの下り制御チャネル(又は、DCI)を利用して指示する(図1参照)。 In cross-carrier scheduling in DL, when applying CA, the downlink shared channel (PDSCH) and / or uplink shared channel (PUSCH) of one CC is assigned by using the downlink control channel (or DCI) of another CC. (See Fig. 1).
 図1では、CC#1(例えば、S-Cell)で送信されるPDSCH及び/又はPUSCHの割当てを指示する下り制御情報(DCI#1)を、別のCC#0(例えば、P-Cell)のPDCCHに多重して送信する。この際、CC#1のPDCCHに多重される下り制御情報(DCI#1)がどのCC(CC0又はCC1)のPDSCH及び/又はPUSCHの割当てを指示する情報であるかを識別するために、キャリア識別子(CI:Carrier Indicator)を付加したDCI構成が適用される。 In FIG. 1, the downlink control information (DCI # 1) instructing the allocation of PDSCH and / or PUSCH transmitted by CC # 1 (for example, S-Cell) is set to another CC # 0 (for example, P-Cell). Multiplexed to PDCCH of. At this time, in order to identify which CC (CC0 or CC1) PDSCH and / or PUSCH allocation instruction is used for the downlink control information (DCI # 1) multiplexed on the PDCCH of CC # 1, the carrier A DCI configuration with an identifier (CI: Carrier Indicator) is applied.
 既存システムでは、下り制御情報に3ビットのキャリア識別子用のフィールド(CIF:Carrier Indicator Field)を設定し、当該下り制御情報が対応するCCをユーザ端末に通知する。ユーザ端末は、下り制御情報に含まれるCIFに基づいて、所定CCにおけるPDSCHの受信処理及び/又はPUSCHの送信処理を行う。 In the existing system, a field (CIF: Carrier Indicator Field) for a 3-bit carrier identifier is set in the downlink control information, and the CC corresponding to the downlink control information is notified to the user terminal. The user terminal performs PDSCH reception processing and / or PUSCH transmission processing in a predetermined CC based on the CIF included in the downlink control information.
 また、あるセル(CC)に対してクロスキャリアスケジューリングを適用する場合、当該セルにクロスキャリアスケジューリングが適用される旨の情報と、いずれのセル(CC)からスケジューリングされるかに関する情報がUEに通知される。このような、クロスキャリアスケジューリングの適用有無に関する情報と、スケジューリングセル(CIFを送信する)セルに関する情報は、スケジューリングされるセルの上位レイヤ制御情報(例えば、RRC制御情報)として、基地局からUEに通知することができる。 In addition, when cross-carrier scheduling is applied to a certain cell (CC), the UE is notified of information that cross-carrier scheduling is applied to the cell and information about which cell (CC) the schedule is scheduled from. Will be done. Such information regarding whether or not cross-carrier scheduling is applied and information regarding the scheduling cell (which transmits the CIF) are used as upper layer control information (for example, RRC control information) of the scheduled cell from the base station to the UE. You can notify.
 ここで、他セル(CC)のPDSCH及び/又はPUSCHの割当てを制御(CIFを含むDCIを送信)するセルをスケジューリングセル(Scheduling Cell)と呼ぶことができる。また、クロスキャリアスケジューリングが設定されるセル(CIFに基づいてスケジューリングされるセル)をスケジューリングされるセル(Scheduled Cell)と呼ぶことができる。 Here, a cell that controls the allocation of PDSCH and / or PUSCH of another cell (CC) (transmits DCI including CIF) can be called a scheduling cell (Scheduling Cell). Further, a cell in which cross-carrier scheduling is set (a cell scheduled based on CIF) can be called a scheduled cell (Scheduled Cell).
 図1に示すクロスキャリアスケジューリングでは、スケジューリングセルがCell#0(CC#0)に相当し、スケジューリングされるセル(スケジュールドセルとも呼ぶ)がCell#1(CIF=1に相当)に相当する場合を示している。なお、スケジューリングセル(CC)は、当該スケジューリングセルのPDSCH及び/又はPUSCHの割当て(セルフスケジュール)についてもCIFを用いてUEに指示してもよい。 In the cross-carrier scheduling shown in FIG. 1, the case where the scheduling cell corresponds to Cell # 0 (CC # 0) and the scheduled cell (also referred to as scheduled cell) corresponds to Cell # 1 (corresponding to CIF = 1) Shown. The scheduling cell (CC) may also instruct the UE to allocate the PDSCH and / or PUSCH of the scheduling cell (self-schedule) using the CIF.
 UEは、スケジューリングセルで送信されるPDCCH(又は、DCI)に含まれる3ビットのCIF値に対応するインデックス(例えば、ServeCellIndex)に基づいてスケジュールドセルを判断し、当該スケジュールドセルで割当てられるPDSCHを受信する。 The UE determines the scheduled cell based on the index (for example, ServeCellIndex) corresponding to the 3-bit CIF value included in the PDCCH (or DCI) transmitted in the scheduling cell, and receives the PDSCH assigned in the scheduled cell. To do.
 CIFの値とServeCellIndexの値との対応関係は、上位レイヤシグナリング等によって設定されてもよい。この場合、スケジューリングセル(CC)のPDCCH(又は、DCI)に対して、CIFが設定されるとともに、各CIFの値が対応するスケジュールドセル(CC)のServeCellIndexの値を対応付ける上位レイヤシグナリングが設定される。 The correspondence between the CIF value and the ServeCellIndex value may be set by higher layer signaling or the like. In this case, the CIF is set for the PDCCH (or DCI) of the scheduling cell (CC), and the upper layer signaling is set so that the value of each CIF corresponds to the value of the ServeCellIndex of the corresponding scheduled cell (CC). To.
 図2は、クロスキャリアスケジューリング設定情報の一例を示す図である。なお、図2に示すIEの名称は例示にすぎず、図示するものに限られない。図2に示すように、クロスキャリアスケジューリング設定情報(CrossCarrierSchedulingConfig)には、自セルのスケジューリングに関する情報(own)又は他セルによるスケジューリング(クロスキャリアスケジューリング)に関する情報(other)のいずれかが含まれてもよい。 FIG. 2 is a diagram showing an example of cross-carrier scheduling setting information. The name of IE shown in FIG. 2 is merely an example, and is not limited to the one shown in the figure. As shown in FIG. 2, the cross-carrier scheduling setting information (CrossCarrierSchedulingConfig) may include either information regarding scheduling of the own cell (own) or information regarding scheduling by another cell (cross-carrier scheduling) (other). Good.
 自セルのスケジューリングに関する情報(own)としては、CIFの存在有無を示す情報(cif-Presence)が含まれていてもよい。cif-Presenceがtrueの場合、当該セル(スケジューリングセル)のCIF値は0に設定されてもよい。スケジューリングセルで送信されるDCIのCIF値が0の場合、UEは、セルフスケジューリングであると判断してもよい。 The information (own) regarding the scheduling of the own cell may include information (cif-Presence) indicating the presence or absence of CIF. When cif-Presence is true, the CIF value of the cell (scheduling cell) may be set to 0. If the CIF value of DCI transmitted in the scheduling cell is 0, the UE may determine that it is self-scheduled.
 他セルによるスケジューリングに関する情報(other)としては、DCIをシグナリングするセルの識別子(セルインデックス、スケジューリングセルID、schedulingCellId)が含まれてもよい。例えば、schedulingCellIdにより、どのセルがDL割当て及びULグラントをシグナルするかをUEに指示する。また、スケジューリングセルにおいて使用される当該セル(スケジュールドセル)のCIF値の値(cif-InSchedulingCell)がotherに含まれていてもよい。 The information (other) related to scheduling by other cells may include a cell identifier (cell index, scheduling cell ID, schedulingCellId) that signals DCI. For example, schedulingCellId tells the UE which cell signals DL allocation and UL grant. Further, the CIF value (cif-InSchedulingCell) of the cell (scheduled cell) used in the scheduling cell may be included in other.
