WO2021062909A1 - 同轴异步双驱动涡流涡轮机 - Google Patents

同轴异步双驱动涡流涡轮机 Download PDF

Info

Publication number
WO2021062909A1
WO2021062909A1 PCT/CN2019/113948 CN2019113948W WO2021062909A1 WO 2021062909 A1 WO2021062909 A1 WO 2021062909A1 CN 2019113948 W CN2019113948 W CN 2019113948W WO 2021062909 A1 WO2021062909 A1 WO 2021062909A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
frame
main shaft
shaft
asynchronous dual
Prior art date
Application number
PCT/CN2019/113948
Other languages
English (en)
French (fr)
Inventor
徐文和
Original Assignee
徐文和
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐文和 filed Critical 徐文和
Publication of WO2021062909A1 publication Critical patent/WO2021062909A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/121Blades, their form or construction
    • F03B3/123Blades, their form or construction specially designed as adjustable blades, e.g. for Kaplan-type turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/14Rotors having adjustable blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to the field of generators, in particular to hydraulic engines or wind engines, in particular to a coaxial asynchronous dual-drive vortex turbine, the IPC classification number involved is F03B or F03D.
  • the source of energy is the velocity generated by the fluid flow.
  • the carrier such as (air, water) still exists.
  • the theorem of immortality no matter what kind of carrier is used, when the fluid velocity is absorbed by the blade and converted into mechanical energy, the velocity is absorbed, but the carrier still exists. If there is no place, there will be resistance, and there will be no new velocity.
  • the mechanical energy brought by the rotation is lost at the speed. How to deal with these carriers without speed is the key to the technological breakthrough. It is necessary to handle both speed and discharge the carrier medium that has lost speed. It can be seen that the carrier medium is The energy brought by the fluid medium of speed is continuously absorbed without affecting the subsequent energy entry, which is the most ideal wind turbine.
  • the application publication number CN 107044375 A discloses a hydraulic turbine and a hydroelectric power generation device with the hydraulic turbine.
  • the connecting assembly 4 connected to the central rotating assembly 3 is Rotation will cause balance problems, increase the resistance of the output shaft, and reduce the energy efficiency conversion rate; because the connecting assembly 4 is located in the fluid path, the connecting rod 41 of the connecting assembly 4 is set too detailed and cannot support the weight of the blade 53, and the connecting rod 41 is set. Too thick, it will increase the resistance of the system as a whole, so this scheme has obvious defects.
  • the purpose of the present invention is to provide a coaxial asynchronous double-drive vortex turbine, which fundamentally solves the above-mentioned problems, and has the advantages of simple and compact structure, low cost, high energy conversion efficiency and the like.
  • the coaxial asynchronous dual-drive vortex turbine includes a frame (7), a main shaft (3) vertically arranged in the middle of the frame (7) and located on the input end of the generator, and A rotatable blade (4) circumferentially arranged on the outer edge of the main shaft (3), and the blade shaft (6) is hinged on the frame (7).
  • the blade body when the frame (7) rotates, the blade body is always located in the frame ( In 7), the circumscribed circle of the polygon formed by the connecting line of the blade rotating shaft (6) is a perfect circle, the center of the perfect circle is located on the central axis of the main shaft (3), and the connecting line of adjacent blade rotating shafts (6) is provided with a vertical A straight blocking lever (9) used to limit the rotation of the blade (4).
  • An obtuse angle of more than 100° is formed between the outer end of the blade (4) and the main body of the blade (4), and the obtuse angle is opposite to the main shaft (3).
  • the frame After the fluid medium enters the frame (7), the frame is driven to rotate, forming a flow velocity difference on the left and right sides, and forming the first to fourth sections; when the blade (4) is located in the first to second section, the main body of the blade is located on the blade shaft ( 6) On the connection line with the main shaft; when the blade (4) is in the third section, the blade body is restricted by the stop rod (9); when the blade (4) is in the fourth section, the blade body is parallel to the fluid medium.
  • the present invention can not only realize large profits by using clean energy, but if the present invention can be fully utilized, it can replace petrochemical energy on a large scale in the future.
  • the support structure is arranged as a symmetrical frame structure, so that the main shaft 3 is balanced and compressed in the circumferential direction, so as to avoid the main shaft 3 from deflection and increase the resistance.
  • the blade 4 always rotates inside the frame 7, which can effectively utilize the kinetic energy of the fluid to perform work, effectively avoiding the situation that the supporting structure blocks the fluid.
  • the power of the vertical axis turbine is proportional to the difference in the vertical projection area of the blades acting on both sides of the vertical axis.
  • Figure 1 is a schematic diagram of the front view of the structure of the present invention.
  • Figure 1-1 is a schematic top view of the structure of the present invention.
  • Figure 2 is an elevation view of the auxiliary shaft and blades of this aspect.
  • Figure 2-1 is a cross-sectional view of the auxiliary shaft and blades of the present invention.
  • Figure 3 is a schematic diagram of the structure in use.
  • Fig. 4 is a schematic diagram of the action process of the present invention.
  • Figure 5 is a schematic diagram of the working principle of the technical solution disclosed in the publication number CN 107044375 A of the invention patent application.
  • the coaxial asynchronous dual-drive vortex turbine includes a frame 7, a main shaft 3 vertically arranged in the middle of the frame 7 and located on the input end of the generator, and rotatable blades 4 arranged on the outer edge of the main shaft 3 in the circumferential direction.
