WO2021062838A1 - 通信方法、设备及系统 - Google Patents

通信方法、设备及系统 Download PDF

Info

Publication number
WO2021062838A1
WO2021062838A1 PCT/CN2019/109767 CN2019109767W WO2021062838A1 WO 2021062838 A1 WO2021062838 A1 WO 2021062838A1 CN 2019109767 W CN2019109767 W CN 2019109767W WO 2021062838 A1 WO2021062838 A1 WO 2021062838A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
subframe
target
wake
signal
Prior art date
Application number
PCT/CN2019/109767
Other languages
English (en)
French (fr)
Inventor
李军
铁晓磊
米翔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980097444.2A priority Critical patent/CN113966636B/zh
Priority to PCT/CN2019/109767 priority patent/WO2021062838A1/zh
Publication of WO2021062838A1 publication Critical patent/WO2021062838A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to communication methods, equipment and systems.
  • the terminal device has two states. One is the connected state, which means that the terminal device has established a connection with the network device and can communicate directly; the other is the idle state or sleep state, which means that the terminal device cannot Communicate directly with network equipment. When there is no service data to send or receive, the terminal device can enter the idle state to reduce power consumption.
  • a network device When a network device wants to send business data to a terminal device or needs a terminal device to report some business data, it can notify the terminal device through the paging mechanism, and the terminal device in the idle state will wake up periodically to monitor the physical downlink control channel (PDCCH) ), detecting whether there is a paging scheduling message in the PDCCH, if there is a paging scheduling message and it is a paging scheduling for itself, the idle state terminal device switches to the connected state to send or receive service data. Among them, the position where the terminal device wakes up is called a paging opportunity (PO).
  • PDCCH physical downlink control channel
  • the network device can transmit a wakeup signal (Wakeup signal, WUS) to the terminal device before the PO, and the WUS is used to indicate that the terminal device needs to monitor the PDCCH.
  • WUS wakeup signal
  • the terminal device detects WUS before the PO, it needs to continue to monitor the PDCCH; if the terminal device does not detect the WUS before the PO, the terminal device may not monitor the PDCCH, which can save the power consumption of the terminal device.
  • the base station cannot perform downlink data or downlink channel transmission on the corresponding physical resource block (PRB), which will cause the entire downlink channel to be blocked, thereby affecting the scheduling of the base station.
  • PRB physical resource block
  • the embodiments of the present application provide a communication method, device, and system, which are used to solve the problem that the downlink signal is blocked during the current sending time of the wake-up signal, thereby affecting the scheduling of the base station.
  • a communication method includes: determining a first resource, where the first resource is a downlink transmission interval resource; if the first resource and the second resource overlap in the time domain, on the third resource Receiving a wake-up signal, where the second resource is a resource used to transmit the wake-up signal determined according to the maximum duration of the wake-up signal; the third resource includes the second resource divided by the first resource in the time domain Some or all of the resources outside the overlap. In other words, the third resource includes part of the resources of the second resource, and the third resource and the first resource do not overlap in the time domain.
  • the second resource used to transmit the wake-up signal and the downlink transmission interval resource overlap in the time domain
  • the second resource will be divided by the part that overlaps the first resource in the time domain.
  • the wake-up signal is received on some or all of the other resources, and the wake-up signal is not received in the overlapping part of the first resource and the second resource in the time domain. Therefore, the overlapping part of the first resource and the second resource in the time domain can perform downlink data or downlink Channel transmission can reduce downlink channel congestion and reduce the impact on base station scheduling.
  • receiving the wake-up signal on the third resource includes: when (P ⁇ the maximum duration of the wake-up signal) is not less than (Q ⁇ the first threshold), if the first resource and the second resource overlap in the time domain, and the wake-up signal is received on the third resource, P and Q are both positive integers.
  • the values of P and Q may both be 1. That is to say, in the embodiment of the present application, when (P ⁇ maximum duration of the wake-up signal) is not less than (Q ⁇ first threshold), it is further determined whether the first resource and the second resource overlap in the time domain. Otherwise, if (P ⁇ maximum duration of the wake-up signal) is less than (Q ⁇ first threshold), it is considered that there is no first resource in the wake-up signal transmission.
  • a communication method includes: determining a first resource, where the first resource is a downlink transmission interval resource; if the first resource and the second resource overlap in the time domain, the third resource is Sending a wake-up signal, where the second resource is a resource used to transmit the wake-up signal determined according to the maximum duration of the wake-up signal; the third resource includes the second resource divided by the first resource in the time domain Some or all of the resources outside the overlap.
  • the second resource will be divided by the part that overlaps the first resource in the time domain.
  • the wake-up signal is received on some or all of the other resources, and the wake-up signal is not received in the overlapping part of the first resource and the second resource in the time domain. Therefore, the overlapping part of the first resource and the second resource in the time domain can perform downlink data or downlink Channel transmission can reduce downlink channel congestion and reduce the impact on base station scheduling.
  • sending the wake-up signal on the third resource includes: (P ⁇ maximum duration of the wake-up signal) not less than ( In the case of Q ⁇ first threshold), if the first resource and the second resource overlap in the time domain, the wake-up signal is sent on the third resource, and both P and Q are positive integers.
  • the values of P and Q may both be 1. That is to say, in the embodiment of the present application, when (P ⁇ maximum duration of the wake-up signal) is not less than (Q ⁇ first threshold), it is further determined whether the first resource and the second resource overlap in the time domain. Otherwise, if (P ⁇ maximum duration of the wake-up signal) is less than (Q ⁇ first threshold), it is considered that there is no first resource in the wake-up signal transmission.
  • the first subframe of the overlapping portion of the first resource and the second resource in the time domain is the x1-th target subframe of the second resource Frame
  • the last subframe of the overlapping part of the first resource and the second resource in the time domain is the y1-th target subframe of the second resource
  • x1 is a positive integer less than or equal to N
  • y1 is less than N
  • the target subframe is a subframe that can be used to map the sequence of the wake-up signal
  • N is the number of target subframes that are actually used to map the sequence of the wake-up signal
  • the third resource includes: the x1th (X1-1) target subframes before the target subframe, and (N-y1) target subframes after the y1-th target subframe.
  • the wake-up signal on the x1-th target subframe to the y1-th target subframe on the second resource is dropped.
  • being dropped can be understood as that the x1-th target subframe to the y1-th target subframe on the second resource are also used to map the sequence of the wake-up signal, but not used Transmit the wake-up signal.
  • the first subframe of the overlapping portion of the first resource and the second resource in the time domain is the x2th target subframe of the second resource Frame
  • the last subframe of the overlapping portion of the first resource and the second resource in the time domain is the y2-th target subframe of the second resource
  • x2 is a positive integer less than or equal to N
  • y2 is greater than or equal to A positive integer of N
  • the target subframe is a subframe that can be used to map the sequence of the wake-up signal
  • N is the number of target subframes that are actually used to map the sequence of the wake-up signal
  • the third resource includes: (x2-1) target subframes before x2 target subframes.
  • the wake-up signal on the x2th target subframe to the Nth target subframe on the second resource is dropped.
  • being dropped can be understood as that the x2th target subframe to the Nth target subframe on the second resource are also used to map the sequence of the wake-up signal, but not used for Transmit the wake-up signal.
  • the N target subframes for mapping the wake-up signal sequence include the first subframe of the second resource to the Nth subframe of the second resource.
  • the first subframe of the overlapping portion of the first resource and the second resource in the time domain is the x3th target subframe of the second resource Frame
  • the last subframe of the overlapping part of the first resource and the second resource in the time domain is the y3th target subframe of the second resource
  • x3 is a positive integer less than or equal to N
  • y3 is less than or equal to A positive integer of M
  • the target subframe is a subframe that can be used to map the sequence of the wake-up signal
  • N is the number of target subframes actually used to map the sequence of the wake-up signal
  • M is the maximum duration of the wake-up signal
  • the third resource includes: S1 target subframes before the x3th target subframe, and S2 target subframes after the y3th target subframe, where S1 Is an integer, S2 is an integer, S1+S2 ⁇ N.
  • the sequence of the wake-up signal from the x3th target subframe to the Nth target subframe is mapped to the (y3+1)th target subframe to the (y3+S2)th target subframe, which is also This means that the wake-up signal on the x3th target subframe to the Nth target subframe is postpone.
  • the postpone of the wake-up signal can be understood as the wake-up signal on the time-domain overlapping resources of the first resource and the second resource, and the wake-up signal on the resources after the overlapping resources are both Delayed transmission, that is, assuming that the wake-up signal was originally sent on the target subframe Z when there is no first resource, when there is the first resource and the first resource is the target subframe Z, the wake-up signal is sent in the target subframe Z+1 , And then continue to send wake-up signals on the subsequent target subframes.
  • the time-domain start position of the third resource is ahead of the time-domain start position of the first resource or the second resource by K targets.
  • Frame where K is the number of subframes in the time domain overlapping part of the first resource and the second resource, and K is a positive integer.
  • the end position of the S2 target subframes after the y3th target subframe will not exceed the end position of the second resource, which can avoid when the wake-up signal is delayed
  • the end position of S2 target subframes after the y3th target subframe may exceed the end position of the second resource to the next wake-up signal resource, or may be related to the gap between the wake-up signal resource and the PO Overlap, or possible overlap with PO.
  • a communication method includes: determining a first resource, where the first resource is a downlink transmission interval resource; if the first resource and the fourth resource overlap in the time domain, receiving a wake-up call on the third resource Signal; where the fourth resource is a wake-up signal resource whose duration is less than or equal to the maximum duration of the wake-up signal, and the third resource and the first resource do not overlap in the time domain.
  • the wake-up signal is received on the third resource that does not overlap with the first resource in the time domain.
  • the overlapping part of the resource and the fourth resource receives the wake-up signal, so the overlapping part of the first resource and the second resource in the time domain can perform downlink data or downlink channel transmission, thereby reducing downlink channel congestion and reducing the impact on base station scheduling.
  • receiving the wake-up signal on the third resource includes: when (P ⁇ the maximum duration of the wake-up signal) is not less than (Q ⁇ In the case of the first threshold), if the first resource and the fourth resource overlap in the time domain, and the wake-up signal is received on the third resource, both P and Q are positive integers.
  • the values of P and Q may both be 1. That is, in the embodiment of the present application, only when (P ⁇ maximum duration of the wake-up signal) is not less than (Q ⁇ first threshold), it is further determined whether the first resource and the fourth resource overlap in the time domain.
  • (P ⁇ maximum duration of the wake-up signal) is less than (Q ⁇ first threshold)
  • a communication method includes: determining a first resource, where the first resource is a downlink transmission interval resource; if the first resource and the fourth resource overlap in the time domain, sending a wake-up call on the third resource Signal; where the fourth resource is a wake-up signal resource whose duration is less than or equal to the maximum duration of the wake-up signal, and the third resource and the first resource do not overlap in the time domain.
  • the wake-up signal is sent on the third resource that does not overlap with the first resource in the time domain, and the wake-up signal is not in the first resource.
  • the overlapping part of the resource and the fourth resource sends a wake-up signal, so the overlapping part of the first resource and the second resource in the time domain can perform downlink data or downlink channel transmission, thereby reducing downlink channel congestion and reducing the impact on base station scheduling.
  • sending a wake-up signal on the third resource includes: when (P ⁇ the maximum duration of the wake-up signal) is not less than (Q ⁇ In the case of the first threshold), if the first resource and the fourth resource overlap in the time domain, the wake-up signal is sent on the third resource, and both P and Q are positive integers.
  • the values of P and Q may both be 1. That is, in the embodiment of the present application, only when (P ⁇ maximum duration of the wake-up signal) is not less than (Q ⁇ first threshold), it is further determined whether the first resource and the fourth resource overlap in the time domain. Otherwise, if (P ⁇ maximum duration of the wake-up signal) is less than (Q ⁇ first threshold), it is considered that there is no first resource in the wake-up signal transmission.
  • the wake-up signal on the time-domain overlapping resources of the first resource and the fourth resource is discarded.
  • the first subframe of the overlapping portion of the first resource and the fourth resource in the time domain is the x1-th target subframe of the fourth resource, and the first resource and the fourth resource are in the time domain
  • the last subframe of the upper overlap part is the y1-th target subframe of the fourth resource
  • x1 is a positive integer less than or equal to N
  • y1 is a positive integer less than N
  • the target subframe can be used to map the wake-up signal
  • N is the number of target subframes actually used to map the sequence of the wake-up signal
  • the third resource includes: (x1-1) before the x1-th target subframe on the fourth resource ) Target subframes, and (N-y1) target subframes after the y1-th target subframe.
  • the wake-up signal on the x1-th target subframe to the y1-th target subframe on the fourth resource is dropped.
  • being dropped can be understood to mean that the x1-th target subframe to the y1-th target subframe on the fourth resource are also used to map the sequence of the wake-up signal, but not used for Transmit the wake-up signal.
  • the first subframe of the overlapping portion of the first resource and the fourth resource in the time domain is the x2-th target subframe of the second resource, and the first resource and the second resource are in the time domain
  • the last subframe of the upper overlapping part is the Nth target subframe of the fourth resource
  • x2 is a positive integer less than or equal to N
  • the target subframe is a subframe that can be used to map the sequence of the wake-up signal
  • N is The number of target subframes actually used to map the sequence of the wake-up signal
  • the third resource includes: (x2-1) target subframes before the x2-th target subframe on the fourth resource.
  • the wake-up signal on the x2th target subframe to the Nth target subframe on the fourth resource is dropped. It should be noted that, in the embodiment of the present application, being dropped can be understood as that the x2th target subframe to the Nth target subframe on the fourth resource are also used to map the sequence of the wake-up signal, but not used for Transmit the wake-up signal.
  • the N target subframes used for mapping the sequence of the wake-up signal include the first subframe of the fourth resource to the Nth subframe of the fourth resource.
  • the wake-up signal on the time-domain overlapping resources of the first resource and the second resource is delayed to be sent.
  • the first subframe of the overlapping portion of the first resource and the fourth resource in the time domain is the x3th target subframe of the second resource, and the first resource and the second resource are in the time domain
  • the last subframe of the overlapping part is the y3th target subframe of the second resource
  • x3 is a positive integer less than or equal to N
  • y3 is a positive integer less than or equal to N
  • the target subframe can be used to map the wake-up
  • the subframe of the signal sequence N is the number of target subframes actually used to map the sequence of the wake-up signal
  • the third resource includes: S1 target subframes before the x3th target subframe, And S2 target subframes after the y3th target subframe, where S1 is an integer, S2 is an integer, and S1+S2 ⁇ N.
  • the sequence of the wake-up signal from the x3th target subframe to the Nth target subframe is mapped to the (y3+1)th target subframe to the (y3+S2)th target subframe, which is also This means that the wake-up signal on the x3th target subframe to the Nth target subframe is postpone.
  • the postpone of the wake-up signal can be understood as the wake-up signal on the time-domain overlapping resources of the first resource and the second resource, and the wake-up signal on the resources after the overlapping resources are both Delayed transmission, that is, assuming that the wake-up signal was originally sent on the target subframe Z when there is no first resource, when there is the first resource and the first resource is the target subframe Z, the wake-up signal is sent in the target subframe Z+1 , And then continue to send wake-up signals on the subsequent target subframes.
  • the wake-up signal after subframe k is discarded, where subframe k is the end subframe of the second resource, and the second resource is based on the wake-up signal
  • the maximum duration determines the resource used to transmit the wake-up signal. Based on this solution, it can be avoided that the end position of S2 target subframes after the y3th target subframe may exceed the end position of the second resource to the next wakeup signal resource after the wakeup signal is postpone, or It may overlap with the gap between the wake-up signal resource and the PO, or may overlap with the PO.
  • the time domain start position of the third resource is ahead of the time domain start position of the fourth resource or the first resource by K target subframes, wherein, K is the number of target subframes in the time-domain overlapping part of the first resource and the second resource, K is a positive integer, and the second resource is determined according to the maximum duration of the wake-up signal for transmitting the wake-up signal Resources.
  • the end position of the S2 target subframes after the y3th target subframe will not exceed the end position of the second resource, which can avoid when the wake-up signal is delayed
  • the end position of S2 target subframes after the y3th target subframe may exceed the end position of the second resource to the next wake-up signal resource, or may be related to the gap between the wake-up signal resource and the PO
  • the second resource is a resource used to transmit the wake-up signal determined according to the maximum duration of the wake-up signal.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware execution of corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in any of the above aspects.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the method described in any of the above aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the method described in any of the above aspects.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any of the above aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of chips, or may include chips and other discrete devices.
  • a communication system in an eleventh aspect, includes a first communication device and a second communication device; wherein the first communication device is used for executing the communication method described in the first aspect, and the second communication device is used for For performing the communication method described in the second aspect; or, the first communication device is used to perform the communication method described in the third aspect, and the second communication device is used to perform the communication method described in the fourth aspect.
  • Figure 1a is the first schematic diagram of the location of existing WUS resources
  • Figure 1b is a second schematic diagram of the location of existing WUS resources
  • FIG. 2 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 4 is a first structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a base station provided by an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram 1 of the location distribution of the first resource, the second resource, and the third resource provided by an embodiment of this application;
  • FIG. 8 is a second schematic diagram of the location distribution of the first resource, the second resource, and the third resource provided by an embodiment of this application;
  • FIG. 9 is a third schematic diagram of the location distribution of the first resource, the second resource, and the third resource provided by an embodiment of this application.
  • FIG. 10 is a fourth schematic diagram of the location distribution of the first resource, the second resource, and the third resource provided by an embodiment of this application;
  • 11 is a schematic diagram 5 of the location distribution of the first resource, the second resource, and the third resource provided by an embodiment of the application;
  • FIG. 12 is a sixth schematic diagram of the location distribution of the first resource, the second resource, and the third resource provided by an embodiment of the application;
  • FIG. 13 is a seventh schematic diagram of the location distribution of the first resource, the second resource, and the third resource provided by an embodiment of this application;
  • FIG. 14 is an eighth schematic diagram of the location distribution of the first resource, the second resource, and the third resource provided by an embodiment of this application;
  • 15 is a schematic diagram 9 of the location distribution of the first resource, the second resource, and the third resource provided by an embodiment of this application;
  • FIG. 16 is a tenth schematic diagram of the location distribution of the first resource, the second resource, and the third resource provided by an embodiment of this application;
  • FIG. 17 is a schematic diagram 11 of the location distribution of the first resource, the second resource, and the third resource provided by an embodiment of this application;
  • 18 is a twelfth schematic diagram of the location distribution of the first resource, the second resource, and the third resource provided by an embodiment of this application;
  • FIG. 19 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • IoT is the "Internet of Things Connected”. It extends the user end of the Internet to any item and item, enabling information exchange and communication between any item and item. Such a communication method is also called machine type communications (MTC). Among them, the communication node is called MTC terminal or MTC device.
  • Typical IoT applications include smart grids, smart agriculture, smart transportation, smart homes, and environmental detection.
  • the Internet of Things needs to be applied in a variety of scenarios, such as from outdoor to indoor, from above to underground, many special requirements are put forward for the design of the Internet of Things.
  • MTC terminals in certain scenarios are used in environments with poor coverage, such as electricity meters and water meters, which are usually installed indoors or even basements and other places with poor wireless network signals, coverage enhancement technologies are needed to solve them.
  • the number of MTC terminals in some scenarios is far greater than the number of devices for human-to-human communication, that is to say, large-scale deployment is required, so it is required to be able to obtain and use MTC terminals at a very low cost.
  • MTC terminals because the data packets transmitted by the MTC terminal in some scenarios are very small and are not sensitive to delay, it is required to support a low-rate MTC terminal. Or, because in most cases, MTC terminals are powered by batteries, but at the same time, in many scenarios, MTC terminals are required to be able to use for more than ten years without changing the battery, which requires MTC terminals to be able to operate at a very low cost. Power consumption to work.
  • the 3rd generation partnership project (3GPP) of the Mobile Communications Standards Organization adopted a new research topic at the #62 Plenary Session of the Radio Access Network (RAN) to study
  • RAN Radio Access Network
  • NB-IoT NB-IoT topics.
  • the bandwidth of NB-IoT is 180kHz, which is a PRB.
  • the maximum WUS duration (maximum WUS duration) of WUS is L NWUSmax .
  • the gap may be a discontinuous reception (DRX) gap, an extended DRX (extended DRX, eDRX) short gap, and an eDRX long gap, which is not specifically limited here.
  • the terminal device detects whether there is WUS on the WUS resource. If the terminal device detects WUS, it means that the base station may be paging the terminal device, and the terminal device will start monitoring PDCCH at the PO; if the terminal device does not detect WUS, it means the base station If the terminal device is not being paged, the terminal device enters a sleep state, so that the power consumption of the terminal device can be saved. Among them, the sending of WUS starts from the start time of the WUS resource.
  • the actual duration of WUS (WUS actual duration) may be an exponential multiple of two sub-frames, such as 1, 2, 4, 8, ..., L NWUSmax, as shown in Table 1.
  • terminal devices at the PO in Figure 1a need to detect WUS, and then continue to blindly check the PDCCH at the PO based on whether WUS is detected. Therefore, if the base station wants to page the terminal device A and sends WUS, but the terminal device B also detects WUS and wakes up, it may cause the terminal device B to be falsely waked up, which will affect the power consumption of the terminal device B. .
  • 3GPP Rel16 introduced grouping processing for terminal devices at PO, and different groups correspond to different WUSs.
  • the terminal devices at the PO can be divided into two groups, including group A (group A) and group B (group B).
  • Group A corresponds to WUS1 (also called group WUS 1), WUS1 is used to instruct the terminal equipment in group A on the PO to monitor the PDCCH and then receive paging messages;
  • group B corresponds to WUS 2 (also called group WUS 2) WUS2 is used to instruct the terminal equipment in group B on the PO to monitor the PDCCH and then receive paging messages, so that the probability of the terminal equipment being woken up by mistake can be reduced, thereby saving the power consumption of the terminal equipment.
  • 3GPP Rel-16 also introduced a common (common) WUS, which is used to wake up all grouped terminal devices at the PO.
  • WUS 3 is common WUS, which is used to wake up the terminal devices of all groups at the PO.
  • the WUS resources in the embodiments of this application can be traditional WUS resources (legacy WUS resources) (which can be understood as Rel-15 WUS resources, that is, WUS resources in Figure 1a) or the above group WUS resources (understandable
  • the group WUS resource can be the WUS resource of Rel-15, that is, the first WUS resource in Figure 1b, or the WUS resource of Rel-16, that is, the second WUS resource in Figure 1b). This is not specifically limited.
  • the target subframe here is a subframe that can be used to map the WUS sequence, including a valid subframe and subframe 4 of the transmission system information block (system information block, SIB) 1, wherein subframe 4 of the transmission SIB1 is not a valid subframe .
  • a valid subframe refers to a subframe that satisfies certain conditions. The certain conditions may include condition 1 and condition 2, for example.
  • Condition 1 is that the subframe is not used to transmit narrowband primary synchronization signals (NPSS) and narrowband secondary synchronization signals. Signal (narrowband secondary synchronization signal, NSSS), narrowband physical broadcast channel (NPBCH), and SIB1-NB; condition 2 is that the subframe is configured as a valid subframe.
  • NPSS narrowband primary synchronization signals
  • NSSS narrowband secondary synchronization signal
  • NNBCH narrowband physical broadcast channel
  • SIB1-NB SIB1-NB
  • condition 2 is that the subframe is configured as a valid subframe.
  • the first resource in the embodiment of the present application is a downlink (DL) transmission gap (transmission gap) resource.
  • DL downlink
  • transmission gap transmission gap
  • the second resource in the embodiment of the present application is a resource used for transmitting the wake-up signal determined according to the maximum duration of the wake-up signal, such as the WUS resource whose duration is L NWUSmax in Fig. 1a.
  • the subframes on the second resource in the embodiment of the present application are the target subframes defined above.
  • the "xxxth subframe" on the second resource and the "xxxth target subframe” on the second resource are "Frame" is the same concept and can be replaced with each other. It is explained here in a unified manner, and will not be repeated here.
  • the third resource in the embodiment of the present application includes part or all of the second resource except for the part that overlaps the first resource in the time domain.
  • the third resource includes part of the second resource, and the third resource is The first resource does not overlap in the time domain.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect.
  • words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • the embodiments of this application can be applied to a long term LTE system (such as the above-mentioned NB-IOT system) or an NR system (also known as the 5th generation (5G) system), and can also be applied to other systems.
  • LTE long term LTE
  • NR also known as the 5th generation (5G) system
  • 5G 5th generation
  • the embodiments of the present application do not specifically limit this.
  • system and “network” can be replaced with each other.
  • the communication system 20 includes a second communication device 30 (FIG. 2 exemplarily takes the second communication device as a network device for illustration);
  • One or more first communication devices 40 connected to the second communication 30 (FIG. 2 exemplarily uses the first communication device as a terminal device for illustration).
  • the second communication device 30 is used to determine the first resource; the second communication device 30 is also used to determine if the first resource and the second resource are between Overlap in the time domain, and send a wake-up signal to the first communication device 40 on the third resource.
  • the first communication device 40 is configured to determine the first resource; the first communication device 40 is also configured to receive a wake-up from the second communication device 30 on the third resource if the first resource and the second resource overlap in the time domain
  • the related definitions of the first resource, the second resource, and the third resource can refer to the third point of the above-mentioned related technology and terminology introduction, which will not be repeated here.
  • the specific implementation of this solution will be described in detail in the subsequent method embodiments, and will not be repeated here.
  • the second resource will be divided by the first resource in the time domain.
  • the wake-up signal is received or sent on some or all of the resources other than that, and the wake-up signal is not received or sent on the overlapping part of the first resource and the second resource in the time domain. Therefore, the overlapping part of the first resource and the second resource in the time domain can be performed.
  • the transmission of the downlink data or the downlink channel can reduce the congestion of the downlink channel and reduce the impact on the scheduling of the second communication device (such as the base station).
  • the second communication device in the embodiment of the present application may be a network device or other communication device for sending a wake-up signal
  • the first communication device in the embodiment of the present application may be a terminal device or other communication device for receiving a wake-up signal
  • the embodiment of this application does not specifically limit this communication device.
  • the terminal device in the embodiment of the present application may be a device used to implement a wireless communication function, such as a terminal or a chip that can be used in a terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, and a mobile station in a 5G network or a public land mobile network (PLMN) that will be evolved in the future Remote stations, remote terminals, mobile equipment, wireless communication equipment, terminal agents or terminal devices, etc.
  • PLMN public land mobile network
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) Wireless terminal in control), wireless terminal in self-driving (self-driving), wireless terminal in remote medical (remote medical), wireless terminal in smart grid (smart grid), wireless terminal in transportation safety (transportation safety) Terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal can be mobile or fixed.
  • the network device in the embodiment of the present application may be a device that can communicate with a terminal device.
  • the network equipment may include a transmission reception point (TRP), a base station, a remote radio unit (RRU) or a baseband unit (BBU) (also called a digital unit ( digital unit, DU)), broadband network service gateway (broadband network gateway, BNG), aggregation switch, non-3GPP access equipment, relay station or access point, etc.
  • TRP transmission reception point
  • RRU remote radio unit
  • BBU baseband unit
  • BBU broadband network service gateway
  • BNG broadband network service gateway
  • FIG. 2 takes the network equipment as the base station as an example for illustration, which will be described in a unified manner here, and will not be described in detail below.
  • the base station in the embodiment of the present application may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network.
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • NB NodeB
  • WCDMA wideband code division multiple access
  • eNB or eNodeB evolutional NodeB
  • CRAN cloud radio access network
  • the second communication device 30 and the first communication device 40 in the embodiment of the present application may also be referred to as communication devices, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application. .
  • the related functions of the second communication device 30 and the first communication device 40 in the embodiments of the present application can be implemented by one device, or by multiple devices, or by one or more functional modules in one device.
  • the embodiments of this application do not specifically limit this. It is understandable that the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) Virtualization function.
  • FIG. 3 is a schematic structural diagram of a communication device 300 provided by an embodiment of the application.
  • the communication device 300 includes one or more processors 301, a communication line 302, and at least one communication interface (in FIG. 3, the communication interface 304 and one processor 301 are taken as an example for illustration), optional
  • the memory 303 may also be included.
  • the processor 301 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 302 may include a path for connecting different components.
  • the communication interface 304 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and so on.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 304 may also be a transceiver circuit located in the processor 301 to implement signal input and signal output of the processor.
  • the memory 303 may be a device having a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 302. The memory can also be integrated with the processor.
  • the memory 303 is used to store computer-executed instructions for executing the solution of the present application, and the processor 301 controls the execution.
  • the processor 301 is configured to execute computer-executable instructions stored in the memory 303, so as to implement the communication method provided in the embodiment of the present application.
  • the processor 301 may also perform processing-related functions in the DCI transmission method provided in the following embodiments of the present application, and the communication interface 304 is responsible for communicating with other devices or communication networks. There is no specific restriction on this.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 301 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 3.
  • the communication device 300 may include multiple processors, such as the processor 301 and the processor 308 in FIG. 3. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication apparatus 300 may further include an output device 305 and an input device 306.
  • the output device 305 communicates with the processor 301 and can display information in a variety of ways.
  • the aforementioned communication device 300 may be a general-purpose device or a dedicated device.
  • the communication device 300 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a device with a similar structure in FIG. 4.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 300.
  • FIG. 4 is a specific structural form of the terminal device provided in an embodiment of the application.
  • the functions of the processor 301 in FIG. 3 may be implemented by the processor 110 in FIG. 4.
  • the function of the communication interface 304 in FIG. 3 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, etc. in FIG. 4.
  • antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal device can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G, etc., which are applied to terminal devices.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • LNA low noise amplifier
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic wave radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive the signal to be sent from the processor 110, perform frequency modulation, amplify it, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the antenna 1 of the terminal device is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device can communicate with the network and other devices through wireless communication technology.
  • the function of the memory 303 in FIG. 3 may be implemented by an external memory (such as a Micro SD card) connected to the internal memory 121 or the external memory interface 120 in FIG. 4.
  • an external memory such as a Micro SD card
  • the function of the output device 305 in FIG. 3 may be implemented by the display screen 194 in FIG. 4.
  • the display screen 194 includes a display panel.
  • the function of the input device 306 in FIG. 3 may be implemented by a mouse, a keyboard, a touch screen device, or the sensor module 180 in FIG. 4.
  • the terminal device may also include an audio module 170, a camera 193, an indicator 192, a motor 191, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, and a power supply.
  • the management module 141 and the battery 142 are not specifically limited in the embodiment of the present application.
  • the structure shown in FIG. 4 does not constitute a specific limitation on the terminal device.
  • the terminal device may include more or fewer components than shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • FIG. 5 is a specific structural form of a base station provided in an embodiment of the application.
  • the base station includes one or more radio frequency units (such as RRU501) and one or more BBUs (also referred to as digital units (DU)) 502.
  • RRU501 radio frequency units
  • BBUs also referred to as digital units (DU) 502.
  • the RRU 501 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna feeder system (that is, an antenna) 511 and a radio frequency unit 512.
  • the RRU501 is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals.
  • the function of the communication interface 304 in FIG. 3 may be implemented by the RRU 501 in FIG. 5.
  • the BBU502 is the control center of the network equipment, and can also be called the processing unit, which is mainly used to complete the baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum and so on.
  • the BBU502 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) with a single access indication, or may respectively support wireless access networks of different access standards. Access network (such as LTE network, 5G network or other networks).
  • the BBU 502 may further include a memory 521 and a processor 522, and the memory 521 is used to store necessary instructions and data.
  • the processor 522 is used to control the network device to perform necessary actions.
  • the memory 521 and the processor 522 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor.
  • necessary circuits can be provided on each board.
  • the function of the processor 301 in FIG. 3 may be implemented by the processor 522 in FIG. 5
  • the function of the memory 303 in FIG. 3 may be implemented by the memory 521 in FIG.
  • the RRU 501 and the BBU 502 in FIG. 5 may be physically set together, or may be physically separated, such as a distributed base station, which is not specifically limited in the embodiment of the present application.
  • a communication method provided by an embodiment of this application is described by taking the communication system shown in FIG. 2 as an example, that is, it is assumed that the first communication device is a terminal device, and the second communication device is a network.
  • the communication method provided in the embodiment of the present application includes the following steps:
  • the network device determines the first resource.
  • the network device may determine the configuration of the downlink transmission interval resource (that is, the first resource).
  • the configuration of the downlink transmission interval resource includes a period (which can be recorded as N gap, period ), and a duration scale factor (Can be denoted as N gap, coeff ) and the first threshold.
  • the starting time domain position of the downlink transmission interval resource satisfies the formula n f represents the wireless frame number, n s represents the time slot number, Means round down, mod means take remainder.
  • the first threshold in the embodiment of the present application may be the threshold N gap, threshold in the existing protocol, or another threshold configured by the base station (may be recorded as N gap, threshold, WUS ), for example, the base station passes
  • the system message is configured with N gap, threshold, and WUS , which is not specifically limited in the embodiment of the present application.
  • the value range of N gap, threshold, and WUS may be 16, 32, 64, or 128, for example.
  • the terminal device determines the first resource.
  • the network device may send the configuration of the downlink transmission interval resource to the terminal device, and the terminal device may determine the downlink transmission interval resource according to the configuration of the downlink transmission interval resource.
  • the configuration of the downlink transmission interval resource please refer to the above step S601, which will not be repeated here.
  • the network device sends WUS to the terminal device on the third resource.
  • the terminal device receives the WUS from the network device on the third resource.
  • the network device sends WUS to the terminal device on the third resource, including: If it is less than (Q ⁇ the first threshold), if the first resource and the second resource overlap in the time domain, the network device sends WUS to the terminal device on the third resource, and both P and Q are positive integers. That is to say, in the embodiment of this application, when (P ⁇ WUS maximum duration) is not less than (Q ⁇ first threshold), the network device further determines whether the first resource and the second resource are in the time domain. Overlap; otherwise, if (P ⁇ WUS maximum duration) is less than (Q ⁇ first threshold), the network device considers that there is no first resource in the WUS transmission.
  • the terminal device receives the WUS from the network device on the third resource, including: in (P ⁇ WUS maximum duration) In the case of not less than (Q ⁇ first threshold), if the first resource and the second resource overlap in the time domain, the terminal device receives WUS from the network device on the third resource, and both P and Q are positive integers. That is to say, in the embodiment of the present application, when (P ⁇ WUS maximum duration) is not less than (Q ⁇ first threshold), the terminal device further determines whether the first resource and the second resource are in the time domain. Overlap, otherwise, if (P ⁇ WUS maximum duration) is less than (Q ⁇ first threshold), the terminal device considers that there is no first resource in the WUS transmission.
  • the values of P and Q may both be 1; or, the value of P is 1, and the value of Q is a positive integer greater than 1, or the value of Q is 1, and the value of P is A positive integer greater than 1.
  • the terminal device or the network device can also determine whether for WUS, the length (R max) of the first type (type-1) common search space (CSS) and the first threshold There is a downlink transmission interval resource, which is not specifically limited in the embodiment of the present application.
  • N target subframes for mapping WUS sequences include the first subframe of the second resource to the Nth subframe of the second resource. It can also be understood that the sequence of WUS is mapped to the first subframe of the second resource to the Nth subframe of the second resource.
  • the first subframe of the overlapping portion of the first resource and the second resource in the time domain is the x1-th target subframe of the second resource
  • the first resource and the second resource are in the time domain
  • the last subframe of the overlapping part is the y1-th target subframe of the second resource
  • x1 is a positive integer less than or equal to N
  • y1 is a positive integer less than N.
  • the third resource includes: (x1-1) target subframes before the x1-th target subframe, and (N-y1) target subframes after the y1-th target subframe.
  • the (x1-1) target subframes before the x1th target subframe do not include the x1th target subframe.
  • Target subframes, the (N-y1) target subframes after the y1th target subframe do not include the y1th target subframe, which are explained here and will not be repeated below.
  • the location distribution diagram of the first resource, the second resource, and the third resource may be as shown in FIG. 7.
  • the (x1-1) target subframes before the x1-th target subframe may include the first target subframe on the second resource to the (x1-1)th target subframe on the second resource.
  • the (N-y1) target subframes after the y1 target subframes include the (y1+1)th target subframe on the second resource to the Nth target subframe on the second resource.
  • the x1-th target subframe to the y1-th target subframe on the second resource are used to map the WUS sequence, they are not used to transmit the corresponding WUS, that is, the x1-th target subframe on the second resource is The WUS on the y1-th target subframe is dropped. It should be noted that, in the embodiment of the present application, being dropped can be understood as the target subframe on the time-domain overlapping resource of the first resource and the second resource can also be used to map the WUS sequence, but not used for transmission WUS.
  • the location distribution diagrams of the first resource, the second resource, and the third resource may be as shown in FIG. 8.
  • the (x1-1) target subframes before the x1th target subframe are 0 target subframes
  • the (N-y1) target subframes after the y1th target subframe include the first target subframe on the second resource.
  • the first target subframe to the y1-th target subframe on the second resource are used to map the WUS sequence, they are not used to transmit the corresponding WUS, that is, the first target subframe on the second resource is The WUS on the y1-th target subframe is dropped.
  • start time domain position of the first resource is earlier than the start position of the second resource as an example for description.
  • start time domain position of the first resource may also be the same as the start position of the second resource, which is not specifically limited in the embodiment of the present application.
  • the first subframe where the first resource and the second resource overlap in the time domain is the x2-th target subframe of the second resource, and the first resource and the second resource are in the time domain.
  • the last subframe of the upper overlapping part is the y2-th target subframe of the second resource, x2 is a positive integer less than or equal to N, and y2 is a positive integer greater than or equal to N.
  • the third resource includes: (x2-1) target subframes before the x2th target subframe.
  • the location distribution map of the first resource, the second resource, and the third resource may be as shown in FIG. 9.
  • the (x2-1) target subframes before the x2th target subframe include the first target subframe on the second resource to the (x2-1)th target subframe on the second resource.
  • the x2th target subframe to the Nth target subframe on the resource are used to map the WUS sequence, they are not used to transmit the corresponding WUS, that is, the x2th target subframe to the Nth target subframe on the second resource WUS on each target subframe is dropped.
  • the first subframe of the overlapping portion of the first resource and the second resource in the time domain is the x3th target subframe of the second resource, and the first resource and the second resource overlap in the time domain
  • the last subframe of the part is the y3th target subframe of the second resource
  • x3 is a positive integer less than or equal to N
  • y3 is a positive integer less than or equal to M.
  • the target subframe is a subframe that can be used to map the sequence of WUS.
  • N is the number of target subframes actually used to map the WUS sequence, which can be understood as the actual duration of WUS
  • M is the number of target subframes within the maximum duration of WUS, which can be understood as the maximum duration of WUS.
  • the actual duration of WUS may be less than or equal to the maximum duration of WUS.
  • M 1024, indicating that the maximum duration of WUS is 1024, and it can be understood that the maximum duration of WUS contains 1024 target subframes, that is, the number of target subframes that can be used to map WUS sequences within the maximum duration of WUS Is 1024.
  • the value of N can be any one of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1024.
  • the third resource includes: S1 target subframes before the x3th target subframe, and S2 target subframes after the y3th target subframe, where S1 is an integer and S2 is an integer. S1+S2 ⁇ N. It can be understood that the sequence of WUS from the x3th target subframe to the Nth target subframe is mapped to the (y3+1)th target subframe to the (y3+S2)th target subframe, which means This means that the WUS on the x3th target subframe to the Nth target subframe is postpone.
  • WUS postpone can be understood as WUS on the time domain overlapping resources of the first resource and the second resource, and WUS on the resources after the overlapping resources are all delayed. , That is, assuming that WUS was originally sent on the target subframe Z when there is no first resource, when there is the first resource and the first resource is the target subframe Z, WUS is sent in the target subframe Z+1, and then in the subsequent Continue to send WUS on the target subframe.
  • the location distribution map of the first resource, the second resource, and the third resource may be as shown in FIG. 10 or FIG. 11.
  • the S1 target subframes before the x3th target subframe include the first valid subframe of the second resource to the (x3-1)th target subframe of the second resource, and the S1 target subframes after the y3th target subframe
  • S2 N-x3+1.
  • the location distribution map of the first resource, the second resource, and the third resource may be as shown in FIG. 12.
  • the S1 target subframes before the x3th target subframe include the first valid subframe of the second resource to the (x3-1)th target subframe of the second resource, and the S1 target subframes after the y3th target subframe
  • the end position of the S2 target subframes after the y3th target subframe may exceed the second resource
  • the ending position of to the next WUS resource or may overlap with the gap between WUS resource and PO, or may overlap with PO.
  • S2 target subframes after the y3th target subframe In the frame the target subframe beyond the end position of the second resource may be dropped. For example, as shown in FIG.
  • the S2 target subframes after the y3th target subframe include the (y3+1)th target subframe of the second resource to the last target subframe of the second resource, S1+S2 ⁇ N. This can avoid that when the WUS on the x3th target subframe to the Nth target subframe is delayed (postpone), the end position of the S2 target subframes after the y3th target subframe may exceed that of the second resource. End position to the next WUS resource, or may overlap with the gap between WUS resource and PO, or may overlap with PO.
  • the location distribution diagrams of the first resource, the second resource, and the third resource may be as shown in FIG. 14 or FIG. 15.
  • the S1 target subframes before the x3th target subframe include 0 target subframes
  • start time domain position of the first resource is earlier than the start position of the second resource as an example for description.
  • start time domain position of the first resource may also be the same as the start position of the second resource, which is not specifically limited in the embodiment of the present application.
  • the (N+y3)th target subframe after the WUS on the x3th target subframe to the Nth target subframe is delayed to be sent (postpone) is not The end position beyond the second resource is taken as an example for description.
  • the (N+y3)th target subframe after the WUS on the x3th target subframe to the Nth target subframe is postpone may exceed the end position of the second resource.
  • the processing method at this time You can refer to the processing method in FIG. 13 or FIG. 14, which will not be repeated here.
  • the y3th target subframe is postpone.
  • the end position of the S2 target subframes after the target subframe may exceed the end position of the second resource to the next WUS resource, or may overlap with the gap between the WUS resource and the PO, or may overlap with the PO, or In order to avoid the problem that the target subframe beyond the end position of the second resource may affect the performance of WUS after being dropped, in this embodiment of the present application, if the first resource and the second resource overlap in the time domain, then Move the sending position of WUS forward so that the time domain start position of the third resource can be K target subframes ahead of the time domain start position of the second resource or the first resource, where K is the first resource and the first resource. 2.
  • the number of subframes in the time-domain overlapping part of the resource, and K is a positive integer.
  • the end position of the S2 target subframes after the y3th target subframe may exceed the end position of the second resource to the next WUS resource, or may overlap with the gap between the WUS resource and the PO, or may overlap with the PO The problem.
  • the location distribution map of the first resource, the second resource, and the third resource may be as shown in FIG. 16.
  • the S1 target subframes before the x3th target subframe include K target subframes before the start position of the second resource, and the first valid subframe of the second resource to the (x3th) target subframe of the second resource.
  • the location distribution map of the first resource, the second resource, and the third resource may be as shown in FIG. 17.
  • the S1 target subframes before the x3th target subframe include K target subframes before the start position of the second resource, and the first valid subframe of the second resource to the (NK)th target subframe of the second resource.
  • the S1 target subframes before the x3th target subframe include N target subframes before the target subframe A, and the target subframe A is the first target subframe before the start position of the second resource.
  • KN target subframes, S1 N.
  • the location distribution map of the first resource, the second resource, and the third resource may be as shown in FIG. 18.
  • the time domain start position of the resource is ahead of K target subframes, which is not specifically limited in the embodiment of the present application.
  • the first target subframe of the second resource to the Nth target subframe of the second resource can also be understood as the existing scenario where there is no downlink transmission interval resource inserted into the WUS resource.
  • the target subframe on the actual duration of WUS such as the target subframe on the actual duration of WUS shown in FIG. 1a.
  • the resources from the first target subframe of the second resource to the Nth target subframe of the second resource may also be defined as the fourth resource, and the fourth resource is the maximum duration of WUS with a duration less than or equal to
  • the time wake-up signal resource can be understood as the resource used to transmit WUS determined according to the actual duration of WUS in the existing scenario where there is no downlink transmission interval resource inserted into the WUS resource, for example, according to the actual duration of WUS shown in Figure 1a
  • the time-determined resources used to transmit WUS are described here in a unified manner, and will not be described in detail below.
  • the WUS detection performance is determined after the WUS is dropped.
  • the impact may be relatively large. Only when the number of target subframes on the overlapping resources of the first resource and the second resource in the time domain is small, the impact on the WUS detection performance after the WUS is dropped can be reduced.
  • the network device can use the delay in the second scenario above when it is determined that the duration of the first resource is not less than the second threshold.
  • the terminal device can receive WUS in postpone mode in scenario 2 when it is determined that the duration of the first resource is not less than the second threshold; the network device can determine the first resource in the postpone mode.
  • the WUS is sent according to the drop method in the above scenario 1, and the terminal device can determine that the duration of the first resource is less than the second threshold according to the drop in the above scenario ( Drop) method to receive WUS. This can reduce the impact on WUS detection performance after WUS is dropped.
  • the second threshold on the terminal device side may be configured by the base station, which is not specifically limited in the embodiment of the present application.
  • the network device may also directly send signaling to the terminal device to indicate whether the terminal device WUS is sent in a postpone mode or a drop mode. This embodiment of the present application does not specifically describe this. limited.
  • the second resource used to transmit WUS and the downlink transmission interval resource overlap in the time domain
  • the second resource will be divided by the part that overlaps with the first resource.
  • WUS is received or sent on some or all of the other resources, and WUS is not received or sent in the time domain overlapping part of the first resource and the second resource. Therefore, the first resource and the second resource overlapping part in the time domain can be used for downlink data Or the transmission of the downlink channel can reduce the congestion of the downlink channel and reduce the impact on the scheduling of the network equipment (such as the base station).
  • the actions of the network device or the terminal device in the above steps S601 to S603 may be called by the processor 301 in the communication device 300 shown in FIG. 3 to call the application program code stored in the memory 303 to instruct the network device to execute. There are no restrictions on this.
  • the network device may also determine the first resource, and then if the first resource and the fourth resource overlap in the time domain, the WUS is sent on the third resource.
  • the terminal device determines the first resource, and then if the first resource and the fourth resource overlap in the time domain, receive the WUS on the third resource.
  • the third resource and the first resource do not overlap in the time domain.
  • the first resource is a downlink transmission interval resource
  • the fourth resource is a WUS resource whose duration is less than or equal to the maximum duration of WUS.
  • the network device sends WUS to the terminal device on the third resource, including: If it is less than (Q ⁇ the first threshold), if the first resource and the fourth resource overlap in the time domain, the network device sends WUS to the terminal device on the third resource, and both P and Q are positive integers. That is to say, in the embodiment of the present application, when (P ⁇ WUS maximum duration) is not less than (Q ⁇ first threshold), the network device further determines whether the first resource and the fourth resource are in the time domain. Overlap; otherwise, if (P ⁇ WUS maximum duration) is less than (Q ⁇ first threshold), the network device considers that there is no first resource in the WUS transmission.
  • the terminal device receives the WUS from the network device on the third resource, including: in (P ⁇ WUS maximum duration) In the case of not less than (Q ⁇ first threshold), if the first resource and the fourth resource overlap in the time domain, the terminal device receives the WUS from the network device on the third resource, and both P and Q are positive integers. That is to say, in the embodiment of the present application, when (P ⁇ WUS maximum duration) is not less than (Q ⁇ first threshold), the terminal device further determines whether the first resource and the fourth resource are in the time domain. Overlap, otherwise, if (P ⁇ WUS maximum duration) is less than (Q ⁇ first threshold), the terminal device considers that there is no first resource in the WUS transmission.
  • the values of P and Q may both be 1; or, the value of P is 1, and the value of Q is a positive integer greater than 1, or the value of Q is 1, and the value of P is A positive integer greater than 1.
  • the terminal device or the network device may also compare the length (R max ) of the first type (type-1) CSS with the first threshold to determine whether there is a downlink transmission interval resource for WUS.
  • R max the length of the first type (type-1) CSS
  • the embodiment does not specifically limit this.
  • the wake-up signal is sent on the third resource. It can be understood that the wake-up signal is sent in the order of the target subframes on the third resource, for example, the target on the third resource is sent first. The wake-up signal on the subframe i is sent, and then the wakeup signal on the target subframe i+1 on the third resource is sent, which will be explained here in a unified manner, and will not be repeated here.
  • the methods and/or steps implemented by the first communication device can also be implemented by the chip system that implements the functions of the first communication device, and the methods and/or steps implemented by the second communication device The steps can also be implemented by a chip system that implements the function of the above-mentioned second communication device.
  • an embodiment of the present application further provides a communication device, and the communication device may be the first communication device in the foregoing method embodiment, or a device including the foregoing first communication device, or a component that can be used for the first communication device; Alternatively, the communication device may be the second communication device in the foregoing method embodiment, or a device including the foregoing second communication device, or a component that can be used for the second communication device. It can be understood that, in order to realize the above-mentioned functions, the communication device includes hardware structures and/or software modules corresponding to various functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 19 shows a schematic structural diagram of a communication device 190.
  • the communication device 190 includes a transceiver module 1901 and a processing module 1902.
  • the transceiver module 1901 may also be referred to as a transceiver unit to implement a transceiver function, for example, it may be a transceiver circuit, a transceiver, a transceiver, or a communication interface.
  • processing The module 1902 is configured to determine a first resource, where the first resource is a downlink transmission interval resource.
  • the transceiver module 1901 is configured to receive a wake-up signal on the third resource if the first resource and the second resource overlap in the time domain, where the second resource is determined according to the maximum duration of the wake-up signal for transmitting the wake-up signal Resources; the third resource includes some or all of the resources in the second resource except for the part that overlaps with the first resource in the time domain.
  • the transceiver module 1901 is specifically configured to: when (P ⁇ maximum duration of the wake-up signal) is not less than (Q ⁇ first threshold), if the first resource and the second resource overlap in the time domain, A wake-up signal is received on the third resource, and both P and Q are positive integers.
  • the processing module 1902 is configured to determine the first resource, and the first resource is a downlink transmission interval resource; the transceiver module 1901 is configured to: if the first resource and the fourth resource overlap in the time domain, A wake-up signal is received on the third resource; where the fourth resource is a wake-up signal resource whose duration is less than or equal to the maximum duration of the wake-up signal, and the third resource and the first resource do not overlap in the time domain.
  • the transceiver module 1901 is specifically configured to: when (P ⁇ the maximum duration of the wake-up signal) is not less than (Q ⁇ the first threshold), if the first resource and the fourth resource overlap in the time domain, When the wake-up signal is received on the third resource, P and Q are both positive integers.
  • the processing module 1902 Used to determine the first resource, where the first resource is a downlink transmission interval resource.
  • the transceiver module 1901 is configured to send a wake-up signal on the third resource if the first resource and the second resource overlap in the time domain, where the second resource is determined according to the maximum duration of the wake-up signal for transmitting the wake-up signal Resources; the third resource includes some or all of the resources in the second resource except for the part that overlaps with the first resource in the time domain.
  • the transceiver module 1901 is specifically configured to: when (P ⁇ maximum duration of the wake-up signal) is not less than (Q ⁇ first threshold), if the first resource and the second resource overlap in the time domain, A wake-up signal is sent on the third resource, and both P and Q are positive integers.
  • the processing module 1902 is configured to determine the first resource, and the first resource is a downlink transmission interval resource; the transceiver module 1901 is configured to: if the first resource and the fourth resource overlap in the time domain, A wake-up signal is sent on the third resource; where the fourth resource is a wake-up signal resource whose duration is less than or equal to the maximum duration of the wake-up signal, and the third resource and the first resource do not overlap in the time domain.
  • the transceiver module is specifically configured to: when (P ⁇ the maximum duration of the wake-up signal) is not less than (Q ⁇ the first threshold), if the first resource and the fourth resource overlap in the time domain, The wake-up signal is sent on the third resource, and both P and Q are positive integers.
  • the communication device 190 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 190 may take the form of the communication device 300 shown in FIG. 3.
  • the processor 301 in the communication device 300 shown in FIG. 3 may invoke the computer execution instructions stored in the memory 303 to enable the communication device 300 to execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the transceiver module 1901 and the processing module 1902 in FIG. 19 may be implemented by the processor 301 in the communication device 300 shown in FIG. 3 calling the computer execution instructions stored in the memory 303.
  • the function/implementation process of the processing module 1902 in FIG. 19 can be implemented by the processor 301 in the communication device 300 shown in FIG. 3 calling a computer execution instruction stored in the memory 303, and the function of the transceiver module 1901 in FIG. 19 /The realization process can be realized through the communication interface 304 in the communication device 300 shown in FIG. 3.
  • the communication device 190 provided in this embodiment can execute the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • one or more of the above modules or units can be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built in SoC (system on chip) or ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • the processor's internal processing is used to execute software instructions to perform calculations or processing, and may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be a CPU, a microprocessor, a digital signal processing (digital signal processing, DSP) chip, a microcontroller unit (MCU), an artificial intelligence processor, an ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • an artificial intelligence processor an ASIC
  • Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供通信方法、设备及系统,用于解决目前唤醒信号的发送时间内,下行信号阻塞,从而影响基站的调度的问题。方法包括:确定第一资源,该第一资源为下行传输间隔资源;若该第一资源与第二资源在时域上重叠,在第三资源上接收唤醒信号,其中,该第二资源为根据该唤醒信号的最大持续时间确定的用于传输该唤醒信号的资源;该第三资源包括该第二资源中除与第一资源在时域上重叠部分之外的部分或全部资源。

Description

通信方法、设备及系统 技术领域
本申请涉及通信技术领域,尤其涉及通信方法、设备及系统。
背景技术
在无线通信系统中,终端设备有两种状态,一种是连接态,表示终端设备已与网络设备建立了连接,可直接进行通信;一种是空闲态或称为睡眠态,表示终端设备无法与网络设备直接进行通信。终端设备在没有业务数据发送或者接收时,可以进入空闲态以降低耗电量。当网络设备要向终端设备发送业务数据或者需要终端设备上报一些业务数据时,可以通过寻呼机制通知终端设备,而空闲态的终端设备会定期醒来监听物理下行控制信道(physical downlink control channel,PDCCH),检测PDCCH中是否存在寻呼调度消息,若存在寻呼调度消息,且是针对自己的寻呼调度,则空闲态的终端设备切换到连接态,以便发送或者接收业务数据。其中,终端设备醒来的位置称为寻呼机会(paging occasion,PO)。
然而,目前的物联网中,有很多业务是主动上报的类型,即以上行为主,寻呼概率较低,因此网络设备在大部分以PO对应的子帧为起始子帧的PDCCH搜索空间中不发送相应的寻呼调度消息,但是终端设备依然需要从该终端设备对应的每个PO处开始监听PDCCH。其中,在以每个PO对应的子帧为起始子帧的PDCCH搜索空间中,终端设备从PDCCH搜索空间的第一个备选位置开始盲检完所有的备选位置才确定没有寻呼调度消息,这对终端设备来说是一种功耗浪费。
基于此,现有技术中,网络设备可以在PO前向终端设备发射唤醒信号(wakeup signal,WUS),该WUS用于指示终端设备需要监听PDCCH。当终端设备在PO前检测到WUS,则需要继续监听PDCCH;若终端设备在PO前未检测到WUS,终端设备可以不监听该PDCCH,从而可以节省终端设备的功耗。
然而,目前WUS的发送时间内,基站在相应的物理资源块(physical resource block,PRB)上都不能进行下行数据或者下行信道的传输,因此将造成整个下行信道阻塞,从而影响基站的调度。
发明内容
本申请实施例提供通信方法、设备及系统,用于解决目前唤醒信号的发送时间内,下行信号阻塞,从而影响基站的调度的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种通信方法,该方法包括:确定第一资源,该第一资源为下行传输间隔资源;若该第一资源与第二资源在时域上重叠,在第三资源上接收唤醒信号,其中,该第二资源为根据该唤醒信号的最大持续时间确定的用于传输该唤醒信号的资源;该第三资源包括该第二资源中除与该第一资源在时域上重叠部分之外的部分或全部资源。换言之,第三资源包括第二资源的部分资源,第三资源与第一资源在时域上不重叠。基于该通信方法,由于本申请实施例中,若用于传输唤醒信号的第二资 源与下行传输间隔资源在时域上重叠,则在第二资源中除与第一资源在时域上重叠部分之外的部分或全部资源上接收唤醒信号,不在第一资源与第二资源在时域上重叠部分接收唤醒信号,因此第一资源与第二资源在时域上重叠部分可以进行下行数据或者下行信道的传输,从而可以减少下行信道拥塞,降低对基站调度的影响。
在一种可能的设计中,若该第一资源与第二资源在时域上重叠,在第三资源上接收唤醒信号,包括:在(P×该唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,若该第一资源与该第二资源在时域上重叠,在该第三资源上接收该唤醒信号,P和Q均为正整数。示例性的,P和Q取值可以均为1。也就是说,本申请实施例中,在(P×唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,才进一步确定第一资源与第二资源是否在时域上重叠;否则,在(P×唤醒信号的最大持续时间)小于(Q×第一阈值)的情况下,认为唤醒信号传输中没有第一资源。
第二方面,提供了一种通信方法,该方法包括:确定第一资源,该第一资源为下行传输间隔资源;若该第一资源与第二资源在时域上重叠,在第三资源上发送唤醒信号,其中,该第二资源为根据该唤醒信号的最大持续时间确定的用于传输该唤醒信号的资源;该第三资源包括该第二资源中除与该第一资源在时域上重叠部分之外的部分或全部资源。基于该通信方法,由于本申请实施例中,若用于传输唤醒信号的第二资源与下行传输间隔资源在时域上重叠,则在第二资源中除与第一资源在时域上重叠部分之外的部分或全部资源上接收唤醒信号,不在第一资源与第二资源在时域上重叠部分接收唤醒信号,因此第一资源与第二资源在时域上重叠部分可以进行下行数据或者下行信道的传输,从而可以减少下行信道拥塞,降低对基站调度的影响。
在一种可能的设计中,若该第一资源与第二资源在时域上重叠,在第三资源上发送该唤醒信号,包括:在(P×该唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,若该第一资源与该第二资源在时域上重叠,在该第三资源上发送该唤醒信号,P和Q均为正整数。示例性的,P和Q取值可以均为1。也就是说,本申请实施例中,在(P×唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,才进一步确定第一资源与第二资源是否在时域上重叠;否则,在(P×唤醒信号的最大持续时间)小于(Q×第一阈值)的情况下,认为唤醒信号传输中没有第一资源。
结合上述第一方面或第二方面,在一种可能的设计中,该第一资源与该第二资源在时域上重叠部分的第一个子帧为该第二资源的第x1个目标子帧,该第一资源与该第二资源在时域上重叠部分的最后一个子帧为该第二资源的第y1个目标子帧,x1为小于或者等于N的正整数,y1为小于N的正整数,该目标子帧为可用于映射该唤醒信号的序列的子帧,N为实际用于映射该唤醒信号的序列的目标子帧的个数;其中,该第三资源包括:该第x1个目标子帧之前的(x1-1)个目标子帧、以及该第y1个目标子帧之后的(N-y1)个目标子帧。也就是说,第二资源上的第x1个目标子帧至第y1个目标子帧上的唤醒信号被丢弃(drop)。需要说明的是,本申请实施例中,被丢弃(drop)可以理解为,第二资源上的第x1个目标子帧至第y1个目标子帧还用于映射唤醒信号的序列,但是不用于传输唤醒信号。
结合上述第一方面或第二方面,在一种可能的设计中,该第一资源与该第二资源在时域上重叠部分的第一个子帧为该第二资源的第x2个目标子帧,该第一资源与该第 二资源在时域上重叠部分的最后一个子帧为该第二资源的第y2个目标子帧,x2为小于或者等于N的正整数,y2为大于或者等于N的正整数,该目标子帧为可用于映射该唤醒信号的序列的子帧,N为实际用于映射该唤醒信号的序列的目标子帧的个数;其中,该第三资源包括:第x2个目标子帧之前的(x2-1)个目标子帧。也就是说,第二资源上的第x2个目标子帧至第N个目标子帧上的唤醒信号被丢弃(drop)。需要说明的是,本申请实施例中,被丢弃(drop)可以理解为,第二资源上的第x2个目标子帧至第N个目标子帧还用于映射唤醒信号的序列,但是不用于传输唤醒信号。
结合上述第一方面或第二方面,在一种可能的设计中,N个映射唤醒信号的序列的目标子帧包括第二资源的第一个子帧至第二资源的第N个子帧。
结合上述第一方面或第二方面,在一种可能的设计中,该第一资源与该第二资源在时域上重叠部分的第一个子帧为该第二资源的第x3个目标子帧,该第一资源与该第二资源在时域上重叠部分的最后一个子帧为该第二资源的第y3个目标子帧,x3为小于或者等于N的正整数,y3为小于或者等于M的正整数,该目标子帧为可用于映射该唤醒信号的序列的子帧;N为实际用于映射该唤醒信号的序列的目标子帧的个数,M为该唤醒信号的最大持续时间内目标子帧的个数;其中,该第三资源包括:该第x3个该目标子帧之前的S1个目标子帧,以及第y3个目标子帧之后的S2个目标子帧,其中,S1为整数,S2为整数,S1+S2≤N。可以理解,第x3个目标子帧至第N个目标子帧上的唤醒信号的序列被映射到第(y3+1)个目标子帧至第(y3+S2)个目标子帧上,这也就意味着,第x3个目标子帧至第N个目标子帧上的唤醒信号被延迟发送(postpone)。需要说明的是,本申请实施例中,唤醒信号被延迟发送(postpone)可以理解为,第一资源和第二资源的时域重叠资源上的唤醒信号,以及重叠资源之后资源上的唤醒信号均被延迟发送,即假设没有第一资源时唤醒信号原本在目标子帧Z上发送,则当有第一资源,且第一资源是目标子帧Z时,唤醒信号在目标子帧Z+1发送,然后在后续的目标子帧上继续发送唤醒信号。
结合上述第一方面或第二方面,在一种可能的设计中,该第三资源的时域起始位置相对于该第一资源或者该第二资源的时域起始位置提前K个目标子帧,其中,K为该第一资源和该第二资源的时域重叠部分的子帧的个数,K为正整数。基于该方案,可以保证唤醒信号被延迟发送(postpone)之后,第y3个目标子帧之后的S2个目标子帧的结束位置不会超出第二资源的结束位置,从而可以避免当唤醒信号被延迟发送(postpone)之后,第y3个目标子帧之后的S2个目标子帧的结束位置可能超出第二资源的结束位置到下一个唤醒信号资源处,或者可能与唤醒信号资源和PO之间的gap重叠,或者可能与PO重叠的问题。
第三方面,提供了一种通信方法,该方法包括:确定第一资源,第一资源为下行传输间隔资源;若第一资源与第四资源在时域上重叠,在第三资源上接收唤醒信号;其中,第四资源为持续时间小于或者等于该唤醒信号的最大持续时间的唤醒信号资源,该第三资源与第一资源在时域上不重叠。基于该通信方法,由于本申请实施例中,若第一资源与第四资源在时域上重叠,则在与第一资源在时域上不重叠的第三资源上接收唤醒信号,不在第一资源与第四资源的重叠部分接收唤醒信号,因此第一资源与第二资源在时域上重叠部分可以进行下行数据或者下行信道的传输,从而可以减少下行 信道拥塞,降低对基站调度的影响。
在一种可能的设计中,若第一资源与第四资源在时域上重叠,在第三资源上接收唤醒信号,包括:在(P×该唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,若第一资源与第四资源在时域上重叠,在该第三资源上接收该唤醒信号,P和Q均为正整数。示例性的,P和Q取值可以均为1。也就是说,本申请实施例中,在(P×唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,才进一步确定第一资源与第四资源是否在时域上重叠;否则,在(P×唤醒信号的最大持续时间)小于(Q×第一阈值)的情况下,认为唤醒信号传输中没有第一资源。也就是说,本申请实施例中,在(P×唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,才进一步确定第一资源与第四资源是否在时域上重叠;否则,在(P×唤醒信号的最大持续时间)小于(Q×第一阈值)的情况下,认为唤醒信号传输中没有第一资源。
第四方面,提供了一种通信方法,该方法包括:确定第一资源,第一资源为下行传输间隔资源;若第一资源与第四资源在时域上重叠,在第三资源上发送唤醒信号;其中,第四资源为持续时间小于或者等于该唤醒信号的最大持续时间的唤醒信号资源,该第三资源与第一资源在时域上不重叠。基于该通信方法,由于本申请实施例中,若第一资源与第四资源在时域上重叠,则在与第一资源在时域上不重叠的第三资源上发送唤醒信号,不在第一资源与第四资源的重叠部分发送唤醒信号,因此第一资源与第二资源在时域上重叠部分可以进行下行数据或者下行信道的传输,从而可以减少下行信道拥塞,降低对基站调度的影响。
在一种可能的设计中,若第一资源与第四资源在时域上重叠,在第三资源上发送唤醒信号,包括:在(P×该唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,若第一资源与第四资源在时域上重叠,在该第三资源上发送该唤醒信号,P和Q均为正整数。示例性的,P和Q取值可以均为1。也就是说,本申请实施例中,在(P×唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,才进一步确定第一资源与第四资源是否在时域上重叠;否则,在(P×唤醒信号的最大持续时间)小于(Q×第一阈值)的情况下,认为唤醒信号传输中没有第一资源。
结合上述第三方面或第四方面,在一种可能的设计中,第一资源和第四资源的时域重叠资源上的唤醒信号被丢弃。
示例性的,该第一资源与该第四资源在时域上重叠部分的第一个子帧为该第四资源的第x1个目标子帧,该第一资源与该第四资源在时域上重叠部分的最后一个子帧为该第四资源的第y1个目标子帧,x1为小于或者等于N的正整数,y1为小于N的正整数,该目标子帧为可用于映射该唤醒信号的序列的子帧,N为实际用于映射该唤醒信号的序列的目标子帧的个数;其中,该第三资源包括:第四资源上的第x1个目标子帧之前的(x1-1)个目标子帧、以及第y1个目标子帧之后的(N-y1)个目标子帧。也就是说,第四资源上的第x1个目标子帧至第y1个目标子帧上的唤醒信号被丢弃(drop)。需要说明的是,本申请实施例中,被丢弃(drop)可以理解为,第四资源上的第x1个目标子帧至第y1个目标子帧还用于映射唤醒信号的序列,但是不用于传输唤醒信号。
示例性的,该第一资源与该第四资源在时域上重叠部分的第一个子帧为该第二资源的第x2个目标子帧,该第一资源与该第二资源在时域上重叠部分的最后一个子帧为 该第四资源的第N个目标子帧,x2为小于或者等于N的正整数,该目标子帧为可用于映射该唤醒信号的序列的子帧,N为实际用于映射该唤醒信号的序列的目标子帧的个数;其中,该第三资源包括:第四资源上的第x2个目标子帧之前的(x2-1)个目标子帧。也就是说,第四资源上的第x2个目标子帧至第N个目标子帧上的唤醒信号被丢弃(drop)。需要说明的是,本申请实施例中,被丢弃(drop)可以理解为,第四资源上的第x2个目标子帧至第N个目标子帧还用于映射唤醒信号的序列,但是不用于传输唤醒信号。
可选的,N个用于映射唤醒信号的序列的目标子帧包括第四资源的第一个子帧至所述第四资源的第N个子帧。
结合上述第三方面或第四方面,在一种可能的设计中,第一资源与第二资源的时域重叠资源上的唤醒信号被延迟发送。
示例性的,该第一资源与第四资源在时域上重叠部分的第一个子帧为该第二资源的第x3个目标子帧,该第一资源与该第二资源在时域上重叠部分的最后一个子帧为该第二资源的第y3个目标子帧,x3为小于或者等于N的正整数,y3为小于或者等于N的正整数,该目标子帧为可用于映射该唤醒信号的序列的子帧,N为实际用于映射该唤醒信号的序列的目标子帧的个数;其中,该第三资源包括:该第x3个该目标子帧之前的S1个目标子帧,以及第y3个目标子帧之后的S2个目标子帧,其中,S1为整数,S2为整数,S1+S2≤N。可以理解,第x3个目标子帧至第N个目标子帧上的唤醒信号的序列被映射到第(y3+1)个目标子帧至第(y3+S2)个目标子帧上,这也就意味着,第x3个目标子帧至第N个目标子帧上的唤醒信号被延迟发送(postpone)。需要说明的是,本申请实施例中,唤醒信号被延迟发送(postpone)可以理解为,第一资源和第二资源的时域重叠资源上的唤醒信号,以及重叠资源之后资源上的唤醒信号均被延迟发送,即假设没有第一资源时唤醒信号原本在目标子帧Z上发送,则当有第一资源,且第一资源是目标子帧Z时,唤醒信号在目标子帧Z+1发送,然后在后续的目标子帧上继续发送唤醒信号。
结合上述第三方面或第四方面,在一种可能的设计中,子帧k之后的唤醒信号被丢弃,其中,子帧k为第二资源的结束子帧,第二资源为根据该唤醒信号的最大持续时间确定的用于传输该唤醒信号的资源。基于该方案,可以避免当唤醒信号被延迟发送(postpone)之后,第y3个目标子帧之后的S2个目标子帧的结束位置可能超出第二资源的结束位置到下一个唤醒信号资源处,或者可能与唤醒信号资源和PO之间的gap重叠,或者可能与PO重叠的问题。
结合上述第三方面或第四方面,在一种可能的设计中,该第三资源的时域起始位置相对于第四资源或者第一资源的时域起始位置提前K个目标子帧,其中,K为该第一资源和第二资源的时域重叠部分的目标子帧的个数,K为正整数,第二资源为根据该唤醒信号的最大持续时间确定的用于传输该唤醒信号的资源。基于该方案,可以保证唤醒信号被延迟发送(postpone)之后,第y3个目标子帧之后的S2个目标子帧的结束位置不会超出第二资源的结束位置,从而可以避免当唤醒信号被延迟发送(postpone)之后,第y3个目标子帧之后的S2个目标子帧的结束位置可能超出第二资源的结束位置到下一个唤醒信号资源处,或者可能与唤醒信号资源和PO之间的gap 重叠,或者可能与PO重叠的问题,其中,第二资源为根据该唤醒信号的最大持续时间确定的用于传输该唤醒信号的资源。
第五方面,提供了一种通信装置用于实现上述各种方法。其中,该通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第六方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。
第七方面,提供了一种通信装置,包括:处理器;该处理器用于与存储器耦合,并读取存储器中的指令之后,根据该指令执行如上述任一方面所述的方法。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第十方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第五方面至第十方面中任一种设计方式所带来的技术效果可参见上述第一方面至第四方面中任一不同设计方式所带来的技术效果,此处不再赘述。
第十一方面,提供了一种通信系统,该通信系统包括第一通信装置和第二通信装置;其中,第一通信装置用于执行上述第一方面所述的通信方法,第二通信装置用于执行上述第二方面所述的通信方法;或者,第一通信装置用于执行上述第三方面所述的通信方法,第二通信装置用于执行上述第四方面所述的通信方法。
其中,第十一方面中任一种设计方式所带来的技术效果可参见上述第一方面至第四方面中任一不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1a为现有的WUS资源的位置示意图一;
图1b为现有的WUS资源的位置示意图二;
图2为本申请实施例提供的一种通信系统的结构示意图;
图3为本申请实施例提供的一种通信装置的结构示意图;
图4为本申请实施例提供的终端设备的结构示意图一;
图5为本申请实施例提供的基站的结构示意图;
图6为本申请实施例提供的通信方法的流程示意图;
图7为本申请实施例提供的第一资源、第二资源和第三资源的位置分布示意图一;
图8为本申请实施例提供的第一资源、第二资源和第三资源的位置分布示意图二;
图9为本申请实施例提供的第一资源、第二资源和第三资源的位置分布示意图三;
图10为本申请实施例提供的第一资源、第二资源和第三资源的位置分布示意图四;
图11为本申请实施例提供的第一资源、第二资源和第三资源的位置分布示意图五;
图12为本申请实施例提供的第一资源、第二资源和第三资源的位置分布示意图六;
图13为本申请实施例提供的第一资源、第二资源和第三资源的位置分布示意图七;
图14为本申请实施例提供的第一资源、第二资源和第三资源的位置分布示意图八;
图15为本申请实施例提供的第一资源、第二资源和第三资源的位置分布示意图九;
图16为本申请实施例提供的第一资源、第二资源和第三资源的位置分布示意图十;
图17为本申请实施例提供的第一资源、第二资源和第三资源的位置分布示意图十一;
图18为本申请实施例提供的第一资源、第二资源和第三资源的位置分布示意图十二;
图19为本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术和术语的简要介绍如下。
第一,物联网(internet of things,IoT):
IoT是“物物相连的互联网”。它将互联网的用户端扩展到了任何物品与物品之间,使得在任何物品与物品之间可以进行信息交换和通信。这样的通信方式也称为机器间通信(machine type communications,MTC)。其中,通信的节点称为MTC终端或MTC设备。典型的IoT应用包括智能电网、智能农业、智能交通、智能家居以及环境检测等各个方面。
由于物联网需要应用在多种场景中,比如从室外到室内,从地上到地下,因而对物联网的设计提出了很多特殊的要求。比如,由于某些场景下的MTC终端应用在覆盖较差的环境下,如电表水表等通常安装在室内甚至地下室等无线网络信号很差的地方,因此需要覆盖增强的技术来解决。或者,由于某些场景下的MTC终端的数量要远远大于人与人通信的设备数量,也就是说需要大规模部署,因此要求能够以非常低的成本获得并使用MTC终端。或者,由于某些场景下的MTC终端传输的数据包很小,并且对延时并不敏感,因此要求支持低速率的MTC终端。或者,由于在大多数情况下,MTC终端是通过电池来供电的,但是同时在很多场景下,MTC终端又要求能够使用十年以上而不需要更换电池,这就要求MTC终端能够以极低的电力消耗来工作。
为了满足上述需求,移动通信标准化组织第三代合作伙伴计划(3rd generation partnership project,3GPP)在无线接入网络(radio access network,RAN)#62次全会上通过了一个新的研究课题来研究在蜂窝网络中支持极低复杂度和低成本的物联网的方法,并且在RAN#69次会议上立项为窄带物联网(narrow band internet of thing,
NB-IoT)课题。其中,NB-IoT的带宽为180kHz,即为一个PRB。
第二,WUS:
如图1a所示,3GPP版本(release,Rel)15中,WUS的最大持续时间(maximum WUS duration)为L NWUSmax。WUS和对应的PO之间存在一个间隔(gap),该gap的作用主要是留给终端设备一段时间醒来在PO处去盲检PDCCH。其中,该gap可以为非连续接收(discontinuous reception,DRX)的gap、扩展DRX(extended DRX,eDRX)的短gap和eDRX的长gap,在此不做具体限定。
终端设备在WUS资源上检测是否存在WUS,若终端设备检测到WUS,表示基站可能在寻呼该终端设备,则该终端设备会在PO处开始监听PDCCH;若终端设备未检测到WUS,表示基站没有在寻呼该终端设备,则该终端设备进入睡眠状态,从而可以节省终端设备的功耗。其中,WUS的发送都是从WUS资源的起始时刻开始。WUS的实际持续时间(WUS actual duration)可以是2的指数倍个子帧,比如1、2、4、8、……、L NWUSmax,如表一所示。
表一
L NWUSmax 实际WUS持续时间集合(actual WUS duration set)
1 {1}
2 {1,2}
4 {1,2,4}
8 {1,2,4,8}
16 {1,2,4,8,16}
32 {1,2,4,8,16,32}
64 {1,2,4,8,16,32,64}
128 {1,2,4,8,16,32,64,128}
256 {1,2,4,8,16,32,64,128,256}
512 {1,2,4,8,16,32,64,128,256,512}
1024 {1,2,4,8,16,32,64,128,256,512,1024}
然而,由于图1a中PO处的所有终端设备都需要检测WUS,然后根据是否检测到WUS,再继续在PO处去盲检PDCCH。因此若基站想寻呼终端设备A而发了WUS,但是终端设备B也检测到了WUS从而醒来,可能造成终端设备B错误的被唤醒(false wake up),从而会影响终端设备B的功耗。基于此,3GPP Rel16中引入了对PO处的终端设备的分组处理,不同的分组对应不同的WUS。例如,可以将PO处的终端设备分成两组,包括组A(group A)和组B(group B)。group A对应WUS1(也可以称为group WUS 1),WUS1用于指示PO上的group A中的终端设备监测PDCCH进而去接收寻呼消息;group B对应WUS 2(也可以称为group WUS 2),WUS2用于指示PO上的group B中的终端设备监测PDCCH进而去接收寻呼消息,这样就可以降低终端设备被错误唤醒的概率,从而节省终端设备的功耗。
同时,3GPP Rel-16中还引入了一种公共(common)WUS,该公共WUS用于唤醒PO处所有分组的终端设备。例如,WUS 3即为common WUS,用于唤醒PO处的所有组的终端设备。
需要说明的是,本申请实施例中的WUS资源可以为传统WUS资源(legacy WUS resource)(可以理解为Rel-15的WUS资源,即图1a中的WUS资源)或者上述group WUS资源(可以理解group WUS资源可以是Rel-15的WUS资源,即图1b中的第一个WUS资源,也可以是Rel-16的WUS资源,即图1b中的第二个WUS资源),本申请实施例对此不作具体限定。
需要说明的是,在图1b中的第一个WUS资源,即Rel-15的WUS资源上,可以发送WUS或者group WUS或者common WUS,在此统一说明,以下不再赘述。
需要说明的是,本申请实施例中,WUS的最大持续时间可以理解为表一中的L NWUSmax,或者为最大用于映射WUS的序列的目标子帧的个数,WUS的实际持续时间可以理解为实际发送的WUS的长度,或者实际用于映射WUS的序列的目标子帧的个数。比如,若WUS的最大持续时间=1024,WUS的实际持续时间为512,则可以理解为最大用于映射WUS的序列的目标子帧的个数为1024,实际用于映射WUS的序列的目标子帧的个数为512。这里的目标子帧为可用于映射WUS的序列的子帧,包括有效子帧和传输系统信息块(system information block,SIB)1的子帧4,其中,传输SIB1的子帧4不是有效子帧。有效子帧是指满足一定条件的子帧,该一定条件例如可以包括条件1和条件2,条件1为该子帧上不用于发送窄带主同步信号(narrowband primary synchronization signal,NPSS)、窄带辅同步信号(narrowband secondary synchronization signal,NSSS)、窄带物理广播信道(narrowband physical broadcast channel,NPBCH)和SIB1-NB;条件2为该子帧被配置成有效子帧,相关定义可参考现有技术,在此不再赘述。此外,本申请实施例中,用于映射唤醒信号的序列的子帧可以为连续的,也可以为不连续的,本申请实施例对此不作具体限定。
第三,第一资源、第二资源和第三资源:
本申请实施例中的第一资源为下行(downlink,DL)传输间隔(transmission gap)资源。
本申请实施例中的第二资源为根据唤醒信号的最大持续时间确定的用于传输唤醒信号的资源,如图1a中持续时间为L NWUSmax的WUS资源。可以理解,本申请实施例中的第二资源上的子帧均为上述定义的目标子帧,换言之,第二资源上的“第xxx个子帧”与第二资源上的“第xxx个目标子帧”是同一个概念,可以相互替换,在此统一说明,以下不再赘述。
本申请实施例中的第三资源包括第二资源中除与第一资源在时域上重叠部分之外的部分或全部资源,换言之,第三资源包括第二资源的部分资源,第三资源与第一资源在时域上不重叠。
其中,第一资源、第二资源和第三资源的相对位置将在后续方法实施例中详细阐述,在此不予赘述。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请 实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例可以适用于长期演进(long term LTE)系统(如上述的NB-IOT系统)或NR系统(也可以称之为第五代(5th generation,5G)系统),也可以适用于其他面向未来的新系统等,本申请实施例对此不作具体限定。此外,术语“系统”可以和“网络”相互替换。
如图2所示,为本申请实施例提供的一种通信系统20,该通信系统20包括一个第二通信装置30(图2示例性的以第二通信装置为网络设备为例进行说明)以及与第二通信30连接的一个或多个第一通信装置40(图2示例性的以第一通信装置为终端设备为例进行说明)。以任意一个第一通信装置40与第二通信装置30通信为例,则第二通信装置30,用于确定第一资源;第二通信装置30,还用于若第一资源与第二资源在时域上重叠,在第三资源上向第一通信装置40发送唤醒信号。第一通信装置40,用于确定第一资源;第一通信装置40,还用于若第一资源与第二资源在时域上重叠,在第三资源上接收来自第二通信装置30的唤醒信号,其中,第一资源、第二资源和第三资源的相关定义可参考上述相关技术及术语介绍的第三点,在此不再赘述。该方案的具体实现将在后续方法实施例中详细阐述,在此不予赘述。基于该通信系统,由于本申请实施例中,若用于传输唤醒信号的第二资源与下行传输间隔资源在时域上重叠,则在第二资源中除与第一资源在时域上重叠部分之外的部分或全部资源上接收或发送唤醒信号,不在第一资源与第二资源在时域上重叠部分接收或发送唤醒信号,因此第一资源与第二资源在时域上重叠部分可以进行下行数据或者下行信道的传输,从而可以减少下行信道拥塞,降低对第二通信装置(如基站)调度的影响。
可选的,本申请实施例中的第二通信装置可以为网络设备或者其他用于发送唤醒信号的通信装置,本申请实施例中的第一通信装置可以为终端设备或者其他用于接收唤醒信号的通信装置,本申请实施例对此不作具体限定。
可选的,本申请实施例中的终端设备,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的网络设备可以是能和终端设备通信的设备。该网络设备可以包括传输接收点(transmission reception point,TRP)、基站、分离式基站的远端射频单元(remote radio unit,RRU)或基带单元(baseband unit,BBU)(也可称为数字单元(digital unit,DU))、宽带网络业务网关(broadband network gateway,BNG),汇聚交换机、非3GPP接入设备、中继站或接入点等。其中,图2中以网络设备为基站为例进行示意,在此统一说明,以下不再赘述。此外,本申请实施例中的基站可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS)、宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB)、LTE中的eNB或eNodeB(evolutional NodeB)、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器或者5G通信系统中的基站、或者未来演进网络中的基站等,在此不作具体限定。
可选的,本申请实施例中的第二通信装置30与第一通信装置40也可以称之为通信设备,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
本申请实施例中的第二通信装置30与第一通信装置40的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的第二通信装置30与第一通信装置40的相关功能可以通过图3中的通信装置300来实现。图3所示为本申请实施例提供的通信装置300的结构示意图。该通信装置300包括一个或多个处理器301,通信线路302,以及至少一个通信接口(图3中仅是示例性的以包括通信接口304,以及一个处理器301为例进行说明),可选的还可以包括存储器303。
处理器301可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路302可包括一通路,用于连接不同组件之间。
通信接口304,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口304也可以是位于处理器301内的收发电路,用以实现处理器的信号输入和信号输出。
存储器303可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、 磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路302与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器303用于存储执行本申请方案的计算机执行指令,并由处理器301来控制执行。处理器301用于执行存储器303中存储的计算机执行指令,从而实现本申请实施例中提供的通信方法。
或者,本申请实施例中,也可以是处理器301执行本申请下述实施例提供的DCI传输的方法中的处理相关的功能,通信接口304负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器301可以包括一个或多个CPU,例如图3中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置300可以包括多个处理器,例如图3中的处理器301和处理器308。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置300还可以包括输出设备305和输入设备306。输出设备305和处理器301通信,可以以多种方式来显示信息。
上述的通信装置300可以是一个通用装置或者是一个专用装置。例如通信装置300可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或具有图4中类似结构的设备。本申请实施例不限定通信装置300的类型。
结合图3所示的通信装置300的结构示意图,以通信装置300为终端设备为例,示例性的,图4为本申请实施例提供的终端设备的一种具体结构形式。
其中,在一些实施例中,图3中的处理器301的功能可以通过图4中的处理器110实现。
在一些实施例中,图3中的通信接口304的功能可以通过图4中的天线1,天线2,移动通信模块150,无线通信模块160等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器 110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端设备的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备可以通过无线通信技术与网络以及其他设备通信。
在一些实施例中,图3中的存储器303的功能可以通过图4中的内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图3中的输出设备305的功能可以通过图4中的显示屏194实现。显示屏194包括显示面板。
在一些实施例中,图3中的输入设备306的功能可以通过鼠标、键盘、触摸屏设备或图4中的传感器模块180来实现。在一些实施例中,如图4所示,该终端设备还可以包括音频模块170、摄像头193、指示器192、马达191、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个,本申请实施例对此不作具体限定。
可以理解的是,图4所示的结构并不构成对终端设备的具体限定。比如,在本申请另一些实施例中,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
或者,结合图3所示的通信装置300的结构示意图,以通信装置300为网络设备为例,示例性的,图5为本申请实施例提供的基站的一种具体结构形式。
其中,该基站包括一个或多个射频单元(如RRU501)、以及一个或多个BBU(也可称为数字单元(digital unit,简称DU))502。
RRU501可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天馈系统(即天线)511和射频单元512。该RRU501主要用于射频信号的收发以及射频信号与基带信号的转换。在一些实施例中,图3中的通信接口304的功能可以通过图5中的RRU501实现。
该BBU502为网络设备的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。
在一些实施例中,该BBU502可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网络,5G网络或其它网络)。该BBU502还可以包括存储器521和处理器522,该存储器521用于存储必要的指令和数据。该处理器522用于控制网络设备进行必要的动作。该存储器521和处理器522可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。其中,在一些实施例中,图3中的处理器301的功能可以通过图5中的处理器522实现,图3中的存储器303的 功能可以通过图5中的存储器521实现。
可选的,图5中的RRU501与BBU502可以是物理上设置在一起,也可以物理上分离设置的,例如,分布式基站,本申请实施例对此不作具体限定。
下面将结合图1a至图5,对本申请实施例提供的通信方法进行详细阐述。
如图6所示,为本申请实施例提供的一种通信方法,该通信方法以图2所示的通信系统为例进行说明,即假设第一通信装置为终端设备,第二通信装置为网络设备,则本申请实施例提供的通信方法包括如下步骤:
S601、网络设备确定第一资源。
可选的,本申请实施例中,网络设备可以确定下行传输间隔资源(即第一资源)的配置,该下行传输间隔资源的配置包括周期(可以记为N gap,period),持续时间比例因子(可以记为N gap,coeff)和第一阈值。其中,下行传输间隔资源的起始时域位置满足公式
Figure PCTCN2019109767-appb-000001
n f表示无线帧号,n s表示时隙号,
Figure PCTCN2019109767-appb-000002
表示向下取整,mod表示取余。持续时间(N gap,duration)满足N gap,duration=N gap,coeffN gap,period,单位为子帧。
可选的,本申请实施例中的第一阈值可以是现有协议中的阈值N gap,threshold,也可以是基站配置的另外一个阈值(可以记为N gap,threshold,WUS),比如基站通过系统消息配置N gap,threshold,WUS,本申请实施例对此不作具体限定。示例性的,N gap,threshold,WUS的取值范围例如可以为16,32,64或者128等。
S602、终端设备确定第一资源。
可选的,本申请实施例中,网络设备可以将下行传输间隔资源的配置发送给终端设备,进而终端设备可以根据下行传输间隔资源的配置确定下行传输间隔资源。其中,下行传输间隔资源的配置的相关描述可参考上述步骤S601,在此不再赘述。
S603、若第一资源与第二资源在时域上重叠,网络设备在第三资源上向终端设备发送WUS。相应的,终端设备在第三资源上接收来自网络设备的WUS。
可选的,本申请实施例中,若第一资源与第二资源在时域上重叠,网络设备在第三资源上向终端设备发送WUS,包括:在(P×WUS的最大持续时间)不小于(Q×第一阈值)的情况下,若第一资源与第二资源在时域上重叠,网络设备在第三资源上向终端设备发送WUS,P和Q均为正整数。也就是说,本申请实施例中,在(P×WUS的最大持续时间)不小于(Q×第一阈值)的情况下,网络设备才进一步确定第一资源与第二资源是否在时域上重叠;否则,在(P×WUS的最大持续时间)小于(Q×第一阈值)的情况下,网络设备认为WUS传输中没有第一资源。
可选的,本申请实施例中,若第一资源与第二资源在时域上重叠,终端设备在第三资源上接收来自网络设备的WUS,包括:在(P×WUS的最大持续时间)不小于(Q×第一阈值)的情况下,若第一资源与第二资源在时域上重叠,终端设备在第三资源上接收来自网络设备的WUS,P和Q均为正整数。也就是说,本申请实施例中,在(P×WUS的最大持续时间)不小于(Q×第一阈值)的情况下,终端设备才进一步确定第一资源与第二资源是否在时域上重叠,否则,在(P×WUS的最大持续时间)小于(Q×第一阈值)的情况下,终端设备认为WUS传输中没有第一资源。
示例性的,这里P和Q的取值可以均为1;或者,P的取值为1,Q的取值为大于1的正整数;或者,Q的取值为1,P的取值为大于1的正整数。
当然,在步骤S603中,终端设备或网络设备还可以通过比较第一类(type-1)公共搜索空间(common search space,CSS)的长度(R max)与第一阈值来确定对于WUS,是否存在下行传输间隔资源,本申请实施例对此不作具体限定。
需要说明的是,本申请实施例中的“不小于”可以理解为“大于或者等于”,在此统一说明,以下不再赘述。
下面给出第一资源、第二资源和第三资源的相对位置的具体描述。
场景一:N个用于映射WUS的序列的目标子帧包括第二资源的第一个子帧至第二资源的第N个子帧。也可以理解为,WUS的序列被映射到第二资源的第一个子帧至第二资源的第N个子帧上。
需要说明的是,本申请实施例中的“第几个”可以理解为是从“第一个”开始连续计数的,在此统一说明,以下不再赘述。
一种可能的实现方式中,第一资源与第二资源在时域上重叠部分的第一个子帧为第二资源的第x1个目标子帧,第一资源与第二资源在时域上重叠部分的最后一个子帧为第二资源的第y1个目标子帧,x1为小于或者等于N的正整数,y1为小于N的正整数。第三资源包括:第x1个目标子帧之前的(x1-1)个目标子帧、以及第y1个目标子帧之后的(N-y1)个目标子帧。
需要说明的是,本申请实施例中的“xx之前”或者“xx之后”不包括“xx”本身,如上述第x1个目标子帧之前的(x1-1)个目标子帧不包括第x1个目标子帧,第y1个目标子帧之后的(N-y1)个目标子帧不包括第y1个目标子帧,在此统一说明,以下不再赘述.
示例性的,假设x1不为1,则第一资源、第二资源和第三资源的位置分布图可以如图7所示。其中,第x1个目标子帧之前的(x1-1)个目标子帧可以包括第二资源上的第一个目标子帧至第二资源上的第(x1-1)个目标子帧,第y1个目标子帧之后的(N-y1)个目标子帧包括第二资源上的第(y1+1)个目标子帧至第二资源上的第N个目标子帧。第二资源上的第x1个目标子帧至第y1个目标子帧虽然用于映射WUS的序列,但是不用于传输对应的WUS,也就是说,第二资源上的第x1个目标子帧至第y1个目标子帧上的WUS被丢弃(drop)。需要说明的是,本申请实施例中,被丢弃(drop)可以理解为,第一资源和第二资源的时域重叠资源上的目标子帧还可以用于映射WUS的序列,但是不用于传输WUS。
或者,示例性的,假设x1等于1,则第一资源、第二资源和第三资源的位置分布图可以如图8所示。其中,第x1个目标子帧之前的(x1-1)个目标子帧为0个目标子帧,第y1个目标子帧之后的(N-y1)个目标子帧包括第二资源上的第(y1+1)个目标子帧至第二资源上的第N个目标子帧。第二资源上的第1个目标子帧至第y1个目标子帧虽然用于映射WUS的序列,但是不用于传输对应的WUS,也就是说,第二资源上的第1个目标子帧至第y1个目标子帧上的WUS被丢弃(drop)。
需要说明的是,图8中示例性的以第一资源的起始时域位置早于第二资源的起始位置为例进行说明。当然,第一资源的起始时域位置也可能与第二资源的起始位置相同,本申请实施例对此不作具体限定。
另一种可能的实现方式中,第一资源与第二资源在时域上重叠部分的第一个子帧 为第二资源的第x2个目标子帧,第一资源与第二资源在时域上重叠部分的最后一个子帧为第二资源的第y2个目标子帧,x2为小于或者等于N的正整数,y2为大于或者等于N的正整数。第三资源包括:第x2个目标子帧之前的(x2-1)个目标子帧。
示例性的,第一资源、第二资源和第三资源的位置分布图可以如图9所示。其中,第x2个目标子帧之前的(x2-1)个目标子帧包括第二资源上的第一个目标子帧至第二资源上的第(x2-1)个目标子帧.第二资源上的第x2个目标子帧至第N个目标子帧虽然用于映射WUS的序列,但是不用于传输对应的WUS,也就是说,第二资源上的第x2个目标子帧至第N个目标子帧上的WUS被丢弃(drop)。
场景二:第一资源与第二资源在时域上重叠部分的第一个子帧为第二资源的第x3个所述目标子帧,第一资源与所述第二资源在时域上重叠部分的最后一个子帧为第二资源的第y3个目标子帧,x3为小于或者等于N的正整数,y3为小于或者等于M的正整数。目标子帧为可用于映射WUS的序列的子帧。N为实际用于映射WUS的序列的目标子帧的个数,可以理解为WUS的实际持续时间;M为WUS的最大持续时间内目标子帧的个数,可以理解为WUS的最大持续时间。当然,WUS的实际持续时间可以小于等于WUS的最大持续时间。例如M=1024,表示WUS的最大持续时间为1024,同时可以理解为WUS的最大持续时间内包含1024个目标子帧,即WUS的最大持续时间内可以用于映射WUS序列的目标子帧个数为1024。此时,N的取值可以为1,2,4,8,16,32,64,128,256,512或者1024中的任意一个值。
其中,该场景下,第三资源包括:第x3个目标子帧之前的S1个目标子帧,以及第y3个目标子帧之后的S2个目标子帧,其中,S1为整数,S2为整数,S1+S2≤N。可以理解,第x3个目标子帧至第N个目标子帧上的WUS的序列被映射到第(y3+1)个目标子帧至第(y3+S2)个目标子帧上,这也就意味着,第x3个目标子帧至第N个目标子帧上的WUS被延迟发送(postpone)。需要说明的是,本申请实施例中,WUS被延迟发送(postpone)可以理解为,第一资源和第二资源的时域重叠资源上的WUS,以及重叠资源之后资源上的WUS均被延迟发送,即假设没有第一资源时WUS原本在目标子帧Z上发送,则当有第一资源,且第一资源是目标子帧Z时,WUS在目标子帧Z+1发送,然后在后续的目标子帧上继续发送WUS。
示例性的,假设x3不为1,则第一资源、第二资源和第三资源的位置分布图可以如图10或者图11所示。其中,第x3个目标子帧之前的S1个目标子帧包括第二资源的第一个有效子帧至第二资源的第(x3-1)个目标子帧,第y3个目标子帧之后的S2个目标子帧包括第二资源的第(y3+1)个目标子帧至第二资源的第(N+y3-x3+1)个目标子帧,S1+S2=N,S1=x3-1,S2=N-x3+1。
或者,示例性的,假设x3不为1,则第一资源、第二资源和第三资源的位置分布图可以如图12所示。其中,第x3个目标子帧之前的S1个目标子帧包括第二资源的第一个有效子帧至第二资源的第(x3-1)个目标子帧,第y3个目标子帧之后的S2个目标子帧包括第二资源的第(y3+1)个目标子帧至第二资源的最后一个目标子帧、以及第二资源之后的WUS资源上的部分目标子帧,其中,S1+S2=N,S1=x3-1。可以看出,当第x3个目标子帧至第N个目标子帧上的WUS被延迟发送(postpone)之后,第y3个目标子帧之后的S2个目标子帧的结束位置可能超出第二资源的结束位置到下一个 WUS资源处,或者可能与WUS资源和PO之间的gap重叠,或者可能与PO重叠。进一步的,可选的,本申请实施例中,当第x3个目标子帧至第N个目标子帧上的WUS被延迟发送(postpone)之后,第y3个目标子帧之后的S2个目标子帧中,超出第二资源的结束位置的目标子帧可以被丢弃(drop)。比如,如图13所示,第y3个目标子帧之后的S2个目标子帧包括第二资源的第(y3+1)个目标子帧至第二资源的最后一个目标子帧,S1+S2<N。这样可以避免当第x3个目标子帧至第N个目标子帧上的WUS被延迟发送(postpone)之后,第y3个目标子帧之后的S2个目标子帧的结束位置可能超出第二资源的结束位置到下一个WUS资源处,或者可能与WUS资源和PO之间的gap重叠,或者可能与PO重叠的问题。
或者,示例性的,假设x3等于1,则第一资源、第二资源和第三资源的位置分布图可以如图14或图15所示。其中,第x3个目标子帧之前的S1个目标子帧包括0个目标子帧,第y3个目标子帧之后的S2个目标子帧包括第二资源的第(y3+1)个目标子帧至第二资源的第(N+y3)个目标子帧,S1+S2=N,S1=0,S2=N。
需要说明的是,图14或图15中示例性的以第一资源的起始时域位置早于第二资源的起始位置为例进行说明。当然,第一资源的起始时域位置也可能与第二资源的起始位置相同,本申请实施例对此不作具体限定。
需要说明的是,图14或图15中示例性的以第x3个目标子帧至第N个目标子帧上的WUS被延迟发送(postpone)之后的第(N+y3)个目标子帧未超出第二资源的结束位置为例进行说明。当然,第x3个目标子帧至第N个目标子帧上的WUS被延迟发送(postpone)之后的第(N+y3)个目标子帧可能超出第二资源的结束位置,此时的处理方式可参考图13或者图14的处理方式,在此不再赘述。
可选的,本申请实施例中,对于上述延迟发送(postpone)的场景,为了避免当第x3个目标子帧至第N个目标子帧上的WUS被延迟发送(postpone)之后,第y3个目标子帧之后的S2个目标子帧的结束位置可能超出第二资源的结束位置到下一个WUS资源处,或者可能与WUS资源和PO之间的gap重叠,或者可能与PO重叠的问题,或者为了避免超出第二资源的结束位置的目标子帧被丢弃(drop)之后可能影响WUS的性能的问题,因此本申请实施例中,若第一资源与第二资源在时域上重叠,则可以将WUS的发送位置前移,使得第三资源的时域起始位置可以相对于第二资源或者第一资源的时域起始位置提前K个目标子帧,其中,K为第一资源和第二资源的时域重叠部分的子帧的个数,K为正整数。这样可以保证WUS被延迟发送(postpone)之后,第y3个目标子帧之后的S2个目标子帧的结束位置不会超出第二资源的结束位置,从而可以避免当WUS被延迟发送(postpone)之后,第y3个目标子帧之后的S2个目标子帧的结束位置可能超出第二资源的结束位置到下一个WUS资源处,或者可能与WUS资源和PO之间的gap重叠,或者可能与PO重叠的问题。
示例性的,第一资源、第二资源和第三资源的位置分布图可以如图16所示。其中,第x3个目标子帧之前的S1个目标子帧包括第二资源的起始位置之前的K个目标子帧、以及第二资源的第一个有效子帧至第二资源的第(x3-1)个目标子帧,K=y3-x3+1;第y3个目标子帧之后的S2个目标子帧包括第二资源的第(y3+1)个目标子帧至第二资源的第N个目标子帧,S1+S2=N,S1=K+x3-1,S2=N-y3。
或者,示例性的,第一资源、第二资源和第三资源的位置分布图可以如图17所示。其中,第x3个目标子帧之前的S1个目标子帧包括第二资源的起始位置之前的K个目标子帧、以及第二资源的第一个有效子帧至第二资源的第(N-K)个目标子帧,第y3个目标子帧之后的S2个目标子帧为0,S1+S2=N,S1=K+N-K=N,S2=0。应当理解,当N小于K时,第x3个目标子帧之前的S1个目标子帧包括目标子帧A之前的N个目标子帧,目标子帧A为第二资源的起始位置之前的第K-N个目标子帧,S1=N。
或者,示例性的,第一资源、第二资源和第三资源的位置分布图可以如图18所示。其中,第x3(x3=1)个目标子帧之前的S1个目标子帧包括第一资源的起始位置之前的K个目标子帧,K=y3;第y3个目标子帧之后的S2个目标子帧包括第二资源的第(y3+1)个目标子帧至第二资源的第N个目标子帧,S1+S2=N,S1=K,S2=N-y3。
可选的,本申请实施例中,可以是在第一资源和第二资源的时域起始位置重叠(即x3=1)时,才将第三资源的时域起始位置相对于第二资源的时域起始位置提前K个目标子帧,本申请实施例对此不作具体限定。
需要说明的是,本申请实施例中,上述第二资源的第一个目标子帧至第二资源的第N个目标子帧也可以理解为现有的没有下行传输间隔资源插入WUS资源场景下的WUS的实际持续时间上的目标子帧,比如图1a所示的WUS的实际持续时间上的目标子帧。相应的,上述包含第二资源的第一个目标子帧至第二资源的第N个目标子帧的资源也可以定义为第四资源,该第四资源为持续时间小于或者等于WUS的最大持续时间的唤醒信号资源,可以理解为现有的没有下行传输间隔资源插入WUS资源的场景下,根据WUS的实际持续时间确定的用于传输WUS的资源,比如根据图1a所示的WUS的实际持续时间确定的用于传输WUS的资源,在此统一说明,以下不再赘述。
可选的,本申请实施例中,若第一资源与第二资源在时域上重叠资源上目标子帧的个数较多,则对于场景一,WUS被丢弃(drop)后对WUS检测性能可能影响比较大。只有第一资源与第二资源在时域上重叠资源上目标子帧的个数较少时,才能减少WUS被丢弃(drop)后对WUS检测性能的影响。基于此,本申请实施例中,若第一资源与第二资源在时域上重叠,则网络设备可以在确定第一资源的持续时间不小于第二阈值的情况下采用上述场景二中的延迟发送(postpone)方式发送WUS,终端设备可以在确定第一资源的持续时间不小于第二阈值的情况下采用上述场景二中的延迟发送(postpone)方式接收WUS;网络设备可以在确定第一资源的持续时间小于第二阈值的情况下根据上述场景一中的丢弃(drop)方式发送WUS,终端设备可以在确定第一资源的持续时间小于第二阈值的情况下根据上述场景一中的丢弃(drop)方式接收WUS。这样可以降低WUS被丢弃(drop)后对WUS检测性能的影响。
可选的,上述终端设备侧的第二阈值可以是基站配置的,本申请实施例对此不作具体限定。当然,本申请实施例中,网络设备也可以直接向终端设备发送信令以指示终端设备WUS的发送方式为延迟发送(postpone)方式还是丢弃(drop)方式,本申请实施例对此不做具体限定。
基于本申请实施例提供的通信方法,由于本申请实施例中,若用于传输WUS的第二资源与下行传输间隔资源在时域上重叠,则在第二资源中除与第一资源重叠部分之外的部分或全部资源上接收或发送WUS,不在第一资源与第二资源在时域上重叠部 分接收或发送WUS,因此第一资源与第二资源在时域上重叠部分可以进行下行数据或者下行信道的传输,从而可以减少下行信道拥塞,降低对网络设备(如基站)调度的影响。
其中,上述步骤S601至S603中的网络设备或者终端设备的动作可以由图3所示的通信装置300中的处理器301调用存储器303中存储的应用程序代码以指令该网络设备执行,本实施例对此不作任何限制。
可选的,本申请实施例中,也可以是网络设备确定第一资源,进而若第一资源与第四资源在时域上重叠,在第三资源上发送WUS。终端设备确定第一资源,进而若第一资源与第四资源在时域上重叠,在第三资源上接收WUS。其中,第三资源与第一资源在时域上不重叠。第一资源为下行传输间隔资源,第四资源为持续时间小于或者等于WUS的最大持续时间的WUS资源。
可选的,本申请实施例中,若第一资源与第四资源在时域上重叠,网络设备在第三资源上向终端设备发送WUS,包括:在(P×WUS的最大持续时间)不小于(Q×第一阈值)的情况下,若第一资源与第四资源在时域上重叠,网络设备在第三资源上向终端设备发送WUS,P和Q均为正整数。也就是说,本申请实施例中,在(P×WUS的最大持续时间)不小于(Q×第一阈值)的情况下,网络设备才进一步确定第一资源与第四资源是否在时域上重叠;否则,在(P×WUS的最大持续时间)小于(Q×第一阈值)的情况下,网络设备认为WUS传输中没有第一资源。
可选的,本申请实施例中,若第一资源与第四资源在时域上重叠,终端设备在第三资源上接收来自网络设备的WUS,包括:在(P×WUS的最大持续时间)不小于(Q×第一阈值)的情况下,若第一资源与第四资源在时域上重叠,终端设备在第三资源上接收来自网络设备的WUS,P和Q均为正整数。也就是说,本申请实施例中,在(P×WUS的最大持续时间)不小于(Q×第一阈值)的情况下,终端设备才进一步确定第一资源与第四资源是否在时域上重叠,否则,在(P×WUS的最大持续时间)小于(Q×第一阈值)的情况下,终端设备认为WUS传输中没有第一资源。
示例性的,这里P和Q的取值可以均为1;或者,P的取值为1,Q的取值为大于1的正整数;或者,Q的取值为1,P的取值为大于1的正整数。
当然,本申请实施例中,终端设备或网络设备还可以通过比较第一类(type-1)CSS的长度(R max)与第一阈值来确定对于WUS,是否存在下行传输间隔资源,本申请实施例对此不作具体限定。
其中,第一资源、第二资源、第三资源和第四资源的相对位置的具体描述可参考图6所示的实施例中对于第一资源、第二资源和第三资源的相对位置的具体描述,在此不再赘述。
可选的,本申请上述实施例中,唤醒信号在第三资源上发送,可以理解为唤醒信号是按照第三资源上目标子帧的先后顺序来发送的,例如先发送第三资源上的目标子帧i上的唤醒信号,然后再发送第三资源上的目标子帧i+1上的唤醒信号,在此统一说明,以下不再赘述。
可以理解的是,以上各个实施例中,由第一通信装置实现的方法和/或步骤,也可以由实现上述第一通信装置功能的芯片系统实现,由第二通信装置实现的方法和/或步 骤,也可以由实现上述第二通信装置功能的芯片系统实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置可以为上述方法实施例中的第一通信装置,或者包含上述第一通信装置的装置,或者为可用于第一通信装置的部件;或者,该通信装置可以为上述方法实施例中的第二通信装置,或者包含上述第二通信装置的装置,或者为可用于第二通信装置的部件。可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
示例性的,图19示出了一种通信装置190的结构示意图。该通信装置190包括收发模块1901和处理模块1902。所述收发模块1901,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,若该通信装置190为上述方法实施例中的第一通信装置,或者包含上述第一通信装置的装置,或者为可用于第一通信装置的部件,则一种可能的实现方式中,处理模块1902,用于确定第一资源,第一资源为下行传输间隔资源。收发模块1901,用于若第一资源与第二资源在时域上重叠,在第三资源上接收唤醒信号,其中,第二资源为根据唤醒信号的最大持续时间确定的用于传输唤醒信号的资源;第三资源包括第二资源中除与第一资源在时域上重叠部分之外的部分或全部资源。
可选的,收发模块1901具体用于:在(P×唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,若第一资源与第二资源在时域上重叠,在第三资源上接收唤醒信号,P和Q均为正整数。
另一种可能的实现方式中,处理模块1902,用于确定第一资源,第一资源为下行传输间隔资源;收发模块1901,用于若第一资源与第四资源在时域上重叠,在第三资源上接收唤醒信号;其中,第四资源为持续时间小于或者等于该唤醒信号的最大持续时间的唤醒信号资源,第三资源与第一资源在时域上不重叠。
可选的,收发模块1901具体用于:在(P×该唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,若第一资源与第四资源在时域上重叠,在该第三资源上接收该唤醒信号,P和Q均为正整数。
若该通信装置190为上述方法实施例中的第二通信装置,或者包含上述第二通信装置的装置,或者为可用于第二通信装置的部件,则一种可能的实现方式中,处理模块1902,用于确定第一资源,第一资源为下行传输间隔资源。收发模块1901,用于若第一资源与第二资源在时域上重叠,在第三资源上发送唤醒信号,其中,第二资源为根据唤醒信号的最大持续时间确定的用于传输唤醒信号的资源;第三资源包括第二资源中除与第一资源在时域上重叠部分之外的部分或全部资源。
可选的,收发模块1901具体用于:在(P×唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,若第一资源与第二资源在时域上重叠,在第三资源上发送唤醒 信号,P和Q均为正整数。
另一种可能的实现方式中,处理模块1902,用于确定第一资源,第一资源为下行传输间隔资源;收发模块1901,用于若第一资源与第四资源在时域上重叠,在第三资源上发送唤醒信号;其中,第四资源为持续时间小于或者等于该唤醒信号的最大持续时间的唤醒信号资源,第三资源与第一资源在时域上不重叠。
可选的,收发模块具体用于:在(P×该唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,若第一资源与第四资源在时域上重叠,在该第三资源上发送该唤醒信号,P和Q均为正整数。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置190以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该通信装置190可以采用图3所示的通信装置300的形式。
比如,图3所示的通信装置300中的处理器301可以通过调用存储器303中存储的计算机执行指令,使得通信装置300执行上述方法实施例中的通信方法。
具体的,图19中的收发模块1901和处理模块1902的功能/实现过程可以通过图3所示的通信装置300中的处理器301调用存储器303中存储的计算机执行指令来实现。或者,图19中的处理模块1902的功能/实现过程可以通过图3所示的通信装置300中的处理器301调用存储器303中存储的计算机执行指令来实现,图19中的收发模块1901的功能/实现过程可以通过图3中所示的通信装置300中的通信接口304来实现。
由于本实施例提供的通信装置190可执行上述的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和 数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (37)

  1. 一种通信方法,其特征在于,所述方法包括:
    确定第一资源,所述第一资源为下行传输间隔资源;
    若所述第一资源与第二资源在时域上重叠,在第三资源上接收唤醒信号,其中,所述第二资源为根据所述唤醒信号的最大持续时间确定的用于传输所述唤醒信号的资源,所述第三资源包括所述第二资源中除与所述第一资源在时域上重叠部分之外的部分或全部资源。
  2. 根据权利要求1所述的方法,其特征在于,若所述第一资源与第二资源在时域上重叠,在第三资源上接收唤醒信号,包括:
    在(P×所述唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,若所述第一资源与所述第二资源在时域上重叠,在所述第三资源上接收所述唤醒信号,P和Q均为正整数。
  3. 根据权利要求2所述的方法,其特征在于,P和Q取值均为1。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一资源与所述第二资源在时域上重叠部分的第一个子帧为所述第二资源的第x1个目标子帧,所述第一资源与所述第二资源在时域上重叠部分的最后一个子帧为所述第二资源的第y1个目标子帧,x1为小于或者等于N的正整数,y1为小于N的正整数,所述目标子帧为可用于映射所述唤醒信号的序列的子帧,N为实际用于映射所述唤醒信号的序列的目标子帧的个数,其中,
    所述第三资源包括:所述第x1个目标子帧之前的(x1-1)个目标子帧、以及所述第y1个目标子帧之后的(N-y1)个目标子帧。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一资源与所述第二资源在时域上重叠部分的第一个子帧为所述第二资源的第x2个目标子帧,所述第一资源与所述第二资源在时域上重叠部分的最后一个子帧为所述第二资源的第y2个目标子帧,x2为小于或者等于N的正整数,y2为大于或者等于N的正整数,所述目标子帧为可用于映射所述唤醒信号的序列的子帧,N为实际用于映射所述唤醒信号的序列的目标子帧的个数,其中,
    所述第三资源包括:所述第x2个目标子帧之前的(x2-1)个目标子帧。
  6. 根据权利要求4或5所述的方法,其特征在于,N个用于映射所述唤醒信号的序列的目标子帧包括所述第二资源的第一个子帧至所述第二资源的第N个子帧。
  7. 根据权利要求1-3任一项所述的方法,所述第一资源与所述第二资源在时域上重叠部分的第一个子帧为所述第二资源的第x3个目标子帧,所述第一资源与所述第二资源在时域上重叠部分的最后一个子帧为所述第二资源的第y3个目标子帧,x3为小于或者等于N的正整数,y3为小于或者等于M的正整数,所述目标子帧为可用于映射所述唤醒信号的序列的子帧,N为实际用于映射所述唤醒信号的序列的目标子帧的个数,M为所述唤醒信号的最大持续时间内目标子帧的个数,其中,
    所述第三资源包括:所述第x3个目标子帧之前的S1个目标子帧,以及所述第y3个目标子帧之后的S2个目标子帧,其中,S1为整数,S2为整数,S1+S2≤N。
  8. 根据权利要求7所述的方法,其特征在于,所述第三资源的时域起始位置相对 于所述第二资源或者所述第一资源的时域起始位置提前K个目标子帧,其中,K为所述第一资源和所述第二资源的时域重叠部分的子帧的个数,K为正整数。
  9. 一种通信方法,其特征在于,所述方法包括:
    确定第一资源,所述第一资源为下行传输间隔资源;
    若所述第一资源与第二资源在时域上重叠,在第三资源上发送唤醒信号,其中,所述第二资源为根据所述唤醒信号的最大持续时间确定的用于传输所述唤醒信号的资源;所述第三资源包括所述第二资源中除与所述第一资源在时域上重叠部分之外的部分或全部资源。
  10. 根据权利要求9所述的方法,其特征在于,若所述第一资源与第二资源在时域上重叠,在第三资源上发送所述唤醒信号,包括:
    在(P×所述唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,若所述第一资源与所述第二资源在时域上重叠,在所述第三资源上发送所述唤醒信号,P和Q均为正整数。
  11. 根据权利要求10所述的方法,其特征在于,P和Q取值均为1。
  12. 根据权利要求9-11任一项所述的方法,其特征在于,所述第一资源与所述第二资源在时域上重叠部分的第一个子帧为所述第二资源的第x1个所述目标子帧,所述第一资源与所述第二资源在时域上重叠部分的最后一个子帧为所述第二资源的第y1个目标子帧,x1为小于或者等于N的正整数,y1为小于N的正整数,所述目标子帧为可用于映射所述唤醒信号的序列的子帧,N为实际用于映射所述唤醒信号的序列的目标子帧的个数;其中,
    所述第三资源包括:所述第x1个目标子帧之前的(x1-1)个目标子帧、以及所述第y1个目标子帧之后的(N-y1)个目标子帧。
  13. 根据权利要求9-11任一项所述的方法,其特征在于,所述第一资源与所述第二资源在时域上重叠部分的第一个子帧为所述第二资源的第x2个目标子帧,所述第一资源与所述第二资源在时域上重叠部分的最后一个子帧为所述第二资源的第y2个目标子帧,x2为小于或者等于N的正整数,y2为大于或者等于N的正整数,所述目标子帧为可用于映射所述唤醒信号的序列的子帧,N为实际用于映射所述唤醒信号的序列的目标子帧的个数;其中,
    所述第三资源包括:所述第x2个目标子帧之前的(x2-1)个目标子帧。
  14. 根据权利要求12或13所述的方法,其特征在于,N个用于映射所述唤醒信号的序列的目标子帧包括所述第二资源的第一个子帧至所述第二资源的第N个子帧。
  15. 根据权利要求9-11任一项所述的方法,所述第一资源与所述第二资源在时域上重叠部分的第一个子帧为所述第二资源的第x3个目标子帧,所述第一资源与所述第二资源在时域上重叠部分的最后一个子帧为所述第二资源的第y3个目标子帧,x3为小于或者等于N的正整数,y3为小于或者等于M的正整数,所述目标子帧为可用于映射所述唤醒信号的序列的子帧,N为实际用于映射所述唤醒信号的序列的目标子帧的个数,M为所述唤醒信号的最大持续时间内目标子帧的个数;其中,
    所述第三资源包括:所述第x3个目标子帧之前的S1个目标子帧,以及所述第y3个目标子帧之后的S2个目标子帧,其中,S1为整数,S2为整数,S1+S2≤N。
  16. 根据权利要求15所述的方法,其特征在于,所述第三资源的时域起始位置相对于所述第二资源或者所述第一资源的时域起始位置提前K个目标子帧,其中,K为所述第一资源和所述第二资源的时域重叠部分的子帧的个数,K为正整数。
  17. 一种通信装置,其特征在于,所述通信装置包括处理模块和收发模块;
    所述处理模块,用于确定第一资源,所述第一资源为下行传输间隔资源;
    所述收发模块,用于若所述第一资源与第二资源在时域上重叠,在第三资源上接收唤醒信号,其中,所述第二资源为根据所述唤醒信号的最大持续时间确定的用于传输所述唤醒信号的资源,所述第三资源包括所述第二资源中除与所述第一资源在时域上重叠部分之外的部分或全部资源。
  18. 根据权利要求17所述的通信装置,其特征在于,所述收发模块具体用于:
    在(P×所述唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,若所述第一资源与所述第二资源在时域上重叠,在所述第三资源上接收所述唤醒信号,P和Q均为正整数。
  19. 根据权利要求18所述的通信装置,其特征在于,P和Q取值均为1。
  20. 根据权利要求17-19任一项所述的通信装置,其特征在于,所述第一资源与所述第二资源在时域上重叠部分的第一个子帧为所述第二资源的第x1个目标子帧,所述第一资源与所述第二资源在时域上重叠部分的最后一个子帧为所述第二资源的第y1个目标子帧,x1为小于或者等于N的正整数,y1为小于N的正整数,所述目标子帧为可用于映射所述唤醒信号的序列的子帧,N为实际用于映射所述唤醒信号的序列的目标子帧的个数,其中,
    所述第三资源包括:所述第x1个目标子帧之前的(x1-1)个目标子帧、以及所述第y1个目标子帧之后的(N-y1)个目标子帧。
  21. 根据权利要求17-19任一项所述的通信装置,其特征在于,所述第一资源与所述第二资源在时域上重叠部分的第一个子帧为所述第二资源的第x2个目标子帧,所述第一资源与所述第二资源在时域上重叠部分的最后一个子帧为所述第二资源的第y2个目标子帧,x2为小于或者等于N的正整数,y2为大于或者等于N的正整数,所述目标子帧为可用于映射所述唤醒信号的序列的子帧,N为实际用于映射所述唤醒信号的序列的目标子帧的个数;其中,
    所述第三资源包括:所述第x2个目标子帧之前的(x2-1)个目标子帧。
  22. 根据权利要求20或21所述的通信装置,其特征在于,N个用于映射所述唤醒信号的序列的目标子帧包括所述第二资源的第一个子帧至所述第二资源的第N个子帧。
  23. 根据权利要求17-19任一项所述的通信装置,所述第一资源与所述第二资源在时域上重叠部分的第一个子帧为所述第二资源的第x3个目标子帧,所述第一资源与所述第二资源在时域上重叠部分的最后一个子帧为所述第二资源的第y3个目标子帧,x3为小于或者等于N的正整数,y3为小于或者等于M的正整数,所述目标子帧为可用于映射所述唤醒信号的序列的子帧,N为实际用于映射所述唤醒信号的序列的目标子帧的个数,M为所述唤醒信号的最大持续时间内目标子帧的个数;其中,
    所述第三资源包括:所述第x3个目标子帧之前的S1个目标子帧,以及所述第y3 个目标子帧之后的S2个目标子帧,其中,S1为整数,S2为整数,S1+S2≤N。
  24. 根据权利要求23所述的通信装置,其特征在于,所述第三资源的时域起始位置相对于所述第二资源或者所述第一资源的时域起始位置提前K个目标子帧,其中,K为所述第一资源和所述第二资源的时域重叠部分的子帧的个数,K为正整数。
  25. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于确定第一资源,所述第一资源为下行传输间隔资源;
    所述收发模块,用于若所述第一资源与第二资源在时域上重叠,在第三资源上发送唤醒信号,其中,所述第二资源为根据所述唤醒信号的最大持续时间确定的用于传输所述唤醒信号的资源;所述第三资源包括所述第二资源中除与所述第一资源在时域上重叠部分之外的部分或全部资源。
  26. 根据权利要求25所述的通信装置,其特征在于,所述收发模块具体用于:
    在(P×所述唤醒信号的最大持续时间)不小于(Q×第一阈值)的情况下,若所述第一资源与所述第二资源在时域上重叠,在所述第三资源上发送所述唤醒信号,P和Q均为正整数。
  27. 根据权利要求26所述的通信装置,其特征在于,P和Q取值均为1。
  28. 根据权利要求25-27任一项所述的通信装置,其特征在于,所述第一资源与所述第二资源在时域上重叠部分的第一个子帧为所述第二资源的第x1个目标子帧,所述第一资源与所述第二资源在时域上重叠部分的最后一个子帧为所述第二资源的第y1个目标子帧,x1为小于或者等于N的正整数,y1为小于N的正整数,所述目标子帧为可用于映射所述唤醒信号的序列的子帧,N为实际用于映射所述唤醒信号的序列的目标子帧的个数;其中,
    所述第三资源包括:所述第x1个目标子帧之前的(x1-1)个目标子帧、以及所述第y1个目标子帧之后的(N-y1)个目标子帧。
  29. 根据权利要求25-27任一项所述的通信装置,其特征在于,所述第一资源与所述第二资源在时域上重叠部分的第一个子帧为所述第二资源的第x2个目标子帧,所述第一资源与所述第二资源在时域上重叠部分的最后一个子帧为所述第二资源的第y2个目标子帧,x2为小于或者等于N的正整数,y2为大于或者等于N的正整数,所述目标子帧为可用于映射所述唤醒信号的序列的子帧,N为实际用于映射所述唤醒信号的序列的目标子帧的个数;其中,
    所述第三资源包括:所述第x2个目标子帧之前的(x2-1)个目标子帧。
  30. 根据权利要求28或29所述的通信装置,其特征在于,N个用于映射所述唤醒信号的序列的目标子帧包括所述第二资源的第一个子帧至所述第二资源的第N个子帧。
  31. 根据权利要求25-27任一项所述的通信装置,所述第一资源与所述第二资源在时域上重叠部分的第一个子帧为所述第二资源的第x3个目标子帧,所述第一资源与所述第二资源在时域上重叠部分的最后一个子帧为所述第二资源的第y3个目标子帧,x3为小于或者等于N的正整数,y3为小于或者等于M的正整数,所述目标子帧为可用于映射所述唤醒信号的序列的子帧,N为实际用于映射所述唤醒信号的序列的目标子帧的个数,M为所述唤醒信号的最大持续时间内目标子帧的个数;其中,
    所述第三资源包括:所述第x3个目标子帧之前的S1个目标子帧,以及所述第y3个目标子帧之后的S2个目标子帧,其中,S1为整数,S2为整数,S1+S2≤N。
  32. 根据权利要求31所述的通信装置,其特征在于,所述第三资源的时域起始位置相对于所述第二资源或者所述第一资源的时域起始位置提前K个目标子帧,其中,K为所述第一资源和所述第二资源的时域重叠部分的子帧的个数,K为正整数。
  33. 一种通信装置,其特征在于,包括:包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如权利要求1-8中任意一项所述的方法或者9-16中任意一项所述的方法。
  34. 如权利要求33所述的通信装置,其特征在于,还包括所述存储器。
  35. 一种计算机可读存储介质,其特征在于,包括指令,当其被运行时,使得如权利要求1-8任意一项所述的方法或者如权利要求9-16任意一项所述的方法被执行。
  36. 一种计算机程序产品,其特征在于,包括指令,当所述指令被运行时,使得如权利要求1-8任意一项所述的方法或者如权利要求9-16任意一项所述的方法被执行。
  37. 一种通信系统,其特征在于,所述通信系统包括如权利要求17-24任一项所述的通信装置、以及如权利要求25-32任一项所述的通信装置。
PCT/CN2019/109767 2019-09-30 2019-09-30 通信方法、设备及系统 WO2021062838A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980097444.2A CN113966636B (zh) 2019-09-30 2019-09-30 通信方法、设备及系统
PCT/CN2019/109767 WO2021062838A1 (zh) 2019-09-30 2019-09-30 通信方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109767 WO2021062838A1 (zh) 2019-09-30 2019-09-30 通信方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2021062838A1 true WO2021062838A1 (zh) 2021-04-08

Family

ID=75336708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109767 WO2021062838A1 (zh) 2019-09-30 2019-09-30 通信方法、设备及系统

Country Status (2)

Country Link
CN (1) CN113966636B (zh)
WO (1) WO2021062838A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133019A1 (zh) * 2009-05-18 2010-11-25 华为技术有限公司 监听网络的方法和终端
WO2018175760A1 (en) * 2017-03-24 2018-09-27 Intel Corporation Wake up signal for machine type communication and narrowband-internet-of-things devices
CN109923914A (zh) * 2017-03-24 2019-06-21 Lg 电子株式会社 用于接收寻呼消息的方法和无线设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108633070A (zh) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 半静态资源调度方法、功率控制方法及相应用户设备
US11129104B2 (en) * 2017-08-11 2021-09-21 Apple Inc. Wake up signaling in wireless telecommunication networks
US10834699B2 (en) * 2017-11-13 2020-11-10 Qualcomm Incorporated Fallback mode for wake-up signal receivers
US10959175B2 (en) * 2017-12-21 2021-03-23 Qualcomm Incorporated Wake up signal configurations for wireless communications
CN116056192A (zh) * 2018-02-27 2023-05-02 维沃移动通信有限公司 信息发送方法、接收方法、网络设备及终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133019A1 (zh) * 2009-05-18 2010-11-25 华为技术有限公司 监听网络的方法和终端
WO2018175760A1 (en) * 2017-03-24 2018-09-27 Intel Corporation Wake up signal for machine type communication and narrowband-internet-of-things devices
CN109923914A (zh) * 2017-03-24 2019-06-21 Lg 电子株式会社 用于接收寻呼消息的方法和无线设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Wake-up signal functions for NB-IoT", 3GPP DRAFT; R1-1805854 WAKE-UP SIGNAL FUNCTIONS FOR NB-IOT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Busan, Korea; 20180520 - 20180524, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051441074 *
LENOVO, MOTOROLA MOBILITY: "UE-group wake-up signal for Rel-16 MTC", 3GPP DRAFT; R1-1904565, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, 12 April 2019 (2019-04-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 5, XP051691600 *

Also Published As

Publication number Publication date
CN113966636A (zh) 2022-01-21
CN113966636B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2020063928A1 (zh) 一种寻呼指示信息的传输方法和通信装置
TWI795555B (zh) 信號傳輸方法及裝置
WO2020143789A1 (zh) 分组唤醒信号的发送方法及装置
WO2020181441A1 (zh) 通信方法、装置及系统
US20140192694A1 (en) Triggering downlink traffic with timing indication
KR20210068091A (ko) 웨이크업 신호 송신, 수신 방법, 장치, 기지국, 단말 및 저장매체
CN111903166B (zh) 一种信号发送方法、网络设备及终端设备
US12010651B2 (en) Wireless communication method, terminal, and network device
EP4090085B1 (en) Communication method and apparatus
US20210195518A1 (en) Reference signal sending method, reference signal receiving method, device, and system
US20230397118A1 (en) Method for wireless communication and first device
US20220346012A1 (en) Signal sending and receiving method, apparatus, and device
TW202011769A (zh) 資訊傳輸方法、網路設備及終端
WO2022007632A1 (zh) 一种通信方法和通信装置
CN115134895A (zh) 双drx模式下唤醒指示方法及相关装置
WO2020168723A1 (zh) 参考信号接收与发送方法、设备及系统
EP4408047A1 (en) Communication method and communication apparatus
WO2021062838A1 (zh) 通信方法、设备及系统
CN109104756B (zh) 唤醒方法、接入点和站点
CN113875292B (zh) 发送和接收信号的方法和装置
WO2022151405A1 (zh) 通信方法和装置
WO2022067828A1 (zh) 寻呼信息发送、监听方法及通信装置、系统
US20230379828A1 (en) Wireless communication method, terminal device and network device
US20230370967A1 (en) Energy-saving information determination method, electronic device, and storage medium
US20240292333A1 (en) Low-power wireless device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947458

Country of ref document: EP

Kind code of ref document: A1