WO2021062626A1 - Methods and devices for configuring channel busy ratio measurement - Google Patents

Methods and devices for configuring channel busy ratio measurement Download PDF

Info

Publication number
WO2021062626A1
WO2021062626A1 PCT/CN2019/109447 CN2019109447W WO2021062626A1 WO 2021062626 A1 WO2021062626 A1 WO 2021062626A1 CN 2019109447 W CN2019109447 W CN 2019109447W WO 2021062626 A1 WO2021062626 A1 WO 2021062626A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbr
resource
reporting
configured grant
grant type
Prior art date
Application number
PCT/CN2019/109447
Other languages
French (fr)
Inventor
Boyuan ZHANG
Lin Chen
Wei Luo
Mengzhen WANG
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2019/109447 priority Critical patent/WO2021062626A1/en
Priority to CN201980100951.7A priority patent/CN114451042A/en
Publication of WO2021062626A1 publication Critical patent/WO2021062626A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present disclosure is directed generally to wireless communications. Particularly, the present disclosure relates to methods for configuring channel busy ratio (CBR) measurements.
  • CBR channel busy ratio
  • Wireless communication technologies are moving the world toward an increasingly connected and networked society.
  • High-speed and low-latency wireless communications rely on efficient network resource management and allocation between user mobile stations and wireless access network nodes (including but not limited to wireless base stations) .
  • a new generation network is expected to provide high speed, low latency and ultra-reliable communication capabilities and fulfil the requirements from different industries and users.
  • a PC5 based communication i.e. a sidelink network, attracts attention.
  • This document relates to methods, systems, and devices for wireless communication, and more specifically, for configuring channel busy ratio (CBR) measurements.
  • CBR channel busy ratio
  • the present disclosure describes a method for wireless communication.
  • the method includes configuring, by a wireless node, a resource grant to a user equipment (UE) , the resource grant comprising a grant for a configured grant type 1 resource towards the UE; and configuring, by the wireless node, a configuration to the UE, the configuration comprising a reporting request for channel busy ratio (CBR) measurements.
  • CBR channel busy ratio
  • the present disclosure describes another method for wireless communication.
  • the method includes receiving, by a user equipment (UE) , a resource grant from a wireless node, the resource grant comprising a grant for a configured grant type 1 resource towards the UE, so that the UE uses the configured grant type 1 resource.
  • the method further includes receiving, by the UE, a configuration from the wireless node, the configure comprising a reporting request for channel busy ratio (CBR) measurements.
  • CBR channel busy ratio
  • an apparatus for wireless communication may include a memory storing instructions and a processing circuitry in communication with the memory.
  • the processing circuitry executes the instructions, the processing circuitry is configured to carry out the above methods.
  • a device for wireless communication may include a memory storing instructions and a processing circuitry in communication with the memory.
  • the processing circuitry executes the instructions, the processing circuitry is configured to carry out the above methods.
  • a computer-readable medium comprising instructions which, when executed by a computer, cause the computer to carry out the above methods.
  • FIG. 1 shows an example of a wireless communication system include a central network, one or more wireless network node, and one or more user equipments.
  • FIG. 2 shows an example of a network node.
  • FIG. 3 shows an example of a user equipment.
  • FIG. 4A shows a flow diagram of a method for wireless communication.
  • FIG. 4B shows a flow diagram of a method for wireless communication.
  • FIG. 4C shows a flow diagram of a method for wireless communication.
  • FIG. 4D shows a flow diagram of a method for wireless communication.
  • FIG. 5A shows a flow diagram of a method for wireless communication.
  • FIG. 5B shows a flow diagram of a method for wireless communication.
  • FIG. 5C shows a flow diagram of a method for wireless communication.
  • FIG. 5D shows a flow diagram of a method for wireless communication.
  • FIG. 5E shows a flow diagram of a method for wireless communication.
  • FIG. 5F shows a flow diagram of a method for wireless communication.
  • FIG. 5G shows a flow diagram of a method for wireless communication.
  • FIG. 5H shows a flow diagram of a method for wireless communication.
  • FIG. 6 shows a schematic diagram of one embodiment for transferring information between a wireless node and a user equipment (UE) .
  • UE user equipment
  • FIG. 7A shows a user plane Packet Data Convergence Protocol (PDCP) Protocol Data Unit (PDU) format.
  • PDCP Packet Data Convergence Protocol
  • PDU Protocol Data Unit
  • FIG. 7B shows a Service Data Unit (SDU) type indicator for the user plane PDCP PDU format shown in FIG. 7A.
  • SDU Service Data Unit
  • terms, such as “a”, “an” , or “the” may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
  • the term “based on” or “determined by” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.
  • the present disclosure describes methods and devices for configuring channel busy ratio (CBR) measurements.
  • a user equipment may directly communicate with another UE without going through a wireless node, for example, a UE directly transmits data to another UE via a sidelink transmission.
  • An actually wireless node may not know a resource utilization rate because sidelink transmission is from one UE to another UE directly without going through the wireless node.
  • the present disclosure describe a method and device addressing the questions of how to make the wireless node receive/obtain knowledge on the usage status of the resource and how to make the UE reasonably use the resource according to a configuration configured by the wireless node.
  • the wireless node may be a next generation NodeB (gNB)
  • the resource may include a configured grant type 1 resource.
  • V2X is one of tele-communicational protocols and data exchange standardizations. It may work in various implementations.
  • a communication may perform wireless communication and information exchange between vehicle to vehicle (V2V) .
  • a communication may perform wireless communication and information exchange from vehicle to pedestrian (V2P) .
  • a communication may perform wireless communication and information exchange from vehicle to infrastructure (V2I) . Based on V2X technology, the vehicle may provide a safer driving conditions, a more expedite traffic situation, as well as more convenience and entertainment.
  • one V2X technology may be Cellular V2X (C-V2X) .
  • C-V2X may include LTE technology.
  • one V2X technology may be dedicated short-range communication V2X (DSRC-V2X) .
  • the DSRC-V2X may include Wi-Fi technology.
  • a UE may communication with another UE via sidelink.
  • the data traffic between UEs may not need to be routing through a wireless node or other core network.
  • the data traffic between UEs may be directly transmitted from a source UE, through wireless communication to a destination UE.
  • this kind of V2X communication method may be referred as PC5-based V2X or V2X sidelink communication.
  • a wireless node 132 or 134 may include an evolved node B (eNB) or a next generation NodeB (gNB) .
  • One or more user equipment (UE) (152, 154, and 156) may include a vehicle or a mobile device.
  • the UE 152 may include a vehicle
  • the UE 154 may include another vehicle
  • the UE 156 may include a mobile device.
  • V2X communication may include a vehicle to vehicle communication 162.
  • a pedestrian possesses the mobile device 156
  • V2X communication may include a vehicle to pedestrian communication 164 and 166.
  • the communication (162, 164, and 166) may referred as PC5-based V2X or V2X sidelink communication.
  • the V2X communication may need to expand and its performance requirement may be higher or stricter.
  • the advanced V2X service may be categorized into the following types: vehicle platooning, extended sensors, semi-automated or full-automated driving, as well as remote driving.
  • the packet size may be supported from 50 bytes to 12000 bytes; the transmission rate may be supported from 2 messages per second to 50 messages per second; the end to end duration may be supported from 3 millisecond (ms) to 500 ms; the transmission reliability may be supported from 90%to 99.999%; the data rate may be supported from 0.5 Megabits per second (Mbps) to 1000 Mbps; and the transmission range may be supported from 50 meters to 1000 meters.
  • 5th generation communicational technology may include a 5G new radio (NR) Uu based V2X communication and 5G NR sidelink based V2X communication.
  • NR new radio
  • LTE V2X may include two types of UE: mode 3 UE and mode 4 UE.
  • Mode 3 UE may be scheduled by a wireless node (for example, an eNB or a gNB) directly.
  • a wireless node for example, an eNB or a gNB
  • SR/BSR scheduling request /buffer status report
  • the UE After acquiring the sidelink grant, the UE then may use the corresponding sidelink grant to transmit data.
  • mode 4 UE may autonomously perform sensing within one or multiple resource pool. After the sensing procedure, the UE may find a sidelink grant which is not occupied by other UEs. Then, the mode 4 UE may use the sidelink grant to transmit data.
  • Both mode 3 UE and mode 4 UE may need to perform channel busy ratio (CBR) measurement and reporting on all of its configured resource pools.
  • CBR channel busy ratio
  • a gNB may configure configured grant type 1 resource towards a mode 1 UE.
  • the configured grant type 1 may be shared among multiple UEs.
  • the UEs may communicate to each other via sidelink transmission without transmitting through the gNB.
  • the gNB may not know the resource utilization rate on this configured grant type 1 because sidelink transmission is from UE to UE directly without going through gNB, and the CBR reporting may only reflect the overall usage rate for the whole resource pool, which may not reflect the detailed usage of each resource. Consequently, the gNB may not know an accurate CBR on the configured grant type 1.
  • the present disclosure describes methods and devices for configuring channel busy ratio (CBR) measurements, thus addressing at least one of the existing issues described above. that The present disclosure also describes how to make gNB have knowledge on the usage status of the configured grant type 1 and how to make UE reasonably use the configured grant type 1 according to gNB’s configuration.
  • CBR channel busy ratio
  • FIG. 1 shows a wireless communication system 100 including one or more wireless network node (132 and 134) and one or more user equipment (UE) (152, 154, and 156) .
  • the wireless network node may be a base station, which may be a nodeB (NB, e.g., an eNB or gNB) in a mobile telecommunications context.
  • NB nodeB
  • Each of the UE may wirelessly communicate with the wireless network nodes via a plurality of radio channels 140.
  • a first UE 152 may wirelessly communicate with a first wireless network node 132 via a channel including a plurality of radio channels during a certain period of time, and the first UE 152 may also wirelessly communicate with a second wireless network node 134 via a channel including a plurality of radio channels during a certain period of time.
  • a second UE 154 and a third UE 156 may wirelessly communicate with the first and second wireless network nodes.
  • the first wireless network node 132 and the second wireless network node 134 may communicate to each other via one or more channel 135.
  • the UEs may directly communicate each other wirelessly and/or exchange information via one or more sidelinks.
  • the UE 152 may directly communicate with the UE 154 wirelessly via a sidelink 162; the UE 156 may directly communicate with the UE 154 wirelessly via a sidelink 164; and/or the UE 152 may directly communicate with the UE 156 wirelessly via a sidelink 166.
  • the wireless communication system 100 may include another base station which functions as a central unit (CN) 110.
  • the CN 110 may communicate with one or more wireless network node that functions as a distributed unit (DU) via one or more channel 120.
  • DU distributed unit
  • Figure 2 shows an example base station 200.
  • the example base station may include radio Tx/Rx circuitry 208 to receive and transmit with UEs and/or other base stations.
  • the base station may also include network interface circuitry 209 to communicate the base station with other base stations and/or a core network, e.g., optical or wireline interconnects, Ethernet, and/or other data transmission mediums/protocols.
  • the base station 200 may optionally include an input/output (I/O) interface 206 to communicate with an operator or the like.
  • I/O input/output
  • the base station may also include system circuitry 204.
  • System circuitry 204 may include processor (s) 221 and/or memory 222.
  • Memory 222 may include an operating system 224, instructions 226, and parameters 228.
  • Instructions 226 may be configured for the one or more of the processors 124 to perform the functions of the base station.
  • the parameters 228 may include parameters to support execution of the instructions 226. For example, parameters may include network protocol settings, bandwidth parameters, radio frequency mapping assignments, and/or other parameters.
  • FIG. 3 shows an example UE 300.
  • the UE 300 may be a mobile device, for example, a smart phone; or the UE 300 may be an electronic device in a vehicle.
  • the UE 300 may include communication interfaces 302, a system circuitry 304, an input/output interfaces (I/O) 306, a display circuitry 308, and a storage 309.
  • the display circuitry may include a user interface 310.
  • the system circuitry 304 may include any combination of hardware, software, firmware, or other logic/circuitry.
  • the system circuitry 304 may be implemented, for example, with one or more systems on a chip (SoC) , application specific integrated circuits (ASIC) , discrete analog and digital circuits, and other circuitry.
  • SoC systems on a chip
  • ASIC application specific integrated circuits
  • the system circuitry 304 may be a part of the implementation of any desired functionality in the UE 300.
  • the system circuitry 304 may include logic that facilitates, as examples, decoding and playing music and video, e.g., MP3, MP4, MPEG, AVI, FLAC, AC3, or WAV decoding and playback; running applications; accepting user inputs; saving and retrieving application data; establishing, maintaining, and terminating cellular phone calls or data connections for, as one example, internet connectivity; establishing, maintaining, and terminating wireless network connections, Bluetooth connections, or other connections; and displaying relevant information on the user interface 310.
  • decoding and playing music and video e.g., MP3, MP4, MPEG, AVI, FLAC, AC3, or WAV decoding and playback
  • running applications accepting user inputs; saving and retrieving application data; establishing, maintaining, and terminating cellular phone calls or data connections for, as one example, internet connectivity; establishing, maintaining, and terminating wireless network connections, Bluetooth connections, or other connections; and displaying relevant information on the
  • the user interface 310 and the inputs/output (I/O) interfaces 306 may include a graphical user interface, touch sensitive display, haptic feedback or other haptic output, voice or facial recognition inputs, buttons, switches, speakers and other user interface elements. Additional examples of the I/O interfaces 306 may include microphones, video and still image cameras, temperature sensors, vibration sensors, rotation and orientation sensors, headset and microphone input /output jacks, Universal Serial Bus (USB) connectors, memory card slots, radiation sensors (e.g., IR sensors) , and other types of inputs.
  • USB Universal Serial Bus
  • the communication interfaces 302 may include a Radio Frequency (RF) transmit (Tx) and receive (Rx) circuitry 316 which handles transmission and reception of signals through one or more antennas 314.
  • the communication interface 302 may include one or more transceivers.
  • the transceivers may be wireless transceivers that include modulation /demodulation circuitry, digital to analog converters (DACs) , shaping tables, analog to digital converters (ADCs) , filters, waveform shapers, filters, pre-amplifiers, power amplifiers and/or other logic for transmitting and receiving through one or more antennas, or (for some devices) through a physical (e.g., wireline) medium.
  • the transmitted and received signals may adhere to any of a diverse array of formats, protocols, modulations (e.g., QPSK, 16-QAM, 64-QAM, or 256-QAM) , frequency channels, bit rates, and encodings.
  • the communication interfaces 302 may include transceivers that support transmission and reception under the 2G, 3G, BT, WiFi, Universal Mobile Telecommunications System (UMTS) , High Speed Packet Access (HSPA) +, and 4G /Long Term Evolution (LTE) standards.
  • UMTS Universal Mobile Telecommunications System
  • HSPA High Speed Packet Access
  • LTE Long Term Evolution
  • the system circuitry 304 may include one or more processors 321 and memories 322.
  • the memory 322 stores, for example, an operating system 324, instructions 326, and parameters 328.
  • the processor 321 is configured to execute the instructions 326 to carry out desired functionality for the UE 300.
  • the parameters 328 may provide and specify configuration and operating options for the instructions 326.
  • the memory 322 may also store any BT, WiFi, 3G, 4G, 5G or other data that the UE 300 will send, or has received, through the communication interfaces 302.
  • a system power for the UE 300 may be supplied by a power storage device, such as a battery or a transformer.
  • the present disclosure describes several below embodiments, which may be implemented, partly or totally, on the network base station and/or the user equipment described above.
  • the present disclosure describe an embodiment of a method for configuring channel busy ratio (CBR) measurements.
  • the method may be performed by a wireless node, for example, an eNB or a gNB.
  • the method 400 may include step 410: configuring, by a wireless node, a resource grant to a user equipment (UE) , the resource grant comprising a grant for a configured grant type 1 resource towards the UE; and step 415: configuring, by the wireless node, a configuration to the UE, the configuration comprising a reporting request for channel busy ratio (CBR) measurements.
  • CBR channel busy ratio
  • the wireless node may configure a resource grant to the UE.
  • the resource grant may include a grant for a configured grant type 1 resource towards the UE. Consequently, the UE may receive the resource grant and use the configured grant type I resource to communicate with one or more other UEs.
  • the wireless node may configure a configuration to the UE.
  • the configuration may include a reporting request for channel busy ratio (CBR) measurements. Consequently, the UE may receive the configuration and determines the reporting request for CBR measurements.
  • the reporting request may include a reporting type of CBR measurements on the configured grant type 1 resource.
  • the method 500 may include step 510: receiving, by a user equipment (UE) , a resource grant from a wireless node, the resource grant comprising a grant for a configured grant type 1 resource towards the UE, so that the UE uses the configured grant type 1 resource; and step 515: receiving, by the UE, a configuration from the wireless node, the configure comprising a reporting request for channel busy ratio (CBR) measurements.
  • UE user equipment
  • CBR channel busy ratio
  • the method 500 may further include step 520: reporting, by the UE, CBR measurements on the configured grant type 1 resource to the wireless node based on the reporting request.
  • the configuration may include a reporting type of CBR measurements on the configured grant type 1 resource.
  • the reporting type of CBR measurements may include an event-based triggering for a CBR reporting on the configured grant type 1 resource, or a periodical reporting for a CBR reporting on the configured grant type 1 resource.
  • the method 400 may further include step 420 in FIG. 4B: receiving, by the wireless node, a CBR measurement reported by the UE according to an occurrence of a preset event.
  • the method 500 may further include step 530 in FIG. 4C: reporting, by the UE, a CBR measurement to the wireless node according to an occurrence of a preset event.
  • the preset event may include a first event that a CBR measurement is larger than a preset-high threshold; and/or a second event that a CBR measurement is lower than a preset-low threshold.
  • the preset event may serve as triggering condition. When the triggering condition is satisfied, the UE will report the CBR measurement.
  • the preset-high threshold may be a CBR value within a range of 0.5 and 1, inclusive.
  • the preset high threshold may be 0.8.
  • the preset-low threshold may be a CBR value within a range of 0 and 0.5, inclusive.
  • the preset high threshold may be 0.2.
  • the method 400 may further include step 430 in FIG. 4C: receiving, by the wireless node, a CBR measurement reported by the UE at a fixed interval.
  • the method 500 may further include step 540 in FIG. 5D: reporting, by the UE, a CBR measurement to the wireless node at a fixed interval.
  • the UE may report the CBR measurement for which the new measurement results become available since the last periodical reporting or since the measurement was initiated or reset.
  • the fixed interval may be a time value between 100 ms and 10 seconds.
  • the fixed interval may be 500 ms.
  • the fixed interval of the periodical reporting may be configured by the wireless node.
  • the configured grant type 1 is configured within a sidelink mode 1 resource pool.
  • the UE may exclude a resource location of configured grant type 1, and perform CBR measurement on the rest part of mode 1 resource pool. This may provide more accurate CBR measurement on mode 1 resource pool, and/or the UE may select more appropriate transmit (Tx) parameter according to the more accurate CBR measurement.
  • Tx transmit
  • CBR may be used to reflect how busy a resource pool is, and may be used for a wireless node to configure the resource pools.
  • a wireless node for example, an eNB or a gNB
  • the UE may decide to reselect another resource pool on other carriers.
  • “about” a value may refer to a range from 90%to 110%of the value, inclusive.
  • a wireless node may configure some event based CBR reporting for a subset of UEs and/or configure periodical reporting for another subset of UEs.
  • the wireless node for both mode 3 and mode 4 UEs, the wireless node (for example, an eNB or a gNB) may configure a set of transmission parameters.
  • the set of transmission parameters may be a list of transmission parameters associated with different CBR and packet priority combinations.
  • the set of transmission parameters may include at least one or more the following parameters: a modulation coding scheme (MCS) ; a transport block size (TBS) ; a transmission power (Tx power) ; a number of subchannels; a size of subchannels; or a channel ratio limit (cr-limit) .
  • MCS modulation coding scheme
  • TSS transport block size
  • Tx power transmission power
  • cr-limit channel ratio limit
  • the configuration of the configured grant type 1 resource may include the set of transmission parameters for indicating a transmission behavior of using the configured grant type 1 resource.
  • UE may select a list of transmission parameters based on its measured CBR result and/or the packet priority.
  • the set of transmission parameter may include one or more of the following parameters:
  • pathlossReferenceIndex INTEGER (0.. maxNrofPUSCH-PathlossReferenceRSs-1) .
  • the set of transmission parameters for the configured grant type 1 resource may be configured based on at least one of the following: a CBR value of the configured grant type 1 resource; or a packet priority of current buffer data of the UE.
  • the packet priority may be indicated through the default priority within the quality of service (QoS) profile of the packet, or the associated logical channel priority.
  • the packet priority is determined based on a default priority in a quality of service (QoS) profile and a logical channel priority associated with a data packet of the UE.
  • the set of transmission parameter may be used by the UE to determine how to select transmission parameter for data transmission. If the UE is configured with the set of transmission parameter. Then UE may use the set of transmission parameters to associate with at least one of the following CBR on the configured grant, or a packet priority. The UE may determine its list of transmission parameters for the packet transmission.
  • the list of transmission parameters for the packet transmission may includes at least one of the following parameters: a modulation coding scheme (MCS) ; a transport block size (TBS) ; a transmission power (Tx power) ; a number of subchannels; a size of subchannels; or a channel ratio limit (cr-limit) .
  • the method 500 may further include step 550: determining, by the UE, a MCS value used for packet transmission.
  • the method 500 may further include step 560: determining, by the UE, a cr-limit value used for packet transmission.
  • the configured transmission parameter may not limit UE’s usage on the configured grant type 1.
  • cr-limit may not set as 0 and/or transmission power may not set as minus infinity.
  • a wireless node (for example, an eNB or a gNB) may explicitly configure a list of CBR thresholds.
  • the list of CBR thresholds may be associated with a list of packet priorities on the configured grant type 1.
  • the list of CBR thresholds may be used for the UE to decide whether it is allowed to use the configured grant type 1 for packets with certain priority.
  • the UE when the UE is configured with multiple CBR thresholds associated with different packet priorities on the configured grant type 1, the UE may use the multiple configured CBR threshold values, associated with its transmission packet priorities to decide whether it may use the current configured grant type 1 to send the corresponding packet.
  • a wireless node may configure a set of packet priority-CBR threshold values including different CBR and packet priority combination. Then when the UE has packet for transmission, the UE may make comparison between the configured CBR threshold value with its measured CBR value, to decide whether it may use the resource pool for data transmission.
  • the configuration may include a list of CBR thresholds, which includes: a first CBR threshold of 0.9 associated with a first packet priority of 1; a second CBR threshold of 0.8 associated with a second packet priority of 2; and a third CBR threshold of 0.7 associated with a third packet priority of 3.
  • the corresponding CBR threshold may be determined to be 0.8 based on the list of CBR thresholds.
  • the UE may use the configured grant type 1 for transmitting the packet with packet priority of 2 when a CBR measurement is below 0.8; and the UE may not use the configured grant type 1 for transmitting the packet with packet priority of 2 when a CBR measurement is above or equal to 0.8.
  • the method 500 may further include step 570: determining, by the UE, to use the configured grant type 1, when the measured CBR value is below the CBR threshold associated with the packet priority of current packet; and step 572: determining by the UE, not to use the configured grant type 1, when the measured CBR value is above the CBR threshold associated with the packet priority of current packet.
  • a configured grant type 1 resource and/or a configured grant type 2 resource may be configured towards the UE.
  • a configured grant (type 1, type 2) may provide a set of resources in a periodic manner for multiple sidelink transmissions. UE may decide which slot to transmit in each of the occasions indicated by a given configured grant.
  • a mode 1 NR V2X UE when under radio resource control (RRC) connected mode, it may send SidelinkUEInformation towards a wireless node (for example, a gNB) to indicate its interested frequencies, expected services indicated as destination IDs, as well as traffic patterns towards the gNB. Moreover, the UE may report the UEAssistanceInformation towards the gNB to indicate its traffic pattern of semi-persistent scheduling (SPS) services. Correspondingly, the gNB may allocate a mode 1 resource pool towards the mode 1 UE with transmission parameters, through dedicated RRC signaling.
  • RRC radio resource control
  • the UE may firstly send BSR to indicate the information of the service, logical channel priority, and buffer size, towards the gNB.
  • the gNB may allocate a configured grant type 1 resource towards the UE through RRC signaling.
  • the configured grant type 1 resource may be configured as an integrated resource pool and configured to associate with a frequency index.
  • the configured grant type 1 resource may be configured as a portion of a resource pool and configured to associate with a resource pool index
  • the configured grant type 1 may be configured as a mode 1 resource pool.
  • the present disclosure describes a signaling procedure for a UE 691 to acquire a configured grant type 1 resource via a wireless node 693 (for example, an gNB) .
  • the UE 691 may be a mode 1 UE.
  • a mode 1 NR V2X UE may be under a RRC connected mode, and the UE may send side link information (SidelinkUEInformation) towards the gNB.
  • the side link information may indicate its interested frequencies, expected services indicated as destination IDs, as well as traffic patterns towards the gNB.
  • the UE may report UE Assistant information (UEAssistanceInformation) towards the gNB.
  • the UE Assistant information may indicate its traffic pattern of SPS services.
  • the gNB may allocate a mode 1 resource pool towards the mode 1 UE with transmission parameters, through dedicated RRC signaling.
  • step 640 when the UE has data for transmission, the UE may firstly send buffer status report (BSR) to indicate the information of the service, logical channel priority, and buffer size, towards the wireless node.
  • BSR buffer status report
  • the gNB may allocate a configured grant type 1 resource towards the UE through RRC signaling.
  • a wireless node allows multiple UEs to use the same configured grant type 1 at the same time.
  • the gNB may configure/request UEs to report the CBR measurement on the configured grant type 1 resource.
  • the gNB may configure the type1CbrMeasurementRequired within the configuration of configured grant type 1.
  • the gNB may independently configure the type1CbrMeasurementRequired for each UE individually to indicate that whether it is required to perform CBR measurement and report on the configured grant type 1 resource.
  • the method 400 may further include step 440: prior to sending the resource grant to the UE, sending, by the wireless node, a CBR-enable flag to the UE, the CBR-enable flag comprising a Boolean value.
  • the CBR-enable flag may include a value of either true or false, and may include a name of type1CbrMeasurementRequired.
  • the method 500 may further include step 580: determining, by the UE, the Boolean value of the CBR-enable flag; step 582: in response to determining that the Boolean value of the CBR-enable flag is true, reporting, by the UE, a CBR measurement to the wireless node; and step 584: in response to determining that the Boolean value of the CBR-enable flag is false, not reporting, by the UE, a CBR measurement to the wireless node.
  • a wireless node for the report of CBR measurement on the configured grant type 1, may configure the UE with a CBR-enable flag, and if the CBR-enable flag is true, the gNB may further configure the UE with event based triggering condition, and/or periodical reporting. For example, when the UE is configured with the CBR-enable flag (type1CbrMeasurementRequired) for the configured grant type 1 resource being true, the UE will perform CBR measurement on the configured grant type 1.
  • the triggering condition for the CBR measurement report is configured as event, the UE may report the CBR measurement once the event is triggering.
  • the triggering condition for the CBR measurement report is configured as periodical reporting, the UE may report the CBR measurement for which the new measurement results become available since the last periodical reporting or since the measurement was initiated or reset.
  • the present disclosure describes another embodiment for configuring a user plane Packet Data Convergence Protocol (PDCP) Protocol Data Unit (PDU) format.
  • PDCP Packet Data Convergence Protocol
  • PDU Protocol Data Unit
  • a pair of UEs may need to exchange PC5-S messages/signaling to perform unicast communication, such as Direct Communication Request/Accept message, Link Identifier Update Request/response, Link Modification Request/Accept message and so on.
  • the PC5-S messages may be transmitted via PC5 SRB (s) in a similar means as PC5-RRC signaling.
  • PC5-S messages are directly delivered to PDCP layer (i.e.
  • the receiver side may not distinguish that whether a PDCP Service Data Unit (SDU) (on a SRB) contains PC5-S signaling or PC5-RRC signaling. Thereby, it may not decide to deliver the PDCP SDU to PC5 RRC layer or PC5-S signalling protocol layer.
  • SDU Service Data Unit
  • the present disclosure describes some embodiments to solve at least some of the problems.
  • a dedicated LCID (s) is specified to be used to carry PC5-S signaling, so that to differentiate with the SRB of PC5 RRC signaling.
  • an indication may be added in the control plane PDCP data PDU to indicate whether the corresponding PDCP SDU contains PC5-S signaling or PC5-RRC signaling.
  • FIG. 7A shows an user plane PDCP PDU format 710.
  • FIG. 7B shows a first bit 751 in the control plane PDCP PDU format 710 as a SDU type indication, such as value 1 (/01/001... ) indicates PC5-S signaling, value 0 (/00/000... ) indicates PC5-RRC signaling or vice versa.
  • any one or more bits (751, 752, and 753) may be used as the SDU type indication.
  • the present disclosure describes methods, apparatus, and computer-readable medium for wireless communication.
  • the present disclosure addressed the issues with configuring CBR measurements.
  • the methods, devices, and computer-readable medium described in the present disclosure may facilitate the performance of configuring CBR measurements.
  • the methods, devices, and computer-readable medium described in the present disclosure may also reduce UE’s power consumption and time needed to configure CBR measurements, thus improving efficiency and overall performance.
  • the methods, devices, and computer-readable medium described in the present disclosure may improves the overall efficiency of the wireless communication systems.

Abstract

Method, systems and devices for wireless communication are described. The method includes configuring, by a wireless node, a resource grant to a user equipment (UE), the resource grant comprising a grant for a configured grant type 1 resource towards the UE. The method further includes configuring, by the wireless node, a configuration to the UE, the configuration comprising a reporting request for channel busy ratio (CBR) measurements.

Description

METHODS AND DEVICES FOR CONFIGURING CHANNEL BUSY RATIO MEASUREMENT TECHNICAL FIELD
The present disclosure is directed generally to wireless communications. Particularly, the present disclosure relates to methods for configuring channel busy ratio (CBR) measurements.
BACKGROUND
Wireless communication technologies are moving the world toward an increasingly connected and networked society. High-speed and low-latency wireless communications rely on efficient network resource management and allocation between user mobile stations and wireless access network nodes (including but not limited to wireless base stations) . A new generation network is expected to provide high speed, low latency and ultra-reliable communication capabilities and fulfil the requirements from different industries and users. In order to fulfil the low latency and high reliability requirements for the vertical industry as well as support the new generation network service, A PC5 based communication, i.e. a sidelink network, attracts attention.
SUMMARY
This document relates to methods, systems, and devices for wireless communication, and more specifically, for configuring channel busy ratio (CBR) measurements.
In one embodiment, the present disclosure describes a method for wireless communication. The method includes configuring, by a wireless node, a resource grant to a user equipment (UE) , the resource grant comprising a grant for a configured grant type 1 resource towards the UE; and configuring, by the wireless node, a configuration to the UE, the configuration comprising a reporting request for channel busy ratio (CBR) measurements.
In another embodiment, the present disclosure describes another method for wireless communication. The method includes receiving, by a user equipment (UE) , a resource grant from a wireless node, the resource grant comprising a grant for a configured grant type 1 resource towards  the UE, so that the UE uses the configured grant type 1 resource. The method further includes receiving, by the UE, a configuration from the wireless node, the configure comprising a reporting request for channel busy ratio (CBR) measurements.
In some other embodiments, an apparatus for wireless communication may include a memory storing instructions and a processing circuitry in communication with the memory. When the processing circuitry executes the instructions, the processing circuitry is configured to carry out the above methods.
In some other embodiments, a device for wireless communication may include a memory storing instructions and a processing circuitry in communication with the memory. When the processing circuitry executes the instructions, the processing circuitry is configured to carry out the above methods.
In some other embodiments, a computer-readable medium comprising instructions which, when executed by a computer, cause the computer to carry out the above methods.
The above and other aspects and their implementations are described in greater detail in the drawings, the descriptions, and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows an example of a wireless communication system include a central network, one or more wireless network node, and one or more user equipments.
FIG. 2 shows an example of a network node.
FIG. 3 shows an example of a user equipment.
FIG. 4A shows a flow diagram of a method for wireless communication.
FIG. 4B shows a flow diagram of a method for wireless communication.
FIG. 4C shows a flow diagram of a method for wireless communication.
FIG. 4D shows a flow diagram of a method for wireless communication.
FIG. 5A shows a flow diagram of a method for wireless communication.
FIG. 5B shows a flow diagram of a method for wireless communication.
FIG. 5C shows a flow diagram of a method for wireless communication.
FIG. 5D shows a flow diagram of a method for wireless communication.
FIG. 5E shows a flow diagram of a method for wireless communication.
FIG. 5F shows a flow diagram of a method for wireless communication.
FIG. 5G shows a flow diagram of a method for wireless communication.
FIG. 5H shows a flow diagram of a method for wireless communication.
FIG. 6 shows a schematic diagram of one embodiment for transferring information between a wireless node and a user equipment (UE) .
FIG. 7A shows a user plane Packet Data Convergence Protocol (PDCP) Protocol Data Unit (PDU) format.
FIG. 7B shows a Service Data Unit (SDU) type indicator for the user plane PDCP PDU format shown in FIG. 7A.
DETAILED DESCRIPTION
The present disclosure will now be described in detail hereinafter with reference to the accompanied drawings, which form a part of the present disclosure, and which show, by way of illustration, specific examples of embodiments. Please note that the present disclosure may, however, be embodied in a variety of different forms and, therefore, the covered or claimed subject matter is intended to be construed as not being limited to any of the embodiments to be set forth below.
Throughout the specification and claims, terms may have nuanced meanings suggested or implied in context beyond an explicitly stated meaning. Likewise, the phrase “in one embodiment” or “in some embodiments” as used herein does not necessarily refer to the same embodiment and the phrase “in another embodiment” or “in other embodiments” as used herein does not necessarily refer to a different embodiment. The phrase “in one implementation” or “in some implementations” as used herein does not necessarily refer to the same implementation and the phrase “in another implementation” or “in other implementations” as used herein does not necessarily refer to a different implementation. It is intended, for example, that claimed subject  matter includes combinations of exemplary embodiments or implementations in whole or in part.
In general, terminology may be understood at least in part from usage in context. For example, terms, such as “and” , “or” , or “and/or, ” as used herein may include a variety of meanings that may depend at least in part upon the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B or C, here used in the exclusive sense. In addition, the term “one or more” or “at least one” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a”, “an” , or “the” , again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context. In addition, the term “based on” or “determined by” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.
The present disclosure describes methods and devices for configuring channel busy ratio (CBR) measurements. To address some of the drawbacks of the existing communication system and/or improve the efficiency of communication system, a user equipment (UE) may directly communicate with another UE without going through a wireless node, for example, a UE directly transmits data to another UE via a sidelink transmission. An actually wireless node may not know a resource utilization rate because sidelink transmission is from one UE to another UE directly without going through the wireless node. The present disclosure describe a method and device addressing the questions of how to make the wireless node receive/obtain knowledge on the usage status of the resource and how to make the UE reasonably use the resource according to a configuration configured by the wireless node. In one implementation, the wireless node may be a next generation NodeB (gNB) , and the resource may include a configured grant type 1 resource.
5G network is expected to provide high speed, low latency and ultra-reliable communication capabilities and fulfil the requirements from different industries and users. V2X is one of tele-communicational protocols and data exchange standardizations. It may work in various implementations. In one implementation, a communication may perform wireless communication  and information exchange between vehicle to vehicle (V2V) . In another implementation, a communication may perform wireless communication and information exchange from vehicle to pedestrian (V2P) . In another implementation, a communication may perform wireless communication and information exchange from vehicle to infrastructure (V2I) . Based on V2X technology, the vehicle may provide a safer driving conditions, a more expedite traffic situation, as well as more convenience and entertainment.
There may be various V2X technologies. In one implementation, one V2X technology may be Cellular V2X (C-V2X) . C-V2X may include LTE technology. In another implementation, one V2X technology may be dedicated short-range communication V2X (DSRC-V2X) . The DSRC-V2X may include Wi-Fi technology.
In one implementation of C-V2X, a UE may communication with another UE via sidelink. The data traffic between UEs may not need to be routing through a wireless node or other core network. The data traffic between UEs may be directly transmitted from a source UE, through wireless communication to a destination UE. In some implementation, this kind of V2X communication method may be referred as PC5-based V2X or V2X sidelink communication.
Referring to FIG. 1, a  wireless node  132 or 134 may include an evolved node B (eNB) or a next generation NodeB (gNB) . One or more user equipment (UE) (152, 154, and 156) may include a vehicle or a mobile device. In one implementation, the UE 152 may include a vehicle, the UE 154 may include another vehicle, and the UE 156 may include a mobile device. V2X communication may include a vehicle to vehicle communication 162. A pedestrian possesses the mobile device 156, and V2X communication may include a vehicle to  pedestrian communication  164 and 166. The communication (162, 164, and 166) may referred as PC5-based V2X or V2X sidelink communication.
With the development of technology and automation industry, the V2X communication may need to expand and its performance requirement may be higher or stricter. The advanced V2X service may be categorized into the following types: vehicle platooning, extended sensors, semi-automated or full-automated driving, as well as remote driving. In one implementation, in order to achieve better performance, the packet size may be supported from 50 bytes to 12000 bytes; the transmission rate may be supported from 2 messages per second to 50 messages per  second; the end to end duration may be supported from 3 millisecond (ms) to 500 ms; the transmission reliability may be supported from 90%to 99.999%; the data rate may be supported from 0.5 Megabits per second (Mbps) to 1000 Mbps; and the transmission range may be supported from 50 meters to 1000 meters.
In one embodiment, 5th generation communicational technology may include a 5G new radio (NR) Uu based V2X communication and 5G NR sidelink based V2X communication.
In one implementation, LTE V2X may include two types of UE: mode 3 UE and mode 4 UE. Mode 3 UE may be scheduled by a wireless node (for example, an eNB or a gNB) directly. When the UE needs to perform data transmission, firstly the UE needs to send scheduling request /buffer status report (SR/BSR) to request the wireless node to configure a sidelink grant within one resource pool. After acquiring the sidelink grant, the UE then may use the corresponding sidelink grant to transmit data.
In another implementation, mode 4 UE may autonomously perform sensing within one or multiple resource pool. After the sensing procedure, the UE may find a sidelink grant which is not occupied by other UEs. Then, the mode 4 UE may use the sidelink grant to transmit data.
Both mode 3 UE and mode 4 UE may need to perform channel busy ratio (CBR) measurement and reporting on all of its configured resource pools.
In one scenario of NR V2X, a gNB may configure configured grant type 1 resource towards a mode 1 UE. Optionally, the configured grant type 1 may be shared among multiple UEs. The UEs may communicate to each other via sidelink transmission without transmitting through the gNB. In this case, the gNB may not know the resource utilization rate on this configured grant type 1 because sidelink transmission is from UE to UE directly without going through gNB, and the CBR reporting may only reflect the overall usage rate for the whole resource pool, which may not reflect the detailed usage of each resource. Consequently, the gNB may not know an accurate CBR on the configured grant type 1.
The present disclosure describes methods and devices for configuring channel busy ratio (CBR) measurements, thus addressing at least one of the existing issues described above. that The present disclosure also describes how to make gNB have knowledge on the usage status of the  configured grant type 1 and how to make UE reasonably use the configured grant type 1 according to gNB’s configuration.
FIG. 1 shows a wireless communication system 100 including one or more wireless network node (132 and 134) and one or more user equipment (UE) (152, 154, and 156) . The wireless network node may be a base station, which may be a nodeB (NB, e.g., an eNB or gNB) in a mobile telecommunications context. Each of the UE may wirelessly communicate with the wireless network nodes via a plurality of radio channels 140. For example, a first UE 152 may wirelessly communicate with a first wireless network node 132 via a channel including a plurality of radio channels during a certain period of time, and the first UE 152 may also wirelessly communicate with a second wireless network node 134 via a channel including a plurality of radio channels during a certain period of time. Likewise, a second UE 154 and a third UE 156 may wirelessly communicate with the first and second wireless network nodes. The first wireless network node 132 and the second wireless network node 134 may communicate to each other via one or more channel 135.
Referring to FIG. 1, the UEs may directly communicate each other wirelessly and/or exchange information via one or more sidelinks. For example, the UE 152 may directly communicate with the UE 154 wirelessly via a sidelink 162; the UE 156 may directly communicate with the UE 154 wirelessly via a sidelink 164; and/or the UE 152 may directly communicate with the UE 156 wirelessly via a sidelink 166.
In one implementation, referring to FIG. 1, the wireless communication system 100 may include another base station which functions as a central unit (CN) 110. The CN 110 may communicate with one or more wireless network node that functions as a distributed unit (DU) via one or more channel 120.
Figure 2 shows an example base station 200. The example base station may include radio Tx/Rx circuitry 208 to receive and transmit with UEs and/or other base stations. The base station may also include network interface circuitry 209 to communicate the base station with other base stations and/or a core network, e.g., optical or wireline interconnects, Ethernet, and/or other data transmission mediums/protocols. The base station 200 may optionally include an input/output (I/O) interface 206 to communicate with an operator or the like.
The base station may also include system circuitry 204. System circuitry 204 may include processor (s) 221 and/or memory 222. Memory 222 may include an operating system 224, instructions 226, and parameters 228. Instructions 226 may be configured for the one or more of the processors 124 to perform the functions of the base station. The parameters 228 may include parameters to support execution of the instructions 226. For example, parameters may include network protocol settings, bandwidth parameters, radio frequency mapping assignments, and/or other parameters.
Figure 3 shows an example UE 300. The UE 300 may be a mobile device, for example, a smart phone; or the UE 300 may be an electronic device in a vehicle. The UE 300 may include communication interfaces 302, a system circuitry 304, an input/output interfaces (I/O) 306, a display circuitry 308, and a storage 309. The display circuitry may include a user interface 310. The system circuitry 304 may include any combination of hardware, software, firmware, or other logic/circuitry. The system circuitry 304 may be implemented, for example, with one or more systems on a chip (SoC) , application specific integrated circuits (ASIC) , discrete analog and digital circuits, and other circuitry. The system circuitry 304 may be a part of the implementation of any desired functionality in the UE 300. In that regard, the system circuitry 304 may include logic that facilitates, as examples, decoding and playing music and video, e.g., MP3, MP4, MPEG, AVI, FLAC, AC3, or WAV decoding and playback; running applications; accepting user inputs; saving and retrieving application data; establishing, maintaining, and terminating cellular phone calls or data connections for, as one example, internet connectivity; establishing, maintaining, and terminating wireless network connections, Bluetooth connections, or other connections; and displaying relevant information on the user interface 310. The user interface 310 and the inputs/output (I/O) interfaces 306 may include a graphical user interface, touch sensitive display, haptic feedback or other haptic output, voice or facial recognition inputs, buttons, switches, speakers and other user interface elements. Additional examples of the I/O interfaces 306 may include microphones, video and still image cameras, temperature sensors, vibration sensors, rotation and orientation sensors, headset and microphone input /output jacks, Universal Serial Bus (USB) connectors, memory card slots, radiation sensors (e.g., IR sensors) , and other types of inputs.
Referring to FIG. 3, the communication interfaces 302 may include a Radio Frequency (RF) transmit (Tx) and receive (Rx) circuitry 316 which handles transmission and reception of signals through one or more antennas 314. The communication interface 302 may include one or more transceivers. The transceivers may be wireless transceivers that include modulation /demodulation circuitry, digital to analog converters (DACs) , shaping tables, analog to digital converters (ADCs) , filters, waveform shapers, filters, pre-amplifiers, power amplifiers and/or other logic for transmitting and receiving through one or more antennas, or (for some devices) through a physical (e.g., wireline) medium. The transmitted and received signals may adhere to any of a diverse array of formats, protocols, modulations (e.g., QPSK, 16-QAM, 64-QAM, or 256-QAM) , frequency channels, bit rates, and encodings. As one specific example, the communication interfaces 302 may include transceivers that support transmission and reception under the 2G, 3G, BT, WiFi, Universal Mobile Telecommunications System (UMTS) , High Speed Packet Access (HSPA) +, and 4G /Long Term Evolution (LTE) standards. The techniques described below, however, are applicable to other wireless communications technologies whether arising from the 3rd Generation Partnership Project (3GPP) , GSM Association, 3GPP2, IEEE, or other partnerships or standards bodies.
Referring to FIG. 3, the system circuitry 304 may include one or more processors 321 and memories 322. The memory 322 stores, for example, an operating system 324, instructions 326, and parameters 328. The processor 321 is configured to execute the instructions 326 to carry out desired functionality for the UE 300. The parameters 328 may provide and specify configuration and operating options for the instructions 326. The memory 322 may also store any BT, WiFi, 3G, 4G, 5G or other data that the UE 300 will send, or has received, through the communication interfaces 302. In various implementations, a system power for the UE 300 may be supplied by a power storage device, such as a battery or a transformer.
The present disclosure describes several below embodiments, which may be implemented, partly or totally, on the network base station and/or the user equipment described above.
The present disclosure describe an embodiment of a method for configuring channel busy ratio (CBR) measurements. The method may be performed by a wireless node, for example,  an eNB or a gNB.
Referring to FIG. 4A, the method 400 may include step 410: configuring, by a wireless node, a resource grant to a user equipment (UE) , the resource grant comprising a grant for a configured grant type 1 resource towards the UE; and step 415: configuring, by the wireless node, a configuration to the UE, the configuration comprising a reporting request for channel busy ratio (CBR) measurements.
In Step 410, the wireless node may configure a resource grant to the UE. The resource grant may include a grant for a configured grant type 1 resource towards the UE. Consequently, the UE may receive the resource grant and use the configured grant type I resource to communicate with one or more other UEs.
In Step 415, the wireless node may configure a configuration to the UE. The configuration may include a reporting request for channel busy ratio (CBR) measurements. Consequently, the UE may receive the configuration and determines the reporting request for CBR measurements. The reporting request may include a reporting type of CBR measurements on the configured grant type 1 resource.
Referring to FIG. 5A, the method 500 may include step 510: receiving, by a user equipment (UE) , a resource grant from a wireless node, the resource grant comprising a grant for a configured grant type 1 resource towards the UE, so that the UE uses the configured grant type 1 resource; and step 515: receiving, by the UE, a configuration from the wireless node, the configure comprising a reporting request for channel busy ratio (CBR) measurements.
Referring to FIG. 5B, the method 500 may further include step 520: reporting, by the UE, CBR measurements on the configured grant type 1 resource to the wireless node based on the reporting request. The configuration may include a reporting type of CBR measurements on the configured grant type 1 resource.
The reporting type of CBR measurements may include an event-based triggering for a CBR reporting on the configured grant type 1 resource, or a periodical reporting for a CBR reporting on the configured grant type 1 resource.
When the reporting type of CBR measurements includes the event-based triggering  for a CBR reporting on the configured grant type 1 resource, the method 400 may further include step 420 in FIG. 4B: receiving, by the wireless node, a CBR measurement reported by the UE according to an occurrence of a preset event. When the reporting type of CBR measurements includes the event-based triggering for a CBR reporting on the configured grant type 1 resource, the method 500 may further include step 530 in FIG. 4C: reporting, by the UE, a CBR measurement to the wireless node according to an occurrence of a preset event.
The preset event may include a first event that a CBR measurement is larger than a preset-high threshold; and/or a second event that a CBR measurement is lower than a preset-low threshold. The preset event may serve as triggering condition. When the triggering condition is satisfied, the UE will report the CBR measurement. In one implementation, the preset-high threshold may be a CBR value within a range of 0.5 and 1, inclusive. For one example, the preset high threshold may be 0.8. In another implementation, the preset-low threshold may be a CBR value within a range of 0 and 0.5, inclusive. For one example, the preset high threshold may be 0.2.
When the reporting type of CBR measurements includes a periodical reporting for a CBR reporting on the configured grant type 1 resource, the method 400 may further include step 430 in FIG. 4C: receiving, by the wireless node, a CBR measurement reported by the UE at a fixed interval. When the reporting type of CBR measurements includes a periodical reporting for a CBR reporting on the configured grant type 1 resource, the method 500 may further include step 540 in FIG. 5D: reporting, by the UE, a CBR measurement to the wireless node at a fixed interval.
Every time the fixed interval passes, the UE may report the CBR measurement for which the new measurement results become available since the last periodical reporting or since the measurement was initiated or reset. In one implementation, the fixed interval may be a time value between 100 ms and 10 seconds. For one example, the fixed interval may be 500 ms. In another implementation, the fixed interval of the periodical reporting may be configured by the wireless node.
In another implementation, optionally, the configured grant type 1 is configured within a sidelink mode 1 resource pool. When a UE perform CBR measurements on the mode 1 resource pool, the UE may exclude a resource location of configured grant type 1, and perform CBR measurement on the rest part of mode 1 resource pool. This may provide more accurate CBR  measurement on mode 1 resource pool, and/or the UE may select more appropriate transmit (Tx) parameter according to the more accurate CBR measurement.
CBR may be used to reflect how busy a resource pool is, and may be used for a wireless node to configure the resource pools. In one implementation, for a mode 3 UE, when the resource pool is very busy, which corresponds to a large value of CBR (for example, CBR is about 0.8 or 0.9) , a wireless node (for example, an eNB or a gNB) may consider to re-configure another sidelink resource pool for the UE. In another implementation, for a mode 4 UE, when the resource pool is very busy, which corresponds to a large value of CBR (for example, CBR is about 0.8 or 0.9) , the UE may decide to reselect another resource pool on other carriers. Here, in the present disclosure, “about” a value may refer to a range from 90%to 110%of the value, inclusive.
In another implementation, for both mode 3 and mode 4 UEs, a wireless node may configure some event based CBR reporting for a subset of UEs and/or configure periodical reporting for another subset of UEs. Optionally, for both mode 3 and mode 4 UEs, the wireless node (for example, an eNB or a gNB) may configure a set of transmission parameters. The set of transmission parameters may be a list of transmission parameters associated with different CBR and packet priority combinations. The set of transmission parameters may include at least one or more the following parameters: a modulation coding scheme (MCS) ; a transport block size (TBS) ; a transmission power (Tx power) ; a number of subchannels; a size of subchannels; or a channel ratio limit (cr-limit) . In one implementation, the configuration of the configured grant type 1 resource may include the set of transmission parameters for indicating a transmission behavior of using the configured grant type 1 resource. In another implementation, when UE needs to perform data transmission, UE may select a list of transmission parameters based on its measured CBR result and/or the packet priority.
In one implementation, the set of transmission parameter may include one or more of the following parameters:
timeDomainOffset              INTEGER (0.. 5119) ,
timeDomainAllocation          INTEGER (0.. 15) ,
frequencyDomainAllocation     BIT STRING (SIZE (18) ) ,
antennaPort                 INTEGER (0.. 31) ,
dmrs-SeqInitialization      INTEGER (0.. 1) ,
precodingAndNumberOfLayers  INTEGER (0.. 63) ,
srs-ResourceIndicator       INTEGER (0.. 15) ,
mcsAndTBS                   INTEGER (0.. 31) ,
frequencyHoppingOffset   INTEGER (1.. maxNrofPhysicalResourceBlocks -1) ,
pathlossReferenceIndex   INTEGER (0.. maxNrofPUSCH-PathlossReferenceRSs-1) .
In one implementation, the set of transmission parameters for the configured grant type 1 resource may be configured based on at least one of the following: a CBR value of the configured grant type 1 resource; or a packet priority of current buffer data of the UE. In one implementation, the packet priority may be indicated through the default priority within the quality of service (QoS) profile of the packet, or the associated logical channel priority. In another implementation, the packet priority is determined based on a default priority in a quality of service (QoS) profile and a logical channel priority associated with a data packet of the UE.
In another implementation, the set of transmission parameter may be used by the UE to determine how to select transmission parameter for data transmission. If the UE is configured with the set of transmission parameter. Then UE may use the set of transmission parameters to associate with at least one of the following CBR on the configured grant, or a packet priority. The UE may determine its list of transmission parameters for the packet transmission. The list of transmission parameters for the packet transmission may includes at least one of the following parameters: a modulation coding scheme (MCS) ; a transport block size (TBS) ; a transmission power (Tx power) ; a number of subchannels; a size of subchannels; or a channel ratio limit (cr-limit) .
In another implementation, referring to FIG. 5E, the method 500 may further include step 550: determining, by the UE, a MCS value used for packet transmission. Referring to FIG. 5F, the method 500 may further include step 560: determining, by the UE, a cr-limit value used for packet transmission.
In another implementation, optionally, when the configured transmission parameter may  not limit UE’s usage on the configured grant type 1. For example, cr-limit may not set as 0 and/or transmission power may not set as minus infinity. A wireless node (for example, an eNB or a gNB) may explicitly configure a list of CBR thresholds. The list of CBR thresholds may be associated with a list of packet priorities on the configured grant type 1. The list of CBR thresholds may be used for the UE to decide whether it is allowed to use the configured grant type 1 for packets with certain priority. Optionally, when the UE is configured with multiple CBR thresholds associated with different packet priorities on the configured grant type 1, the UE may use the multiple configured CBR threshold values, associated with its transmission packet priorities to decide whether it may use the current configured grant type 1 to send the corresponding packet.
In another implementation, optionally, for mode 4 UE, a wireless node may configure a set of packet priority-CBR threshold values including different CBR and packet priority combination. Then when the UE has packet for transmission, the UE may make comparison between the configured CBR threshold value with its measured CBR value, to decide whether it may use the resource pool for data transmission.
For one example, the configuration may include a list of CBR thresholds, which includes: a first CBR threshold of 0.9 associated with a first packet priority of 1; a second CBR threshold of 0.8 associated with a second packet priority of 2; and a third CBR threshold of 0.7 associated with a third packet priority of 3. When an actual packet priority is 2, the corresponding CBR threshold may be determined to be 0.8 based on the list of CBR thresholds. Thus, the UE may use the configured grant type 1 for transmitting the packet with packet priority of 2 when a CBR measurement is below 0.8; and the UE may not use the configured grant type 1 for transmitting the packet with packet priority of 2 when a CBR measurement is above or equal to 0.8.
In another implementation, referring to FIG. 5G, the method 500 may further include step 570: determining, by the UE, to use the configured grant type 1, when the measured CBR value is below the CBR threshold associated with the packet priority of current packet; and step 572: determining by the UE, not to use the configured grant type 1, when the measured CBR value is above the CBR threshold associated with the packet priority of current packet.
In another implementation, for new radio (NR) V2X, NR V2X mode 1 UE, a configured grant type 1 resource and/or a configured grant type 2 resource may be configured towards the UE.  A configured grant (type 1, type 2) may provide a set of resources in a periodic manner for multiple sidelink transmissions. UE may decide which slot to transmit in each of the occasions indicated by a given configured grant.
In another implementation, when a mode 1 NR V2X UE is under radio resource control (RRC) connected mode, it may send SidelinkUEInformation towards a wireless node (for example, a gNB) to indicate its interested frequencies, expected services indicated as destination IDs, as well as traffic patterns towards the gNB. Moreover, the UE may report the UEAssistanceInformation towards the gNB to indicate its traffic pattern of semi-persistent scheduling (SPS) services. Correspondingly, the gNB may allocate a mode 1 resource pool towards the mode 1 UE with transmission parameters, through dedicated RRC signaling. Later, when the UE has data for transmission, it may firstly send BSR to indicate the information of the service, logical channel priority, and buffer size, towards the gNB. Optionally, the gNB may allocate a configured grant type 1 resource towards the UE through RRC signaling.
In another implementation, optionally, the configured grant type 1 resource may be configured as an integrated resource pool and configured to associate with a frequency index.
In another implementation, optionally, the configured grant type 1 resource may be configured as a portion of a resource pool and configured to associate with a resource pool index
In another implementation, optionally, the configured grant type 1 may be configured as a mode 1 resource pool.
Referring to FIG. 6, the present disclosure describes a signaling procedure for a UE 691 to acquire a configured grant type 1 resource via a wireless node 693 (for example, an gNB) . In one implementation, the UE 691 may be a mode 1 UE.
In step 610, a mode 1 NR V2X UE may be under a RRC connected mode, and the UE may send side link information (SidelinkUEInformation) towards the gNB. The side link information may indicate its interested frequencies, expected services indicated as destination IDs, as well as traffic patterns towards the gNB.
In step 620, the UE may report UE Assistant information (UEAssistanceInformation) towards the gNB. The UE Assistant information may indicate its traffic pattern of SPS services.
In step 630, the gNB may allocate a mode 1 resource pool towards the mode 1 UE with transmission parameters, through dedicated RRC signaling.
In step 640, when the UE has data for transmission, the UE may firstly send buffer status report (BSR) to indicate the information of the service, logical channel priority, and buffer size, towards the wireless node.
Optionally in step 650, the gNB may allocate a configured grant type 1 resource towards the UE through RRC signaling.
In another implementation, optionally, a wireless node (for example, a gNB) allows multiple UEs to use the same configured grant type 1 at the same time. In order to make the gNB have a better knowledge of the usage status of the configured grant type 1, the gNB may configure/request UEs to report the CBR measurement on the configured grant type 1 resource. In one implementation, the gNB may configure the type1CbrMeasurementRequired within the configuration of configured grant type 1. In another implementation, the gNB may independently configure the type1CbrMeasurementRequired for each UE individually to indicate that whether it is required to perform CBR measurement and report on the configured grant type 1 resource.
Referring to FIG. 4D, the method 400 may further include step 440: prior to sending the resource grant to the UE, sending, by the wireless node, a CBR-enable flag to the UE, the CBR-enable flag comprising a Boolean value. The CBR-enable flag may include a value of either true or false, and may include a name of type1CbrMeasurementRequired.
Referring to FIG. 5H, the method 500 may further include step 580: determining, by the UE, the Boolean value of the CBR-enable flag; step 582: in response to determining that the Boolean value of the CBR-enable flag is true, reporting, by the UE, a CBR measurement to the wireless node; and step 584: in response to determining that the Boolean value of the CBR-enable flag is false, not reporting, by the UE, a CBR measurement to the wireless node.
In another implementation, for the report of CBR measurement on the configured grant type 1, a wireless node (for example, a gNB) may configure the UE with a CBR-enable flag, and if the CBR-enable flag is true, the gNB may further configure the UE with event based triggering condition, and/or periodical reporting. For example, when the UE is configured with the  CBR-enable flag (type1CbrMeasurementRequired) for the configured grant type 1 resource being true, the UE will perform CBR measurement on the configured grant type 1. In addition, when the triggering condition for the CBR measurement report is configured as event, the UE may report the CBR measurement once the event is triggering. When the triggering condition for the CBR measurement report is configured as periodical reporting, the UE may report the CBR measurement for which the new measurement results become available since the last periodical reporting or since the measurement was initiated or reset.
The present disclosure describes another embodiment for configuring a user plane Packet Data Convergence Protocol (PDCP) Protocol Data Unit (PDU) format. In NR V2X unicast, a pair of UEs may need to exchange PC5-S messages/signaling to perform unicast communication, such as Direct Communication Request/Accept message, Link Identifier Update Request/response, Link Modification Request/Accept message and so on. The PC5-S messages may be transmitted via PC5 SRB (s) in a similar means as PC5-RRC signaling. When PC5-S messages are directly delivered to PDCP layer (i.e. a PDCP entity associated to a SRB) , the receiver side may not distinguish that whether a PDCP Service Data Unit (SDU) (on a SRB) contains PC5-S signaling or PC5-RRC signaling. Thereby, it may not decide to deliver the PDCP SDU to PC5 RRC layer or PC5-S signalling protocol layer. The present disclosure describes some embodiments to solve at least some of the problems.
In one implementation, a dedicated LCID (s) is specified to be used to carry PC5-S signaling, so that to differentiate with the SRB of PC5 RRC signaling.
In another implementation, referring to FIGS. 7A and 7B, an indication may be added in the control plane PDCP data PDU to indicate whether the corresponding PDCP SDU contains PC5-S signaling or PC5-RRC signaling. FIG. 7A shows an user plane PDCP PDU format 710. FIG. 7B shows a first bit 751 in the control plane PDCP PDU format 710 as a SDU type indication, such as value 1 (/01/001... ) indicates PC5-S signaling, value 0 (/00/000... ) indicates PC5-RRC signaling or vice versa. In other implementations, any one or more bits (751, 752, and 753) may be used as the SDU type indication.
The present disclosure describes methods, apparatus, and computer-readable medium for wireless communication. The present disclosure addressed the issues with configuring CBR  measurements. The methods, devices, and computer-readable medium described in the present disclosure may facilitate the performance of configuring CBR measurements. The methods, devices, and computer-readable medium described in the present disclosure may also reduce UE’s power consumption and time needed to configure CBR measurements, thus improving efficiency and overall performance. The methods, devices, and computer-readable medium described in the present disclosure may improves the overall efficiency of the wireless communication systems.
Reference throughout this specification to features, advantages, or similar language does not imply that all of the features and advantages that may be realized with the present solution should be or are included in any single implementation thereof. Rather, language referring to the features and advantages is understood to mean that a specific feature, advantage, or characteristic described in connection with an embodiment is included in at least one embodiment of the present solution. Thus, discussions of the features and advantages, and similar language, throughout the specification may, but do not necessarily, refer to the same embodiment.
Furthermore, the described features, advantages and characteristics of the present solution may be combined in any suitable manner in one or more embodiments. One of ordinary skill in the relevant art will recognize, in light of the description herein, that the present solution can be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments of the present solution.

Claims (40)

  1. A method for wireless communication, comprising:
    configuring, by a wireless node, a resource grant to a user equipment (UE) , the resource grant comprising a grant for a configured grant type 1 resource towards the UE; and
    configuring, by the wireless node, a configuration to the UE, the configuration comprising a reporting request for channel busy ratio (CBR) measurements.
  2. The method of claim 1, wherein:
    the wireless node comprises a next generation NodeB (gNB) .
  3. The method of claim 1, wherein:
    the reporting request comprises a reporting type of CBR measurements on the configured grant type 1 resource.
  4. The method of claim 3, wherein:
    the reporting type of CBR measurements comprises an event-based triggering for a CBR reporting on the configured grant type 1 resource;
    the method further comprises:
    receiving, by the wireless node, a CBR measurement reported by the UE according to an occurrence of a preset event;
  5. The method of claim 4, wherein:
    the preset event comprises a first event that a CBR measurement is larger than a  preset-high threshold.
  6. The method of claim 4, wherein:
    the preset event comprises a second event that a CBR measurement is lower than a preset-low threshold.
  7. The method of claim 3, wherein:
    the reporting type of CBR measurements comprises a periodical reporting for a CBR reporting on the configured grant type 1 resource;
    the method further comprises:
    receiving, by the wireless node, a CBR measurement reported by the UE at a fixed interval.
  8. The method of claim 7, wherein:
    the fixed interval of the periodical reporting is configured by the wireless node.
  9. The method of claim 1, wherein:
    the configuration of the configured grant type 1 resource comprises a set of transmission parameters for indicating a transmission behavior of using the configured grant type 1 resource.
  10. The method of claim 9, wherein the set of transmission parameters for the configured grant type 1 resource comprises a modulation coding scheme (MCS) ;
  11. The method of claim 10, wherein the set of transmission parameters for the configured grant type 1 resource further comprises a transport block size (TBS) , a transmission power (Tx power) , a number of subchannels, a size of subchannels, and a channel ratio limit (cr-limit) .
  12. The method of any of claims 9-11, wherein the set of transmission parameters for the configured grant type 1 resource are configured based on a packet priority of current buffer data of the UE.
  13. The method of any of claims 9-12, wherein the set of transmission parameters for the configured grant type 1 resource are configured based on a CBR measurement value of current configured grant type 1.
  14. The method of claim 13, wherein:
    the packet priority is determined based on a default priority in a quality of service (QoS) profile and a logical channel priority associated with a data packet of the UE.
  15. The method of claim 1, wherein:
    the configuration comprises a list of CBR thresholds.
  16. The method of claim 15, wherein:
    the list of CBR thresholds are associated with a list of packet priorities.
  17. The method of claim 1, wherein:
    the configured grant type 1 resource is configured as an entire resource pool and configured to associate with a frequency index.
  18. The method of claim 1, wherein:
    the configured grant type 1 resource is configured as a portion of a resource pool and configured to associate with a resource pool index.
  19. The method of claim 1, further comprising:
    prior to sending the resource grant to the UE, sending, by the wireless node, a CBR-enable flag to the UE, the CBR-enable flag comprising a Boolean value.
  20. The method of claim 19, wherein:
    the CBR-enable flag comprises a type1CbrMeasurementRequired.
  21. A method for wireless communication, comprising:
    receiving, by a user equipment (UE) , a resource grant from a wireless node, the resource grant comprising a grant for a configured grant type 1 resource towards the UE, so that the UE uses the configured grant type 1 resource; and
    receiving, by the UE, a configuration from the wireless node, the configuration comprising a reporting request for channel busy ratio (CBR) measurements.
  22. The method of claim 21, further comprising:
    reporting, by the UE, CBR measurements on the configured grant type 1 resource to the wireless node based on the reporting request.
  23. The method of claim 21, wherein:
    the configuration comprises a reporting type of CBR measurements on the configured grant type 1 resource.
  24. The method of claim 23, wherein:
    the reporting type of CBR measurements comprises an event-based triggering for a CBR reporting on the configured grant type 1 resource; and
    the method further comprises:
    reporting, by the UE, a CBR measurement to the wireless node according to an occurrence of a preset event;
  25. The method of claim 24, wherein:
    the preset event comprises at least one of:
    a first event that a CBR measurement is larger than a preset-high threshold; or
    a second event that a CBR measurement is lower than a preset-low threshold;
  26. The method of claim 24, wherein:
    the reporting type of CBR measurements comprises a periodical reporting for a CBR reporting on the configured grant type 1 resource; and
    the method further comprises:
    reporting, by the UE, a CBR measurement to the wireless node at a fixed interval.
  27. The method of claim 21, wherein:
    the configuration of the configured grant type 1 resource comprises a set of transmission parameters for indicating a transmission behavior of using the configured grant type 1 resource.
  28. The method of claim 27, wherein the set of transmission parameters for the configured grant type 1 resource comprises a modulation coding scheme (MCS) ; and
    the method further comprises:
    determining, by the UE, a MCS value used for packet transmission.
  29. The method of claim 28, wherein the set of transmission parameters for the configured grant type 1 resource further comprises a channel ratio limit (cr-limit) ; and
    the method further comprises:
    determining, by the UE, a cr-limit value used for packet transmission.
  30. The method of claim 27, further comprising:
    for a data packet with a packet priority, determining, by the UE, a list of transmission parameters for the data packet based on the set of transmission parameters for the configured grant type 1 resource, a CBR measurement, and the packet priority.
  31. The method of claim 30, wherein:
    the packet priority is determined based on a default priority in a quality of service (QoS) profile and a logical channel priority associated with a data packet of the UE.
  32. The method of claim 21, wherein:
    the configuration comprises a list of CBR thresholds.
  33. The method of claim 32, wherein:
    the list of CBR thresholds are associated with a list of packet priorities; and
    the method further comprise:
    determining, by the UE, to use the configured grant type 1, when the measured CBR value is below the CBR threshold associated with the packet priority of current packet; and
    determining by the UE, not to use the configured grant type 1, when the measured CBR value is above the CBR threshold associated with the packet priority of current packet;
  34. The method of claim 21, wherein:
    the configured grant type 1 resource is configured as an integrated resource pool and configured to associate with a frequency index.
  35. The method of claim 21, wherein:
    the configured grant type 1 resource is configured as a portion of a resource pool and configured to associate with a resource pool index.
  36. The method of claim 21, further comprising:
    prior to receiving the resource grant from the wireless node, receiving, by the UE, a CBR-enable flag from the wireless node, the CBR-enable flag comprising a Boolean value.
  37. The method of claim 36, further comprising:
    determining, by the UE, the Boolean value of the CBR-enable flag;
    in response to determining that the Boolean value of the CBR-enable flag is true, reporting, by the UE, a CBR measurement to the wireless node; and
    in response to determining that the Boolean value of the CBR-enable flag is false, not reporting, by the UE, a CBR measurement to the wireless node.
  38. The method of claim 36, wherein:
    the CBR-enable flag comprises a type1CbrMeasurementRequired.
  39. A wireless communications apparatus comprising a processor and a memory, wherein the processor is configured to read code from the memory and implement a method recited in any of claims 1 to 38.
  40. A computer program product comprising a computer-readable program medium code stored thereupon, the code, when executed by a processor, causing the processor to implement a method recited in any of claims 1 to 38.
PCT/CN2019/109447 2019-09-30 2019-09-30 Methods and devices for configuring channel busy ratio measurement WO2021062626A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/109447 WO2021062626A1 (en) 2019-09-30 2019-09-30 Methods and devices for configuring channel busy ratio measurement
CN201980100951.7A CN114451042A (en) 2019-09-30 2019-09-30 Method and equipment for configuring channel busy rate measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109447 WO2021062626A1 (en) 2019-09-30 2019-09-30 Methods and devices for configuring channel busy ratio measurement

Publications (1)

Publication Number Publication Date
WO2021062626A1 true WO2021062626A1 (en) 2021-04-08

Family

ID=75336729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109447 WO2021062626A1 (en) 2019-09-30 2019-09-30 Methods and devices for configuring channel busy ratio measurement

Country Status (2)

Country Link
CN (1) CN114451042A (en)
WO (1) WO2021062626A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018157611A1 (en) * 2017-03-02 2018-09-07 中兴通讯股份有限公司 Method and device for configuring radio resource, and storage medium
WO2019036863A1 (en) * 2017-08-21 2019-02-28 Nokia Solutions And Networks Oy Hybrid autonomous and network activation of carrier aggregation
CN109891936A (en) * 2016-11-03 2019-06-14 三星电子株式会社 Method and apparatus for supporting car networking service
WO2019136676A1 (en) * 2018-01-11 2019-07-18 富士通株式会社 Device and method for performing semi-persistent scheduling of bandwidth part
US20190222979A1 (en) * 2018-01-12 2019-07-18 Hyundai Motor Company Method and apparatus for selecting carrier in communication system supporting vehicle to everything communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891936A (en) * 2016-11-03 2019-06-14 三星电子株式会社 Method and apparatus for supporting car networking service
WO2018157611A1 (en) * 2017-03-02 2018-09-07 中兴通讯股份有限公司 Method and device for configuring radio resource, and storage medium
WO2019036863A1 (en) * 2017-08-21 2019-02-28 Nokia Solutions And Networks Oy Hybrid autonomous and network activation of carrier aggregation
WO2019136676A1 (en) * 2018-01-11 2019-07-18 富士通株式会社 Device and method for performing semi-persistent scheduling of bandwidth part
US20190222979A1 (en) * 2018-01-12 2019-07-18 Hyundai Motor Company Method and apparatus for selecting carrier in communication system supporting vehicle to everything communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Analysis of Uu interface for advanced V2X use cases", 3GPP TSG RAN1 WG1 MEETING #95 R1-1812368, 16 November 2018 (2018-11-16), XP051478561 *

Also Published As

Publication number Publication date
CN114451042A (en) 2022-05-06

Similar Documents

Publication Publication Date Title
EP3742766A1 (en) Data transmission method and apparatus
JP7274038B2 (en) Information indication, decision method and device, communication device and storage medium
WO2020259363A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2022042489A1 (en) Resource indication and selection methods and apparatuses
CN111865536A (en) Search space monitoring and configuration method and device
WO2019028792A1 (en) Resource allocation method and device
US20230011110A1 (en) Methods and devices for transmitting feedback information
US20230143285A1 (en) Communication method and sidelink device
JP2023535834A (en) User equipment, scheduling node, method for user equipment, and method for scheduling node
CN109548076B (en) Data repeat transmission method and device
TW201922021A (en) Method, apparatus, computer program product and computer program
WO2021072662A1 (en) Hybrid automatic repeat request feedback method and apparatus
WO2022022433A1 (en) Sidelink communication method and apparatus
WO2019029463A1 (en) Method and device for receiving control information and sending control information
KR20220143707A (en) Method and apparatus for determining data buffer status
US20230337319A1 (en) Methods, devices, and systems for configuring sidelink drx
JP7239718B2 (en) Resource management method and apparatus
WO2020119753A1 (en) Parameter configuration method and apparatus
WO2021062626A1 (en) Methods and devices for configuring channel busy ratio measurement
WO2022151195A1 (en) Method and apparatus for survival time and communication service availability
JP2023534473A (en) User equipment, scheduling node, method for user equipment, and method for scheduling node
WO2022236731A1 (en) Methods, devices, and systems for configuring ue with priority indication for measurement task
WO2024026628A1 (en) Methods and devices for user equipment transmitting user equipment information
US20230354285A1 (en) Methods, devices, and systems for configuring group-based bandwidth part switch
WO2023130241A1 (en) Methods, devices, and systems for configuring frame structure for sidelink communication between devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19947969

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19947969

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19947969

Country of ref document: EP

Kind code of ref document: A1