 UEは、共通サーチスペース(CSS:Common Search Space)のPDCCH(又は、DCI)を復号する際には、CIFがないものと仮定して復号を行ってもよい。つまり、UEは、CIFが設定される場合、UE固有サーチスペース(USS:UE specific Search Space)においてCIFが設定される制御チャネルを復号し、共通サーチスペースにおいてCIFが設定されない制御チャネルを復号する。 When decoding the PDCCH (or DCI) of the common search space (CSS: Common Search Space), the UE may perform the decoding on the assumption that there is no CIF. That is, when the CIF is set, the UE decodes the control channel in which the CIF is set in the UE specific search space (USS: UE specific Search Space), and decodes the control channel in which the CIF is not set in the common search space.
 将来の無線通信システムにおいてもクロスキャリアスケジューリングがサポートされることが想定される。例えば、異なるトラフィックタイプが同一キャリア内又は異なるキャリアでサポートされることが想定される。しかし、異なるトラフィックタイプがサポートされる場合に、クロスキャリアスケジューリングをどのように制御するかについては、まだ十分に検討されていない。 It is expected that cross-carrier scheduling will be supported in future wireless communication systems as well. For example, it is assumed that different traffic types are supported within the same carrier or with different carriers. However, how to control cross-carrier scheduling when different traffic types are supported has not yet been fully explored.
 例えば、スケジュールドセル(スケジュールドキャリア、スケジュールドCCとも呼ぶ)に対して、異なるトラフィックタイプ(例えば、eMBBとURLLC)をそれぞれスケジュールするスケジューリングセル(スケジューリングキャリア、スケジューリングCCとも呼ぶ)が共通に設定されるか別々に設定されるかが問題となる。 For example, a scheduling cell (also called a scheduling carrier or a scheduling CC) that schedules different traffic types (for example, eMBB and URLLC) is commonly set for a scheduled cell (also called a scheduled carrier or a scheduled CC). The question is whether they are set separately.
 例えば、トラフィックタイプに応じて異なるDCIタイプ又はDCIの送信パラメータが適用される場合、各トラフィックタイプをそれぞれスケジュールするDCIの所定フィールド(例えば、CIFフィールド)のサイズが異なることも想定される。かかる場合にクロスキャリアスケジューリングをどのように制御するかが問題となる。 For example, when different DCI types or DCI transmission parameters are applied depending on the traffic type, it is assumed that the size of a predetermined DCI field (for example, CIF field) for scheduling each traffic type is different. In such a case, how to control the cross-carrier scheduling becomes a problem.
 あるいは、スケジュールドセルに対して、異なる伝送方向(例えば、ULとDL)をそれぞれスケジュールするスケジューリングセルが共通に設定されるか別々に設定されるかが問題となる。例えば、スケジュールドセルがアンライセンスキャリアの場合、又は、スケジュールドセルのトラフィックタイプがURLLCの場合にどのようにクロスキャリアスケジューリングを制御するかが問題となる。 Alternatively, the problem is whether the scheduling cells that schedule different transmission directions (for example, UL and DL) are set in common or separately for the scheduled cells. For example, when the scheduled cell is an unlicensed carrier, or when the traffic type of the scheduled cell is URLLC, how to control cross-carrier scheduling becomes a problem.
 そこで、本発明者らは、トラフィックタイプ、伝送方向、及びセルのタイプ(例えば、アンライセンス又はライセンス)の少なくとも一つを考慮してクロスキャリアスケジュールの制御方法を検討し、本願発明を着想した。 Therefore, the present inventors examined a cross-carrier schedule control method in consideration of at least one of a traffic type, a transmission direction, and a cell type (for example, unlicensed or licensed), and conceived the present invention.
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施の態様に係る構成は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。また、以下の説明では、複数の共有チャネル(例えば、第1の物理共有チャネルと第2の物理共有チャネル)が同じセルで送信される又は割り当てられる場合を例に挙げて説明するがこれに限られない。複数の共有チャネルが、異なるセルで送信される場合にも同様に適用してもよい。 Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. The configurations according to each embodiment may be applied individually or in combination. Further, in the following description, a case where a plurality of shared channels (for example, a first physical shared channel and a second physical shared channel) are transmitted or assigned in the same cell will be described as an example, but the description is limited to this. I can't. The same may be applied when a plurality of shared channels are transmitted in different cells.
(第1の態様)
 第1の態様では、あるスケジュールドセルにおいて異なるトラフィックタイプに対応する物理共有チャネル(又は、データ)がスケジュールされる場合、各トラフィックタイプに対応するデータをスケジュールするスケジューリングセルについて説明する。
(First aspect)
A first aspect describes a scheduling cell that schedules data corresponding to each traffic type when physical shared channels (or data) corresponding to different traffic types are scheduled in a scheduled cell.
 あるスケジュールドセルで送信される異なるトラフィックタイプのデータをそれぞれスケジュールするセルが共通(例えば、同一セル)となるように設定されてもよい(オプション1-1)。あるいは、あるスケジュールドセルで送信される異なるトラフィックタイプのデータをそれぞれスケジュールするセルが別々(例えば、異なるセル)に設定されてもよい(オプション1-2)。 The cells that schedule data of different traffic types transmitted in a certain scheduled cell may be set to be common (for example, the same cell) (option 1-1). Alternatively, the cells that schedule the data of different traffic types transmitted in a scheduled cell may be set separately (for example, different cells) (option 1-2).
<オプション1-1>
 同じセル(例えば、スケジュールドセル)で送信される第1の物理共有チャネルと第2の物理共有チャネルと、をそれぞれスケジュールする第1のDCIと第2のDCIが送信されるセル(例えば、スケジュールドセル)が同じに設定されてもよい(図3参照)。なお、図3に示すスケジューリング単位、時間間隔、割当て等は一例でありこれに限られない。
<Option 1-1>
A cell (for example, a scheduled cell) in which a first DCI and a second DCI that schedule a first physical shared channel and a second physical shared channel transmitted in the same cell (for example, a scheduled cell) are transmitted, respectively. ) May be set to the same (see FIG. 3). The scheduling unit, time interval, allocation, etc. shown in FIG. 3 are examples and are not limited thereto.
 図3では、CC#2で送信される第1の物理共有チャネルをスケジュールする第1のDCIと、第2の物理共有チャネルをスケジュールする第2のDCIとが同じCC#1で送信される場合を示している。ここでは、CC#1がスケジューリングセルに相当し、CC#2がスケジュールドセルに相当する。つまり、スケジュールドセル(CC#2)に対して、第1のトラフィックタイプと第2のトラフィックタイプのスケジューリングを行うスケジューリングセルが同じとなる。 In FIG. 3, when the first DCI that schedules the first physical shared channel transmitted by CC # 2 and the second DCI that schedules the second physical shared channel are transmitted by the same CC # 1. Is shown. Here, CC # 1 corresponds to the scheduling cell and CC # 2 corresponds to the scheduled cell. That is, the scheduling cell for scheduling the first traffic type and the second traffic type is the same for the scheduled cell (CC # 2).
 第1の物理共有チャネルは、第1のトラフィックタイプ(例えば、URLLC)に対応するPUSCH及びPDSCHの少なくとも一つであってもよい。第2の物理共有チャネルは、第2のトラフィックタイプ(例えば、eMBB)に対応するPUSCH及びPDSCHの少なくとも一つであってもよい。もちろんトラフィックタイプ及び数はこれに限られない。 The first physical shared channel may be at least one of PUSCH and PDSCH corresponding to the first traffic type (eg, URLLC). The second physical shared channel may be at least one of the PUSCH and PDSCH corresponding to the second traffic type (eg, eMBB). Of course, the traffic type and number are not limited to this.
 このように、CC#2で送信される第1のトラフィックタイプをスケジュールするスケジューリングセルと、第2のトラフィックタイプをスケジュールするスケジューリングセルを同じとすることにより、クロスキャリアスケジューリングの制御を簡略化することができる。 In this way, the control of cross-carrier scheduling is simplified by making the scheduling cell that schedules the first traffic type transmitted by CC # 2 the same as the scheduling cell that schedules the second traffic type. Can be done.
 第1のDCIと、第2のDCIは、DCIフォーマット、RNTIタイプ、利用する制御リソースセット、サーチスペース、DCIに含まれるフィールド種別、及びDCIのフィールドサイズの少なくとも一つが異なっていてもよい。あるいは、第1のDCIと、第2のDCIは、同じフィールドでUEに通知する情報(例えば、MCS等)が異なっていてもよい。 The first DCI and the second DCI may differ from each other in at least one of the DCI format, the RNTI type, the control resource set to be used, the search space, the field type included in the DCI, and the field size of the DCI. Alternatively, the first DCI and the second DCI may have different information (for example, MCS) to be notified to the UE in the same field.
 また、第1のDCIに含まれるスケジュールドセルを通知するフィールド(例えば、第1のCIF)と、第2のDCIに含まれるスケジュールドセルを通知するフィールド(例えば、第2のCIF)のサイズは同じであってもよい。 Further, the size of the field for notifying the scheduled cell included in the first DCI (for example, the first CIF) and the field for notifying the scheduled cell included in the second DCI (for example, the second CIF) are the same. It may be.
 あるいは、第1のDCIに含まれるスケジュールドセルを通知するフィールド(例えば、第1のCIF)と、第2のDCIに含まれるスケジュールドセルを通知するフィールド(例えば、第2のCIF)のサイズは別々に設定(例えば、異なって設定)されてもよい。例えば、第1のCIFのサイズは変更され、第2のCIFのサイズは固定であってもよい。あるいは、第1のCIFのサイズの変更可能な範囲が、第2のCIFのサイズの変更可能な範囲より大きい(又は、小さい)構成としてもよい。 Alternatively, the size of the field notifying the scheduled cell contained in the first DCI (for example, the first CIF) and the field notifying the scheduled cell contained in the second DCI (for example, the second CIF) are different. It may be set to (for example, set differently). For example, the size of the first CIF may be changed and the size of the second CIF may be fixed. Alternatively, the size changeable range of the first CIF may be larger (or smaller) than the changeable range of the size of the second CIF.
 第1のCIFと第2のCIFのサイズ等を別々に設定可能な構成とすることにより、第1のトラフィックタイプをサポート(又は、設定)するCC数と、第2のトラフィックタイプをサポート(又は、設定)するCC数が異なる場合に、各DCIのCIFを柔軟に設定することができる。これにより、DCIのオーバーヘッドの増加を抑制できる。 By configuring the size of the first CIF and the second CIF to be set separately, the number of CCs that support (or set) the first traffic type and the second traffic type are supported (or set). , The CIF of each DCI can be flexibly set when the number of CCs to be set is different. As a result, an increase in DCI overhead can be suppressed.
<オプション1-2>
 同じセル(例えば、スケジュールドセル)で送信される第1の物理共有チャネルと第2の物理共有チャネルと、をそれぞれスケジュールする第1のDCIと第2のDCIが送信されるセル(例えば、スケジュールドセル)が別々に設定されてもよい(図4参照)。なお、図3に示すスケジューリング単位、時間間隔、割当て等は一例でありこれに限られない。
<Option 1-2>
A cell (for example, a scheduled cell) in which a first DCI and a second DCI that schedule a first physical shared channel and a second physical shared channel transmitted in the same cell (for example, a scheduled cell) are transmitted, respectively. ) May be set separately (see FIG. 4). The scheduling unit, time interval, allocation, etc. shown in FIG. 3 are examples and are not limited thereto.
 図4では、CC#2で送信される第1の物理共有チャネルをスケジュールする第1のDCIと、第2の物理共有チャネルをスケジュールする第2のDCIとが異なるCCで送信される場合を示している。ここでは、第1のDCIがCC#1で送信され、第2のDCIがCC#1以外のセル(例えば、CC#2又はCC#3)で送信される場合を示している。 FIG. 4 shows a case where the first DCI that schedules the first physical shared channel transmitted by CC # 2 and the second DCI that schedules the second physical shared channel are transmitted by different CCs. ing. Here, the case where the first DCI is transmitted in CC # 1 and the second DCI is transmitted in a cell other than CC # 1 (for example, CC # 2 or CC # 3) is shown.
 また、CC#1、CC#3がスケジューリングセルに相当し、CC#2がスケジュールドセルに相当する。つまり、スケジュールドセル(CC#2)に対して、第1のトラフィックタイプのスケジューリングを行うスケジューリングセルと、第2のトラフィックタイプのスケジューリングを行うスケジューリングセルが異なる。なお、第2のDCIがCC#2で送信される場合、セルフスケジューリングの構成となる。 Also, CC # 1 and CC # 3 correspond to scheduling cells, and CC # 2 corresponds to scheduled cells. That is, the scheduling cell that schedules the first traffic type and the scheduling cell that schedules the second traffic type are different from the scheduled cell (CC # 2). When the second DCI is transmitted by CC # 2, it has a self-scheduling configuration.
 第1の物理共有チャネルは、第1のトラフィックタイプ(例えば、URLLC)に対応するPUSCH及びPDSCHの少なくとも一つであってもよい。第2の物理共有チャネルは、第2のトラフィックタイプ(例えば、eMBB)に対応するPUSCH及びPDSCHの少なくとも一つであってもよい。もちろんトラフィックタイプ及び数はこれに限られない。 The first physical shared channel may be at least one of PUSCH and PDSCH corresponding to the first traffic type (eg, URLLC). The second physical shared channel may be at least one of the PUSCH and PDSCH corresponding to the second traffic type (eg, eMBB). Of course, the traffic type and number are not limited to this.
 このように、CC#2で送信される第1のトラフィックタイプをスケジュールするスケジューリングセルと、第2のトラフィックタイプをスケジュールするスケジューリングセルを別々に設定可能とすることにより、クロスキャリアスケジューリングを柔軟に設定できる。 In this way, cross-carrier scheduling can be flexibly set by making it possible to separately set the scheduling cell that schedules the first traffic type transmitted by CC # 2 and the scheduling cell that schedules the second traffic type. it can.
 なお、第1のDCIと第2のDCIの構成、第1のDCIと第2のDCIに含まれるCIFのサイズ等については、オプション1-1で記載した構成を適用してもよい。 The configuration described in option 1-1 may be applied to the configuration of the first DCI and the second DCI, the size of the CIF included in the first DCI and the second DCI, and the like.
<クロスキャリアスケジュールの設定>
 所定(例えば、第1)のトラフィックタイプに対応するデータに適用するクロスキャリアスケジューリングの設定情報は、上位レイヤシグナリングを利用して基地局からUEに設定してもよい。
<Cross-career schedule setting>
The cross-carrier scheduling setting information applied to the data corresponding to the predetermined (for example, the first) traffic type may be set from the base station to the UE by using the upper layer signaling.
 図5は、クロスキャリアスケジューリング設定情報の一例を示す図である。図5では、第1のトラフィックタイプ(例えば、URLLC)に対応するクロスキャリアスケジューリングの設定(例えば、CrossCarrierSchedulingConfig-r16)を既存のクロスキャリアスケジューリングの設定(例えば、CrossCarrierSchedulingConfig)とは別に設ける場合を示している。 FIG. 5 is a diagram showing an example of cross-carrier scheduling setting information. FIG. 5 shows a case where the cross-carrier scheduling setting (for example, CrossCarrierSchedulingConfig-r16) corresponding to the first traffic type (for example, URLLC) is provided separately from the existing cross-carrier scheduling setting (for example, CrossCarrierSchedulingConfig). There is.
 この場合、ネットワークは、トラフィックタイプ毎にクロスキャリアスケジューリングの適用を別々に設定することができる。なお、図5に示す示すIEの名称は例示にすぎず、図示するものに限られない。例えば、CIF値に関する情報(cif-InSchedulingCell)のサイズは別々に設定されてもよい。 In this case, the network can set the application of cross-carrier scheduling separately for each traffic type. The names of IE shown in FIG. 5 are merely examples, and are not limited to those shown in the drawings. For example, the size of the information (cif-InSchedulingCell) regarding the CIF value may be set separately.
 図5では、クロスキャリアスケジューリングの設定を別々に設ける場合を示したが、これに限られない。例えば、図6に示すように、既存のクロスキャリアスケジューリングの設定(例えば、CrossCarrierSchedulingConfig)の中に所定のトラフィックタイプに適用するクロスキャリアスケジューリングの情報(例えば、schedulingCellInfo-r16)を含めてもよい。 FIG. 5 shows a case where the cross-carrier scheduling settings are set separately, but the present invention is not limited to this. For example, as shown in FIG. 6, cross-carrier scheduling information (eg, schedulingCellInfo-r16) to be applied to a predetermined traffic type may be included in the existing cross-carrier scheduling settings (for example, CrossCarrierSchedulingConfig).
(第2の態様)
 第2の態様では、あるスケジュールドセルにおいて異なる伝送方向に対応する物理共有チャネル(又は、データ)がスケジュールされる場合、各伝送方向に対応するデータをスケジュールするスケジューリングセルについて説明する。
(Second aspect)
In the second aspect, when the physical shared channels (or data) corresponding to different transmission directions are scheduled in a certain scheduled cell, the scheduling cell that schedules the data corresponding to each transmission direction will be described.
 あるスケジュールドセルで送信される異なる伝送方向のデータをそれぞれスケジュールするセルが共通(例えば、同一セル)となるように設定されてもよい(オプション2-1)。あるいは、あるスケジュールドセルで送信される異なる伝送方向のデータをそれぞれスケジュールするセルが別々(例えば、異なるセル)に設定されてもよい(オプション2-2)。 The cells that schedule data in different transmission directions transmitted in a certain scheduled cell may be set to be common (for example, the same cell) (option 2-1). Alternatively, the cells that schedule the data in different transmission directions transmitted in a certain scheduled cell may be set separately (for example, different cells) (option 2-2).
<オプション2-1>
 同じセル(例えば、スケジュールドセル)で送信されるDL伝送の物理共有チャネル(例えば、DLデータ又はPDSCH)とUL伝送の物理共有チャネル(例えば、ULデータ又はPUSCH)と、をそれぞれスケジュールする第1のDCIと第2のDCIが送信されるセル(例えば、スケジュールドセル)が同じに設定されてもよい(図7参照)。なお、図7に示すスケジューリング単位、時間間隔、割当て等は一例でありこれに限られない。
<Option 2-1>
A first that schedules a physical shared channel for DL transmission (eg, DL data or PDSCH) transmitted in the same cell (eg, scheduled cell) and a physical shared channel for UL transmission (eg, UL data or PUSCH), respectively. The cell to which the DCI and the second DCI are transmitted (eg, the scheduled cell) may be set to be the same (see FIG. 7). The scheduling unit, time interval, allocation, etc. shown in FIG. 7 are examples and are not limited thereto.
 図7では、CC#2で送信されるDLデータをスケジュールする第1のDCIと、ULデータをスケジュールする第2のDCIとが同じCC#1で送信される場合を示している。ここでは、CC#1がスケジューリングセルに相当し、CC#2がスケジュールドセルに相当する。つまり、スケジュールドセル(CC#2)に対して、DL伝送とUL伝送のスケジューリングを行うスケジューリングセルが同じとなる。 FIG. 7 shows a case where the first DCI that schedules DL data transmitted by CC # 2 and the second DCI that schedules UL data are transmitted by the same CC # 1. Here, CC # 1 corresponds to the scheduling cell and CC # 2 corresponds to the scheduled cell. That is, the scheduling cell for scheduling DL transmission and UL transmission is the same for the scheduled cell (CC # 2).
 DL伝送の物理共有チャネルは、第1のトラフィックタイプ(例えば、URLLC)又は第2のトラフィックタイプ(例えば、eMBB)に対応するPDSCHであってもよい。UL伝送の物理共有チャネルは、第1のトラフィックタイプ(例えば、URLLC)又は第2のトラフィックタイプ(例えば、eMBB)に対応するPUSCHであってもよい。もちろんトラフィックタイプ及び数はこれに限られない。 The physical shared channel for DL transmission may be a PDSCH corresponding to a first traffic type (eg, URLLC) or a second traffic type (eg, eMBB). The physical shared channel of UL transmission may be a PUSCH corresponding to a first traffic type (eg, URLLC) or a second traffic type (eg, eMBB). Of course, the traffic type and number are not limited to this.
 このように、CC#2で送信されるDLデータをスケジュールするスケジューリングセルと、ULデータをスケジュールするスケジューリングセルを同じとすることにより、クロスキャリアスケジューリングの制御を簡略化することができる。 In this way, by making the scheduling cell for scheduling DL data transmitted by CC # 2 the same as the scheduling cell for scheduling UL data, it is possible to simplify the control of cross-carrier scheduling.
 第1のDCIと、第2のDCIは、DCIフォーマット、RNTIタイプ、利用する制御リソースセット、サーチスペース、DCIに含まれるフィールド種別、及びDCIのフィールドサイズの少なくとも一つが異なっていてもよい。 The first DCI and the second DCI may differ from each other in at least one of the DCI format, the RNTI type, the control resource set to be used, the search space, the field type included in the DCI, and the field size of the DCI.
 また、第1のDCIに含まれるスケジュールドセルを通知するフィールド(例えば、第1のCIF)と、第2のDCIに含まれるスケジュールドセルを通知するフィールド(例えば、第2のCIF)のサイズは同じであってもよい。 Further, the size of the field for notifying the scheduled cell included in the first DCI (for example, the first CIF) and the field for notifying the scheduled cell included in the second DCI (for example, the second CIF) are the same. It may be.
 あるいは、第1のDCIに含まれるスケジュールドセルを通知するフィールド(例えば、第1のCIF)と、第2のDCIに含まれるスケジュールドセルを通知するフィールド(例えば、第2のCIF)のサイズは別々に設定(例えば、異なって設定)されてもよい。 Alternatively, the size of the field notifying the scheduled cell contained in the first DCI (for example, the first CIF) and the field notifying the scheduled cell contained in the second DCI (for example, the second CIF) are different. It may be set to (for example, set differently).
 第1のCIFと第2のCIFのサイズ等を別々に設定可能な構成とすることにより、DL伝送をサポート(又は、設定)するCC数と、UL伝送をサポート(又は、設定)するCC数が異なる場合に、各DCIのCIFを柔軟に設定することができる。これにより、DCIのオーバーヘッドの増加を抑制できる。 The number of CCs that support (or set) DL transmission and the number of CCs that support (or set) UL transmission by configuring the size of the first CIF and the second CIF to be set separately. Can be flexibly set for each DCI when As a result, an increase in DCI overhead can be suppressed.
