WO2021062800A1 - Uplink control information for uplink configured grant transmission - Google Patents

Uplink control information for uplink configured grant transmission Download PDF

Info

Publication number
WO2021062800A1
WO2021062800A1 PCT/CN2019/109725 CN2019109725W WO2021062800A1 WO 2021062800 A1 WO2021062800 A1 WO 2021062800A1 CN 2019109725 W CN2019109725 W CN 2019109725W WO 2021062800 A1 WO2021062800 A1 WO 2021062800A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink control
configured grant
transmission
control information
channel
Prior art date
Application number
PCT/CN2019/109725
Other languages
French (fr)
Inventor
Claudio Rosa
Timo Lunttila
Karol Schober
Tao Tao
Kari Hooli
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN201980100866.0A priority Critical patent/CN114451038A/en
Priority to PCT/CN2019/109725 priority patent/WO2021062800A1/en
Publication of WO2021062800A1 publication Critical patent/WO2021062800A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • Embodiments of the present disclosure generally relate to communication techniques, and more particularly, to methods, devices and computer readable medium for uplink control information in uplink configured grant transmissions.
  • the communication system enables multiple devices to share the periodic resources allocated with a configured grant mechanism.
  • the base station allocates the configured grant resources to multiple terminal devices, and the terminal devices randomly utilize the resources when they have data to transmit.
  • the communication system eliminates the packet transmission delay due to a scheduling request and scheduling procedures.
  • embodiments of the present disclosure relate to a method for uplink control information in uplink configured grant transmissions and corresponding devices.
  • a first device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device to receive, from a second device, a configuration concerning configured grant uplink transmission.
  • the configuration at least indicates resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information.
  • the first device is also caused to determine resources for transmitting the configured grant uplink control information on an uplink control channel, based on the received configuration.
  • the first device is further caused to transmit the configured grant uplink control information to the second device on determined resources with at least one of the transmission bursts.
  • a second device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device to generate configuration concerning configured grant uplink transmission.
  • the configuration at least indicates resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information.
  • the second device is also caused to transmit the configuration concerning the configured grant uplink transmission.
  • the second device is further caused to receive configured grant uplink control information from the first device on resources with at least one of the transmission bursts.
  • a method comprising receiving, at a first device and from a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information.
  • the method also comprises determining resources for transmitting the configured grant uplink control information on an uplink control channel, based on the received configuration.
  • the method further comprises transmitting the configured grant uplink control information to the second device on the determined resources with at least one of the transmission bursts.
  • a method comprising generating, at a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for configured grant uplink control information.
  • the method also comprises transmitting the configuration concerning the configured grant uplink transmission to a first device.
  • the method further comprises receiving configured grant uplink control information from the first device on resources with at least one of the transmission bursts.
  • an apparatus comprising means for receiving, at a first device and from a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information; means for determining resources for transmitting the configured grant uplink control information on an uplink control channel, based on the received configuration; and means for transmitting the configured grant uplink control information to the second device on the determined resources with at least one of the transmission bursts.
  • an apparatus comprising means for generating, at a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information; means for transmitting the configuration concerning the configured grant uplink transmission to a first device; and means for receiving configured grant uplink control information from the first device on resources with at least one of the transmission bursts.
  • a computer readable medium comprising program instructions for causing an apparatus to perform at least the method according to the above third or fourth aspect.
  • Fig. 1 illustrates a schematic diagram of a communication system according to according to embodiments of the present disclosure
  • Fig. 2 illustrates a schematic diagram of interactions between devices according to according to embodiments of the present disclosure
  • Figs 3A-3C illustrate schematic diagrams of resources allocation according to embodiments of the present disclosure
  • Fig. 4 illustrates a flow chart of a method according to embodiments of the present disclosure
  • Fig. 5 illustrates a flow chart of a method according to embodiments of the present disclosure
  • Fig. 6 illustrates a flow chart of a method according to embodiments of the present disclosure
  • Fig. 7 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure.
  • Fig. 8 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , New Radio (NR) and so on.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • NR New Radio
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the a
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • NR NB also referred to as a gNB
  • RRU Remote Radio Unit
  • RH radio header
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • CG configured grant
  • LAA license assisted access
  • the terminal device may indicate to the network device along with each CG UL transmission, the selected HARQ-process ID, new data indicator, redundancy version, UE ID, physical uplink shared channel (PUSCH) starting and ending points, as well as whether the UE-acquired channel occupancy time (COT) can be shared with the network device.
  • the selected HARQ-process ID new data indicator
  • redundancy version UE ID
  • PUSCH physical uplink shared channel
  • COT channel occupancy time
  • the network device may provide to the terminal device HARQ feedback for AUL-enabled HARQ processes and transmit power command via a downlink (DL) control signaling message called autonomous uplink downlink feedback information (AUL-DFI) .
  • DL downlink
  • AUL-DFI autonomous uplink downlink feedback information
  • AUL also allows for configuring a set of starting positions for terminal devices with a very fine raster within the first Single-carrier Frequency-Division Multiple Access (SC-FDMA) symbol of a subframe: 16, 25, 34, 43, 52, or 61 microseconds after the subframe boundary, or at the beginning of the second symbol of a subframe. Since all terminal devices perform listen-before-talk operation prior to the AUL transmission to determine whether the channel is free, different starting points allow for e.g. prioritizing transmissions for certain terminal devices (by assigning an earlier starting point) and reducing the number of collisions.
  • the transmission within the 1st symbol is not PUSCH data but instead a very long cyclic prefix (CP) extended from the next symbol #2.
  • CP cyclic prefix
  • the CP extension is used for reserving the channel for the given terminal device by blocking other terminal devices. Though, collisions on AUL resources cannot always be avoided, since only 7 starting positions are supported in LAA-AUL and the terminal devices may not always be in each other’s LBT sensing area (hence they may not always block each other’s transmissions) .
  • Autonomous uplink-uplink control information is multiplexed on AUL-PUSCH resources with UL-SCH data in a similar way as in case of uplink control information (UCI) on PUSCH in LTE on licensed spectrum.
  • the UL-SCH data information and control information are multiplexed such that the AUL-UCI is mapped from symbol 1 to symbol 12 of the subframe, excluding symbols containing demodulation reference signal. More robust coding can be applied for AUL-UCI (as compared to UL-SCH) , while data and control information share the same modulation order.
  • LAA AUL reducing the overhead of multiple LBT operations during the handshake between the network device and the terminal device associated with SR and UL grant
  • configured grant-based UL transmission has been agreed to be supported in new radio unlicensed (NR-U) .
  • configured grant based transmission is introduced.
  • the network device configures CG-PUSCH resource semi-statically to terminal device, and terminal devices may transmit PUSCH on CG-PUSCH resource when it has uplink shared channel, or data to transmit.
  • the HARQ process identifier (ID) is implicitly determined based on the resources that are configured for UL transmission with configured grant.
  • the HARQ RV sequence is pre-configured when the repetition of the same transport block (TB) is introduced.
  • Fixed HARQ process ID determination i.e., linking the HARQ ID with the allocated resource for configured grant
  • PUCCH formats 0-4 are introduced.
  • the formats can be categorized based on supported UCI payload: PUCCH formats 0 & 1 are used to indicate 1 or 2 A/N bits plus SR, while PUCCH formats 2-4 support larger UCI payloads.
  • Another way to categorize the PUCCH formats is based on the transmission duration: PUCCH formats 0 and 2 occupy 1 or 2 symbols, while PUCCH formats 1, 3, 4 occupy 4 to 14 symbols.
  • PUCCH formats 0-3 are enhanced to support interlaced physical resource block (PRB) allocation. Code domain multiplexing may be introduced to the PUCCH formats 2 and 3 enhanced for NR-U.
  • PRB physical resource block
  • PUCCH resource comprising a set of resource elements and, possibly, code domain configuration comprising e.g. cyclic shift and/or orthogonal cover code index, or set of resources are semi-statically configured.
  • the selection of PUCCH resource depends on the content of UCI as well as on the size of UCI. For example, if UCI includes HARQ-ACK (with at least one HARQ-ACK in response to a PDSCH reception with a corresponding PDCCH) , a PUCCH resource set is selected based on the number of UCI bits.
  • the terminal device may be configured with up to 4 PUCCH resource sets for UCI containing HARQ-ACK, with specific range of UCI payload sizes associated to each resource set.
  • the used PUCCH resource is selected from the determined PUCCH resource set according to the PUCCH resource indicator included to the DL assignment downlink control information.
  • a PUCCH resource is selected from a list of configured CSI PUCCH resources based on the number of UCI bits. The smallest PUCCH resource providing sufficiently low code rate for the determined UCI payload is selected.
  • PUCCH and PUSCH can be multiplexed in time within single slot.
  • concurrent transmission i.e. symbol (s) overlapping in time
  • UCI is typically multiplexed on the resources of PUSCH and PUCCH transmission is dropped.
  • the network device typically configures CG-PUSCH resource to multiple terminal devices, and multiple terminal devices may transmit PUSCH at the same time, and despite the LAA collision avoidance mechanism, collisions cannot be fully avoided.
  • the control information is multiplexed and interleaved with data, and it is not possible to apply enhanced collision avoidance techniques for control information (CG UCI) as compared to UL-SCH data.
  • CG UCI control information
  • NR-U CG UCI is needed for reception of NR-U CG-PUSCH
  • some of the CG-UCI fields are important also when the reception of CG-PUSCH is doomed to fail e.g. due to collision.
  • the network device transmits configurations of resource allocations to the terminal device.
  • the terminal device determines the resource for transmitting CG-UCI on the uplink control channel. In this way, collision probability on the physical resources that are carrying the CG UCI is reduced and multiplexing of CG UCI information from one or more terminal devices with PUCCH transmitted by other terminal devices is achieved. Thus, reliability of UCI is increased and latencies of uplink CG transmissions are reduced.
  • Fig. 1 illustrates a schematic diagram of a communication system in which embodiments of the present disclosure can be implemented.
  • the communication system 100 which is a part of a communication network, comprises a device 110-1, a device 110-2, ...., a device 110-N, which can be collectively referred to as “device (s) 110. ”
  • the communication system 100 further comprises a device 120.
  • One or more devices are associated with and covered by a cell. It is to be understood that the number of devices and cells shown in Fig. 1 is given for the purpose of illustration without suggesting any limitations.
  • the communication system 100 may comprise any suitable number of devices and cells.
  • the device 110 and the device 120 can communicate data and control information to each other.
  • a link from the device 120 to the device 110 is referred to as a downlink (DL)
  • a link from the device 110 to the device 120 is referred to as an uplink (UL) .
  • DL downlink
  • UL uplink
  • Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • MIMO Multiple-Input Multiple-Output
  • OFDMA Orthogonal Frequency Division Multiple Access
  • Fig. 2 illustrates a schematic diagram of interactions 200 among devices in accordance with embodiments of the present disclosure.
  • the interactions 200 may be implemented at any suitable devices. Only for the purpose of illustrations, the interactions 200 are described to be implemented at the terminal device 110-1 and the network device 120. Only for purpose of illustrations, the uplink control channel refers to the PUCCH and the uplink shared channel refers to the PUSCH.
  • the network device 120 generates 2005 a configuration concerning uplink control information transmissions.
  • the configuration at least indicates resource allocation of transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information.
  • the configuration may indicate resources allocated to the terminal device for shared channel and/or control channel.
  • the resources may be in frequency domain. Alternatively or in addition, the resources may be in time domain.
  • the configuration may also comprise one or more of: duration of uplink transmission, a cyclic shift, demodulation reference signal (DMRS) orthogonal cover code (OCC) .
  • the duration of uplink transmission may be configured by the network device 120 or fixed in specifications.
  • the term “transmission burst” used herein may contain one or more uplink transmissions.
  • An uplink transmission may be an uplink shared channel transmission with duration at most of one slot.
  • the network device 120 may determine the configuration based on whether other UCI (in addition to CG-UCI, for example, channel state information (CSI) ) is to be transmitted by the terminal device.
  • CSI channel state information
  • the network device 120 transmits 2010 the configuration to the terminal device 110-1.
  • the configuration may be transmitted via radio resource control (RRC) signaling.
  • the configuration may be transmitted via physical layer (PHY) signaling.
  • the configuration may be transmitted via CG activation signaling.
  • RRC radio resource control
  • PHY physical layer
  • the configuration may be transmitted via CG activation signaling.
  • the collision probability for CG-UCI is reduced, thus increasing the probability that at least CG-UCI can be correctly decoded at the network device even if a collision occurs on UL CG resources used for UL-SCH channel or data transmission.
  • This improvement in CG UCI reliability can translate in latency reduction as e.g. it may enable the network device to schedule retransmissions on contention-free resources for correct UE and HARQ process. Further, more reliable transmission of CG-UCI information is also supported by the possibility to use different modulation orders for data and control channels.
  • the terminal device 110-1 determines 2025 the resource for the CG-UCI.
  • the CG-UCI may occupy one or more symbols in time domain.
  • the terminal device 110-1 may determine the transmission format based on the configuration.
  • the terminal device 110-1 may determine 2015 the transmission format based on whether the CG-PUSCH resources are immediately preceded by a regular PUCCH occasion.
  • regular “PUCCH” used herein refer to the PUCCH other than CG PUCCH. This can be determined based on group common (GC) -PDCCH indicating link direction within COT and transmitted by the network device 120 in one or more of the downlink slots/subframes before the PUCCH occasion.
  • regular PUCCH occasion could be indicated by the network device 120 to the terminal device 110-1 via dedicated signaling, e.g. in a DL grant.
  • the terminal device 110-1 may determine that the uplink control channel overlaps with the uplink shared channel from the transmission mode.
  • the resource for transmitting CG-UCI on the uplink control channel may occupy a number of symbols N of the uplink shared channel followed by symbols of the uplink shared channel.
  • the resources allocated to the uplink shared channel may comprise resources allocated to the uplink control channel and the uplink shared channel is not mapped into the N symbols reserved for the uplink control channel.
  • the resource for the CG-UCI on the uplink control channel may be one or more symbols in the PUSCH. For example, if the resources for the PUSCH may comprise 14 symbols, the resource for the CG-UCI on the uplink control channel may be the first one or two symbols of the 14 symbols.
  • the resource for the CG-PUCCH 3012-1 for transmitting the CG-UCI may be included in the resources for the PUSCH 3013-1 in a transmission burst.
  • the resource for the CG-PUCCH 3012-2 for transmitting the CG-UCI may be included in the resources for the PUSCH 3013-2.
  • the resource for the CG-PUCCH 3022-1 for transmitting the CG-UCI may be included in the resources for the PUSCH 3023-1 in a transmission burst.
  • the resource for the CG-PUCCH 3022-2 for transmitting the CG-UCI may be included in the resources for the PUSCH 3023-2.
  • the terminal device 110-1 may determine that the uplink control channel does not overlap with the uplink shared channel from the transmission mode.
  • the resources allocated to the uplink shared channel may be located before the resources allocated to the uplink control channel.
  • the resource for the CG-UCI on the uplink control channel may be one or more symbols and followed by resources allocated to the uplink shared channel comprising 14 symbols.
  • the resource for the CG-PUCCH 3032-1 for transmitting the CG-UCI may be located before the resources for the PUSCH 3033-1.
  • the network device 120 may transmit 2020 an indication for the resources for transmitting the configured grant uplink control information.
  • the indication may be transmitted via RRC signaling.
  • the terminal device 110-1 may determine 2025 the resource based on the indication.
  • the network device 120 may determine the information concerning frequency domain configurations. Further, the network device 120 may determine 2030 the information concerning code domain configurations. The information may comprise cyclic shifts. Alternatively or in addition, the information may comprise orthogonal cover codes for the terminal device 110-1 configured with overlapping CG-PUCCH resources. The code domain resources may be indicated for the terminal device 110-1 using RRC signaling. The network device 120 may transmit 2035 the information to the terminal device 110-1. For example, the information may be transmitted via radio resource signaling. The code domain resource may be UE-specific.
  • the terminal device 110-1 may determine 2040 the code domain resource based on an identity of the terminal device 110-1. Alternatively or in addition, the terminal device 110-1 may determine 2040 the code domain resource based on Cell-Radio Network Temporary Identifier (C-RNTI) or scrambling ID of DMRS.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the code domain resource derivation may be time varying, for example, depending on slot index.
  • the terminal device 110-1 transmits 2050 the CG-UCI on the uplink control channel with the determined resource.
  • the CG-PUCCH occurs only before the first CG-PUSCH transmission of a contiguous burst of CG-PUSCH transmissions and the CG-UCI may additionally be transmitted along with each CG-PUSCH transmission in the burst on CG-PUSCHs.
  • the terminal device 110-1 may transmit the first portion of the CG-UCI on the uplink control channel along with a first transmission of the transmission bursts.
  • the first portion of the CG-UCI may be common to the transmission in one transmission burst.
  • the terminal device 110-1 may transmit the second portion the CG-UCI along with each transmission of the transmission bursts on an uplink shared channel.
  • the terminal device 110-1 may perform listen-before-talk during the 3011-1.
  • the terminal device 110-1 may transmit the CG-UCI on the CG-PUCCH 3012-1.
  • the terminal device 110-1 may perform listen-before-talk during the 3011-2 and transmit the CG-UCI on the CG-PUSCH 3014-1.
  • the terminal device 110-1 may perform listen-before-talk during the 3011-3 and transmit the CG-UCI on the CG-PUSCH 3014-2.
  • the CG-UCI transmitted on the uplink control channel and the CG-UCI transmitted on the uplink shared channel may be different.
  • the terminal device 110-1 may perform listen-before-talk during the 3031-1.
  • the terminal device 110-1 may transmit the CG-UCI on the CG-PUCCH 3032-1.
  • the terminal device 110-1 may perform listen-before-talk during the 3031-2 and transmit the CG-UCI on the CG-PUSCH 3034-1.
  • the terminal device 110-1 may perform listen-before-talk during the 3031-2 and transmit the CG-UCI on the CG-PUSCH 3034-2.
  • the terminal device 110-1 may perform listen-before-talk during the 3031-3 and transmit the CG-UCI on the CG-PUSCH 3034-3.
  • the CG-UCI transmitted on the uplink control channel and the CG-UCI transmitted on the uplink shared channel may be different.
  • the CG-UCI transmitted on the CG-PUCCH may comprise one or more of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, the number of uplink transmission in the channel occupancy that the terminal device 110-1 (for example, remaining duration of the uplink burst) , or configured grant configuration according to which the terminal device 110-1 should transmit.
  • CAC Channel Access Priority Class
  • the CG-UCI transmitted on the CG-PUSCH may comprise HARQ related information associated with each CG-PUSCH transmission in the burst, such as HARQ process ID, New Data Indicator (NDI) , and/or Redundancy Version (RV) .
  • HARQ process ID such as HARQ process ID, New Data Indicator (NDI) , and/or Redundancy Version (RV) .
  • NDI New Data Indicator
  • RV Redundancy Version
  • the CG-PUCCH may occur in every slot along with CG-PUSCH. In this situation, the CG-PUCCH transmission is used to reduce collision probability for a part of CG-UCI while the payload size of CG-UCI on CG-PUCCH is minimized.
  • the terminal device 110-1 may transmit the first portion of the CG-UCI on the uplink control channel ahead of a set of data bursts.
  • the terminal device 110-1 may transmit the second portion the CG-UCI and the set of data bursts on the uplink shared channel.
  • the terminal device 110-1 may perform listen-before-talk during the 3021-1.
  • the terminal device 110-1 may transmit the CG-UCI on the CG-PUCCH 3022-1.
  • the terminal device 110-1 may perform listen-before-talk during the 3021-2 and transmit the CG-UCI on the CG-PUCCH 3022-2.
  • the terminal device 110-1 may perform listen-before-talk during the 3021-3 and transmit the CG-UCI on the CG-PUSCH 3024-2.
  • the CG-UCI transmitted on the uplink control channel and the CG-UCI transmitted on the uplink shared channel may be different.
  • the CG-UCI transmitted on the CG-PUSCH may comprise one or more of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, the number of uplink transmission in the channel occupancy that the terminal device 110-1 (for example, remaining duration of the uplink burst) , or configured grant configuration according to which the terminal device 110-1 should transmit.
  • the CG-UCI transmitted on the CG-PUCCH may comprise more critical information, for example, HARQ process ID.
  • the terminal device 110-1 may multiplex the CG-UCI.
  • the terminal device 110-1 may transmit other PUSCHs on other cells while transmitting CG-PUSCH.
  • the terminal device 110-1 may transmit regular UCI (i.e. non-CG) on a PUCCH, for example, on another cell.
  • regular UCI i.e. non-CG
  • CG-PUCCH and CG-PUSCH are considered as CG-PUSCH from regular UCI multiplexing viewpoint.
  • the terminal device 110-1 may multiplex UCI in overlapped PUCCH transmissions into one PUCCH resource (resource Z) .
  • the terminal device 110-1 may multiplex the UCI which doesn’t include resource Z into one PUSCH, if Z overlaps with at least one PUSCH, following the priorities (sequentially from high to low) as listed below: first priority: PUSCH with A-CSI as long as it overlaps with Z; second priority: earliest PUSCH slot (s) based on the start of the slot (s) .
  • third priority Dynamic grant PUSCHs > CG-PUSCH or CG-PUCCH; fourth priority: PUSCHs on serving cell with smaller serving cell index > PUSCHs on serving cell with larger serving cell index; fifth priority: Earlier PUSCH transmission > later PUSCH transmission.
  • the CG-UCI remains on the same cell and hence under the same LBT as CG-PUSCH. This is beneficial as: CG-UCI is needed for CG-PUSCH detection –and is rather unnecessary if CG-PUSCH is not transmitted.
  • the network device 120 does not need to blindly detect whether CG-UCI is multiplexed with UCI and transmitted on a scheduled PUSCH on some other cell.
  • Fig. 4 illustrates a flow chart of method 400 according to embodiments of the present disclosure.
  • the method 400 can be implemented at any suitable devices.
  • the method may be implemented at the terminal device 110.
  • the terminal device 110-1 receives the configuration from the network device 120.
  • the configuration may be transmitted via RRC signaling.
  • the configuration may be transmitted via physical layer (PHY) signaling.
  • PHY physical layer
  • the configuration may be transmitted via CG activation signaling.
  • the configuration at least indicates resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information.
  • the terminal device 110-1 determines the resource for the CG-UCI.
  • the CG-UCI may occupy one or more symbols in time domain.
  • the terminal device 110-1 may determine the transmission format based on the configuration. Alternatively or in addition, the terminal device 110-1 may determine the transmission format based on whether the CG-PUSCH resources are immediately followed by a PUCCH occasion in the cell. This can be determined based on GC-PDCCH transmitted by the network device 120 in one or more of the downlink slots/subframes before the PUCCH occasion.
  • the terminal device 110-1 may determine that the uplink control channel does not overlap with the uplink shared channel from the transmission mode.
  • the resource for transmitting CG-UCI on the uplink control channel may a number of symbols of the uplink shared channel followed by the uplink shared channel .
  • the resources allocated to the uplink shared channel may comprise resources allocated to the uplink control channel and the uplink shared channel is not mapped into the N symbols reserved for the uplink control channel.
  • the resource for the CG-UCI on the uplink control channel may be one or more symbols in the PUSCH. For example, if the resources for the PUSCH may comprise 14 symbols, the resource for the CG-UCI on the uplink control channel may be the first one or two symbols of the 14 symbols.
  • the terminal device 110-1 may determine that the uplink control channel overlaps with the uplink shared channel from the transmission mode.
  • the resources allocated to the uplink shared channel may be located before the resources allocated to the uplink control channel.
  • the resource for the CG-UCI on the uplink control channel may be one or more symbols and followed resources allocated to the uplink shared channel comprising 14 symbols.
  • the terminal device 110-1 may receive an indication for the resources for transmitting the configured grant uplink control information.
  • the indication may be transmitted via radio resource signaling.
  • the terminal device 110-1 may determine 2025 the resource based on the indication.
  • the network device 120 may generate the information concerning code domain configurations and/or frequency domain configurations.
  • the information may comprise cyclic shifts.
  • the information may comprise orthogonal cover codes for the terminal device 110-1 configured with overlapping CG-PUCCH resources.
  • the code domain resources may be indicated for the terminal device 110-1 using RRC signaling.
  • the network device 120 may transmit 2035 the information to the terminal device 110-1.
  • the information may be transmitted via radio resource signaling.
  • the code domain resource may be UE-specific.
  • the terminal device 110-1 may determine the code domain resource based on an identity of the terminal device 110-1 and/or DMRS scrambling ID assigned to the terminal device. Alternatively or in addition, the terminal device 110-1 may determine 2040 the code domain resource based on Cell-Radio Network Temporary Identifier (C-RNTI) .
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the code domain resource derivation may be time varying, for example, depending on slot index.
  • the terminal device 110-1 may determine the frequency domain resource based on an identity of the terminal device 110-1 and/or DMRS ID assigned to the terminal device. Alternatively or in addition, the terminal device 110-1 may determine 2040 the frequency domain resource based on Cell-Radio Network Temporary Identifier (C-RNTI) .
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the terminal device 110-1 transmits the CG-UCI on the uplink control channel with the determined resource.
  • the CG-PUCCH occurs only before the first CG-PUSCH transmission of a contiguous burst of CG-PUSCH transmissions and the CG-UCI may additionally be transmitted along with each CG-PUSCH transmission in the burst on CG-PUSCHs.
  • the terminal device 110-1 may transmit the first portion of the CG-UCI on the uplink control channel ahead of a set of data bursts. The first portion of the CG-UCI may be common to the set of transmissions in one transmission burst.
  • the terminal device 110-1 may transmit the second portion the CG-UCI and the set of data bursts on the uplink shared channel.
  • the terminal device 110-1 may transmit a first portion of the CG-UCI on the uplink control channel along with a first transmission of the transmission bursts, the first portion of the CG-UCI being common to the transmissions of one burst in the transmission bursts and transmit a second portion of the CG-UCI along with each transmission of the transmission bursts on the uplink shared channel.
  • the CG-UCI transmitted on the CG-PUCCH may comprise one or more of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, the number of uplink transmission in the channel occupancy that the terminal device 110-1 (for example, remaining duration of the uplink burst) , or configured grant configuration according to which the terminal device 110-1 should transmit.
  • CAC Channel Access Priority Class
  • the CG-UCI transmitted on the CG-PUSCH may comprise HARQ related information associated with each CG-PUSCH transmission in the burst, such as HARQ process ID, New Data Indicator (NDI) , and/or Redundancy Version (RV) .
  • HARQ process ID such as HARQ process ID, New Data Indicator (NDI) , and/or Redundancy Version (RV) .
  • NDI New Data Indicator
  • RV Redundancy Version
  • the CG-PUCCH may occur in every slot along with CG-PUSCH. In this situation, the CG-PUCCH transmission is used to reduce collision probability for a part of CG-UCI while the payload size of CG-UCI on CG-PUCCH is minimized.
  • the terminal device 110-1 may transmit the first portion of the CG-UCI on the uplink control channel ahead of a set of data bursts.
  • the terminal device 110-1 may transmit the second portion the CG-UCI and the set of data bursts on the uplink shared channel.
  • the CG-UCI transmitted on the CG-PUSCH may comprise one or more of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, the number of uplink transmission in the channel occupancy that the terminal device 110-1 (for example, remaining duration of the uplink burst) , or configured grant configuration according to which the terminal device 110-1 should transmit.
  • the CG-UCI transmitted on the CG-PUCCH may comprise more critical information, for example, HARQ process ID.
  • the terminal device 110-1 may transmit the configured grant uplink control information on the uplink control channel ahead of the transmission bursts. In some embodiments, the terminal device 110-1 may transmit the configured grant uplink control information along with a first transmission of the transmission bursts.
  • the terminal device 110-1 may multiplex the CG-UCI.
  • the terminal device 110-1 may transmit other PUSCHs on other cells while transmitting CG-PUSCH.
  • the terminal device 110-1 may transmit regular UCI (i.e. non-CG) on a PUCCH, for example, on another cell.
  • regular UCI i.e. non-CG
  • CG-PUCCH and CG-PUSCH are considered as CG-PUSCH from regular UCI multiplexing viewpoint.
  • Fig. 5 illustrates a flow chart of method 500 according to embodiments of the present disclosure.
  • the method 500 may only an example for selecting resources for multiplexing regular UCI with GC-UCI.
  • the method 500 can be implemented at any suitable devices.
  • the method may be implemented at the terminal device 110.
  • the terminal device 110-1 may determine whether the terminal device 110-1 is configured with CG-PUCCH. If the terminal device 110-1 is configured with CG-PUCCH, at block 520, the terminal device 110-1 may determine whether regular UCI is mapped on slot of CG-PUSCH. If the regular UCI is not mapped on slot of CG-PUSCH, at block 540, the terminal device 110-1 may transmit the CG on the CG-PUCCH.
  • the terminal device 110-1 may determine whether CG-PUCCH resource has a sufficient size. If the CG-PUCCH resource has sufficient size, at block 560, the terminal device 110-1 may transmit the CG-UCI appended with regular UCI on the CG-PUCCH. If the CG-PUCCH resource does not have the sufficient size, at block 570, the terminal device 110-1 may transmit the CG-UCI appended with regular UCI on the CG-PUCSH.
  • the terminal device 110-1 may determine whether regular UCI is mapped on slot of CG-PUSCH. If the regular UCI is not mapped on slot of CG-PUSCH, at block 580, the terminal device 110-1 may transmit the CG-UCI on the CG-PUSCH. If the regular UCI is mapped on slot of CG-PUSCH, at block 570, the terminal device 110-1 may transmit the CG-UCI appended with regular UCI on the CG-PUCSH.
  • Fig. 6 illustrates a flow chart of method 600.
  • the method 600 can be implemented at any suitable devices.
  • the method may be implemented at the network device 120.
  • the network device 120 generates a configuration concerning transmission of uplink control information.
  • the configuration at least indicates resource allocation of uplink transmissions.
  • the configuration may indicate resources allocated to the terminal device for data channel and/or control channel.
  • the resources may be in frequency domain. Alternatively or in addition, the resources may be in time domain.
  • the configuration may also comprise one or more of: duration of uplink transmission, a cyclic shift, demodulation reference signal (DMRS) orthogonal cover code (OCC) .
  • DMRS demodulation reference signal
  • OCC orthogonal cover code
  • the duration of uplink transmission may be configured by the network device 120 or fixed in specifications.
  • the configuration at least indicates resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information.
  • the network device 120 may determine the configuration based on whether other UCI (in addition to CG-UCI, for example, channel state information (CSI) ) is to be transmitted by the terminal device.
  • CSI channel state information
  • the network device 120 transmits the configuration to the terminal device 110-1.
  • the configuration may be transmitted via radio resource controlling.
  • the configuration may be transmitted via physical layer (PHY) signaling.
  • PHY physical layer
  • the configuration may be transmitted via CG activation signaling.
  • the collision probability for CG-UCI is reduced, thus increasing the probability that at least CG-UCI can be correctly decoded at the network device even if a collision occurs on UL CG resources used for UL-SCH data transmission.
  • This improvement in CG UCI reliability can translate in latency reduction as e.g. it may enable the network device to schedule retransmissions on contention-free resources for correct UE and HARQ process. Further, more reliable transmission of CG-UCI information is also supported by the possibility to use different modulation orders for data and control.
  • the network device 120 may transmit an indication for the resource for transmitting the configured grant uplink control information.
  • the indication may be transmitted via radio resource signaling.
  • the network device 120 may determine the information concerning code domain configurations.
  • the information may comprise cyclic shifts.
  • the information may comprise orthogonal cover codes for the terminal device 110-1 configured with overlapping CG-PUCCH resources.
  • the code domain resources may be indicated for the terminal device 110-1 using RRC signaling.
  • the network device 120 may transmit the information to the terminal device 110-1.
  • the information may be transmitted via radio resource signaling.
  • the code domain resource may be UE-specific.
  • the network device 120 receives the CG-UCI on the uplink control channel with the determined resource.
  • the CG-PUCCH occurs only before the first CG-PUSCH transmission of a contiguous burst of CG-PUSCH transmissions and the CG-UCI may additionally be transmitted along with each CG-PUSCH transmission in the burst on CG-PUSCHs.
  • the network device 120 may receive the first portion of the CG-UCI on the uplink control channel along with the first transmission of the transmission bursts.
  • the first portion of the CG-UCI may be common to transmissions of one transmission burst in the transmission bursts.
  • the network device 120 may receive the second portion the CG-UCI along with every transmission of the transmission bursts on the uplink shared channel.
  • the CG-UCI transmitted on the CG-PUCCH may comprise one or more of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, the number of uplink transmission in the channel occupancy that the terminal device 110-1 (for example, remaining duration of the uplink burst) , or configured grant configuration according to which the terminal device 110-1 should transmit.
  • CAC Channel Access Priority Class
  • the CG-UCI transmitted on the CG-PUSCH may comprise HARQ related information associated with each CG-PUSCH transmission in the burst, such as HARQ process ID, New Data Indicator (NDI) , and/or Redundancy Version (RV) .
  • HARQ process ID such as HARQ process ID, New Data Indicator (NDI) , and/or Redundancy Version (RV) .
  • NDI New Data Indicator
  • RV Redundancy Version
  • the CG-PUCCH may occur in every slot along with CG-PUSCH.
  • the CG-PUCCH transmission is used to reduce collision probability for a part of CG-UCI while the payload size of CG-UCI on CG-PUCCH is minimized.
  • the network device 120 may receive the first portion of the CG-UCI on the uplink control channel ahead of a set of data bursts.
  • the network device 120 may receive the second portion the CG-UCI and the set of data bursts on the uplink shared channel.
  • the CG-UCI transmitted on the CG-PUSCH may comprise one or more of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, the number of uplink transmission in the channel occupancy that the terminal device 110-1 (for example, remaining duration of the uplink burst) , or configured grant configuration according to which the terminal device 110-1 should transmit.
  • the CG-UCI transmitted on the CG-PUCCH may comprise more critical information, for example, HARQ process ID.
  • an apparatus for performing the method 400 may comprise respective means for performing the corresponding steps in the method 400.
  • These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
  • the apparatus comprises means for receiving, at a first device and from a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information; means for determining resources for transmitting the configured grant uplink control information on an uplink control channel, based on the received configuration; and means for transmitting the configured grant uplink control information to the second device on the determined resources with at least one of the transmission bursts.
  • the means for determining the resource comprises: means for determining a transmission format based on the received configuration; and means for in accordance with the determination of the transmission format that the uplink control channel overlaps with an uplink shared channel, selecting the resources from resources allocated to the transmission bursts on the uplink shared channel.
  • the means for determining the resource comprises: means for determining a transmission format based on the received configuration; and means for in accordance with the determination of the transmission format that the uplink control channel non-overlap with an uplink shared channel , selecting the resource preceding resources allocated to the transmission bursts on the uplink shared channel.
  • the means for selecting the resource comprises: means for receiving an indication of the resources for transmitting the configured grant uplink control information via radio resource control signaling; and means for determining the resource based on the indication.
  • the means for transmitting the configured grant uplink control information comprises: means for transmitting a first portion of the configured grant uplink control information on the uplink control channel along with a first transmission of the transmission bursts, the first portion of the configured grant uplink control information being common to the transmission of one burst in the transmission bursts; and means for transmitting a second portion of the configured grant uplink control information along with each transmission of the transmission bursts on an uplink shared channel.
  • the first portion of the configured grant uplink control information comprises at least one of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, a remaining duration of uplink transmission burst, or a configuration of configured grant uplink shared channel
  • the second portion of the configured grant uplink control information comprises hybrid automatic repeat request (HARQ) related information associated with the set of data bursts.
  • HARQ hybrid automatic repeat request
  • the means for transmitting the configured grant uplink control information comprises: means for transmitting a first portion of the configured grant uplink control information on the uplink control channel during one transmission burst; and means for transmitting a second portion of the configured grant uplink control information on an uplink shared channel during the transmission burst.
  • the first portion of the configured grant uplink control information comprises hybrid automatic repeat request (HARQ) related information
  • the second portion of the configured grant uplink control information comprises at least one of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, a remaining duration of uplink transmission burst, or a configuration of configured grant uplink shared channel.
  • HARQ hybrid automatic repeat request
  • CAC Channel Access Priority Class
  • the means for transmitting the configured grant uplink control information comprises: means for transmitting the configured grant uplink control information on the uplink control channel ahead of the transmission bursts; or means for transmitting the configured grant uplink control information along with a first transmission of the transmission bursts.
  • the apparatus further comprises means for receiving, from the second device, information concerning frequency domain configuration via radio resource control signaling; means for determining a frequency domain configuration allocated to the first device from the information, based on at least one of: an identity of the first device and demodulation reference signal scrambling identity; and means for multiplexing the configured grant uplink control information on the uplink control channel based on the frequency domain configuration.
  • the apparatus further comprises means for receiving, from the second device, information concerning code domain configurations via radio resource control signaling; means for determining a code domain configuration allocated to the first device from the second information, based on at least one of: an identity of the first device and demodulation reference signal scrambling identity; and means for multiplexing the configured grant uplink control information on the uplink control channel based on the code domain configuration.
  • the first device comprises a terminal device and the second device comprises a network device.
  • an apparatus for performing the method 600 may comprise respective means for performing the corresponding steps in the method 600.
  • These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
  • the apparatus comprises means for generating, at a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information; means for transmitting the configuration concerning the configured grant uplink transmission to a first device; and means for receiving configured grant uplink control information from the first device on resources with at least one of the transmission bursts.
  • the configuration indicates a transmission format of the configured grant uplink control information.
  • the transmission format indicates whether the uplink control channel overlaps with an uplink shared channel .
  • the apparatus further comprises means for generating an indication of the resources for transmitting the configured grant uplink control information; and means for transmitting the first information to the first device via radio resource control signaling.
  • the means for receiving the configured grant uplink control information comprises: means for receiving a first portion of the configured grant uplink control information on the uplink control channel along with a first transmission of the transmission bursts, the first portion of the configured grant uplink control information being common to the transmissions of one transmission bursts of the transmission bursts; and means for receiving a second portion of the configured grant uplink control information along with each transmission of the transmission bursts on an uplink shared channel.
  • the first portion of the configured grant uplink control information comprises at least one of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, a remaining duration of uplink burst, or a configuration of configured grant uplink shared channel
  • the second portion of the configured grant uplink control information comprises hybrid automatic repeat request (HARQ) related information associated with the transmission bursts.
  • HARQ hybrid automatic repeat request
  • the means for receiving the configured grant uplink control information comprises: means for receiving a first portion of the configured grant uplink control information on the uplink control channel ahead of a transmission of a transmission burst; and means for receiving a second portion of the configured grant uplink control information on an uplink shared channel during the transmission of the transmission burst.
  • the first portion of the configured grant uplink control information comprises hybrid automatic repeat request (HARQ) related information
  • the second portion of the configured grant uplink control information comprises at least one of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, a remaining duration of uplink burst, or a configuration of configured grant uplink shared channel .
  • HARQ hybrid automatic repeat request
  • CAC Channel Access Priority Class
  • the apparatus comprises means for receiving the configured grant uplink control information on the uplink control channel ahead of the transmission bursts; or means for receiving the configured grant uplink control information along with a first transmission of the transmission bursts.
  • the apparatus comprises means for generating information concerning frequency domain configurations; and means for transmitting the information to the first device via radio resource control signaling.
  • the apparatus comprises means for generating information concerning code domain configurations; and means for transmitting the information to the first device via radio resource control signaling.
  • the first device comprises a terminal device and the second device comprises a network device.
  • Fig. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure.
  • the device 700 may be provided to implement the communication device, for example the terminal device 110, or the network device 120 as shown in Fig. 1.
  • the device 700 includes one or more processors 710, one or more memories 720 coupled to the processor 710, and one or more communication modules 740 coupled to the processor 710.
  • the communication module 740 is for bidirectional communications.
  • the communication module 740 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 710 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 720 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 724, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 722 and other volatile memories that will not last in the power-down duration.
  • a computer program 730 includes computer executable instructions that are executed by the associated processor 710.
  • the program 730 may be stored in the ROM 724.
  • the processor 710 may perform any suitable actions and processing by loading the program 730 into the RAM 722.
  • the embodiments of the present disclosure may be implemented by means of the program 720 so that the device 700 may perform any process of the disclosure as discussed with reference to Figs. 2 and 6.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 730 may be tangibly contained in a computer readable medium which may be included in the device 700 (such as in the memory 720) or other storage devices that are accessible by the device 700.
  • the device 700 may load the program 730 from the computer readable medium to the RAM 722 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 8 shows an example of the computer readable medium 800 in form of CD or DVD.
  • the computer readable medium has the program 730 stored thereon.
  • NFV network functions virtualization
  • a virtualized network function may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized.
  • radio communications this may mean node operations to be carried out, at least partly, in a central/centralized unit, CU, (e.g. server, host or node) operationally coupled to distributed unit, DU, (e.g. a radio head/node) . It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labor between core network operations and base station operations may vary depending on implementation.
  • the server may generate a virtual network through which the server communicates with the distributed unit.
  • virtual networking may involve a process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network.
  • Such virtual network may provide flexible distribution of operations between the server and the radio head/node.
  • any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
  • a CU-DU architecture is implemented.
  • the device 700 may be comprised in a central unit (e.g. a control unit, an edge cloud server, a server) operatively coupled (e.g. via a wireless or wired network) to a distributed unit (e.g. a remote radio head/node) .
  • the central unit e.g. an edge cloud server
  • the distributed unit may be stand-alone apparatuses communicating with each other via a radio path or via a wired connection. Alternatively, they may be in a same entity communicating via a wired connection, etc.
  • the edge cloud or edge cloud server may serve a plurality of distributed units or a radio access networks.
  • at least some of the described processes may be performed by the central unit.
  • the device 700 may be instead comprised in the distributed unit, and at least some of the described processes may be performed by the distributed unit.
  • the execution of at least some of the functionalities of the device 700 may be shared between two physically separate devices (DU and CU) forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes.
  • CU-DU architecture may provide flexible distribution of operations between the CU and the DU. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
  • the device 700 controls the execution of the processes, regardless of the location of the apparatus and regardless of where the processes/functions are carried out.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 400-600 as described above with reference to Figs. 3-6.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to uplink control information for uplink configured grant transmission. According to embodiments of the present disclosure, the network device transmits configurations of resource allocations to the terminal device. The terminal device determines the resource for transmitting CG-UCI on the uplink control channel. In this way, collision probability on the physical resources that are carrying the CG UCI is reduced and multiplexing of CG UCI information from one or more terminal devices with PUCCH transmitted by other terminal devices is achieved. Thus, reliability of UCI is increased and latencies of uplink CG transmissions are reduced.

Description

UPLINK CONTROL INFORMATION FOR UPLINK CONFIGURED GRANT TRANSMISSION FIELD
Embodiments of the present disclosure generally relate to communication techniques, and more particularly, to methods, devices and computer readable medium for uplink control information in uplink configured grant transmissions.
BACKGROUND
With developments of communication systems, new technologies have been proposed. For example, to increase the utilization ratio of periodically allocated resources, the communication system enables multiple devices to share the periodic resources allocated with a configured grant mechanism. The base station allocates the configured grant resources to multiple terminal devices, and the terminal devices randomly utilize the resources when they have data to transmit. By assigning the configured grant resources, the communication system eliminates the packet transmission delay due to a scheduling request and scheduling procedures.
SUMMARY
Generally, embodiments of the present disclosure relate to a method for uplink control information in uplink configured grant transmissions and corresponding devices.
In a first aspect, there is provided a first device. The first device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device to receive, from a second device, a configuration concerning configured grant uplink transmission. The configuration at least indicates resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information. The first device is also caused to determine resources for transmitting the configured grant uplink control information on an uplink control channel, based on the received configuration. The first device is further caused to transmit the configured grant uplink control information to the  second device on determined resources with at least one of the transmission bursts.
In a second aspect, there is provided a second device. The second device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device to generate configuration concerning configured grant uplink transmission. The configuration at least indicates resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information. The second device is also caused to transmit the configuration concerning the configured grant uplink transmission. The second device is further caused to receive configured grant uplink control information from the first device on resources with at least one of the transmission bursts.
In a third aspect, there is provided a method. The method comprises receiving, at a first device and from a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information. The method also comprises determining resources for transmitting the configured grant uplink control information on an uplink control channel, based on the received configuration. The method further comprises transmitting the configured grant uplink control information to the second device on the determined resources with at least one of the transmission bursts.
In a fourth aspect, there is provided a method. The method comprises generating, at a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for configured grant uplink control information. The method also comprises transmitting the configuration concerning the configured grant uplink transmission to a first device. The method further comprises receiving configured grant uplink control information from the first device on resources with at least one of the transmission bursts.
In a fifth aspect, there is provided an apparatus. The apparatus comprises means for receiving, at a first device and from a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for a  configured grant uplink control information; means for determining resources for transmitting the configured grant uplink control information on an uplink control channel, based on the received configuration; and means for transmitting the configured grant uplink control information to the second device on the determined resources with at least one of the transmission bursts.
In a sixth aspect, there is provided an apparatus. The apparatus comprises means for generating, at a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information; means for transmitting the configuration concerning the configured grant uplink transmission to a first device; and means for receiving configured grant uplink control information from the first device on resources with at least one of the transmission bursts.
In a seventh aspect, there is provided a computer readable medium comprising program instructions for causing an apparatus to perform at least the method according to the above third or fourth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
Fig. 1 illustrates a schematic diagram of a communication system according to according to embodiments of the present disclosure;
Fig. 2 illustrates a schematic diagram of interactions between devices according to according to embodiments of the present disclosure;
Figs 3A-3C illustrate schematic diagrams of resources allocation according to embodiments of the present disclosure;
Fig. 4 illustrates a flow chart of a method according to embodiments of the present  disclosure;
Fig. 5 illustrates a flow chart of a method according to embodiments of the present disclosure;
Fig. 6 illustrates a flow chart of a method according to embodiments of the present disclosure;
Fig. 7 illustrates a simplified block diagram of an apparatus that is suitable for implementing embodiments of the present disclosure; and
Fig. 8 illustrates a block diagram of an example computer readable medium in accordance with some example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their)  accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) , New Radio (NR) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer,  image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
As mentioned above, the configured grant (CG) based uplink transmission has been proposed. A mechanism similar to uplink (UL) CG in unlicensed spectrum is also supported in long-term evolution (LTE) license assisted access (LAA) , called autonomous uplink (AUL) .
The terminal device may indicate to the network device along with each CG UL transmission, the selected HARQ-process ID, new data indicator, redundancy version, UE ID, physical uplink shared channel (PUSCH) starting and ending points, as well as whether the UE-acquired channel occupancy time (COT) can be shared with the network device.
The network device may provide to the terminal device HARQ feedback for AUL-enabled HARQ processes and transmit power command via a downlink (DL) control signaling message called autonomous uplink downlink feedback information (AUL-DFI) .
AUL also allows for configuring a set of starting positions for terminal devices with a very fine raster within the first Single-carrier Frequency-Division Multiple Access (SC-FDMA) symbol of a subframe: 16, 25, 34, 43, 52, or 61 microseconds after the subframe boundary, or at the beginning of the second symbol of a subframe. Since all terminal devices perform listen-before-talk operation prior to the AUL transmission to determine whether the channel is free, different starting points allow for e.g. prioritizing transmissions for certain terminal devices (by assigning an earlier starting point) and reducing the number of collisions. The transmission within the 1st symbol is not PUSCH data but instead a very long cyclic prefix (CP) extended from the next symbol #2.
The CP extension is used for reserving the channel for the given terminal device by  blocking other terminal devices. Though, collisions on AUL resources cannot always be avoided, since only 7 starting positions are supported in LAA-AUL and the terminal devices may not always be in each other’s LBT sensing area (hence they may not always block each other’s transmissions) .
Autonomous uplink-uplink control information (AUL-UCI) is multiplexed on AUL-PUSCH resources with UL-SCH data in a similar way as in case of uplink control information (UCI) on PUSCH in LTE on licensed spectrum. The UL-SCH data information and control information are multiplexed such that the AUL-UCI is mapped from symbol 1 to symbol 12 of the subframe, excluding symbols containing demodulation reference signal. More robust coding can be applied for AUL-UCI (as compared to UL-SCH) , while data and control information share the same modulation order.
With the similar purpose as LAA AUL (reducing the overhead of multiple LBT operations during the handshake between the network device and the terminal device associated with SR and UL grant) , configured grant-based UL transmission has been agreed to be supported in new radio unlicensed (NR-U) .
In Release-15 NR, configured grant based transmission is introduced. In NR CG operation, the network device configures CG-PUSCH resource semi-statically to terminal device, and terminal devices may transmit PUSCH on CG-PUSCH resource when it has uplink shared channel, or data to transmit. In Release-15 NR configured grant based transmission, the HARQ process identifier (ID) is implicitly determined based on the resources that are configured for UL transmission with configured grant. Furthermore, the HARQ RV sequence is pre-configured when the repetition of the same transport block (TB) is introduced. Fixed HARQ process ID determination (i.e., linking the HARQ ID with the allocated resource for configured grant) has low HARQ process utilization efficiency in unlicensed carriers due to the uncertainty on channel access.
In Rel-15 NR, physical uplink control channel (PUCCH) formats 0-4 are introduced. The formats can be categorized based on supported UCI payload: PUCCH formats 0 & 1 are used to indicate 1 or 2 A/N bits plus SR, while PUCCH formats 2-4 support larger UCI payloads. Another way to categorize the PUCCH formats is based on the transmission duration: PUCCH formats 0 and 2 occupy 1 or 2 symbols, while PUCCH formats 1, 3, 4 occupy 4 to 14 symbols. In NR-U, PUCCH formats 0-3 are enhanced to support interlaced physical resource block (PRB) allocation. Code domain multiplexing  may be introduced to the PUCCH formats 2 and 3 enhanced for NR-U.
PUCCH resource, comprising a set of resource elements and, possibly, code domain configuration comprising e.g. cyclic shift and/or orthogonal cover code index, or set of resources are semi-statically configured. When there are multiple PUCCH resources from which the terminal device selects the PUCCH resource, the selection of PUCCH resource depends on the content of UCI as well as on the size of UCI. For example, if UCI includes HARQ-ACK (with at least one HARQ-ACK in response to a PDSCH reception with a corresponding PDCCH) , a PUCCH resource set is selected based on the number of UCI bits. The terminal device may be configured with up to 4 PUCCH resource sets for UCI containing HARQ-ACK, with specific range of UCI payload sizes associated to each resource set. The used PUCCH resource is selected from the determined PUCCH resource set according to the PUCCH resource indicator included to the DL assignment downlink control information.
In another example, if UCI includes CSI and HARQ-ACK associated to a PDSCH without a corresponding PDCCH, a PUCCH resource is selected from a list of configured CSI PUCCH resources based on the number of UCI bits. The smallest PUCCH resource providing sufficiently low code rate for the determined UCI payload is selected.
In Rel-15 NR, PUCCH and PUSCH can be multiplexed in time within single slot. However, concurrent transmission (i.e. symbol (s) overlapping in time) of PUCCH and PUSCH (or concurrent transmission of multiple PUCCHs) within a single cell group is not supported. In case of concurrent transmission of PUCCH and PUSCH, UCI is typically multiplexed on the resources of PUSCH and PUCCH transmission is dropped.
In LAA-AUL, the network device typically configures CG-PUSCH resource to multiple terminal devices, and multiple terminal devices may transmit PUSCH at the same time, and despite the LAA collision avoidance mechanism, collisions cannot be fully avoided. In LAA-AUL, the control information is multiplexed and interleaved with data, and it is not possible to apply enhanced collision avoidance techniques for control information (CG UCI) as compared to UL-SCH data. When a collision occurs on UL CG resources, the collision impacts both control information and data equally.
Although NR-U CG UCI is needed for reception of NR-U CG-PUSCH, some of the CG-UCI fields (for example UE ID, HARQ process ID) are important also when the reception of CG-PUSCH is doomed to fail e.g. due to collision. Hence, it is beneficial to  provide a lower collision probability (or higher decoding probability) for CG-UCI than for CG-PUSCH.
According to embodiments of the present disclosure, the network device transmits configurations of resource allocations to the terminal device. The terminal device determines the resource for transmitting CG-UCI on the uplink control channel. In this way, collision probability on the physical resources that are carrying the CG UCI is reduced and multiplexing of CG UCI information from one or more terminal devices with PUCCH transmitted by other terminal devices is achieved. Thus, reliability of UCI is increased and latencies of uplink CG transmissions are reduced.
Fig. 1 illustrates a schematic diagram of a communication system in which embodiments of the present disclosure can be implemented. The communication system 100, which is a part of a communication network, comprises a device 110-1, a device 110-2, ...., a device 110-N, which can be collectively referred to as “device (s) 110. ” The communication system 100 further comprises a device 120. One or more devices are associated with and covered by a cell. It is to be understood that the number of devices and cells shown in Fig. 1 is given for the purpose of illustration without suggesting any limitations. The communication system 100 may comprise any suitable number of devices and cells. In the communication system 100, the device 110 and the device 120 can communicate data and control information to each other. In the case that the device 110 is the terminal device and the device 120 is the network device, a link from the device 120 to the device 110 is referred to as a downlink (DL) , while a link from the device 110 to the device 120 is referred to as an uplink (UL) . The number of devices shown in Fig. 1 is given for the purpose of illustration without suggesting any limitations.
Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Time Division Multiple Access (TDMA) , Frequency Division Duplex (FDD) , Time Division Duplex  (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
Fig. 2 illustrates a schematic diagram of interactions 200 among devices in accordance with embodiments of the present disclosure. The interactions 200 may be implemented at any suitable devices. Only for the purpose of illustrations, the interactions 200 are described to be implemented at the terminal device 110-1 and the network device 120. Only for purpose of illustrations, the uplink control channel refers to the PUCCH and the uplink shared channel refers to the PUSCH.
The network device 120 generates 2005 a configuration concerning uplink control information transmissions. The configuration at least indicates resource allocation of transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information. The configuration may indicate resources allocated to the terminal device for shared channel and/or control channel. The resources may be in frequency domain. Alternatively or in addition, the resources may be in time domain. The configuration may also comprise one or more of: duration of uplink transmission, a cyclic shift, demodulation reference signal (DMRS) orthogonal cover code (OCC) . The duration of uplink transmission may be configured by the network device 120 or fixed in specifications. The term “transmission burst” used herein may contain one or more uplink transmissions. An uplink transmission may be an uplink shared channel transmission with duration at most of one slot.
In some embodiments, the network device 120 may determine the configuration based on whether other UCI (in addition to CG-UCI, for example, channel state information (CSI) ) is to be transmitted by the terminal device.
The network device 120 transmits 2010 the configuration to the terminal device 110-1. In some embodiments, the configuration may be transmitted via radio resource control (RRC) signaling. In other embodiments, the configuration may be transmitted via physical layer (PHY) signaling. For example, the configuration may be transmitted via CG activation signaling. In this way, the collision probability for CG-UCI is reduced, thus increasing the probability that at least CG-UCI can be correctly decoded at the network device even if a collision occurs on UL CG resources used for UL-SCH channel or data transmission. This improvement in CG UCI reliability can translate in latency reduction as  e.g. it may enable the network device to schedule retransmissions on contention-free resources for correct UE and HARQ process. Further, more reliable transmission of CG-UCI information is also supported by the possibility to use different modulation orders for data and control channels.
The terminal device 110-1 determines 2025 the resource for the CG-UCI. In some embodiments, the CG-UCI may occupy one or more symbols in time domain. In some embodiments, the terminal device 110-1 may determine the transmission format based on the configuration. Alternatively or in addition, the terminal device 110-1 may determine 2015 the transmission format based on whether the CG-PUSCH resources are immediately preceded by a regular PUCCH occasion. The term regular “PUCCH” used herein refer to the PUCCH other than CG PUCCH. This can be determined based on group common (GC) -PDCCH indicating link direction within COT and transmitted by the network device 120 in one or more of the downlink slots/subframes before the PUCCH occasion. Alternatively, regular PUCCH occasion could be indicated by the network device 120 to the terminal device 110-1 via dedicated signaling, e.g. in a DL grant.
In some embodiments, the terminal device 110-1 may determine that the uplink control channel overlaps with the uplink shared channel from the transmission mode. In this situation, the resource for transmitting CG-UCI on the uplink control channel may occupy a number of symbols N of the uplink shared channel followed by symbols of the uplink shared channel. In other words, the resources allocated to the uplink shared channel may comprise resources allocated to the uplink control channel and the uplink shared channel is not mapped into the N symbols reserved for the uplink control channel. The resource for the CG-UCI on the uplink control channel may be one or more symbols in the PUSCH. For example, if the resources for the PUSCH may comprise 14 symbols, the resource for the CG-UCI on the uplink control channel may be the first one or two symbols of the 14 symbols.
As shown in Fig. 3A, the resource for the CG-PUCCH 3012-1 for transmitting the CG-UCI may be included in the resources for the PUSCH 3013-1 in a transmission burst. The resource for the CG-PUCCH 3012-2 for transmitting the CG-UCI may be included in the resources for the PUSCH 3013-2.
As shown in Fig. 3B, the resource for the CG-PUCCH 3022-1 for transmitting the CG-UCI may be included in the resources for the PUSCH 3023-1 in a transmission burst.  The resource for the CG-PUCCH 3022-2 for transmitting the CG-UCI may be included in the resources for the PUSCH 3023-2.
In some embodiments, the terminal device 110-1 may determine that the uplink control channel does not overlap with the uplink shared channel from the transmission mode. The resources allocated to the uplink shared channel may be located before the resources allocated to the uplink control channel. For example, the resource for the CG-UCI on the uplink control channel may be one or more symbols and followed by resources allocated to the uplink shared channel comprising 14 symbols. As shown in Fig. 3C, the resource for the CG-PUCCH 3032-1 for transmitting the CG-UCI may be located before the resources for the PUSCH 3033-1.
In some embodiments, the network device 120 may transmit 2020 an indication for the resources for transmitting the configured grant uplink control information. The indication may be transmitted via RRC signaling. In this situation, the terminal device 110-1 may determine 2025 the resource based on the indication.
In some embodiments, the network device 120 may determine the information concerning frequency domain configurations. Further, the network device 120 may determine 2030 the information concerning code domain configurations. The information may comprise cyclic shifts. Alternatively or in addition, the information may comprise orthogonal cover codes for the terminal device 110-1 configured with overlapping CG-PUCCH resources. The code domain resources may be indicated for the terminal device 110-1 using RRC signaling. The network device 120 may transmit 2035 the information to the terminal device 110-1. For example, the information may be transmitted via radio resource signaling. The code domain resource may be UE-specific.
The terminal device 110-1 may determine 2040 the code domain resource based on an identity of the terminal device 110-1. Alternatively or in addition, the terminal device 110-1 may determine 2040 the code domain resource based on Cell-Radio Network Temporary Identifier (C-RNTI) or scrambling ID of DMRS. The code domain resource derivation may be time varying, for example, depending on slot index.
The terminal device 110-1 transmits 2050 the CG-UCI on the uplink control channel with the determined resource. In some embodiments, the CG-PUCCH occurs only before the first CG-PUSCH transmission of a contiguous burst of CG-PUSCH transmissions and the CG-UCI may additionally be transmitted along with each  CG-PUSCH transmission in the burst on CG-PUSCHs. For example, the terminal device 110-1 may transmit the first portion of the CG-UCI on the uplink control channel along with a first transmission of the transmission bursts. The first portion of the CG-UCI may be common to the transmission in one transmission burst. The terminal device 110-1 may transmit the second portion the CG-UCI along with each transmission of the transmission bursts on an uplink shared channel.
In some embodiments, as shown in Fig. 3A, the terminal device 110-1 may perform listen-before-talk during the 3011-1. The terminal device 110-1 may transmit the CG-UCI on the CG-PUCCH 3012-1. The terminal device 110-1 may perform listen-before-talk during the 3011-2 and transmit the CG-UCI on the CG-PUSCH 3014-1. The terminal device 110-1 may perform listen-before-talk during the 3011-3 and transmit the CG-UCI on the CG-PUSCH 3014-2. The CG-UCI transmitted on the uplink control channel and the CG-UCI transmitted on the uplink shared channel may be different.
In some embodiments, as shown in Fig. 3C, the terminal device 110-1 may perform listen-before-talk during the 3031-1. The terminal device 110-1 may transmit the CG-UCI on the CG-PUCCH 3032-1. The terminal device 110-1 may perform listen-before-talk during the 3031-2 and transmit the CG-UCI on the CG-PUSCH 3034-1. The terminal device 110-1 may perform listen-before-talk during the 3031-2 and transmit the CG-UCI on the CG-PUSCH 3034-2. The terminal device 110-1 may perform listen-before-talk during the 3031-3 and transmit the CG-UCI on the CG-PUSCH 3034-3. The CG-UCI transmitted on the uplink control channel and the CG-UCI transmitted on the uplink shared channel may be different.
The CG-UCI transmitted on the CG-PUCCH may comprise one or more of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, the number of uplink transmission in the channel occupancy that the terminal device 110-1 (for example, remaining duration of the uplink burst) , or configured grant configuration according to which the terminal device 110-1 should transmit. The CG-UCI transmitted on the CG-PUSCH may comprise HARQ related information associated with each CG-PUSCH transmission in the burst, such as HARQ process ID, New Data Indicator (NDI) , and/or Redundancy Version (RV) .
In other embodiments, the CG-PUCCH may occur in every slot along with CG-PUSCH. In this situation, the CG-PUCCH transmission is used to reduce collision probability for a part of CG-UCI while the payload size of CG-UCI on CG-PUCCH is minimized. For example, the terminal device 110-1 may transmit the first portion of the CG-UCI on the uplink control channel ahead of a set of data bursts. The terminal device 110-1 may transmit the second portion the CG-UCI and the set of data bursts on the uplink shared channel.
As shown in Fig. 3B, the terminal device 110-1 may perform listen-before-talk during the 3021-1. The terminal device 110-1 may transmit the CG-UCI on the CG-PUCCH 3022-1. The terminal device 110-1 may perform listen-before-talk during the 3021-2 and transmit the CG-UCI on the CG-PUCCH 3022-2. The terminal device 110-1 may perform listen-before-talk during the 3021-3 and transmit the CG-UCI on the CG-PUSCH 3024-2. The CG-UCI transmitted on the uplink control channel and the CG-UCI transmitted on the uplink shared channel may be different.
The CG-UCI transmitted on the CG-PUSCH may comprise one or more of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, the number of uplink transmission in the channel occupancy that the terminal device 110-1 (for example, remaining duration of the uplink burst) , or configured grant configuration according to which the terminal device 110-1 should transmit. The CG-UCI transmitted on the CG-PUCCH may comprise more critical information, for example, HARQ process ID.
The terminal device 110-1 may multiplex the CG-UCI. The terminal device 110-1 may transmit other PUSCHs on other cells while transmitting CG-PUSCH. The terminal device 110-1 may transmit regular UCI (i.e. non-CG) on a PUCCH, for example, on another cell. In some embodiments, CG-PUCCH and CG-PUSCH are considered as CG-PUSCH from regular UCI multiplexing viewpoint.
In some embodiments, for UCI multiplexing, within a PUCCH group, on PUSCH, the terminal device 110-1 may multiplex UCI in overlapped PUCCH transmissions into one PUCCH resource (resource Z) . The terminal device 110-1 may multiplex the UCI which doesn’t include resource Z into one PUSCH, if Z overlaps with at least one PUSCH,  following the priorities (sequentially from high to low) as listed below: first priority: PUSCH with A-CSI as long as it overlaps with Z; second priority: earliest PUSCH slot (s) based on the start of the slot (s) . If there are still multiple PUSCHs overlap with Z in the earliest PUSCH slot (s) , follow the following priorities (sequentially from high to low) third priority: Dynamic grant PUSCHs > CG-PUSCH or CG-PUCCH; fourth priority: PUSCHs on serving cell with smaller serving cell index > PUSCHs on serving cell with larger serving cell index; fifth priority: Earlier PUSCH transmission > later PUSCH transmission.
In this way, the CG-UCI remains on the same cell and hence under the same LBT as CG-PUSCH. This is beneficial as: CG-UCI is needed for CG-PUSCH detection –and is rather unnecessary if CG-PUSCH is not transmitted. The network device 120 does not need to blindly detect whether CG-UCI is multiplexed with UCI and transmitted on a scheduled PUSCH on some other cell.
Fig. 4 illustrates a flow chart of method 400 according to embodiments of the present disclosure. The method 400 can be implemented at any suitable devices. For example, the method may be implemented at the terminal device 110.
At block 410, the terminal device 110-1 receives the configuration from the network device 120. In some embodiments, the configuration may be transmitted via RRC signaling. In other embodiments, the configuration may be transmitted via physical layer (PHY) signaling. For example, the configuration may be transmitted via CG activation signaling. The configuration at least indicates resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information.
At block 420, the terminal device 110-1 determines the resource for the CG-UCI. In some embodiments, the CG-UCI may occupy one or more symbols in time domain. In some embodiments, the terminal device 110-1 may determine the transmission format based on the configuration. Alternatively or in addition, the terminal device 110-1 may determine the transmission format based on whether the CG-PUSCH resources are immediately followed by a PUCCH occasion in the cell. This can be determined based on GC-PDCCH transmitted by the network device 120 in one or more of the downlink slots/subframes before the PUCCH occasion.
In some embodiments, the terminal device 110-1 may determine that the uplink control channel does not overlap with the uplink shared channel from the transmission  mode. In this situation, the resource for transmitting CG-UCI on the uplink control channel may a number of symbols of the uplink shared channel followed by the uplink shared channel . In other words, the resources allocated to the uplink shared channel may comprise resources allocated to the uplink control channel and the uplink shared channel is not mapped into the N symbols reserved for the uplink control channel. The resource for the CG-UCI on the uplink control channel may be one or more symbols in the PUSCH. For example, if the resources for the PUSCH may comprise 14 symbols, the resource for the CG-UCI on the uplink control channel may be the first one or two symbols of the 14 symbols.
In some embodiments, the terminal device 110-1 may determine that the uplink control channel overlaps with the uplink shared channel from the transmission mode. The resources allocated to the uplink shared channel may be located before the resources allocated to the uplink control channel. For example, the resource for the CG-UCI on the uplink control channel may be one or more symbols and followed resources allocated to the uplink shared channel comprising 14 symbols.
In some embodiments, the terminal device 110-1 may receive an indication for the resources for transmitting the configured grant uplink control information. The indication may be transmitted via radio resource signaling. In this situation, the terminal device 110-1 may determine 2025 the resource based on the indication.
The network device 120 may generate the information concerning code domain configurations and/or frequency domain configurations. The information may comprise cyclic shifts. Alternatively or in addition, the information may comprise orthogonal cover codes for the terminal device 110-1 configured with overlapping CG-PUCCH resources. The code domain resources may be indicated for the terminal device 110-1 using RRC signaling. The network device 120 may transmit 2035 the information to the terminal device 110-1. For example, the information may be transmitted via radio resource signaling. The code domain resource may be UE-specific.
The terminal device 110-1 may determine the code domain resource based on an identity of the terminal device 110-1 and/or DMRS scrambling ID assigned to the terminal device. Alternatively or in addition, the terminal device 110-1 may determine 2040 the code domain resource based on Cell-Radio Network Temporary Identifier (C-RNTI) . The code domain resource derivation may be time varying, for example, depending on slot  index.
The terminal device 110-1 may determine the frequency domain resource based on an identity of the terminal device 110-1 and/or DMRS ID assigned to the terminal device. Alternatively or in addition, the terminal device 110-1 may determine 2040 the frequency domain resource based on Cell-Radio Network Temporary Identifier (C-RNTI) .
At block 430, the terminal device 110-1 transmits the CG-UCI on the uplink control channel with the determined resource. In some embodiments, the CG-PUCCH occurs only before the first CG-PUSCH transmission of a contiguous burst of CG-PUSCH transmissions and the CG-UCI may additionally be transmitted along with each CG-PUSCH transmission in the burst on CG-PUSCHs. For example, the terminal device 110-1 may transmit the first portion of the CG-UCI on the uplink control channel ahead of a set of data bursts. The first portion of the CG-UCI may be common to the set of transmissions in one transmission burst. The terminal device 110-1 may transmit the second portion the CG-UCI and the set of data bursts on the uplink shared channel. The terminal device 110-1 may transmit a first portion of the CG-UCI on the uplink control channel along with a first transmission of the transmission bursts, the first portion of the CG-UCI being common to the transmissions of one burst in the transmission bursts and transmit a second portion of the CG-UCI along with each transmission of the transmission bursts on the uplink shared channel.
The CG-UCI transmitted on the CG-PUCCH may comprise one or more of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, the number of uplink transmission in the channel occupancy that the terminal device 110-1 (for example, remaining duration of the uplink burst) , or configured grant configuration according to which the terminal device 110-1 should transmit. The CG-UCI transmitted on the CG-PUSCH may comprise HARQ related information associated with each CG-PUSCH transmission in the burst, such as HARQ process ID, New Data Indicator (NDI) , and/or Redundancy Version (RV) .
In other embodiments, the CG-PUCCH may occur in every slot along with CG-PUSCH. In this situation, the CG-PUCCH transmission is used to reduce collision probability for a part of CG-UCI while the payload size of CG-UCI on CG-PUCCH is  minimized. For example, the terminal device 110-1 may transmit the first portion of the CG-UCI on the uplink control channel ahead of a set of data bursts. The terminal device 110-1 may transmit the second portion the CG-UCI and the set of data bursts on the uplink shared channel.
The CG-UCI transmitted on the CG-PUSCH may comprise one or more of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, the number of uplink transmission in the channel occupancy that the terminal device 110-1 (for example, remaining duration of the uplink burst) , or configured grant configuration according to which the terminal device 110-1 should transmit. The CG-UCI transmitted on the CG-PUCCH may comprise more critical information, for example, HARQ process ID.
The terminal device 110-1 may transmit the configured grant uplink control information on the uplink control channel ahead of the transmission bursts. In some embodiments, the terminal device 110-1 may transmit the configured grant uplink control information along with a first transmission of the transmission bursts.
The terminal device 110-1 may multiplex the CG-UCI. The terminal device 110-1 may transmit other PUSCHs on other cells while transmitting CG-PUSCH. The terminal device 110-1 may transmit regular UCI (i.e. non-CG) on a PUCCH, for example, on another cell. In some embodiments, CG-PUCCH and CG-PUSCH are considered as CG-PUSCH from regular UCI multiplexing viewpoint.
Fig. 5 illustrates a flow chart of method 500 according to embodiments of the present disclosure. The method 500 may only an example for selecting resources for multiplexing regular UCI with GC-UCI. The method 500 can be implemented at any suitable devices. For example, the method may be implemented at the terminal device 110.
At block 510, the terminal device 110-1 may determine whether the terminal device 110-1 is configured with CG-PUCCH. If the terminal device 110-1 is configured with CG-PUCCH, at block 520, the terminal device 110-1 may determine whether regular UCI is mapped on slot of CG-PUSCH. If the regular UCI is not mapped on slot of CG-PUSCH, at block 540, the terminal device 110-1 may transmit the CG on the  CG-PUCCH.
If the regular UCI is mapped on slot of CG-PUSCH, at block 550, the terminal device 110-1 may determine whether CG-PUCCH resource has a sufficient size. If the CG-PUCCH resource has sufficient size, at block 560, the terminal device 110-1 may transmit the CG-UCI appended with regular UCI on the CG-PUCCH. If the CG-PUCCH resource does not have the sufficient size, at block 570, the terminal device 110-1 may transmit the CG-UCI appended with regular UCI on the CG-PUCSH.
Referring to block 530, if the terminal device 110-1 is not configured with CG-PUCCH, the terminal device 110-1 may determine whether regular UCI is mapped on slot of CG-PUSCH. If the regular UCI is not mapped on slot of CG-PUSCH, at block 580, the terminal device 110-1 may transmit the CG-UCI on the CG-PUSCH. If the regular UCI is mapped on slot of CG-PUSCH, at block 570, the terminal device 110-1 may transmit the CG-UCI appended with regular UCI on the CG-PUCSH.
Fig. 6 illustrates a flow chart of method 600. The method 600 can be implemented at any suitable devices. For example, the method may be implemented at the network device 120.
At block 610, the network device 120 generates a configuration concerning transmission of uplink control information. The configuration at least indicates resource allocation of uplink transmissions. The configuration may indicate resources allocated to the terminal device for data channel and/or control channel. The resources may be in frequency domain. Alternatively or in addition, the resources may be in time domain. The configuration may also comprise one or more of: duration of uplink transmission, a cyclic shift, demodulation reference signal (DMRS) orthogonal cover code (OCC) . The duration of uplink transmission may be configured by the network device 120 or fixed in specifications. The configuration at least indicates resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information.
In some embodiments, the network device 120 may determine the configuration based on whether other UCI (in addition to CG-UCI, for example, channel state information (CSI) ) is to be transmitted by the terminal device.
At block 620, the network device 120 transmits the configuration to the terminal device 110-1. In some embodiments, the configuration may be transmitted via radio  resource controlling. In other embodiments, the configuration may be transmitted via physical layer (PHY) signaling. For example, the configuration may be transmitted via CG activation signaling. In this way, the collision probability for CG-UCI is reduced, thus increasing the probability that at least CG-UCI can be correctly decoded at the network device even if a collision occurs on UL CG resources used for UL-SCH data transmission. This improvement in CG UCI reliability can translate in latency reduction as e.g. it may enable the network device to schedule retransmissions on contention-free resources for correct UE and HARQ process. Further, more reliable transmission of CG-UCI information is also supported by the possibility to use different modulation orders for data and control.
In some embodiments, the network device 120 may transmit an indication for the resource for transmitting the configured grant uplink control information. The indication may be transmitted via radio resource signaling.
In some embodiments, the network device 120 may determine the information concerning code domain configurations. The information may comprise cyclic shifts. Alternatively or in addition, the information may comprise orthogonal cover codes for the terminal device 110-1 configured with overlapping CG-PUCCH resources. The code domain resources may be indicated for the terminal device 110-1 using RRC signaling. The network device 120 may transmit the information to the terminal device 110-1. For example, the information may be transmitted via radio resource signaling. The code domain resource may be UE-specific.
At block 630, the network device 120 receives the CG-UCI on the uplink control channel with the determined resource. In some embodiments, the CG-PUCCH occurs only before the first CG-PUSCH transmission of a contiguous burst of CG-PUSCH transmissions and the CG-UCI may additionally be transmitted along with each CG-PUSCH transmission in the burst on CG-PUSCHs. For example, the network device 120 may receive the first portion of the CG-UCI on the uplink control channel along with the first transmission of the transmission bursts. The first portion of the CG-UCI may be common to transmissions of one transmission burst in the transmission bursts. The network device 120 may receive the second portion the CG-UCI along with every transmission of the transmission bursts on the uplink shared channel.
The CG-UCI transmitted on the CG-PUCCH may comprise one or more of: an  identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, the number of uplink transmission in the channel occupancy that the terminal device 110-1 (for example, remaining duration of the uplink burst) , or configured grant configuration according to which the terminal device 110-1 should transmit. The CG-UCI transmitted on the CG-PUSCH may comprise HARQ related information associated with each CG-PUSCH transmission in the burst, such as HARQ process ID, New Data Indicator (NDI) , and/or Redundancy Version (RV) .
In other embodiments, the CG-PUCCH may occur in every slot along with CG-PUSCH. In this situation, the CG-PUCCH transmission is used to reduce collision probability for a part of CG-UCI while the payload size of CG-UCI on CG-PUCCH is minimized. For example, the network device 120 may receive the first portion of the CG-UCI on the uplink control channel ahead of a set of data bursts. The network device 120 may receive the second portion the CG-UCI and the set of data bursts on the uplink shared channel.
The CG-UCI transmitted on the CG-PUSCH may comprise one or more of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, the number of uplink transmission in the channel occupancy that the terminal device 110-1 (for example, remaining duration of the uplink burst) , or configured grant configuration according to which the terminal device 110-1 should transmit. The CG-UCI transmitted on the CG-PUCCH may comprise more critical information, for example, HARQ process ID.
In some embodiments, an apparatus for performing the method 400 (for example, the terminal device 110) may comprise respective means for performing the corresponding steps in the method 400. These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
In some embodiments, the apparatus comprises means for receiving, at a first device and from a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission  bursts on an uplink shared channel and resource allocation for a configured grant uplink control information; means for determining resources for transmitting the configured grant uplink control information on an uplink control channel, based on the received configuration; and means for transmitting the configured grant uplink control information to the second device on the determined resources with at least one of the transmission bursts.
In some embodiments, the means for determining the resource comprises: means for determining a transmission format based on the received configuration; and means for in accordance with the determination of the transmission format that the uplink control channel overlaps with an uplink shared channel, selecting the resources from resources allocated to the transmission bursts on the uplink shared channel.
In some embodiments, the means for determining the resource comprises: means for determining a transmission format based on the received configuration; and means for in accordance with the determination of the transmission format that the uplink control channel non-overlap with an uplink shared channel , selecting the resource preceding resources allocated to the transmission bursts on the uplink shared channel.
In some embodiments, the means for selecting the resource comprises: means for receiving an indication of the resources for transmitting the configured grant uplink control information via radio resource control signaling; and means for determining the resource based on the indication.
In some embodiments, the means for transmitting the configured grant uplink control information comprises: means for transmitting a first portion of the configured grant uplink control information on the uplink control channel along with a first transmission of the transmission bursts, the first portion of the configured grant uplink control information being common to the transmission of one burst in the transmission bursts; and means for transmitting a second portion of the configured grant uplink control information along with each transmission of the transmission bursts on an uplink shared channel.
In some embodiments, the first portion of the configured grant uplink control information comprises at least one of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, a remaining duration of uplink transmission burst,  or a configuration of configured grant uplink shared channel , and the second portion of the configured grant uplink control information comprises hybrid automatic repeat request (HARQ) related information associated with the set of data bursts.
In some embodiments, the means for transmitting the configured grant uplink control information comprises: means for transmitting a first portion of the configured grant uplink control information on the uplink control channel during one transmission burst; and means for transmitting a second portion of the configured grant uplink control information on an uplink shared channel during the transmission burst.
In some embodiments, the first portion of the configured grant uplink control information comprises hybrid automatic repeat request (HARQ) related information, and the second portion of the configured grant uplink control information comprises at least one of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, a remaining duration of uplink transmission burst, or a configuration of configured grant uplink shared channel.
In some embodiments, the means for transmitting the configured grant uplink control information comprises: means for transmitting the configured grant uplink control information on the uplink control channel ahead of the transmission bursts; or means for transmitting the configured grant uplink control information along with a first transmission of the transmission bursts.
In some embodiments, the apparatus further comprises means for receiving, from the second device, information concerning frequency domain configuration via radio resource control signaling; means for determining a frequency domain configuration allocated to the first device from the information, based on at least one of: an identity of the first device and demodulation reference signal scrambling identity; and means for multiplexing the configured grant uplink control information on the uplink control channel based on the frequency domain configuration.
In some embodiments, the apparatus further comprises means for receiving, from the second device, information concerning code domain configurations via radio resource control signaling; means for determining a code domain configuration allocated to the first device from the second information, based on at least one of: an identity of the first device  and demodulation reference signal scrambling identity; and means for multiplexing the configured grant uplink control information on the uplink control channel based on the code domain configuration.
In some embodiments, the first device comprises a terminal device and the second device comprises a network device.
In embodiments, an apparatus for performing the method 600 (for example, the network device 120) may comprise respective means for performing the corresponding steps in the method 600. These means may be implemented in any suitable manners. For example, it can be implemented by circuitry or software modules.
In some embodiments, the apparatus comprises means for generating, at a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information; means for transmitting the configuration concerning the configured grant uplink transmission to a first device; and means for receiving configured grant uplink control information from the first device on resources with at least one of the transmission bursts.
In some embodiments, the configuration indicates a transmission format of the configured grant uplink control information.
In some embodiments, the transmission format indicates whether the uplink control channel overlaps with an uplink shared channel .
In some embodiments, the apparatus further comprises means for generating an indication of the resources for transmitting the configured grant uplink control information; and means for transmitting the first information to the first device via radio resource control signaling.
In some embodiments, the means for receiving the configured grant uplink control information comprises: means for receiving a first portion of the configured grant uplink control information on the uplink control channel along with a first transmission of the transmission bursts, the first portion of the configured grant uplink control information being common to the transmissions of one transmission bursts of the transmission bursts; and means for receiving a second portion of the configured grant uplink control information along with each transmission of the transmission bursts on an uplink shared channel.
In some embodiments, the first portion of the configured grant uplink control information comprises at least one of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, a remaining duration of uplink burst, or a configuration of configured grant uplink shared channel , and the second portion of the configured grant uplink control information comprises hybrid automatic repeat request (HARQ) related information associated with the transmission bursts.
In some embodiments, the means for receiving the configured grant uplink control information comprises: means for receiving a first portion of the configured grant uplink control information on the uplink control channel ahead of a transmission of a transmission burst; and means for receiving a second portion of the configured grant uplink control information on an uplink shared channel during the transmission of the transmission burst.
In some embodiments, the first portion of the configured grant uplink control information comprises hybrid automatic repeat request (HARQ) related information, and the second portion of the configured grant uplink control information comprises at least one of: an identity of the first device, a Channel Access Priority Class (CAPC) of the first device, a listen-before-talk type, a duration of channel occupancy, an indication concerning whether the second device is allowed to share the channel occupancy with the first device, a remaining duration of uplink burst, or a configuration of configured grant uplink shared channel .
In some embodiments, the apparatus comprises means for receiving the configured grant uplink control information on the uplink control channel ahead of the transmission bursts; or means for receiving the configured grant uplink control information along with a first transmission of the transmission bursts.
In some embodiments, the apparatus comprises means for generating information concerning frequency domain configurations; and means for transmitting the information to the first device via radio resource control signaling.
In some embodiments, the apparatus comprises means for generating information concerning code domain configurations; and means for transmitting the information to the first device via radio resource control signaling.
In some embodiments, the first device comprises a terminal device and the second  device comprises a network device.
Fig. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure. The device 700 may be provided to implement the communication device, for example the terminal device 110, or the network device 120 as shown in Fig. 1. As shown, the device 700 includes one or more processors 710, one or more memories 720 coupled to the processor 710, and one or more communication modules 740 coupled to the processor 710.
The communication module 740 is for bidirectional communications. The communication module 740 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network elements.
The processor 710 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 720 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 724, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 722 and other volatile memories that will not last in the power-down duration.
computer program 730 includes computer executable instructions that are executed by the associated processor 710. The program 730 may be stored in the ROM 724. The processor 710 may perform any suitable actions and processing by loading the program 730 into the RAM 722.
The embodiments of the present disclosure may be implemented by means of the program 720 so that the device 700 may perform any process of the disclosure as discussed with reference to Figs. 2 and 6. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some example embodiments, the program 730 may be tangibly contained in a computer readable medium which may be included in the device 700 (such as in the memory 720) or other storage devices that are accessible by the device 700. The device 700 may load the program 730 from the computer readable medium to the RAM 722 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 8 shows an example of the computer readable medium 800 in form of CD or DVD. The computer readable medium has the program 730 stored thereon.
It should be appreciated that future networks may utilize network functions virtualization (NFV) which is a network architecture concept that proposes virtualizing network node functions into “building blocks” or entities that may be operationally connected or linked together to provide services. A virtualized network function (VNF) may comprise one or more virtual machines running computer program codes using standard or general type servers instead of customized hardware. Cloud computing or data storage may also be utilized. In radio communications, this may mean node operations to be carried out, at least partly, in a central/centralized unit, CU, (e.g. server, host or node) operationally coupled to distributed unit, DU, (e.g. a radio head/node) . It is also possible that node operations will be distributed among a plurality of servers, nodes or hosts. It should also be understood that the distribution of labor between core network operations and base station operations may vary depending on implementation.
In an embodiment, the server may generate a virtual network through which the server communicates with the distributed unit. In general, virtual networking may involve a process of combining hardware and software network resources and network functionality into a single, software-based administrative entity, a virtual network. Such virtual network may provide flexible distribution of operations between the server and the radio head/node. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation.
Therefore, in an embodiment, a CU-DU architecture is implemented. In such case the device 700 may be comprised in a central unit (e.g. a control unit, an edge cloud server, a server) operatively coupled (e.g. via a wireless or wired network) to a distributed unit (e.g. a remote radio head/node) . That is, the central unit (e.g. an edge cloud server) and the distributed unit may be stand-alone apparatuses communicating with each other via a radio  path or via a wired connection. Alternatively, they may be in a same entity communicating via a wired connection, etc. The edge cloud or edge cloud server may serve a plurality of distributed units or a radio access networks. In an embodiment, at least some of the described processes may be performed by the central unit. In another embodiment, the device 700 may be instead comprised in the distributed unit, and at least some of the described processes may be performed by the distributed unit.
In an embodiment, the execution of at least some of the functionalities of the device 700 may be shared between two physically separate devices (DU and CU) forming one operational entity. Therefore, the apparatus may be seen to depict the operational entity comprising one or more physically separate devices for executing at least some of the described processes. In an embodiment, such CU-DU architecture may provide flexible distribution of operations between the CU and the DU. In practice, any digital signal processing task may be performed in either the CU or the DU and the boundary where the responsibility is shifted between the CU and the DU may be selected according to implementation. In an embodiment, the device 700 controls the execution of the processes, regardless of the location of the apparatus and regardless of where the processes/functions are carried out.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 400-600 as described above with reference to Figs. 3-6. Generally, program modules include routines, programs, libraries, objects, classes, components, data  structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in  the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (33)

  1. A method comprising:
    receiving, at a first device and from a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for configured grant uplink control information;
    determining resources for transmitting the configured grant uplink control information on an uplink control channel, based on the received configuration; and
    transmitting the configured grant uplink control information to the second device on the determined resources with at least one of the transmission bursts.
  2. The method of claim 1, wherein determining the resource comprises:
    determining a transmission format based on the received configuration; and
    in accordance with the determination of the transmission format that the uplink control channel overlaps with an uplink shared channel, selecting the resources from resources allocated to the transmission bursts on the uplink shared channel.
  3. The method of claim 1, wherein determining the resource comprises:
    determining a transmission format based on the received configuration; and
    in accordance with the determination of the transmission format that the uplink control channel non-overlap with an uplink shared channel , selecting the resource preceding resources allocated to the transmission bursts on the uplink shared channel.
  4. The method of claim 3, wherein selecting the resource comprises:
    receiving an indication of the resources for transmitting the configured grant uplink control information via radio resource control signaling; and
    determining the resource based on the indication.
  5. The method of claim 2 or 3, wherein determining the transmission format furher comprises:
    determining the transmission format based on whether resources for uplink configured grant transmission are preceded by a regular physical uplink control channel (PUCCH) occasion.
  6. The method of claim 1, wherein transmitting the configured grant uplink control information comprises:
    transmitting a first portion of the configured grant uplink control information on the uplink control channel along with a first transmission of a transmission burst, the first portion of the configured grant uplink control information being common to transmissions of the transmission burst; and
    transmitting a second portion of the configured grant uplink control information along with each transmission of the transmission burst on an uplink shared channel.
  7. The method of claim 6, wherein the first portion of the configured grant uplink control information comprises at least one of:
    an identity of the first device,
    a Channel Access Priority Class (CAPC) of the first device,
    a listen-before-talk type,
    a duration of channel occupancy,
    an indication concerning whether the second device is allowed to share the channel occupancy with the first device,
    a remaining duration of uplink transmission burst, or
    a configuration of configured grant uplink shared channel, and
    the second portion of the configured grant uplink control information comprises hybrid automatic repeat request (HARQ) related information associated with the set of data bursts.
  8. The method of claim 1, wherein transmitting the configured grant uplink control information comprises:
    transmitting a first portion of the configured grant uplink control information on the uplink control channel ahead of a transmission of a transmission burst; and
    transmitting a second portion of the configured grant uplink control information on an uplink shared channel during the transmission of the transmission burst.
  9. The method of claim 8, wherein the first portion of the configured grant uplink control information comprises at least one of:
    an identity of the first device,
    a hybrid automatic repeat request (HARQ) identity,
    a Channel Access Priority Class (CAPC) of the first device,
    a listen-before-talk type,
    a duration of channel occupancy
    an indication concerning whether the second device is allowed to share the channel occupancy with the first device,
    a remaining duration of uplink transmission burst, or
    a configuration of configured grant uplink shared channel; and
    the second portion of the configured grant uplink control information comprises the configured grant uplink control information not comprised in the first portion or the whole configured grant uplink control information.
  10. The method of claim 1, wherein transmitting the configured grant uplink control information comprises:
    transmitting the configured grant uplink control information on the uplink control channel ahead of the transmission bursts; or
    transmitting the configured grant uplink control information along with a first transmission of the transmission bursts.
  11. The method of claim 1, further comprising:
    receiving, from the second device, information concerning frequency domain configuration via radio resource control signaling;
    determining a frequency domain configuration allocated to the first device from the information, based on at least one of: an identity of the first device and demodulation reference signal scrambling identity; and
    multiplexing the configured grant uplink control information on the uplink control channel based on the frequency domain configuration.
  12. The method of claim 1, further comprising:
    receiving, from the second device, information concerning code domain configuration via radio resource control signaling;
    determining a code domain configuration allocated to the first device from the information, based on at least one of: an identity of the first device and demodulation reference signal scrambling identity; and
    multiplexing the configured grant uplink control information on the uplink control channel based on the code domain configuration.
  13. The method of claim 1, wherein the first device comprises a terminal device and the second device comprises a network device.
  14. A method comprising:
    generating, at a second device, a configuration concerning configured grant uplink transmission, the configuration at least indicating resource allocation for transmission bursts on an uplink shared channel and resource allocation for a configured grant uplink control information;
    transmitting the configuration concerning the configured grant uplink transmission to a first device ; and
    receiving configured grant uplink control information from the first device on resources with at least one of the transmission bursts.
  15. The method of claim 14, wherein the configuration indicates a transmission format of the configured grant uplink control information.
  16. The method of claim 15, wherein the transmission format indicates whether the uplink control channel resources overlap with the resources configured for an uplink shared channel.
  17. The method of claim 16, further comprising:
    generating an indication of the resources for transmitting the configured grant uplink control information; and
    transmitting the first information to the first device via radio resource control signaling.
  18. The method of claim 14, wherein receiving the configured grant uplink control information comprises:
    receiving a first portion of the configured grant uplink control information on the uplink control channel along with a first transmission of the transmission burst, the first portion of the configured grant uplink control information being common to transmissions  of one transmission burst in the transmission bursts; and
    receiving a second portion of the configured grant uplink control information along with each transmission of the transmission burst on an uplink shared channel.
  19. The method of claim 18, wherein the first portion of the configured grant uplink control information comprises at least one of:
    an identity of the first device,
    a Channel Access Priority Class (CAPC) of the first device,
    a listen-before-talk type,
    a duration of channel occupancy,
    an indication concerning whether the second device is allowed to share the channel occupancy with the first device,
    a remaining duration of uplink transmission burst, or
    a configuration of configured grant uplink shared channel , and
    the second portion of the configured grant uplink control information comprises hybrid automatic repeat request (HARQ) related information associated with the set of data bursts.
  20. The method of claim 14, wherein receiving the configured grant uplink control information comprises:
    receiving a first portion of the configured grant uplink control information on the uplink control channel ahead of a transmission of a transmission burst; and
    receiving a second portion of the configured grant uplink control information on an uplink shared channel during the transmission of the transmission burst .
  21. The method of claim 20, wherein the first portion of the configured grant uplink control information comprises
    an identity of the first device,
    a Channel Access Priority Class (CAPC) of the first device,
    a listen-before-talk type,
    a duration of channel occupancy
    an indication concerning whether the second device is allowed to share the channel occupancy with the first device,
    a remaining duration of uplink transmission burst, or
    a configuration of configured grant uplink shared channel and
    the second portion of the configured grant uplink control information comprises the configured grant uplink control information not comprised in the first portion or the whole configured grant uplink control information .
  22. The method of claim 14, wherein receiving the configured grant uplink control information comprises:
    receiving the configured grant uplink control information on the uplink control channel ahead of the transmission burst; or
    receiving the configured grant uplink control information along with a first transmission of the transmission burst.
  23. The method of claim 14, further comprising:
    generating information concerning frequency domain configurations; and
    transmitting the information to the first device via radio resource control signaling.
  24. The method of claim 14, further comprising:
    generating information concerning code domain configurations; and
    transmitting the information to the first device via radio resource control signaling.
  25. The method of claim 14, wherein the first device comprises a terminal device and the second device comprises a network device.
  26. A first device comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device  to perform the method of any one of claims 1-13.
  27. A second device comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the  at least one processor, cause the second device to perform the method of any one of claims 14-25.
  28. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by an apparatus, causing the apparatus to perform the method of any one of claims 1-13.
  29. A computer readable storage medium comprising program instructions stored thereon, the instructions, when executed by an apparatus, causing the apparatus to perform the method of any one of claims 14-25.
  30. An apparatus comprising means for performing a process according to any of claims 1-13.
  31. An apparatus comprising circuitry configured to cause the apparatus to perform a process according to any of claims 1-13.
  32. An apparatus comprising means for performing a process according to any of claims 14-25.
  33. An apparatus comprising circuitry configured to cause the apparatus to perform a process according to any of claims 14-25.
PCT/CN2019/109725 2019-09-30 2019-09-30 Uplink control information for uplink configured grant transmission WO2021062800A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980100866.0A CN114451038A (en) 2019-09-30 2019-09-30 Uplink control information for uplink configuration grant transmission
PCT/CN2019/109725 WO2021062800A1 (en) 2019-09-30 2019-09-30 Uplink control information for uplink configured grant transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109725 WO2021062800A1 (en) 2019-09-30 2019-09-30 Uplink control information for uplink configured grant transmission

Publications (1)

Publication Number Publication Date
WO2021062800A1 true WO2021062800A1 (en) 2021-04-08

Family

ID=75336767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109725 WO2021062800A1 (en) 2019-09-30 2019-09-30 Uplink control information for uplink configured grant transmission

Country Status (2)

Country Link
CN (1) CN114451038A (en)
WO (1) WO2021062800A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211235A1 (en) * 2022-04-28 2023-11-02 엘지전자 주식회사 Method and device for transmitting and receiving configured grant pusch in wireless communication system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024012355A1 (en) * 2022-07-14 2024-01-18 华为技术有限公司 Communication method and apparatus
CN116095842B (en) * 2023-04-06 2023-08-15 深圳国人无线通信有限公司 Method and device for multiplexing transmission resources of user terminal
CN117278975B (en) * 2023-11-20 2024-01-30 湖南湘邮科技股份有限公司 Wireless communication method and system between part label host and part label peripheral

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180176902A1 (en) * 2016-12-16 2018-06-21 Qualcomm Incorporated Techniques and apparatuses for configuring transmission of corresponding uplink control information in new radio
US20190075581A1 (en) * 2017-09-01 2019-03-07 Huawei Technologies Co., Ltd. Grant-free uplink transmission in unlicensed spectrum
WO2019096058A1 (en) * 2017-11-15 2019-05-23 华为技术有限公司 Method for transmitting control information, terminal device, and network device
US20190158252A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Multiplexing of physical uplink shared channel (pusch) and physical uplink control channel (pucch) in uplink short burst transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180176902A1 (en) * 2016-12-16 2018-06-21 Qualcomm Incorporated Techniques and apparatuses for configuring transmission of corresponding uplink control information in new radio
US20190075581A1 (en) * 2017-09-01 2019-03-07 Huawei Technologies Co., Ltd. Grant-free uplink transmission in unlicensed spectrum
WO2019096058A1 (en) * 2017-11-15 2019-05-23 华为技术有限公司 Method for transmitting control information, terminal device, and network device
US20190158252A1 (en) * 2017-11-17 2019-05-23 Qualcomm Incorporated Multiplexing of physical uplink shared channel (pusch) and physical uplink control channel (pucch) in uplink short burst transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Enhancements to configured grants for NR-unlicensed", 3GPP DRAFT; R1-1906788- INTEL - CONFIGURED GRANT FOR NR-UNLICENSED, vol. RAN WG1, 4 May 2019 (2019-05-04), Reno, Nevada, USA, pages 1 - 11, XP051708824 *
QUALCOMM INCORPORATED: "R1-1610178: UL control channels overview", 3GPP DRAFT; R1-1610178_UL CONTROL CHANNELS OVERVIEW, vol. RAN WG1, 1 October 2016 (2016-10-01), Lisbon, Portugal, pages 1 - 3, XP051159978 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023211235A1 (en) * 2022-04-28 2023-11-02 엘지전자 주식회사 Method and device for transmitting and receiving configured grant pusch in wireless communication system

Also Published As

Publication number Publication date
CN114451038A (en) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2021062800A1 (en) Uplink control information for uplink configured grant transmission
US10931412B2 (en) Method and apparatus of obtaining feedback of HARQ acknowledgment information
JP2022520589A (en) User equipment and systems that perform transmit and receive operations
WO2018173005A1 (en) Multiple starting and ending positions for scheduled or autonomous uplink transmission in unlicensed spectrum
US20190116583A1 (en) Configuration of downlink transmissions
EP3639438A1 (en) Strategic mapping of uplink resources
AU2019460320B2 (en) Sharing HARQ processes by multiple configured grants resources
EP3744146B1 (en) Multi-bit scheduling request
JP7444293B2 (en) Terminal device and method for the terminal device
CN113906801A (en) Method, apparatus and computer readable medium for multiple TRP transmission
JP2023065547A (en) Terminal device, network device, and method
US12010722B2 (en) Wideband communications based on availability assessment
WO2020191720A1 (en) Logical channel prioritization
AU2019474027B2 (en) Methods, devices and computer readable media for communication on unlicensed band
JP2022530508A (en) User equipment and base station that execute transmission / reception processing
WO2022036590A1 (en) Mechanism for prioritization of transmissions
WO2022213238A1 (en) Reliable transmission on licensed and unlicensed bands
WO2023035148A1 (en) Proactive cot request
WO2023035140A1 (en) Proactive cot request
WO2022252109A1 (en) Short signaling transmission for sidelink communication in unlicensed spectrum
WO2023115277A1 (en) Methods and devices for communication
CN113965997A (en) Uplink transmission method, device and equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947531

Country of ref document: EP

Kind code of ref document: A1