WO2021063393A1 - Transmission configuration indication (tci) list update and tci switch for channel state information (csi) reporting - Google Patents

Transmission configuration indication (tci) list update and tci switch for channel state information (csi) reporting Download PDF

Info

Publication number
WO2021063393A1
WO2021063393A1 PCT/CN2020/119371 CN2020119371W WO2021063393A1 WO 2021063393 A1 WO2021063393 A1 WO 2021063393A1 CN 2020119371 W CN2020119371 W CN 2020119371W WO 2021063393 A1 WO2021063393 A1 WO 2021063393A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci state
csi
tci
base station
switch
Prior art date
Application number
PCT/CN2020/119371
Other languages
French (fr)
Inventor
Hsuan-Li Lin
Zhixun Tang
Tsang-Wei Yu
Wenze Qu
Original Assignee
Mediatek Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Inc. filed Critical Mediatek Inc.
Publication of WO2021063393A1 publication Critical patent/WO2021063393A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • Embodiments of the invention relate to wireless communications; more specifically, to the reporting of channel state information from a user equipment (UE) to a base station.
  • UE user equipment
  • the Fifth Generation New Radio (5G NR) is a telecommunication standard for mobile broadband communications.
  • 5G NR is promulgated by the 3rd Generation Partnership Project (3GPP) to significantly improve performance metrics such as latency, reliability, throughput, etc.
  • 3GPP 3rd Generation Partnership Project
  • a UE receives a reference signal, such as a channel state information reference signal (CSI-RS) , from a base station for estimating the channel quality.
  • the UE measures and calculates the channel condition, and reports the calculated channel condition to the base station.
  • the base station transmits downlink signals based on the report sent from the UE.
  • the base station can adapt the downlink data rate and modulation scheme based on the UE’s report of channel state information (CSI) .
  • the base station may send the UE a configuration update for the CSI reporting, and the UE receives the CSI-RS and reports the CSI according to the updated configuration.
  • CSI channel state information
  • the existing 5G NR technology can be further improved to benefit operators and users of the unlicensed spectrum. These improvements may also apply to other multi-access technologies and the telecommunication standards that employ these technologies.
  • a method is performed by a UE in a wireless network.
  • the UE receives a CSI-RS from a base station according to a transmission configuration indication (TCI) state in a CSI-RS configuration.
  • the UE reports CSI to the base station.
  • the UE receives, from the base station, indications to update a TCI state list and to switch the TCI state in the CSI-RS configuration for CSI reporting.
  • the TCI state list update begins before the TCI state switch is completed.
  • the TCI state refers to the TCI state list for spatial information for reception of the CSI-RS.
  • the UE reports an out-of-bound indication to the base station for the CSI reporting in a time period when only one of the TCI state switch and the TCI state list update is completed.
  • a method is performed by a UE in a wireless network.
  • the UE receives a CSI-RS from a base station according to a TCI state in a CSI-RS configuration.
  • the UE reports CSI obtained from the CSI-RS to the base station.
  • the UE receives, from the base station, indications to update a TCI state list and to switch the TCI state in the CSI-RS configuration for CSI reporting.
  • the TCI state list update begins before the TCI state switch is completed.
  • the TCI state refers to the TCI state list for spatial information for reception of the CSI-RS.
  • the UE performs the CSI reporting to the base station according to the TCI state before the TCI state switch and the TCI state list before the TCI state list update until both the TCI state switch and the TCI state list update are completed.
  • an apparatus such as a UE is provided for wireless communication.
  • the apparatus includes a memory and processing circuitry coupled to the memory.
  • the processing circuitry is configured to receive a CSI-RS from a base station according to a TCI state in a CSI-RS configuration.
  • the processing circuitry is further configured to report CSI obtained from the CSI-RS to the base station, and to receive, from the base station, indications to update a TCI state list and to switch the TCI state in the CSI-RS configuration for CSI reporting.
  • the TCI state list update begins before the TCI state switch is completed, and the TCI state refers to the TCI state list for spatial information for reception of the CSI-RS.
  • the processing circuitry is further configured to report an out-of-bound indication to the base station for the CSI reporting in a time period when only one of the TCI state switch and the TCI state list update is completed.
  • the present disclosure provides a method for a UE to perform CSI reporting based on a received CSI-RS.
  • the reporting depends on the timeline of a TCI state switch, which switches an old TCI state to a new TCI state for the CSI-RS, and the timeline of an active TCI state list update.
  • Figure 1 is a diagram illustrating a network in which the embodiments of the present invention may be practiced.
  • Figure 2 is a diagram illustrating an example of a CSI-RS configuration for CSI reporting according to one embodiment.
  • Figure 3 is a diagram illustrating an overview of the cases to be described according to some embodiments.
  • Figure 4A is a diagram illustrating a first case according to one embodiment.
  • Figure 4B is a diagram illustrating a first case according to another embodiment.
  • Figure 5 is a diagram illustrating a second case according to one embodiment.
  • Figure 6 is a diagram illustrating a third case according to one embodiment.
  • Figure 7 is a flow diagram illustrating a method for a UE to report CSI according to one embodiment.
  • Figure 8 is a block diagram illustrating an apparatus that performs wireless communication according to one embodiment.
  • Embodiments of the invention provide a procedure for a UE to report CSI to a base station when updates are performed to the UE’s CSI-RS configuration and an active TCI state list referred to by the CSI-RS configuration. More specifically, the updates are performed to (1) an active TCI state list and (2) a TCI state in the CSI-RS configuration for a CSI-RS.
  • the TCI state provides a TCI index pointing to an entry in the active TCI state list. The entry includes spatial information for the reception of the CSI-RS.
  • the update performed to the TCI state in the CSI-RS configuration is also referred to as the TCI state switch, as the update switches the TCI index from a first TCI index (e.g., index #1) to a second TCI index (e.g., index #2) .
  • the first TCI index and the second TCI index point to different entries in the TCI state list that correspond to different reception directions.
  • the second TCI index refers to an entry in the active TCI state list, where the entry includes new spatial information for the UE to receive the CSI-RS.
  • An example of the spatial information is the receiving (Rx) beam direction, which may be indicated by a quasi-collocation (QCL) type and an identifier of another reference signal which has been received by the UE with a given configuration of an Rx spatial filter (e.g. an angle of arrival) .
  • Rx receiving
  • QCL quasi-collocation
  • the update performed on the active TCI state list is also referred to as the “TCI state list update” or “list update. ”
  • the list update modifies one or more entries in the active TCI state list.
  • the total number of TCI indices may be N1, and only a subset (N2) of which are active TCI states for CSI reporting (where N1 > N2) .
  • N2 entries in the active TCI state list there are N2 entries in the active TCI state list; not all of the TCI indices are stored in the active TCI state list.
  • a list update may replace a first entry corresponding to TCI index #m with a second entry corresponding to TCI index #n, where TCI index #m and TCI index #n correspond to different Rx beam directions.
  • Another list update may modify the content of an entry corresponding to TCI index #m without replacing TCI index #m by another TCI index.
  • the UE may be required to report the channel quality of a CSI-RS while one or both the TCI state list update and the TCI state switch is/are in progress.
  • the UE’s reporting follows the procedure to be disclosed below with reference to Figures 3, 4A, 4B, 5 and 6.
  • the disclosed method can be applied to wireless communication between a base station (e.g., a gNB in a 5G NR network) and UEs.
  • a base station e.g., a gNB in a 5G NR network
  • UEs e.g., a gNB in a 5G NR network
  • a base station e.g., a gNB in a 5G NR network
  • UEs e.g., a gNB in a 5G NR network
  • FIG. 1 is a diagram illustrating a network 100 in which embodiments of the present invention may be practiced.
  • the network 100 is a wireless network which may be a 5G NR network.
  • 5G NR network may be a 5G NR network.
  • the methods and apparatuses are described within the context of a 5G NR network.
  • the methods and apparatuses described herein may be applicable to a variety of other multi-access technologies and the telecommunication standards that employ these technologies.
  • the network 100 may include additional devices, fewer devices, different devices, or differently arranged devices than those shown in Figure 1.
  • the network 100 may include a number of base stations (shown as BSs) , such as base stations 120a, 120b, and 120c, collectively referred to as the base stations 120.