<オプション2-2>
 同じセル(例えば、スケジュールドセル)で送信されるDL伝送の物理共有チャネル(例えば、DLデータ又はPDSCH)とUL伝送の物理共有チャネル(例えば、ULデータ又はPUSCH)と、をそれぞれスケジュールする第1のDCIと第2のDCIが送信されるセル(例えば、スケジュールドセル)が別々に設定されてもよい(図8参照)。なお、図8に示すスケジューリング単位、時間間隔、割当て等は一例でありこれに限られない。
<Option 2-2>
A first that schedules a physical shared channel for DL transmission (eg, DL data or PDSCH) transmitted in the same cell (eg, scheduled cell) and a physical shared channel for UL transmission (eg, UL data or PUSCH), respectively. The cell to which the DCI and the second DCI are transmitted (eg, the scheduled cell) may be set separately (see FIG. 8). The scheduling unit, time interval, allocation, etc. shown in FIG. 8 are examples and are not limited thereto.
 図8では、CC#2で送信されるDLデータをスケジュールする第1のDCIと、ULデータをスケジュールする第2のDCIとが異なるCCで送信される場合を示している。ここでは、第1のDCIがCC#1で送信され、第2のDCIがCC#1以外のセル(例えば、CC#2又はCC#3)で送信される場合を示している。 FIG. 8 shows a case where the first DCI that schedules DL data transmitted by CC # 2 and the second DCI that schedules UL data are transmitted by different CCs. Here, the case where the first DCI is transmitted in CC # 1 and the second DCI is transmitted in a cell other than CC # 1 (for example, CC # 2 or CC # 3) is shown.
 また、CC#1、CC#3がスケジューリングセルに相当し、CC#2がスケジュールドセルに相当する。つまり、スケジュールドセル(CC#2)に対して、DLデータのスケジューリングを行うスケジューリングセルと、ULデータのスケジューリングを行うスケジューリングセルが異なる。なお、第2のDCIがCC#2で送信される場合、セルフスケジューリングの構成となる。 Also, CC # 1 and CC # 3 correspond to scheduling cells, and CC # 2 corresponds to scheduled cells. That is, the scheduling cell for scheduling DL data and the scheduling cell for scheduling UL data are different from the scheduled cell (CC # 2). When the second DCI is transmitted by CC # 2, it has a self-scheduling configuration.
 DL伝送の物理共有チャネルは、第1のトラフィックタイプ(例えば、URLLC)又は第2のトラフィックタイプ(例えば、eMBB)に対応するPDSCHであってもよい。UL伝送の物理共有チャネルは、第1のトラフィックタイプ(例えば、URLLC)又は第2のトラフィックタイプ(例えば、eMBB)に対応するPUSCHであってもよい。もちろんトラフィックタイプ及び数はこれに限られない。 The physical shared channel for DL transmission may be a PDSCH corresponding to a first traffic type (eg, URLLC) or a second traffic type (eg, eMBB). The physical shared channel of UL transmission may be a PUSCH corresponding to a first traffic type (eg, URLLC) or a second traffic type (eg, eMBB). Of course, the traffic type and number are not limited to this.
 このように、CC#2で送信されるDLデータをスケジュールするスケジューリングセルと、ULデータをスケジュールするスケジューリングセルを別々に設定可能とすることにより、クロスキャリアスケジューリングを柔軟に設定できる。 In this way, the cross-carrier scheduling can be flexibly set by making it possible to separately set the scheduling cell for scheduling the DL data transmitted by CC # 2 and the scheduling cell for scheduling the UL data.
 なお、第1のDCIと第2のDCIの構成、第1のDCIと第2のDCIに含まれるCIFのサイズ等については、オプション2-1で記載した構成を適用してもよい。 The configuration described in option 2-1 may be applied to the configuration of the first DCI and the second DCI, the size of the CIF included in the first DCI and the second DCI, and the like.
<クロスキャリアスケジュールの設定>
 第1の伝送方向(例えば、DL)及び第2の伝送方向(例えば、UL)の少なくとも一方に対応するデータに適用するクロスキャリアスケジューリングの設定情報は、上位レイヤシグナリングを利用して基地局からUEに設定してもよい。
<Cross-career schedule setting>
The cross-carrier scheduling setting information applied to the data corresponding to at least one of the first transmission direction (for example, DL) and the second transmission direction (for example, UL) is obtained from the base station to the UE by using the upper layer signaling. May be set to.
 図9は、クロスキャリアスケジューリング設定情報の一例を示す図である。図9では、第1の伝送方向(例えば、DL)に対応するクロスキャリアスケジューリングの設定(例えば、CrossCarrierSchedulingConfig-DL-r16)と、第2の伝送方向(例えば、UL)に対応するクロスキャリアスケジューリングの設定(例えば、CrossCarrierSchedulingConfig-UL-r16)とを既存のクロスキャリアスケジューリングの設定(例えば、CrossCarrierSchedulingConfig)とは別に設ける場合を示している。 FIG. 9 is a diagram showing an example of cross-carrier scheduling setting information. In FIG. 9, the cross-carrier scheduling setting corresponding to the first transmission direction (for example, DL) (for example, CrossCarrierSchedulingConfig-DL-r16) and the cross-carrier scheduling corresponding to the second transmission direction (for example, UL) are set. The case where the setting (for example, CrossCarrierSchedulingConfig-UL-r16) is provided separately from the existing cross-carrier scheduling setting (for example, CrossCarrierSchedulingConfig) is shown.
 この場合、ネットワークは、伝送方向毎にクロスキャリアスケジューリングの適用(例えば、適用するセル)を別々に設定することができる。なお、図9に示す示すIEの名称は例示にすぎず、図示するものに限られない。例えば、CIF値に関する情報(cif-InSchedulingCell)のサイズは別々に設定されてもよい。 In this case, the network can separately set the application of cross-carrier scheduling (for example, the cell to be applied) for each transmission direction. The name of IE shown in FIG. 9 is merely an example, and is not limited to the one shown in the figure. For example, the size of the information (cif-InSchedulingCell) regarding the CIF value may be set separately.
 図9では、クロスキャリアスケジューリングの設定を伝送方向毎に別々に設ける場合を示したが、これに限られない。例えば、図10に示すように、既存のクロスキャリアスケジューリングの設定(例えば、CrossCarrierSchedulingConfig)の中に所定の伝送方向に適用するクロスキャリアスケジューリングの情報(例えば、schedulingCellInfo-UL-r16及びschedulingCellInfo-DL-r16の少なくとも一つ)を含めてもよい。 FIG. 9 shows a case where the cross-carrier scheduling setting is set separately for each transmission direction, but the present invention is not limited to this. For example, as shown in FIG. 10, cross-carrier scheduling information (eg, schedulingCellInfo-UL-r16 and schedulingCellInfo-DL-r16) applied in a predetermined transmission direction in an existing cross-carrier scheduling setting (for example, CrossCarrierSchedulingConfig). At least one of) may be included.
 あるいは、所定トラフィックタイプに適用するクロスキャリアスケジューリングの情報(例えば、schedulingCellInfo-r16)において、スケジュールドセルに関する情報(例えば、other)の中に、各伝送方向に対応するスケジュールドセルに関する情報を含めてもよい(図11参照)。これにより、クロスキャリアスケジューリングを適用する伝送方向をセル(例えば、スケジュールドセル)毎に設定することができる。 Alternatively, in the cross-carrier scheduling information applied to a predetermined traffic type (for example, schedulingCellInfo-r16), the information about the scheduled cell (for example, other) may include the information about the scheduled cell corresponding to each transmission direction. (See FIG. 11). Thereby, the transmission direction to which the cross-carrier scheduling is applied can be set for each cell (for example, a scheduled cell).