  • the blade rotating shaft 6 is hinged.
  • frame 7 When the frame 7 rotates, the main body of the blade is always located in the frame 7, and the circumscribed circle of the polygon formed by the connecting line of the blade rotating shaft 6 is a perfect circle, and the center of the perfect circle is located on the central axis of the main shaft 3, and adjacent blade rotating shafts 6 are connected to each other.
  • a vertical blocking lever 9 for limiting the rotation of the blade 4 is provided.
  • an obtuse angle of more than 100° is formed between the outer end of the blade 4 and the main body of the blade, and the obtuse angle is opposite to the main shaft 3.
  • the frame 7 After the fluid medium enters the frame 7, the frame 7 is driven to rotate, forming a flow velocity difference on the left and right sides, and forming the first to fourth sections; when the blade 4 is in the first to second section, the blade body is located between the blade shaft 6 and the main shaft On the line; when the blade 4 is in the third interval, the blade body is restricted by the stop rod 9; when the blade 4 is in the fourth interval, the blade body is parallel to the fluid medium.
  • the present invention uses two driving modes for collecting energy around the vertical axis by using turbine blades:
  • a part of the fluid V1 on the left side close to the main shaft 3 is guided to the right side of the main shaft 3 through the guide groove 5 and integrated with the fluid V2 to form a unit.
  • the vortex rushes to the opened blade 4 pinned by the restricted stop lever 9.
  • the opened blade 4 also acts as a force arm to push the auxiliary shaft 6 to the outside and connect the arm rod 7 to generate a clockwise force.
  • the lower driving area D2 There is a momentary difference between the driving force and the upper driving area D1, so it is called the lower driving area D2.
  • the two driving forces are combined to form a working mode.
  • This is the coaxial asynchronous vortex turbine referred to in the present invention.
  • coaxial means that the coaxial in the present invention refers to all the arms, auxiliary shafts and blades, regardless of the tension Open and close, their working states are all rotating in one direction around the main shaft.
  • Asynchronous means that the two drive zones have the same working principle and different working postures. The two drive zones have only momentary difference driving. In the conversion zone where the blade absorbs the speed and converts the mechanical energy, the vortex refers to the formation of a surrounding vortex under the action of the guide groove.
  • This turbine can not only absorb the speed-carrying fluid through the blade, but also can The absorbed fluid medium is easily discharged, and resistance is minimized during the movement.
  • the new blade meets the new flow rate and repeats the work, which maximizes the blade's energy collection ability and improves the mechanical energy conversion ability.
  • a main shaft 3 is provided on the base 1.
  • the upper end of the main shaft 3 is connected to the motor and the transmission system 2.
  • the upper and lower parts of the main shaft 3 are respectively fixedly connected with a symmetrical arm rod 7, and the outer ends of the upper and lower arm rods 7 are fixedly connected to a booster rod 8.
  • the upper and lower arm rods 7 are provided with a convertible auxiliary shaft 6, a blade 4 connected to the auxiliary shaft, and an angled vortex groove 5 is provided at the end of the blade 4.
  • V1 mainly flows to the left side of the main shaft 3 and impacts on the upper half drive area D1 (first section), and a small part of V1 is divided by the vortex groove 5 On the right side, it flows to the second drive zone with the V2 on the right side.
  • the driving force is the main power source from the small part V1 near the guide groove 5 and the V2 on the right side of the main shaft.
  • the distance between the main shaft 3 and the left fluid medium V1 is the closest, and this part is guided to the right through the guide groove. According to the principle of leverage, it is guided by the chute 5 and moves simultaneously with the right side V2 of the main shaft 3.
  • the blade 4 forms a vortex under the guidance of the chute on both sides V2, and also forms a force on each open blade 4 in the lower half D2.
  • the blade is transformed into a force arm, pushing the auxiliary shaft 6 to connect the arm rod 7 to produce a The force is clockwise.
  • the inner lower half of the drive zone D2 (third interval) The flow rate is far greater than 0.
  • the fluid medium that has absorbed the velocity is discharged to VP2, and the upper and lower halves work synchronously to form a complete vortex. Combination of forces.
  • the entire power generation system When the entire power generation system is placed in the river, it will continue to circulate under the drive of water flow according to the process of ...A>B>C>A in Figure 4, and drive the main shaft 3 to rotate clockwise.
  • the blade body is located on the line connecting the blade shaft 6 and the main shaft 3
  • the blade body is parallel to the fluid medium
  • similar situations for the convenience of expression, the ideal state of the "blade body” is completely overlapped with the "blade Express the connection between the shaft and the main shaft” or "fluid medium flow direction”.
  • the fluid may oscillate due to the velocity, flow, and direction of the fluid, and the above-mentioned exactly the same situation will always occur.
  • the lower left (D1) is defined as the first interval
  • the upper left is defined as the second interval
  • the upper right (D2) is defined as the third interval according to the clockwise rotation direction of Fig. 3.
  • the interval, the lower right is defined as the fourth interval.
  • the blades can also be arranged in the mirror image direction of FIG. 3.
  • the lower right is the first interval
  • the upper right is the second interval
  • the upper left is the third interval
  • the lower left is the fourth interval.
  • the main shaft rotates counterclockwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Hydraulic Turbines (AREA)
  • Wind Motors (AREA)