  • a base station may be known as a gNodeB, a gNB, and/or the like.
  • a base station may be known by other names.
  • Each base station 120 provides communication coverage for a particular geographic area known as a cell, such as a cell 130a, 130b or 130c, collectively referred to as cells 130.
  • the radius of a cell size may range from several kilometers to a few meters.
  • a base station may communicate with one or more other base stations or network entities directly or indirectly via a wireless or wireline backhaul.
  • a network controller 110 may be coupled to a set of base stations such as the base stations 120 to coordinate, configure, and control these base stations 120.
  • the network controller 110 may communicate with the base stations 120 via a backhaul.
  • the network 100 further includes a number of UEs, such as UEs 150a, 150b, 150c, and 150d, collectively referred to as the UEs 150.
  • the UEs 150 may be anywhere in the network 100, and each UE 150 may be stationary or mobile.
  • the UEs 150 may also be known by other names, such as a mobile station, a subscriber unit, and/or the like. Some of the UEs 150 may be implemented as part of a vehicle.
  • Examples of the UEs 150 may include a cellular phone (e.g., a smartphone) , a wireless communication device, a handheld device, a laptop computer, a cordless phone, a tablet, a gaming device, a wearable device, an entertainment device, a sensor, an infotainment device, Internet-of-Things (IoT) devices, or any device that can communicate via a wireless medium.
  • a cellular phone e.g., a smartphone
  • a wireless communication device e.g., a smartphone
  • a wireless communication device e.g., a handheld device, a laptop computer, a cordless phone, a tablet, a gaming device, a wearable device, an entertainment device, a sensor, an infotainment device, Internet-of-Things (IoT) devices, or any device that can communicate via a wireless medium.
  • IoT Internet-of-Things
  • the UEs 150 may communicate with their respective base stations 120 in their respective cells 130.
  • a UE may have more than one serving cell; e.g., UE 150d may have both cell 130b and cell 130a as its serving cells.
  • the transmission from a UE to a base station is called uplink transmission, and from a base station to a UE is called downlink transmission.
  • each of the UEs 150 provides layer 3 functionalities through a radio resource control (RRC) layer, which is associated with the transfer of system information, connection control, and measurement configurations.
  • RRC radio resource control
  • Each of the UEs 150 further provides layer 2 functionalities through a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the PDCP layer is associated with header compression/decompression, security, and handover support.
  • the RLC layer is associated with the transfer of packet data units (PDUs) , error correction through automatic repeat request (ARQ) , concatenation, segmentation, and reassembly of RLC service data units (SDUs) .
  • PDUs packet data units
  • ARQ automatic repeat request
  • SDUs concatenation, segmentation, and reassembly of RLC service data units
  • the MAC layer is associated with the mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , de-multiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through hybrid ARQ (HARQ) , priority handling, and logical channel prioritization.
  • TBs transport blocks
  • HARQ hybrid ARQ
  • MAC transport blocks
  • HARQ hybrid ARQ
  • MAC MAC layer
  • Each of the UEs 150 further provides layer 1 functionalities through a physical (PHY) layer, which is associated with error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and multiple-input and multiple-output (MIMO) antenna processing, etc.
  • PHY physical
  • FEC forward error correction
  • MIMO multiple-input and multiple-output
  • a base station such as a gNB may configure and activate a bandwidth part (BWP) for communication with UEs in a serving cell, through a radio resource control (RRC) configuration according to an RRC layer protocol.
  • the activated BWP is referred to as the frequency resources, and the time scheduled for the communication is referred to as the time resources.
  • the frequency resources and the time resources are herein collectively referred to as the time-and-frequency resources.
  • different serving cells may be configured with different time-and-frequency resources.
  • NR Multiple time and frequency configurations are supported by NR.
  • a frame may be 10 milliseconds (ms) in length, and may be divided into ten subframes of 1 ms each.
  • Each subframe may be further divided into multiple equal-length time slots (also referred to as slots) , and the number of slots per subframe may be different in different configurations.
  • Each slot may be further divided into multiple equal-length symbol durations (also referred to as symbols) ; e.g., 7 or 14 symbols.
  • symbols also referred to as symbols
  • NR supports multiple different subcarrier bandwidths. Contiguous subcarriers (also referred to as resource elements (REs) ) are grouped into one resource block (RB) . In one configuration, one RB may contain 12 subcarriers.
  • REs resource elements
  • a base station may transmit downlink reference signals to a UE or a group of UEs in a serving cell.
  • One of the reference signals is the CSI-RS.
  • a base station can configure a set of time-and-frequency resources for a CSI-RS configuration used by the UE to receive one or more CSI-RSs.
  • the UE receives a CSI-RS from a target Rx beam direction with given time-and-frequency resources for channel quality estimation, frequency and time tracking, among other uses.
  • a CSI-RS may be periodic, aperiodic, or semi-persistent. Based on the received CSI-RS, the UE calculates and reports channel state information (CSI) to the base station.
  • CSI channel state information
  • the reported CSI indicates the quality of the radio channel or link between an antenna port of the base station and the UE.
  • the reported CSI includes channel quality information (CQI) , which may be used by the base station to determine the modulation and coding scheme (MCS) for downlink transmission.
  • CQI channel quality information
  • MCS modulation and coding scheme
  • the CQI may be reported as a layer-1 reference signal received power (L1-RSRP) .
  • L1-RSRP layer-1 reference signal received power
  • the reported CSI may also include a precoding matrix index (PMI) and a rank indicator (RI) .
  • the PMI and the RI may be used by the base station to determine a MIMO precoding scheme and the number of UE-preferred transmission layers, respectively, for downlink transmission.
  • the UE obtains the target Rx beam direction of the CSI-RS from a target TCI state in the CSI-RS configuration and the active TCI state list.
  • the target Rx beam (used for CSI reporting) is aligned with the Rx beam used for downlink data reception.
  • the target TCI state (used for CQI reporting) is in the active TCI list which is also used for downlink data reception.
  • FIG. 2 is a diagram 200 illustrating an example of a CSI-RS configuration 201 for CSI reporting according to one embodiment.
  • the CSI-RS configuration 201 contains information for receiving a CSI-RS for CSI reporting.
  • the CSI-RS to be received is identified as CSI-RS #1 (i.e., the target CSI-RS) .
  • the CSI-RS configuration includes a TCI state which can be used by the UE 150 to obtain spatial information for receiving CSI-RS #1. From the spatial information, the UE 150 may infer the angle-of-arrival (e.g., Rx beam direction) for receiving CSI-RS #1.
  • the angle-of-arrival e.g., Rx beam direction
  • the TCI state in the CSI-RS configuration 201 includes a TCI index, which points to an entry in a reference list, called an active TCI state list 202.
  • Each TCI state in the active TCI state list 202 is associated with, or corresponding to, a reference signal and a QCL type.
  • the QCL types may include: QCL-type A: (Doppler shift, Doppler spread, average delay, delay spread) ; QCL-type B: (Doppler shift, Doppler spread) ; QCL-type C: (Doppler shift, average delay) ; and QCL-type D: (spatial Rx parameter) .
  • TCI index #1 is associated with a synchronous signal block SSB #1 with QCL-type D.
  • the UE 150 may store the CSI-RS configuration 201 and the active TCI state list 202 in a memory 240.
  • the UE 150 receives the CSI-RS via a radio receiver (Rx) 210, computes the channel quality from the received CSI-RS using a processor 230, and sends a CSI report including the computed channel quality to the base station via a radio transmitter (Tx) 220.
  • Rx radio receiver
  • Tx radio transmitter
  • the UE 150 may receive control information from a base station to switch its TCI state in the CSI-RS configuration 201 via an RRC configuration, media access control (MAC) control element (CE) , or downlink control information (DCI) .
  • the base station may send an update on the active TCI list 202 to the UE 150 via MAC-CE.
  • MAC media access control
  • CE control element
  • DCI downlink control information
  • the UE 150 may receive a TCI state table of (128, 64) entries via the RRC configuration. Out of the (128, 64) entries, the UE 150 may receive an indication via MAC-CE that a subset of the entries (e.g., 8 entries) are “active. ” Thus, the UE 150 may store the 8 entries in the active TCI state list 202. Each of the 8 entries is identified by a TCI index and includes a reference signal and a QCL type.
  • TCI state list is used interchangeably as the “active TCI state list, ” unless otherwise specified.
  • the following description refers to the TCI state switch as “Event A, ” and the TCI state list update as “Event B. ”
  • the horizontal axis represents time.
  • the update process to TCI information for CSI reporting includes both Event A and Event B. Event A is completed at point_A in time, and Event B is completed at point_B in time.
  • Figure 3 is a diagram 300 illustrating an overview of the cases to be described in the embodiments of Figures 4A, 4B, 5, and 6.
  • Event B begins before the beginning of Event A, and is completed after the beginning of Event A but before the completion of Event A.
  • Event A begins before the beginning of Event B, and is completed after the beginning of Event B but before the completion of Event B.
  • Event B begins and ends (i.e., is completed) before the beginning of Event A.
  • the update process described herein includes both Event A and Event B, where Event B begins before Event A is completed. Before either one of Event A and Event B begins (referred to as the “pre-update period” ) , the UE reports the CSI according to the old TCI state and the old TCI state list. After both Event A and Event B are completed (referred to as the “post-update period” ) , the UE reports the CSI according to the new (i.e., updated) TCI state and the new (i.e., updated) TCI state list. Between the pre-update period and the post-update period, the CSI reporting depends on which of the three cases occurs.
  • the TCI state switch (Event A) requires a processing time Ta and the TCI state list update (Event B) requires a processing time Tb.
  • the lengths of Ta and Tb are limited by requirements specified in the 5G NR standards (e.g., TS 38.133, section 8.10) , which is outside the scope of this disclosure.
  • Figure 4A is a diagram illustrating the first case in detail according to one embodiment.
  • Event B begins before the beginning of Event A, and is completed after the beginning of Event A but before the completion of Event A.
  • the UE reports the CSI according to the old TCI state and the old TCI state list throughout Event B and Event A until point_A when Event A is completed.
  • the UE reports the CSI according to the new TCI state list and the new TCI state.
  • Figure 4B is a diagram illustrating the first case in detail according to another embodiment.
  • the order in which Event A and Event B occur is the same as in Figure 4A.
  • the UE reports the CSI according to the old TCI state and the old TCI state list throughout Event B until point_B when Event B is completed. Between point_A and point_B where Event B is completed but Event A is still in progress, the UE may report the CSI as out-of-bound; e.g., by reporting a predetermined value (e.g., RSRP_0) as the channel quality information (CQI) .
  • the predetermined value may represent the lowest RSRP value (e.g., RSRP_0) .
  • FIG. 5 is a diagram illustrating the second case in detail according to one embodiment.
  • Event A begins before the beginning of Event B, and is completed when Event B is still in progress.
  • the UE reports the CSI according to the old TCI state and the old TCI state list throughout Event A until point_A at which Event A is completed.
  • the UE has the capability to report the CSI with a new TCI state, but the active TCI state list for data reception has not finished updating.
  • the UE reports the CSI as out-of-bound; e.g., by reporting a predetermined value (e.g., RSRP0) as the CQI.
  • RSRP0 predetermined value
  • FIG. 6 is a diagram illustrating the third case in detail according to one embodiment.
  • Event B begins and is completed before the beginning of Event A (point_A0) .
  • the UE reports the CSI according to the old TCI state and the old TCI state list throughout Event B until point_B at which Event B is completed. After point_B, the UE can refer to the new TCI state list to receive data transmission.
  • the CSI-RS configuration for CSI reporting stays at the old TCI state.
  • the CQI feedback can also be out-of-bound.
  • the UE reports the CSI as out-of-bound; e.g., by reporting a predetermined value (e.g., RSRP0) as the CQI.
  • a predetermined value e.g., RSRP0
  • the UE reports the CSI according to the new TCI state and the new TCI state list.
  • the time period between point_A and point_B may start at point_Aand end at point_B as in Figure 5, or start at point_B and end at point_Aas in Figures 4A, 4B, and 6.
  • the time period between point_A and point_B is when only one of the TCI state switch and the TCI state list update is completed.
  • FIG. 7 is a flow diagram illustrating a method 700 performed by a UE (e.g., the UE 150 in Figure 1 and/or the apparatus 800 in Figure 8) in a wireless network according to one embodiment.
  • the method 700 starts at step 710 when the UE receives a CSI-RS from a base station according to a TCI state in a CSI-RS configuration.
  • the UE at step 720 reports the CSI to the base station.
  • the UE at step 730 receives, from the base station, indications to update a TCI state list and to switch the TCI state in the CSI-RS configuration for CSI reporting.
  • the TCI state list update begins before the TCI state switch is completed.
  • the TCI state refers to the TCI state list for spatial information for reception of the CSI-RS.
  • the UE at step 740 reports an out-of-bound indication to the base station for the CSI reporting in a time period when only one of the TCI state switch and the TCI state list update is completed.
  • the UE reports an updated CSI of the CSI-RS to the base station according to the updated TCI state in the CSI-RS configuration and the updated TCI state list.
  • the spatial information includes a beam direction for the reception of the CSI-RS.
  • the out-of-bound indication includes a predetermined value as the CQI.
  • the out-of-bound indication includes a lowest reference signal received power (e.g., RSRP_0) as the CQI.
  • Figure 8 is a block diagram illustrating elements of an apparatus 800 performing wireless communication with a base station 850 according to one embodiment.
  • the apparatus 800 may be a UE and the base station 850 may be a gNb or the like, both of which may operate in a wireless network, such as the wireless network 100 in Figure 1.
  • the apparatus 800 may be any of the UEs 150 in Figure 1.
  • the apparatus 800 may include an antenna 810, and a transceiver circuit (also referred to as a transceiver 820) including a transmitter and a receiver configured to provide radio communications with another station in a radio access network, including communication in an unlicensed spectrum.
  • the transmitter and the receiver may include filters in the digital front end for each cluster, and each filter can be enabled to pass signals and disabled to block signals.
  • the apparatus 800 may also include processing circuitry 830 which may include one or more control processors, signal processors, central processing units, cores, and/or processor cores.
  • the apparatus 800 may also include a memory circuit (also referred to as memory 840) coupled to the processing circuitry 830.
  • the apparatus 800 may also include an interface (such as a user interface) .
  • the apparatus 800 may be incorporated into a wireless system, a station, a terminal, a device, an appliance, a machine, and IoT operable to perform wireless communication in a multi-access network, such as a 5G NR network. It is understood the embodiment of Figure 8 is simplified for illustration purposes. Additional hardware components may be included.
  • the apparatus 800 may store and transmit (internally and/or with other electronic devices over a network) code (composed of software instructions) and data using computer-readable media, such as non-transitory tangible computer-readable media (e.g., computer-readable storage media such as magnetic disks; optical disks; read-only memory; flash memory devices) and transitory computer-readable transmission media (e.g., electrical, optical, acoustical or other forms of propagated signals) .
  • the memory 840 may include a non-transitory computer-readable storage medium that stores computer-readable program code. The code, when executed by the processors, causes the processors to perform operations according to embodiments disclosed herein, such as the method disclosed in Figure 7.
  • apparatus 800 is used in this disclosure as an example, it is understood that the methodology described herein is applicable to any computing and/or communication device capable of performing wireless communications.
  • circuits either dedicated circuits, or general-purpose circuits, which operate under the control of one or more processors and coded instructions
  • the functional blocks will typically comprise transistors that are configured in such a way as to control the operation of the circuity in accordance with the functions and operations described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user equipment terminal (UE) operates in a wireless network. The UE receives a channel state information reference signal (CSI-RS) from a base station according to a transmission configuration indication (TCI) state in a CSI-RS configuration. The UE reports channel state information (CSI) to the base station. The UE receives, from the base station, indications to update a TCI state list and to switch the TCI state in the CSI-RS configuration for CSI reporting. The TCI state list update begins before the TCI state switch is completed. The TCI state refers to the TCI state list for spatial information for reception of the CSI-RS. The UE reports an out-of-bound indication to the base station for the CSI reporting in a time period when only one of the TCI state switch and the TCI state list update is completed.