 あるいは、スケジューリングセルに関する情報(例えば、own)の中に、各伝送方向についてクロスキャリアスケジューリングを行うスケジューリングセルに関する情報(例えば、cif-Presence-UL及びcif-Presence-DLの少なくとも一つ)を含めてもよい(図12参照)。 Alternatively, the information about the scheduling cell (eg, own) may include information about the scheduling cell that performs cross-carrier scheduling for each transmission direction (eg, at least one of cif-Presence-UL and cif-Presence-DL). It may be good (see FIG. 12).
 これにより、伝送方向毎にセルフスケジューリングを行うセル(スケジューリングセル)、クロスキャリアスケジューリングを行うセル(スケジュールドセル)を別々に設定することができる。例えば、一方の伝送方向のみセルフスケジューリングを行うスケジューリングセル、一方の伝送方向のみクロスキャリアスケジューリングを行うスケジュールドセル等のパターンを柔軟に設定することができる。 This makes it possible to separately set a cell for self-scheduling (scheduling cell) and a cell for cross-carrier scheduling (scheduled cell) for each transmission direction. For example, it is possible to flexibly set a pattern such as a scheduling cell that self-schedules only in one transmission direction and a scheduled cell that performs cross-carrier scheduling only in one transmission direction.
(第3の態様)
 第3の態様では、アンライセンスバンドを利用する場合のクロスキャリアスケジューリングの制御について説明する。
(Third aspect)
In the third aspect, the control of cross-carrier scheduling when the unlicensed band is used will be described.
<アンライセンスバンド>
 アンライセンスバンド(例えば、2.4GHz帯、5GHz帯、6GHz帯)では、例えば、Wi-Fiシステム、LAAをサポートするシステム(LAAシステム)等の複数のシステムが共存することが想定されるため、当該複数のシステム間での送信の衝突回避及び/又は干渉制御が必要となると考えられる。
<Unlicensed band>
In the unlicensed band (for example, 2.4 GHz band, 5 GHz band, 6 GHz band), it is assumed that a plurality of systems such as a Wi-Fi system and a system supporting LAA (LAA system) coexist. It is considered that collision avoidance and / or interference control of transmission between the plurality of systems is required.
 既存のLTEシステムのLAAでは、データの送信装置は、アンライセンスバンドにおけるデータの送信前に、他の装置(例えば、基地局、ユーザ端末、Wi-Fi装置など)の送信の有無を確認するリスニング(Listen Before Talk(LBT)、Clear Channel Assessment(CCA)、キャリアセンス、チャネルのセンシング、又はチャネルアクセス動作等とも呼ばれる)を行う。 In the LAA of the existing LTE system, the data transmission device listens to confirm the presence or absence of transmission of other devices (for example, base station, user terminal, Wi-Fi device, etc.) before transmitting data in the unlicensed band. (Also called Listen Before Talk (LBT), Clear Channel Assessment (CCA), carrier sense, channel sensing, channel access operation, etc.).
 当該送信装置は、例えば、下りリンク(DL)では基地局(例えば、gNodeB(gNB))、上りリンク(UL)ではユーザ端末(例えば、User Equipment(UE))であってもよい。また、送信装置からのデータを受信する受信装置は、例えば、DLではUE、ULでは基地局であってもよい。 The transmitting device may be, for example, a base station (for example, gNodeB (gNB)) for downlink (DL) and a user terminal (for example, User Equipment (UE)) for uplink (UL). Further, the receiving device that receives the data from the transmitting device may be, for example, a UE in DL and a base station in UL.
 既存のLTEシステムのLAAでは、当該送信装置は、LBTにおいて他の装置の送信がないこと(アイドル状態)が検出されてから所定期間(例えば、直後又はバックオフの期間)後にデータ送信を開始する。 In the LAA of the existing LTE system, the transmitting device starts data transmission after a predetermined period (for example, immediately after or during the backoff period) after the LBT detects that there is no transmission of another device (idle state). ..
 アンライセンスバンドを用いるNRシステムは、NR-Unlicensed(U)システム、NR LAAシステムなどと呼ばれてもよい。ライセンスバンドとアンライセンスバンドとのデュアルコネクティビティ(Dual Connectivity(DC))、アンライセンスバンドのスタンドアローン(Stand-Alone(SA))なども、NR-Uに含まれてもよい。 An NR system that uses an unlicensed band may be called an NR-Unlicensed (U) system, an NR LAA system, or the like. Dual Connectivity (DC) between the licensed band and the unlicensed band, Stand-Alone (SA) of the unlicensed band, etc. may also be included in the NR-U.
 NR-Uにおけるノード(例えば、基地局、UE)は、他システム又は他オペレータとの共存のため、LBTによりチャネルが空いていること(idle)を確認してから、送信を開始する。 The node (for example, base station, UE) in NR-U starts transmission after confirming that the channel is free (idle) by LBT for coexistence with other systems or other operators.
 NR-Uシステムにおいて、基地局又はUEは、LBT結果がアイドルである場合(LBT-idle)に、送信機会(Transmission Opportunity(TxOP))を獲得し、送信を行う。基地局又はUEは、LBT結果がビジーである場合(LBT-busy)に、送信を行わない。送信機会の時間は、Channel Occupancy Time(COT)とも呼ばれる。 In the NR-U system, when the LBT result is idle (LBT-idle), the base station or UE acquires a transmission opportunity (Transmission Opportunity (TxOP)) and transmits. The base station or UE does not transmit when the LBT result is busy (LBT-busy). The time of transmission opportunity is also called Channel Occupancy Time (COT).
 なお、LBT-idleは、LBTの成功(LBT success)で読み替えられてもよい。LBT-busyは、LBTの失敗(LBT failure)で読み替えられてもよい。 Note that LBT-idle may be read as LBT success. LBT-busy may be read as LBT failure.
 このように、アンライセンスバンドでは、送信前にリスニング動作を適用することが必要となる。かかる場合、クロスキャリアスケジューリングをどのように適用するかが問題となる。第3の態様では、以下のオプション3-1~3-4の少なくとも一つを利用してクロスキャリアスケジューリングを制御してもよい。 In this way, in the unlicensed band, it is necessary to apply the listening operation before transmission. In such a case, how to apply cross-carrier scheduling becomes a problem. In the third aspect, cross-carrier scheduling may be controlled by utilizing at least one of the following options 3-1 to 3-4.
<オプション3-1>
 クロスキャリアスケジューリングにおいて、スケジューリングセル(又は、スケジューリングキャリア)は、ライセンスセル(又は、ライセンスキャリア)に制限されてもよい。つまり、アンライセンスセルは、スケジューリングセルに設定されない(例えば、スケジュールドセルのみ設定される)構成としてもよい。
<Option 3-1>
In cross-carrier scheduling, the scheduling cell (or scheduling carrier) may be limited to the license cell (or license carrier). That is, the unlicensed cell may be configured not to be set as a scheduling cell (for example, only a scheduled cell is set).
 これにより、アンライセンスバンドにおいて、LBTの失敗により送信が制限される場合であっても、当該アンライセンスバンドが他のセルのスケジュールを行わない構成とすることにより、クロスキャリアスケジューリングにおける通信の遅延を抑制できる。 As a result, even if transmission is restricted due to LBT failure in the unlicensed band, the communication delay in cross-carrier scheduling can be reduced by configuring the unlicensed band not to schedule other cells. Can be suppressed.
<オプション3-2>
 クロスキャリアスケジューリングにおいて、スケジューリングセルは、ライセンスセル、又はアンライセンスセルに設定されてもよい。つまり、アンライセンスセルが、スケジューリングセルに設定されることを許容する構成としてもよい。この場合、ネットワーク(例えば、基地局)は、上位レイヤシグナリング等を利用してスケジューリングセルに関する情報をUEに通知してもよい。
<Option 3-2>
In cross-carrier scheduling, the scheduling cell may be set to a licensed cell or an unlicensed cell. That is, the unlicensed cell may be configured to allow the scheduling cell to be set. In this case, the network (for example, a base station) may notify the UE of information about the scheduling cell by using upper layer signaling or the like.
 基地局は、通信状況に応じてスケジューリングセルをアンライセンスセルからライセンスセルに切り替えてもよい。これにより、アンライセンスセルがスケジューリングセルに設定される場合であっても、クロスキャリアスケジューリングにおける通信の遅延を低減できる。 The base station may switch the scheduling cell from the unlicensed cell to the licensed cell according to the communication status. As a result, even when the unlicensed cell is set as the scheduling cell, the communication delay in cross-carrier scheduling can be reduced.
<オプション3-3>
 クロスキャリアスケジューリングにおいて、アンライセンスセル(又は、アンライセンスキャリア)におけるULとDLをそれぞれスケジュールするスケジューリングセルは、同じセル(又は、キャリア)に設定されてもよい。
<Option 3-3>
In cross-carrier scheduling, the scheduling cells that schedule UL and DL in the unlicensed cell (or unlicensed carrier) may be set to the same cell (or carrier).
 当該スケジューリングセルは、ライセンスセルに制限されてもよい(例えば、オプション3-1)。あるいは、当該スケジューリングセルは、ライセンスセル、又はアンライセンスセルに設定されてもよい(例えば、オプション3-2)。この場合、基地局は、上位レイヤシグナリング等を利用してスケジューリングセルに関する情報をUEに通知してもよい。 The scheduling cell may be limited to the license cell (for example, option 3-1). Alternatively, the scheduling cell may be set as a licensed cell or an unlicensed cell (eg, option 3-2). In this case, the base station may notify the UE of information about the scheduling cell by using higher layer signaling or the like.
<オプション3-4>
 クロスキャリアスケジューリングにおいて、アンライセンスセル(又は、アンライセンスキャリア)におけるULとDLをそれぞれスケジュールするスケジューリングセルは、別々(例えば、異なるセル)に設定されてもよい。この場合、基地局は、上位レイヤシグナリング等を利用してULをスケジューリングするセルに関する情報と、DLをスケジューリングするセルに関する情報をUEに通知してもよい。
<Option 3-4>
In cross-carrier scheduling, the scheduling cells that schedule UL and DL in the unlicensed cell (or unlicensed carrier) may be set separately (for example, different cells). In this case, the base station may notify the UE of information on cells that schedule UL and information on cells that schedule DL by using upper layer signaling or the like.
 UL及びDLの少なくとも一方をスケジューリングするスケジューリングセルは、ライセンスセルに制限されてもよい(例えば、オプション3-1)。あるいは、UL及びDLの少なくとも一方をスケジューリングするスケジューリングセルは、ライセンスセル、又はアンライセンスセルに設定されてもよい(例えば、オプション3-2)。この場合、基地局は、上位レイヤシグナリング等を利用してスケジューリングセルに関する情報をUEに通知してもよい。 Scheduling cells that schedule at least one of UL and DL may be limited to license cells (eg, option 3-1). Alternatively, the scheduling cell that schedules at least one of UL and DL may be set to a licensed cell or an unlicensed cell (for example, option 3-2). In this case, the base station may notify the UE of information about the scheduling cell by using higher layer signaling or the like.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
 図13は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 13 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Further, the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the base station (gNB) of NR is MN, and the base station (eNB) of LTE (E-UTRA) is SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. Further, the Master Information Block (MIB) may be transmitted by the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect PDCCH. CORESET corresponds to a resource that searches for DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble to establish a connection with the cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図14は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 14 is a diagram showing an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110. RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), and the like may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the radio frequency band signal received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmission unit and the reception unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
 送受信部120は、第1の物理共有チャネル(例えば、PUSCH及びPDSCHの少なくとも一つ)をスケジュールする第1の下り制御情報と、第2の物理共有チャネル(例えば、PUSCH及びPDSCHの少なくとも一つ)をスケジュールする第2の下り制御情報を送信する。 The transmission / reception unit 120 includes first downlink control information that schedules a first physical shared channel (for example, at least one of PUSCH and PDSCH) and a second physical shared channel (for example, at least one of PUSCH and PDSCH). The second downlink control information is transmitted.
 制御部110は、第1の物理共有チャネルと第2の物理共有チャネルが送信(又は、スケジューリング)されるセルと、第1の下り制御情報及び第2の下り制御情報の少なくとも一つが送信されるセルが異なるセルとなるように制御してもよい。 The control unit 110 transmits (or schedules) a cell to which the first physical shared channel and the second physical shared channel are transmitted, and at least one of the first downlink control information and the second downlink control information is transmitted. The cells may be controlled to be different cells.
(ユーザ端末)
 図15は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 15 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply the DFT process may be based on the transform precoding setting. When the transform precoding is enabled for a channel (for example, PUSCH), the transmission / reception unit 220 (transmission processing unit 2211) transmits the channel using the DFT-s-OFDM waveform. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 The transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
 なお、送受信部220は、第1の物理共有チャネル(例えば、PUSCH及びPDSCHの少なくとも一つ)をスケジュールする第1の下り制御情報と、第2の物理共有チャネル(例えば、PUSCH及びPDSCHの少なくとも一つ)をスケジュールする第2の下り制御情報を受信する。 The transmission / reception unit 220 includes the first downlink control information that schedules the first physical shared channel (for example, at least one of PUSCH and PDSCH) and at least one of the second physical shared channels (for example, PUSCH and PDSCH). Receives the second downlink control information that schedules one).
 また、送受信部220は、クロスキャリアスケジューリングの設定情報を上位レイヤシグナリングで受信してもよい。例えば、送受信部220は、第1の下り制御情報が送信されるセル及び第2の下り制御情報が送信されるセルに関する情報を上位レイヤシグナリングで受信してもよい。 Further, the transmission / reception unit 220 may receive the cross-carrier scheduling setting information by higher layer signaling. For example, the transmission / reception unit 220 may receive information regarding the cell to which the first downlink control information is transmitted and the cell to which the second downlink control information is transmitted by higher layer signaling.
 制御部210は、第1の下り制御情報と第2の下り制御情報に基づいてクロスキャリアスケジューリングを制御する。 The control unit 210 controls cross-carrier scheduling based on the first downlink control information and the second downlink control information.
 第1の物理共有チャネルと第2の物理共有チャネルが同じセルで送信される場合、第1の下り制御情報と第2の下り制御情報が送信されるセルが共通(例えば、同じセル)に設定されてもよい。 When the first physical shared channel and the second physical shared channel are transmitted in the same cell, the cell in which the first downlink control information and the second downlink control information are transmitted is set to be common (for example, the same cell). May be done.
 あるいは、第1の物理共有チャネルと第2の物理共有チャネルが同じセルで送信される場合、第1の下り制御情報と第2の下り制御情報が送信されるセルが別々(例えば、異なるセル)に設定されてもよい。 Alternatively, when the first physical shared channel and the second physical shared channel are transmitted in the same cell, the cells to which the first downlink control information and the second downlink control information are transmitted are separate (for example, different cells). May be set to.
 第1の物理共有チャネルと第2の物理共有チャネルは、トラフィックタイプが異なってもよいし、異なるタイプの下り制御情報でスケジュールされてもよい。あるいは、第1の物理共有チャネルと第2の物理共有チャネルは、伝送方向が異なっていてもよい。 The first physical shared channel and the second physical shared channel may have different traffic types or may be scheduled with different types of downlink control information. Alternatively, the first physical shared channel and the second physical shared channel may have different transmission directions.
