WO2021063320A1 - 实现光栅焦距检测的装置及光栅焦距检测仪 - Google Patents

实现光栅焦距检测的装置及光栅焦距检测仪 Download PDF

Info

Publication number
WO2021063320A1
WO2021063320A1 PCT/CN2020/118470 CN2020118470W WO2021063320A1 WO 2021063320 A1 WO2021063320 A1 WO 2021063320A1 CN 2020118470 W CN2020118470 W CN 2020118470W WO 2021063320 A1 WO2021063320 A1 WO 2021063320A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
focal length
reference surface
illuminated area
size
Prior art date
Application number
PCT/CN2020/118470
Other languages
English (en)
French (fr)
Inventor
刁鸿浩
黄玲溪
Original Assignee
北京芯海视界三维科技有限公司
视觉技术创投私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京芯海视界三维科技有限公司, 视觉技术创投私人有限公司 filed Critical 北京芯海视界三维科技有限公司
Publication of WO2021063320A1 publication Critical patent/WO2021063320A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/28Measuring arrangements characterised by the use of optical techniques for measuring areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices

Definitions

  • This application relates to the field of grating technology, for example, to a device for realizing the detection of the focal length of a grating and a grating focal length detector.
  • gratings are widely used in the field of 3D display technology.
  • the focal length of the grating needs to have high accuracy; however, during the processing of the grating, errors may be introduced due to the processing environment, processing technology, etc., causing the focal length of the grating to not meet the accuracy requirements, and then Affect the 3D display effect.
  • the embodiments of the present disclosure provide a device and a grating focal length detector for detecting the focal length of a grating, so as to solve the technical problem that there is no effective grating focal length detection technology at present.
  • the device for detecting the focal length of the grating includes:
  • the parallel light source is configured to inject light into the grating to focus through the grating
  • the grating carrier is configured to carry the grating
  • the reference surface is configured to form an illuminated area based on the focusing of light through the grating
  • the measuring device is configured to identify the size of the illuminated area of the illuminated area formed on the reference surface.
  • the reference surface may be movable.
  • the reference plane may be parallel to the grating.
  • the reference plane may be set at the theoretical focal plane when the grating is on the grating carrier.
  • the device for detecting the focal length of the grating can be set in a non-fully transparent medium environment, and the medium environment can form a reference surface in an intangible form based on the illumination of light; or,
  • the reference surface is the side of the reference piece presented in a physical form.
  • the material of the reference member may be glass.
  • part or all of the reference member may be fully transparent or semi-transparent.
  • the material of the grating carrier may be glass.
  • part or all of the grating carrier may be fully transparent or semi-transparent.
  • the grating carrier may be configured as:
  • the reference plane is located at the theoretical focal plane of the grating;
  • the reference plane is parallel to the grating.
  • the size of the irradiated area of the irradiated area may be the area or width of the light belt; or,
  • the size of the illuminated area of the illuminated area can be the spot area or the diameter of the spot.
  • a reference surface scale may be preset on the reference surface
  • An observation scale can be preset on the measuring device.
  • the measuring device may also be configured as:
  • the measuring device may be configured as:
  • the illumination area is measured based on the observation scale set in the measuring device, and the obtained measurement result is used as the illumination area size.
  • the measuring device may be a camera or a microscope.
  • the grating focal length detector includes the above-mentioned device for realizing the grating focal length detection.
  • the device and the grating focal length detector provided by the embodiments of the present disclosure can achieve the following technical effects: effectively detecting the focal length of the grating.
  • FIG. 1 is a schematic flowchart of a method for realizing the focal length detection of a grating provided by an embodiment of the present disclosure
  • FIGS. 2A and 2B are schematic diagrams of the process of obtaining the size of the illuminated area provided by the embodiments of the present disclosure
  • 3A and 3B are schematic diagrams of the principle of obtaining the focal length of the grating provided by the embodiments of the present disclosure
  • FIG. 4 is a schematic flowchart of determining the size relationship between a focal length and a reference distance provided by an embodiment of the present disclosure
  • 5A to 5D are schematic flowcharts of determining the size relationship between the focal length and the reference distance provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a device for realizing the detection of the focal length of a grating provided by an embodiment of the present disclosure
  • FIG. 7 is another schematic diagram of the structure of the device for realizing the detection of the focal length of the grating provided by the embodiment of the present disclosure
  • FIG. 8 is another schematic diagram of the structure of the device for realizing the detection of the focal length of the grating provided by the embodiment of the present disclosure
  • 9A and 9B are schematic diagrams of the principle of obtaining the focal length of the grating by the ratio calculation circuit provided by the embodiment of the present disclosure.
  • FIG. 10 is another schematic diagram of the structure of the device for realizing the detection of the focal length of the grating provided by the embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of the principle of obtaining the focal length of the grating by the arithmetic circuit provided by the embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of the working principle of a light source provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of the working principle of a grating carrier provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a reference piece provided by an embodiment of the present disclosure.
  • 15 is another schematic diagram of the structure of the device for realizing the detection of the focal length of the grating provided by the embodiment of the present disclosure
  • Fig. 16 is a schematic structural diagram of a grating focal length detector provided by an embodiment of the present disclosure.
  • 600 a device for detecting the focal length of a grating; 610: a processor; 620: a memory; 630: a communication interface; 640: a bus; 710: a measuring device; 720: arithmetic circuit; 721: a proportional arithmetic circuit; 722: a logic judgment circuit; 910 : Grating; 920: reference surface; 930: illuminated area; 940: focal point; 1100: grating parallel surface; 1200: light source; 1201: parallel light source; 1300: grating carrier; 1400: reference part; 1500: grating focal length detector.
  • an embodiment of the present disclosure provides a method for realizing the focal length detection of a grating, including:
  • Step 110 Obtain the size of the illuminated area of the illuminated area formed on the reference surface after the light is focused by the grating;
  • Step 120 Obtain the focal length of the grating according to the reference distance between the reference surface and the grating, the size of the illuminated area, and the grating repetition pitch of the grating.
  • the focal length can be calculated according to the geometric operation relationship among the reference distance, the size of the illuminated area, the grating repetition pitch, and the focal length.
  • the aforementioned grating generally refers to the basic light guide unit in the entire grating film layer, and each basic light guide unit can implement image optical processing that supports 3D display.
  • the entire grating film layer usually includes a plurality of basic light guide units, and all the basic light guide units usually have the same optical characteristics, and the entire grating film layer has repetitive optical characteristics in the unit of the basic light guide unit.
  • the grating repetitive pitch represents the plane size of the grating as the basic light guide unit, for example: the plane area of the grating, the width of the grating, and so on.
  • obtaining the size of the illuminated area may include:
  • different machine vision technologies can be selected, for example, machine vision technologies based on infrared light recognition or visible light recognition, which can successfully read the size of the illuminated area on the reference surface.
  • obtaining the size of the illuminated area may include:
  • Step 201 Measure the illumination area based on the reference surface scale set on the reference surface
  • Step 202 Use the obtained measurement result as the size of the illuminated area.
  • obtaining the size of the illuminated area may include:
  • Step 211 Measure the illumination area based on the observation scale set in the measuring device
  • Step 212 Use the obtained measurement result as the size of the illuminated area.
  • the reference surface scale can also be set on the reference surface in advance;
  • the scale on the reference surface may be physical, for example, a scale mark set on the reference surface by engraving, sticking, or the like.
  • the scale of the reference surface may also be non-physical, for example, a scale mark displayed on the reference surface by means of laser irradiation or the like.
  • the observation scale may be physical, for example, a scale mark set in the measuring device by engraving, sticking, or the like.
  • the observation scale may also be non-physical, for example, a scale mark displayed in the measuring device by means of laser irradiation or the like.
  • the reference plane can also be preset; or
  • setting the reference plane may include:
  • the reference surface can also be set at a position other than the theoretical focal plane, and it is sufficient to successfully form an illumination area on the reference surface where the focal length can be obtained.
  • obtaining the focal length may include:
  • the focal length is calculated according to the proportional relationship between the reference distance, the size of the illuminated area, the grating repeat interval, and the focal length.
  • obtaining the focal length may include:
  • the focal length H when the reference distance F is greater than the focal length H, the focal length H can be obtained based on the following formula (1).
  • obtaining the focal length may include:
  • the ratio of the grating repetitive pitch D in the difference between the grating repetitive pitch D and the illuminated area size S is multiplied by the reference distance F to obtain the focal length H.
  • the focal length H when the reference distance F is less than the focal length H, the focal length H can be obtained based on the following formula (2).
  • the method for realizing the detection of the focal length of the grating may further include:
  • Step 410 Move the reference surface
  • Step 420 Determine the size relationship between the focal length and the reference distance according to the change in the size of the illumination area formed on the reference surface.
  • determining the magnitude relationship between the focal length and the reference distance may include:
  • Step 501 the reference plane approaches the grating
  • Step 502 In the process of the reference plane approaching the grating, in the case that the size of the illuminated area first becomes smaller and then larger, it is confirmed that the reference distance is greater than the focal length.
  • determining the magnitude relationship between the focal length and the reference distance may include:
  • Step 511 the reference plane approaches the grating
  • Step 512 In the process of the reference plane approaching the grating, under the condition that the size of the illuminated area continues to increase, it is confirmed that the reference distance is less than the focal length.
  • determining the magnitude relationship between the focal length and the reference distance may include:
  • Step 521 the reference plane is far away from the grating
  • Step 522 In the process that the reference surface is far away from the grating, in the case that the size of the illuminated area continues to increase, it is confirmed that the reference distance is greater than the focal length.
  • determining the magnitude relationship between the focal length and the reference distance may include:
  • Step 531 the reference plane is far away from the grating
  • Step 532 In the process that the reference surface is far away from the grating, in the case that the size of the illuminated area first becomes smaller and then becomes larger, it is confirmed that the reference distance is smaller than the focal length.
  • the grating may be a cylindrical prism grating or a spherical prism grating.
  • the grating may be a lenticular prism grating; in this case, the illuminated area formed on the reference surface after the light is focused by the cylindrical prism grating is a light strip (for example, a rectangular light strip), and the illuminated area of the illuminated area The size is the area of the light band or the width of the light band.
  • the grating repeat pitch can be the plane area of the grating; if the light zone size is selected as the width of the grating, the grating repeat pitch can be the width of the grating. .
  • the grating may be a spherical prism grating; in this case, the illuminated area formed on the reference surface after the light is focused by the spherical prism grating is a spot (for example, a circular spot), and the size of the illuminated area of the illuminated area It is the spot area or diameter of the spot.
  • the grating repeat pitch can be the plane area of the grating; if the light spot size is selected as the spot diameter, the grating repeat pitch can be the width of the grating.
  • the shape of the illuminated area when performing the aforementioned scale setting, may be considered.
  • a scale used to measure the size of the light strip can be set, such as a length scale, a width scale, and the like.
  • a scale for measuring the size of the light spot can be set, such as a radius scale, a diameter scale, and the like.
  • the reference plane may be parallel to the grating.
  • the reference plane may also be non-parallel to the grating.
  • the reference distance is the distance from the grating to the reference surface along the direction perpendicular to the grating starting from the center point of the grating.
  • other distances between the grating and the reference surface can also be selected as the reference distance, and the focal length can be successfully obtained.
  • the reference surface when the reference surface is not parallel to the grating, an included angle is formed between the reference surface and the grating, that is, relative to the grating parallel surface parallel to the plane of the grating, the reference surface and the grating parallel surface form an angle. Angle.
  • the focal length of the grating when the focal length of the grating is obtained, the focal length of the grating can also be calculated in combination with the angle between the reference surface and the grating, for example: the aforementioned angle is included in the formula for calculating the focal length.
  • light can also be injected into the grating to focus through the grating.
  • the light may be parallel light.
  • the angle of the light relative to the grating can be combined to calculate the focal length of the grating, for example: the angle of the light relative to the grating is included in the formula for calculating the focal length.
  • the grating can also be arranged on the grating carrier to increase the stability of the grating during focus detection.
  • the embodiment of the present disclosure provides a device for realizing the detection of the focal length of a grating, including a processor and a memory storing program instructions, and the processor is configured to execute the above-mentioned method for realizing the detection of the focal length of a grating when the program instructions are executed.
  • the structure of the above-mentioned device 600 for detecting the focal length of a grating is shown in FIG. 6, and includes:
  • a processor (processor) 610 and a memory (memory) 620 may also include a communication interface (Communication Interface) 630 and a bus 640. Among them, the processor 610, the communication interface 630, and the memory 620 can communicate with each other through the bus 640. The communication interface 630 can be used for information transmission. The processor 610 may call the logic instructions in the memory 620 to execute the method for realizing the grating focal length detection in the foregoing embodiment.
  • the above-mentioned logical instructions in the memory 620 may be implemented in the form of a software functional unit and when sold or used as an independent product, they may be stored in a computer readable storage medium.
  • the memory 620 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 610 executes functional applications and data processing by running the program instructions/modules stored in the memory 620, that is, implements the method for realizing the grating focal length detection in the foregoing method embodiment.
  • the memory 620 may include a program storage area and a data storage area, where the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 620 may include a high-speed random access memory, and may also include a non-volatile memory.
  • an embodiment of the present disclosure provides a device for realizing the detection of the focal length of a grating, including:
  • the measuring device 710 is configured to obtain the size of the irradiated area of the irradiated area formed on the reference surface after light is focused by the grating;
  • the arithmetic circuit 720 is configured to obtain the focal length of the grating according to the reference distance between the reference surface and the grating, the size of the illuminated area, and the grating repetition pitch of the grating.
  • the measuring device 710 may be configured as:
  • different machine vision technologies can be selected, for example, machine vision technologies based on infrared light recognition or visible light recognition, which can successfully read the size of the illuminated area on the reference surface.
  • the measuring device 710 may be configured as:
  • the illumination area is measured based on the observation scale provided in the measuring device 710, and the obtained measurement result is used as the illumination area size.
  • a reference surface scale may be preset on the reference surface
  • the measuring device 710 may be pre-set with an observation scale.
  • the scale on the reference surface may be physical, for example, a scale mark set on the reference surface by engraving, sticking, or the like.
  • the scale of the reference surface may also be non-physical, for example, a scale mark displayed on the reference surface by means of laser irradiation or the like.
  • the observation scale may be physical, for example, a scale mark set in the measuring device 710 by engraving, sticking, or the like.
  • the observation scale may also be non-physical, for example, a scale mark displayed in the measuring device 710 by means of laser irradiation or the like.
  • the reference plane may be preset
  • the measuring device 710 may be preset.
  • the reference plane may be set at the theoretical focal plane of the grating.
  • the reference surface can also be set at a position other than the theoretical focal plane, and it is sufficient to successfully form an illumination area on the reference surface where the focal length can be obtained.
  • the arithmetic circuit 720 includes a proportional arithmetic circuit 721, which is configured to:
  • the focal length is calculated according to the proportional relationship between the reference distance, the size of the illuminated area, the grating repeat interval, and the focal length.
  • the proportional operation circuit 721 is configured to:
  • the focal length H when the reference distance F is greater than the focal length H, the focal length H can be obtained based on the aforementioned formula (1).
  • the proportional operation circuit 721 is configured to:
  • the ratio of the grating repetitive pitch D in the difference between the grating repetitive pitch D and the illuminated area size S is multiplied by the reference distance F to obtain the focal length H.
  • the focal length H when the reference distance F is less than the focal length H, the focal length H can be obtained based on the aforementioned formula (2).
  • the proportional operation circuit 721 may include a logic circuit, such as a logic gate circuit, which can smoothly implement the above-mentioned focal length calculation.
  • the logic gate circuit may include at least one of a logic NOT gate, a logic AND gate, and a logic OR gate, and the number of each logic gate may be at least one.
  • the reference surface is movable.
  • the arithmetic circuit 720 may further include a logic judgment circuit 722 configured to determine the size relationship between the focal length and the reference distance according to the change in the size of the illuminated area formed on the reference surface during the movement of the reference surface.
  • the logic judgment circuit 722 may include a logic circuit, such as a logic gate circuit, which can smoothly determine the magnitude relationship between the focal length and the reference distance.
  • the logic gate circuit may include at least one of a logic NOT gate, a logic AND gate, and a logic OR gate, and the number of each logic gate may be at least one.
  • the logic judgment circuit 722 may be configured as:
  • the grating may be a cylindrical prism grating or a spherical prism grating.
  • the grating may be a lenticular prism grating; in this case, the illuminated area formed on the reference surface after the light is focused by the cylindrical prism grating is a light strip (for example, a rectangular light strip), and the illuminated area of the illuminated area The size is the area of the light band or the width of the light band.
  • the grating repeat pitch can be the plane area of the grating; if the light zone size is selected as the width of the grating, the grating repeat pitch can be the width of the grating. .
  • the grating may be a spherical prism grating; in this case, the illuminated area formed on the reference surface after the light is focused by the spherical prism grating is a spot (for example, a circular spot), and the size of the illuminated area of the illuminated area It is the spot area or diameter of the spot.
  • the grating repeat pitch can be the plane area of the grating; if the light spot size is selected as the spot diameter, the grating repeat pitch can be the width of the grating.
  • the reference plane may be parallel to the grating.
  • the reference surface 920 may also be non-parallel to the grating 910.
  • the reference distance is the distance from the grating 910 to the reference surface 920 in a direction perpendicular to the grating 910 with the center point of the grating 910 as a starting point.
  • other distances between the grating 910 and the reference surface 920 can also be selected as the reference distance, and the focal length can be successfully obtained.
  • the angle ⁇ is formed between the reference plane 920 and the grating 910, that is, with respect to the grating parallel plane 1100 parallel to the plane of the grating 910, the reference plane An included angle ⁇ is formed between 920 and the grating parallel surface 1100.
  • the angle ⁇ between the reference plane 920 and the grating 910 can also be combined to calculate the focal length of the grating, for example, the angle ⁇ is included in the formula for calculating the focal length.
  • the device for detecting the focal length of the grating may further include a light source 1200 configured to:
  • the light is injected into the grating 910 to focus through the grating 910.
  • the light may be parallel light.
  • the focal length of the grating 910 can be calculated in combination with the angle of the light relative to the grating 910, for example: the angle of the light relative to the grating 910 is included in the formula for calculating the focal length in.
  • the device for detecting the focal length of the grating may further include a grating carrier 1300 configured to carry the grating 910 to increase the stability of the grating 910 during focal length detection.
  • the material of the grating carrier 1300 may be glass.
  • the grating carrier 1300 may also be made of other materials, so that the grating carrier 1300 has light transmittance and can make light enter the grating 910.
  • part or all of the grating carrier 1300 may be fully transparent or semi-transparent.
  • the proportion of the fully transparent area and the semi-transparent area on the grating carrier 1300 is not limited, so that the grating carrier 1300 has light transmittance and can make light enter the grating 910.
  • the device for detecting the focal length of the grating can be set in a non-transparent medium environment, and the medium environment can form a reference surface in non-physical form based on the illumination of light; for example, in a foggy environment, the light The other forms form a reference surface with light and shadow effects in the fog.
  • the reference surface 920 may be a surface of the reference member 1400 presented in a physical form.
  • the reference surface 920 may be the surface of the reference part 1400 or a plane located inside the reference part 1400.
  • the reference element 1400 has light transmittance.
  • the material of the reference member 1400 may be glass.
  • the reference part 1400 may also be made of other materials, so that the reference part 1400 has light transmittance and can make light enter the grating 910.
  • part or all of the reference member 1400 may be fully transparent or semi-transparent.
  • the proportion of the fully transparent area and the semi-transparent area on the reference part 1400 is not limited, so that the reference part 1400 has translucency and can make light enter the grating 910.
  • the measuring device 710 may be a camera or a microscope.
  • the device for implementing grating focal length detection disclosed in the embodiments of the present disclosure may include: a parallel light source 1201, a grating carrier 1300, a reference surface 920, and a measuring device 710.
  • the device for realizing grating focal length detection will be exemplarily described in conjunction with FIG. 15.
  • reference may be made to the aforementioned related technical solutions and corresponding drawings.
  • the parallel light source 1201, the grating carrier 1300, the reference surface 920, and the measuring device 710 included in the device for implementing grating focal length detection disclosed in the embodiments of the present disclosure the parallel light source 1201 may be configured as Inject light into the grating 910 to focus through the grating 910; the grating carrier 1300 may be configured to carry the grating 910; the reference surface 920 may be configured to form an illuminated area based on the light being focused through the grating 910; the measuring device 710 may be configured to The size of the illuminated area of the illuminated area formed on the reference surface 920 is identified.
  • the reference surface 920 may be movable.
  • the reference surface 920 may be parallel to the grating 910.
  • the reference plane 920 may be set at the theoretical focal plane when the grating 910 is located on the grating carrier 1300.
  • the device for detecting the focal length of the grating can be set in a non-fully transparent medium environment, and the medium environment can form a reference plane 920 in an intangible form based on the illumination of light; or,
  • the reference surface 920 may be a surface of the reference piece 1400 presented in a physical form.
  • the material of the reference member 1400 may be glass.
  • part or all of the reference member 1400 may be fully transparent or semi-transparent.
  • the material of the grating carrier 1300 may be glass.
  • part or all of the grating carrier 1300 may be fully transparent or semi-transparent.
  • the grating carrier 1300 may be configured as:
  • the reference plane 920 is located at the theoretical focal plane of the grating 910; or,
  • the reference surface 920 is parallel to the grating 910.
  • the size of the irradiated area of the irradiated area may be the area or width of the light belt; or,
  • the size of the illuminated area of the illuminated area may be the spot area or the diameter of the spot.
  • a reference surface scale may be preset on the reference surface 920.
  • the measuring device 710 may be pre-set with an observation scale.
  • the measuring device 710 may also be configured as:
  • the size of the illuminated area is read on the reference surface 920 based on machine vision technology.
  • the measuring device 710 may be configured as:
  • the illumination area is measured based on the observation scale provided in the measuring device 710, and the obtained measurement result is used as the illumination area size.
  • the measuring device 710 may be a camera or a microscope.
  • an embodiment of the present disclosure provides a grating focal length detector 1500, which includes the aforementioned device 600 for realizing grating focal length detection.
  • the device and the grating focal length detector provided by the embodiments of the present disclosure can effectively detect the focal length of the grating.
  • the detection process is simple, efficient, and the detection accuracy is high.
  • the embodiment of the present disclosure provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the above-mentioned method for realizing the detection of the focal length of the grating.
  • the embodiments of the present disclosure provide a computer program product, including a computer program stored on a computer-readable storage medium, the computer program including program instructions, and when the program instructions are executed by a computer, the computer executes the aforementioned implementation of the grating focal length Method of detection.
  • the aforementioned computer-readable storage medium may be a transitory computer-readable storage medium or a non-transitory computer-readable storage medium.
  • the computer-readable storage medium and computer program product provided by the embodiments of the present disclosure can effectively detect the focal length of the grating.
  • the detection process is simple, efficient, and the detection accuracy is high.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which can be a personal computer, a server, or a network). Equipment, etc.) execute all or part of the steps of the method of the embodiment of the present disclosure.
  • the aforementioned storage medium may be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks, etc.
  • the first element can be called the second element, and likewise, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.
  • the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates, the singular forms "a” (a), “an” (an) and “the” (the) are intended to also include plural forms .
  • the term “and/or” as used in this application refers to any and all possible combinations of one or more of the associated lists.
  • the term “comprise” and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components, and/or groups of these. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other same elements in the process, method, or equipment that includes the element.
  • each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the methods, products, etc. disclosed in the embodiments if they correspond to the method parts disclosed in the embodiments, then the related parts can be referred to the description of the method parts.
  • the disclosed methods and products may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected to implement this embodiment according to actual needs.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram can represent a module, program segment, or part of the code, and the above-mentioned module, program segment, or part of the code contains one or more options for realizing the specified logical function.
  • Execute instructions In some alternative implementations, the functions marked in the block may also occur in a different order than the order marked in the drawings. For example, two consecutive blocks can actually be executed substantially in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

实现光栅焦距检测的装置(600),包括:平行光源(1201),被配置为将光线射入光栅(910),以经由光栅(910)聚焦;光栅承载件(1300),被配置为承载光栅(910);参考面(920),被配置为基于光线经由光栅(910)聚焦而形成光照区域;测量装置(710),被配置为识别在参考面(920)上形成的光照区域的光照区域尺寸。实现光栅焦距检测的装置(600)能够有效检测光栅焦距。

Description

实现光栅焦距检测的装置及光栅焦距检测仪
本申请要求在2019年9月30日提交中国专利局、申请号为201910951611.7、发明名称为“实现光栅焦距检测的装置及光栅焦距检测仪”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光栅技术领域,例如涉及实现光栅焦距检测的装置及光栅焦距检测仪。
背景技术
目前,光栅广泛应用于3D显示技术领域。作为3D显示器件的组成部分,光栅的焦距需要具有较高的精度;但是,在光栅的加工过程中,有可能因加工环境、加工工艺等原因引入误差,导致光栅的焦距不满足精度要求,进而影响3D显示效果。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
目前尚不存在有效的光栅焦距检测技术。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。该概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了实现光栅焦距检测的装置及光栅焦距检测仪,以解决目前尚不存在有效的光栅焦距检测技术的技术问题。
在一些实施例中,实现光栅焦距检测的装置包括:
平行光源,被配置为将光线射入光栅,以经由光栅聚焦;
光栅承载件,被配置为承载光栅;
参考面,被配置为基于光线经由光栅聚焦而形成光照区域;
测量装置,被配置为识别在参考面上形成的光照区域的光照区域尺寸。
在一些实施例中,参考面可以是可移动的。
在一些实施例中,参考面可以与光栅平行。
在一些实施例中,参考面可以设置于光栅位于光栅承载件上时的理论焦平面。
在一些实施例中,实现光栅焦距检测的装置可以设置于非全透明的介质环境中,介质环境能够基于光线的照明形成以非实体形式呈现的参考面;或,
参考面为以实体形式呈现的参考件的一面。
在一些实施例中,参考件的材质可以为玻璃。
在一些实施例中,参考件的部分或全部可以为全透明或半透明。
在一些实施例中,光栅承载件的材质可以为玻璃。
在一些实施例中,光栅承载件的部分或全部可以为全透明或半透明。
在一些实施例中,光栅承载件可以被设置为:
在光栅设置于光栅承载件上时,参考面位于光栅的理论焦平面;或,
在光栅设置于光栅承载件上时,参考面与光栅平行。
在一些实施例中,光栅为柱状棱镜光栅时,光照区域的光照区域尺寸可以为光带的光带面积或光带宽度;或,
光栅为球面棱镜光栅时,光照区域的光照区域尺寸可以为光斑的光斑面积或光斑直径。
在一些实施例中,参考面上可以预先设置有参考面刻度;或
测量装置上可以预先设置有观测刻度。
在一些实施例中,测量装置,还可以被配置为:
基于机器视觉技术在参考面上读取光照区域尺寸。
在一些实施例中,测量装置,可以被配置为:
基于设置于参考面的参考面刻度测量光照区域,将得到的测量结果作为光照区域尺寸;或
基于设置于测量装置的观测刻度测量光照区域,将得到的测量结果作为光照区域尺寸。
在一些实施例中,测量装置可以为摄像头或显微镜。
在一些实施例中,光栅焦距检测仪包括上述的实现光栅焦距检测的装置。
本公开实施例提供的实现光栅焦距检测的装置及光栅焦距检测仪,可以实现以下技术效果:有效检测光栅焦距。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的实现光栅焦距检测的方法的流程示意图;
图2A、图2B是本公开实施例提供的获取光照区域尺寸的流程示意图;
图3A、图3B是本公开实施例提供的得到光栅焦距的原理示意图;
图4是本公开实施例提供的确定焦距与参考距离之间大小关系的流程示意图;
图5A至图5D是本公开实施例提供的确定焦距与参考距离之间大小关系的流程示意图;
图6是本公开实施例提供的实现光栅焦距检测的装置的结构示意图;
图7是本公开实施例提供的实现光栅焦距检测的装置的另一结构示意图;
图8是本公开实施例提供的实现光栅焦距检测的装置的另一结构示意图;
图9A、图9B是本公开实施例提供的比例运算电路得到光栅焦距的原理示意图;
图10是本公开实施例提供的实现光栅焦距检测的装置的另一结构示意图;
图11是本公开实施例提供的运算电路得到光栅焦距的原理示意图;
图12是本公开实施例提供的光源的工作原理示意图;
图13是本公开实施例提供的光栅承载件的工作原理示意图;
图14是本公开实施例提供的参考件的结构示意图;
图15是本公开实施例提供的实现光栅焦距检测的装置的另一结构示意图;
图16是本公开实施例提供的光栅焦距检测仪的结构示意图。
附图标记:
600:实现光栅焦距检测的装置;610:处理器;620:存储器;630:通信接口;640:总线;710:测量装置;720:运算电路;721:比例运算电路;722:逻辑判断电路;910:光栅;920:参考面;930:光照区域;940:焦点;1100:光栅平行面;1200:光源;1201:平行光源;1300:光栅承载件;1400:参考件;1500:光栅焦距检测仪。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在 以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
参见图1,本公开实施例提供了一种实现光栅焦距检测的方法,包括:
步骤110:获取光线经由光栅聚焦后在参考面上形成的光照区域的光照区域尺寸;
步骤120:根据参考面与光栅之间的参考距离、光照区域尺寸、光栅的光栅重复间距,得到光栅的焦距。
在一些实施例中,可以根据参考距离、光照区域尺寸、光栅重复间距、焦距之间的几何运算关系,计算得到焦距。
在一些实施例中,上述的光栅通常是指整个光栅膜层中的基本导光单元,每个基本导光单元可以实现支持3D显示的图像光学处理。可选地,整个光栅膜层通常包含多个基本导光单元,所有基本导光单元通常具有相同的光学特性,整个光栅膜层中以基本导光单元为单位存在光学特性上的重复性。可选地,光栅重复间距代表作为基本导光单元的光栅的平面尺寸,例如:光栅的平面面积、光栅的宽度等。
在一些实施例中,获取光照区域尺寸,可以包括:
基于机器视觉技术在参考面上读取光照区域尺寸。
可选地,可以选用不同的机器视觉技术,例如:基于红外光识别或可见光识别的机器视觉技术,能够成功地在参考面上读取光照区域尺寸即可。
参见图2A,在一些实施例中,获取光照区域尺寸,可以包括:
步骤201:基于设置于参考面的参考面刻度测量光照区域;
步骤202:将得到的测量结果作为光照区域尺寸。
可选地,参见图2B,获取光照区域尺寸,可以包括:
步骤211:基于设置于测量装置的观测刻度测量光照区域;
步骤212:将得到的测量结果作为光照区域尺寸。
在一些实施例中,还可以预先在参考面上设置参考面刻度;或
预先在测量装置上设置观测刻度。
在一些实施例中,参考面刻度可以是实体的,例如:以刻、粘等方式设置在参考面上的刻度标识。可选地,参考面刻度也可以是非实体的,例如:以激光照射等方式显示于参考面上的刻度标识。
在一些实施例中,观测刻度可以是实体的,例如:以刻、粘等方式设置在测量装置中的刻度标识。可选地,观测刻度也可以是非实体的,例如:以激光照射等方式显示于测量 装置中的刻度标识。
在一些实施例中,还可以预先设置参考面;或
预先设置测量装置。
在一些实施例中,设置参考面,可以包括:
将参考面设置于光栅的理论焦平面。
可选地,也可以将参考面设置于除理论焦平面以外的其它位置,能够成功地在参考面上形成可得出焦距的光照区域即可。
在一些实施例中,得到焦距,可以包括:
根据参考距离、光照区域尺寸、光栅重复间距、焦距之间的比例关系,计算得到焦距。
参见图3A,在一些实施例中,得到焦距,可以包括:
当参考距离F大于焦距H时,将光栅重复间距D在光照区域尺寸S与光栅重复间距D之和中的占比乘以参考距离F,得到焦距H。
在一些实施例中,当参考距离F大于焦距H时,可以基于如下的公式(1)得到焦距H。
Figure PCTCN2020118470-appb-000001
参见图3B,在一些实施例中,得到焦距,可以包括:
当参考距离F小于焦距H时,将光栅重复间距D在光栅重复间距D与光照区域尺寸S之差中的占比乘以参考距离F,得到焦距H。
在一些实施例中,当参考距离F小于焦距H时,可以基于如下的公式(2)得到焦距H。
Figure PCTCN2020118470-appb-000002
参见图4,在一些实施例中,实现光栅焦距检测的方法还可以包括:
步骤410:移动参考面;
步骤420:根据参考面上形成的光照区域尺寸的变化确定焦距与参考距离之间的大小关系。
参见图5A,在一些实施例中,确定焦距与参考距离之间的大小关系,可以包括:
步骤501:参考面向光栅靠近;
步骤502:在参考面向光栅靠近的过程中,在光照区域尺寸先变小后变大的情况下,确认参考距离大于焦距。
参见图5B,在一些实施例中,确定焦距与参考距离之间的大小关系,可以包括:
步骤511:参考面向光栅靠近;
步骤512:在参考面向光栅靠近的过程中,在光照区域尺寸持续变大的情况下,确认参考距离小于焦距。
参见图5C,在一些实施例中,确定焦距与参考距离之间的大小关系,可以包括:
步骤521:参考面远离光栅;
步骤522:在参考面远离光栅的过程中,在光照区域尺寸持续变大的情况下,确认参考距离大于焦距。
参见图5D,在一些实施例中,确定焦距与参考距离之间的大小关系,可以包括:
步骤531:参考面远离光栅;
步骤532:在参考面远离光栅的过程中,在光照区域尺寸先变小后变大的情况下,确认参考距离小于焦距。
在一些实施例中,光栅可以为柱状棱镜光栅或球面棱镜光栅。
在一些实施例中,光栅可以为柱状棱镜光栅;在这种情况下,光线经由柱状棱镜光栅聚焦后在参考面上形成的光照区域为光带(例如:矩形光带),光照区域的光照区域尺寸为光带的光带面积或光带宽度。
可选地,在计算得到光栅的焦距时,如果光照区域尺寸选用光带面积,则光栅重复间距可以选用光栅的平面面积;如果光照区域尺寸选用光带宽度,则光栅重复间距可以选用光栅的宽度。可选地,在计算得到光栅的焦距时,还可以考虑引入用于支持计算准确度的调整系数、权重等。
在一些实施例中,光栅可以为球面棱镜光栅;在这种情况下,光线经由球面棱镜光栅聚焦后在参考面上形成的光照区域为光斑(例如:圆形光斑),光照区域的光照区域尺寸为光斑的光斑面积或光斑直径。
可选地,在计算得到光栅的焦距时,如果光照区域尺寸选用光斑面积,则光栅重复间距可以选用光栅的平面面积;如果光照区域尺寸选用光斑直径,则光栅重复间距可以选用光栅的宽度。可选地,在计算得到光栅的焦距时,还可以考虑引入用于支持计算准确度的调整系数、权重等。
在一些实施例中,进行前述的刻度设置时,可以考虑光照区域的形状。可选地,光照区域的形状为光带时,可以设置用于对光带的尺寸进行测量的刻度,例如:长度刻度、宽度刻度等。可选地,光照区域的形状为光斑时,可以设置用于对光斑的尺寸进行测量的刻度,例如:半径刻度、直径刻度等。
在一些实施例中,参考面可以与光栅平行。
在一些实施例中,参考面也可以与光栅不平行。在这种情况下,参考距离为以光栅的中心点为起点沿垂直于光栅的方向,从光栅到参考面之间的距离。可选地,也可以选取光栅与参考面之间的其他距离作为参考距离,能够成功得到焦距即可。
在一些实施例中,当参考面与光栅不平行时,参考面与光栅之间形成夹角,即:相对于与光栅的平面平行的光栅平行面而言,参考面与光栅平行面之间形成夹角。在这种情况下,得到光栅的焦距时,还可以结合参考面与光栅之间的夹角计算光栅的焦距,例如:将上述夹角带入用于计算焦距的公式中。
在一些实施例中,还可以将光线射入光栅,以经由光栅聚焦。
在一些实施例中,光线可以为平行光。可选地,如果射入光栅的光线为非平行光,则可以结合光线相对于光栅的角度计算光栅的焦距,例如:将光线相对于光栅的角度带入用于计算焦距的公式中。
在一些实施例中,还可以将光栅设置于光栅承载件上,以增加光栅在焦距检测时的稳定性。
本公开实施例提供了一种实现光栅焦距检测的装置,包括处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行上述的实现光栅焦距检测的方法。
在一些实施例中,上述的实现光栅焦距检测的装置600的结构如图6所示,包括:
处理器(processor)610和存储器(memory)620,还可以包括通信接口(Communication Interface)630和总线640。其中,处理器610、通信接口630、存储器620可以通过总线640完成相互间的通信。通信接口630可以用于信息传输。处理器610可以调用存储器620中的逻辑指令,以执行上述实施例的实现光栅焦距检测的方法。
此外,上述的存储器620中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器620作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器610通过运行存储在存储器620中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的实现光栅焦距检测的方法。
存储器620可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器。
参见图7,本公开实施例提供了一种实现光栅焦距检测的装置,包括:
测量装置710,被配置为获取光线经由光栅聚焦后在参考面上形成的光照区域的光照区域尺寸;
运算电路720,被配置为根据参考面与光栅之间的参考距离、光照区域尺寸、光栅的光栅重复间距,得到光栅的焦距。
在一些实施例中,测量装置710,可以被配置为:
基于机器视觉技术在参考面上读取光照区域尺寸。
可选地,可以选用不同的机器视觉技术,例如:基于红外光识别或可见光识别的机器视觉技术,能够成功地在参考面上读取光照区域尺寸即可。
在一些实施例中,测量装置710,可以被配置为:
基于设置于参考面的参考面刻度测量光照区域,将得到的测量结果作为光照区域尺寸;或
基于设置于测量装置710的观测刻度测量光照区域,将得到的测量结果作为光照区域尺寸。
在一些实施例中,参考面上可以预先设置有参考面刻度;或
测量装置710上可以预先设置有观测刻度。
在一些实施例中,参考面刻度可以是实体的,例如:以刻、粘等方式设置在参考面上的刻度标识。可选地,参考面刻度也可以是非实体的,例如:以激光照射等方式显示于参考面上的刻度标识。
在一些实施例中,观测刻度可以是实体的,例如:以刻、粘等方式设置在测量装置710中的刻度标识。可选地,观测刻度也可以是非实体的,例如:以激光照射等方式显示于测量装置710中的刻度标识。
在一些实施例中,参考面可以是预先设置的;或
测量装置710可以是预先设置的。
在一些实施例中,参考面可以设置于光栅的理论焦平面。
可选地,也可以将参考面设置于除理论焦平面以外的其它位置,能够成功地在参考面上形成可得出焦距的光照区域即可。
参见图8,在一些实施例中,运算电路720包括比例运算电路721,被配置为:
根据参考距离、光照区域尺寸、光栅重复间距、焦距之间的比例关系,计算得到焦距。
参见图9A,在一些实施例中,比例运算电路721,被配置为:
当参考距离F大于焦距H时,将光栅重复间距D在光照区域尺寸S与光栅重复间距D之和中的占比乘以参考距离F,得到焦距H。
在一些实施例中,当参考距离F大于焦距H时,可以基于前述的公式(1)得到焦距H。
Figure PCTCN2020118470-appb-000003
参见图9B,在一些实施例中,比例运算电路721,被配置为:
当参考距离F小于焦距H时,将光栅重复间距D在光栅重复间距D与光照区域尺寸S之差中的占比乘以参考距离F,得到焦距H。
在一些实施例中,当参考距离F小于焦距H时,可以基于前述的公式(2)得到焦距H。
Figure PCTCN2020118470-appb-000004
在一些实施例中,比例运算电路721可以包括逻辑电路,例如:逻辑门电路,能够顺利实现上述的焦距计算即可。可选地,逻辑门电路可以包括逻辑非门、逻辑与门、逻辑或门中的至少一种,每种逻辑门的数量可以是至少一个。
参见图10,在一些实施例中,参考面是可移动的。可选地,运算电路720还可以包括逻辑判断电路722,被配置为:在参考面的移动过程中,根据参考面上形成的光照区域尺寸的变化确定焦距与参考距离之间的大小关系。
在一些实施例中,逻辑判断电路722可以包括逻辑电路,例如:逻辑门电路,能够顺利确定焦距与参考距离之间的大小关系即可。可选地,逻辑门电路可以包括逻辑非门、逻辑与门、逻辑或门中的至少一种,每种逻辑门的数量可以是至少一个。
在一些实施例中,逻辑判断电路722,可以被配置为:
在参考面向光栅靠近的过程中,在光照区域尺寸先变小后变大的情况下,确认参考距离大于焦距;或,
在参考面向光栅靠近的过程中,在光照区域尺寸持续变大的情况下,确认参考距离小于焦距;或,
在参考面远离光栅的过程中,在光照区域尺寸持续变大的情况下,确认参考距离大于焦距;或,
在参考面远离光栅的过程中,在光照区域尺寸先变小后变大的情况下,确认参考距离小于焦距。
在一些实施例中,光栅可以为柱状棱镜光栅或球面棱镜光栅。
在一些实施例中,光栅可以为柱状棱镜光栅;在这种情况下,光线经由柱状棱镜光栅聚焦后在参考面上形成的光照区域为光带(例如:矩形光带),光照区域的光照区域尺寸为光带的光带面积或光带宽度。
可选地,在计算得到光栅的焦距时,如果光照区域尺寸选用光带面积,则光栅重复间距可以选用光栅的平面面积;如果光照区域尺寸选用光带宽度,则光栅重复间距可以选用光栅的宽度。可选地,在计算得到光栅的焦距时,还可以考虑引入用于支持计算准确度的调整系数、权重等。
在一些实施例中,光栅可以为球面棱镜光栅;在这种情况下,光线经由球面棱镜光栅聚焦后在参考面上形成的光照区域为光斑(例如:圆形光斑),光照区域的光照区域尺寸为光斑的光斑面积或光斑直径。
可选地,在计算得到光栅的焦距时,如果光照区域尺寸选用光斑面积,则光栅重复间距可以选用光栅的平面面积;如果光照区域尺寸选用光斑直径,则光栅重复间距可以选用光栅的宽度。可选地,在计算得到光栅的焦距时,还可以考虑引入用于支持计算准确度的调整系数、权重等。
在一些实施例中,参考面可以与光栅平行。
参见图11,在一些实施例中,参考面920也可以与光栅910不平行。在这种情况下,参考距离为以光栅910的中心点为起点沿垂直于光栅910的方向,从光栅910到参考面920之间的距离。可选地,也可以选取光栅910与参考面920之间的其他距离作为参考距离,能够成功得到焦距即可。
在一些实施例中,当参考面920与光栅910不平行时,参考面920与光栅910之间形成夹角θ,即:相对于与光栅910的平面平行的光栅平行面1100而言,参考面920与光栅平行面1100之间形成夹角θ。在这种情况下,得到光栅910的焦距时,还可以结合参考面920与光栅910之间的夹角θ计算光栅的焦距,例如:将夹角θ带入用于计算焦距的公式中。
参见图12,在一些实施例中,实现光栅焦距检测的装置还可以包括光源1200,被配置为:
将光线射入光栅910,以经由光栅910聚焦。
在一些实施例中,光线可以为平行光。可选地,如果射入光栅910的光线为非平行光,则可以结合光线相对于光栅910的角度计算光栅910的焦距,例如:将光线相对于光栅910的角度带入用于计算焦距的公式中。
参见图13,在一些实施例中,实现光栅焦距检测的装置还可以包括光栅承载件1300, 被配置为:承载光栅910,以增加光栅910在焦距检测时的稳定性。
在一些实施例中,光栅承载件1300的材质可以为玻璃。可选地,光栅承载件1300也可以由其它材质构成,使得光栅承载件1300具有透光性,能够使光线射入光栅910。
在一些实施例中,光栅承载件1300的部分或全部可以为全透明或半透明。可选地,光栅承载件1300上的全透明区域、半透明区域的占比不做限制,使得光栅承载件1300具有透光性,能够使光线射入光栅910。
在一些实施例中,实现光栅焦距检测的装置可以设置于非全透明的介质环境中,介质环境能够基于光线的照明形成以非实体形式呈现的参考面;例如:在雾状环境中,以光照等形式在雾中形成具有光影效果的参考面。
参见图14,在一些实施例中,参考面920可以为以实体形式呈现的参考件1400的一面。可选地,参考面920可以是参考件1400的表面,也可以是位于参考件1400内部的一个平面。在参考面920是位于参考件1400内部的一个平面时,参考件1400具有透光性。
在一些实施例中,参考件1400的材质可以为玻璃。可选地,参考件1400也可以由其它材质构成,使得参考件1400具有透光性,能够使光线射入光栅910。
在一些实施例中,参考件1400的部分或全部可以为全透明或半透明。可选地,参考件1400上的全透明区域、半透明区域的占比不做限制,使得参考件1400具有透光性,能够使光线射入光栅910。
在一些实施例中,测量装置710可以为摄像头或显微镜。
基于以上描述并结合附图可见,在一些实施例中,本公开实施例公开的实现光栅焦距检测的装置可以包括:平行光源1201、光栅承载件1300、参考面920、测量装置710。下面,将结合图15对实现光栅焦距检测的该装置进行示例性描述,省略的技术细节可以参考前述的相关技术方案及相应附图。
结合图15,在一些实施例中,在本公开实施例公开的实现光栅焦距检测的装置包括的平行光源1201、光栅承载件1300、参考面920、测量装置710中,平行光源1201可以被配置为将光线射入光栅910,以经由光栅910聚焦;光栅承载件1300可以被配置为承载光栅910;参考面920可以被配置为基于光线经由光栅910聚焦而形成光照区域;测量装置710可以被配置为识别在参考面920上形成的光照区域的光照区域尺寸。
在一些实施例中,参考面920可以是可移动的。
在一些实施例中,参考面920可以与光栅910平行。
在一些实施例中,参考面920可以设置于光栅910位于光栅承载件1300上时的理论焦平面。
在一些实施例中,实现光栅焦距检测的装置可以设置于非全透明的介质环境中,介质环境能够基于光线的照明形成以非实体形式呈现的参考面920;或,
参考面920可以为以实体形式呈现的参考件1400的一面。
在一些实施例中,参考件1400的材质可以为玻璃。
在一些实施例中,参考件1400的部分或全部可以为全透明或半透明。
在一些实施例中,光栅承载件1300的材质可以为玻璃。
在一些实施例中,光栅承载件1300的部分或全部可以为全透明或半透明。
在一些实施例中,光栅承载件1300可以被设置为:
在光栅910设置于光栅承载件1300上时,参考面920位于光栅910的理论焦平面;或,
在光栅910设置于光栅承载件1300上时,参考面920与光栅910平行。
在一些实施例中,光栅910为柱状棱镜光栅时,光照区域的光照区域尺寸可以为光带的光带面积或光带宽度;或,
光栅910为球面棱镜光栅时,光照区域的光照区域尺寸可以为光斑的光斑面积或光斑直径。
在一些实施例中,参考面920上可以预先设置有参考面刻度;或
测量装置710上可以预先设置有观测刻度。
在一些实施例中,测量装置710,还可以被配置为:
基于机器视觉技术在参考面920上读取光照区域尺寸。
在一些实施例中,测量装置710,可以被配置为:
基于设置于参考面920的参考面刻度测量光照区域,将得到的测量结果作为光照区域尺寸;或
基于设置于测量装置710的观测刻度测量光照区域,将得到的测量结果作为光照区域尺寸。
在一些实施例中,测量装置710可以为摄像头或显微镜。
参见图16,本公开实施例提供了一种光栅焦距检测仪1500,包括上述的实现光栅焦距检测的装置600。
本公开实施例提供的实现光栅焦距检测的装置及光栅焦距检测仪,能够有效检测光栅焦距。另外,由于检测过程中未引入过多中间操作或器件,因此检测过程简洁、高效,检测准确性高。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,该计算机 可执行指令设置为执行上述的实现光栅焦距检测的方法。
本公开实施例提供了一种计算机程序产品,包括存储在计算机可读存储介质上的计算机程序,该计算机程序包括程序指令,当该程序指令被计算机执行时,使上述计算机执行上述的实现光栅焦距检测的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例提供的计算机可读存储介质和计算机程序产品,能够有效检测光栅焦距。另外,由于检测过程中未引入过多中间操作或器件,因此检测过程简洁、高效,检测准确性高。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例的方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步 骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括该要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。本领域技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,上述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上 可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (16)

  1. 一种实现光栅焦距检测的装置,包括:
    平行光源,被配置为将光线射入光栅,以经由所述光栅聚焦;
    光栅承载件,被配置为承载所述光栅;
    参考面,被配置为基于光线经由所述光栅聚焦而形成光照区域;
    测量装置,被配置为识别在所述参考面上形成的所述光照区域的光照区域尺寸。
  2. 根据权利要求1所述的装置,其中,所述参考面是可移动的。
  3. 根据权利要求1所述的装置,其中,所述参考面与所述光栅平行。
  4. 根据权利要求1所述的装置,其中,所述参考面设置于所述光栅位于所述光栅承载件上时的理论焦平面。
  5. 根据权利要求1至4任一项所述的装置,其中,所述装置设置于非全透明的介质环境中,所述介质环境能够基于所述光线的照明形成以非实体形式呈现的所述参考面;或,
    所述参考面为以实体形式呈现的参考件的一面。
  6. 根据权利要求5所述的装置,其中,所述参考件的材质为玻璃。
  7. 根据权利要求5所述的装置,其中,所述参考件的部分或全部为全透明或半透明。
  8. 根据权利要求1所述的装置,其中,所述光栅承载件的材质为玻璃。
  9. 根据权利要求1所述的装置,其中,所述光栅承载件的部分或全部为全透明或半透明。
  10. 根据权利要求1、8、9中任一项所述的装置,其中,所述光栅承载件被设置为:
    在所述光栅设置于所述光栅承载件上时,所述参考面位于所述光栅的理论焦平面;或,
    在所述光栅设置于所述光栅承载件上时,所述参考面与所述光栅平行。
  11. 根据权利要求1所述的装置,其中,
    所述光栅为柱状棱镜光栅时,所述光照区域的光照区域尺寸为光带的光带面积或光带宽度;或,
    所述光栅为球面棱镜光栅时,所述光照区域的光照区域尺寸为光斑的光斑面积或光斑直径。
  12. 根据权利要求1至11任一项所述的装置,其中,
    所述参考面上预先设置有参考面刻度;或
    所述测量装置上预先设置有观测刻度。
  13. 根据权利要求12所述的装置,还被配置为:
    基于机器视觉技术在所述参考面上读取所述光照区域尺寸。
  14. 根据权利要求13所述的装置,其中,所述测量装置,被配置为:
    基于设置于所述参考面的参考面刻度测量所述光照区域,将得到的测量结果作为所述光照区域尺寸;或
    基于设置于所述测量装置的观测刻度测量所述光照区域,将得到的测量结果作为所述光照区域尺寸。
  15. 根据权利要求1所述的装置,其中,所述测量装置为摄像头或显微镜。
  16. 一种光栅焦距检测仪,包括如权利要求1至15任一项所述的装置。
PCT/CN2020/118470 2019-09-30 2020-09-28 实现光栅焦距检测的装置及光栅焦距检测仪 WO2021063320A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910951611.7A CN112577718A (zh) 2019-09-30 2019-09-30 实现光栅焦距检测的装置及光栅焦距检测仪
CN201910951611.7 2019-09-30

Publications (1)

Publication Number Publication Date
WO2021063320A1 true WO2021063320A1 (zh) 2021-04-08

Family

ID=75117235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118470 WO2021063320A1 (zh) 2019-09-30 2020-09-28 实现光栅焦距检测的装置及光栅焦距检测仪

Country Status (2)

Country Link
CN (1) CN112577718A (zh)
WO (1) WO2021063320A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021851A1 (en) * 2002-08-01 2004-02-05 Olympus Optical Co., Ltd. Focal length measuring device
CN205091114U (zh) * 2015-08-28 2016-03-16 深圳超多维光电子有限公司 透镜器件的焦距测量装置
CN105807349A (zh) * 2016-06-02 2016-07-27 宁波万维显示科技有限公司 双折射透镜光栅的折射率匹配检测方法、制造装置及制造方法
WO2016181206A1 (en) * 2015-05-08 2016-11-17 Uniwersytet Warszawski The measurement setup for determining position of focal plane and effective focal length of an optical system and the method of determining position of focal plane and effective focal length of an optical system
CN107091729A (zh) * 2017-05-12 2017-08-25 南京邮电大学 一种无机械运动的透镜焦距测试方法
CN107817093A (zh) * 2016-09-12 2018-03-20 三星显示有限公司 用于测量微透镜阵列的特性的装置和方法
CN208672281U (zh) * 2018-08-22 2019-03-29 北京聚恒博联科技有限公司 一种凸透镜后焦距检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021851A1 (en) * 2002-08-01 2004-02-05 Olympus Optical Co., Ltd. Focal length measuring device
WO2016181206A1 (en) * 2015-05-08 2016-11-17 Uniwersytet Warszawski The measurement setup for determining position of focal plane and effective focal length of an optical system and the method of determining position of focal plane and effective focal length of an optical system
CN205091114U (zh) * 2015-08-28 2016-03-16 深圳超多维光电子有限公司 透镜器件的焦距测量装置
CN105807349A (zh) * 2016-06-02 2016-07-27 宁波万维显示科技有限公司 双折射透镜光栅的折射率匹配检测方法、制造装置及制造方法
CN107817093A (zh) * 2016-09-12 2018-03-20 三星显示有限公司 用于测量微透镜阵列的特性的装置和方法
CN107091729A (zh) * 2017-05-12 2017-08-25 南京邮电大学 一种无机械运动的透镜焦距测试方法
CN208672281U (zh) * 2018-08-22 2019-03-29 北京聚恒博联科技有限公司 一种凸透镜后焦距检测装置

Also Published As

Publication number Publication date
CN112577718A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
Heinrich et al. Additive manufacturing of optical components
CN105651189B (zh) 用于手机盖板中油墨层厚度测量的无损在线检测设备
US20150138248A1 (en) Image Providing Apparatus, Method and Computer Program
CN105164507A (zh) 用于确定对象的空间结构的方法和系统
TW200306636A (en) Measuring apparatus
US10295330B2 (en) Method and system for measuring thickness of glass article
CN105167766A (zh) 血液流量测量设备及血液流量测量方法
Wang A one-shot-projection method for measurement of specular surfaces
CN109391758A (zh) 对样品保持器中的样品进行成像
Deng et al. Vision measurement error analysis for nonlinear light refraction at high temperature
US10267969B2 (en) Optical device, optical system, and ticket gate
WO2021063320A1 (zh) 实现光栅焦距检测的装置及光栅焦距检测仪
CN110502947B (zh) 结构光测深系统、测量信息码深度的方法及数据处理方法
CN106470792B (zh) 3d打印机、打印方法及镜头模组
Turgalieva et al. Autocollimating systems for roll angle measurement of large-scale object deformation
US20160366395A1 (en) Led surface emitting structured light
CN112964209B (zh) 一种基于接触式测量的离轴检测法
Shavrygina et al. Optical-electronic system controlling the position of a railway track with the help of reference marks
Wan et al. Efficient 3D scanning measurement system based on asymmetric trinocular vision and a multi-line laser
CN105973173B (zh) 一种用于视窗防护屏的测量系统
CN112577717A (zh) 实现光栅焦距检测的方法及装置、光栅焦距检测仪
Di et al. Two-dimensional (2D) displacement measurement of moving objects using a new MEMS binocular vision system
JPH09138108A (ja) 計測装置
CN105937889A (zh) 一种测量装置
Park et al. Quasi-retroreflection from corner cubes with refractive free-form surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20871429

Country of ref document: EP

Kind code of ref document: A1