Description

TRANSMISSION CONFIGURATION INDICATION (TCI) LIST UPDATE AND TCI SWITCH FOR CHANNEL STATE INFORMATION (CSI) REPORTING
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of PCT Application No. PCT/CN2019/109797 filed on October 2, 2019, the entirety of which is incorporated by reference herein.
TECHNICAL FIELD
Embodiments of the invention relate to wireless communications; more specifically, to the reporting of channel state information from a user equipment (UE) to a base station.
BACKGROUND
The Fifth Generation New Radio (5G NR) is a telecommunication standard for mobile broadband communications. 5G NR is promulgated by the 3rd Generation Partnership Project (3GPP) to significantly improve performance metrics such as latency, reliability, throughput, etc. In a 5G NR system, a UE receives a reference signal, such as a channel state information reference signal (CSI-RS) , from a base station for estimating the channel quality. The UE measures and calculates the channel condition, and reports the calculated channel condition to the base station. The base station transmits downlink signals based on the report sent from the UE. For example, the base station can adapt the downlink data rate and modulation scheme based on the UE’s report of channel state information (CSI) . The base station may send the UE a configuration update for the CSI reporting, and the UE receives the CSI-RS and reports the CSI according to the updated configuration.
The existing 5G NR technology can be further improved to benefit operators and users of the unlicensed spectrum. These improvements may also apply to other multi-access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In one embodiment, a method is performed by a UE in a wireless network. The UE receives a CSI-RS from a base station according to a transmission configuration indication (TCI) state in a CSI-RS configuration. The UE reports CSI to the base station. The UE receives, from  the base station, indications to update a TCI state list and to switch the TCI state in the CSI-RS configuration for CSI reporting. The TCI state list update begins before the TCI state switch is completed. Furthermore, the TCI state refers to the TCI state list for spatial information for reception of the CSI-RS. The UE reports an out-of-bound indication to the base station for the CSI reporting in a time period when only one of the TCI state switch and the TCI state list update is completed.
In another embodiment, a method is performed by a UE in a wireless network. The UE receives a CSI-RS from a base station according to a TCI state in a CSI-RS configuration. The UE reports CSI obtained from the CSI-RS to the base station. The UE receives, from the base station, indications to update a TCI state list and to switch the TCI state in the CSI-RS configuration for CSI reporting. The TCI state list update begins before the TCI state switch is completed. Furthermore, the TCI state refers to the TCI state list for spatial information for reception of the CSI-RS. The UE performs the CSI reporting to the base station according to the TCI state before the TCI state switch and the TCI state list before the TCI state list update until both the TCI state switch and the TCI state list update are completed.
In yet another embodiment, an apparatus such as a UE is provided for wireless communication. The apparatus includes a memory and processing circuitry coupled to the memory. The processing circuitry is configured to receive a CSI-RS from a base station according to a TCI state in a CSI-RS configuration. The processing circuitry is further configured to report CSI obtained from the CSI-RS to the base station, and to receive, from the base station, indications to update a TCI state list and to switch the TCI state in the CSI-RS configuration for CSI reporting. The TCI state list update begins before the TCI state switch is completed, and the TCI state refers to the TCI state list for spatial information for reception of the CSI-RS. The processing circuitry is further configured to report an out-of-bound indication to the base station for the CSI reporting in a time period when only one of the TCI state switch and the TCI state list update is completed.
The present disclosure provides a method for a UE to perform CSI reporting based on a received CSI-RS. The reporting depends on the timeline of a TCI state switch, which switches an old TCI state to a new TCI state for the CSI-RS, and the timeline of an active TCI state list update.
Other aspects and features will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments in conjunction with the accompanying figures.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that different references to "an" or "one" embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to effect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
Figure 1 is a diagram illustrating a network in which the embodiments of the present invention may be practiced.
Figure 2 is a diagram illustrating an example of a CSI-RS configuration for CSI reporting according to one embodiment.
Figure 3 is a diagram illustrating an overview of the cases to be described according to some embodiments.
Figure 4A is a diagram illustrating a first case according to one embodiment.
Figure 4B is a diagram illustrating a first case according to another embodiment.
Figure 5 is a diagram illustrating a second case according to one embodiment.
Figure 6 is a diagram illustrating a third case according to one embodiment.
Figure 7 is a flow diagram illustrating a method for a UE to report CSI according to one embodiment.
Figure 8 is a block diagram illustrating an apparatus that performs wireless communication according to one embodiment.
DETAILED DESCRIPTION OF PREFERRED IMPLEMENTATIONS
In the following description, numerous specific details are set forth. However, it is understood that embodiments of the invention may be practiced without these specific details. In other instances, well-known circuits, structures, and techniques have not been shown in detail in order not to obscure the understanding of this description. It will be appreciated, however, by one skilled in the art, that the invention may be practiced without such specific details. Those of ordinary skill in the art, with the included descriptions, will be able to implement appropriate functionality without undue experimentation.
Embodiments of the invention provide a procedure for a UE to report CSI to a base station when updates are performed to the UE’s CSI-RS configuration and an active TCI state list referred to by the CSI-RS configuration. More specifically, the updates are performed to (1) an  active TCI state list and (2) a TCI state in the CSI-RS configuration for a CSI-RS. The TCI state provides a TCI index pointing to an entry in the active TCI state list. The entry includes spatial information for the reception of the CSI-RS.
The update performed to the TCI state in the CSI-RS configuration is also referred to as the TCI state switch, as the update switches the TCI index from a first TCI index (e.g., index #1) to a second TCI index (e.g., index #2) . The first TCI index and the second TCI index point to different entries in the TCI state list that correspond to different reception directions. The second TCI index refers to an entry in the active TCI state list, where the entry includes new spatial information for the UE to receive the CSI-RS. An example of the spatial information is the receiving (Rx) beam direction, which may be indicated by a quasi-collocation (QCL) type and an identifier of another reference signal which has been received by the UE with a given configuration of an Rx spatial filter (e.g. an angle of arrival) .
The update performed on the active TCI state list is also referred to as the “TCI state list update” or “list update. ” The list update modifies one or more entries in the active TCI state list. For example, the total number of TCI indices may be N1, and only a subset (N2) of which are active TCI states for CSI reporting (where N1 > N2) . Thus, there are N2 entries in the active TCI state list; not all of the TCI indices are stored in the active TCI state list. A list update may replace a first entry corresponding to TCI index #m with a second entry corresponding to TCI index #n, where TCI index #m and TCI index #n correspond to different Rx beam directions. Another list update may modify the content of an entry corresponding to TCI index #m without replacing TCI index #m by another TCI index.
Although a UE performs the TCI state list update and the TCI state switch within required time limits, the UE may be required to report the channel quality of a CSI-RS while one or both the TCI state list update and the TCI state switch is/are in progress. To prevent the UE from reporting invalid information and the base station from transmission based on the invalid information, the UE’s reporting follows the procedure to be disclosed below with reference to Figures 3, 4A, 4B, 5 and 6.
The disclosed method, as well as the apparatus and the computer product implementing the method, can be applied to wireless communication between a base station (e.g., a gNB in a 5G NR network) and UEs. It is noted that while the embodiments may be described herein using terminology commonly associated with 5G or NR wireless technologies, the present disclosure can be applied to other multi-access technologies and the telecommunication standards that employ these technologies.
Figure 1 is a diagram illustrating a network 100 in which embodiments of the present invention may be practiced. The network 100 is a wireless network which may be a 5G NR network. To simplify the discussion, the methods and apparatuses are described within the context of a 5G NR network. However, one of ordinary skill in the art would understand that the methods and apparatuses described herein may be applicable to a variety of other multi-access technologies and the telecommunication standards that employ these technologies.
The number and arrangement of components shown in Figure 1 are provided as an example. In practice, the network 100 may include additional devices, fewer devices, different devices, or differently arranged devices than those shown in Figure 1.
Referring to Figure 1, the network 100 may include a number of base stations (shown as BSs) , such as  base stations  120a, 120b, and 120c, collectively referred to as the base stations 120. In some network environments such as a 5G NR network, a base station may be known as a gNodeB, a gNB, and/or the like. In an alternative network environment, a base station may be known by other names. Each base station 120 provides communication coverage for a particular geographic area known as a cell, such as a  cell  130a, 130b or 130c, collectively referred to as cells 130. The radius of a cell size may range from several kilometers to a few meters. A base station may communicate with one or more other base stations or network entities directly or indirectly via a wireless or wireline backhaul.
network controller 110 may be coupled to a set of base stations such as the base stations 120 to coordinate, configure, and control these base stations 120. The network controller 110 may communicate with the base stations 120 via a backhaul.
The network 100 further includes a number of UEs, such as UEs 150a, 150b, 150c, and 150d, collectively referred to as the UEs 150. The UEs 150 may be anywhere in the network 100, and each UE 150 may be stationary or mobile. The UEs 150 may also be known by other names, such as a mobile station, a subscriber unit, and/or the like. Some of the UEs 150 may be implemented as part of a vehicle. Examples of the UEs 150 may include a cellular phone (e.g., a smartphone) , a wireless communication device, a handheld device, a laptop computer, a cordless phone, a tablet, a gaming device, a wearable device, an entertainment device, a sensor, an infotainment device, Internet-of-Things (IoT) devices, or any device that can communicate via a wireless medium.
In one embodiment, the UEs 150 may communicate with their respective base stations 120 in their respective cells 130. A UE may have more than one serving cell; e.g., UE 150d may have both cell 130b and cell 130a as its serving cells. The transmission from a UE to a base station is called uplink transmission, and from a base station to a UE is called downlink transmission.
In one embodiment, each of the UEs 150 provides layer 3 functionalities through a radio resource control (RRC) layer, which is associated with the transfer of system information, connection control, and measurement configurations. Each of the UEs 150 further provides layer 2 functionalities through a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a medium access control (MAC) layer. The PDCP layer is associated with header compression/decompression, security, and handover support. The RLC layer is associated with the transfer of packet data units (PDUs) , error correction through automatic repeat request (ARQ) , concatenation, segmentation, and reassembly of RLC service data units (SDUs) . The MAC layer is associated with the mapping between logical channels and transport channels, multiplexing of MAC SDUs onto transport blocks (TBs) , de-multiplexing of MAC SDUs from TBs, scheduling information reporting, error correction through hybrid ARQ (HARQ) , priority handling, and logical channel prioritization. Each of the UEs 150 further provides layer 1 functionalities through a physical (PHY) layer, which is associated with error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and multiple-input and multiple-output (MIMO) antenna processing, etc.
In a 5G NR network, a base station such as a gNB may configure and activate a bandwidth part (BWP) for communication with UEs in a serving cell, through a radio resource control (RRC) configuration according to an RRC layer protocol. The activated BWP is referred to as the frequency resources, and the time scheduled for the communication is referred to as the time resources. The frequency resources and the time resources are herein collectively referred to as the time-and-frequency resources. In a wireless network, different serving cells may be configured with different time-and-frequency resources.
Multiple time and frequency configurations are supported by NR. With respect to time resources, a frame may be 10 milliseconds (ms) in length, and may be divided into ten subframes of 1 ms each. Each subframe may be further divided into multiple equal-length time slots (also referred to as slots) , and the number of slots per subframe may be different in different configurations. Each slot may be further divided into multiple equal-length symbol durations (also referred to as symbols) ; e.g., 7 or 14 symbols. With respect to frequency resources, NR supports multiple different subcarrier bandwidths. Contiguous subcarriers (also referred to as resource elements (REs) ) are grouped into one resource block (RB) . In one configuration, one RB may contain 12 subcarriers.
A base station may transmit downlink reference signals to a UE or a group of UEs in a serving cell. One of the reference signals is the CSI-RS. A base station can configure a set of  time-and-frequency resources for a CSI-RS configuration used by the UE to receive one or more CSI-RSs. According to the CSI-RS configuration, the UE receives a CSI-RS from a target Rx beam direction with given time-and-frequency resources for channel quality estimation, frequency and time tracking, among other uses. A CSI-RS may be periodic, aperiodic, or semi-persistent. Based on the received CSI-RS, the UE calculates and reports channel state information (CSI) to the base station. The reported CSI indicates the quality of the radio channel or link between an antenna port of the base station and the UE. The reported CSI includes channel quality information (CQI) , which may be used by the base station to determine the modulation and coding scheme (MCS) for downlink transmission. As an example, the CQI may be reported as a layer-1 reference signal received power (L1-RSRP) . In addition to the CQI, the reported CSI may also include a precoding matrix index (PMI) and a rank indicator (RI) . The PMI and the RI may be used by the base station to determine a MIMO precoding scheme and the number of UE-preferred transmission layers, respectively, for downlink transmission.
In one embodiment, the UE obtains the target Rx beam direction of the CSI-RS from a target TCI state in the CSI-RS configuration and the active TCI state list. The target Rx beam (used for CSI reporting) is aligned with the Rx beam used for downlink data reception. The target TCI state (used for CQI reporting) is in the active TCI list which is also used for downlink data reception.
Figure 2 is a diagram 200 illustrating an example of a CSI-RS configuration 201 for CSI reporting according to one embodiment. The CSI-RS configuration 201 contains information for receiving a CSI-RS for CSI reporting. In this example, the CSI-RS to be received is identified as CSI-RS #1 (i.e., the target CSI-RS) . Among other information (such as time-and-frequency resources information) , the CSI-RS configuration includes a TCI state which can be used by the UE 150 to obtain spatial information for receiving CSI-RS #1. From the spatial information, the UE 150 may infer the angle-of-arrival (e.g., Rx beam direction) for receiving CSI-RS #1. The TCI state in the CSI-RS configuration 201 includes a TCI index, which points to an entry in a reference list, called an active TCI state list 202. Each TCI state in the active TCI state list 202 is associated with, or corresponding to, a reference signal and a QCL type. The QCL types may include: QCL-type A: (Doppler shift, Doppler spread, average delay, delay spread) ; QCL-type B: (Doppler shift, Doppler spread) ; QCL-type C: (Doppler shift, average delay) ; and QCL-type D: (spatial Rx parameter) . In this example, TCI index #1 is associated with a synchronous signal block SSB #1 with QCL-type D. The UE 150 configured with the TCI state = TCI index #1 (i.e., the target TCI state) may use the Rx beam for receiving SSB #1 to receive CSI-RS #1.
The UE 150 may store the CSI-RS configuration 201 and the active TCI state list 202 in a memory 240. The UE 150 receives the CSI-RS via a radio receiver (Rx) 210, computes the channel quality from the received CSI-RS using a processor 230, and sends a CSI report including the computed channel quality to the base station via a radio transmitter (Tx) 220.
The UE 150 may receive control information from a base station to switch its TCI state in the CSI-RS configuration 201 via an RRC configuration, media access control (MAC) control element (CE) , or downlink control information (DCI) . The base station may send an update on the active TCI list 202 to the UE 150 via MAC-CE.
In one embodiment, the UE 150 may receive a TCI state table of (128, 64) entries via the RRC configuration. Out of the (128, 64) entries, the UE 150 may receive an indication via MAC-CE that a subset of the entries (e.g., 8 entries) are “active. ” Thus, the UE 150 may store the 8 entries in the active TCI state list 202. Each of the 8 entries is identified by a TCI index and includes a reference signal and a QCL type. In the description hereinafter, the term “TCI state list” is used interchangeably as the “active TCI state list, ” unless otherwise specified.
For ease of description and illustration, the following description refers to the TCI state switch as “Event A, ” and the TCI state list update as “Event B. ” The horizontal axis represents time. Herein, the update process to TCI information for CSI reporting includes both Event A and Event B. Event A is completed at point_A in time, and Event B is completed at point_B in time.
Figure 3 is a diagram 300 illustrating an overview of the cases to be described in the embodiments of Figures 4A, 4B, 5, and 6. In the first case, Event B begins before the beginning of Event A, and is completed after the beginning of Event A but before the completion of Event A. In the second case, Event A begins before the beginning of Event B, and is completed after the beginning of Event B but before the completion of Event B. In the third case, Event B begins and ends (i.e., is completed) before the beginning of Event A.
The update process described herein includes both Event A and Event B, where Event B begins before Event A is completed. Before either one of Event A and Event B begins (referred to as the “pre-update period” ) , the UE reports the CSI according to the old TCI state and the old TCI state list. After both Event A and Event B are completed (referred to as the “post-update period” ) , the UE reports the CSI according to the new (i.e., updated) TCI state and the new (i.e., updated) TCI state list. Between the pre-update period and the post-update period, the CSI reporting depends on which of the three cases occurs. In the embodiments shown in Figures 4A, 4B, 5, and 6, the TCI state switch (Event A) requires a processing time Ta and the TCI state list update (Event B) requires a processing time Tb. The lengths of Ta and Tb are limited by  requirements specified in the 5G NR standards (e.g., TS 38.133, section 8.10) , which is outside the scope of this disclosure.
Figure 4A is a diagram illustrating the first case in detail according to one embodiment. In the first case, Event B begins before the beginning of Event A, and is completed after the beginning of Event A but before the completion of Event A. The UE reports the CSI according to the old TCI state and the old TCI state list throughout Event B and Event A until point_A when Event A is completed. After Event A is completed, the UE reports the CSI according to the new TCI state list and the new TCI state.
Figure 4B is a diagram illustrating the first case in detail according to another embodiment. The order in which Event A and Event B occur is the same as in Figure 4A. The UE reports the CSI according to the old TCI state and the old TCI state list throughout Event B until point_B when Event B is completed. Between point_A and point_B where Event B is completed but Event A is still in progress, the UE may report the CSI as out-of-bound; e.g., by reporting a predetermined value (e.g., RSRP_0) as the channel quality information (CQI) . In one embodiment, the predetermined value may represent the lowest RSRP value (e.g., RSRP_0) .
Figure 5 is a diagram illustrating the second case in detail according to one embodiment. In the second case, Event A begins before the beginning of Event B, and is completed when Event B is still in progress. The UE reports the CSI according to the old TCI state and the old TCI state list throughout Event A until point_A at which Event A is completed. After point_A, the UE has the capability to report the CSI with a new TCI state, but the active TCI state list for data reception has not finished updating. Between point_A and point_B where Event A is completed but Event B is still in progress, the UE reports the CSI as out-of-bound; e.g., by reporting a predetermined value (e.g., RSRP0) as the CQI. After Event B is completed, the UE reports the CSI according to the new TCI state and the new TCI state list.
Figure 6 is a diagram illustrating the third case in detail according to one embodiment. In the third case, Event B begins and is completed before the beginning of Event A (point_A0) . The UE reports the CSI according to the old TCI state and the old TCI state list throughout Event B until point_B at which Event B is completed. After point_B, the UE can refer to the new TCI state list to receive data transmission. However, the CSI-RS configuration for CSI reporting stays at the old TCI state. Thus, the CQI feedback can also be out-of-bound. Between point_A and point_B where Event B is completed but Event A is still in progress, the UE reports the CSI as out-of-bound; e.g., by reporting a predetermined value (e.g., RSRP0) as the CQI. After Event A is completed, the UE reports the CSI according to the new TCI state and the new TCI state list.
As disclosed herein, the time period between point_A and point_B may start at point_Aand end at point_B as in Figure 5, or start at point_B and end at point_Aas in Figures 4A, 4B, and 6. The time period between point_A and point_B is when only one of the TCI state switch and the TCI state list update is completed.
Figure 7 is a flow diagram illustrating a method 700 performed by a UE (e.g., the UE 150 in Figure 1 and/or the apparatus 800 in Figure 8) in a wireless network according to one embodiment. The method 700 starts at step 710 when the UE receives a CSI-RS from a base station according to a TCI state in a CSI-RS configuration. The UE at step 720 reports the CSI to the base station. The UE at step 730 receives, from the base station, indications to update a TCI state list and to switch the TCI state in the CSI-RS configuration for CSI reporting. The TCI state list update begins before the TCI state switch is completed. Furthermore, the TCI state refers to the TCI state list for spatial information for reception of the CSI-RS. The UE at step 740 reports an out-of-bound indication to the base station for the CSI reporting in a time period when only one of the TCI state switch and the TCI state list update is completed.
In one embodiment, after completion of both the TCI state list update and the TCI state switch, the UE reports an updated CSI of the CSI-RS to the base station according to the updated TCI state in the CSI-RS configuration and the updated TCI state list. In one embodiment, the spatial information includes a beam direction for the reception of the CSI-RS. In one embodiment, the out-of-bound indication includes a predetermined value as the CQI. In one embodiment, the out-of-bound indication includes a lowest reference signal received power (e.g., RSRP_0) as the CQI.
Figure 8 is a block diagram illustrating elements of an apparatus 800 performing wireless communication with a base station 850 according to one embodiment. In one embodiment, the apparatus 800 may be a UE and the base station 850 may be a gNb or the like, both of which may operate in a wireless network, such as the wireless network 100 in Figure 1. In one embodiment, the apparatus 800 may be any of the UEs 150 in Figure 1.
As shown, the apparatus 800 may include an antenna 810, and a transceiver circuit (also referred to as a transceiver 820) including a transmitter and a receiver configured to provide radio communications with another station in a radio access network, including communication in an unlicensed spectrum. The transmitter and the receiver may include filters in the digital front end for each cluster, and each filter can be enabled to pass signals and disabled to block signals. The apparatus 800 may also include processing circuitry 830 which may include one or more control processors, signal processors, central processing units, cores, and/or processor cores. The apparatus 800 may also include a memory circuit (also referred to as memory 840) coupled to the  processing circuitry 830. The apparatus 800 may also include an interface (such as a user interface) . The apparatus 800 may be incorporated into a wireless system, a station, a terminal, a device, an appliance, a machine, and IoT operable to perform wireless communication in a multi-access network, such as a 5G NR network. It is understood the embodiment of Figure 8 is simplified for illustration purposes. Additional hardware components may be included.
In one embodiment, the apparatus 800 may store and transmit (internally and/or with other electronic devices over a network) code (composed of software instructions) and data using computer-readable media, such as non-transitory tangible computer-readable media (e.g., computer-readable storage media such as magnetic disks; optical disks; read-only memory; flash memory devices) and transitory computer-readable transmission media (e.g., electrical, optical, acoustical or other forms of propagated signals) . For example, the memory 840 may include a non-transitory computer-readable storage medium that stores computer-readable program code. The code, when executed by the processors, causes the processors to perform operations according to embodiments disclosed herein, such as the method disclosed in Figure 7.
Although the apparatus 800 is used in this disclosure as an example, it is understood that the methodology described herein is applicable to any computing and/or communication device capable of performing wireless communications.
The operations of the flow diagram of Figure 7 has been described with reference to the exemplary embodiments of Figures 1, 2, and 8. However, it should be understood that the operations of the flow diagram of Figure 7 can be performed by embodiments of the invention other than the embodiments of Figures 1, 2, and 8, and the embodiments of Figures 1, 2, and 8 can perform operations different than those discussed with reference to the flow diagram. While the flow diagram of Figure 7 shows a particular order of operations performed by certain embodiments of the invention, it should be understood that such order is exemplary (e.g., alternative embodiments may perform the operations in a different order, combine certain operations, overlap certain operations, etc. ) .
Various functional components or blocks have been described herein. As will be appreciated by persons skilled in the art, the functional blocks will preferably be implemented through circuits (either dedicated circuits, or general-purpose circuits, which operate under the control of one or more processors and coded instructions) , which will typically comprise transistors that are configured in such a way as to control the operation of the circuity in accordance with the functions and operations described herein.
While the invention has been described in terms of several embodiments, those skilled in the art will recognize that the invention is not limited to the embodiments described, and can  be practiced with modification and alteration within the spirit and scope of the appended claims. The description is thus to be regarded as illustrative instead of limiting.

Claims (20)

  1. A method performed by a user equipment terminal (UE) in a wireless network, comprising:
    receiving a channel state information reference signal (CSI-RS) from a base station according to a transmission configuration indication (TCI) state in a CSI-RS configuration;
    reporting channel state information (CSI) to the base station;
    receiving, from the base station, indications to update a TCI state list and to switch the TCI state in the CSI-RS configuration for CSI reporting, wherein TCI state list update begins before TCI state switch is completed, and wherein the TCI state refers to the TCI state list for spatial information for reception of the CSI-RS; and
    reporting an out-of-bound indication to the base station for the CSI reporting in a time period when only one of the TCI state switch and the TCI state list update is completed.
  2. The method of claim 1, further comprising:
    after completion of both the TCI state list update and the TCI state switch, reporting an updated CSI of the CSI-RS to the base station according to an updated TCI state in the CSI-RS configuration and an updated TCI state list.
  3. The method of claim 1, wherein the TCI state list update begins before the TCI state switch begins, and is completed before the TCI state switch is completed.
  4. The method of claim 1, wherein the TCI state list update begins before the TCI state switch begins, and is completed before the TCI state switch begins.
  5. The method of claim 1, wherein the TCI state switch begins before the TCI state list update begins, and is completed before the TCI state list update is completed.
  6. The method of claim 1, wherein the spatial information includes a beam direction for the reception of the CSI-RS.
  7. The method of claim 1, wherein the out-of-bound indication includes a lowest reference signal received power as channel quality information (CQI) .
  8. The method of claim 1, wherein in response to the TCI state switch, the method further comprises:
    switching the TCI state in the CSI-RS configuration from a first TCI index to a second TCI index, wherein the first TCI index and the second TCI index point to different entries in the TCI state list that correspond to different reception directions.
  9. The method of claim 1, wherein the spatial information is indicated by a quasi-collocation (QCL) type and an identifier of another reference signal.
  10. A method performed by a user equipment terminal (UE) in a wireless network, comprising:
    receiving a channel state information reference signal (CSI-RS) from a base station according to a transmission configuration indication (TCI) state in a CSI-RS configuration;
    reporting channel state information (CSI) obtained from the CSI-RS to the base station;
    receiving, from the base station, indications to update a TCI state list and to switch the TCI state in the CSI-RS configuration for CSI reporting, wherein TCI state list update begins before TCI state switch is completed, and wherein the TCI state refers to the TCI state list for spatial information for reception of the CSI-RS; and
    performing the CSI reporting to the base station according to the TCI state before the TCI state switch and the TCI state list before the TCI state list update until both the TCI state switch and the TCI state list update are completed.
  11. An apparatus for wireless communication, the apparatus being a user equipment (UE) , comprising:
    a memory; and
    processing circuitry coupled to the memory and configured to:
    receive a channel state information reference signal (CSI-RS) from a base station according to a transmission configuration indication (TCI) state in a CSI-RS configuration;
    report channel state information (CSI) to the base station;
    receive, from the base station, indications to update a TCI state list and to switch the TCI state in the CSI-RS configuration for CSI reporting, wherein TCI state list update begins before TCI state switch is completed, and wherein the TCI state refers to the TCI state list for spatial information for reception of the CSI-RS; and
    report an out-of-bound indication to the base station for the CSI reporting in a time period when only one of the TCI state switch and the TCI state list update is completed.
  12. The apparatus of claim 11, wherein the processing circuitry is further operative to:
    after completion of both the TCI state list update and the TCI state switch, reporting an updated CSI of the CSI-RS to the base station according to an updated TCI state in the CSI-RS configuration and an updated TCI state list.
  13. The apparatus of claim 11, wherein the TCI state list update begins before the TCI state switch begins, and is completed before the TCI state switch is completed.
  14. The apparatus of claim 11, wherein the TCI state list update begins before the TCI state switch begins, and is completed before the TCI state switch begins.
  15. The apparatus of claim 11, wherein the TCI state switch begins before the TCI state list update begins, and is completed before the TCI state list update is completed.
  16. The apparatus of claim 11, wherein the spatial information includes a beam direction for the reception of the CSI-RS.
  17. The apparatus of claim 11, wherein the out-of-bound indication includes a lowest reference signal received power as channel quality information (CQI) .
  18. The apparatus of claim 11, wherein in response to the TCI state switch, the processing circuitry is further operative to:
    switching the TCI state in the CSI-RS configuration from a first TCI index to a second TCI index, wherein the first TCI index and the second TCI index point to different entries in the TCI state list that correspond to different reception directions.
  19. The apparatus of claim 11, wherein the spatial information is indicated by a quasi-collocation (QCL) type and an identifier of another reference signal.
  20. The apparatus of claim 11, wherein the wireless network is a 5G New Radio (NR) network.
PCT/CN2020/119371 2019-10-02 2020-09-30 Transmission configuration indication (tci) list update and tci switch for channel state information (csi) reporting WO2021063393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2019/109797 2019-10-02
PCT/CN2019/109797 WO2021062861A1 (en) 2019-10-02 2019-10-02 Procedure of ue channel state information (csi) report and channel state information reference signal (csi-rs) configuration update for csi

Publications (1)

Publication Number Publication Date
WO2021063393A1 true WO2021063393A1 (en) 2021-04-08

Family

ID=75336696

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/109797 WO2021062861A1 (en) 2019-10-02 2019-10-02 Procedure of ue channel state information (csi) report and channel state information reference signal (csi-rs) configuration update for csi
PCT/CN2020/119371 WO2021063393A1 (en) 2019-10-02 2020-09-30 Transmission configuration indication (tci) list update and tci switch for channel state information (csi) reporting

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109797 WO2021062861A1 (en) 2019-10-02 2019-10-02 Procedure of ue channel state information (csi) report and channel state information reference signal (csi-rs) configuration update for csi

Country Status (1)

Country Link
WO (2) WO2021062861A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587793A (en) * 2017-09-29 2019-04-05 维沃移动通信有限公司 TCI state updating method, base station and terminal
US20190115955A1 (en) * 2017-10-13 2019-04-18 Qualcomm Incorporated Dynamic transmission configuration indication state updating
CN109962765A (en) * 2017-12-22 2019-07-02 华为技术有限公司 A kind of method and device by PDSCH transmission wireless signal
US20190222289A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Transmission configuration indication based beam switching
CN110167091A (en) * 2018-02-11 2019-08-23 维沃移动通信有限公司 Method of reseptance, sending method, terminal and the base station of down channel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097478A1 (en) * 2017-11-16 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Configuring spatial qcl reference in a tci state
WO2019120520A1 (en) * 2017-12-20 2019-06-27 Telefonaktiebolaget Lm Ericsson (Publ) Technique for reporting channel state information
CN109302272B (en) * 2018-02-13 2022-06-03 中兴通讯股份有限公司 CSI report sending and receiving method and device, and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109587793A (en) * 2017-09-29 2019-04-05 维沃移动通信有限公司 TCI state updating method, base station and terminal
US20190115955A1 (en) * 2017-10-13 2019-04-18 Qualcomm Incorporated Dynamic transmission configuration indication state updating
CN109962765A (en) * 2017-12-22 2019-07-02 华为技术有限公司 A kind of method and device by PDSCH transmission wireless signal
US20190222289A1 (en) * 2018-01-12 2019-07-18 Qualcomm Incorporated Transmission configuration indication based beam switching
CN110167091A (en) * 2018-02-11 2019-08-23 维沃移动通信有限公司 Method of reseptance, sending method, terminal and the base station of down channel

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Scheduling restriction on TCI state switching delay (section 8.10)", 3GPP DRAFT; R4-1909331, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Ljubljana, Slovenia; 20190826 - 20190830, 16 August 2019 (2019-08-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051772224 *
MEDIATEK INC.: "Discussion on CSI-RS configuration update for CQI reporting and active spatial relation switch", 3GPP DRAFT; R4-1913316, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Reno, Nevada, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051817933 *
MEDIATEK INC.: "Discussion on remaining issues on TCI state switch", 3GPP DRAFT; R4-1910906 DISCUSSION ON REMAINING ISSUES IN TCI STATE SWITCH, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Chongqing, China; 20191014 - 20191018, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051793253 *

Also Published As

Publication number Publication date
WO2021062861A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
KR101610731B1 (en) Method and apparatus for channel state information feedback reporting
WO2020192789A1 (en) Ue feedback of timing adjustment after a measurement gap
US11490283B2 (en) L1-SINR measurement period based on channel measurement resource (CMR) and interference measurement resource (IMR)
US11770229B2 (en) Method and device in communication node used for wireless communication with multiple antenna panels
US11064380B2 (en) Method and device in UE and base station for wireless communication
US10904713B2 (en) Enhancing group communication services
US11956033B2 (en) Method and device in UE and base station used for multi-antenna transmission
US20220417992A1 (en) Method and device in nodes used for wireless communication
WO2018091072A1 (en) Configurable channel quality indicator (cqi) reporting for wireless networks
CN110719137A (en) Channel quality notification method, receiving method and device
WO2020192605A1 (en) Control information for wideband operation
US11985605B2 (en) Method and device in nodes used for wireless communication
WO2021063393A1 (en) Transmission configuration indication (tci) list update and tci switch for channel state information (csi) reporting
EP3952161A1 (en) Transport block size driven cqi feedback scheme
CN114514723B (en) CSI omission procedure for release 16 type II Channel State Information (CSI)
WO2021158311A1 (en) Mac ce update to a detection resource in a radio link monitoring configuration
CN113475151A (en) Automatic gain control for serving cell activation based on two different reference signals
CN114567419A (en) Method and apparatus in a node used for wireless communication
WO2021150349A1 (en) Mac ce update to a sounding reference signal resource set configuration
US11510216B2 (en) Method and device used in node for beam failure recovery in wireless communication
US20230089446A1 (en) Beam state updating in wireless communication
US11974235B2 (en) Methods of type 1 UL gap activation and deactivation in FR2
US20240089990A1 (en) Method and device in nodes used for wireless communication
WO2023160463A1 (en) Method and apparatus for use in wireless communication nodes
WO2023083236A1 (en) Method and apparatus for wireless communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871262

Country of ref document: EP

Kind code of ref document: A1