 第1の下り制御情報又は第2の下り制御情報が送信されるセルは、ライセンスバンドに限定される、又は、上位レイヤシグナリングでライセンスバンド及びアンライセンスバンドの少なくとも一方が設定されてもよい。 The cell to which the first downlink control information or the second downlink control information is transmitted is limited to the license band, or at least one of the license band and the unlicensed band may be set by higher layer signaling.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 16 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In this disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, and is, for example, a flexible disc, a floppy (registered trademark) disc, an optical magnetic disc (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disc, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). May be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal may be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). In addition, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. The mini-slot may also be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name, is an instruction, instruction set, code, code segment, program code, program, subprogram, software module. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. The "network" may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, the communication between the base station and the user terminal is replaced with the communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to inter-terminal communication (for example, "side"). For example, an uplink channel, a downlink channel, and the like may be read as a side channel.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. Further, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), LTE 802. 20, Ultra-WideBand (UWB), Bluetooth®, other systems utilizing appropriate wireless communication methods, next-generation systems extended based on these, and the like may be applied. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" includes receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access (for example). It may be regarded as "judgment (decision)" such as "accessing" (for example, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, selecting, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms "connected", "coupled", or any variation thereof, as used herein, are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
 
 
Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as an amended or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (6)

  1.  第1の物理共有チャネルをスケジュールする第1の下り制御情報と、第2の物理共有チャネルをスケジュールする第2の下り制御情報を受信する受信部と、
     前記第1の下り制御情報と前記第2の下り制御情報に基づいてクロスキャリアスケジューリングを制御する制御部と、を有し、
     前記第1の物理共有チャネルと前記第2の物理共有チャネルが同じセルで送信される場合、前記第1の下り制御情報と前記第2の下り制御情報が送信されるセルが共通又は別々に設定されることを特徴とする端末。
    A receiver that receives the first downlink control information that schedules the first physical shared channel and the second downlink control information that schedules the second physical shared channel.
    It has a first downlink control information and a control unit that controls cross-carrier scheduling based on the second downlink control information.
    When the first physical shared channel and the second physical shared channel are transmitted in the same cell, the cell in which the first downlink control information and the second downlink control information are transmitted are set in common or separately. A terminal characterized by being played.
  2.  前記第1の物理共有チャネルと前記第2の物理共有チャネルは、トラフィックタイプが異なる、又は異なるタイプの下り制御情報でスケジュールされることを特徴とする請求項1に記載の端末。 The terminal according to claim 1, wherein the first physical shared channel and the second physical shared channel are scheduled with different types of traffic or different types of downlink control information.
  3.  前記第1の物理共有チャネルと前記第2の物理共有チャネルは、伝送方向が異なることを特徴とする請求項1又は請求項2に記載の端末。 The terminal according to claim 1 or 2, wherein the first physical shared channel and the second physical shared channel have different transmission directions.
  4.  前記受信部は、前記第1の下り制御情報が送信されるセル及び前記第2の下り制御情報が送信されるセルに関する情報を上位レイヤシグナリングで受信することを特徴とする請求項1から請求項3のいずれかに記載の端末。 Claims 1 to claim 1, wherein the receiving unit receives information about a cell to which the first downlink control information is transmitted and a cell to which the second downlink control information is transmitted by higher layer signaling. The terminal according to any one of 3.
  5.  前記第1の下り制御情報又は前記第2の下り制御情報が送信されるセルは、ライセンスバンドに限定される、又は、上位レイヤシグナリングでライセンスバンド及びアンライセンスバンドの少なくとも一方が設定されることを特徴とする請求項1から請求項4のいずれかに記載の端末。 The cell to which the first downlink control information or the second downlink control information is transmitted is limited to the license band, or at least one of the license band and the unlicensed band is set by the upper layer signaling. The terminal according to any one of claims 1 to 4, which is characteristic.
  6.  第1の物理共有チャネルをスケジュールする第1の下り制御情報と、第2の物理共有チャネルをスケジュールする第2の下り制御情報を受信する工程と、
     前記第1の下り制御情報と前記第2の下り制御情報に基づいてクロスキャリアスケジューリングを制御する工程と、を有し、
     前記第1の物理共有チャネルと前記第2の物理共有チャネルが同じセルで送信される場合、前記第1の下り制御情報と前記第2の下り制御情報が送信されるセルが共通又は別々に設定されることを特徴とする無線通信方法。
     
    The process of receiving the first downlink control information for scheduling the first physical shared channel and the second downlink control information for scheduling the second physical shared channel.
    It has a step of controlling cross-carrier scheduling based on the first downlink control information and the second downlink control information.
    When the first physical shared channel and the second physical shared channel are transmitted in the same cell, the cell in which the first downlink control information and the second downlink control information are transmitted are set in common or separately. A wireless communication method characterized by being performed.
PCT/JP2019/039181 2019-10-03 2019-10-03 Terminal and wireless communication method WO2021064957A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039181 WO2021064957A1 (en) 2019-10-03 2019-10-03 Terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/039181 WO2021064957A1 (en) 2019-10-03 2019-10-03 Terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2021064957A1 true WO2021064957A1 (en) 2021-04-08

Family

ID=75337964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039181 WO2021064957A1 (en) 2019-10-03 2019-10-03 Terminal and wireless communication method

Country Status (1)

Country Link
WO (1) WO2021064957A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170135127A1 (en) * 2015-11-05 2017-05-11 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
WO2018207369A1 (en) * 2017-05-12 2018-11-15 株式会社Nttドコモ User terminal and wireless communication method
JP2019087770A (en) * 2017-11-01 2019-06-06 シャープ株式会社 Terminal device, base station device, and communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170135127A1 (en) * 2015-11-05 2017-05-11 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
WO2018207369A1 (en) * 2017-05-12 2018-11-15 株式会社Nttドコモ User terminal and wireless communication method
JP2019087770A (en) * 2017-11-01 2019-06-06 シャープ株式会社 Terminal device, base station device, and communication method

Similar Documents

Publication Publication Date Title
WO2020217408A1 (en) User terminal and wireless communication method
WO2021152805A1 (en) Terminal, wireless communication method, and base station
WO2020183723A1 (en) User terminal and wireless communication method
JPWO2020065977A1 (en) Terminals, wireless communication methods and systems
WO2020144818A1 (en) User terminal and wireless communication method
JP7293253B2 (en) Terminal, wireless communication method and system
WO2020153210A1 (en) User terminal and wireless communication method
WO2022039164A1 (en) Terminal, wirless communication method, and base station
WO2020222273A1 (en) User terminal and wireless communication method
WO2020188644A1 (en) User terminal and wireless communication method
WO2020188666A1 (en) User terminal and wireless communication method
JP7335349B2 (en) Terminal, wireless communication method, base station and system
JP7351921B2 (en) Terminals, wireless communication methods, base stations and systems
WO2021130941A1 (en) Terminal and wireless communication method
WO2020202448A1 (en) User terminal and wireless communication method
WO2020202429A1 (en) User equipment and wireless communication method
WO2022024224A1 (en) Terminal, wireless communication method, and base station
WO2022044276A1 (en) Terminal, wirless communication method, and base station
WO2021152804A1 (en) Terminal, wireless communication method, and base station
JP7330597B2 (en) Terminal, wireless communication method and system
WO2021095267A1 (en) Terminal and wireless communication method
WO2021084754A1 (en) Terminal and wireless communication method
WO2020230196A1 (en) User terminal and wireless communication method
WO2020202477A1 (en) User terminal and wireless communication method
WO2021100861A1 (en) Terminal, wireless communication method, base station, and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19948189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP