WO2021064917A1 - Relationship determination device, method, and program - Google Patents

Relationship determination device, method, and program Download PDF

Info

Publication number
WO2021064917A1
WO2021064917A1 PCT/JP2019/038996 JP2019038996W WO2021064917A1 WO 2021064917 A1 WO2021064917 A1 WO 2021064917A1 JP 2019038996 W JP2019038996 W JP 2019038996W WO 2021064917 A1 WO2021064917 A1 WO 2021064917A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
microphones
relationship
sound collecting
base
Prior art date
Application number
PCT/JP2019/038996
Other languages
French (fr)
Japanese (ja)
Inventor
賢一 野口
櫻子 矢澤
小林 和則
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2019/038996 priority Critical patent/WO2021064917A1/en
Publication of WO2021064917A1 publication Critical patent/WO2021064917A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • the present invention relates to a technique for collecting acoustic signals such as voice and music coming from all directions.
  • Non-Patent Document 1 There is a method of using a spherical microphone described in Non-Patent Document 1 in order to collect sound coming from all directions.
  • the microphone is a sphere, there is an advantage that the microphone can be rotated and arranged in any way.
  • An object of the present invention is to provide a relationship determining device, method and program for determining the relationship between a sound collecting space, a base which is a spherical microphone, and N microphones.
  • N is an integer of 2 or more, and the base of a substantially sphere having N recesses on the surface at predetermined distances from each other and the inner bottom surface of each of the N recesses.
  • the determination unit includes N microphones installed on the side, a sound collecting space, and a determination unit that determines the relationship between the base and the N microphones, and the determination unit is emitted from a predetermined sound source in the sound collection space. , The relationship is determined using the difference in indirect sound contained in the sound collection signal collected by N microphones.
  • the relationship between the sound collecting space, the base of the spherical microphone, and N microphones can be obtained.
  • FIG. 1 is a diagram showing an example of the functional configuration of the relationship determination device.
  • FIG. 2 is a diagram showing an example of a processing procedure for the pre-sound collection process.
  • FIG. 3 is a diagram showing an example of a processing procedure of the relationship determination process.
  • FIG. 4 is a diagram showing an example of coordinate axes of the sound collecting space.
  • FIG. 5 is a diagram showing an example of coordinate axes of a spherical microphone.
  • FIG. 6 is a diagram showing an example of the relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone.
  • FIG. 7 is a diagram for explaining the pre-sound collection signal and the method 1 for cutting out the sound collection signal.
  • FIG. 1 is a diagram showing an example of the functional configuration of the relationship determination device.
  • FIG. 2 is a diagram showing an example of a processing procedure for the pre-sound collection process.
  • FIG. 3 is a diagram showing an example of a processing procedure of the
  • FIG. 8 is a diagram for explaining the pre-sound collection signal and the method 2 for cutting out the sound collection signal.
  • FIG. 9 is a diagram showing an example of a sound collecting signal when the spherical microphone is hollow.
  • FIG. 10 is a diagram showing an example of a sound collecting signal when the spherical microphone is a rigid sphere and is not provided with a recess.
  • FIG. 11 is a diagram showing an example of a sound collecting signal when the spherical microphone is a rigid sphere and a recess is provided.
  • FIG. 12 is a front view for exemplifying the sound collecting device of the first embodiment.
  • FIG. 13 is a rear view for exemplifying the sound collecting device of the first embodiment.
  • FIG. 14A is a plan view for exemplifying the recess of the first embodiment.
  • 14B is a cross-sectional view taken along the line 14B-14B of FIG. 14A.
  • FIG. 15A is a front view for exemplifying the arrangement of the microphones of the first embodiment.
  • FIG. 15B is a rear view for exemplifying the arrangement of the microphones of the first embodiment.
  • FIG. 16 is a bottom view for exemplifying the sound collecting device of the first embodiment.
  • FIG. 17 is a bottom view for exemplifying the arrangement of the support region of the first embodiment.
  • FIG. 18 is a front view for exemplifying a state in which the support column member is attached to the support region in the first embodiment.
  • FIG. 19 is a rear view for exemplifying a state in which the support column member is attached to the support region in the first embodiment.
  • FIG. 20 is a front view for exemplifying the sound collecting device of the second embodiment.
  • FIG. 21 is a rear view for exemplifying the sound collecting device of the second embodiment.
  • FIG. 22 is a front view for exemplifying the sound collecting device of the third embodiment.
  • FIG. 23 is a rear view for exemplifying the sound collecting device of the third embodiment.
  • FIG. 24 is a bottom view for exemplifying the sound collecting device of the third embodiment.
  • FIG. 25 is a front view for exemplifying the sound collecting device of the fourth embodiment.
  • FIG. 20 is a front view for exemplifying the sound collecting device of the second embodiment.
  • FIG. 21 is a rear view for exemplifying the sound collecting device of the second embodiment.
  • FIG. 22 is a front view for exemplifying the sound collecting device
  • FIG. 26 is a right side view for exemplifying the sound collecting device of the fourth embodiment.
  • FIG. 27 is a perspective view of the sound collecting device when the shape of the recess is substantially a conical trapezoid.
  • FIG. 28A is a plan view of an example of a concave portion having a substantially conical trapezoidal shape.
  • 28B is a cross-sectional view taken along the line 28B-28B of FIG. 28A.
  • FIG. 29A is a plan view of an example of a recess having a substantially conical shape.
  • FIG. 29B is a cross-sectional view taken along the line 29B-29B of FIG. 29A.
  • FIG. 30 is a perspective view of the sound collecting device when the shape of the recess is the shape of an exponential horn.
  • FIG. 31A is a plan view of an example of a recess whose shape is the shape of an exponential horn.
  • FIG. 31B is a cross-sectional view taken along the line 31B-31B of FIG. 31A.
  • FIG. 32 is a perspective view of the sound collecting device when the shape of the recess is bowl-shaped.
  • FIG. 33A is a plan view of an example of a recess having a bowl shape.
  • 33B is a cross-sectional view taken along the line 33B-33B of FIG. 33A.
  • 34A and 34B are diagrams for explaining an example of the position of the recess.
  • FIG. 35 is a diagram showing an example of a functional configuration of a computer.
  • the relationship determination device includes, for example, a cutting unit 5, a storage unit 6, and a determination unit 7.
  • the relationship determination device may further include a base and N microphones.
  • the base and N microphones may be referred to as a spherical microphone and a sound collecting device 1.
  • the pre-sound collection signal and the sound collection signal collected by the base and N microphones are input to the cutout unit 5.
  • a recess is provided in the base, and a microphone is installed in the recess.
  • the effect of reflection / diffraction is greater than when there is no recess. Therefore, for example, the effect of the incoming indirect wave when the pulse signal is used as the reference sound differs depending on each microphone. Is easy to come out.
  • the size of the spherical microphone can be kept small. The shape of the recess may be slightly different for each microphone. As a result, the influence of the indirect wave of each microphone is more likely to be different.
  • the microphones may be arranged so that the distances between adjacent microphones are the same, or the shapes of the recesses may be substantially the same. Further, the microphones may be installed so that the distances between the microphones adjacent to the bottoms of substantially the same recesses are equal. Details of the base and the microphone will be described later as an embodiment of the sound collecting device 1.
  • the relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone can be said to be the relationship between the sound collecting space and the base and N microphones. Therefore, the relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone may be expressed as the relationship between the sound collecting space and the base and N microphones.
  • the coordinate axes of the sound collecting space are represented as shown in FIG. 4, for example.
  • the coordinate axes of the sound collecting space are the x-axis, y-axis, and z-axis that are orthogonal to each other with o as the origin. It is assumed that the reference sound reproduction position (x 0 , y 0 , z 0 ) and the spherical microphone position (x 1 , y 1 , z 1) are known.
  • the coordinate axes of the spherical microphone are represented as shown in FIG. 5, for example.
  • the coordinate axes of the spherical microphone are the x'axis, y'axis, and z'axis that are orthogonal to each other, with o'as the origin.
  • the position of the reference microphone m 1 on the spherical microphone is represented as (r, 0, 0) on the coordinate axes of the spherical microphone.
  • r is a predetermined positive number. In the example of FIG. 5, r is the length of the radius of the spherical microphone.
  • the x'axis, y'axis, and z'axis of the coordinate axes of the spherical microphone are not always parallel to the x-axis, y-axis, and z-axis of the coordinate axes of the sound collecting space, respectively. Absent. In other words, depending on the position of the spherical microphone, the reference sound reproduction position (x 0 , in this example, the coordinate system determined by the x'axis, y'axis, and z'axis) with the spherical microphone as the origin. The direction of y 0 , z 0 ) may be different.
  • An example of the relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone is the coordinate system of the sound collecting space that can be estimated based on the direction of the sound source determined by the azimuth and elevation angles in the predetermined coordinate system with the spherical microphone as the origin. This is the difference from the coordinate system of the spherical microphone.
  • Pre-sound collection processing In the pre-sound collection process, the signal is measured in a state where the relationship between the base and the N microphones is known.
  • Figure 2 shows an example of the processing procedure for pre-sound collection processing.
  • the relationship between the sound collecting space and the base and N microphones is set to a certain known relationship (step P1).
  • the relationship is set so that the sound source is located in the direction of a predetermined azimuth angle and a predetermined elevation angle in a predetermined coordinate system with the spherical microphone as the origin.
  • the sound source reproduces, for example, a pulse sound (step P2).
  • the sound source is, for example, a speaker.
  • Pulse sound is collected by each microphone 12-i provided at the base (step P3).
  • Each pre-sound collection signal collected by each microphone 12-i is input to the cutout unit 5.
  • the cutting unit 5 cuts out each pre-sound collection signal (step P4). Each of the cut-out pre-sound collection signals is stored in the storage unit 6 (step P5).
  • the pre-sound collection signal is cut out by, for example, Method 1 or Method 2 described below.
  • the start time and end time of the cutout section for cutting out each pre-sound collection signal are common to each pre-sound collection signal.
  • FIG. 7 shows the amplitude of the pre-sound collection signal collected by each of the four microphones (microphones 1 to 4).
  • the cutting unit 5 determines whether or not the power of the pre-sound collection signal exceeds a predetermined threshold value, and sets the time when the power of the pre-sound collection signal exceeds the predetermined threshold value as the provisional start time for each pre-sound collection. Do about the signal. As a result, the provisional start time for each pre-sound collection signal can be obtained.
  • An example of a predetermined threshold value is twice the power of the pre-collection signal in the section where there is no reference sound and only the background sound.
  • the cutout unit 5 determines the earliest provisional start time among the provisional start times for each pre-sound collection signal as the start time of the cutout section. Further, the cutting unit 5 determines the time obtained by adding a predetermined time to the determined start time as the end time of the cutting section.
  • the length of time of the cutout section is, for example, 0.5 seconds. In the example of FIG. 7, the length of time of the cutout section is 0.4 seconds.
  • the cutting unit 5 cuts out each pre-sound collecting signal in a cutting section determined by a determined start time and a determined end time.
  • the start time and end time of the cutout section for cutting out each pre-sound collection signal are different for each pre-sound collection signal.
  • FIG. 8 shows the amplitude of the pre-sound collection signal collected by each of the four microphones (microphones 1 to 4).
  • the cutting unit 5 determines whether or not the power of the pre-sound collection signal exceeds a predetermined threshold value, and determines each pre-sound collection process as a start time when the power of the pre-sound collection signal exceeds a predetermined threshold value. Do about the signal. As a result, the start time for each pre-sound collection signal can be obtained.
  • An example of a predetermined threshold value is twice the power of the pre-collection signal in the section where there is no reference sound and only the background sound.
  • the cutting unit 5 determines the time obtained by adding a predetermined time to the determined start time as the end time of the cutting section.
  • the length of time of the cutout section is, for example, 0.5 seconds. In the example of FIG. 8, the length of time of the cutout section is 0.4 seconds.
  • the cutting unit 5 cuts out each pre-sound collecting signal in a cutting section determined by a determined start time and a determined end time.
  • Method 1 saves the arrival time difference between each microphone, but method 2 does not save the arrival time difference between each microphone.
  • steps P1 to 6 are performed for each of a plurality of different relationships.
  • An example of a set of azimuths is [-180 degrees, -170 degrees, ..., 180 degrees], and an example of a set of elevation angles is [-90 degrees, -80 degrees, ..., 90 degrees].
  • the number of elements in the azimuth set is 37
  • step P1 The process of step P6 is repeated.
  • FIG. 3 shows an example of the processing procedure of the relationship determination process.
  • a sound source located at a predetermined reference sound reproduction position reproduces, for example, a pulse sound (step S1).
  • the sound source is, for example, a speaker.
  • Pulse sound is collected by each microphone 12-i provided at the base (step S2). Each sound collection signal collected by each microphone 12-i is input to the cutout unit 5.
  • the cutting unit 5 cuts out each sound collecting signal (step S3).
  • the method of cutting out each sound collection signal by the cutting unit 5 is the same as the method of cutting out each sound collection signal by the cutting unit 5 in (pre-sound collection processing). For example, when each pre-sound collection signal is cut out by the method 1 in the cutting section 5 in (pre-sound collection processing), each sound collection signal is also cut out by method 1 in the cutting section 5 in (relationship determination processing). It is cut out.
  • the determination unit 7 selects and selects a pre-sound collection signal that is emitted from a predetermined sound source and is closest to the sound collection signal collected by N microphones from the pre-sound collection signals stored in the storage unit 6.
  • the relationship between the predetermined sound collection space corresponding to the pre-sound collection signal and the base and N microphones is determined as the above relationship.
  • the similarity is the maximum value of the correlation value of the two pre-collected sound signals.
  • the determination unit 7 determines the pre-sound collection signal collected by the microphones 12-i and stored in the storage unit 6 when the relationship between the sound collection space and the base and the N microphones is a predetermined relationship.
  • a recess is provided in the base, and a microphone is installed in the recess. Therefore, for this reason, in the pre-sound collection signal and the sound collection signal, in addition to the arrival time difference, the sound sound is compared with the case where the microphones are arranged so that the distances between the microphones adjacent to the surface of the base are equal.
  • the effects of reflection and diffraction can be seen after the pulse wave.
  • the influence of sound reflection / diffraction other than this arrival time difference in other words, by using the difference in indirect sound, the relationship between the coordinate axes of the sound collection space and the coordinate axes of the microphone without using other sensors such as a camera. Can be sought.
  • Information on the arrival time can be obtained by collecting the reference sound collection signal by each microphone. Consider estimating the relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone by using the arrival time of each microphone and the information of the arrival time difference between the microphones.
  • the absolute arrival time can be obtained, and the distance between the reproduction position and each microphone position can be obtained from the arrival time, and the coordinate axes of the sound collection environment. It is also possible to calculate the relationship between the coordinate axes of the spherical microphone and the microphone, but in the case of a system that is out of synchronization, it is difficult to obtain the absolute arrival time, and only the arrival time difference between each microphone can be obtained. ..
  • the approximate coordinate axis relationship can be estimated from the arrival time order of each microphone, but it is difficult to obtain an accurate coordinate axis relationship.
  • the approximate direction can be obtained and the relationship between the coordinate axes of one axis can be estimated, but the relationship between the remaining two axes can be obtained.
  • the influence of sound reflection / diffraction other than the arrival time difference can be seen after the pulse wave at each microphone position.
  • the coordinate axes of the sound collection space and the coordinate axes of the spherical microphone can be more accurately compared with the sound collection signal of the reference sound measured in advance and the sound collection signal of the reference sound obtained by computer simulation. Relationship can be estimated.
  • each microphone is not in phase and can be estimated even if there is no information on the arrival time difference.
  • the influence of sound reflection / diffraction other than the arrival time difference can be seen after the pulse wave at each microphone position. Since the influence of reflection / diffraction is greater due to the recesses than when the recesses are not provided, the reference sound collection signal measured in advance and the reference sound collection signal obtained by computer simulation are used. By comparing with, the relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone can be estimated more accurately.
  • the sound collecting device 1 of the present embodiment is a base of a substantially sphere having N recesses 111-1, ..., 111-N at predetermined distances from each other. It has 11 and N microphones 12-1, ..., 12-N.
  • a substantially sphere means a solid (almost a sphere) having a shape close to a sphere, although it is not strictly a sphere.
  • An example of a substantially sphere is a solid in which the surface shape of a portion other than the recesses 111-1, ..., 111-N matches or substantially matches the surface shape of the sphere.
  • the base 11 is made of, for example, a material that sufficiently reflects sound (for example, synthetic resin, metal, wood, etc.).
  • FIG. 14B is a sectional view taken along line 3B-3B of FIG. 14A.
  • the recess 111-i illustrated in this embodiment is a recess having a dish-shaped inner wall surface shape. That is, the shape of the edge portion 111a-i on the open end side (surface side) of the recessed portion 111-i illustrated in the present embodiment is substantially circular, and the inner bottom surface 111bi of the recessed portion 111-i (recessed portion 111-i).
  • the inner bottom surface is a substantially circular substantially flat surface (the edge portion 111c-i of the inner bottom surface 111bi is a substantially circular substantially flat surface).
  • the substantially circular shape means a circular shape or a shape close to a circular shape (almost circular shape).
  • An example of a shape close to a circle is an ellipse in which the ratio of the major axis to the minor axis is a predetermined value ⁇ 1 or less, or a polygon having line symmetry or point symmetry.
  • a substantially plane means a plane or a plane close to a plane (nearly a plane).
  • the substantially flat surface may be, for example, a surface having some irregularities or a slightly curved surface.
  • the diameter (for example, diameter) D in of the edge portion 111c-i of the inner bottom surface 111-i is equal to or less than the diameter (for example, diameter) D out of the edge portion 111a-i on the open end side of the recess 111-i, for example. , D in is less than D out.
  • the region between the edge portion 111a-i and the edge portion 111c-i is the inner wall surface of the recess 111-i. In the examples of FIGS.
  • D in is less than D out
  • the inner wall surface between the edge 111a-i and the edge 111c-i is formed in a slope shape and is smoothly formed on the inner bottom surface 111bi. linked.
  • the depth d of the recess 111-i is less than half the diameter (for example, diameter) D out of the edge 111a-i of the open end of the recess 111-i.
  • D out and D in are larger than the diameter (for example, diameter) of the sound collecting portions 121-i of the microphones 12-1, ..., 12-N.
  • An example of D out and D in is twice or near twice the diameter (for example, diameter) of the sound collecting part 121-i of the microphones 12-1, ..., 12-N.
  • the sound collecting unit 121-i is a portion including a mechanism (for example, a diaphragm or a metal foil) that converts air vibration of sound into an electric signal.
  • the sound collecting unit 121-i is provided, for example, on one end side of the microphone 12-i.
  • An example of d is 2 mm.
  • the shapes of the N recesses 111-1, ..., 111-N are substantially the same (same or almost the same) as each other. As a result, it is possible to reduce variations in sound collection depending on the direction in which the sound arrives. Further, as illustrated in FIGS. 12 and 13, the recesses 111-1, ..., 111-N are provided at a predetermined distance from each other, and the edge portions 111a-1, ..., 111a-N on the open end side are provided. Are separated from each other. That is, the recesses 111-1, ..., 111-N are provided at positions where they do not interfere with each other, and are independent of each other. As a result, the resolution can be improved, and the variation in sound collection depending on the direction of arrival of the sound can be reduced.
  • the intervals (distances) between the sound collecting portions 121-i of the microphones 12-i adjacent to each other are substantially the same. That is, the interval between the sound collecting portions 121-i of the microphones 12-i adjacent to each other is a predetermined value or its vicinity. In the case of the examples of FIGS.
  • the distance between each sound collecting unit 121-i and the four other sound collecting units 121-i'adjacent to the sound collecting unit 121-i is substantially the same as each other.
  • the interval between the two, and the interval between the sound collecting unit 121-1 and the sound collecting unit 121-6 are all substantially the same (FIG. 12).
  • the fact that ⁇ and ⁇ are substantially the same means that ⁇ and ⁇ are the same, or that ⁇ and ⁇ are almost the same.
  • ⁇ 2 1,3,5,10,20,30,40,50.
  • the sound collecting unit 121-i provided on one end side of the microphone 12-i is arranged on the inner bottom surface 111bi side of each recess 111-i, and each sound collecting unit 121- The tip of i or the vicinity of the tip is arranged on the same surface as the inner bottom surface 111bi. As illustrated in FIGS.
  • the sound collecting portion 121-i of each microphone 12-i is arranged at the center of the inner bottom surface 111bi of each recess 111-i or near the center of the inner bottom surface 111bi. It is desirable to be done. That is, it is desirable that the sound collecting portions 121-i of each microphone 12-i are arranged at positions substantially the same distance from the inner wall surface between the edge portions 111a-i and the edge portions 111c-i. As a result, improvement in resolution can be expected.
  • each of the sound collecting parts 121-i of the microphones 12-i has N vertices.
  • One may be arranged at each of the vertices of the polyhedron or the vicinity of the vertices. It is a sphere in which all the vertices of the regular n-plane are circumscribed, and the uniformity is ensured by arranging the microphone 12-i at the apex portion.
  • N is any of 4, 6, 8, 12, and 20.
  • 15A and 15B exemplify a front view and a rear view showing the positional relationship of the sound collecting portions 121-i illustrated in FIGS. 12 and 13.
  • the sound collection of the microphone 12-i is performed at or near each vertex of the regular polyhedron (octahedron) 100 having 6 vertices.
  • the sound collecting portions 121-i arranged at or near each vertex are arranged in a direction from the center of the regular polyhedron toward the vertex or its vicinity, for example.
  • Each support member 13-j supports a support region 112-j located on the lower side of the base 11. For example, one end of each support member 13-j is attached to the support area 112-j to support the base 11 from below.
  • the presence of the support member 13-j affects the spatial environment and is received by the microphone 12-i existing near the support member 13-j. May adversely affect the sound.
  • the support member 13-j supports the base 11 from the side where the target sound source does not exist, and this adverse effect is reduced.
  • the target sound source is often absent below the base 11. Therefore, it can be expected that this adverse effect can be suppressed lower by supporting the base 11 from the lower side than by supporting the base 11 from the upper side or the horizontal direction.
  • the distance between each support area 112-j and the sound collecting portion 121-i of the microphone 12-i adjacent to (existing around) the support area 112-j is substantially uniform. In addition, substantially uniform means uniform or almost uniform.
  • the support region 112-j is provided at substantially the same distance from the sound collecting portion 121-i of the microphone 12-i adjacent thereto.
  • the support area 112-1 is arranged at substantially the same distance from the sound collecting units 121-1, 121-4, 121-6, and the support area 112-2 collects the sound.
  • the support areas 112-3 are arranged at substantially the same distance from the sound units 121-1, 121-2, 121-6, and the support area 112-3 is arranged at approximately the same distance from the sound collecting units 121-2, 121-3, 121-6. Therefore, it is desirable that the support region 112-4 is arranged at substantially the same distance from the sound collecting portions 121-3, 121-4, 121-6.
  • each of the sound collecting portions 121-i when one of each of the sound collecting portions 121-i is arranged at the apex of the regular polyhedron 100 or near the apex, the lower side of the regular polyhedron 100 (below when the base 11 is arranged).
  • the influence of the support member 13-j on the observation by the sound collecting unit 121-i arranged around the support region 112-j can be made uniform, and the above-mentioned adverse effect can be further suppressed.
  • the shape of the support member 13-j is not limited, and for example, a rod-shaped support member 13-j may be used. However, when M ⁇ 2, it is desirable that the shapes of the support members 13-j are substantially the same as each other. As a result, the influence of the support member 13-j on the sound observed by the sound collecting unit 121-i can be made uniform, so that the above-mentioned adverse effect can be further suppressed.
  • each of the sound collecting parts 121-i of the microphones 12-i has N vertices.
  • N 2
  • M 3 or M ⁇ 5.
  • the recesses 111-1 and 111-2 are provided on a straight line Lv (on the vertical axis) passing through the center of the base portion 21 or the vicinity of the center of the base portion 21.
  • the recess 111-1 is provided on the upper side of the base 21, and the recess 111-2 is provided on the lower side of the base 21.
  • the distance between the sound collecting unit 121-1 and the sound collecting unit 121-2 arranged in this way is substantially the same regardless of the direction of measurement.
  • the distances from the sound collecting portion 121-2 arranged on the lower side of the base portion 21 to the support regions 112-j are substantially the same as each other. As a result, the influence of the sound reaching the sound collecting unit 121-2 from each direction from each support region 112-j can be made uniform.
  • the third embodiment is a modification of the first embodiment, and is different from the first embodiment in that the rod-shaped support member is fixed to the base portion while penetrating the base portion.
  • FIG. 23, and FIG. 24 exemplify a front view, a rear view, and a bottom view of the sound collecting device 3 of the third embodiment, respectively.
  • the distance from the one-sided portion 331 arranged outside the base portion 31 of the support member 33 to the sound collecting portions 121-3, 121-4, 121-7, 121-8 of the microphone arranged in the vicinity thereof. are substantially the same as each other.
  • the distance from the other side portion 332 arranged outside the base portion 31 of the support member 33 to the sound collecting portions 121-1, 121-2, 121-5, 121-6 of the microphone arranged around the portion 332. are substantially the same as each other.
  • the support member 33 is the center of each of the pair of faces 301-5, 301-6 parallel to each other of the regular polyhedron 300 or the set of faces 301. -5, 301-6 are arranged on a straight line L3 (third straight line) passing near the center of each.
  • L3 third straight line
  • the fourth embodiment is a modification of the second and third embodiments.
  • N 2 and the rod-shaped support member is fixed to the base portion in a state of penetrating the base portion.
  • 25 and 26 are examples of a front view and a right side view of the sound collecting device 4 of the fourth embodiment, respectively.
  • the distances from the one-sided portion 331 arranged outside the base portion 41 of the support member 33 to the sound collecting portions 121-1 and 121-2 of the microphone are substantially the same as each other.
  • the distances from the other side portion 332 arranged outside the base portion 41 of the support member 33 to the sound collecting portions 121-1 and 121-2 of the microphone are also substantially the same as each other.
  • the sound collecting portions 121-1 and 121-2 of the microphone are arranged on a straight line Lh (first straight line) passing through the center of the base 41 or the vicinity of the center of the base 41, and the support member 33 is arranged on the base 41.
  • the straight line Lv (second straight line) that passes near the center of the center or the center of the base and is substantially orthogonal to the straight line Lh (first straight line).
  • the straight line Lh is a straight line along the horizontal direction
  • the straight line Lv is a straight line along the vertical direction.
  • substantially orthogonal means orthogonal or almost orthogonal.
  • the sound collecting devices 1 to 4 of each embodiment have at least the bases 11 to 41 of a substantially sphere having N recesses on the surface at predetermined distances from each other, and the N microphones 12-. It has 1 to 12-N. However, N is an integer of 2 or more.
  • Each of the microphones 12-1 to 12-N is installed one on the inner bottom surface side of each of the recesses 111-1 to 111-N, and the sound collecting part of the microphones 12-1 to 12-N adjacent to each other.
  • the intervals between 121-1 and 121-N are substantially the same.
  • the function of the recesses 121-i makes it possible to extract the sound emitted from an arbitrary target sound source with a higher resolution than before.
  • the resolution and the information to be collected vary depending on the orientations viewed from the sound collectors 1 to 4. In each embodiment, since the intervals between the sound collecting portions 121-1 to 121-N of the microphones 12-1 to 12-N adjacent to each other are substantially the same, such variations due to the orientation can be reduced. As described above, it is possible to accurately collect sound in all directions without increasing the size of the sound collecting devices 1 to 4 so much.
  • the recess 111-i is not limited to that described above.
  • the inner wall surface between the edge portion 111a-i and the edge portion 111c-i is formed in a slope shape and is smoothly connected to the inner bottom surface 111bi, but the edge portion 111a-i
  • the inner wall surface shape between the edge portion 111c-i and the edge portion 111c-i may be the side surface shape of the truncated cone. That is, the cross-sectional shape of the recess 111-i (the shape of the 3B-3B cross section) may be trapezoidal.
  • the case where the inner wall surface shape between the edge portions 111a-i and the edge portion 111c-i is the side surface shape of the truncated cone will be described in more detail.
  • the fifth embodiment is an embodiment in which the shape of the recess 111-i is formed so that the microphone 12-i has directivity.
  • the shape of the recess 111-i may be a substantially conical trapezoid.
  • the edges of the recess 111-i are chamfered.
  • this chamfered portion becomes the edge portion 111a-i.
  • FIG. 27 is a perspective view of the sound collecting device 1 when the number of recesses 111-1, ..., 111-8 is 8, and the shape of the recesses 111-i is substantially a conical trapezoid.
  • FIG. 28A is a plan view of an example of the recess 111-i having a substantially conical trapezoidal shape.
  • FIG. 28B is a cross-sectional view taken along the line 21B-21B of FIG. 28A.
  • the cross section from the edge 111a-i to the edge 111c-i is linear.
  • the shape of the recess 111-i may be substantially a cone. That is, the recess 111-i does not have to have the edge portion 111c-i and the inner bottom surface 11bi.
  • the recess 111-i having a substantially conical shape and the recess 111-i having a substantially conical trapezoidal shape may coexist.
  • the shape of the recess 111-i may be the shape of an exponential horn.
  • the shape of the recess 111-i may be formed so that the rate of change in the diameter of the recess 111-i decreases from the open end side toward the bottom surface side.
  • the edges of the recess 111-i are chamfered. Similar to Example 1 of the shape of the recess 111-i, this chamfered portion becomes the edge portion 111a-i.
  • FIG. 30 is a perspective view of the sound collecting device 1 when the number of recesses 111-1, ..., 111-8 is 8, and the shape of the recesses 111-i is the shape of an exponential horn.
  • FIG. 31A is a plan view of an example of the recess 111-i whose shape is the shape of an exponential horn.
  • 31B is a cross-sectional view taken along the line 24B-24B of FIG. 31A.
  • the cross section from the edge 111a-i to the edge 111c-i has a curved shape that is convex inward.
  • the shape of the recess 111-i may be a bowl shape.
  • the shape of the recess 111-i may be formed so that the rate of change in the diameter of the recess 111-i increases from the open end side toward the bottom surface side.
  • the edges of the recess 111-i are chamfered. Similar to Example 1 of the shape of the recess 111-i, this chamfered portion becomes the edge portion 111a-i.
  • FIG. 32 is a perspective view of the sound collecting device 1 when the number of recesses 111-1, ..., 111-8 is 8 and the shape of the recesses 111-i is bowl-shaped.
  • FIG. 33A is a plan view of an example of the recess 111-i having a bowl shape.
  • 33B is a cross-sectional view taken along the line 26B-26B of FIG. 33A.
  • the cross section from the edge 111a-i to the edge 111c-i has a curved shape that is convex outward.
  • the sound collecting portion 121-i of the microphone 12-i is the center of the base or the vicinity of the center of the base, and the center of the outer circumference or the bottom of the recess 111-i in which the microphone 12-i is installed. Or it is installed on a straight line L passing through a substantially center.
  • the sound collecting portion 121-i of the microphone 12-i is installed so that the distance between the sound collecting portion 121-i of the microphone 12-i and the center of the base is smaller than the radius of the base.
  • the distance between the sound collecting portion 121-i of the microphone 12-i and the center of the base is appropriately determined according to the directivity required for the microphone 12-i.
  • the distance between the sound collecting portion 121-i of the microphone 12-i and the center of the base is smaller than 1/2 (half) of the radius of the base. Will be installed.
  • the sound collecting portion 121-i of the microphone 12-i is installed so that the distance between the sound collecting portion 121-i of the microphone 12-i and the center of the base is larger than 1/2 of the radius of the base. May be good.
  • the directivity of the sound collecting device 1 can be made a desired directivity.
  • the microphone 12-i may be installed so as to be in contact with the inner bottom surface 11bi of the recess 111-i, or may be installed so as not to be in contact with the inner bottom surface 11bi of the recess 111-i.
  • the sound collecting portion 121-i of the microphone 12-i is located at the center of the base or near the center of the base, and the outer circumference of the recess 111-i where the microphone 12-i is installed. It may be installed on a straight line L passing through the center or substantially the center of the bottom.
  • the diameter of the recess 111-i is determined so that the recess 111-i does not overlap the adjacent recess 111-i.
  • the diameter of the base is 80 mm and the number of recesses 111-1, ..., 111-8 is 8 as illustrated in FIGS. 27, 30 and 32, the diameter of the recess 111-i Is 40 mm or less.
  • the diameter of the recess 111-i is the diameter of the outer circumference of the recess 111-i.
  • a regular hexahedron (see FIG. 34A) having eight vertices inscribed in a sphere of the same size as the base is placed parallel to each other in the twelve sides of the regular hexahedron. Rotate 45 degrees along the dividing surface while maintaining the state in which the upper part of the regular hexahedron or the lower part of the regular hexahedron obtained by dividing each of the sides into two equal parts is inscribed in the sphere.
  • Recesses 111-1, ..., 111-8 are provided at the positions of the eight vertices (see FIG. 34B) when the vertices are formed.
  • the sound collecting device 1 of the fourth embodiment of the first embodiment includes N microphones 12-1, ..., 12-N, which are the same number as the number of recesses 111-1, ..., 111-N. ..
  • the sound collecting device 1 of the fifth embodiment may further have at least one microphone.
  • each of these at least one microphone is installed in any of the N recesses 111-1, ..., 111-N.
  • two or more microphone holons may be provided in at least one recess in the recesses 111-1, ..., 111-N.
  • the program that describes this processing content can be recorded on a computer-readable recording medium.
  • the computer-readable recording medium may be, for example, a magnetic recording device, an optical disk, a photomagnetic recording medium, a semiconductor memory, or the like.
  • the distribution of this program is carried out, for example, by selling, transferring, renting, etc., portable recording media such as DVDs and CD-ROMs on which the program is recorded. Further, the program may be stored in the storage device of the server computer, and the program may be distributed by transferring the program from the server computer to another computer via a network.
  • a computer that executes such a program first stores, for example, a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. Then, when the process is executed, the computer reads the program stored in its own storage device and executes the process according to the read program. Further, as another execution form of this program, a computer may read the program directly from a portable recording medium and execute processing according to the program, and further, the program is transferred from the server computer to this computer. Each time, the processing according to the received program may be executed sequentially. In addition, the above processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition without transferring the program from the server computer to this computer. May be.
  • the program in this embodiment includes information to be used for processing by a computer and equivalent to the program (data that is not a direct command to the computer but has a property of defining the processing of the computer, etc.).
  • the present device is configured by executing a predetermined program on the computer, but at least a part of these processing contents may be realized by hardware.