Abstract

一种同轴异步双驱动涡流涡轮机,包括框架(7)、竖直设置在框架(7)中部且位于发电机输入端上的主轴(3)、沿周向设置在主轴(3)外缘的可旋转的叶片(4),叶片转轴(6)铰接在框架(7)上,框架(7)旋转时,叶片主体始终位于框架(7)内,叶片转轴(6)连线构成的多边形的外接圆为正圆形,正圆形的圆心位于主轴(3)的中轴上,相邻叶片转轴(6)连线上设有竖直的且用于限位叶片(4)旋转的挡杆(9)。该涡轮机具有结构简单紧凑、造价低廉、能量转化效率高等优点。

Description

同轴异步双驱动涡流涡轮机 技术领域
本发明涉及发电机领域,尤其涉及液力发动机或风力发动机,具体说是一种同轴异步双驱动涡流涡轮机,其涉及的IPC分类号大类为F03B或F03D。
背景技术
人类利用风能和水流动能,由来已久,如水车和著名的荷兰风车,时至今日,洋流发电、风力发电基本上都是参照荷兰风车的原理改进的,利用这种方法目前最理想的有效转化功率最高值只能为0.26,若风或者水的动能全部被叶片吸收,叶片后方空气与前方空气双方气压形成对峙局面,就像一群人进旋转门,刚通过的人筋疲力竭,无法继续前行(风通过叶片100%动能转换),因此,门外的人由于前面的阻碍无法继续前行(外面的风无法继续通过叶片)所以叶片也就不转了。
而这种风轮机没有解决叶片的能量转换与介质流动问题,能量的来源是流体流动产生速度,当流体速度被叶片吸收的转化为机械能后,载体如:(空气、水)依然存在,根据物质不灭定理,无论利用哪种载体,当流体速度被叶片吸收转化为机械能后,速度被吸收了,但载体依然存在,如果没有去处就会形成阻力,就不会有新的速度,没有了新的速度也就没了转动带来的机械能,如何处理这些没有了速度的载体,才是技术突破的关键所在,既要速度又要处理排出这些失去速度的载体介质,由此可见,在载有速度的流体介质带来的能量被源源不断的吸收掉又不影响后续的能量进入,才是最理想的风轮机。
如申请公布号CN 107044375 A公开的一种水轮机及具有该水轮机的水力发电装置,该技术方案中,在中心旋转组件3的中轴发生偏转时,与中心的旋转组件3相连的连接组件4在旋转时会导致平衡性问题,增加输出轴阻力,降低能效转化率;由于连接组件4位于流体路径上,连接组件4的连接杆41设置的过细则无法支持叶片53的重量,连接杆41设置的太粗,则会增加系统整体的阻力,因此该方案存在明显缺陷。
发明内容
本发明的目的是提供一种同轴异步双驱动涡流涡轮机,从根本上解决了上述问题,其具有结构简单紧凑、造价低廉、能量转化效率高等优点。
为实现上述目的,本发明提供了如下技术方案:该同轴异步双驱动涡流涡轮机包括框架(7)、竖直设置在框架(7)中部且位于发电机输入端上的主轴(3)、沿周向设置在主轴(3)外缘的可旋转的叶片(4),叶片转轴(6)铰接在框架(7)上,其技术要点是:框架(7)旋转时,叶片 主体始终位于框架(7)内,叶片转轴(6)连线构成的多边形的外接圆为正圆形,正圆形的圆心位于主轴(3)的中轴上,相邻叶片转轴(6)连线上设有竖直的且用于限位叶片(4)旋转的挡杆(9)。
叶片(4)外端与叶片(4)主体之间呈100°以上的钝角,且该钝角与主轴(3)相对。
流体介质进入框架(7)后,驱动框架旋转,在左右两侧形成流速差,并形成第一至第四区间;当叶片(4)位于第一至第二区间时,叶片主体位于叶片转轴(6)与主轴的连线上;当叶片(4)位于第三区间时,叶片主体通过挡杆(9)限位;当叶片(4)位于第四区间时,叶片主体与流体介质平行。
本发明的有益效果:本发明不仅可以实现利用清洁能源大幅盈利,若能充分利用本发明,将来可以大规模的取代石化能源。
将支撑结构设置成对称的框架结构,使主轴3周向上平衡受压,从而避免主轴3发生偏转导致阻力增加。并且,叶片4始终在框架7内侧旋转,可有效利用流体动能做功,有效避免出现支撑结构阻挡流体的情况。
依据阻力定律,垂直轴的涡轮机的功率与作用在垂直轴两侧叶片垂直投影面积差的大小成正比、差别越大功率越大,本发明在旋转运动时,左侧叶片4关闭时是叶片扫过面积50%、与之对称的只有框架7的上下臂杆、辅助轴6会产生少许阻力,而臂杆和辅助轴6的侧面又被做成楔形,尽量减少阻力。
在导流槽流外角作用下将主轴左侧少量流速V2进行引导与主轴右侧V2汇合于第二驱动区D2形成涡流,产生一个推力,作用于导流槽内角,与第一驱动区D1产生的推力形成合力。
安置时对有流速的流体方向没有任何要求,无需通过复杂的电子数控设施来调整设备的方向,也无需特意为设备建造水道、堤坝等设施,任意方向有流速的流体冲击叶片时,涡轮机便可进行顺时针旋转。
当采用对称分列布置时,可有效的增加运行时做功的稳定性。
附图说明
图1为本发明的主视结构示意图。
图1-1为本发明的俯视结构示意图。
图2为本方面辅助轴及叶片立面图。
图2-1为本发明辅助轴及叶片剖面图。
图3为使用状态的结构示意图。
图4为本发明的动作过程示意图。
图5为公布号CN 107044375 A发明专利申请公开的技术方案的工作原理示意图。
附图标记说明:1基座、2电机及变速系统、3主轴、4叶片、5涡流槽、6叶片转轴、 7框架、8助力杆、9挡杆。
具体实施方式
以下结合图1~5,通过具体实施例详细说明本发明的内容。该同轴异步双驱动涡流涡轮机包括框架7、竖直设置在框架7中部且位于发电机输入端上的主轴3、沿周向设置在主轴3外缘的可旋转的叶片4,叶片转轴6铰接在框架7上。框架7旋转时,叶片主体始终位于框架7内,叶片转轴6连线构成的多边形的外接圆为正圆形,正圆形的圆心位于主轴3的中轴上,相邻叶片转轴6连线上设有竖直的且用于限位叶片4旋转的挡杆9。为提高流体作用力以及结构稳定性,叶片4外端与叶片主体之间呈100°以上的钝角,且该钝角与主轴3相对。
流体介质进入框架7后,驱动框架7旋转,在左右两侧形成流速差,并形成第一至第四区间;当叶片4位于第一至第二区间时,叶片主体位于叶片转轴6与主轴的连线上;当叶片4位于第三区间时,叶片主体通过挡杆9限位;当叶片4位于第四区间时,叶片主体与流体介质平行。
本发明围绕垂直轴利用涡轮叶片采集能源的两种驱动方式:
根据阻力定律,流体的方向与切割它的移动方向上的任意面积形成阻力。冲向叶片4形成垂直面,所有流动力都被叶片4 100%吸收转化为机械能,在V1与叶片4的推力作用下,推动主轴3自转,此时叶片4外部VP1的流速为0m/s,它失去流动力,只剩下载体,当下一组叶片进入垂直面时,上一组叶片进入自动排水区VP2,此时VP2的流速为0m/s,因此,这部分运动过程称为上半驱动区D1。
根据杠杆原理,与主轴3的流体距离越远,推力越大,近则相反,把左侧靠近主轴3的一部流体V1经导流槽5导向主轴3右侧与流体V2合成一体,形成一股涡流冲向受限位挡杆9牵制的已经张开的叶片4,此时张开的叶片4也成为力臂向外侧推动辅助轴6连接臂杆7产生一个顺时针作用力,由于这部分驱动力与上半驱动区D1有一个瞬时差,所以称为下半驱动区D2。
两种驱动力结合形成一种工作模式,这就是本发明所说的同轴异步涡流涡轮机,所谓“同轴”是指本发明所说同轴是所有的臂杆、辅助轴及叶片,无论张开与闭合,它们的工作状态都是围绕主轴朝一个方向旋转,“异步”是指两个驱动区同样的作功原理、不同的工作姿态,两者只有瞬间差别驱动,双驱是指前后两处叶片吸收速度转化机械能的转化区,所说的涡流是指在导流槽作用下,形成环绕涡流,本涡轮机的最大特征是既能把携带速度的流体经过叶片全部吸收,又能把这些已经吸收完的流体介质轻松排出去,同时运动过程中最大 限度减少阻力,新的叶片又迎接新的流速周而复始的工作,最大限度提升叶片对能量的采集能力同时提升机械能转化能力。
表1实验中心测试报告
参数:半径0.5m,高0.6m,直径1m,叶片扫过面积0.6m 2
Figure PCTCN2019113948-appb-000001
表2同类技术对比
Figure PCTCN2019113948-appb-000002
英国的“Delta Strean”海洋发电项目是目前成功并网发电的最大功率海洋发电装置,号称“世界之最”它就是最典型的模拟贝茨先生“最理想的风轮机”理论基础发明的,经计算其最大发电功率仅与我们实验设备在水流速1.7m/s中发电功率相等,根据贝茨定理的计算,两者功率大小与流速的三次方成正比,两者流速比为33/1.73=5.5倍,半径比为15m/0.5m=30倍,经计算得出,若本发明应用在英国Delta Strean项目水域,单机装机容量可达20兆瓦,以上述结果看,突破极限已无悬念,最高能达到多少,需要专家做新的极限定理认证。
在基座1上设置主轴3,主轴3的上端连接在电机及变速系统2,在主轴3上下部分分别与固定连接对称臂杆7,上下部分的臂杆7外端固定互相连接助力杆8,在上下部分的 臂杆7设置能转换的辅助轴6,与辅助轴相连接的叶片4,叶片4端部设有折角涡流槽5。
以主轴3为中心,流体介质分为V1、V2两个流速,其中V1主要流向主轴3的左侧向上半驱动区D1(第一区间)冲击,另有少部分V1靠涡流槽5被分向右侧,与右侧的V2流向第二驱动区运动,当V1进入上半驱动区D1开始,冲向叶片4形成直角时,功率全部被叶片吸收,在V1与叶片4形成推力作用下,推动主轴3自转,当下一组叶片进入垂直角时,上一组叶片进入排水区VP2以此类推进行循环往复运动,形成上半区D1运动周期,下半区D2是以V1、V2的合力为主要驱动力,从靠近导流槽5的少部分V1和主轴右侧的V2为主要动力来源。
主轴3与左侧流体介质V1距离最近,把这部分经导流槽导向右侧,根据杠杆原理,通过溜槽5导向,与主轴3右侧V2同时运动,当主轴3右侧V2冲向外部的叶片4,在两侧V2在溜槽引导下形成涡流,同时也形成一个作用力在下半区D2各个张开的叶片4上,此时叶片转化为力臂,推动辅助轴6连接臂杆7产生一个顺时针作用力,当辅助轴6与主轴3与流体方向形成一条直线时,此时叶片4外部是VP2,VP2=VP1,流速均为0,而内部下半驱动区D2(第三区间)的流速远大于0,流体冲击叶片4时内外流速差越大,冲击力越强,把已被吸收速度的流体介质排出到VP2,上下半区同步工作,形成一个完整涡流,周而复始的运动,产生的作用力之合。将整个发电系统置于河道中时,将按照图4中…A>B>C>A…的过程在水流的驱动下不断循环,并驱动主轴3顺时针旋转。
文中表述的,“叶片主体位于叶片转轴6与主轴3的连线上”,“叶片主体与流体介质平行”等类似情况,为了表述方便,而用理想状态下“叶片主体”完全重合于“叶片转轴与主轴的连线”或“流体介质流向”进行表述。实际情况中,流体由于流速、流量、流向可能发生摆动,并会一直出现上述完全相同的情况。
【贝茨定律】(Betz'Law)又称为贝茨极限定理,是风力发电中关于风能利用效率的一条基本的理论,它是由德国物理学家阿尔伯特·贝茨(AlbertBetz)于1919年提出的。它是建立在一个假定“理想风轮”的基础之上,即风机能接受通过风轮的流体的所有动能,且流体无阻力,流体是连续的、不能压缩的流体。在这种理想情况下风能所能转换成动能的极限比值为16/27约为59%。
【第一至第四区间】文中为方便表述工作原理,按照图3的顺时针旋转方向,将左下(D1)定义为第一区间,左上定义为第二区间,右上(D2)定义为第三区间,右下定义为第四区间。
当然,在本发明构思的基础上,也可将叶片按照图3的镜像方向设置。此时,右下 为第一区间,右上为第二区间,左上为第三区间,左下为第四区间。且主轴呈逆时针旋转。

Claims (3)

  1. 一种同轴异步双驱动涡流涡轮机,包括框架(7)、竖直设置在框架(7)中部且位于发电机输入端上的主轴(3)、沿周向设置在主轴(3)外缘的可旋转的叶片(4),叶片转轴(6)铰接在框架(7)上,其特征在于:框架(7)旋转时,叶片主体始终位于框架(7)内,叶片转轴(6)连线构成的多边形的外接圆为正圆形,正圆形的圆心位于主轴(3)的中轴上,相邻叶片转轴(6)连线上设有竖直的且用于限位叶片(4)旋转的挡杆(9)。
  2. 根据权利要求1所述的同轴异步双驱动涡流涡轮机,其特征在于:叶片(4)外端与叶片主体之间呈100°以上的钝角,且该钝角与主轴(3)相对。
  3. 根据权利要求1或2所述的同轴异步双驱动涡流涡轮机,其特征在于:流体介质进入框架(7)后,驱动框架(7)旋转,在左右两侧形成流速差,并形成第一至第四区间;当叶片(4)位于第一至第二区间时,叶片主体位于叶片转轴(6)与主轴的连线上;当叶片(4)位于第三区间时,叶片主体通过挡杆(9)限位;当叶片(4)位于第四区间时,叶片主体与流体介质平行。
PCT/CN2019/113948 2019-10-05 2019-10-29 同轴异步双驱动涡流涡轮机 WO2021062909A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910946397.6A CN110594092B (zh) 2019-10-05 2019-10-05 同轴异步双驱动涡流涡轮机
CN201910946397.6 2019-10-05

Publications (1)

Publication Number Publication Date
WO2021062909A1 true WO2021062909A1 (zh) 2021-04-08

Family

ID=68865612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113948 WO2021062909A1 (zh) 2019-10-05 2019-10-29 同轴异步双驱动涡流涡轮机

Country Status (2)

Country Link
CN (1) CN110594092B (zh)
WO (1) WO2021062909A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2104318U (zh) * 1991-05-13 1992-05-13 李熙赞 风力发电装置
EP1205661A1 (en) * 2000-11-13 2002-05-15 Isidro U. Ursua Vertical axis wind turbine
CN101109361A (zh) * 2007-08-17 2008-01-23 霍家文 一种叶片可摆动的风力机
CN201588724U (zh) * 2009-09-14 2010-09-22 李启山 内推力低阻抗水流发电机叶轮
CN204140267U (zh) * 2014-09-24 2015-02-04 重庆齿轮箱有限责任公司 一种水流发电获能装置
CN106089551A (zh) * 2016-08-17 2016-11-09 重庆齿轮箱有限责任公司 一种水流动力发电装置
CN110259621A (zh) * 2019-07-26 2019-09-20 东北大学 一种摆动叶片式水平轴水轮机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2104318U (zh) * 1991-05-13 1992-05-13 李熙赞 风力发电装置
EP1205661A1 (en) * 2000-11-13 2002-05-15 Isidro U. Ursua Vertical axis wind turbine
CN101109361A (zh) * 2007-08-17 2008-01-23 霍家文 一种叶片可摆动的风力机
CN201588724U (zh) * 2009-09-14 2010-09-22 李启山 内推力低阻抗水流发电机叶轮
CN204140267U (zh) * 2014-09-24 2015-02-04 重庆齿轮箱有限责任公司 一种水流发电获能装置
CN106089551A (zh) * 2016-08-17 2016-11-09 重庆齿轮箱有限责任公司 一种水流动力发电装置
CN110259621A (zh) * 2019-07-26 2019-09-20 东北大学 一种摆动叶片式水平轴水轮机

Also Published As

Publication number Publication date
CN110594092A (zh) 2019-12-20
CN110594092B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
CA2547748C (en) Darrieus waterwheel turbine
CN205445884U (zh) 一种阻力型水轮机及水力发电系统
CN105484930A (zh) 一种阻力型水轮机及水力发电系统
EP3096002B1 (en) Shutter door-type load regulating apparatus and marine power electric generator apparatus applying same
CN107237718A (zh) 一种吸收潮汐能的多级叶轮转动装置
KR101817229B1 (ko) 다중 풍력발전장치
JP6954739B2 (ja) 発電機用のロータ
CN209741790U (zh) 集成波浪能与潮流能发电装置的梳式防波堤
CN104863780A (zh) 水轮机发电装置
WO2021062909A1 (zh) 同轴异步双驱动涡流涡轮机
CN110030137A (zh) 一种新型的雨水发电装置
CN104047796A (zh) 一种利用自然流动的河水进行发电的装置
CN106089555A (zh) 一种潮流能发电动能转换装置
CN106870258B (zh) 一种江河流叶片可变角水轮发电机组
CN205895485U (zh) 一种潮流能发电动能转换装置
CN107829874A (zh) 一种基于复合式多级潮流能发电的水轮机
CN210370998U (zh) 一种垂直水轮发电机
CN108412669B (zh) 水动能发电机
TWM538985U (zh) 一種導流裝置
CN203532155U (zh) 流体能量收集转换装置和能量传递输出装置及发电设备
CN205578167U (zh) 一种新型双通道同向推动涡轮发电装置
CN204436680U (zh) 一种高效斜击式水轮发电机
CN103470443B (zh) 流体能量收集转换装置和能量传递输出装置及发电设备
CN210948969U (zh) 一种滚筒式动能转换机
CN203374422U (zh) 一种利用自然流动的河水进行发电的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19948112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19948112

Country of ref document: EP

Kind code of ref document: A1