Landscapes

  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

A relationship determination device including: a substantially-spherical base unit comprising an N number of recesses on the surface thereof, N being an integer of at least 2 and said recesses having a prescribed distance therebetween; an N number of microphones respectively arranged on the inner floor surface side of each of the N number of recesses; a sound collection space; and a determination unit 7 that determines the relationship between the base unit and the N number of microphones. The determination unit 7 uses the difference between indirect sounds included in a sound collection signal emitted from a prescribed sound source inside the sound collection space and collected by the N number of microphones, to determine the relationship.

Description

関係決定装置、方法及びプログラムRelationship determination device, method and program
 この発明は、全天球方向から到来する音声、音楽等の音響信号を集音する技術に関する。 The present invention relates to a technique for collecting acoustic signals such as voice and music coming from all directions.
 全天球方向から到来する音声を集音するために、非特許文献1に記載された球体マイクを用いる方法がある。 There is a method of using a spherical microphone described in Non-Patent Document 1 in order to collect sound coming from all directions.
 この方法では、マイクが球体であるため、マイクをどのように回転させて配置をしてもよい利点はある。 In this method, since the microphone is a sphere, there is an advantage that the microphone can be rotated and arranged in any way.
 しかし、背景技術に記載された方法で集音信号を処理するためには、集音空間の座標軸と球体マイクの座標軸との関係を求める必要がある。言い換えれば、集音空間と、球体マイクである基部及びN個のマイクロホンとの関係を求める必要がある。 However, in order to process the sound collection signal by the method described in the background technology, it is necessary to find the relationship between the coordinate axes of the sound collection space and the coordinate axes of the spherical microphone. In other words, it is necessary to find the relationship between the sound collecting space, the base of the spherical microphone, and N microphones.
 この発明は、集音空間と、球体マイクである基部及びN個のマイクロホンとの関係を求める関係決定装置、方法及びプログラムを提供することを目的とする。 An object of the present invention is to provide a relationship determining device, method and program for determining the relationship between a sound collecting space, a base which is a spherical microphone, and N microphones.
 この発明の一態様による関係決定装置は、Nが2以上の整数であり、互いに所定の距離をおいたN個の凹部を表面に備えた略球体の基部と、それぞれN個の凹部の内底面側に設置されたN個のマイクロホンと、集音空間と、基部及びN個のマイクロホンとの関係を決定する決定部と、を含み、決定部は、集音空間内の所定の音源から発せられ、N個のマイクロホンが集音した集音信号に含まれる間接音の差を用いて関係を決定する。 In the relationship determination device according to one aspect of the present invention, N is an integer of 2 or more, and the base of a substantially sphere having N recesses on the surface at predetermined distances from each other and the inner bottom surface of each of the N recesses. The determination unit includes N microphones installed on the side, a sound collecting space, and a determination unit that determines the relationship between the base and the N microphones, and the determination unit is emitted from a predetermined sound source in the sound collection space. , The relationship is determined using the difference in indirect sound contained in the sound collection signal collected by N microphones.
 集音空間と、球体マイクである基部及びN個のマイクロホンとの関係を求めることができる。 The relationship between the sound collecting space, the base of the spherical microphone, and N microphones can be obtained.
図1は、関係決定装置の機能構成の例を示す図である。FIG. 1 is a diagram showing an example of the functional configuration of the relationship determination device. 図2は、事前集音処理の処理手続きの例を示す図である。FIG. 2 is a diagram showing an example of a processing procedure for the pre-sound collection process. 図3は、関係決定処理の処理手続きの例を示す図である。FIG. 3 is a diagram showing an example of a processing procedure of the relationship determination process. 図4は、集音空間の座標軸の例を示す図である。FIG. 4 is a diagram showing an example of coordinate axes of the sound collecting space. 図5は、球体マイクの座標軸の例を示す図である。FIG. 5 is a diagram showing an example of coordinate axes of a spherical microphone. 図6は、集音空間の座標軸と球体マイクの座標軸との関係の例を示す図である。FIG. 6 is a diagram showing an example of the relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone. 図7は、事前集音信号及び集音信号の切り出しの方法1を説明するための図である。FIG. 7 is a diagram for explaining the pre-sound collection signal and the method 1 for cutting out the sound collection signal. 図8は、事前集音信号及び集音信号の切り出しの方法2を説明するための図である。FIG. 8 is a diagram for explaining the pre-sound collection signal and the method 2 for cutting out the sound collection signal. 図9は、球体マイクが中空の場合の集音信号の例を示す図である。FIG. 9 is a diagram showing an example of a sound collecting signal when the spherical microphone is hollow. 図10は、球体マイクが剛球であり凹部が設けられていない場合の集音信号の例を示す図である。FIG. 10 is a diagram showing an example of a sound collecting signal when the spherical microphone is a rigid sphere and is not provided with a recess. 図11は、球体マイクが剛球であり凹部が設けられている場合の集音信号の例を示す図である。FIG. 11 is a diagram showing an example of a sound collecting signal when the spherical microphone is a rigid sphere and a recess is provided. 図12は、第1実施形態の集音装置を例示するための正面図である。FIG. 12 is a front view for exemplifying the sound collecting device of the first embodiment. 図13は、第1実施形態の集音装置を例示するための背面図である。FIG. 13 is a rear view for exemplifying the sound collecting device of the first embodiment. 図14Aは、第1実施形態の凹部を例示するための平面図である。図14Bは、図14Aの14B-14B断面図である。FIG. 14A is a plan view for exemplifying the recess of the first embodiment. 14B is a cross-sectional view taken along the line 14B-14B of FIG. 14A. 図15Aは、第1実施形態のマイクロホンの配置を例示するための正面図である。図15Bは、第1実施形態のマイクロホンの配置を例示するための背面図である。FIG. 15A is a front view for exemplifying the arrangement of the microphones of the first embodiment. FIG. 15B is a rear view for exemplifying the arrangement of the microphones of the first embodiment. 図16は、第1実施形態の集音装置を例示するための底面図である。FIG. 16 is a bottom view for exemplifying the sound collecting device of the first embodiment. 図17は、第1実施形態の支持領域の配置を例示するための底面図である。FIG. 17 is a bottom view for exemplifying the arrangement of the support region of the first embodiment. 図18は、第1実施形態において支持領域に支柱部材が取り付けられた様子を例示するための正面図である。FIG. 18 is a front view for exemplifying a state in which the support column member is attached to the support region in the first embodiment. 図19は、第1実施形態において支持領域に支柱部材が取り付けられた様子を例示するための背面図である。FIG. 19 is a rear view for exemplifying a state in which the support column member is attached to the support region in the first embodiment. 図20は、第2実施形態の集音装置を例示するための正面図である。FIG. 20 is a front view for exemplifying the sound collecting device of the second embodiment. 図21は、第2実施形態の集音装置を例示するための背面図である。FIG. 21 is a rear view for exemplifying the sound collecting device of the second embodiment. 図22は、第3実施形態の集音装置を例示するための正面図である。FIG. 22 is a front view for exemplifying the sound collecting device of the third embodiment. 図23は、第3実施形態の集音装置を例示するための背面図である。FIG. 23 is a rear view for exemplifying the sound collecting device of the third embodiment. 図24は、第3実施形態の集音装置を例示するための底面図である。FIG. 24 is a bottom view for exemplifying the sound collecting device of the third embodiment. 図25は、第4実施形態の集音装置を例示するための正面図である。FIG. 25 is a front view for exemplifying the sound collecting device of the fourth embodiment. 図26は、第4実施形態の集音装置を例示するための右側面図である。FIG. 26 is a right side view for exemplifying the sound collecting device of the fourth embodiment. 図27は、凹部の形状が略円錐台形である場合の集音装置の斜視図である。FIG. 27 is a perspective view of the sound collecting device when the shape of the recess is substantially a conical trapezoid. 図28Aは、形状が略円錐台形である凹部の例の平面図である。図28Bは、図28Aの28B-28B断面図である。FIG. 28A is a plan view of an example of a concave portion having a substantially conical trapezoidal shape. 28B is a cross-sectional view taken along the line 28B-28B of FIG. 28A. 図29Aは、形状が略円錐である凹部の例の平面図である。図29Bは、図29Aの29B-29B断面図である。FIG. 29A is a plan view of an example of a recess having a substantially conical shape. FIG. 29B is a cross-sectional view taken along the line 29B-29B of FIG. 29A. 図30は、凹部の形状がエクスポーネンシャルホーンの形状である場合の集音装置の斜視図である。FIG. 30 is a perspective view of the sound collecting device when the shape of the recess is the shape of an exponential horn. 図31Aは、形状がエクスポーネンシャルホーンの形状である凹部の例の平面図である。図31Bは、図31Aの31B-31B断面図である。FIG. 31A is a plan view of an example of a recess whose shape is the shape of an exponential horn. FIG. 31B is a cross-sectional view taken along the line 31B-31B of FIG. 31A. 図32は、凹部の形状が椀形状である場合の集音装置の斜視図である。FIG. 32 is a perspective view of the sound collecting device when the shape of the recess is bowl-shaped. 図33Aは、形状が椀形状である凹部の例の平面図である。図33Bは、図33Aの33B-33B断面図である。FIG. 33A is a plan view of an example of a recess having a bowl shape. 33B is a cross-sectional view taken along the line 33B-33B of FIG. 33A. 図34A及び図34Bは、凹部の位置の例を説明するため図である。34A and 34B are diagrams for explaining an example of the position of the recess. 図35は、コンピュータの機能構成例を示す図である。FIG. 35 is a diagram showing an example of a functional configuration of a computer.
 以下、本発明の実施の形態について詳細に説明する。なお、図面中において同じ機能を有する構成部には同じ番号を付し、重複説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail. In the drawings, the components having the same function are given the same number, and duplicate description will be omitted.
 [関係決定装置及び方法]
 関係決定装置は、図1に示すように、切出部5、記憶部6及び決定部7を例えば備えている。なお、図1には記載されていないが、関係決定装置は、基部及びN個のマイクロホンを更に備えていてもよい。基部及びN個のマイクロホンのことを、球体マイク、集音装置1と呼ぶこともある。図12の例では、基部及びN個のマイクロホンで集音された事前集音信号及び集音信号が、切出部5に入力される。
[Relationship determination device and method]
As shown in FIG. 1, the relationship determination device includes, for example, a cutting unit 5, a storage unit 6, and a determination unit 7. Although not shown in FIG. 1, the relationship determination device may further include a base and N microphones. The base and N microphones may be referred to as a spherical microphone and a sound collecting device 1. In the example of FIG. 12, the pre-sound collection signal and the sound collection signal collected by the base and N microphones are input to the cutout unit 5.
 基部には凹部が設けられており、その凹部にマイクロホンが設置されている。マイクロホンの周囲に凹部を設けることで、凹部がない場合と比較して、反射・回折の影響が大きくなるため、例えばパルス信号を基準音としたときの到来する間接波の影響が各マイクロホンによって差が出やすくなる。また、基部の表面よりも内側に凹部を設けることで、球体マイクのサイズを小さく保つメリットがある。なお、凹部の形状を各マイクロホンで微妙に異なるものとしてもよい。これにより、各マイクロホンの間接波の影響にもより差が出やすくなる。また、マイクロホンは隣接するマイクロホン間の距離が同一になるように配置されてもよいし、凹部の形状が略同一となってもよい。また、ほぼ同一の凹部の底に隣接するマイクロホン間の距離が均等になるようにマイクロホンを設置してもよい。基部及びマイクロホンの詳細については、集音装置1の実施形態として後述する。 A recess is provided in the base, and a microphone is installed in the recess. By providing a recess around the microphone, the effect of reflection / diffraction is greater than when there is no recess. Therefore, for example, the effect of the incoming indirect wave when the pulse signal is used as the reference sound differs depending on each microphone. Is easy to come out. In addition, by providing a recess inside the surface of the base, there is an advantage that the size of the spherical microphone can be kept small. The shape of the recess may be slightly different for each microphone. As a result, the influence of the indirect wave of each microphone is more likely to be different. Further, the microphones may be arranged so that the distances between adjacent microphones are the same, or the shapes of the recesses may be substantially the same. Further, the microphones may be installed so that the distances between the microphones adjacent to the bottoms of substantially the same recesses are equal. Details of the base and the microphone will be described later as an embodiment of the sound collecting device 1.
 以下、切出部5、記憶部6及び決定部7の処理を中心に説明する。 Hereinafter, the processing of the cutting unit 5, the storage unit 6, and the determining unit 7 will be mainly described.
 まず、(集音空間の座標軸と球体マイクの座標軸との関係)について説明し、その後、(事前集音処理)及び(関係決定処理)について説明する。 First, (the relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone) will be described, and then (pre-sound collection processing) and (relationship determination processing) will be described.
 (集音空間の座標軸と球体マイクの座標軸との関係)
 集音空間の座標軸と球体マイクの座標軸との関係とは、集音空間と、基部及びN個のマイクロホンとの関係とも言える。このため、集音空間の座標軸と球体マイクの座標軸との関係のことを、集音空間と、基部及びN個のマイクロホンとの関係と表現することもある。
(Relationship between the coordinate axes of the sound collection space and the coordinate axes of the spherical microphone)
The relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone can be said to be the relationship between the sound collecting space and the base and N microphones. Therefore, the relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone may be expressed as the relationship between the sound collecting space and the base and N microphones.
 集音空間の座標軸は、例えば図4のように表現される。この例では、集音空間の座標軸は、oを原点とする、互いに直交するx軸、y軸、z軸である。基準音再生位置(x0,y0,z0)及び球体マイク位置(x1,y1,z1)は既知であるとする。 The coordinate axes of the sound collecting space are represented as shown in FIG. 4, for example. In this example, the coordinate axes of the sound collecting space are the x-axis, y-axis, and z-axis that are orthogonal to each other with o as the origin. It is assumed that the reference sound reproduction position (x 0 , y 0 , z 0 ) and the spherical microphone position (x 1 , y 1 , z 1) are known.
 球体マイクの座標軸は、例えば図5のように表現される。この例では、球体マイクの座標軸は、o'を原点とする、互いに直交するx'軸、y'軸、z'軸である。原点o'の位置は、球体マイクの座標軸においては(0,0,0)であり、集音空間の座標軸においては(x1,y1,z1)である。例えば、図5に示すように、球体マイク上の基準マイクm1の位置は、球体マイクの座標軸において、(r,0,0)と表されるとする。rは、所定の正の数である。図5の例では、rは球体マイクの半径の長さである。 The coordinate axes of the spherical microphone are represented as shown in FIG. 5, for example. In this example, the coordinate axes of the spherical microphone are the x'axis, y'axis, and z'axis that are orthogonal to each other, with o'as the origin. The position of the origin o'is (0,0,0) on the coordinate axis of the spherical microphone and (x 1 , y 1 , z 1 ) on the coordinate axis of the sound collecting space. For example, as shown in FIG. 5, the position of the reference microphone m 1 on the spherical microphone is represented as (r, 0, 0) on the coordinate axes of the spherical microphone. r is a predetermined positive number. In the example of FIG. 5, r is the length of the radius of the spherical microphone.
 なお、図6に例示するように、球体マイクの座標軸のx'軸、y'軸、z'軸が、それぞれ集音空間の座標軸のx軸、y軸、z軸と平行であるとは限らない。言い換えれば、球体マイクの体勢によっては、球体マイクを原点とする所定の座標系(この例ではx'軸、y'軸、z'軸により定まる座標系)において、基準音再生位置(x0,y0,z0)の方向が異なる場合がある。 As illustrated in FIG. 6, the x'axis, y'axis, and z'axis of the coordinate axes of the spherical microphone are not always parallel to the x-axis, y-axis, and z-axis of the coordinate axes of the sound collecting space, respectively. Absent. In other words, depending on the position of the spherical microphone, the reference sound reproduction position (x 0 , in this example, the coordinate system determined by the x'axis, y'axis, and z'axis) with the spherical microphone as the origin. The direction of y 0 , z 0 ) may be different.
 集音空間の座標軸と球体マイクの座標軸との関係の例は、球体マイクを原点とした所定の座標系における方位角及び仰角により定まる音源の方向に基づいて推定できる、集音空間の座標系と球体マイクの座標系との差である。 An example of the relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone is the coordinate system of the sound collecting space that can be estimated based on the direction of the sound source determined by the azimuth and elevation angles in the predetermined coordinate system with the spherical microphone as the origin. This is the difference from the coordinate system of the spherical microphone.
 (事前集音処理)
 事前集音処理では、基部及びN個のマイクロホンとの関係が既知の状態で、信号の測定を行う。
(Pre-sound collection processing)
In the pre-sound collection process, the signal is measured in a state where the relationship between the base and the N microphones is known.
 図2に、事前集音処理の処理手続きの例を示す。 Figure 2 shows an example of the processing procedure for pre-sound collection processing.
 まず、集音空間と、基部及びN個のマイクロホンとの関係を、ある既知の関係に設定する(ステップP1)。例えば、球体マイクを原点とした所定の座標系における所定の方位角及び所定の仰角の方向に、音源が位置するように関係が設定される。 First, the relationship between the sound collecting space and the base and N microphones is set to a certain known relationship (step P1). For example, the relationship is set so that the sound source is located in the direction of a predetermined azimuth angle and a predetermined elevation angle in a predetermined coordinate system with the spherical microphone as the origin.
 音源が、例えばパルス音を再生する(ステップP2)。音源は、例えばスピーカーである。 The sound source reproduces, for example, a pulse sound (step P2). The sound source is, for example, a speaker.
 基部に設けられた各マイクロホン12-iで、パルス音が集音される(ステップP3)。各マイクロホン12-iで集音された各事前集音信号は、切出部5に入力される。 Pulse sound is collected by each microphone 12-i provided at the base (step P3). Each pre-sound collection signal collected by each microphone 12-i is input to the cutout unit 5.
 切出部5は、各事前集音信号の切り出しを行う(ステップP4)。切り出された各事前集音信号は、記憶部6に記憶される(ステップP5)。 The cutting unit 5 cuts out each pre-sound collection signal (step P4). Each of the cut-out pre-sound collection signals is stored in the storage unit 6 (step P5).
 事前集音信号の切り出しは、例えば以下に説明する方法1又は方法2により行われる。 The pre-sound collection signal is cut out by, for example, Method 1 or Method 2 described below.
 方法1では、図7に例示するように、各事前集音信号を切り出すための切出区間の開始時刻及び終了時刻は、各事前集音信号において共通である。図7には、4個のマイク(マイク1からマイク4)のそれぞれで集音された事前集音信号の振幅が記載されている。切出部5は、事前集音信号のパワーが所定の閾値を超えるかどうかを判定し、事前集音信号のパワーが所定の閾値を超えた時刻を仮開始時刻とする処理を各事前集音信号について行う。これにより、各事前集音信号についての仮開始時刻が求まる。所定の閾値の例は、事前集音信号の、基準音がなく背景音のみの区間におけるパワーの2倍である。切出部5は、各事前集音信号についての仮開始時刻の中で最も早い仮開始時刻を、切出区間の開始時刻として決定する。また、切出部5は、決定された開始時刻に所定の時刻を加えた時刻を切出区間の終了時刻として決定する。切出区間の時間の長さは、例えば0.5秒である。図7の例では、切出区間の時間の長さは、0.4秒である。切出部5は、決定された開始時刻及び決定された終了時刻により定まる切出区間で、各事前集音信号を切り出す。 In method 1, as illustrated in FIG. 7, the start time and end time of the cutout section for cutting out each pre-sound collection signal are common to each pre-sound collection signal. FIG. 7 shows the amplitude of the pre-sound collection signal collected by each of the four microphones (microphones 1 to 4). The cutting unit 5 determines whether or not the power of the pre-sound collection signal exceeds a predetermined threshold value, and sets the time when the power of the pre-sound collection signal exceeds the predetermined threshold value as the provisional start time for each pre-sound collection. Do about the signal. As a result, the provisional start time for each pre-sound collection signal can be obtained. An example of a predetermined threshold value is twice the power of the pre-collection signal in the section where there is no reference sound and only the background sound. The cutout unit 5 determines the earliest provisional start time among the provisional start times for each pre-sound collection signal as the start time of the cutout section. Further, the cutting unit 5 determines the time obtained by adding a predetermined time to the determined start time as the end time of the cutting section. The length of time of the cutout section is, for example, 0.5 seconds. In the example of FIG. 7, the length of time of the cutout section is 0.4 seconds. The cutting unit 5 cuts out each pre-sound collecting signal in a cutting section determined by a determined start time and a determined end time.
 方法2では、図8に例示するように、各事前集音信号を切り出すための切出区間の開始時刻及び終了時刻は、各事前集音信号において異なる。図8には、4個のマイク(マイク1からマイク4)のそれぞれで集音された事前集音信号の振幅が記載されている。切出部5は、事前集音信号のパワーが所定の閾値を超えるかどうかを判定し、事前集音信号のパワーが所定の閾値を超えた時刻を開始時刻として決定する処理を各事前集音信号について行う。これにより、各事前集音信号についての開始時刻が求まる。所定の閾値の例は、事前集音信号の、基準音がなく背景音のみの区間におけるパワーの2倍である。切出部5は、決定された開始時刻に所定の時刻を加えた時刻を切出区間の終了時刻として決定する。切出区間の時間の長さは、例えば0.5秒である。図8の例では、切出区間の時間の長さは、0.4秒である。切出部5は、決定された開始時刻及び決定された終了時刻により定まる切出区間で、各事前集音信号を切り出す。 In method 2, as illustrated in FIG. 8, the start time and end time of the cutout section for cutting out each pre-sound collection signal are different for each pre-sound collection signal. FIG. 8 shows the amplitude of the pre-sound collection signal collected by each of the four microphones (microphones 1 to 4). The cutting unit 5 determines whether or not the power of the pre-sound collection signal exceeds a predetermined threshold value, and determines each pre-sound collection process as a start time when the power of the pre-sound collection signal exceeds a predetermined threshold value. Do about the signal. As a result, the start time for each pre-sound collection signal can be obtained. An example of a predetermined threshold value is twice the power of the pre-collection signal in the section where there is no reference sound and only the background sound. The cutting unit 5 determines the time obtained by adding a predetermined time to the determined start time as the end time of the cutting section. The length of time of the cutout section is, for example, 0.5 seconds. In the example of FIG. 8, the length of time of the cutout section is 0.4 seconds. The cutting unit 5 cuts out each pre-sound collecting signal in a cutting section determined by a determined start time and a determined end time.
 方法1では各マイクロホン間の到達時間差は保存されるが、方法2では各マイクロホン間の到達時間差は保存されないという違いがある。 Method 1 saves the arrival time difference between each microphone, but method 2 does not save the arrival time difference between each microphone.
 ステップP5の処理の後、切出部5は、集音空間と、基部及びN個のマイクロホン12-i(i=1,2,・・・,N)との関係を、変更する(ステップP6)。その後、収音空間と、基部及びN個のマイクロホン12-i(i=1,2,・・・,N)との関係がステップP1で変更後の関係に設定され、ステップP2以降の処理が行われる。 After the process of step P5, the cutout portion 5 changes the relationship between the sound collecting space and the base and N microphones 12-i (i = 1, 2, ..., N) (step P6). ). After that, the relationship between the sound collecting space and the base and N microphones 12-i (i = 1, 2, ..., N) is set to the changed relationship in step P1, and the processing after step P2 is performed. Will be done.
 集音空間と、基部及びN個のマイクロホン12-i(i=1,2,・・・,N)との関係の変更は、基準音を発する音源の位置又は球体マイクの体勢を変更することにより行うことができる。 To change the relationship between the sound collection space and the base and N microphones 12-i (i = 1, 2, ..., N), change the position of the sound source that emits the reference sound or the position of the spherical microphone. Can be done by.
 これらのステップP1からステップ6の処理が、異なる複数の関係のそれぞれである場合について行われる。例えば、これらのステップP1からステップ6の処理は、集音空間と、基部及びN個のマイクロホン12-i(i=1,2,・・・,N)との関係が、球体マイクを原点とした所定の座標系における方位角の集合及び仰角の集合から選択される、方位角及び仰角の異なる全ての組のそれぞれである場合について行われる。そのそれぞれの組の方位角及び仰角により定まる方向に音源が位置するとして、ステップP1からステップP5の処理が行われる。方位角の集合の例は[-180度,-170度,…,180度]であり、仰角の集合の例は[-90度,-80度,…,90度]である。この例だと、方位角の集合の要素数は37であり、仰角の集合の要素数は19である。このため、方位角及び仰角の異なる全ての組の個数は、703(=37×19)である。これら703個の方位角及び仰角の組のそれぞれについて、ステップP1からステップP5の処理が行われる。 The processing of steps P1 to 6 is performed for each of a plurality of different relationships. For example, in the processes of steps P1 to 6, the relationship between the sound collecting space and the base and N microphones 12-i (i = 1, 2, ..., N) is based on the spherical microphone as the origin. This is performed for each of all the sets having different azimuths and elevations, which are selected from the set of azimuths and the set of elevations in the predetermined coordinate system. Assuming that the sound source is located in the direction determined by the azimuth and elevation angles of the respective sets, the processes of steps P1 to P5 are performed. An example of a set of azimuths is [-180 degrees, -170 degrees, ..., 180 degrees], and an example of a set of elevation angles is [-90 degrees, -80 degrees, ..., 90 degrees]. In this example, the number of elements in the azimuth set is 37, and the number of elements in the elevation angle set is 19. Therefore, the number of all pairs with different azimuths and elevations is 703 (= 37 × 19). The processes of steps P1 to P5 are performed for each of these 703 azimuth and elevation pairs.
 このようにして、集音空間と、基部及びN個のマイクロホン12-i(i=1,2,・・・,N)との関係が、異なる複数の関係のそれぞれである場合について、ステップP1からステップP6の処理が繰り返し行われる。これにより、記憶部6には、集音空間と、基部及びN個のマイクロホン12-i(i=1,2,・・・,N)との関係が、異なる複数の関係のそれぞれである場合の、集音空間内の所定の音源から発せられ、N個のマイクロホン12-i(i=1,2,・・・,N)が集音した事前集音信号が記憶される。 In this way, in the case where the relationship between the sound collecting space and the base and N microphones 12-i (i = 1, 2, ..., N) is a plurality of different relationships, step P1 The process of step P6 is repeated. As a result, in the storage unit 6, when the relationship between the sound collecting space and the base and N microphones 12-i (i = 1, 2, ..., N) is different from each other. The pre-sound collection signal emitted from a predetermined sound source in the sound collection space and collected by N microphones 12-i (i = 1, 2, ..., N) is stored.
 (関係決定処理)
 関係決定処理では、集音空間と、基部及びN個のマイクロホン12-i(i=1,2,・・・,N)との関係が未知の状態で、この関係を決定する。
(Relationship determination process)
In the relationship determination process, the relationship between the sound collecting space and the base and N microphones 12-i (i = 1, 2, ..., N) is unknown, and this relationship is determined.
 図3に、関係決定処理の処理手続きの例を示す。 FIG. 3 shows an example of the processing procedure of the relationship determination process.
 所定の基準音再生位置に位置する音源が、例えばパルス音を再生する(ステップS1)。音源は、例えばスピーカーである。 A sound source located at a predetermined reference sound reproduction position reproduces, for example, a pulse sound (step S1). The sound source is, for example, a speaker.
 基部に設けられた各マイクロホン12-iで、パルス音が集音される(ステップS2)。各マイクロホン12-iで集音された各集音信号は、切出部5に入力される。 Pulse sound is collected by each microphone 12-i provided at the base (step S2). Each sound collection signal collected by each microphone 12-i is input to the cutout unit 5.
 切出部5は、各集音信号の切り出しを行う(ステップS3)。 The cutting unit 5 cuts out each sound collecting signal (step S3).
 切出部5による各集音信号の切り出し方法は、(事前集音処理)における切出部5による各事前集音信号の切り出し方法と同じである。例えば、(事前集音処理)における切出部5で方法1により各事前集音信号が切り出された場合には、(関係決定処理)における切出部5においても方法1により各集音信号は切り出される。 The method of cutting out each sound collection signal by the cutting unit 5 is the same as the method of cutting out each sound collection signal by the cutting unit 5 in (pre-sound collection processing). For example, when each pre-sound collection signal is cut out by the method 1 in the cutting section 5 in (pre-sound collection processing), each sound collection signal is also cut out by method 1 in the cutting section 5 in (relationship determination processing). It is cut out.
 決定部7は、集音空間内の所定の音源から発せられ、N個のマイクロホン12-i(i=1,2,・・・,N)が集音した集音信号に含まれる間接音の差を用いて、集音空間と、基部及びN個のマイクロホンとの関係を決定する。 The determination unit 7 is an indirect sound emitted from a predetermined sound source in the sound collecting space and included in the sound collecting signal collected by N microphones 12-i (i = 1, 2, ..., N). The difference is used to determine the relationship between the sound collection space and the base and N microphones.
 例えば、決定部7は、所定の音源から発せられ、N個のマイクロホンが集音した集音信号に最も近い事前集音信号を記憶部6に記憶されている事前集音信号から選択し、選択された事前集音信号に対応する、所定の集音空間と、基部及びN個のマイクロホンとの関係を前記関係として決定する。 For example, the determination unit 7 selects and selects a pre-sound collection signal that is emitted from a predetermined sound source and is closest to the sound collection signal collected by N microphones from the pre-sound collection signals stored in the storage unit 6. The relationship between the predetermined sound collection space corresponding to the pre-sound collection signal and the base and N microphones is determined as the above relationship.
 言い換えれば、決定部7は、記憶部6から読み込んだN個のマイクロホン12-i(i=1,2,・・・,N)が予め集音した事前集音信号と、N個のマイクロホン12-i(i=1,2,・・・,N)が集音した集音信号との類似度が最も高い事前集音信号を、最も近い事前集音信号として選択してもよい。以下、類似度が、2個の事前集音信号の相関値の最大値である場合を例に挙げて説明する。 In other words, the determination unit 7 includes a pre-sound collection signal collected in advance by N microphones 12-i (i = 1, 2, ..., N) read from the storage unit 6 and N microphones 12. The pre-sound collection signal having the highest degree of similarity to the sound collection signal collected by -i (i = 1, 2, ..., N) may be selected as the closest pre-sound collection signal. Hereinafter, a case where the similarity is the maximum value of the correlation value of the two pre-collected sound signals will be described as an example.
 まず、決定部7は、集音空間と、基部及びN個のマイクロホンとの関係が所定の関係である場合のマイクロホン12-iで集音され記憶部6に記憶されている事前集音信号と、マイクロホン12-iで集音した集音信号との相関値を計算する処理を、N個のマイクロホン12-i(i=1,2,・・・,N)のそれぞれについて行う(ステップT1)。 First, the determination unit 7 determines the pre-sound collection signal collected by the microphones 12-i and stored in the storage unit 6 when the relationship between the sound collection space and the base and the N microphones is a predetermined relationship. , The process of calculating the correlation value with the sound collection signal collected by the microphones 12-i is performed for each of the N microphones 12-i (i = 1, 2, ..., N) (step T1). ..
 そして、決定部7は、N個のマイクロホン12-i(i=1,2,・・・,N)のそれぞれについて計算された相関値の最大値を計算する(ステップT2)。そして、決定部7は、計算された相関値の最大値を、集音空間と、基部及びN個のマイクロホン12-i(i=1,2,・・・,N)との関係が前記所定の関係である場合の類似度とする(ステップT3)。 Then, the determination unit 7 calculates the maximum value of the correlation value calculated for each of the N microphones 12-i (i = 1, 2, ..., N) (step T2). Then, the determination unit 7 determines the relationship between the sound collection space and the base and N microphones 12-i (i = 1, 2, ..., N) for the maximum value of the calculated correlation value. (Step T3).
 決定部7は、ステップT1からステップT3の処理を、記憶部6に記憶されている事前集音信号に対応する、集音空間と、基部及びN個のマイクロホン12-i(i=1,2,・・・,N)との関係の全てのそれぞれについて行う。これにより、決定部7は、集音空間と、基部及びN個のマイクロホン12-i(i=1,2,・・・,N)との関係が各関係である場合の類似度を求める。 The determination unit 7 performs the processing of steps T1 to T3 in the sound collection space corresponding to the pre-sound collection signal stored in the storage unit 6, the base, and N microphones 12-i (i = 1, 2). , ..., N) for each of all the relationships. As a result, the determination unit 7 obtains the degree of similarity when the relationship between the sound collecting space and the base and N microphones 12-i (i = 1, 2, ..., N) is each relationship.
 決定部7は、求まった類似度の中で、最も大きな、類似度に対応する関係を、集音空間と、基部及びN個のマイクロホン12-i(i=1,2,・・・,N)との関係として決定する。 The determination unit 7 determines the relationship corresponding to the largest degree of similarity among the obtained similarities with the sound collecting space, the base, and N microphones 12-i (i = 1, 2, ..., N). ) Is determined as a relationship.
 基部には凹部が設けられており、その凹部にマイクロホンが設置されている。このため、このため、事前集音信号及び集音信号には、到着時間差以外に、基部の表面に隣接するマイクロホン間の距離が均等になるようにマイクロホンを配置した場合と比較して、音の反射・回折の影響が、パルス波の後に見られる。この到着時間差以外に音の反射・回折の影響を用いて、言い換えれば間接音の差を用いることにより、カメラ等の他のセンサーを使うことなく、集音空間の座標軸とマイクの座標軸との関係を求めることができる。 A recess is provided in the base, and a microphone is installed in the recess. Therefore, for this reason, in the pre-sound collection signal and the sound collection signal, in addition to the arrival time difference, the sound sound is compared with the case where the microphones are arranged so that the distances between the microphones adjacent to the surface of the base are equal. The effects of reflection and diffraction can be seen after the pulse wave. By using the influence of sound reflection / diffraction other than this arrival time difference, in other words, by using the difference in indirect sound, the relationship between the coordinate axes of the sound collection space and the coordinate axes of the microphone without using other sensors such as a camera. Can be sought.
 [実験例]
 パルス波を基準音として、球体マイク(簡単のために2次元で表現)の表面に4つのマイクロホンを配置することを考え、計算機シミュレーションを行った。
[Experimental example]
A computer simulation was performed with the idea of arranging four microphones on the surface of a spherical microphone (expressed in two dimensions for simplicity) using a pulse wave as a reference sound.
 (1)球体マイクが中空の場合
 この場合の4つのマイクロホンの集音信号を図9に示す。
(1) When the spherical microphone is hollow The sound collection signals of the four microphones in this case are shown in FIG.
 基準音の集音信号を、各マイクロホンが集音することで、到達時間の情報が得られる。各マイクロホンの到着時間および、マイクロホン間の到達時間差の情報を用いて、集音空間の座標軸と球体マイクの座標軸との関係を推定することを考える。 Information on the arrival time can be obtained by collecting the reference sound collection signal by each microphone. Consider estimating the relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone by using the arrival time of each microphone and the information of the arrival time difference between the microphones.
 基準音再生とマイクロホンでの集音が同一システムで同期がとれている場合、絶対的な到達時間を求めることができ、到達時間から再生位置と各マイクロホン位置の距離を求め、集音環境の座標軸と球体マイクロホンの座標軸の関係も計算可能となるが、同期が取れていないシステムのへ場合、絶対的な到達時間を求めることは困難であり、各マイクロホンへ間の到達時間差をしか求めることができない。 When the reference sound reproduction and the sound collection by the microphone are synchronized in the same system, the absolute arrival time can be obtained, and the distance between the reproduction position and each microphone position can be obtained from the arrival time, and the coordinate axes of the sound collection environment. It is also possible to calculate the relationship between the coordinate axes of the spherical microphone and the microphone, but in the case of a system that is out of synchronization, it is difficult to obtain the absolute arrival time, and only the arrival time difference between each microphone can be obtained. ..
 到達時間差のみがわかる場合、まず、各マイクロホンの到達時間順により、およその座標軸の関係を推定できるが、正確な座標軸の関係を求めることは困難となる。例えば、シミュレーションでは、マイクロホン3,4より、マイクロホン1,2に先に集音信号が到達するため、およその方向を求め、1軸の座標軸の関係を推定できるが、残り2軸の関係を求めることが困難となる。すなわち、基準音再生位置と球体マイクの原点を通る直線に並行な軸は定まるが、垂直な平面の2軸を求めることが困難となる。 If only the arrival time difference is known, first, the approximate coordinate axis relationship can be estimated from the arrival time order of each microphone, but it is difficult to obtain an accurate coordinate axis relationship. For example, in the simulation, since the sound collecting signal arrives at the microphones 1 and 2 earlier than the microphones 3 and 4, the approximate direction can be obtained and the relationship between the coordinate axes of one axis can be estimated, but the relationship between the remaining two axes can be obtained. Becomes difficult. That is, although the axis parallel to the reference sound reproduction position and the straight line passing through the origin of the spherical microphone is determined, it is difficult to obtain the two axes of the vertical plane.
 (2)球体マイクが剛球であり凹部が設けられていない場合
 この場合の4つのマイクロホンの集音信号を図10に示す。
(2) When the spherical microphone is a rigid sphere and has no recessed sound collection signals of the four microphones in this case are shown in FIG.
 基準音の集音信号は、各マイクロホン位置において、到着時間差以外に音の反射・回折の影響が、パルス波の後に見られる。これにより、予め測定しておいた基準音の集音信号や計算機シミュレーションにより、得られた基準音の集音信号と比較することで、より精度よく、集音空間の座標軸と球体マイクの座標軸との関係を推定することができる。また、各マイクロホンが同位相ではなく、到着時間差の情報がなくとも推定可能となる。 In the sound collection signal of the reference sound, the influence of sound reflection / diffraction other than the arrival time difference can be seen after the pulse wave at each microphone position. As a result, the coordinate axes of the sound collection space and the coordinate axes of the spherical microphone can be more accurately compared with the sound collection signal of the reference sound measured in advance and the sound collection signal of the reference sound obtained by computer simulation. Relationship can be estimated. In addition, each microphone is not in phase and can be estimated even if there is no information on the arrival time difference.
 しかし、(1)の場合の課題と同様に、基準音再生位置と球体マイクロホンの原点を通る直線に並行な軸は定まるが、垂直な平面の2軸を求めることは困難である。 However, as in the case of (1), although the axis parallel to the reference sound reproduction position and the straight line passing through the origin of the spherical microphone is determined, it is difficult to obtain the two axes of the vertical plane.
 (3)球体マイクが剛球であり凹部が設けられている場合
 この場合の4つのマイクロホンの集音信号を図11に示す。
(3) When the spherical microphone is a rigid sphere and is provided with a recess The sound collecting signals of the four microphones in this case are shown in FIG.
 基準音の集音信号は、各マイクロホン位置において、到着時間差以外に音の反射・回折の影響が、パルス波の後に見られる。凹部が設けられていない場合と比較して、凹部により反射・回折の影響が大きくなるため、予め測定しておいた基準音の集音信号や計算機シミュレーションにより、得られた基準音の集音信号と比較することで、より精度よく、集音空間の座標軸と球体マイクの座標軸との関係を推定することができる。 In the sound collection signal of the reference sound, the influence of sound reflection / diffraction other than the arrival time difference can be seen after the pulse wave at each microphone position. Since the influence of reflection / diffraction is greater due to the recesses than when the recesses are not provided, the reference sound collection signal measured in advance and the reference sound collection signal obtained by computer simulation are used. By comparing with, the relationship between the coordinate axes of the sound collecting space and the coordinate axes of the spherical microphone can be estimated more accurately.
 [変形例]
 以上、本発明の実施の形態について説明したが、具体的な構成は、これらの実施の形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で適宜設計の変更等があっても、本発明に含まれることはいうまでもない。
[Modification example]
Although the embodiments of the present invention have been described above, the specific configuration is not limited to these embodiments, and even if the design is appropriately changed without departing from the spirit of the present invention, the specific configuration is not limited to these embodiments. Needless to say, it is included in the present invention.
 実施の形態において説明した各種の処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。 The various processes described in the embodiments are not only executed in chronological order according to the order described, but may also be executed in parallel or individually as required by the processing capacity of the device that executes the processes.
 [集音装置1の第1実施形態]
 図12および図13に本実施形態の集音装置1の正面図および背面図をそれぞれ例示する。図12および図13に例示するように、本実施形態の集音装置1は、互いに所定の距離をおいたN個の凹部111-1,…,111-Nを表面に備えた略球体の基部11と、N個のマイクロホン12-1,…,12-Nとを有する。略球体とは、厳密には球体ではないものの球体に近い形状を持つ立体(ほぼ球体)を意味する。略球体の例は、凹部111-1,…,111-N以外の部分の表面形状が球体の表面形状に一致またはほぼ一致する立体である。凹部111-1,…,111-Nの個数は、例えば、マイクロホン12-1,…,12-Nの個数と同じN個である。ただしNは2以上の整数である。第1実施形態ではN=6の例を図示するが、これは本発明を限定するものではない。また、基部11は、例えば、音を十分に反射する材質(例えば、合成樹脂、金属、木など)で構成されている。
[First Embodiment of Sound Collector 1]
12 and 13 exemplify a front view and a rear view of the sound collecting device 1 of the present embodiment, respectively. As illustrated in FIGS. 12 and 13, the sound collecting device 1 of the present embodiment is a base of a substantially sphere having N recesses 111-1, ..., 111-N at predetermined distances from each other. It has 11 and N microphones 12-1, ..., 12-N. A substantially sphere means a solid (almost a sphere) having a shape close to a sphere, although it is not strictly a sphere. An example of a substantially sphere is a solid in which the surface shape of a portion other than the recesses 111-1, ..., 111-N matches or substantially matches the surface shape of the sphere. The number of recesses 111-1, ..., 111-N is, for example, N, which is the same as the number of microphones 12-1, ..., 12-N. However, N is an integer of 2 or more. Although an example of N = 6 is illustrated in the first embodiment, this does not limit the present invention. Further, the base 11 is made of, for example, a material that sufficiently reflects sound (for example, synthetic resin, metal, wood, etc.).
 図14Aは、本実施形態の凹部111-i(ただし、i=1,…,N)を例示するための平面図であり、図14Bは、図14Aの3B-3B断面図である。図14Aおよび図14Bに例示するように、本実施形態で例示する凹部111-iは、皿状の内壁面形状を持ったくぼみである。すなわち、本実施形態で例示する凹部111-iの開放端側(表面側)の縁部111a-iの形状は略円形であり、凹部111-iの内底面111b-i(凹部111-iの内部の底面)は略円形の略平面(内底面111b-iの縁部111c-iが略円形の略平面)である。ただし、略円形とは、円形または円形に近い形状(ほぼ円形)を意味する。円形に近い形状の例は、短軸に対する長軸の比率が所定値γ1以下の楕円、線対称又は点対称となる多角形である。ただし、γ1は1より大きな実数である。γ1の例はγ1=1.1,1.2,1.3,1.4,1.5などである。略平面とは、平面または平面に近い面(ほぼ平面)を意味する。ほぼ平面は、例えば、多少の凹凸を持つ面であってもよいし、わずかに湾曲した面であってもよい。内底面111b-iの縁部111c-iの径(例えば、直径)Dinは、凹部111-iの開放端側の縁部111a-iの径(例えば、直径)Dout以下であり、例えば、DinはDout未満である。縁部111a-iと縁部111c-iとの間の領域は凹部111-iの内壁面である。図14Aおよび図14Bの例では、DinはDout未満であり、縁部111a-iと縁部111c-iとの間の内壁面はスロープ状に形成され、内底面111b-iに滑らかにつながっている。凹部111-iの深さdは、凹部111-iの開放端の縁部111a-iの径(例えば、直径)Doutの半分未満であることが望ましい。例えば、図14Bに例示するように、凹部111-iの深さdが、凹部111-iの開放端の縁部111a-iの直径Dout=2rの半分未満であることが望ましい(0<d<r)。これにより、分解能を向上させることができるからである(詳細は後述する)。DoutおよびDinは、マイクロホン12-1,…,12-Nの集音部121-iの径(例えば、直径)よりも大きい。DoutおよびDinの一例は、マイクロホン12-1,…,12-Nの集音部121-iの径(例えば、直径)の2倍または2倍の近傍である。なお、集音部121-iは、音の空気振動を電気信号に変換する機構(例えば、振動板や金属箔)を含む部位である。集音部121-iは、例えばマイクロホン12-iの一端側に設けられている。dの一例は2mmである。N個の凹部111-1,…,111-Nの形状は互いに略同一(同一またはほぼ同一)であることが望ましい。これにより、音の到来方向による収音ばらつきを低減できる。また図12および図13に例示するように、凹部111-1,…,111-Nは互いに所定の距離をおいて設けられており、開放端側の縁部111a-1,…,111a-Nは互いに離れている。すなわち、凹部111-1,…,111-Nは互いに干渉しない位置に設けられており、互いに独立している。これにより、分解能を向上させることができるとともに、音の到来方向による収音ばらつきを低減させることができる。 14A is a plan view for exemplifying the recesses 111-i (where i = 1, ..., N) of the present embodiment, and FIG. 14B is a sectional view taken along line 3B-3B of FIG. 14A. As illustrated in FIGS. 14A and 14B, the recess 111-i illustrated in this embodiment is a recess having a dish-shaped inner wall surface shape. That is, the shape of the edge portion 111a-i on the open end side (surface side) of the recessed portion 111-i illustrated in the present embodiment is substantially circular, and the inner bottom surface 111bi of the recessed portion 111-i (recessed portion 111-i). The inner bottom surface) is a substantially circular substantially flat surface (the edge portion 111c-i of the inner bottom surface 111bi is a substantially circular substantially flat surface). However, the substantially circular shape means a circular shape or a shape close to a circular shape (almost circular shape). An example of a shape close to a circle is an ellipse in which the ratio of the major axis to the minor axis is a predetermined value γ1 or less, or a polygon having line symmetry or point symmetry. However, γ1 is a real number larger than 1. Examples of γ1 are γ1 = 1.1, 1.2, 1.3, 1.4, 1.5 and the like. A substantially plane means a plane or a plane close to a plane (nearly a plane). The substantially flat surface may be, for example, a surface having some irregularities or a slightly curved surface. The diameter (for example, diameter) D in of the edge portion 111c-i of the inner bottom surface 111-i is equal to or less than the diameter (for example, diameter) D out of the edge portion 111a-i on the open end side of the recess 111-i, for example. , D in is less than D out. The region between the edge portion 111a-i and the edge portion 111c-i is the inner wall surface of the recess 111-i. In the examples of FIGS. 14A and 14B, D in is less than D out , and the inner wall surface between the edge 111a-i and the edge 111c-i is formed in a slope shape and is smoothly formed on the inner bottom surface 111bi. linked. It is desirable that the depth d of the recess 111-i is less than half the diameter (for example, diameter) D out of the edge 111a-i of the open end of the recess 111-i. For example, as illustrated in FIG. 14B, it is desirable that the depth d of the recess 111-i is less than half of the diameter D out = 2r of the edge 111a-i of the open end of the recess 111-i (0 <. d <r). This is because the resolution can be improved (details will be described later). D out and D in are larger than the diameter (for example, diameter) of the sound collecting portions 121-i of the microphones 12-1, ..., 12-N. An example of D out and D in is twice or near twice the diameter (for example, diameter) of the sound collecting part 121-i of the microphones 12-1, ..., 12-N. The sound collecting unit 121-i is a portion including a mechanism (for example, a diaphragm or a metal foil) that converts air vibration of sound into an electric signal. The sound collecting unit 121-i is provided, for example, on one end side of the microphone 12-i. An example of d is 2 mm. It is desirable that the shapes of the N recesses 111-1, ..., 111-N are substantially the same (same or almost the same) as each other. As a result, it is possible to reduce variations in sound collection depending on the direction in which the sound arrives. Further, as illustrated in FIGS. 12 and 13, the recesses 111-1, ..., 111-N are provided at a predetermined distance from each other, and the edge portions 111a-1, ..., 111a-N on the open end side are provided. Are separated from each other. That is, the recesses 111-1, ..., 111-N are provided at positions where they do not interfere with each other, and are independent of each other. As a result, the resolution can be improved, and the variation in sound collection depending on the direction of arrival of the sound can be reduced.
 図12、図13、図14Aおよび図14Bに例示するように、各マイクロホン12-i(ただし、i=1,…,N)は、各凹部111-i(ただし、i=1,…,N)の内底面111b-i側に1個ずつ設置(固定)されている。ただし、互いに隣接するマイクロホン12-iの集音部121-i間の間隔(距離)は略同一である。すなわち、互いに隣接するマイクロホン12-iの集音部121-i間の間隔は所定値またはその近傍である。図12および図13の例の場合、各集音部121-iとそれに隣り合っている4個の他の集音部121-i’との間隔は互に略同一である。例えば、集音部121-1と集音部121-2との間隔、集音部121-1と集音部121-4との間隔、集音部121-1と集音部121-5との間隔、集音部121-1と集音部121-6との間隔は、すべて略同一である(図12)。なお、αとβとが略同一とは、αとβとが同一であること、またはαとβとがほぼ同一であることを意味する。αとβとがほぼ同一とは、αとβとの差分δ=|α-β|がαに対して0%よりも大きくγ2%以下であることを意味する。γ2の例はγ2=1,3,5,10,20,30,40,50である。図12および図13の例の場合、マイクロホン12-iの一端側に設けられた集音部121-iが各凹部111-iの内底面111b-i側に配置され、各集音部121-iの先端または当該先端の近傍が内底面111b-iと同一の面上に配置されている。図14Aおよび図14Bに例示するように、各マイクロホン12-iの集音部121-iは、各凹部111-iの内底面111b-iの中央または内底面111b-iの中央の近傍に配置されることが望ましい。すなわち、各マイクロホン12-iの集音部121-iは、縁部111a-iと縁部111c-iとの間の内壁面から略同一距離の位置に配置されることが望ましい。これにより、分解能の向上を期待できる。なお、集音部121-iがαの近傍に配置されるとは、例えば、集音部121-iのαからのずれ幅が集音部121-iの径(例えば、直径)のγ3%以下となる位置に集音部121-iが配置されることを意味する。γ3の例はγ3=1,3,5,10,20,30,40,50である。 As illustrated in FIGS. 12, 13, 14A and 14B, each microphone 12-i (where i = 1, ..., N) has each recess 111-i (where i = 1, ..., N). ) Are installed (fixed) one by one on the inner bottom surface 111bi side. However, the intervals (distances) between the sound collecting portions 121-i of the microphones 12-i adjacent to each other are substantially the same. That is, the interval between the sound collecting portions 121-i of the microphones 12-i adjacent to each other is a predetermined value or its vicinity. In the case of the examples of FIGS. 12 and 13, the distance between each sound collecting unit 121-i and the four other sound collecting units 121-i'adjacent to the sound collecting unit 121-i is substantially the same as each other. For example, the distance between the sound collecting unit 121-1 and the sound collecting unit 121-2, the distance between the sound collecting unit 121-1 and the sound collecting unit 121-4, and the distance between the sound collecting unit 121-1 and the sound collecting unit 121-5. The interval between the two, and the interval between the sound collecting unit 121-1 and the sound collecting unit 121-6 are all substantially the same (FIG. 12). The fact that α and β are substantially the same means that α and β are the same, or that α and β are almost the same. The fact that α and β are substantially the same means that the difference δ = | α-β | between α and β is greater than 0% and less than γ 2% with respect to α. Examples of γ2 are γ2 = 1,3,5,10,20,30,40,50. In the case of FIGS. 12 and 13, the sound collecting unit 121-i provided on one end side of the microphone 12-i is arranged on the inner bottom surface 111bi side of each recess 111-i, and each sound collecting unit 121- The tip of i or the vicinity of the tip is arranged on the same surface as the inner bottom surface 111bi. As illustrated in FIGS. 14A and 14B, the sound collecting portion 121-i of each microphone 12-i is arranged at the center of the inner bottom surface 111bi of each recess 111-i or near the center of the inner bottom surface 111bi. It is desirable to be done. That is, it is desirable that the sound collecting portions 121-i of each microphone 12-i are arranged at positions substantially the same distance from the inner wall surface between the edge portions 111a-i and the edge portions 111c-i. As a result, improvement in resolution can be expected. Note that the sound collecting unit 121-i is arranged in the vicinity of α, for example, the deviation width of the sound collecting unit 121-i from α is γ3% of the diameter (for example, diameter) of the sound collecting unit 121-i. This means that the sound collecting unit 121-i is arranged at the following positions. Examples of γ3 are γ3 = 1,3,5,10,20,30,40,50.
 互いに隣接するマイクロホン12-iの集音部121-i間の間隔を略同一にするためには、例えば、マイクロホン12-iの集音部121-iのそれぞれを、N個の頂点を持つ正多面体の頂点または当該頂点の近傍のそれぞれに1個ずつ配置すればよい。正n面体のすべての頂点が外接する球で、その頂点部分にマイクロホン12-iを配置することで均一性を担保する。正多面体は、正四面体、正六面体、正八面体、正十二面体、正二十面体しか存在しない。以下に各正多面体の構成面、面数、辺数、頂点数の関係を示す。 In order to make the intervals between the sound collecting parts 121-i of the microphones 12-i adjacent to each other substantially the same, for example, each of the sound collecting parts 121-i of the microphones 12-i has N vertices. One may be arranged at each of the vertices of the polyhedron or the vicinity of the vertices. It is a sphere in which all the vertices of the regular n-plane are circumscribed, and the uniformity is ensured by arranging the microphone 12-i at the apex portion. There are only regular tetrahedrons, regular hexahedrons, regular octahedrons, regular dodecahedrons, and regular icosahedrons. The relationship between the constituent faces, the number of faces, the number of sides, and the number of vertices of each regular polyhedron is shown below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように、各集音部121-iを正多面体の頂点または当該頂点の近傍のそれぞれに1個ずつ配置する場合、Nは4,6,8,12,20の何れかとなる。図15Aおよび図15Bに、図12および図13に例示した集音部121-iの位置関係を表す正面図および背面図を例示する。図15Aおよび図15Bに例示するように、図12および図13の例の場合、6個の頂点を持つ正多面体(正八面体)100の各頂点または当該頂点の近傍にマイクロホン12-iの集音部121-i(i=1,…,6)を1個ずつ配置すればよい。各頂点またはその近傍に配置される集音部121-iは、例えば、正多面体の中央からその頂点またはその近傍に向かう方向に向けて配置される。 In this way, when one sound collecting unit 121-i is arranged at the apex of the regular polyhedron or near the apex, N is any of 4, 6, 8, 12, and 20. 15A and 15B exemplify a front view and a rear view showing the positional relationship of the sound collecting portions 121-i illustrated in FIGS. 12 and 13. As illustrated in FIGS. 15A and 15B, in the case of FIGS. 12 and 13, the sound collection of the microphone 12-i is performed at or near each vertex of the regular polyhedron (octahedron) 100 having 6 vertices. Parts 121-i (i = 1, ..., 6) may be arranged one by one. The sound collecting portions 121-i arranged at or near each vertex are arranged in a direction from the center of the regular polyhedron toward the vertex or its vicinity, for example.
 図16から図19に例示するように、集音装置1が基部11を下方側(基部11が配置された際に下に配置される側)から支持する支持部材13-j(ただし、j=1,…,M)を有していてもよい。Mは1以上の整数である。図16から図19ではM=4の場合を例示するが、これは本発明を限定するものではない。各支持部材13-jは、基部11の下方側に位置する支持領域112-jを支持する。例えば、各支持部材13-jの一端が支持領域112-jに取り付けられ、基部11を下方側から支持する。基部11が支持部材13-jに支持される場合、その支持部材13-jの存在が空間環境に影響を与え、その支持部材13-jの近くに存在するマイクロホン12-iで受音される音に悪影響を及ぼす場合がある。目標音源方向から到来した音の観測に悪影響があると、目標音源に関する情報の推定・抽出精度にも悪影響を与えてしまう。そのため、目標音源が存在しない側から支持部材13-jが基部11を支持し、この悪影響を低減させることが望ましい。通常、目標音源は基部11の下方に存在しないことが多い。そのため、上方側や水平方向から基部11を支持するよりも、下方側から基部11を支持した方がこの悪影響を低く抑えることができると期待できる。また、各支持領域112-jと当該支持領域112-jに隣接する(周囲に存在する)マイクロホン12-iの集音部121-iとの間隔は略均一であることが望ましい。なお、略均一とは、均一またはほぼ均一であることを意味する。すなわち、支持領域112-jは、それに隣接するマイクロホン12-iの集音部121-iから略同一の距離に設けられることが望ましい。例えば、図16および図17の例の場合、支持領域112-1は、集音部121-1,121-4,121-6から略同一の距離に配置され、支持領域112-2は、集音部121-1,121-2,121-6から略同一の距離に配置され、支持領域112-3は、集音部121-2,121-3,121-6から略同一の距離に配置され、支持領域112-4は、集音部121-3,121-4,121-6から略同一の距離に配置されることが望ましい。例えば、集音部121-iのそれぞれが正多面体100の頂点または当該頂点の近傍のそれぞれに1個ずつ配置される場合、この正多面体100の下方側(基部11が配置された際に下に配置される側)に存在する面101-j(ただし、j=1,…,M)に支持領域112-jが設けられ、面101-jのすべての頂点から当該支持領域112-jまでの距離が略同一となるように当該支持領域112-jが配置されることが望ましい(図17)。これにより、支持部材13-jが当該支持領域112-jの周囲に配置された集音部121-iでの観測に与える影響を均一化でき、上述した悪影響をより抑えることができる。なお、支持部材13-jの形状に限定はなく、例えば棒状の支持部材13-jを用いてもよい。ただし、M≧2の場合、支持部材13-jの形状は互いに略同一であることが望ましい。これにより、支持部材13-jが集音部121-iで観測される音に与える影響を均一化できるため、上述した悪影響をより一層抑えることができる。 As illustrated in FIGS. 16 to 19, the support member 13-j (where j =) in which the sound collecting device 1 supports the base 11 from the lower side (the side arranged below when the base 11 is arranged). It may have 1, ..., M). M is an integer greater than or equal to 1. 16 to 19 illustrate the case of M = 4, but this does not limit the present invention. Each support member 13-j supports a support region 112-j located on the lower side of the base 11. For example, one end of each support member 13-j is attached to the support area 112-j to support the base 11 from below. When the base 11 is supported by the support member 13-j, the presence of the support member 13-j affects the spatial environment and is received by the microphone 12-i existing near the support member 13-j. May adversely affect the sound. If the observation of the sound coming from the target sound source direction is adversely affected, the estimation / extraction accuracy of the information regarding the target sound source is also adversely affected. Therefore, it is desirable that the support member 13-j supports the base 11 from the side where the target sound source does not exist, and this adverse effect is reduced. Usually, the target sound source is often absent below the base 11. Therefore, it can be expected that this adverse effect can be suppressed lower by supporting the base 11 from the lower side than by supporting the base 11 from the upper side or the horizontal direction. Further, it is desirable that the distance between each support area 112-j and the sound collecting portion 121-i of the microphone 12-i adjacent to (existing around) the support area 112-j is substantially uniform. In addition, substantially uniform means uniform or almost uniform. That is, it is desirable that the support region 112-j is provided at substantially the same distance from the sound collecting portion 121-i of the microphone 12-i adjacent thereto. For example, in the case of FIGS. 16 and 17, the support area 112-1 is arranged at substantially the same distance from the sound collecting units 121-1, 121-4, 121-6, and the support area 112-2 collects the sound. The support areas 112-3 are arranged at substantially the same distance from the sound units 121-1, 121-2, 121-6, and the support area 112-3 is arranged at approximately the same distance from the sound collecting units 121-2, 121-3, 121-6. Therefore, it is desirable that the support region 112-4 is arranged at substantially the same distance from the sound collecting portions 121-3, 121-4, 121-6. For example, when one of each of the sound collecting portions 121-i is arranged at the apex of the regular polyhedron 100 or near the apex, the lower side of the regular polyhedron 100 (below when the base 11 is arranged). A support region 112-j is provided on the surface 101-j (however, j = 1, ..., M) existing on the side to be arranged), and from all the vertices of the surface 101-j to the support region 112-j. It is desirable that the support areas 112-j are arranged so that the distances are substantially the same (FIG. 17). As a result, the influence of the support member 13-j on the observation by the sound collecting unit 121-i arranged around the support region 112-j can be made uniform, and the above-mentioned adverse effect can be further suppressed. The shape of the support member 13-j is not limited, and for example, a rod-shaped support member 13-j may be used. However, when M ≧ 2, it is desirable that the shapes of the support members 13-j are substantially the same as each other. As a result, the influence of the support member 13-j on the sound observed by the sound collecting unit 121-i can be made uniform, so that the above-mentioned adverse effect can be further suppressed.
 [集音装置1の第2実施形態]
 第1実施形態では、互いに隣接するマイクロホン12-iの集音部121-i間の間隔を略同一にするために、マイクロホン12-iの集音部121-iのそれぞれを、N個の頂点を持つ正多面体の頂点または当該頂点の近傍のそれぞれに1個ずつ配置する例を示した。ここで2個の頂点を持つ正多面体は存在しないが、N=2の場合には、マイクロホン12-i(ただし、i=1,2)の集音部121-iを基部の中央または当該基部の中央の近傍を通る直線上に配置すればよい。図20および図21に、このような構成の集音装置2の正面図および背面図をそれぞれ例示する。以降、これまでに説明した事項との相違点を中心に説明し、既に説明した事項については同じ参照番号を用いて説明を簡略化する。
[Second Embodiment of Sound Collector 1]
In the first embodiment, in order to make the intervals between the sound collecting parts 121-i of the microphones 12-i adjacent to each other substantially the same, each of the sound collecting parts 121-i of the microphones 12-i has N vertices. An example is shown in which one is arranged at each of the vertices of a regular polyhedron having or in the vicinity of the vertices. Here, there is no regular polyhedron having two vertices, but in the case of N = 2, the sound collecting portion 121-i of the microphone 12-i (however, i = 1, 2) is located in the center of the base or the base. It may be arranged on a straight line passing near the center of. 20 and 21 exemplify a front view and a rear view of the sound collecting device 2 having such a configuration, respectively. Hereinafter, the differences from the items described so far will be mainly described, and the items already explained will be simplified by using the same reference numbers.
 図20および図21に例示するように、第2実施形態の集音装置2は、互いに所定の距離をおいた2個の凹部111-1,111-2を表面に備えた略球体の基部21と、2個のマイクロホン12-1,12-2と、基部21を支持する支持部材13-j(j=1,…,M)とを有する。図20および図21ではM=4の場合を例示するが、これは本発明を限定するものではない。例えば、M=3であってもよいし、M≧5であってもよい。凹部111-1,111-2は、基部21の中央または基部21の中央の近傍を通る直線Lv上(垂直軸上)に設けられている。凹部111-1は基部21の上方側に設けられ、凹部111-2は基部21の下方側に設けられている。各マイクロホン12-i(ただし、i=1,2)は、各凹部111-i(ただし、i=1,2)の内底面111b-i側に1個ずつ設置(固定)されている。この際、各集音部121-i(ただし、i=1,2)はこの直線Lv上に配置されている。このように配置された集音部121-1と集音部121-2との間の間隔は、どの方向に測定しても略同一である。各支持部材13-j(ただし、j=1,…,M)は基部21の下方側に位置する支持領域112-jを支持し、基部21を下方側から支持する。ここで、基部21の下方側に配置された集音部121-2から各支持領域112-jまでの距離は互いに略同一であることが望ましい。これにより、各方向から集音部121-2に到達する音が各支持領域112-jから受ける影響を均一化できる。 As illustrated in FIGS. 20 and 21, the sound collecting device 2 of the second embodiment has a substantially spherical base 21 having two recesses 111-1 and 111-2 on the surface, which are separated from each other by a predetermined distance. , Two microphones 12-1, 12-2, and a support member 13-j (j = 1, ..., M) that supports the base 21. 20 and 21 illustrate the case of M = 4, but this does not limit the present invention. For example, M = 3 or M ≧ 5. The recesses 111-1 and 111-2 are provided on a straight line Lv (on the vertical axis) passing through the center of the base portion 21 or the vicinity of the center of the base portion 21. The recess 111-1 is provided on the upper side of the base 21, and the recess 111-2 is provided on the lower side of the base 21. One microphone 12-i (however, i = 1 and 2) is installed (fixed) on the inner bottom surface 111bi side of each recess 111-i (however, i = 1 and 2). At this time, each sound collecting unit 121-i (however, i = 1, 2) is arranged on this straight line Lv. The distance between the sound collecting unit 121-1 and the sound collecting unit 121-2 arranged in this way is substantially the same regardless of the direction of measurement. Each support member 13-j (where j = 1, ..., M) supports the support region 112-j located on the lower side of the base 21, and supports the base 21 from the lower side. Here, it is desirable that the distances from the sound collecting portion 121-2 arranged on the lower side of the base portion 21 to the support regions 112-j are substantially the same as each other. As a result, the influence of the sound reaching the sound collecting unit 121-2 from each direction from each support region 112-j can be made uniform.
 [集音装置1の第3実施形態]
 第3実施形態は第1実施形態の変形例であり、棒状の支持部材が基部を貫通した状態で基部に固定される点が第1実施形態と相違する。図22,図23および図24に、第3実施形態の集音装置3の正面図、背面図、および底面図をそれぞれ例示する。図22から図24に例示するように、第3実施形態の集音装置3は、互いに所定の距離をおいたN個の凹部111-i(ただし、i=1,…,N)を表面に備えた略球体の基部31と、N個のマイクロホン12-1,…,12-Nと、基部31を貫通した状態で基部31に固定されている棒状の支持部材33とを有する。なお、図22から図24ではN=8の場合を例示するが、これは本発明を限定するものではない。
[Third Embodiment of sound collecting device 1]
The third embodiment is a modification of the first embodiment, and is different from the first embodiment in that the rod-shaped support member is fixed to the base portion while penetrating the base portion. 22, FIG. 23, and FIG. 24 exemplify a front view, a rear view, and a bottom view of the sound collecting device 3 of the third embodiment, respectively. As illustrated in FIGS. 22 to 24, the sound collecting device 3 of the third embodiment has N recesses 111-i (where i = 1, ..., N) at predetermined distances from each other on the surface. It has a base portion 31 of a substantially sphere provided, N microphones 12-1, ..., 12-N, and a rod-shaped support member 33 fixed to the base portion 31 in a state of penetrating the base portion 31. Although the case of N = 8 is illustrated in FIGS. 22 to 24, this does not limit the present invention.
 ここで、支持部材33の基部31の外部に配置された一方側の部分331からその近隣に配置されるマイクロホンの集音部121-3,121-4,121-7,121-8までの距離は、互いに略同一とされる。同様に、支持部材33の基部31の外部に配置された他方側の部分332からその周囲に配置されるマイクロホンの集音部121-1,121-2,121-5,121-6までの距離は、互いに略同一とされる。例えば、Nが6,8,12,20の何れかであり、かつ、マイクロホンの集音部121-i(ただし、i=1,…,N)のそれぞれが、N個の頂点を持つ正多面体300の頂点または頂点の近傍のそれぞれに1個ずつ配置されており、支持部材33が当該正多面体300の互いに平行な一組の面301-5,301-6それぞれの中央または一組の面301-5,301-6それぞれの中央の近傍を通る直線L3(第3直線)上に配置される。これにより、部分331からその周囲に配置されるマイクロホンの集音部までの距離が互いに同一となり、かつ、部分332からその周囲に配置されるマイクロホンの集音部までの距離が互いに同一となる。その結果、第1実施形態で説明したような支持部材33に基づく悪影響を低減できる。さらに、支持部材33の部分331を地面に対して固定したり、利用者が把持したりするとともに、支持部材33の部分332にカメラを取り付けることもできる。 Here, the distance from the one-sided portion 331 arranged outside the base portion 31 of the support member 33 to the sound collecting portions 121-3, 121-4, 121-7, 121-8 of the microphone arranged in the vicinity thereof. Are substantially the same as each other. Similarly, the distance from the other side portion 332 arranged outside the base portion 31 of the support member 33 to the sound collecting portions 121-1, 121-2, 121-5, 121-6 of the microphone arranged around the portion 332. Are substantially the same as each other. For example, a regular polyhedron in which N is any of 6, 8, 12, 20 and each of the sound collecting portions 121-i (where i = 1, ..., N) of the microphone has N vertices. One is arranged at each of the vertices or the vicinity of the vertices of the 300, and the support member 33 is the center of each of the pair of faces 301-5, 301-6 parallel to each other of the regular polyhedron 300 or the set of faces 301. -5, 301-6 are arranged on a straight line L3 (third straight line) passing near the center of each. As a result, the distance from the portion 331 to the sound collecting portion of the microphone arranged around the portion 331 is the same as each other, and the distance from the portion 332 to the sound collecting portion of the microphone arranged around the portion 332 is the same as each other. As a result, the adverse effect based on the support member 33 as described in the first embodiment can be reduced. Further, the portion 331 of the support member 33 can be fixed to the ground, the user can grip the portion 331, and the camera can be attached to the portion 332 of the support member 33.
 [集音装置1の第4実施形態]
 第4実施形態は第2,3実施形態の変形例である。本実施形態では、N=2であり、かつ、棒状の支持部材が基部を貫通した状態で基部に固定される。図25および図26に、第4実施形態の集音装置4の正面図および右側面図をそれぞれ例示する。図25および図26に例示するように、第4実施形態の集音装置4は、互いに所定の距離をおいた2個の凹部111-i(ただし、i=1,2)を表面に備えた略球体の基部41と、2個のマイクロホン12-1,12-2と、基部41を貫通した状態で基部41に固定されている棒状の支持部材33とを有する。ここで、支持部材33の基部41の外部に配置された一方側の部分331からマイクロホンの集音部121-1,121-2までの距離は、互いに略同一とされる。同様に、支持部材33の基部41の外部に配置された他方側の部分332からマイクロホンの集音部121-1,121-2までの距離も、互いに略同一とされる。例えば、マイクロホンの集音部121-1,121-2が基部41の中央または基部41の中央の近傍を通る直線Lh(第1直線)上に配置されており、かつ、支持部材33が基部41の中央または基部の中央の近傍を通り直線Lh(第1直線)と略直交する直線Lv(第2直線)上に配置されている。例えば、直線Lhは水平方向に沿った直線であり、直線Lvは鉛直方向に沿った直線である。なお略直交とは、直交またはほぼ直交することを意味する。これにより、部分331からマイクロホンの集音部121-1,121-2までの距離が互いに同一となり、かつ、部分332からマイクロホンの集音部121-1,121-2までの距離が互いに同一となる。その結果、第1実施形態で説明したような支持部材33に基づく悪影響を低減できる。
[Fourth Embodiment of Sound Collector 1]
The fourth embodiment is a modification of the second and third embodiments. In the present embodiment, N = 2 and the rod-shaped support member is fixed to the base portion in a state of penetrating the base portion. 25 and 26 are examples of a front view and a right side view of the sound collecting device 4 of the fourth embodiment, respectively. As illustrated in FIGS. 25 and 26, the sound collecting device 4 of the fourth embodiment is provided with two recesses 111-i (where i = 1, 2) at predetermined distances from each other on the surface. It has a substantially spherical base 41, two microphones 12-1 and 12-2, and a rod-shaped support member 33 fixed to the base 41 in a state of penetrating the base 41. Here, the distances from the one-sided portion 331 arranged outside the base portion 41 of the support member 33 to the sound collecting portions 121-1 and 121-2 of the microphone are substantially the same as each other. Similarly, the distances from the other side portion 332 arranged outside the base portion 41 of the support member 33 to the sound collecting portions 121-1 and 121-2 of the microphone are also substantially the same as each other. For example, the sound collecting portions 121-1 and 121-2 of the microphone are arranged on a straight line Lh (first straight line) passing through the center of the base 41 or the vicinity of the center of the base 41, and the support member 33 is arranged on the base 41. It is arranged on a straight line Lv (second straight line) that passes near the center of the center or the center of the base and is substantially orthogonal to the straight line Lh (first straight line). For example, the straight line Lh is a straight line along the horizontal direction, and the straight line Lv is a straight line along the vertical direction. Note that substantially orthogonal means orthogonal or almost orthogonal. As a result, the distances from the part 331 to the sound collecting parts 121-1 and 121-2 of the microphone are the same, and the distances from the part 332 to the sound collecting parts 121-1 and 121-2 of the microphone are the same. Become. As a result, the adverse effect based on the support member 33 as described in the first embodiment can be reduced.
 以上のように、各実施形態の集音装置1~4は、少なくとも、互いに所定の距離をおいたN個の凹部を表面に備えた略球体の基部11~41と、N個のマイクロホン12-1~12-Nと、を有する。ただし、Nは2以上の整数である。マイクロホン12-1~12-Nのそれぞれは、凹部111-1~111-Nのそれぞれの内底面側に1個ずつ設置されており、互いに隣接するマイクロホン12-1~12-Nの集音部121-1~121-N間の間隔は略同一である。前述のように、凹部121-iの働きにより、従来よりも高い分解能で、任意の目標音源から発せられた音を抽出することができる。また、マイクロホン12-1~12-Nの集音部121-1~121-N間の間隔が近すぎると分解能が低下するが、マイクロホン12-1~12-Nの集音部121-1~121-N間の間隔が離れると収音される情報が低下する。集音装置1~4から見た方位によって分解能や収音される情報にばらつきがあることは好ましくない。各実施形態では、互いに隣接するマイクロホン12-1~12-Nの集音部121-1~121-N間の間隔を略同一とするため、このような方位によるばらつきを低減できる。以上により、集音装置1~4の大きさをさほど大きくすることなく、全方位の音を精度よく集音できる。 As described above, the sound collecting devices 1 to 4 of each embodiment have at least the bases 11 to 41 of a substantially sphere having N recesses on the surface at predetermined distances from each other, and the N microphones 12-. It has 1 to 12-N. However, N is an integer of 2 or more. Each of the microphones 12-1 to 12-N is installed one on the inner bottom surface side of each of the recesses 111-1 to 111-N, and the sound collecting part of the microphones 12-1 to 12-N adjacent to each other. The intervals between 121-1 and 121-N are substantially the same. As described above, the function of the recesses 121-i makes it possible to extract the sound emitted from an arbitrary target sound source with a higher resolution than before. Further, if the distance between the sound collecting portions 121-1 to 121-N of the microphones 12-1 to 12-N is too close, the resolution is lowered, but the sound collecting portions 121-1 to 12-1 to 12-N of the microphones 12-1 to 12-N If the interval between 121 and N is increased, the information to be picked up decreases. It is not preferable that the resolution and the information to be collected vary depending on the orientations viewed from the sound collectors 1 to 4. In each embodiment, since the intervals between the sound collecting portions 121-1 to 121-N of the microphones 12-1 to 12-N adjacent to each other are substantially the same, such variations due to the orientation can be reduced. As described above, it is possible to accurately collect sound in all directions without increasing the size of the sound collecting devices 1 to 4 so much.
 [集音装置1のその他の変形例等]
 凹部111-iは上述したものに限定されない。例えば、図14Bの例では、縁部111a-iと縁部111c-iとの間の内壁面はスロープ状に形成され、内底面111b-iに滑らかにつながっていたが、縁部111a-iと縁部111c-iとの間の内壁面形状が円錐台の側面形状であってもよい。すなわち、凹部111-iの断面形状(3B-3B断面の形状)が台形であってもよい。後述する第5実施形態において、縁部111a-iと縁部111c-iとの間の内壁面形状が円錐台の側面形状である場合について、より詳細に説明する。
[Other modifications of sound collecting device 1]
The recess 111-i is not limited to that described above. For example, in the example of FIG. 14B, the inner wall surface between the edge portion 111a-i and the edge portion 111c-i is formed in a slope shape and is smoothly connected to the inner bottom surface 111bi, but the edge portion 111a-i The inner wall surface shape between the edge portion 111c-i and the edge portion 111c-i may be the side surface shape of the truncated cone. That is, the cross-sectional shape of the recess 111-i (the shape of the 3B-3B cross section) may be trapezoidal. In the fifth embodiment described later, the case where the inner wall surface shape between the edge portions 111a-i and the edge portion 111c-i is the side surface shape of the truncated cone will be described in more detail.
 また、隣接するマイクロホン12-i(ただし、i=1,…,N)の集音部121-i間の間隔をすべて厳密に同一にする場合には、各集音部121-iをN個の頂点を持つ正多面体の頂点に1個ずつ配置することになる。しかし、集音部121-i間の間隔をすべて厳密に同一にしない場合には、各集音部121-iが正多面体の頂点以外に配置されてもよい。また、集音部121-iの内底面111bが平面ではなく曲面であってもよい。 Further, when the intervals between the sound collecting units 121-i of the adjacent microphones 12-i (however, i = 1, ..., N) are all exactly the same, N pieces of each sound collecting unit 121-i are used. One at each of the vertices of a regular polyhedron having the vertices of. However, if the intervals between the sound collecting units 121-i are not exactly the same, each sound collecting unit 121-i may be arranged at a position other than the apex of the regular polyhedron. Further, the inner bottom surface 111b of the sound collecting unit 121-i may be a curved surface instead of a flat surface.
 [集音装置1の第5実施形態]
 第5実施形態は、マイクロホン12-iが指向性を持つように、凹部111-iの形状を形成した実施形態である。
[Fifth Embodiment of sound collecting device 1]
The fifth embodiment is an embodiment in which the shape of the recess 111-i is formed so that the microphone 12-i has directivity.
 以下、第1実施形態から第4実施形態と異なる部分を中心に説明する。第1実施形態から第4実施形態と同じ部分については重複説明を省略する。 Hereinafter, the parts different from the first to fourth embodiments will be mainly described. Overlapping description will be omitted for the same parts as those in the first to fourth embodiments.
 <凹部111-iの形状の例1>
 図27、図28A及び図28Bに例示するように、凹部111-iの形状は、略円錐台形であってもよい。
<Example 1 of the shape of the recess 111-i>
As illustrated in FIGS. 27, 28A and 28B, the shape of the recess 111-i may be a substantially conical trapezoid.
 図27、図28A及び図28Bに示すように、凹部111-iの縁は面取りされている。第5実施形態では、この面取りされている部分が、縁部111a-iとなる。 As shown in FIGS. 27, 28A and 28B, the edges of the recess 111-i are chamfered. In the fifth embodiment, this chamfered portion becomes the edge portion 111a-i.
 図27は、凹部111-1,…,111-8の個数が8であり、凹部111-iの形状が略円錐台形である場合の集音装置1の斜視図である。 FIG. 27 is a perspective view of the sound collecting device 1 when the number of recesses 111-1, ..., 111-8 is 8, and the shape of the recesses 111-i is substantially a conical trapezoid.
 図28Aは、形状が略円錐台形である凹部111-iの例の平面図である。図28Bは、図28Aの21B-21B断面図である。 FIG. 28A is a plan view of an example of the recess 111-i having a substantially conical trapezoidal shape. FIG. 28B is a cross-sectional view taken along the line 21B-21B of FIG. 28A.
 この例では、図28Bの凹部111-iの断面図において、縁部111a-iから縁部111c-iの断面が直線形になっている。 In this example, in the cross-sectional view of the recess 111-i in FIG. 28B, the cross section from the edge 111a-i to the edge 111c-i is linear.
 また、図29A及び図29Bに例示するように、凹部111-iの形状は、略円錐であってもよい。すなわち、凹部111-iは、縁部111c-i、内底面11b-iを有していなくてもよい。 Further, as illustrated in FIGS. 29A and 29B, the shape of the recess 111-i may be substantially a cone. That is, the recess 111-i does not have to have the edge portion 111c-i and the inner bottom surface 11bi.
 なお、形状が略円錐である凹部111-iと、形状が略円錐台形である凹部111-iとが混在していてもよい。 Note that the recess 111-i having a substantially conical shape and the recess 111-i having a substantially conical trapezoidal shape may coexist.
 <凹部111-iの形状の例2>
 図30、図31A及び図31Bに例示するように、凹部111-iの形状は、エクスポーネンシャルホーンの形状であってもよい。言い換えれば、凹部111-iの形状は、開放端側から底面側に向かうに従って、凹部111-iの径の変化率が小さくなるように形成されていてもよい。
<Example 2 of the shape of the recess 111-i>
As illustrated in FIGS. 30, 31A and 31B, the shape of the recess 111-i may be the shape of an exponential horn. In other words, the shape of the recess 111-i may be formed so that the rate of change in the diameter of the recess 111-i decreases from the open end side toward the bottom surface side.
 図30、図31A及び図31Bに示すように、凹部111-iの縁は面取りされている。凹部111-iの形状の例1と同様に、この面取りされている部分が、縁部111a-iとなる。 As shown in FIGS. 30, 31A and 31B, the edges of the recess 111-i are chamfered. Similar to Example 1 of the shape of the recess 111-i, this chamfered portion becomes the edge portion 111a-i.
 図30は、凹部111-1,…,111-8の個数が8であり、凹部111-iの形状がエクスポーネンシャルホーンの形状である場合の集音装置1の斜視図である。 FIG. 30 is a perspective view of the sound collecting device 1 when the number of recesses 111-1, ..., 111-8 is 8, and the shape of the recesses 111-i is the shape of an exponential horn.
 図31Aは、形状がエクスポーネンシャルホーンの形状である凹部111-iの例の平面図である。図31Bは、図31Aの24B-24B断面図である。 FIG. 31A is a plan view of an example of the recess 111-i whose shape is the shape of an exponential horn. 31B is a cross-sectional view taken along the line 24B-24B of FIG. 31A.
 この例では、図31Bの凹部111-iの断面図において、縁部111a-iから縁部111c-iの断面が内側に凸になる曲線形になっている。 In this example, in the cross-sectional view of the recess 111-i in FIG. 31B, the cross section from the edge 111a-i to the edge 111c-i has a curved shape that is convex inward.
 <凹部111-iの形状の例3>
 図32、図33A及び図33Bに例示するように、凹部111-iの形状は、椀形状であってもよい。言い換えれば、凹部111-iの形状は、開放端側から底面側に向かうに従って、凹部111-iの径の変化率が大きくなるように形成されていてもよい。
<Example 3 of the shape of the recess 111-i>
As illustrated in FIGS. 32, 33A and 33B, the shape of the recess 111-i may be a bowl shape. In other words, the shape of the recess 111-i may be formed so that the rate of change in the diameter of the recess 111-i increases from the open end side toward the bottom surface side.
 図32、図33A及び図33Bに示すように、凹部111-iの縁は面取りされている。凹部111-iの形状の例1と同様に、この面取りされている部分が、縁部111a-iとなる。 As shown in FIGS. 32, 33A and 33B, the edges of the recess 111-i are chamfered. Similar to Example 1 of the shape of the recess 111-i, this chamfered portion becomes the edge portion 111a-i.
 図32は、凹部111-1,…,111-8の個数が8であり、凹部111-iの形状が椀形状である場合の集音装置1の斜視図である。 FIG. 32 is a perspective view of the sound collecting device 1 when the number of recesses 111-1, ..., 111-8 is 8 and the shape of the recesses 111-i is bowl-shaped.
 図33Aは、形状が椀形状である凹部111-iの例の平面図である。図33Bは、図33Aの26B-26B断面図である。 FIG. 33A is a plan view of an example of the recess 111-i having a bowl shape. 33B is a cross-sectional view taken along the line 26B-26B of FIG. 33A.
 この例では、図33Bの凹部111-iの断面図において、縁部111a-iから縁部111c-iの断面が外側に凸になる曲線形になっている。 In this example, in the cross-sectional view of the recess 111-i in FIG. 33B, the cross section from the edge 111a-i to the edge 111c-i has a curved shape that is convex outward.
 以下、<凹部111-iの形状の例1から例3に共通する第5実施形態の構成について説明する。第5実施形態においては、マイクロホン12-iの集音部121-iは、基部の中央または当該基部の中央の近傍と、マイクロホン12-iが設置される凹部111-iの外周若しくは底部の中心ないし略中心を通る直線L上に設置される。 Hereinafter, the configuration of the fifth embodiment common to Examples 1 to 3 of the shape of the recess 111-i will be described. In the fifth embodiment, the sound collecting portion 121-i of the microphone 12-i is the center of the base or the vicinity of the center of the base, and the center of the outer circumference or the bottom of the recess 111-i in which the microphone 12-i is installed. Or it is installed on a straight line L passing through a substantially center.
 また、マイクロホン12-iの集音部121-iは、マイクロホン12-iの集音部121-iと基部の中央との距離が基部の半径よりも小さくなるように設置される。 Further, the sound collecting portion 121-i of the microphone 12-i is installed so that the distance between the sound collecting portion 121-i of the microphone 12-i and the center of the base is smaller than the radius of the base.
 マイクロホン12-iの集音部121-iと基部の中央との距離が小さくなるほど、マイクロホン12-iの指向性は強くなり、マイクロホン12-iの指向性の幅は狭くなる。このため、マイクロホン12-iの集音部121-iと基部の中央との距離は、マイクロホン12-iに求める指向性に応じて適宜定められる。 The smaller the distance between the sound collecting portion 121-i of the microphone 12-i and the center of the base, the stronger the directivity of the microphone 12-i and the narrower the range of directivity of the microphone 12-i. Therefore, the distance between the sound collecting portion 121-i of the microphone 12-i and the center of the base portion is appropriately determined according to the directivity required for the microphone 12-i.
 例えば、マイクロホン12-iの集音部121-iは、マイクロホン12-iの集音部121-iと基部の中央との距離が基部の半径の1/2(半分)よりも小さくなるように設置される。 For example, in the sound collecting portion 121-i of the microphone 12-i, the distance between the sound collecting portion 121-i of the microphone 12-i and the center of the base is smaller than 1/2 (half) of the radius of the base. Will be installed.
 もちろん、マイクロホン12-iの集音部121-iは、マイクロホン12-iの集音部121-iと基部の中央との距離が基部の半径の1/2よりも大きくなるように設置されてもよい。 Of course, the sound collecting portion 121-i of the microphone 12-i is installed so that the distance between the sound collecting portion 121-i of the microphone 12-i and the center of the base is larger than 1/2 of the radius of the base. May be good.
 このように、マイクロホン12-iの集音部121-iと基部の中央との距離を変えることで、集音装置1の指向性を所望の指向性にすることができる。 In this way, by changing the distance between the sound collecting portion 121-i of the microphone 12-i and the center of the base, the directivity of the sound collecting device 1 can be made a desired directivity.
 マイクロホン12-iは、凹部111-iの内底面11b-iに接するように設置されてもよいし、凹部111-iの内底面11b-iに接しないように設置されてもよい。接しないように設置される場合は、マイクロホン12-iの集音部121-iは、基部の中央または当該基部の中央の近傍と、マイクロホン12-iが設置される凹部111-iの外周若しくは底部の中心ないし略中心を通る直線L上に設置されればよい。 The microphone 12-i may be installed so as to be in contact with the inner bottom surface 11bi of the recess 111-i, or may be installed so as not to be in contact with the inner bottom surface 11bi of the recess 111-i. When installed so as not to touch, the sound collecting portion 121-i of the microphone 12-i is located at the center of the base or near the center of the base, and the outer circumference of the recess 111-i where the microphone 12-i is installed. It may be installed on a straight line L passing through the center or substantially the center of the bottom.
 凹部111-iは隣接する凹部111-iに重ならないように、凹部111-iの直径は定められる。例えば、基部の直径が80mmであり、図27、図30及び図32に例示したように、凹部111-1,…,111-8の個数が8である場合には、凹部111-iの直径を40mm以下とする。なお、凹部111-iの直径とは、凹部111-iの外周の直径のことである。 The diameter of the recess 111-i is determined so that the recess 111-i does not overlap the adjacent recess 111-i. For example, when the diameter of the base is 80 mm and the number of recesses 111-1, ..., 111-8 is 8 as illustrated in FIGS. 27, 30 and 32, the diameter of the recess 111-i Is 40 mm or less. The diameter of the recess 111-i is the diameter of the outer circumference of the recess 111-i.
 図27、図30及び図32では、基部と同じ大きさの球に内接する8個の頂点を持つ正六面体(図34A参照。)を、正六面体の12個の辺の中の互いに平行な4個の辺のそれぞれを2等分する平面である分割面で2分割することにより得られる正六面体の上部または正六面体の下部を球に内接する状態を維持したまま分割面に沿って45度回転させたときの8個の頂点の位置(図34B参照。)に凹部111-1,…,111-8が設けられている。 In FIGS. 27, 30 and 32, a regular hexahedron (see FIG. 34A) having eight vertices inscribed in a sphere of the same size as the base is placed parallel to each other in the twelve sides of the regular hexahedron. Rotate 45 degrees along the dividing surface while maintaining the state in which the upper part of the regular hexahedron or the lower part of the regular hexahedron obtained by dividing each of the sides into two equal parts is inscribed in the sphere. Recesses 111-1, ..., 111-8 are provided at the positions of the eight vertices (see FIG. 34B) when the vertices are formed.
 <第5実施形態の変形例>
 第1実施形態の第4実施形態の集音装置1は、凹部111-1,…,111-Nの個数と同じ個数であるN個のマイクロホン12-1,…,12-Nを備えていた。
<Modified example of the fifth embodiment>
The sound collecting device 1 of the fourth embodiment of the first embodiment includes N microphones 12-1, ..., 12-N, which are the same number as the number of recesses 111-1, ..., 111-N. ..
 これに対して、第5実施形態の集音装置1は、更に少なくとも1つのマイクロホンを有していてもよい。この場合、これらの少なくとも1つのマイクロホンのそれぞれは、N個の凹部111-1,…,111-Nの中の何れかの凹部に設置される。言い換えれば、凹部111-1,…,111-Nの中の少なくとも1つの凹部に、2個以上のマイクホロンが設けられていてもよい。 On the other hand, the sound collecting device 1 of the fifth embodiment may further have at least one microphone. In this case, each of these at least one microphone is installed in any of the N recesses 111-1, ..., 111-N. In other words, two or more microphone holons may be provided in at least one recess in the recesses 111-1, ..., 111-N.
 [プログラム、記録媒体]
 上記説明した関係装置における各種の処理機能をコンピュータによって実現する場合、関係装置が有すべき機能の処理内容はプログラムによって記述される。そして、このプログラムをコンピュータで実行することにより、関係装置における各種の処理機能がコンピュータ上で実現される。例えば、上述の各種の処理は、図35に示すコンピュータの記録部2020に、実行させるプログラムを読み込ませ、制御部2010、入力部2030、出力部2040などに動作させることで実施できる。
[Program, recording medium]
When various processing functions in the related devices described above are realized by a computer, the processing contents of the functions that the related devices should have are described by a program. Then, by executing this program on the computer, various processing functions in the related devices are realized on the computer. For example, the above-mentioned various processes can be carried out by having the recording unit 2020 of the computer shown in FIG. 35 read the program to be executed and operating the control unit 2010, the input unit 2030, the output unit 2040, and the like.
 この処理内容を記述したプログラムは、コンピュータで読み取り可能な記録媒体に記録しておくことができる。コンピュータで読み取り可能な記録媒体としては、例えば、磁気記録装置、光ディスク、光磁気記録媒体、半導体メモリ等どのようなものでもよい。 The program that describes this processing content can be recorded on a computer-readable recording medium. The computer-readable recording medium may be, for example, a magnetic recording device, an optical disk, a photomagnetic recording medium, a semiconductor memory, or the like.
 また、このプログラムの流通は、例えば、そのプログラムを記録したDVD、CD-ROM等の可搬型記録媒体を販売、譲渡、貸与等することによって行う。さらに、このプログラムをサーバコンピュータの記憶装置に格納しておき、ネットワークを介して、サーバコンピュータから他のコンピュータにそのプログラムを転送することにより、このプログラムを流通させる構成としてもよい。 The distribution of this program is carried out, for example, by selling, transferring, renting, etc., portable recording media such as DVDs and CD-ROMs on which the program is recorded. Further, the program may be stored in the storage device of the server computer, and the program may be distributed by transferring the program from the server computer to another computer via a network.
 このようなプログラムを実行するコンピュータは、例えば、まず、可搬型記録媒体に記録されたプログラムもしくはサーバコンピュータから転送されたプログラムを、一旦、自己の記憶装置に格納する。そして、処理の実行時、このコンピュータは、自己の記憶装置に格納されたプログラムを読み取り、読み取ったプログラムに従った処理を実行する。また、このプログラムの別の実行形態として、コンピュータが可搬型記録媒体から直接プログラムを読み取り、そのプログラムに従った処理を実行することとしてもよく、さらに、このコンピュータにサーバコンピュータからプログラムが転送されるたびに、逐次、受け取ったプログラムに従った処理を実行することとしてもよい。また、サーバコンピュータから、このコンピュータへのプログラムの転送は行わず、その実行指示と結果取得のみによって処理機能を実現する、いわゆるASP(Application Service Provider)型のサービスによって、上述の処理を実行する構成としてもよい。なお、本形態におけるプログラムには、電子計算機による処理の用に供する情報であってプログラムに準ずるもの(コンピュータに対する直接の指令ではないがコンピュータの処理を規定する性質を有するデータ等)を含むものとする。 A computer that executes such a program first stores, for example, a program recorded on a portable recording medium or a program transferred from a server computer in its own storage device. Then, when the process is executed, the computer reads the program stored in its own storage device and executes the process according to the read program. Further, as another execution form of this program, a computer may read the program directly from a portable recording medium and execute processing according to the program, and further, the program is transferred from the server computer to this computer. Each time, the processing according to the received program may be executed sequentially. In addition, the above processing is executed by a so-called ASP (Application Service Provider) type service that realizes the processing function only by the execution instruction and result acquisition without transferring the program from the server computer to this computer. May be. The program in this embodiment includes information to be used for processing by a computer and equivalent to the program (data that is not a direct command to the computer but has a property of defining the processing of the computer, etc.).
 また、この形態では、コンピュータ上で所定のプログラムを実行させることにより、本装置を構成することとしたが、これらの処理内容の少なくとも一部をハードウェア的に実現することとしてもよい。 Further, in this form, the present device is configured by executing a predetermined program on the computer, but at least a part of these processing contents may be realized by hardware.

Claims (5)

  1.  Nが2以上の整数であり、互いに所定の距離をおいたN個の凹部を表面に備えた略球体の基部と、
     それぞれ前記N個の凹部の内底面側に設置されたN個のマイクロホンと、
     集音空間と、前記基部及び前記N個のマイクロホンとの関係を決定する決定部と、を含み、
     前記決定部は、前記集音空間内の所定の音源から発せられ、前記N個のマイクロホンが集音した集音信号に含まれる間接音の差を用いて前記関係を決定する、
     関係決定装置。
    N is an integer of 2 or more, and the base of a substantially sphere having N recesses on the surface at a predetermined distance from each other.
    N microphones installed on the inner bottom side of the N recesses, respectively, and
    Includes a sound collecting space and a determination unit that determines the relationship between the base and the N microphones.
    The determination unit determines the relationship by using the difference in indirect sounds emitted from a predetermined sound source in the sound collection space and included in the sound collection signal collected by the N microphones.
    Relationship determination device.
  2.  請求項1の関係決定装置であって、
     集音空間と、前記基部及び前記N個のマイクロホンとの関係が、異なる複数の関係のそれぞれである場合の、前記集音空間内の所定の音源から発せられ、前記N個のマイクロホンが集音した事前集音信号が記憶されている記憶部と、
     前記決定部は、前記所定の音源から発せられ、前記N個のマイクロホンが集音した集音信号に最も近い事前集音信号を前記記憶部に記憶されている事前集音信号から選択し、前記選択された事前集音信号に対応する、所定の空間と、前記基部及び前記N個のマイクロホンとの関係を前記関係として決定する、
     関係決定装置。
    The relationship determination device according to claim 1.
    When the relationship between the sound collecting space and the base and the N microphones is different from each other, the sound is emitted from a predetermined sound source in the sound collecting space, and the N microphones collect sound. A storage unit that stores the pre-collected sound signal
    The determination unit selects a pre-sound collection signal that is emitted from the predetermined sound source and is closest to the sound collection signal collected by the N microphones from the pre-sound collection signals stored in the storage unit. The relationship between the predetermined space corresponding to the selected pre-sound collection signal and the base and the N microphones is determined as the relationship.
    Relationship determination device.
  3.  請求項2の関係決定装置であって、
     前記決定部は、前記記憶部から読み込んだ前記N個のマイクロホンが予め集音した事前集音信号と、前記N個のマイクロホンが集音した集音信号との類似度が最も高い事前集音信号を、前記最も近い事前集音信号として選択する、
     関係決定装置。
    The relationship determination device according to claim 2.
    The determination unit has the highest degree of similarity between the pre-sound collection signal read from the storage unit by the N microphones and the sound collection signal collected by the N microphones. Is selected as the closest pre-collection signal,
    Relationship determination device.
  4.  決定部が、集音空間と、Nが2以上の整数であり、互いに所定の距離をおいたN個の凹部を表面に備えた略球体の基部及びそれぞれ前記N個の凹部の内底面側に設置されたN個のマイクロホンとの関係を決定する決定ステップと、を含み、
     前記決定ステップは、前記集音空間内の所定の音源から発せられ、前記N個のマイクロホンが集音した集音信号に含まれる間接音の差を用いて前記関係を決定する、
     関係決定方法。
    The determination part is the sound collecting space, the base of a substantially sphere having N recesses on the surface having N being an integer of 2 or more and having a predetermined distance from each other, and the inner bottom surface side of each of the N recesses. Including a decision step to determine the relationship with the installed N microphones,
    The determination step determines the relationship using the difference in indirect sounds contained in the sound collection signals collected by the N microphones, which are emitted from a predetermined sound source in the sound collection space.
    Relationship determination method.
  5.  請求項1から3の何れかの関係決定装置の各部としてコンピュータを機能させるためのプログラム。 A program for operating a computer as each part of the relationship determination device according to any one of claims 1 to 3.
PCT/JP2019/038996 2019-10-02 2019-10-02 Relationship determination device, method, and program WO2021064917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038996 WO2021064917A1 (en) 2019-10-02 2019-10-02 Relationship determination device, method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/038996 WO2021064917A1 (en) 2019-10-02 2019-10-02 Relationship determination device, method, and program

Publications (1)

Publication Number Publication Date
WO2021064917A1 true WO2021064917A1 (en) 2021-04-08

Family

ID=75337092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038996 WO2021064917A1 (en) 2019-10-02 2019-10-02 Relationship determination device, method, and program

Country Status (1)

Country Link
WO (1) WO2021064917A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472525A (en) * 1990-07-13 1992-03-06 Nippon Telegr & Teleph Corp <Ntt> Sound source direction distinguishing sensor
WO2004021031A1 (en) * 2002-08-30 2004-03-11 Nittobo Acoustic Engineering Co.,Ltd. Sound source search system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472525A (en) * 1990-07-13 1992-03-06 Nippon Telegr & Teleph Corp <Ntt> Sound source direction distinguishing sensor
WO2004021031A1 (en) * 2002-08-30 2004-03-11 Nittobo Acoustic Engineering Co.,Ltd. Sound source search system

Similar Documents

Publication Publication Date Title
US10966022B1 (en) Sound source localization using multiple microphone arrays
EP2800402B1 (en) Sound field analysis system
KR102159376B1 (en) Laser scanning system, laser scanning method, mobile laser scanning system and program
US10045144B2 (en) Redirecting audio output
CN104106267B (en) Signal enhancing beam forming in augmented reality environment
Yook et al. Fast sound source localization using two-level search space clustering
US8169621B2 (en) 3-dimensional imaging by acoustic warping and defocusing
WO2019236588A1 (en) System and method associated with expedient determination of location of one or more object(s) within a bounded perimeter of 3d space based on mapping and navigation to a precise poi destination using a smart laser pointer device
CN107636893A (en) It is configured to the multiple antenna communication of detection object
Jo et al. Direction of arrival estimation using nonsingular spherical ESPRIT
EP2208359A1 (en) Position determination of sound sources
De Mey et al. Simulated head related transfer function of the phyllostomid bat Phyllostomus discolor
WO2021064917A1 (en) Relationship determination device, method, and program
de Moraes Calazan et al. Simplex based three-dimensional eigenray search for underwater predictions
JP5301521B2 (en) Radio wave estimation method, radio wave estimation program, and radio wave estimation apparatus
JP7389036B2 (en) sound collection device
Qiu et al. Variability in the rigid pinna motions of hipposiderid bats and their impact on sensory information encoding
Guarato et al. A method for estimating the orientation of a directional sound source from source directivity and multi-microphone recordings: Principles and application
Wang et al. Pinna-rim skin folds narrow the sonar beam in the lesser false vampire bat (Megaderma spasma)
EP3566471B1 (en) Audio simulation in video games comprising indirect propagation paths
JP5224148B2 (en) Service information provision system
JP2018064215A (en) Signal processing apparatus, signal processing method, and program
Treeby et al. The effect of impedance on interaural azimuth cues derived from a spherical head model
KR101483271B1 (en) Method for Determining the Representative Point of Cluster and System for Sound Source Localization
US11950062B1 (en) Direction finding of sound sources

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP